blob: c9a310a3f7aee0e915c5a674cf836ee01612e9b7 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#include "src/base/atomicops.h"
8#include "src/base/bits.h"
9#include "src/code-stubs.h"
10#include "src/compilation-cache.h"
11#include "src/cpu-profiler.h"
12#include "src/deoptimizer.h"
13#include "src/execution.h"
14#include "src/gdb-jit.h"
15#include "src/global-handles.h"
16#include "src/heap/incremental-marking.h"
17#include "src/heap/mark-compact.h"
18#include "src/heap/objects-visiting.h"
19#include "src/heap/objects-visiting-inl.h"
20#include "src/heap/spaces-inl.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000021#include "src/heap-profiler.h"
22#include "src/ic/ic.h"
23#include "src/ic/stub-cache.h"
24
25namespace v8 {
26namespace internal {
27
28
29const char* Marking::kWhiteBitPattern = "00";
30const char* Marking::kBlackBitPattern = "10";
31const char* Marking::kGreyBitPattern = "11";
32const char* Marking::kImpossibleBitPattern = "01";
33
34
35// -------------------------------------------------------------------------
36// MarkCompactCollector
37
38MarkCompactCollector::MarkCompactCollector(Heap* heap)
39 : // NOLINT
40#ifdef DEBUG
41 state_(IDLE),
42#endif
43 reduce_memory_footprint_(false),
44 abort_incremental_marking_(false),
45 marking_parity_(ODD_MARKING_PARITY),
46 compacting_(false),
47 was_marked_incrementally_(false),
48 sweeping_in_progress_(false),
49 pending_sweeper_jobs_semaphore_(0),
Emily Bernierd0a1eb72015-03-24 16:35:39 -040050 evacuation_(false),
Ben Murdochb8a8cc12014-11-26 15:28:44 +000051 migration_slots_buffer_(NULL),
52 heap_(heap),
Emily Bernierd0a1eb72015-03-24 16:35:39 -040053 marking_deque_memory_(NULL),
54 marking_deque_memory_committed_(false),
Ben Murdochb8a8cc12014-11-26 15:28:44 +000055 code_flusher_(NULL),
56 have_code_to_deoptimize_(false) {
57}
58
59#ifdef VERIFY_HEAP
60class VerifyMarkingVisitor : public ObjectVisitor {
61 public:
62 explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
63
64 void VisitPointers(Object** start, Object** end) {
65 for (Object** current = start; current < end; current++) {
66 if ((*current)->IsHeapObject()) {
67 HeapObject* object = HeapObject::cast(*current);
68 CHECK(heap_->mark_compact_collector()->IsMarked(object));
69 }
70 }
71 }
72
73 void VisitEmbeddedPointer(RelocInfo* rinfo) {
74 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
75 if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
76 Object* p = rinfo->target_object();
77 VisitPointer(&p);
78 }
79 }
80
81 void VisitCell(RelocInfo* rinfo) {
82 Code* code = rinfo->host();
83 DCHECK(rinfo->rmode() == RelocInfo::CELL);
84 if (!code->IsWeakObject(rinfo->target_cell())) {
85 ObjectVisitor::VisitCell(rinfo);
86 }
87 }
88
89 private:
90 Heap* heap_;
91};
92
93
94static void VerifyMarking(Heap* heap, Address bottom, Address top) {
95 VerifyMarkingVisitor visitor(heap);
96 HeapObject* object;
97 Address next_object_must_be_here_or_later = bottom;
98
99 for (Address current = bottom; current < top; current += kPointerSize) {
100 object = HeapObject::FromAddress(current);
101 if (MarkCompactCollector::IsMarked(object)) {
102 CHECK(current >= next_object_must_be_here_or_later);
103 object->Iterate(&visitor);
104 next_object_must_be_here_or_later = current + object->Size();
105 }
106 }
107}
108
109
110static void VerifyMarking(NewSpace* space) {
111 Address end = space->top();
112 NewSpacePageIterator it(space->bottom(), end);
113 // The bottom position is at the start of its page. Allows us to use
114 // page->area_start() as start of range on all pages.
115 CHECK_EQ(space->bottom(),
116 NewSpacePage::FromAddress(space->bottom())->area_start());
117 while (it.has_next()) {
118 NewSpacePage* page = it.next();
119 Address limit = it.has_next() ? page->area_end() : end;
120 CHECK(limit == end || !page->Contains(end));
121 VerifyMarking(space->heap(), page->area_start(), limit);
122 }
123}
124
125
126static void VerifyMarking(PagedSpace* space) {
127 PageIterator it(space);
128
129 while (it.has_next()) {
130 Page* p = it.next();
131 VerifyMarking(space->heap(), p->area_start(), p->area_end());
132 }
133}
134
135
136static void VerifyMarking(Heap* heap) {
137 VerifyMarking(heap->old_pointer_space());
138 VerifyMarking(heap->old_data_space());
139 VerifyMarking(heap->code_space());
140 VerifyMarking(heap->cell_space());
141 VerifyMarking(heap->property_cell_space());
142 VerifyMarking(heap->map_space());
143 VerifyMarking(heap->new_space());
144
145 VerifyMarkingVisitor visitor(heap);
146
147 LargeObjectIterator it(heap->lo_space());
148 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
149 if (MarkCompactCollector::IsMarked(obj)) {
150 obj->Iterate(&visitor);
151 }
152 }
153
154 heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
155}
156
157
158class VerifyEvacuationVisitor : public ObjectVisitor {
159 public:
160 void VisitPointers(Object** start, Object** end) {
161 for (Object** current = start; current < end; current++) {
162 if ((*current)->IsHeapObject()) {
163 HeapObject* object = HeapObject::cast(*current);
164 CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
165 }
166 }
167 }
168};
169
170
171static void VerifyEvacuation(Page* page) {
172 VerifyEvacuationVisitor visitor;
173 HeapObjectIterator iterator(page, NULL);
174 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
175 heap_object = iterator.Next()) {
176 // We skip free space objects.
177 if (!heap_object->IsFiller()) {
178 heap_object->Iterate(&visitor);
179 }
180 }
181}
182
183
184static void VerifyEvacuation(NewSpace* space) {
185 NewSpacePageIterator it(space->bottom(), space->top());
186 VerifyEvacuationVisitor visitor;
187
188 while (it.has_next()) {
189 NewSpacePage* page = it.next();
190 Address current = page->area_start();
191 Address limit = it.has_next() ? page->area_end() : space->top();
192 CHECK(limit == space->top() || !page->Contains(space->top()));
193 while (current < limit) {
194 HeapObject* object = HeapObject::FromAddress(current);
195 object->Iterate(&visitor);
196 current += object->Size();
197 }
198 }
199}
200
201
202static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
203 if (FLAG_use_allocation_folding &&
204 (space == heap->old_pointer_space() || space == heap->old_data_space())) {
205 return;
206 }
207 PageIterator it(space);
208
209 while (it.has_next()) {
210 Page* p = it.next();
211 if (p->IsEvacuationCandidate()) continue;
212 VerifyEvacuation(p);
213 }
214}
215
216
217static void VerifyEvacuation(Heap* heap) {
218 VerifyEvacuation(heap, heap->old_pointer_space());
219 VerifyEvacuation(heap, heap->old_data_space());
220 VerifyEvacuation(heap, heap->code_space());
221 VerifyEvacuation(heap, heap->cell_space());
222 VerifyEvacuation(heap, heap->property_cell_space());
223 VerifyEvacuation(heap, heap->map_space());
224 VerifyEvacuation(heap->new_space());
225
226 VerifyEvacuationVisitor visitor;
227 heap->IterateStrongRoots(&visitor, VISIT_ALL);
228}
229#endif // VERIFY_HEAP
230
231
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000232void MarkCompactCollector::SetUp() {
233 free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
234 free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
235}
236
237
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400238void MarkCompactCollector::TearDown() {
239 AbortCompaction();
240 delete marking_deque_memory_;
241}
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000242
243
244void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
245 p->MarkEvacuationCandidate();
246 evacuation_candidates_.Add(p);
247}
248
249
250static void TraceFragmentation(PagedSpace* space) {
251 int number_of_pages = space->CountTotalPages();
252 intptr_t reserved = (number_of_pages * space->AreaSize());
253 intptr_t free = reserved - space->SizeOfObjects();
254 PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
255 AllocationSpaceName(space->identity()), number_of_pages,
256 static_cast<int>(free), static_cast<double>(free) * 100 / reserved);
257}
258
259
260bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
261 if (!compacting_) {
262 DCHECK(evacuation_candidates_.length() == 0);
263
264#ifdef ENABLE_GDB_JIT_INTERFACE
265 // If GDBJIT interface is active disable compaction.
266 if (FLAG_gdbjit) return false;
267#endif
268
269 CollectEvacuationCandidates(heap()->old_pointer_space());
270 CollectEvacuationCandidates(heap()->old_data_space());
271
272 if (FLAG_compact_code_space && (mode == NON_INCREMENTAL_COMPACTION ||
273 FLAG_incremental_code_compaction)) {
274 CollectEvacuationCandidates(heap()->code_space());
275 } else if (FLAG_trace_fragmentation) {
276 TraceFragmentation(heap()->code_space());
277 }
278
279 if (FLAG_trace_fragmentation) {
280 TraceFragmentation(heap()->map_space());
281 TraceFragmentation(heap()->cell_space());
282 TraceFragmentation(heap()->property_cell_space());
283 }
284
285 heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
286 heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
287 heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
288
289 compacting_ = evacuation_candidates_.length() > 0;
290 }
291
292 return compacting_;
293}
294
295
296void MarkCompactCollector::CollectGarbage() {
297 // Make sure that Prepare() has been called. The individual steps below will
298 // update the state as they proceed.
299 DCHECK(state_ == PREPARE_GC);
300
301 MarkLiveObjects();
302 DCHECK(heap_->incremental_marking()->IsStopped());
303
304 if (FLAG_collect_maps) ClearNonLiveReferences();
305
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400306 ProcessAndClearWeakCells();
307
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000308 ClearWeakCollections();
309
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400310 heap_->set_encountered_weak_cells(Smi::FromInt(0));
311
312 isolate()->global_handles()->CollectPhantomCallbackData();
313
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000314#ifdef VERIFY_HEAP
315 if (FLAG_verify_heap) {
316 VerifyMarking(heap_);
317 }
318#endif
319
320 SweepSpaces();
321
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000322#ifdef VERIFY_HEAP
323 if (heap()->weak_embedded_objects_verification_enabled()) {
324 VerifyWeakEmbeddedObjectsInCode();
325 }
326 if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
327 VerifyOmittedMapChecks();
328 }
329#endif
330
331 Finish();
332
333 if (marking_parity_ == EVEN_MARKING_PARITY) {
334 marking_parity_ = ODD_MARKING_PARITY;
335 } else {
336 DCHECK(marking_parity_ == ODD_MARKING_PARITY);
337 marking_parity_ = EVEN_MARKING_PARITY;
338 }
339}
340
341
342#ifdef VERIFY_HEAP
343void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
344 PageIterator it(space);
345
346 while (it.has_next()) {
347 Page* p = it.next();
348 CHECK(p->markbits()->IsClean());
349 CHECK_EQ(0, p->LiveBytes());
350 }
351}
352
353
354void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
355 NewSpacePageIterator it(space->bottom(), space->top());
356
357 while (it.has_next()) {
358 NewSpacePage* p = it.next();
359 CHECK(p->markbits()->IsClean());
360 CHECK_EQ(0, p->LiveBytes());
361 }
362}
363
364
365void MarkCompactCollector::VerifyMarkbitsAreClean() {
366 VerifyMarkbitsAreClean(heap_->old_pointer_space());
367 VerifyMarkbitsAreClean(heap_->old_data_space());
368 VerifyMarkbitsAreClean(heap_->code_space());
369 VerifyMarkbitsAreClean(heap_->cell_space());
370 VerifyMarkbitsAreClean(heap_->property_cell_space());
371 VerifyMarkbitsAreClean(heap_->map_space());
372 VerifyMarkbitsAreClean(heap_->new_space());
373
374 LargeObjectIterator it(heap_->lo_space());
375 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
376 MarkBit mark_bit = Marking::MarkBitFrom(obj);
377 CHECK(Marking::IsWhite(mark_bit));
378 CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
379 }
380}
381
382
383void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
384 HeapObjectIterator code_iterator(heap()->code_space());
385 for (HeapObject* obj = code_iterator.Next(); obj != NULL;
386 obj = code_iterator.Next()) {
387 Code* code = Code::cast(obj);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400388 if (!code->is_optimized_code()) continue;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000389 if (WillBeDeoptimized(code)) continue;
390 code->VerifyEmbeddedObjectsDependency();
391 }
392}
393
394
395void MarkCompactCollector::VerifyOmittedMapChecks() {
396 HeapObjectIterator iterator(heap()->map_space());
397 for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) {
398 Map* map = Map::cast(obj);
399 map->VerifyOmittedMapChecks();
400 }
401}
402#endif // VERIFY_HEAP
403
404
405static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
406 PageIterator it(space);
407
408 while (it.has_next()) {
409 Bitmap::Clear(it.next());
410 }
411}
412
413
414static void ClearMarkbitsInNewSpace(NewSpace* space) {
415 NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
416
417 while (it.has_next()) {
418 Bitmap::Clear(it.next());
419 }
420}
421
422
423void MarkCompactCollector::ClearMarkbits() {
424 ClearMarkbitsInPagedSpace(heap_->code_space());
425 ClearMarkbitsInPagedSpace(heap_->map_space());
426 ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
427 ClearMarkbitsInPagedSpace(heap_->old_data_space());
428 ClearMarkbitsInPagedSpace(heap_->cell_space());
429 ClearMarkbitsInPagedSpace(heap_->property_cell_space());
430 ClearMarkbitsInNewSpace(heap_->new_space());
431
432 LargeObjectIterator it(heap_->lo_space());
433 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
434 MarkBit mark_bit = Marking::MarkBitFrom(obj);
435 mark_bit.Clear();
436 mark_bit.Next().Clear();
437 Page::FromAddress(obj->address())->ResetProgressBar();
438 Page::FromAddress(obj->address())->ResetLiveBytes();
439 }
440}
441
442
443class MarkCompactCollector::SweeperTask : public v8::Task {
444 public:
445 SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {}
446
447 virtual ~SweeperTask() {}
448
449 private:
450 // v8::Task overrides.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400451 void Run() OVERRIDE {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000452 heap_->mark_compact_collector()->SweepInParallel(space_, 0);
453 heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
454 }
455
456 Heap* heap_;
457 PagedSpace* space_;
458
459 DISALLOW_COPY_AND_ASSIGN(SweeperTask);
460};
461
462
463void MarkCompactCollector::StartSweeperThreads() {
464 DCHECK(free_list_old_pointer_space_.get()->IsEmpty());
465 DCHECK(free_list_old_data_space_.get()->IsEmpty());
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400466 V8::GetCurrentPlatform()->CallOnBackgroundThread(
467 new SweeperTask(heap(), heap()->old_data_space()),
468 v8::Platform::kShortRunningTask);
469 V8::GetCurrentPlatform()->CallOnBackgroundThread(
470 new SweeperTask(heap(), heap()->old_pointer_space()),
471 v8::Platform::kShortRunningTask);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000472}
473
474
475void MarkCompactCollector::EnsureSweepingCompleted() {
476 DCHECK(sweeping_in_progress_ == true);
477
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400478 // If sweeping is not completed or not running at all, we try to complete it
479 // here.
480 if (!FLAG_concurrent_sweeping || !IsSweepingCompleted()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000481 SweepInParallel(heap()->paged_space(OLD_DATA_SPACE), 0);
482 SweepInParallel(heap()->paged_space(OLD_POINTER_SPACE), 0);
483 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400484 // Wait twice for both jobs.
485 if (FLAG_concurrent_sweeping) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000486 pending_sweeper_jobs_semaphore_.Wait();
487 pending_sweeper_jobs_semaphore_.Wait();
488 }
489 ParallelSweepSpacesComplete();
490 sweeping_in_progress_ = false;
491 RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
492 RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
493 heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
494 heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
495
496#ifdef VERIFY_HEAP
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400497 if (FLAG_verify_heap && !evacuation()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000498 VerifyEvacuation(heap_);
499 }
500#endif
501}
502
503
504bool MarkCompactCollector::IsSweepingCompleted() {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400505 if (!pending_sweeper_jobs_semaphore_.WaitFor(
506 base::TimeDelta::FromSeconds(0))) {
507 return false;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000508 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400509 pending_sweeper_jobs_semaphore_.Signal();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000510 return true;
511}
512
513
514void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
515 FreeList* free_list;
516
517 if (space == heap()->old_pointer_space()) {
518 free_list = free_list_old_pointer_space_.get();
519 } else if (space == heap()->old_data_space()) {
520 free_list = free_list_old_data_space_.get();
521 } else {
522 // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
523 // to only refill them for old data and pointer spaces.
524 return;
525 }
526
527 intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
528 space->AddToAccountingStats(freed_bytes);
529 space->DecrementUnsweptFreeBytes(freed_bytes);
530}
531
532
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000533void Marking::TransferMark(Address old_start, Address new_start) {
534 // This is only used when resizing an object.
535 DCHECK(MemoryChunk::FromAddress(old_start) ==
536 MemoryChunk::FromAddress(new_start));
537
538 if (!heap_->incremental_marking()->IsMarking()) return;
539
540 // If the mark doesn't move, we don't check the color of the object.
541 // It doesn't matter whether the object is black, since it hasn't changed
542 // size, so the adjustment to the live data count will be zero anyway.
543 if (old_start == new_start) return;
544
545 MarkBit new_mark_bit = MarkBitFrom(new_start);
546 MarkBit old_mark_bit = MarkBitFrom(old_start);
547
548#ifdef DEBUG
549 ObjectColor old_color = Color(old_mark_bit);
550#endif
551
552 if (Marking::IsBlack(old_mark_bit)) {
553 old_mark_bit.Clear();
554 DCHECK(IsWhite(old_mark_bit));
555 Marking::MarkBlack(new_mark_bit);
556 return;
557 } else if (Marking::IsGrey(old_mark_bit)) {
558 old_mark_bit.Clear();
559 old_mark_bit.Next().Clear();
560 DCHECK(IsWhite(old_mark_bit));
561 heap_->incremental_marking()->WhiteToGreyAndPush(
562 HeapObject::FromAddress(new_start), new_mark_bit);
563 heap_->incremental_marking()->RestartIfNotMarking();
564 }
565
566#ifdef DEBUG
567 ObjectColor new_color = Color(new_mark_bit);
568 DCHECK(new_color == old_color);
569#endif
570}
571
572
573const char* AllocationSpaceName(AllocationSpace space) {
574 switch (space) {
575 case NEW_SPACE:
576 return "NEW_SPACE";
577 case OLD_POINTER_SPACE:
578 return "OLD_POINTER_SPACE";
579 case OLD_DATA_SPACE:
580 return "OLD_DATA_SPACE";
581 case CODE_SPACE:
582 return "CODE_SPACE";
583 case MAP_SPACE:
584 return "MAP_SPACE";
585 case CELL_SPACE:
586 return "CELL_SPACE";
587 case PROPERTY_CELL_SPACE:
588 return "PROPERTY_CELL_SPACE";
589 case LO_SPACE:
590 return "LO_SPACE";
591 default:
592 UNREACHABLE();
593 }
594
595 return NULL;
596}
597
598
599// Returns zero for pages that have so little fragmentation that it is not
600// worth defragmenting them. Otherwise a positive integer that gives an
601// estimate of fragmentation on an arbitrary scale.
602static int FreeListFragmentation(PagedSpace* space, Page* p) {
603 // If page was not swept then there are no free list items on it.
604 if (!p->WasSwept()) {
605 if (FLAG_trace_fragmentation) {
606 PrintF("%p [%s]: %d bytes live (unswept)\n", reinterpret_cast<void*>(p),
607 AllocationSpaceName(space->identity()), p->LiveBytes());
608 }
609 return 0;
610 }
611
612 PagedSpace::SizeStats sizes;
613 space->ObtainFreeListStatistics(p, &sizes);
614
615 intptr_t ratio;
616 intptr_t ratio_threshold;
617 intptr_t area_size = space->AreaSize();
618 if (space->identity() == CODE_SPACE) {
619 ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / area_size;
620 ratio_threshold = 10;
621 } else {
622 ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / area_size;
623 ratio_threshold = 15;
624 }
625
626 if (FLAG_trace_fragmentation) {
627 PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
628 reinterpret_cast<void*>(p), AllocationSpaceName(space->identity()),
629 static_cast<int>(sizes.small_size_),
630 static_cast<double>(sizes.small_size_ * 100) / area_size,
631 static_cast<int>(sizes.medium_size_),
632 static_cast<double>(sizes.medium_size_ * 100) / area_size,
633 static_cast<int>(sizes.large_size_),
634 static_cast<double>(sizes.large_size_ * 100) / area_size,
635 static_cast<int>(sizes.huge_size_),
636 static_cast<double>(sizes.huge_size_ * 100) / area_size,
637 (ratio > ratio_threshold) ? "[fragmented]" : "");
638 }
639
640 if (FLAG_always_compact && sizes.Total() != area_size) {
641 return 1;
642 }
643
644 if (ratio <= ratio_threshold) return 0; // Not fragmented.
645
646 return static_cast<int>(ratio - ratio_threshold);
647}
648
649
650void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
651 DCHECK(space->identity() == OLD_POINTER_SPACE ||
652 space->identity() == OLD_DATA_SPACE ||
653 space->identity() == CODE_SPACE);
654
655 static const int kMaxMaxEvacuationCandidates = 1000;
656 int number_of_pages = space->CountTotalPages();
657 int max_evacuation_candidates =
658 static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
659
660 if (FLAG_stress_compaction || FLAG_always_compact) {
661 max_evacuation_candidates = kMaxMaxEvacuationCandidates;
662 }
663
664 class Candidate {
665 public:
666 Candidate() : fragmentation_(0), page_(NULL) {}
667 Candidate(int f, Page* p) : fragmentation_(f), page_(p) {}
668
669 int fragmentation() { return fragmentation_; }
670 Page* page() { return page_; }
671
672 private:
673 int fragmentation_;
674 Page* page_;
675 };
676
677 enum CompactionMode { COMPACT_FREE_LISTS, REDUCE_MEMORY_FOOTPRINT };
678
679 CompactionMode mode = COMPACT_FREE_LISTS;
680
681 intptr_t reserved = number_of_pages * space->AreaSize();
682 intptr_t over_reserved = reserved - space->SizeOfObjects();
683 static const intptr_t kFreenessThreshold = 50;
684
685 if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
686 // If reduction of memory footprint was requested, we are aggressive
687 // about choosing pages to free. We expect that half-empty pages
688 // are easier to compact so slightly bump the limit.
689 mode = REDUCE_MEMORY_FOOTPRINT;
690 max_evacuation_candidates += 2;
691 }
692
693
694 if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
695 // If over-usage is very high (more than a third of the space), we
696 // try to free all mostly empty pages. We expect that almost empty
697 // pages are even easier to compact so bump the limit even more.
698 mode = REDUCE_MEMORY_FOOTPRINT;
699 max_evacuation_candidates *= 2;
700 }
701
702 if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
703 PrintF(
704 "Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
705 "evacuation candidate limit: %d\n",
706 static_cast<double>(over_reserved) / MB,
707 static_cast<double>(reserved) / MB,
708 static_cast<int>(kFreenessThreshold), max_evacuation_candidates);
709 }
710
711 intptr_t estimated_release = 0;
712
713 Candidate candidates[kMaxMaxEvacuationCandidates];
714
715 max_evacuation_candidates =
716 Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
717
718 int count = 0;
719 int fragmentation = 0;
720 Candidate* least = NULL;
721
722 PageIterator it(space);
723 if (it.has_next()) it.next(); // Never compact the first page.
724
725 while (it.has_next()) {
726 Page* p = it.next();
727 p->ClearEvacuationCandidate();
728
729 if (FLAG_stress_compaction) {
730 unsigned int counter = space->heap()->ms_count();
731 uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
732 if ((counter & 1) == (page_number & 1)) fragmentation = 1;
733 } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
734 // Don't try to release too many pages.
735 if (estimated_release >= over_reserved) {
736 continue;
737 }
738
739 intptr_t free_bytes = 0;
740
741 if (!p->WasSwept()) {
742 free_bytes = (p->area_size() - p->LiveBytes());
743 } else {
744 PagedSpace::SizeStats sizes;
745 space->ObtainFreeListStatistics(p, &sizes);
746 free_bytes = sizes.Total();
747 }
748
749 int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
750
751 if (free_pct >= kFreenessThreshold) {
752 estimated_release += free_bytes;
753 fragmentation = free_pct;
754 } else {
755 fragmentation = 0;
756 }
757
758 if (FLAG_trace_fragmentation) {
759 PrintF("%p [%s]: %d (%.2f%%) free %s\n", reinterpret_cast<void*>(p),
760 AllocationSpaceName(space->identity()),
761 static_cast<int>(free_bytes),
762 static_cast<double>(free_bytes * 100) / p->area_size(),
763 (fragmentation > 0) ? "[fragmented]" : "");
764 }
765 } else {
766 fragmentation = FreeListFragmentation(space, p);
767 }
768
769 if (fragmentation != 0) {
770 if (count < max_evacuation_candidates) {
771 candidates[count++] = Candidate(fragmentation, p);
772 } else {
773 if (least == NULL) {
774 for (int i = 0; i < max_evacuation_candidates; i++) {
775 if (least == NULL ||
776 candidates[i].fragmentation() < least->fragmentation()) {
777 least = candidates + i;
778 }
779 }
780 }
781 if (least->fragmentation() < fragmentation) {
782 *least = Candidate(fragmentation, p);
783 least = NULL;
784 }
785 }
786 }
787 }
788
789 for (int i = 0; i < count; i++) {
790 AddEvacuationCandidate(candidates[i].page());
791 }
792
793 if (count > 0 && FLAG_trace_fragmentation) {
794 PrintF("Collected %d evacuation candidates for space %s\n", count,
795 AllocationSpaceName(space->identity()));
796 }
797}
798
799
800void MarkCompactCollector::AbortCompaction() {
801 if (compacting_) {
802 int npages = evacuation_candidates_.length();
803 for (int i = 0; i < npages; i++) {
804 Page* p = evacuation_candidates_[i];
805 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
806 p->ClearEvacuationCandidate();
807 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
808 }
809 compacting_ = false;
810 evacuation_candidates_.Rewind(0);
811 invalidated_code_.Rewind(0);
812 }
813 DCHECK_EQ(0, evacuation_candidates_.length());
814}
815
816
817void MarkCompactCollector::Prepare() {
818 was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
819
820#ifdef DEBUG
821 DCHECK(state_ == IDLE);
822 state_ = PREPARE_GC;
823#endif
824
825 DCHECK(!FLAG_never_compact || !FLAG_always_compact);
826
827 if (sweeping_in_progress()) {
828 // Instead of waiting we could also abort the sweeper threads here.
829 EnsureSweepingCompleted();
830 }
831
832 // Clear marking bits if incremental marking is aborted.
833 if (was_marked_incrementally_ && abort_incremental_marking_) {
834 heap()->incremental_marking()->Abort();
835 ClearMarkbits();
836 AbortWeakCollections();
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400837 AbortWeakCells();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000838 AbortCompaction();
839 was_marked_incrementally_ = false;
840 }
841
842 // Don't start compaction if we are in the middle of incremental
843 // marking cycle. We did not collect any slots.
844 if (!FLAG_never_compact && !was_marked_incrementally_) {
845 StartCompaction(NON_INCREMENTAL_COMPACTION);
846 }
847
848 PagedSpaces spaces(heap());
849 for (PagedSpace* space = spaces.next(); space != NULL;
850 space = spaces.next()) {
851 space->PrepareForMarkCompact();
852 }
853
854#ifdef VERIFY_HEAP
855 if (!was_marked_incrementally_ && FLAG_verify_heap) {
856 VerifyMarkbitsAreClean();
857 }
858#endif
859}
860
861
862void MarkCompactCollector::Finish() {
863#ifdef DEBUG
864 DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
865 state_ = IDLE;
866#endif
867 // The stub cache is not traversed during GC; clear the cache to
868 // force lazy re-initialization of it. This must be done after the
869 // GC, because it relies on the new address of certain old space
870 // objects (empty string, illegal builtin).
871 isolate()->stub_cache()->Clear();
872
873 if (have_code_to_deoptimize_) {
874 // Some code objects were marked for deoptimization during the GC.
875 Deoptimizer::DeoptimizeMarkedCode(isolate());
876 have_code_to_deoptimize_ = false;
877 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400878
879 heap_->incremental_marking()->ClearIdleMarkingDelayCounter();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000880}
881
882
883// -------------------------------------------------------------------------
884// Phase 1: tracing and marking live objects.
885// before: all objects are in normal state.
886// after: a live object's map pointer is marked as '00'.
887
888// Marking all live objects in the heap as part of mark-sweep or mark-compact
889// collection. Before marking, all objects are in their normal state. After
890// marking, live objects' map pointers are marked indicating that the object
891// has been found reachable.
892//
893// The marking algorithm is a (mostly) depth-first (because of possible stack
894// overflow) traversal of the graph of objects reachable from the roots. It
895// uses an explicit stack of pointers rather than recursion. The young
896// generation's inactive ('from') space is used as a marking stack. The
897// objects in the marking stack are the ones that have been reached and marked
898// but their children have not yet been visited.
899//
900// The marking stack can overflow during traversal. In that case, we set an
901// overflow flag. When the overflow flag is set, we continue marking objects
902// reachable from the objects on the marking stack, but no longer push them on
903// the marking stack. Instead, we mark them as both marked and overflowed.
904// When the stack is in the overflowed state, objects marked as overflowed
905// have been reached and marked but their children have not been visited yet.
906// After emptying the marking stack, we clear the overflow flag and traverse
907// the heap looking for objects marked as overflowed, push them on the stack,
908// and continue with marking. This process repeats until all reachable
909// objects have been marked.
910
911void CodeFlusher::ProcessJSFunctionCandidates() {
912 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
913 Object* undefined = isolate_->heap()->undefined_value();
914
915 JSFunction* candidate = jsfunction_candidates_head_;
916 JSFunction* next_candidate;
917 while (candidate != NULL) {
918 next_candidate = GetNextCandidate(candidate);
919 ClearNextCandidate(candidate, undefined);
920
921 SharedFunctionInfo* shared = candidate->shared();
922
923 Code* code = shared->code();
924 MarkBit code_mark = Marking::MarkBitFrom(code);
925 if (!code_mark.Get()) {
926 if (FLAG_trace_code_flushing && shared->is_compiled()) {
927 PrintF("[code-flushing clears: ");
928 shared->ShortPrint();
929 PrintF(" - age: %d]\n", code->GetAge());
930 }
931 shared->set_code(lazy_compile);
932 candidate->set_code(lazy_compile);
933 } else {
934 candidate->set_code(code);
935 }
936
937 // We are in the middle of a GC cycle so the write barrier in the code
938 // setter did not record the slot update and we have to do that manually.
939 Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
940 Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
941 isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot(slot,
942 target);
943
944 Object** shared_code_slot =
945 HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
946 isolate_->heap()->mark_compact_collector()->RecordSlot(
947 shared_code_slot, shared_code_slot, *shared_code_slot);
948
949 candidate = next_candidate;
950 }
951
952 jsfunction_candidates_head_ = NULL;
953}
954
955
956void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
957 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
958
959 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
960 SharedFunctionInfo* next_candidate;
961 while (candidate != NULL) {
962 next_candidate = GetNextCandidate(candidate);
963 ClearNextCandidate(candidate);
964
965 Code* code = candidate->code();
966 MarkBit code_mark = Marking::MarkBitFrom(code);
967 if (!code_mark.Get()) {
968 if (FLAG_trace_code_flushing && candidate->is_compiled()) {
969 PrintF("[code-flushing clears: ");
970 candidate->ShortPrint();
971 PrintF(" - age: %d]\n", code->GetAge());
972 }
973 candidate->set_code(lazy_compile);
974 }
975
976 Object** code_slot =
977 HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
978 isolate_->heap()->mark_compact_collector()->RecordSlot(code_slot, code_slot,
979 *code_slot);
980
981 candidate = next_candidate;
982 }
983
984 shared_function_info_candidates_head_ = NULL;
985}
986
987
988void CodeFlusher::ProcessOptimizedCodeMaps() {
989 STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
990
991 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
992 SharedFunctionInfo* next_holder;
993
994 while (holder != NULL) {
995 next_holder = GetNextCodeMap(holder);
996 ClearNextCodeMap(holder);
997
998 FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
999 int new_length = SharedFunctionInfo::kEntriesStart;
1000 int old_length = code_map->length();
1001 for (int i = SharedFunctionInfo::kEntriesStart; i < old_length;
1002 i += SharedFunctionInfo::kEntryLength) {
1003 Code* code =
1004 Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
1005 if (!Marking::MarkBitFrom(code).Get()) continue;
1006
1007 // Move every slot in the entry.
1008 for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
1009 int dst_index = new_length++;
1010 Object** slot = code_map->RawFieldOfElementAt(dst_index);
1011 Object* object = code_map->get(i + j);
1012 code_map->set(dst_index, object);
1013 if (j == SharedFunctionInfo::kOsrAstIdOffset) {
1014 DCHECK(object->IsSmi());
1015 } else {
1016 DCHECK(
1017 Marking::IsBlack(Marking::MarkBitFrom(HeapObject::cast(*slot))));
1018 isolate_->heap()->mark_compact_collector()->RecordSlot(slot, slot,
1019 *slot);
1020 }
1021 }
1022 }
1023
1024 // Trim the optimized code map if entries have been removed.
1025 if (new_length < old_length) {
1026 holder->TrimOptimizedCodeMap(old_length - new_length);
1027 }
1028
1029 holder = next_holder;
1030 }
1031
1032 optimized_code_map_holder_head_ = NULL;
1033}
1034
1035
1036void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
1037 // Make sure previous flushing decisions are revisited.
1038 isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
1039
1040 if (FLAG_trace_code_flushing) {
1041 PrintF("[code-flushing abandons function-info: ");
1042 shared_info->ShortPrint();
1043 PrintF("]\n");
1044 }
1045
1046 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1047 SharedFunctionInfo* next_candidate;
1048 if (candidate == shared_info) {
1049 next_candidate = GetNextCandidate(shared_info);
1050 shared_function_info_candidates_head_ = next_candidate;
1051 ClearNextCandidate(shared_info);
1052 } else {
1053 while (candidate != NULL) {
1054 next_candidate = GetNextCandidate(candidate);
1055
1056 if (next_candidate == shared_info) {
1057 next_candidate = GetNextCandidate(shared_info);
1058 SetNextCandidate(candidate, next_candidate);
1059 ClearNextCandidate(shared_info);
1060 break;
1061 }
1062
1063 candidate = next_candidate;
1064 }
1065 }
1066}
1067
1068
1069void CodeFlusher::EvictCandidate(JSFunction* function) {
1070 DCHECK(!function->next_function_link()->IsUndefined());
1071 Object* undefined = isolate_->heap()->undefined_value();
1072
1073 // Make sure previous flushing decisions are revisited.
1074 isolate_->heap()->incremental_marking()->RecordWrites(function);
1075 isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
1076
1077 if (FLAG_trace_code_flushing) {
1078 PrintF("[code-flushing abandons closure: ");
1079 function->shared()->ShortPrint();
1080 PrintF("]\n");
1081 }
1082
1083 JSFunction* candidate = jsfunction_candidates_head_;
1084 JSFunction* next_candidate;
1085 if (candidate == function) {
1086 next_candidate = GetNextCandidate(function);
1087 jsfunction_candidates_head_ = next_candidate;
1088 ClearNextCandidate(function, undefined);
1089 } else {
1090 while (candidate != NULL) {
1091 next_candidate = GetNextCandidate(candidate);
1092
1093 if (next_candidate == function) {
1094 next_candidate = GetNextCandidate(function);
1095 SetNextCandidate(candidate, next_candidate);
1096 ClearNextCandidate(function, undefined);
1097 break;
1098 }
1099
1100 candidate = next_candidate;
1101 }
1102 }
1103}
1104
1105
1106void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
1107 DCHECK(!FixedArray::cast(code_map_holder->optimized_code_map())
1108 ->get(SharedFunctionInfo::kNextMapIndex)
1109 ->IsUndefined());
1110
1111 // Make sure previous flushing decisions are revisited.
1112 isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
1113
1114 if (FLAG_trace_code_flushing) {
1115 PrintF("[code-flushing abandons code-map: ");
1116 code_map_holder->ShortPrint();
1117 PrintF("]\n");
1118 }
1119
1120 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1121 SharedFunctionInfo* next_holder;
1122 if (holder == code_map_holder) {
1123 next_holder = GetNextCodeMap(code_map_holder);
1124 optimized_code_map_holder_head_ = next_holder;
1125 ClearNextCodeMap(code_map_holder);
1126 } else {
1127 while (holder != NULL) {
1128 next_holder = GetNextCodeMap(holder);
1129
1130 if (next_holder == code_map_holder) {
1131 next_holder = GetNextCodeMap(code_map_holder);
1132 SetNextCodeMap(holder, next_holder);
1133 ClearNextCodeMap(code_map_holder);
1134 break;
1135 }
1136
1137 holder = next_holder;
1138 }
1139 }
1140}
1141
1142
1143void CodeFlusher::EvictJSFunctionCandidates() {
1144 JSFunction* candidate = jsfunction_candidates_head_;
1145 JSFunction* next_candidate;
1146 while (candidate != NULL) {
1147 next_candidate = GetNextCandidate(candidate);
1148 EvictCandidate(candidate);
1149 candidate = next_candidate;
1150 }
1151 DCHECK(jsfunction_candidates_head_ == NULL);
1152}
1153
1154
1155void CodeFlusher::EvictSharedFunctionInfoCandidates() {
1156 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1157 SharedFunctionInfo* next_candidate;
1158 while (candidate != NULL) {
1159 next_candidate = GetNextCandidate(candidate);
1160 EvictCandidate(candidate);
1161 candidate = next_candidate;
1162 }
1163 DCHECK(shared_function_info_candidates_head_ == NULL);
1164}
1165
1166
1167void CodeFlusher::EvictOptimizedCodeMaps() {
1168 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1169 SharedFunctionInfo* next_holder;
1170 while (holder != NULL) {
1171 next_holder = GetNextCodeMap(holder);
1172 EvictOptimizedCodeMap(holder);
1173 holder = next_holder;
1174 }
1175 DCHECK(optimized_code_map_holder_head_ == NULL);
1176}
1177
1178
1179void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
1180 Heap* heap = isolate_->heap();
1181
1182 JSFunction** slot = &jsfunction_candidates_head_;
1183 JSFunction* candidate = jsfunction_candidates_head_;
1184 while (candidate != NULL) {
1185 if (heap->InFromSpace(candidate)) {
1186 v->VisitPointer(reinterpret_cast<Object**>(slot));
1187 }
1188 candidate = GetNextCandidate(*slot);
1189 slot = GetNextCandidateSlot(*slot);
1190 }
1191}
1192
1193
1194MarkCompactCollector::~MarkCompactCollector() {
1195 if (code_flusher_ != NULL) {
1196 delete code_flusher_;
1197 code_flusher_ = NULL;
1198 }
1199}
1200
1201
1202static inline HeapObject* ShortCircuitConsString(Object** p) {
1203 // Optimization: If the heap object pointed to by p is a non-internalized
1204 // cons string whose right substring is HEAP->empty_string, update
1205 // it in place to its left substring. Return the updated value.
1206 //
1207 // Here we assume that if we change *p, we replace it with a heap object
1208 // (i.e., the left substring of a cons string is always a heap object).
1209 //
1210 // The check performed is:
1211 // object->IsConsString() && !object->IsInternalizedString() &&
1212 // (ConsString::cast(object)->second() == HEAP->empty_string())
1213 // except the maps for the object and its possible substrings might be
1214 // marked.
1215 HeapObject* object = HeapObject::cast(*p);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001216 Map* map = object->map();
1217 InstanceType type = map->instance_type();
1218 if (!IsShortcutCandidate(type)) return object;
1219
1220 Object* second = reinterpret_cast<ConsString*>(object)->second();
1221 Heap* heap = map->GetHeap();
1222 if (second != heap->empty_string()) {
1223 return object;
1224 }
1225
1226 // Since we don't have the object's start, it is impossible to update the
1227 // page dirty marks. Therefore, we only replace the string with its left
1228 // substring when page dirty marks do not change.
1229 Object* first = reinterpret_cast<ConsString*>(object)->first();
1230 if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
1231
1232 *p = first;
1233 return HeapObject::cast(first);
1234}
1235
1236
1237class MarkCompactMarkingVisitor
1238 : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
1239 public:
1240 static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id, Map* map,
1241 HeapObject* obj);
1242
1243 static void ObjectStatsCountFixedArray(
1244 FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
1245 FixedArraySubInstanceType dictionary_type);
1246
1247 template <MarkCompactMarkingVisitor::VisitorId id>
1248 class ObjectStatsTracker {
1249 public:
1250 static inline void Visit(Map* map, HeapObject* obj);
1251 };
1252
1253 static void Initialize();
1254
1255 INLINE(static void VisitPointer(Heap* heap, Object** p)) {
1256 MarkObjectByPointer(heap->mark_compact_collector(), p, p);
1257 }
1258
1259 INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
1260 // Mark all objects pointed to in [start, end).
1261 const int kMinRangeForMarkingRecursion = 64;
1262 if (end - start >= kMinRangeForMarkingRecursion) {
1263 if (VisitUnmarkedObjects(heap, start, end)) return;
1264 // We are close to a stack overflow, so just mark the objects.
1265 }
1266 MarkCompactCollector* collector = heap->mark_compact_collector();
1267 for (Object** p = start; p < end; p++) {
1268 MarkObjectByPointer(collector, start, p);
1269 }
1270 }
1271
1272 // Marks the object black and pushes it on the marking stack.
1273 INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
1274 MarkBit mark = Marking::MarkBitFrom(object);
1275 heap->mark_compact_collector()->MarkObject(object, mark);
1276 }
1277
1278 // Marks the object black without pushing it on the marking stack.
1279 // Returns true if object needed marking and false otherwise.
1280 INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
1281 MarkBit mark_bit = Marking::MarkBitFrom(object);
1282 if (!mark_bit.Get()) {
1283 heap->mark_compact_collector()->SetMark(object, mark_bit);
1284 return true;
1285 }
1286 return false;
1287 }
1288
1289 // Mark object pointed to by p.
1290 INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
1291 Object** anchor_slot, Object** p)) {
1292 if (!(*p)->IsHeapObject()) return;
1293 HeapObject* object = ShortCircuitConsString(p);
1294 collector->RecordSlot(anchor_slot, p, object);
1295 MarkBit mark = Marking::MarkBitFrom(object);
1296 collector->MarkObject(object, mark);
1297 }
1298
1299
1300 // Visit an unmarked object.
1301 INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
1302 HeapObject* obj)) {
1303#ifdef DEBUG
1304 DCHECK(collector->heap()->Contains(obj));
1305 DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
1306#endif
1307 Map* map = obj->map();
1308 Heap* heap = obj->GetHeap();
1309 MarkBit mark = Marking::MarkBitFrom(obj);
1310 heap->mark_compact_collector()->SetMark(obj, mark);
1311 // Mark the map pointer and the body.
1312 MarkBit map_mark = Marking::MarkBitFrom(map);
1313 heap->mark_compact_collector()->MarkObject(map, map_mark);
1314 IterateBody(map, obj);
1315 }
1316
1317 // Visit all unmarked objects pointed to by [start, end).
1318 // Returns false if the operation fails (lack of stack space).
1319 INLINE(static bool VisitUnmarkedObjects(Heap* heap, Object** start,
1320 Object** end)) {
1321 // Return false is we are close to the stack limit.
1322 StackLimitCheck check(heap->isolate());
1323 if (check.HasOverflowed()) return false;
1324
1325 MarkCompactCollector* collector = heap->mark_compact_collector();
1326 // Visit the unmarked objects.
1327 for (Object** p = start; p < end; p++) {
1328 Object* o = *p;
1329 if (!o->IsHeapObject()) continue;
1330 collector->RecordSlot(start, p, o);
1331 HeapObject* obj = HeapObject::cast(o);
1332 MarkBit mark = Marking::MarkBitFrom(obj);
1333 if (mark.Get()) continue;
1334 VisitUnmarkedObject(collector, obj);
1335 }
1336 return true;
1337 }
1338
1339 private:
1340 template <int id>
1341 static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
1342
1343 // Code flushing support.
1344
1345 static const int kRegExpCodeThreshold = 5;
1346
1347 static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re,
1348 bool is_one_byte) {
1349 // Make sure that the fixed array is in fact initialized on the RegExp.
1350 // We could potentially trigger a GC when initializing the RegExp.
1351 if (HeapObject::cast(re->data())->map()->instance_type() !=
1352 FIXED_ARRAY_TYPE)
1353 return;
1354
1355 // Make sure this is a RegExp that actually contains code.
1356 if (re->TypeTag() != JSRegExp::IRREGEXP) return;
1357
1358 Object* code = re->DataAt(JSRegExp::code_index(is_one_byte));
1359 if (!code->IsSmi() &&
1360 HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
1361 // Save a copy that can be reinstated if we need the code again.
1362 re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code);
1363
1364 // Saving a copy might create a pointer into compaction candidate
1365 // that was not observed by marker. This might happen if JSRegExp data
1366 // was marked through the compilation cache before marker reached JSRegExp
1367 // object.
1368 FixedArray* data = FixedArray::cast(re->data());
1369 Object** slot =
1370 data->data_start() + JSRegExp::saved_code_index(is_one_byte);
1371 heap->mark_compact_collector()->RecordSlot(slot, slot, code);
1372
1373 // Set a number in the 0-255 range to guarantee no smi overflow.
1374 re->SetDataAt(JSRegExp::code_index(is_one_byte),
1375 Smi::FromInt(heap->sweep_generation() & 0xff));
1376 } else if (code->IsSmi()) {
1377 int value = Smi::cast(code)->value();
1378 // The regexp has not been compiled yet or there was a compilation error.
1379 if (value == JSRegExp::kUninitializedValue ||
1380 value == JSRegExp::kCompilationErrorValue) {
1381 return;
1382 }
1383
1384 // Check if we should flush now.
1385 if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
1386 re->SetDataAt(JSRegExp::code_index(is_one_byte),
1387 Smi::FromInt(JSRegExp::kUninitializedValue));
1388 re->SetDataAt(JSRegExp::saved_code_index(is_one_byte),
1389 Smi::FromInt(JSRegExp::kUninitializedValue));
1390 }
1391 }
1392 }
1393
1394
1395 // Works by setting the current sweep_generation (as a smi) in the
1396 // code object place in the data array of the RegExp and keeps a copy
1397 // around that can be reinstated if we reuse the RegExp before flushing.
1398 // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
1399 // we flush the code.
1400 static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
1401 Heap* heap = map->GetHeap();
1402 MarkCompactCollector* collector = heap->mark_compact_collector();
1403 if (!collector->is_code_flushing_enabled()) {
1404 VisitJSRegExp(map, object);
1405 return;
1406 }
1407 JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
1408 // Flush code or set age on both one byte and two byte code.
1409 UpdateRegExpCodeAgeAndFlush(heap, re, true);
1410 UpdateRegExpCodeAgeAndFlush(heap, re, false);
1411 // Visit the fields of the RegExp, including the updated FixedArray.
1412 VisitJSRegExp(map, object);
1413 }
1414
1415 static VisitorDispatchTable<Callback> non_count_table_;
1416};
1417
1418
1419void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
1420 FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
1421 FixedArraySubInstanceType dictionary_type) {
1422 Heap* heap = fixed_array->map()->GetHeap();
1423 if (fixed_array->map() != heap->fixed_cow_array_map() &&
1424 fixed_array->map() != heap->fixed_double_array_map() &&
1425 fixed_array != heap->empty_fixed_array()) {
1426 if (fixed_array->IsDictionary()) {
1427 heap->RecordFixedArraySubTypeStats(dictionary_type, fixed_array->Size());
1428 } else {
1429 heap->RecordFixedArraySubTypeStats(fast_type, fixed_array->Size());
1430 }
1431 }
1432}
1433
1434
1435void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
1436 MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
1437 Heap* heap = map->GetHeap();
1438 int object_size = obj->Size();
1439 heap->RecordObjectStats(map->instance_type(), object_size);
1440 non_count_table_.GetVisitorById(id)(map, obj);
1441 if (obj->IsJSObject()) {
1442 JSObject* object = JSObject::cast(obj);
1443 ObjectStatsCountFixedArray(object->elements(), DICTIONARY_ELEMENTS_SUB_TYPE,
1444 FAST_ELEMENTS_SUB_TYPE);
1445 ObjectStatsCountFixedArray(object->properties(),
1446 DICTIONARY_PROPERTIES_SUB_TYPE,
1447 FAST_PROPERTIES_SUB_TYPE);
1448 }
1449}
1450
1451
1452template <MarkCompactMarkingVisitor::VisitorId id>
1453void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(Map* map,
1454 HeapObject* obj) {
1455 ObjectStatsVisitBase(id, map, obj);
1456}
1457
1458
1459template <>
1460class MarkCompactMarkingVisitor::ObjectStatsTracker<
1461 MarkCompactMarkingVisitor::kVisitMap> {
1462 public:
1463 static inline void Visit(Map* map, HeapObject* obj) {
1464 Heap* heap = map->GetHeap();
1465 Map* map_obj = Map::cast(obj);
1466 DCHECK(map->instance_type() == MAP_TYPE);
1467 DescriptorArray* array = map_obj->instance_descriptors();
1468 if (map_obj->owns_descriptors() &&
1469 array != heap->empty_descriptor_array()) {
1470 int fixed_array_size = array->Size();
1471 heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
1472 fixed_array_size);
1473 }
1474 if (map_obj->HasTransitionArray()) {
1475 int fixed_array_size = map_obj->transitions()->Size();
1476 heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
1477 fixed_array_size);
1478 }
1479 if (map_obj->has_code_cache()) {
1480 CodeCache* cache = CodeCache::cast(map_obj->code_cache());
1481 heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
1482 cache->default_cache()->Size());
1483 if (!cache->normal_type_cache()->IsUndefined()) {
1484 heap->RecordFixedArraySubTypeStats(
1485 MAP_CODE_CACHE_SUB_TYPE,
1486 FixedArray::cast(cache->normal_type_cache())->Size());
1487 }
1488 }
1489 ObjectStatsVisitBase(kVisitMap, map, obj);
1490 }
1491};
1492
1493
1494template <>
1495class MarkCompactMarkingVisitor::ObjectStatsTracker<
1496 MarkCompactMarkingVisitor::kVisitCode> {
1497 public:
1498 static inline void Visit(Map* map, HeapObject* obj) {
1499 Heap* heap = map->GetHeap();
1500 int object_size = obj->Size();
1501 DCHECK(map->instance_type() == CODE_TYPE);
1502 Code* code_obj = Code::cast(obj);
1503 heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
1504 object_size);
1505 ObjectStatsVisitBase(kVisitCode, map, obj);
1506 }
1507};
1508
1509
1510template <>
1511class MarkCompactMarkingVisitor::ObjectStatsTracker<
1512 MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
1513 public:
1514 static inline void Visit(Map* map, HeapObject* obj) {
1515 Heap* heap = map->GetHeap();
1516 SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
1517 if (sfi->scope_info() != heap->empty_fixed_array()) {
1518 heap->RecordFixedArraySubTypeStats(
1519 SCOPE_INFO_SUB_TYPE, FixedArray::cast(sfi->scope_info())->Size());
1520 }
1521 ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
1522 }
1523};
1524
1525
1526template <>
1527class MarkCompactMarkingVisitor::ObjectStatsTracker<
1528 MarkCompactMarkingVisitor::kVisitFixedArray> {
1529 public:
1530 static inline void Visit(Map* map, HeapObject* obj) {
1531 Heap* heap = map->GetHeap();
1532 FixedArray* fixed_array = FixedArray::cast(obj);
1533 if (fixed_array == heap->string_table()) {
1534 heap->RecordFixedArraySubTypeStats(STRING_TABLE_SUB_TYPE,
1535 fixed_array->Size());
1536 }
1537 ObjectStatsVisitBase(kVisitFixedArray, map, obj);
1538 }
1539};
1540
1541
1542void MarkCompactMarkingVisitor::Initialize() {
1543 StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
1544
1545 table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode);
1546
1547 if (FLAG_track_gc_object_stats) {
1548 // Copy the visitor table to make call-through possible.
1549 non_count_table_.CopyFrom(&table_);
1550#define VISITOR_ID_COUNT_FUNCTION(id) \
1551 table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
1552 VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
1553#undef VISITOR_ID_COUNT_FUNCTION
1554 }
1555}
1556
1557
1558VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
1559 MarkCompactMarkingVisitor::non_count_table_;
1560
1561
1562class CodeMarkingVisitor : public ThreadVisitor {
1563 public:
1564 explicit CodeMarkingVisitor(MarkCompactCollector* collector)
1565 : collector_(collector) {}
1566
1567 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
1568 collector_->PrepareThreadForCodeFlushing(isolate, top);
1569 }
1570
1571 private:
1572 MarkCompactCollector* collector_;
1573};
1574
1575
1576class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
1577 public:
1578 explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
1579 : collector_(collector) {}
1580
1581 void VisitPointers(Object** start, Object** end) {
1582 for (Object** p = start; p < end; p++) VisitPointer(p);
1583 }
1584
1585 void VisitPointer(Object** slot) {
1586 Object* obj = *slot;
1587 if (obj->IsSharedFunctionInfo()) {
1588 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
1589 MarkBit shared_mark = Marking::MarkBitFrom(shared);
1590 MarkBit code_mark = Marking::MarkBitFrom(shared->code());
1591 collector_->MarkObject(shared->code(), code_mark);
1592 collector_->MarkObject(shared, shared_mark);
1593 }
1594 }
1595
1596 private:
1597 MarkCompactCollector* collector_;
1598};
1599
1600
1601void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
1602 ThreadLocalTop* top) {
1603 for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
1604 // Note: for the frame that has a pending lazy deoptimization
1605 // StackFrame::unchecked_code will return a non-optimized code object for
1606 // the outermost function and StackFrame::LookupCode will return
1607 // actual optimized code object.
1608 StackFrame* frame = it.frame();
1609 Code* code = frame->unchecked_code();
1610 MarkBit code_mark = Marking::MarkBitFrom(code);
1611 MarkObject(code, code_mark);
1612 if (frame->is_optimized()) {
1613 MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
1614 frame->LookupCode());
1615 }
1616 }
1617}
1618
1619
1620void MarkCompactCollector::PrepareForCodeFlushing() {
1621 // Enable code flushing for non-incremental cycles.
1622 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
1623 EnableCodeFlushing(!was_marked_incrementally_);
1624 }
1625
1626 // If code flushing is disabled, there is no need to prepare for it.
1627 if (!is_code_flushing_enabled()) return;
1628
1629 // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
1630 // relies on it being marked before any other descriptor array.
1631 HeapObject* descriptor_array = heap()->empty_descriptor_array();
1632 MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
1633 MarkObject(descriptor_array, descriptor_array_mark);
1634
1635 // Make sure we are not referencing the code from the stack.
1636 DCHECK(this == heap()->mark_compact_collector());
1637 PrepareThreadForCodeFlushing(heap()->isolate(),
1638 heap()->isolate()->thread_local_top());
1639
1640 // Iterate the archived stacks in all threads to check if
1641 // the code is referenced.
1642 CodeMarkingVisitor code_marking_visitor(this);
1643 heap()->isolate()->thread_manager()->IterateArchivedThreads(
1644 &code_marking_visitor);
1645
1646 SharedFunctionInfoMarkingVisitor visitor(this);
1647 heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
1648 heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
1649
1650 ProcessMarkingDeque();
1651}
1652
1653
1654// Visitor class for marking heap roots.
1655class RootMarkingVisitor : public ObjectVisitor {
1656 public:
1657 explicit RootMarkingVisitor(Heap* heap)
1658 : collector_(heap->mark_compact_collector()) {}
1659
1660 void VisitPointer(Object** p) { MarkObjectByPointer(p); }
1661
1662 void VisitPointers(Object** start, Object** end) {
1663 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
1664 }
1665
1666 // Skip the weak next code link in a code object, which is visited in
1667 // ProcessTopOptimizedFrame.
1668 void VisitNextCodeLink(Object** p) {}
1669
1670 private:
1671 void MarkObjectByPointer(Object** p) {
1672 if (!(*p)->IsHeapObject()) return;
1673
1674 // Replace flat cons strings in place.
1675 HeapObject* object = ShortCircuitConsString(p);
1676 MarkBit mark_bit = Marking::MarkBitFrom(object);
1677 if (mark_bit.Get()) return;
1678
1679 Map* map = object->map();
1680 // Mark the object.
1681 collector_->SetMark(object, mark_bit);
1682
1683 // Mark the map pointer and body, and push them on the marking stack.
1684 MarkBit map_mark = Marking::MarkBitFrom(map);
1685 collector_->MarkObject(map, map_mark);
1686 MarkCompactMarkingVisitor::IterateBody(map, object);
1687
1688 // Mark all the objects reachable from the map and body. May leave
1689 // overflowed objects in the heap.
1690 collector_->EmptyMarkingDeque();
1691 }
1692
1693 MarkCompactCollector* collector_;
1694};
1695
1696
1697// Helper class for pruning the string table.
1698template <bool finalize_external_strings>
1699class StringTableCleaner : public ObjectVisitor {
1700 public:
1701 explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {}
1702
1703 virtual void VisitPointers(Object** start, Object** end) {
1704 // Visit all HeapObject pointers in [start, end).
1705 for (Object** p = start; p < end; p++) {
1706 Object* o = *p;
1707 if (o->IsHeapObject() &&
1708 !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
1709 if (finalize_external_strings) {
1710 DCHECK(o->IsExternalString());
1711 heap_->FinalizeExternalString(String::cast(*p));
1712 } else {
1713 pointers_removed_++;
1714 }
1715 // Set the entry to the_hole_value (as deleted).
1716 *p = heap_->the_hole_value();
1717 }
1718 }
1719 }
1720
1721 int PointersRemoved() {
1722 DCHECK(!finalize_external_strings);
1723 return pointers_removed_;
1724 }
1725
1726 private:
1727 Heap* heap_;
1728 int pointers_removed_;
1729};
1730
1731
1732typedef StringTableCleaner<false> InternalizedStringTableCleaner;
1733typedef StringTableCleaner<true> ExternalStringTableCleaner;
1734
1735
1736// Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
1737// are retained.
1738class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
1739 public:
1740 virtual Object* RetainAs(Object* object) {
1741 if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
1742 return object;
1743 } else if (object->IsAllocationSite() &&
1744 !(AllocationSite::cast(object)->IsZombie())) {
1745 // "dead" AllocationSites need to live long enough for a traversal of new
1746 // space. These sites get a one-time reprieve.
1747 AllocationSite* site = AllocationSite::cast(object);
1748 site->MarkZombie();
1749 site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
1750 return object;
1751 } else {
1752 return NULL;
1753 }
1754 }
1755};
1756
1757
1758// Fill the marking stack with overflowed objects returned by the given
1759// iterator. Stop when the marking stack is filled or the end of the space
1760// is reached, whichever comes first.
1761template <class T>
1762static void DiscoverGreyObjectsWithIterator(Heap* heap,
1763 MarkingDeque* marking_deque,
1764 T* it) {
1765 // The caller should ensure that the marking stack is initially not full,
1766 // so that we don't waste effort pointlessly scanning for objects.
1767 DCHECK(!marking_deque->IsFull());
1768
1769 Map* filler_map = heap->one_pointer_filler_map();
1770 for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) {
1771 MarkBit markbit = Marking::MarkBitFrom(object);
1772 if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
1773 Marking::GreyToBlack(markbit);
1774 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1775 marking_deque->PushBlack(object);
1776 if (marking_deque->IsFull()) return;
1777 }
1778 }
1779}
1780
1781
1782static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
1783
1784
1785static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
1786 MemoryChunk* p) {
1787 DCHECK(!marking_deque->IsFull());
1788 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1789 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1790 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1791 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1792
1793 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1794 Address cell_base = it.CurrentCellBase();
1795 MarkBit::CellType* cell = it.CurrentCell();
1796
1797 const MarkBit::CellType current_cell = *cell;
1798 if (current_cell == 0) continue;
1799
1800 MarkBit::CellType grey_objects;
1801 if (it.HasNext()) {
1802 const MarkBit::CellType next_cell = *(cell + 1);
1803 grey_objects = current_cell & ((current_cell >> 1) |
1804 (next_cell << (Bitmap::kBitsPerCell - 1)));
1805 } else {
1806 grey_objects = current_cell & (current_cell >> 1);
1807 }
1808
1809 int offset = 0;
1810 while (grey_objects != 0) {
1811 int trailing_zeros = base::bits::CountTrailingZeros32(grey_objects);
1812 grey_objects >>= trailing_zeros;
1813 offset += trailing_zeros;
1814 MarkBit markbit(cell, 1 << offset, false);
1815 DCHECK(Marking::IsGrey(markbit));
1816 Marking::GreyToBlack(markbit);
1817 Address addr = cell_base + offset * kPointerSize;
1818 HeapObject* object = HeapObject::FromAddress(addr);
1819 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1820 marking_deque->PushBlack(object);
1821 if (marking_deque->IsFull()) return;
1822 offset += 2;
1823 grey_objects >>= 2;
1824 }
1825
1826 grey_objects >>= (Bitmap::kBitsPerCell - 1);
1827 }
1828}
1829
1830
1831int MarkCompactCollector::DiscoverAndEvacuateBlackObjectsOnPage(
1832 NewSpace* new_space, NewSpacePage* p) {
1833 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1834 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1835 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1836 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1837
1838 MarkBit::CellType* cells = p->markbits()->cells();
1839 int survivors_size = 0;
1840
1841 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1842 Address cell_base = it.CurrentCellBase();
1843 MarkBit::CellType* cell = it.CurrentCell();
1844
1845 MarkBit::CellType current_cell = *cell;
1846 if (current_cell == 0) continue;
1847
1848 int offset = 0;
1849 while (current_cell != 0) {
1850 int trailing_zeros = base::bits::CountTrailingZeros32(current_cell);
1851 current_cell >>= trailing_zeros;
1852 offset += trailing_zeros;
1853 Address address = cell_base + offset * kPointerSize;
1854 HeapObject* object = HeapObject::FromAddress(address);
1855
1856 int size = object->Size();
1857 survivors_size += size;
1858
1859 Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
1860
1861 offset++;
1862 current_cell >>= 1;
1863
1864 // TODO(hpayer): Refactor EvacuateObject and call this function instead.
1865 if (heap()->ShouldBePromoted(object->address(), size) &&
1866 TryPromoteObject(object, size)) {
1867 continue;
1868 }
1869
1870 AllocationResult allocation = new_space->AllocateRaw(size);
1871 if (allocation.IsRetry()) {
1872 if (!new_space->AddFreshPage()) {
1873 // Shouldn't happen. We are sweeping linearly, and to-space
1874 // has the same number of pages as from-space, so there is
1875 // always room.
1876 UNREACHABLE();
1877 }
1878 allocation = new_space->AllocateRaw(size);
1879 DCHECK(!allocation.IsRetry());
1880 }
1881 Object* target = allocation.ToObjectChecked();
1882
1883 MigrateObject(HeapObject::cast(target), object, size, NEW_SPACE);
1884 heap()->IncrementSemiSpaceCopiedObjectSize(size);
1885 }
1886 *cells = 0;
1887 }
1888 return survivors_size;
1889}
1890
1891
1892static void DiscoverGreyObjectsInSpace(Heap* heap, MarkingDeque* marking_deque,
1893 PagedSpace* space) {
1894 PageIterator it(space);
1895 while (it.has_next()) {
1896 Page* p = it.next();
1897 DiscoverGreyObjectsOnPage(marking_deque, p);
1898 if (marking_deque->IsFull()) return;
1899 }
1900}
1901
1902
1903static void DiscoverGreyObjectsInNewSpace(Heap* heap,
1904 MarkingDeque* marking_deque) {
1905 NewSpace* space = heap->new_space();
1906 NewSpacePageIterator it(space->bottom(), space->top());
1907 while (it.has_next()) {
1908 NewSpacePage* page = it.next();
1909 DiscoverGreyObjectsOnPage(marking_deque, page);
1910 if (marking_deque->IsFull()) return;
1911 }
1912}
1913
1914
1915bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
1916 Object* o = *p;
1917 if (!o->IsHeapObject()) return false;
1918 HeapObject* heap_object = HeapObject::cast(o);
1919 MarkBit mark = Marking::MarkBitFrom(heap_object);
1920 return !mark.Get();
1921}
1922
1923
1924bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
1925 Object** p) {
1926 Object* o = *p;
1927 DCHECK(o->IsHeapObject());
1928 HeapObject* heap_object = HeapObject::cast(o);
1929 MarkBit mark = Marking::MarkBitFrom(heap_object);
1930 return !mark.Get();
1931}
1932
1933
1934void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
1935 StringTable* string_table = heap()->string_table();
1936 // Mark the string table itself.
1937 MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
1938 if (!string_table_mark.Get()) {
1939 // String table could have already been marked by visiting the handles list.
1940 SetMark(string_table, string_table_mark);
1941 }
1942 // Explicitly mark the prefix.
1943 string_table->IteratePrefix(visitor);
1944 ProcessMarkingDeque();
1945}
1946
1947
1948void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
1949 MarkBit mark_bit = Marking::MarkBitFrom(site);
1950 SetMark(site, mark_bit);
1951}
1952
1953
1954void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
1955 // Mark the heap roots including global variables, stack variables,
1956 // etc., and all objects reachable from them.
1957 heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
1958
1959 // Handle the string table specially.
1960 MarkStringTable(visitor);
1961
1962 MarkWeakObjectToCodeTable();
1963
1964 // There may be overflowed objects in the heap. Visit them now.
1965 while (marking_deque_.overflowed()) {
1966 RefillMarkingDeque();
1967 EmptyMarkingDeque();
1968 }
1969}
1970
1971
1972void MarkCompactCollector::MarkImplicitRefGroups() {
1973 List<ImplicitRefGroup*>* ref_groups =
1974 isolate()->global_handles()->implicit_ref_groups();
1975
1976 int last = 0;
1977 for (int i = 0; i < ref_groups->length(); i++) {
1978 ImplicitRefGroup* entry = ref_groups->at(i);
1979 DCHECK(entry != NULL);
1980
1981 if (!IsMarked(*entry->parent)) {
1982 (*ref_groups)[last++] = entry;
1983 continue;
1984 }
1985
1986 Object*** children = entry->children;
1987 // A parent object is marked, so mark all child heap objects.
1988 for (size_t j = 0; j < entry->length; ++j) {
1989 if ((*children[j])->IsHeapObject()) {
1990 HeapObject* child = HeapObject::cast(*children[j]);
1991 MarkBit mark = Marking::MarkBitFrom(child);
1992 MarkObject(child, mark);
1993 }
1994 }
1995
1996 // Once the entire group has been marked, dispose it because it's
1997 // not needed anymore.
1998 delete entry;
1999 }
2000 ref_groups->Rewind(last);
2001}
2002
2003
2004void MarkCompactCollector::MarkWeakObjectToCodeTable() {
2005 HeapObject* weak_object_to_code_table =
2006 HeapObject::cast(heap()->weak_object_to_code_table());
2007 if (!IsMarked(weak_object_to_code_table)) {
2008 MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
2009 SetMark(weak_object_to_code_table, mark);
2010 }
2011}
2012
2013
2014// Mark all objects reachable from the objects on the marking stack.
2015// Before: the marking stack contains zero or more heap object pointers.
2016// After: the marking stack is empty, and all objects reachable from the
2017// marking stack have been marked, or are overflowed in the heap.
2018void MarkCompactCollector::EmptyMarkingDeque() {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002019 Map* filler_map = heap_->one_pointer_filler_map();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002020 while (!marking_deque_.IsEmpty()) {
2021 HeapObject* object = marking_deque_.Pop();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002022 // Explicitly skip one word fillers. Incremental markbit patterns are
2023 // correct only for objects that occupy at least two words.
2024 Map* map = object->map();
2025 if (map == filler_map) continue;
2026
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002027 DCHECK(object->IsHeapObject());
2028 DCHECK(heap()->Contains(object));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002029 DCHECK(!Marking::IsWhite(Marking::MarkBitFrom(object)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002030
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002031 MarkBit map_mark = Marking::MarkBitFrom(map);
2032 MarkObject(map, map_mark);
2033
2034 MarkCompactMarkingVisitor::IterateBody(map, object);
2035 }
2036}
2037
2038
2039// Sweep the heap for overflowed objects, clear their overflow bits, and
2040// push them on the marking stack. Stop early if the marking stack fills
2041// before sweeping completes. If sweeping completes, there are no remaining
2042// overflowed objects in the heap so the overflow flag on the markings stack
2043// is cleared.
2044void MarkCompactCollector::RefillMarkingDeque() {
2045 DCHECK(marking_deque_.overflowed());
2046
2047 DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
2048 if (marking_deque_.IsFull()) return;
2049
2050 DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
2051 heap()->old_pointer_space());
2052 if (marking_deque_.IsFull()) return;
2053
2054 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_data_space());
2055 if (marking_deque_.IsFull()) return;
2056
2057 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->code_space());
2058 if (marking_deque_.IsFull()) return;
2059
2060 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->map_space());
2061 if (marking_deque_.IsFull()) return;
2062
2063 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->cell_space());
2064 if (marking_deque_.IsFull()) return;
2065
2066 DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
2067 heap()->property_cell_space());
2068 if (marking_deque_.IsFull()) return;
2069
2070 LargeObjectIterator lo_it(heap()->lo_space());
2071 DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &lo_it);
2072 if (marking_deque_.IsFull()) return;
2073
2074 marking_deque_.ClearOverflowed();
2075}
2076
2077
2078// Mark all objects reachable (transitively) from objects on the marking
2079// stack. Before: the marking stack contains zero or more heap object
2080// pointers. After: the marking stack is empty and there are no overflowed
2081// objects in the heap.
2082void MarkCompactCollector::ProcessMarkingDeque() {
2083 EmptyMarkingDeque();
2084 while (marking_deque_.overflowed()) {
2085 RefillMarkingDeque();
2086 EmptyMarkingDeque();
2087 }
2088}
2089
2090
2091// Mark all objects reachable (transitively) from objects on the marking
2092// stack including references only considered in the atomic marking pause.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002093void MarkCompactCollector::ProcessEphemeralMarking(
2094 ObjectVisitor* visitor, bool only_process_harmony_weak_collections) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002095 bool work_to_do = true;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002096 DCHECK(marking_deque_.IsEmpty() && !marking_deque_.overflowed());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002097 while (work_to_do) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002098 if (!only_process_harmony_weak_collections) {
2099 isolate()->global_handles()->IterateObjectGroups(
2100 visitor, &IsUnmarkedHeapObjectWithHeap);
2101 MarkImplicitRefGroups();
2102 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002103 ProcessWeakCollections();
2104 work_to_do = !marking_deque_.IsEmpty();
2105 ProcessMarkingDeque();
2106 }
2107}
2108
2109
2110void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
2111 for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
2112 !it.done(); it.Advance()) {
2113 if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
2114 return;
2115 }
2116 if (it.frame()->type() == StackFrame::OPTIMIZED) {
2117 Code* code = it.frame()->LookupCode();
2118 if (!code->CanDeoptAt(it.frame()->pc())) {
2119 code->CodeIterateBody(visitor);
2120 }
2121 ProcessMarkingDeque();
2122 return;
2123 }
2124 }
2125}
2126
2127
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002128void MarkCompactCollector::EnsureMarkingDequeIsCommittedAndInitialize() {
2129 if (marking_deque_memory_ == NULL) {
2130 marking_deque_memory_ = new base::VirtualMemory(4 * MB);
2131 }
2132 if (!marking_deque_memory_committed_) {
2133 bool success = marking_deque_memory_->Commit(
2134 reinterpret_cast<Address>(marking_deque_memory_->address()),
2135 marking_deque_memory_->size(),
2136 false); // Not executable.
2137 CHECK(success);
2138 marking_deque_memory_committed_ = true;
2139 InitializeMarkingDeque();
2140 }
2141}
2142
2143
2144void MarkCompactCollector::InitializeMarkingDeque() {
2145 if (marking_deque_memory_committed_) {
2146 Address addr = static_cast<Address>(marking_deque_memory_->address());
2147 size_t size = marking_deque_memory_->size();
2148 if (FLAG_force_marking_deque_overflows) size = 64 * kPointerSize;
2149 marking_deque_.Initialize(addr, addr + size);
2150 }
2151}
2152
2153
2154void MarkCompactCollector::UncommitMarkingDeque() {
2155 if (marking_deque_memory_committed_) {
2156 bool success = marking_deque_memory_->Uncommit(
2157 reinterpret_cast<Address>(marking_deque_memory_->address()),
2158 marking_deque_memory_->size());
2159 CHECK(success);
2160 marking_deque_memory_committed_ = false;
2161 }
2162}
2163
2164
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002165void MarkCompactCollector::MarkLiveObjects() {
2166 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
2167 double start_time = 0.0;
2168 if (FLAG_print_cumulative_gc_stat) {
2169 start_time = base::OS::TimeCurrentMillis();
2170 }
2171 // The recursive GC marker detects when it is nearing stack overflow,
2172 // and switches to a different marking system. JS interrupts interfere
2173 // with the C stack limit check.
2174 PostponeInterruptsScope postpone(isolate());
2175
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002176 IncrementalMarking* incremental_marking = heap_->incremental_marking();
2177 if (was_marked_incrementally_) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002178 incremental_marking->Finalize();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002179 } else {
2180 // Abort any pending incremental activities e.g. incremental sweeping.
2181 incremental_marking->Abort();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002182 InitializeMarkingDeque();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002183 }
2184
2185#ifdef DEBUG
2186 DCHECK(state_ == PREPARE_GC);
2187 state_ = MARK_LIVE_OBJECTS;
2188#endif
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002189
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002190 EnsureMarkingDequeIsCommittedAndInitialize();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002191
2192 PrepareForCodeFlushing();
2193
2194 if (was_marked_incrementally_) {
2195 // There is no write barrier on cells so we have to scan them now at the end
2196 // of the incremental marking.
2197 {
2198 HeapObjectIterator cell_iterator(heap()->cell_space());
2199 HeapObject* cell;
2200 while ((cell = cell_iterator.Next()) != NULL) {
2201 DCHECK(cell->IsCell());
2202 if (IsMarked(cell)) {
2203 int offset = Cell::kValueOffset;
2204 MarkCompactMarkingVisitor::VisitPointer(
2205 heap(), reinterpret_cast<Object**>(cell->address() + offset));
2206 }
2207 }
2208 }
2209 {
2210 HeapObjectIterator js_global_property_cell_iterator(
2211 heap()->property_cell_space());
2212 HeapObject* cell;
2213 while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
2214 DCHECK(cell->IsPropertyCell());
2215 if (IsMarked(cell)) {
2216 MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
2217 }
2218 }
2219 }
2220 }
2221
2222 RootMarkingVisitor root_visitor(heap());
2223 MarkRoots(&root_visitor);
2224
2225 ProcessTopOptimizedFrame(&root_visitor);
2226
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002227 {
2228 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_WEAKCLOSURE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002229
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002230 // The objects reachable from the roots are marked, yet unreachable
2231 // objects are unmarked. Mark objects reachable due to host
2232 // application specific logic or through Harmony weak maps.
2233 ProcessEphemeralMarking(&root_visitor, false);
2234
2235 // The objects reachable from the roots, weak maps or object groups
2236 // are marked. Objects pointed to only by weak global handles cannot be
2237 // immediately reclaimed. Instead, we have to mark them as pending and mark
2238 // objects reachable from them.
2239 //
2240 // First we identify nonlive weak handles and mark them as pending
2241 // destruction.
2242 heap()->isolate()->global_handles()->IdentifyWeakHandles(
2243 &IsUnmarkedHeapObject);
2244 // Then we mark the objects.
2245 heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
2246 ProcessMarkingDeque();
2247
2248 // Repeat Harmony weak maps marking to mark unmarked objects reachable from
2249 // the weak roots we just marked as pending destruction.
2250 //
2251 // We only process harmony collections, as all object groups have been fully
2252 // processed and no weakly reachable node can discover new objects groups.
2253 ProcessEphemeralMarking(&root_visitor, true);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002254 }
2255
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002256 AfterMarking();
2257
2258 if (FLAG_print_cumulative_gc_stat) {
2259 heap_->tracer()->AddMarkingTime(base::OS::TimeCurrentMillis() - start_time);
2260 }
2261}
2262
2263
2264void MarkCompactCollector::AfterMarking() {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002265 // Prune the string table removing all strings only pointed to by the
2266 // string table. Cannot use string_table() here because the string
2267 // table is marked.
2268 StringTable* string_table = heap()->string_table();
2269 InternalizedStringTableCleaner internalized_visitor(heap());
2270 string_table->IterateElements(&internalized_visitor);
2271 string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
2272
2273 ExternalStringTableCleaner external_visitor(heap());
2274 heap()->external_string_table_.Iterate(&external_visitor);
2275 heap()->external_string_table_.CleanUp();
2276
2277 // Process the weak references.
2278 MarkCompactWeakObjectRetainer mark_compact_object_retainer;
2279 heap()->ProcessWeakReferences(&mark_compact_object_retainer);
2280
2281 // Remove object groups after marking phase.
2282 heap()->isolate()->global_handles()->RemoveObjectGroups();
2283 heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
2284
2285 // Flush code from collected candidates.
2286 if (is_code_flushing_enabled()) {
2287 code_flusher_->ProcessCandidates();
2288 // If incremental marker does not support code flushing, we need to
2289 // disable it before incremental marking steps for next cycle.
2290 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
2291 EnableCodeFlushing(false);
2292 }
2293 }
2294
2295 if (FLAG_track_gc_object_stats) {
2296 heap()->CheckpointObjectStats();
2297 }
2298}
2299
2300
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002301void MarkCompactCollector::ClearNonLiveReferences() {
2302 // Iterate over the map space, setting map transitions that go from
2303 // a marked map to an unmarked map to null transitions. This action
2304 // is carried out only on maps of JSObjects and related subtypes.
2305 HeapObjectIterator map_iterator(heap()->map_space());
2306 for (HeapObject* obj = map_iterator.Next(); obj != NULL;
2307 obj = map_iterator.Next()) {
2308 Map* map = Map::cast(obj);
2309
2310 if (!map->CanTransition()) continue;
2311
2312 MarkBit map_mark = Marking::MarkBitFrom(map);
2313 ClearNonLivePrototypeTransitions(map);
2314 ClearNonLiveMapTransitions(map, map_mark);
2315
2316 if (map_mark.Get()) {
2317 ClearNonLiveDependentCode(map->dependent_code());
2318 } else {
2319 ClearDependentCode(map->dependent_code());
2320 map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
2321 }
2322 }
2323
2324 // Iterate over property cell space, removing dependent code that is not
2325 // otherwise kept alive by strong references.
2326 HeapObjectIterator cell_iterator(heap_->property_cell_space());
2327 for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
2328 cell = cell_iterator.Next()) {
2329 if (IsMarked(cell)) {
2330 ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
2331 }
2332 }
2333
2334 // Iterate over allocation sites, removing dependent code that is not
2335 // otherwise kept alive by strong references.
2336 Object* undefined = heap()->undefined_value();
2337 for (Object* site = heap()->allocation_sites_list(); site != undefined;
2338 site = AllocationSite::cast(site)->weak_next()) {
2339 if (IsMarked(site)) {
2340 ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
2341 }
2342 }
2343
2344 if (heap_->weak_object_to_code_table()->IsHashTable()) {
2345 WeakHashTable* table =
2346 WeakHashTable::cast(heap_->weak_object_to_code_table());
2347 uint32_t capacity = table->Capacity();
2348 for (uint32_t i = 0; i < capacity; i++) {
2349 uint32_t key_index = table->EntryToIndex(i);
2350 Object* key = table->get(key_index);
2351 if (!table->IsKey(key)) continue;
2352 uint32_t value_index = table->EntryToValueIndex(i);
2353 Object* value = table->get(value_index);
2354 if (key->IsCell() && !IsMarked(key)) {
2355 Cell* cell = Cell::cast(key);
2356 Object* object = cell->value();
2357 if (IsMarked(object)) {
2358 MarkBit mark = Marking::MarkBitFrom(cell);
2359 SetMark(cell, mark);
2360 Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
2361 RecordSlot(value_slot, value_slot, *value_slot);
2362 }
2363 }
2364 if (IsMarked(key)) {
2365 if (!IsMarked(value)) {
2366 HeapObject* obj = HeapObject::cast(value);
2367 MarkBit mark = Marking::MarkBitFrom(obj);
2368 SetMark(obj, mark);
2369 }
2370 ClearNonLiveDependentCode(DependentCode::cast(value));
2371 } else {
2372 ClearDependentCode(DependentCode::cast(value));
2373 table->set(key_index, heap_->the_hole_value());
2374 table->set(value_index, heap_->the_hole_value());
2375 table->ElementRemoved();
2376 }
2377 }
2378 }
2379}
2380
2381
2382void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
2383 int number_of_transitions = map->NumberOfProtoTransitions();
2384 FixedArray* prototype_transitions = map->GetPrototypeTransitions();
2385
2386 int new_number_of_transitions = 0;
2387 const int header = Map::kProtoTransitionHeaderSize;
2388 const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
2389 const int map_offset = header + Map::kProtoTransitionMapOffset;
2390 const int step = Map::kProtoTransitionElementsPerEntry;
2391 for (int i = 0; i < number_of_transitions; i++) {
2392 Object* prototype = prototype_transitions->get(proto_offset + i * step);
2393 Object* cached_map = prototype_transitions->get(map_offset + i * step);
2394 if (IsMarked(prototype) && IsMarked(cached_map)) {
2395 DCHECK(!prototype->IsUndefined());
2396 int proto_index = proto_offset + new_number_of_transitions * step;
2397 int map_index = map_offset + new_number_of_transitions * step;
2398 if (new_number_of_transitions != i) {
2399 prototype_transitions->set(proto_index, prototype,
2400 UPDATE_WRITE_BARRIER);
2401 prototype_transitions->set(map_index, cached_map, SKIP_WRITE_BARRIER);
2402 }
2403 Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
2404 RecordSlot(slot, slot, prototype);
2405 new_number_of_transitions++;
2406 }
2407 }
2408
2409 if (new_number_of_transitions != number_of_transitions) {
2410 map->SetNumberOfProtoTransitions(new_number_of_transitions);
2411 }
2412
2413 // Fill slots that became free with undefined value.
2414 for (int i = new_number_of_transitions * step;
2415 i < number_of_transitions * step; i++) {
2416 prototype_transitions->set_undefined(header + i);
2417 }
2418}
2419
2420
2421void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
2422 MarkBit map_mark) {
2423 Object* potential_parent = map->GetBackPointer();
2424 if (!potential_parent->IsMap()) return;
2425 Map* parent = Map::cast(potential_parent);
2426
2427 // Follow back pointer, check whether we are dealing with a map transition
2428 // from a live map to a dead path and in case clear transitions of parent.
2429 bool current_is_alive = map_mark.Get();
2430 bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
2431 if (!current_is_alive && parent_is_alive) {
2432 ClearMapTransitions(parent);
2433 }
2434}
2435
2436
2437// Clear a possible back pointer in case the transition leads to a dead map.
2438// Return true in case a back pointer has been cleared and false otherwise.
2439bool MarkCompactCollector::ClearMapBackPointer(Map* target) {
2440 if (Marking::MarkBitFrom(target).Get()) return false;
2441 target->SetBackPointer(heap_->undefined_value(), SKIP_WRITE_BARRIER);
2442 return true;
2443}
2444
2445
2446void MarkCompactCollector::ClearMapTransitions(Map* map) {
2447 // If there are no transitions to be cleared, return.
2448 // TODO(verwaest) Should be an assert, otherwise back pointers are not
2449 // properly cleared.
2450 if (!map->HasTransitionArray()) return;
2451
2452 TransitionArray* t = map->transitions();
2453
2454 int transition_index = 0;
2455
2456 DescriptorArray* descriptors = map->instance_descriptors();
2457 bool descriptors_owner_died = false;
2458
2459 // Compact all live descriptors to the left.
2460 for (int i = 0; i < t->number_of_transitions(); ++i) {
2461 Map* target = t->GetTarget(i);
2462 if (ClearMapBackPointer(target)) {
2463 if (target->instance_descriptors() == descriptors) {
2464 descriptors_owner_died = true;
2465 }
2466 } else {
2467 if (i != transition_index) {
2468 Name* key = t->GetKey(i);
2469 t->SetKey(transition_index, key);
2470 Object** key_slot = t->GetKeySlot(transition_index);
2471 RecordSlot(key_slot, key_slot, key);
2472 // Target slots do not need to be recorded since maps are not compacted.
2473 t->SetTarget(transition_index, t->GetTarget(i));
2474 }
2475 transition_index++;
2476 }
2477 }
2478
2479 // If there are no transitions to be cleared, return.
2480 // TODO(verwaest) Should be an assert, otherwise back pointers are not
2481 // properly cleared.
2482 if (transition_index == t->number_of_transitions()) return;
2483
2484 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
2485
2486 if (descriptors_owner_died) {
2487 if (number_of_own_descriptors > 0) {
2488 TrimDescriptorArray(map, descriptors, number_of_own_descriptors);
2489 DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
2490 map->set_owns_descriptors(true);
2491 } else {
2492 DCHECK(descriptors == heap_->empty_descriptor_array());
2493 }
2494 }
2495
2496 // Note that we never eliminate a transition array, though we might right-trim
2497 // such that number_of_transitions() == 0. If this assumption changes,
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002498 // TransitionArray::Insert() will need to deal with the case that a transition
2499 // array disappeared during GC.
2500 int trim = t->number_of_transitions_storage() - transition_index;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002501 if (trim > 0) {
2502 heap_->RightTrimFixedArray<Heap::FROM_GC>(
2503 t, t->IsSimpleTransition() ? trim
2504 : trim * TransitionArray::kTransitionSize);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002505 t->SetNumberOfTransitions(transition_index);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002506 }
2507 DCHECK(map->HasTransitionArray());
2508}
2509
2510
2511void MarkCompactCollector::TrimDescriptorArray(Map* map,
2512 DescriptorArray* descriptors,
2513 int number_of_own_descriptors) {
2514 int number_of_descriptors = descriptors->number_of_descriptors_storage();
2515 int to_trim = number_of_descriptors - number_of_own_descriptors;
2516 if (to_trim == 0) return;
2517
2518 heap_->RightTrimFixedArray<Heap::FROM_GC>(
2519 descriptors, to_trim * DescriptorArray::kDescriptorSize);
2520 descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
2521
2522 if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors);
2523 descriptors->Sort();
2524}
2525
2526
2527void MarkCompactCollector::TrimEnumCache(Map* map,
2528 DescriptorArray* descriptors) {
2529 int live_enum = map->EnumLength();
2530 if (live_enum == kInvalidEnumCacheSentinel) {
2531 live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
2532 }
2533 if (live_enum == 0) return descriptors->ClearEnumCache();
2534
2535 FixedArray* enum_cache = descriptors->GetEnumCache();
2536
2537 int to_trim = enum_cache->length() - live_enum;
2538 if (to_trim <= 0) return;
2539 heap_->RightTrimFixedArray<Heap::FROM_GC>(descriptors->GetEnumCache(),
2540 to_trim);
2541
2542 if (!descriptors->HasEnumIndicesCache()) return;
2543 FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
2544 heap_->RightTrimFixedArray<Heap::FROM_GC>(enum_indices_cache, to_trim);
2545}
2546
2547
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002548void MarkCompactCollector::ClearDependentCode(DependentCode* entries) {
2549 DisallowHeapAllocation no_allocation;
2550 DependentCode::GroupStartIndexes starts(entries);
2551 int number_of_entries = starts.number_of_entries();
2552 if (number_of_entries == 0) return;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002553 int g = DependentCode::kWeakCodeGroup;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002554 for (int i = starts.at(g); i < starts.at(g + 1); i++) {
2555 // If the entry is compilation info then the map must be alive,
2556 // and ClearDependentCode shouldn't be called.
2557 DCHECK(entries->is_code_at(i));
2558 Code* code = entries->code_at(i);
2559 if (IsMarked(code) && !code->marked_for_deoptimization()) {
2560 DependentCode::SetMarkedForDeoptimization(
2561 code, static_cast<DependentCode::DependencyGroup>(g));
2562 code->InvalidateEmbeddedObjects();
2563 have_code_to_deoptimize_ = true;
2564 }
2565 }
2566 for (int i = 0; i < number_of_entries; i++) {
2567 entries->clear_at(i);
2568 }
2569}
2570
2571
2572int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
2573 DependentCode* entries, int group, int start, int end, int new_start) {
2574 int survived = 0;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002575 for (int i = start; i < end; i++) {
2576 Object* obj = entries->object_at(i);
2577 DCHECK(obj->IsCode() || IsMarked(obj));
2578 if (IsMarked(obj) &&
2579 (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
2580 if (new_start + survived != i) {
2581 entries->set_object_at(new_start + survived, obj);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002582 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002583 Object** slot = entries->slot_at(new_start + survived);
2584 RecordSlot(slot, slot, obj);
2585 survived++;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002586 }
2587 }
2588 entries->set_number_of_entries(
2589 static_cast<DependentCode::DependencyGroup>(group), survived);
2590 return survived;
2591}
2592
2593
2594void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
2595 DisallowHeapAllocation no_allocation;
2596 DependentCode::GroupStartIndexes starts(entries);
2597 int number_of_entries = starts.number_of_entries();
2598 if (number_of_entries == 0) return;
2599 int new_number_of_entries = 0;
2600 // Go through all groups, remove dead codes and compact.
2601 for (int g = 0; g < DependentCode::kGroupCount; g++) {
2602 int survived = ClearNonLiveDependentCodeInGroup(
2603 entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
2604 new_number_of_entries += survived;
2605 }
2606 for (int i = new_number_of_entries; i < number_of_entries; i++) {
2607 entries->clear_at(i);
2608 }
2609}
2610
2611
2612void MarkCompactCollector::ProcessWeakCollections() {
2613 GCTracer::Scope gc_scope(heap()->tracer(),
2614 GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
2615 Object* weak_collection_obj = heap()->encountered_weak_collections();
2616 while (weak_collection_obj != Smi::FromInt(0)) {
2617 JSWeakCollection* weak_collection =
2618 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2619 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2620 if (weak_collection->table()->IsHashTable()) {
2621 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2622 Object** anchor = reinterpret_cast<Object**>(table->address());
2623 for (int i = 0; i < table->Capacity(); i++) {
2624 if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2625 Object** key_slot =
2626 table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
2627 RecordSlot(anchor, key_slot, *key_slot);
2628 Object** value_slot =
2629 table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
2630 MarkCompactMarkingVisitor::MarkObjectByPointer(this, anchor,
2631 value_slot);
2632 }
2633 }
2634 }
2635 weak_collection_obj = weak_collection->next();
2636 }
2637}
2638
2639
2640void MarkCompactCollector::ClearWeakCollections() {
2641 GCTracer::Scope gc_scope(heap()->tracer(),
2642 GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
2643 Object* weak_collection_obj = heap()->encountered_weak_collections();
2644 while (weak_collection_obj != Smi::FromInt(0)) {
2645 JSWeakCollection* weak_collection =
2646 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2647 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2648 if (weak_collection->table()->IsHashTable()) {
2649 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2650 for (int i = 0; i < table->Capacity(); i++) {
2651 HeapObject* key = HeapObject::cast(table->KeyAt(i));
2652 if (!MarkCompactCollector::IsMarked(key)) {
2653 table->RemoveEntry(i);
2654 }
2655 }
2656 }
2657 weak_collection_obj = weak_collection->next();
2658 weak_collection->set_next(heap()->undefined_value());
2659 }
2660 heap()->set_encountered_weak_collections(Smi::FromInt(0));
2661}
2662
2663
2664void MarkCompactCollector::AbortWeakCollections() {
2665 GCTracer::Scope gc_scope(heap()->tracer(),
2666 GCTracer::Scope::MC_WEAKCOLLECTION_ABORT);
2667 Object* weak_collection_obj = heap()->encountered_weak_collections();
2668 while (weak_collection_obj != Smi::FromInt(0)) {
2669 JSWeakCollection* weak_collection =
2670 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2671 weak_collection_obj = weak_collection->next();
2672 weak_collection->set_next(heap()->undefined_value());
2673 }
2674 heap()->set_encountered_weak_collections(Smi::FromInt(0));
2675}
2676
2677
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002678void MarkCompactCollector::ProcessAndClearWeakCells() {
2679 HeapObject* undefined = heap()->undefined_value();
2680 Object* weak_cell_obj = heap()->encountered_weak_cells();
2681 while (weak_cell_obj != Smi::FromInt(0)) {
2682 WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
2683 // We do not insert cleared weak cells into the list, so the value
2684 // cannot be a Smi here.
2685 HeapObject* value = HeapObject::cast(weak_cell->value());
2686 if (!MarkCompactCollector::IsMarked(value)) {
2687 weak_cell->clear();
2688 } else {
2689 Object** slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset);
2690 heap()->mark_compact_collector()->RecordSlot(slot, slot, value);
2691 }
2692 weak_cell_obj = weak_cell->next();
2693 weak_cell->set_next(undefined, SKIP_WRITE_BARRIER);
2694 }
2695 heap()->set_encountered_weak_cells(Smi::FromInt(0));
2696}
2697
2698
2699void MarkCompactCollector::AbortWeakCells() {
2700 Object* undefined = heap()->undefined_value();
2701 Object* weak_cell_obj = heap()->encountered_weak_cells();
2702 while (weak_cell_obj != Smi::FromInt(0)) {
2703 WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj);
2704 weak_cell_obj = weak_cell->next();
2705 weak_cell->set_next(undefined, SKIP_WRITE_BARRIER);
2706 }
2707 heap()->set_encountered_weak_cells(Smi::FromInt(0));
2708}
2709
2710
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002711void MarkCompactCollector::RecordMigratedSlot(Object* value, Address slot) {
2712 if (heap_->InNewSpace(value)) {
2713 heap_->store_buffer()->Mark(slot);
2714 } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
2715 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2716 reinterpret_cast<Object**>(slot),
2717 SlotsBuffer::IGNORE_OVERFLOW);
2718 }
2719}
2720
2721
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002722// We scavenge new space simultaneously with sweeping. This is done in two
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002723// passes.
2724//
2725// The first pass migrates all alive objects from one semispace to another or
2726// promotes them to old space. Forwarding address is written directly into
2727// first word of object without any encoding. If object is dead we write
2728// NULL as a forwarding address.
2729//
2730// The second pass updates pointers to new space in all spaces. It is possible
2731// to encounter pointers to dead new space objects during traversal of pointers
2732// to new space. We should clear them to avoid encountering them during next
2733// pointer iteration. This is an issue if the store buffer overflows and we
2734// have to scan the entire old space, including dead objects, looking for
2735// pointers to new space.
2736void MarkCompactCollector::MigrateObject(HeapObject* dst, HeapObject* src,
2737 int size, AllocationSpace dest) {
2738 Address dst_addr = dst->address();
2739 Address src_addr = src->address();
2740 DCHECK(heap()->AllowedToBeMigrated(src, dest));
2741 DCHECK(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
2742 if (dest == OLD_POINTER_SPACE) {
2743 Address src_slot = src_addr;
2744 Address dst_slot = dst_addr;
2745 DCHECK(IsAligned(size, kPointerSize));
2746
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002747 bool may_contain_raw_values = src->MayContainRawValues();
2748#if V8_DOUBLE_FIELDS_UNBOXING
2749 LayoutDescriptorHelper helper(src->map());
2750 bool has_only_tagged_fields = helper.all_fields_tagged();
2751#endif
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002752 for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
2753 Object* value = Memory::Object_at(src_slot);
2754
2755 Memory::Object_at(dst_slot) = value;
2756
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002757#if V8_DOUBLE_FIELDS_UNBOXING
2758 if (!may_contain_raw_values &&
2759 (has_only_tagged_fields ||
2760 helper.IsTagged(static_cast<int>(src_slot - src_addr))))
2761#else
2762 if (!may_contain_raw_values)
2763#endif
2764 {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002765 RecordMigratedSlot(value, dst_slot);
2766 }
2767
2768 src_slot += kPointerSize;
2769 dst_slot += kPointerSize;
2770 }
2771
2772 if (compacting_ && dst->IsJSFunction()) {
2773 Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
2774 Address code_entry = Memory::Address_at(code_entry_slot);
2775
2776 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2777 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2778 SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
2779 SlotsBuffer::IGNORE_OVERFLOW);
2780 }
2781 } else if (dst->IsConstantPoolArray()) {
2782 // We special case ConstantPoolArrays since they could contain integers
2783 // value entries which look like tagged pointers.
2784 // TODO(mstarzinger): restructure this code to avoid this special-casing.
2785 ConstantPoolArray* array = ConstantPoolArray::cast(dst);
2786 ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
2787 while (!code_iter.is_finished()) {
2788 Address code_entry_slot =
2789 dst_addr + array->OffsetOfElementAt(code_iter.next_index());
2790 Address code_entry = Memory::Address_at(code_entry_slot);
2791
2792 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2793 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2794 SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
2795 SlotsBuffer::IGNORE_OVERFLOW);
2796 }
2797 }
2798 ConstantPoolArray::Iterator heap_iter(array, ConstantPoolArray::HEAP_PTR);
2799 while (!heap_iter.is_finished()) {
2800 Address heap_slot =
2801 dst_addr + array->OffsetOfElementAt(heap_iter.next_index());
2802 Object* value = Memory::Object_at(heap_slot);
2803 RecordMigratedSlot(value, heap_slot);
2804 }
2805 }
2806 } else if (dest == CODE_SPACE) {
2807 PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
2808 heap()->MoveBlock(dst_addr, src_addr, size);
2809 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2810 SlotsBuffer::RELOCATED_CODE_OBJECT, dst_addr,
2811 SlotsBuffer::IGNORE_OVERFLOW);
2812 Code::cast(dst)->Relocate(dst_addr - src_addr);
2813 } else {
2814 DCHECK(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
2815 heap()->MoveBlock(dst_addr, src_addr, size);
2816 }
2817 heap()->OnMoveEvent(dst, src, size);
2818 Memory::Address_at(src_addr) = dst_addr;
2819}
2820
2821
2822// Visitor for updating pointers from live objects in old spaces to new space.
2823// It does not expect to encounter pointers to dead objects.
2824class PointersUpdatingVisitor : public ObjectVisitor {
2825 public:
2826 explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {}
2827
2828 void VisitPointer(Object** p) { UpdatePointer(p); }
2829
2830 void VisitPointers(Object** start, Object** end) {
2831 for (Object** p = start; p < end; p++) UpdatePointer(p);
2832 }
2833
2834 void VisitEmbeddedPointer(RelocInfo* rinfo) {
2835 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
2836 Object* target = rinfo->target_object();
2837 Object* old_target = target;
2838 VisitPointer(&target);
2839 // Avoid unnecessary changes that might unnecessary flush the instruction
2840 // cache.
2841 if (target != old_target) {
2842 rinfo->set_target_object(target);
2843 }
2844 }
2845
2846 void VisitCodeTarget(RelocInfo* rinfo) {
2847 DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
2848 Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
2849 Object* old_target = target;
2850 VisitPointer(&target);
2851 if (target != old_target) {
2852 rinfo->set_target_address(Code::cast(target)->instruction_start());
2853 }
2854 }
2855
2856 void VisitCodeAgeSequence(RelocInfo* rinfo) {
2857 DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
2858 Object* stub = rinfo->code_age_stub();
2859 DCHECK(stub != NULL);
2860 VisitPointer(&stub);
2861 if (stub != rinfo->code_age_stub()) {
2862 rinfo->set_code_age_stub(Code::cast(stub));
2863 }
2864 }
2865
2866 void VisitDebugTarget(RelocInfo* rinfo) {
2867 DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) &&
2868 rinfo->IsPatchedReturnSequence()) ||
2869 (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
2870 rinfo->IsPatchedDebugBreakSlotSequence()));
2871 Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
2872 VisitPointer(&target);
2873 rinfo->set_call_address(Code::cast(target)->instruction_start());
2874 }
2875
2876 static inline void UpdateSlot(Heap* heap, Object** slot) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002877 Object* obj = reinterpret_cast<Object*>(
2878 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002879
2880 if (!obj->IsHeapObject()) return;
2881
2882 HeapObject* heap_obj = HeapObject::cast(obj);
2883
2884 MapWord map_word = heap_obj->map_word();
2885 if (map_word.IsForwardingAddress()) {
2886 DCHECK(heap->InFromSpace(heap_obj) ||
2887 MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
2888 HeapObject* target = map_word.ToForwardingAddress();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002889 base::NoBarrier_CompareAndSwap(
2890 reinterpret_cast<base::AtomicWord*>(slot),
2891 reinterpret_cast<base::AtomicWord>(obj),
2892 reinterpret_cast<base::AtomicWord>(target));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002893 DCHECK(!heap->InFromSpace(target) &&
2894 !MarkCompactCollector::IsOnEvacuationCandidate(target));
2895 }
2896 }
2897
2898 private:
2899 inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); }
2900
2901 Heap* heap_;
2902};
2903
2904
2905static void UpdatePointer(HeapObject** address, HeapObject* object) {
2906 Address new_addr = Memory::Address_at(object->address());
2907
2908 // The new space sweep will overwrite the map word of dead objects
2909 // with NULL. In this case we do not need to transfer this entry to
2910 // the store buffer which we are rebuilding.
2911 // We perform the pointer update with a no barrier compare-and-swap. The
2912 // compare and swap may fail in the case where the pointer update tries to
2913 // update garbage memory which was concurrently accessed by the sweeper.
2914 if (new_addr != NULL) {
2915 base::NoBarrier_CompareAndSwap(
2916 reinterpret_cast<base::AtomicWord*>(address),
2917 reinterpret_cast<base::AtomicWord>(object),
2918 reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
2919 }
2920}
2921
2922
2923static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
2924 Object** p) {
2925 MapWord map_word = HeapObject::cast(*p)->map_word();
2926
2927 if (map_word.IsForwardingAddress()) {
2928 return String::cast(map_word.ToForwardingAddress());
2929 }
2930
2931 return String::cast(*p);
2932}
2933
2934
2935bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
2936 int object_size) {
2937 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
2938
2939 OldSpace* target_space = heap()->TargetSpace(object);
2940
2941 DCHECK(target_space == heap()->old_pointer_space() ||
2942 target_space == heap()->old_data_space());
2943 HeapObject* target;
2944 AllocationResult allocation = target_space->AllocateRaw(object_size);
2945 if (allocation.To(&target)) {
2946 MigrateObject(target, object, object_size, target_space->identity());
2947 heap()->IncrementPromotedObjectsSize(object_size);
2948 return true;
2949 }
2950
2951 return false;
2952}
2953
2954
2955void MarkCompactCollector::EvacuateNewSpace() {
2956 // There are soft limits in the allocation code, designed trigger a mark
2957 // sweep collection by failing allocations. But since we are already in
2958 // a mark-sweep allocation, there is no sense in trying to trigger one.
2959 AlwaysAllocateScope scope(isolate());
2960
2961 NewSpace* new_space = heap()->new_space();
2962
2963 // Store allocation range before flipping semispaces.
2964 Address from_bottom = new_space->bottom();
2965 Address from_top = new_space->top();
2966
2967 // Flip the semispaces. After flipping, to space is empty, from space has
2968 // live objects.
2969 new_space->Flip();
2970 new_space->ResetAllocationInfo();
2971
2972 int survivors_size = 0;
2973
2974 // First pass: traverse all objects in inactive semispace, remove marks,
2975 // migrate live objects and write forwarding addresses. This stage puts
2976 // new entries in the store buffer and may cause some pages to be marked
2977 // scan-on-scavenge.
2978 NewSpacePageIterator it(from_bottom, from_top);
2979 while (it.has_next()) {
2980 NewSpacePage* p = it.next();
2981 survivors_size += DiscoverAndEvacuateBlackObjectsOnPage(new_space, p);
2982 }
2983
2984 heap_->IncrementYoungSurvivorsCounter(survivors_size);
2985 new_space->set_age_mark(new_space->top());
2986}
2987
2988
2989void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
2990 AlwaysAllocateScope always_allocate(isolate());
2991 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
2992 DCHECK(p->IsEvacuationCandidate() && !p->WasSwept());
2993 p->SetWasSwept();
2994
2995 int offsets[16];
2996
2997 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
2998 Address cell_base = it.CurrentCellBase();
2999 MarkBit::CellType* cell = it.CurrentCell();
3000
3001 if (*cell == 0) continue;
3002
3003 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3004 for (int i = 0; i < live_objects; i++) {
3005 Address object_addr = cell_base + offsets[i] * kPointerSize;
3006 HeapObject* object = HeapObject::FromAddress(object_addr);
3007 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
3008
3009 int size = object->Size();
3010
3011 HeapObject* target_object;
3012 AllocationResult allocation = space->AllocateRaw(size);
3013 if (!allocation.To(&target_object)) {
3014 // If allocation failed, use emergency memory and re-try allocation.
3015 CHECK(space->HasEmergencyMemory());
3016 space->UseEmergencyMemory();
3017 allocation = space->AllocateRaw(size);
3018 }
3019 if (!allocation.To(&target_object)) {
3020 // OS refused to give us memory.
3021 V8::FatalProcessOutOfMemory("Evacuation");
3022 return;
3023 }
3024
3025 MigrateObject(target_object, object, size, space->identity());
3026 DCHECK(object->map_word().IsForwardingAddress());
3027 }
3028
3029 // Clear marking bits for current cell.
3030 *cell = 0;
3031 }
3032 p->ResetLiveBytes();
3033}
3034
3035
3036void MarkCompactCollector::EvacuatePages() {
3037 int npages = evacuation_candidates_.length();
3038 for (int i = 0; i < npages; i++) {
3039 Page* p = evacuation_candidates_[i];
3040 DCHECK(p->IsEvacuationCandidate() ||
3041 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3042 DCHECK(static_cast<int>(p->parallel_sweeping()) ==
3043 MemoryChunk::SWEEPING_DONE);
3044 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3045 // Allocate emergency memory for the case when compaction fails due to out
3046 // of memory.
3047 if (!space->HasEmergencyMemory()) {
3048 space->CreateEmergencyMemory();
3049 }
3050 if (p->IsEvacuationCandidate()) {
3051 // During compaction we might have to request a new page. Check that we
3052 // have an emergency page and the space still has room for that.
3053 if (space->HasEmergencyMemory() && space->CanExpand()) {
3054 EvacuateLiveObjectsFromPage(p);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003055 // Unlink the page from the list of pages here. We must not iterate
3056 // over that page later (e.g. when scan on scavenge pages are
3057 // processed). The page itself will be freed later and is still
3058 // reachable from the evacuation candidates list.
3059 p->Unlink();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003060 } else {
3061 // Without room for expansion evacuation is not guaranteed to succeed.
3062 // Pessimistically abandon unevacuated pages.
3063 for (int j = i; j < npages; j++) {
3064 Page* page = evacuation_candidates_[j];
3065 slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
3066 page->ClearEvacuationCandidate();
3067 page->SetFlag(Page::RESCAN_ON_EVACUATION);
3068 }
3069 break;
3070 }
3071 }
3072 }
3073 if (npages > 0) {
3074 // Release emergency memory.
3075 PagedSpaces spaces(heap());
3076 for (PagedSpace* space = spaces.next(); space != NULL;
3077 space = spaces.next()) {
3078 if (space->HasEmergencyMemory()) {
3079 space->FreeEmergencyMemory();
3080 }
3081 }
3082 }
3083}
3084
3085
3086class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
3087 public:
3088 virtual Object* RetainAs(Object* object) {
3089 if (object->IsHeapObject()) {
3090 HeapObject* heap_object = HeapObject::cast(object);
3091 MapWord map_word = heap_object->map_word();
3092 if (map_word.IsForwardingAddress()) {
3093 return map_word.ToForwardingAddress();
3094 }
3095 }
3096 return object;
3097 }
3098};
3099
3100
3101static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v,
3102 SlotsBuffer::SlotType slot_type, Address addr) {
3103 switch (slot_type) {
3104 case SlotsBuffer::CODE_TARGET_SLOT: {
3105 RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
3106 rinfo.Visit(isolate, v);
3107 break;
3108 }
3109 case SlotsBuffer::CODE_ENTRY_SLOT: {
3110 v->VisitCodeEntry(addr);
3111 break;
3112 }
3113 case SlotsBuffer::RELOCATED_CODE_OBJECT: {
3114 HeapObject* obj = HeapObject::FromAddress(addr);
3115 Code::cast(obj)->CodeIterateBody(v);
3116 break;
3117 }
3118 case SlotsBuffer::DEBUG_TARGET_SLOT: {
3119 RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
3120 if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
3121 break;
3122 }
3123 case SlotsBuffer::JS_RETURN_SLOT: {
3124 RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
3125 if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
3126 break;
3127 }
3128 case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
3129 RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
3130 rinfo.Visit(isolate, v);
3131 break;
3132 }
3133 default:
3134 UNREACHABLE();
3135 break;
3136 }
3137}
3138
3139
3140enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
3141
3142
3143enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
3144
3145
3146enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
3147
3148
3149template <MarkCompactCollector::SweepingParallelism mode>
3150static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start,
3151 int size) {
3152 if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
3153 DCHECK(free_list == NULL);
3154 return space->Free(start, size);
3155 } else {
3156 // TODO(hpayer): account for wasted bytes in concurrent sweeping too.
3157 return size - free_list->Free(start, size);
3158 }
3159}
3160
3161
3162// Sweeps a page. After sweeping the page can be iterated.
3163// Slots in live objects pointing into evacuation candidates are updated
3164// if requested.
3165// Returns the size of the biggest continuous freed memory chunk in bytes.
3166template <SweepingMode sweeping_mode,
3167 MarkCompactCollector::SweepingParallelism parallelism,
3168 SkipListRebuildingMode skip_list_mode,
3169 FreeSpaceTreatmentMode free_space_mode>
3170static int Sweep(PagedSpace* space, FreeList* free_list, Page* p,
3171 ObjectVisitor* v) {
3172 DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
3173 DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
3174 space->identity() == CODE_SPACE);
3175 DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
3176 DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
3177 sweeping_mode == SWEEP_ONLY);
3178
3179 Address free_start = p->area_start();
3180 DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
3181 int offsets[16];
3182
3183 SkipList* skip_list = p->skip_list();
3184 int curr_region = -1;
3185 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
3186 skip_list->Clear();
3187 }
3188
3189 intptr_t freed_bytes = 0;
3190 intptr_t max_freed_bytes = 0;
3191
3192 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3193 Address cell_base = it.CurrentCellBase();
3194 MarkBit::CellType* cell = it.CurrentCell();
3195 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3196 int live_index = 0;
3197 for (; live_objects != 0; live_objects--) {
3198 Address free_end = cell_base + offsets[live_index++] * kPointerSize;
3199 if (free_end != free_start) {
3200 int size = static_cast<int>(free_end - free_start);
3201 if (free_space_mode == ZAP_FREE_SPACE) {
3202 memset(free_start, 0xcc, size);
3203 }
3204 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3205 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3206#ifdef ENABLE_GDB_JIT_INTERFACE
3207 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3208 GDBJITInterface::RemoveCodeRange(free_start, free_end);
3209 }
3210#endif
3211 }
3212 HeapObject* live_object = HeapObject::FromAddress(free_end);
3213 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003214 Map* map = live_object->synchronized_map();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003215 int size = live_object->SizeFromMap(map);
3216 if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
3217 live_object->IterateBody(map->instance_type(), size, v);
3218 }
3219 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
3220 int new_region_start = SkipList::RegionNumber(free_end);
3221 int new_region_end =
3222 SkipList::RegionNumber(free_end + size - kPointerSize);
3223 if (new_region_start != curr_region || new_region_end != curr_region) {
3224 skip_list->AddObject(free_end, size);
3225 curr_region = new_region_end;
3226 }
3227 }
3228 free_start = free_end + size;
3229 }
3230 // Clear marking bits for current cell.
3231 *cell = 0;
3232 }
3233 if (free_start != p->area_end()) {
3234 int size = static_cast<int>(p->area_end() - free_start);
3235 if (free_space_mode == ZAP_FREE_SPACE) {
3236 memset(free_start, 0xcc, size);
3237 }
3238 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3239 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3240#ifdef ENABLE_GDB_JIT_INTERFACE
3241 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3242 GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
3243 }
3244#endif
3245 }
3246 p->ResetLiveBytes();
3247
3248 if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
3249 // When concurrent sweeping is active, the page will be marked after
3250 // sweeping by the main thread.
3251 p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
3252 } else {
3253 p->SetWasSwept();
3254 }
3255 return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
3256}
3257
3258
3259static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
3260 Page* p = Page::FromAddress(code->address());
3261
3262 if (p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3263 return false;
3264 }
3265
3266 Address code_start = code->address();
3267 Address code_end = code_start + code->Size();
3268
3269 uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
3270 uint32_t end_index =
3271 MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
3272
3273 Bitmap* b = p->markbits();
3274
3275 MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
3276 MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
3277
3278 MarkBit::CellType* start_cell = start_mark_bit.cell();
3279 MarkBit::CellType* end_cell = end_mark_bit.cell();
3280
3281 if (value) {
3282 MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
3283 MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
3284
3285 if (start_cell == end_cell) {
3286 *start_cell |= start_mask & end_mask;
3287 } else {
3288 *start_cell |= start_mask;
3289 for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
3290 *cell = ~0;
3291 }
3292 *end_cell |= end_mask;
3293 }
3294 } else {
3295 for (MarkBit::CellType* cell = start_cell; cell <= end_cell; cell++) {
3296 *cell = 0;
3297 }
3298 }
3299
3300 return true;
3301}
3302
3303
3304static bool IsOnInvalidatedCodeObject(Address addr) {
3305 // We did not record any slots in large objects thus
3306 // we can safely go to the page from the slot address.
3307 Page* p = Page::FromAddress(addr);
3308
3309 // First check owner's identity because old pointer and old data spaces
3310 // are swept lazily and might still have non-zero mark-bits on some
3311 // pages.
3312 if (p->owner()->identity() != CODE_SPACE) return false;
3313
3314 // In code space only bits on evacuation candidates (but we don't record
3315 // any slots on them) and under invalidated code objects are non-zero.
3316 MarkBit mark_bit =
3317 p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
3318
3319 return mark_bit.Get();
3320}
3321
3322
3323void MarkCompactCollector::InvalidateCode(Code* code) {
3324 if (heap_->incremental_marking()->IsCompacting() &&
3325 !ShouldSkipEvacuationSlotRecording(code)) {
3326 DCHECK(compacting_);
3327
3328 // If the object is white than no slots were recorded on it yet.
3329 MarkBit mark_bit = Marking::MarkBitFrom(code);
3330 if (Marking::IsWhite(mark_bit)) return;
3331
3332 invalidated_code_.Add(code);
3333 }
3334}
3335
3336
3337// Return true if the given code is deoptimized or will be deoptimized.
3338bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
3339 return code->is_optimized_code() && code->marked_for_deoptimization();
3340}
3341
3342
3343bool MarkCompactCollector::MarkInvalidatedCode() {
3344 bool code_marked = false;
3345
3346 int length = invalidated_code_.length();
3347 for (int i = 0; i < length; i++) {
3348 Code* code = invalidated_code_[i];
3349
3350 if (SetMarkBitsUnderInvalidatedCode(code, true)) {
3351 code_marked = true;
3352 }
3353 }
3354
3355 return code_marked;
3356}
3357
3358
3359void MarkCompactCollector::RemoveDeadInvalidatedCode() {
3360 int length = invalidated_code_.length();
3361 for (int i = 0; i < length; i++) {
3362 if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
3363 }
3364}
3365
3366
3367void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
3368 int length = invalidated_code_.length();
3369 for (int i = 0; i < length; i++) {
3370 Code* code = invalidated_code_[i];
3371 if (code != NULL) {
3372 code->Iterate(visitor);
3373 SetMarkBitsUnderInvalidatedCode(code, false);
3374 }
3375 }
3376 invalidated_code_.Rewind(0);
3377}
3378
3379
3380void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
3381 Heap::RelocationLock relocation_lock(heap());
3382
3383 bool code_slots_filtering_required;
3384 {
3385 GCTracer::Scope gc_scope(heap()->tracer(),
3386 GCTracer::Scope::MC_SWEEP_NEWSPACE);
3387 code_slots_filtering_required = MarkInvalidatedCode();
3388 EvacuateNewSpace();
3389 }
3390
3391 {
3392 GCTracer::Scope gc_scope(heap()->tracer(),
3393 GCTracer::Scope::MC_EVACUATE_PAGES);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003394 EvacuationScope evacuation_scope(this);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003395 EvacuatePages();
3396 }
3397
3398 // Second pass: find pointers to new space and update them.
3399 PointersUpdatingVisitor updating_visitor(heap());
3400
3401 {
3402 GCTracer::Scope gc_scope(heap()->tracer(),
3403 GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
3404 // Update pointers in to space.
3405 SemiSpaceIterator to_it(heap()->new_space()->bottom(),
3406 heap()->new_space()->top());
3407 for (HeapObject* object = to_it.Next(); object != NULL;
3408 object = to_it.Next()) {
3409 Map* map = object->map();
3410 object->IterateBody(map->instance_type(), object->SizeFromMap(map),
3411 &updating_visitor);
3412 }
3413 }
3414
3415 {
3416 GCTracer::Scope gc_scope(heap()->tracer(),
3417 GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
3418 // Update roots.
3419 heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
3420 }
3421
3422 {
3423 GCTracer::Scope gc_scope(heap()->tracer(),
3424 GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
3425 StoreBufferRebuildScope scope(heap_, heap_->store_buffer(),
3426 &Heap::ScavengeStoreBufferCallback);
3427 heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
3428 &UpdatePointer);
3429 }
3430
3431 {
3432 GCTracer::Scope gc_scope(heap()->tracer(),
3433 GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
3434 SlotsBuffer::UpdateSlotsRecordedIn(heap_, migration_slots_buffer_,
3435 code_slots_filtering_required);
3436 if (FLAG_trace_fragmentation) {
3437 PrintF(" migration slots buffer: %d\n",
3438 SlotsBuffer::SizeOfChain(migration_slots_buffer_));
3439 }
3440
3441 if (compacting_ && was_marked_incrementally_) {
3442 // It's difficult to filter out slots recorded for large objects.
3443 LargeObjectIterator it(heap_->lo_space());
3444 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3445 // LargeObjectSpace is not swept yet thus we have to skip
3446 // dead objects explicitly.
3447 if (!IsMarked(obj)) continue;
3448
3449 Page* p = Page::FromAddress(obj->address());
3450 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3451 obj->Iterate(&updating_visitor);
3452 p->ClearFlag(Page::RESCAN_ON_EVACUATION);
3453 }
3454 }
3455 }
3456 }
3457
3458 int npages = evacuation_candidates_.length();
3459 {
3460 GCTracer::Scope gc_scope(
3461 heap()->tracer(),
3462 GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
3463 for (int i = 0; i < npages; i++) {
3464 Page* p = evacuation_candidates_[i];
3465 DCHECK(p->IsEvacuationCandidate() ||
3466 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3467
3468 if (p->IsEvacuationCandidate()) {
3469 SlotsBuffer::UpdateSlotsRecordedIn(heap_, p->slots_buffer(),
3470 code_slots_filtering_required);
3471 if (FLAG_trace_fragmentation) {
3472 PrintF(" page %p slots buffer: %d\n", reinterpret_cast<void*>(p),
3473 SlotsBuffer::SizeOfChain(p->slots_buffer()));
3474 }
3475
3476 // Important: skip list should be cleared only after roots were updated
3477 // because root iteration traverses the stack and might have to find
3478 // code objects from non-updated pc pointing into evacuation candidate.
3479 SkipList* list = p->skip_list();
3480 if (list != NULL) list->Clear();
3481 } else {
3482 if (FLAG_gc_verbose) {
3483 PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
3484 reinterpret_cast<intptr_t>(p));
3485 }
3486 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3487 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
3488
3489 switch (space->identity()) {
3490 case OLD_DATA_SPACE:
3491 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3492 IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3493 &updating_visitor);
3494 break;
3495 case OLD_POINTER_SPACE:
3496 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3497 IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3498 &updating_visitor);
3499 break;
3500 case CODE_SPACE:
3501 if (FLAG_zap_code_space) {
3502 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3503 REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p,
3504 &updating_visitor);
3505 } else {
3506 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3507 REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3508 &updating_visitor);
3509 }
3510 break;
3511 default:
3512 UNREACHABLE();
3513 break;
3514 }
3515 }
3516 }
3517 }
3518
3519 GCTracer::Scope gc_scope(heap()->tracer(),
3520 GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
3521
3522 // Update pointers from cells.
3523 HeapObjectIterator cell_iterator(heap_->cell_space());
3524 for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
3525 cell = cell_iterator.Next()) {
3526 if (cell->IsCell()) {
3527 Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3528 }
3529 }
3530
3531 HeapObjectIterator js_global_property_cell_iterator(
3532 heap_->property_cell_space());
3533 for (HeapObject* cell = js_global_property_cell_iterator.Next(); cell != NULL;
3534 cell = js_global_property_cell_iterator.Next()) {
3535 if (cell->IsPropertyCell()) {
3536 PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3537 }
3538 }
3539
3540 heap_->string_table()->Iterate(&updating_visitor);
3541 updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
3542 if (heap_->weak_object_to_code_table()->IsHashTable()) {
3543 WeakHashTable* table =
3544 WeakHashTable::cast(heap_->weak_object_to_code_table());
3545 table->Iterate(&updating_visitor);
3546 table->Rehash(heap_->isolate()->factory()->undefined_value());
3547 }
3548
3549 // Update pointers from external string table.
3550 heap_->UpdateReferencesInExternalStringTable(
3551 &UpdateReferenceInExternalStringTableEntry);
3552
3553 EvacuationWeakObjectRetainer evacuation_object_retainer;
3554 heap()->ProcessWeakReferences(&evacuation_object_retainer);
3555
3556 // Visit invalidated code (we ignored all slots on it) and clear mark-bits
3557 // under it.
3558 ProcessInvalidatedCode(&updating_visitor);
3559
3560 heap_->isolate()->inner_pointer_to_code_cache()->Flush();
3561
3562 slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
3563 DCHECK(migration_slots_buffer_ == NULL);
3564}
3565
3566
3567void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
3568 int npages = evacuation_candidates_.length();
3569 for (int i = 0; i < npages; i++) {
3570 Page* p = evacuation_candidates_[i];
3571 if (!p->IsEvacuationCandidate()) continue;
3572 p->Unlink();
3573 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3574 p->InsertAfter(space->LastPage());
3575 }
3576}
3577
3578
3579void MarkCompactCollector::ReleaseEvacuationCandidates() {
3580 int npages = evacuation_candidates_.length();
3581 for (int i = 0; i < npages; i++) {
3582 Page* p = evacuation_candidates_[i];
3583 if (!p->IsEvacuationCandidate()) continue;
3584 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3585 space->Free(p->area_start(), p->area_size());
3586 p->set_scan_on_scavenge(false);
3587 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
3588 p->ResetLiveBytes();
3589 space->ReleasePage(p);
3590 }
3591 evacuation_candidates_.Rewind(0);
3592 compacting_ = false;
3593 heap()->FreeQueuedChunks();
3594}
3595
3596
3597static const int kStartTableEntriesPerLine = 5;
3598static const int kStartTableLines = 171;
3599static const int kStartTableInvalidLine = 127;
3600static const int kStartTableUnusedEntry = 126;
3601
3602#define _ kStartTableUnusedEntry
3603#define X kStartTableInvalidLine
3604// Mark-bit to object start offset table.
3605//
3606// The line is indexed by the mark bits in a byte. The first number on
3607// the line describes the number of live object starts for the line and the
3608// other numbers on the line describe the offsets (in words) of the object
3609// starts.
3610//
3611// Since objects are at least 2 words large we don't have entries for two
3612// consecutive 1 bits. All entries after 170 have at least 2 consecutive bits.
3613char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
3614 0, _, _,
3615 _, _, // 0
3616 1, 0, _,
3617 _, _, // 1
3618 1, 1, _,
3619 _, _, // 2
3620 X, _, _,
3621 _, _, // 3
3622 1, 2, _,
3623 _, _, // 4
3624 2, 0, 2,
3625 _, _, // 5
3626 X, _, _,
3627 _, _, // 6
3628 X, _, _,
3629 _, _, // 7
3630 1, 3, _,
3631 _, _, // 8
3632 2, 0, 3,
3633 _, _, // 9
3634 2, 1, 3,
3635 _, _, // 10
3636 X, _, _,
3637 _, _, // 11
3638 X, _, _,
3639 _, _, // 12
3640 X, _, _,
3641 _, _, // 13
3642 X, _, _,
3643 _, _, // 14
3644 X, _, _,
3645 _, _, // 15
3646 1, 4, _,
3647 _, _, // 16
3648 2, 0, 4,
3649 _, _, // 17
3650 2, 1, 4,
3651 _, _, // 18
3652 X, _, _,
3653 _, _, // 19
3654 2, 2, 4,
3655 _, _, // 20
3656 3, 0, 2,
3657 4, _, // 21
3658 X, _, _,
3659 _, _, // 22
3660 X, _, _,
3661 _, _, // 23
3662 X, _, _,
3663 _, _, // 24
3664 X, _, _,
3665 _, _, // 25
3666 X, _, _,
3667 _, _, // 26
3668 X, _, _,
3669 _, _, // 27
3670 X, _, _,
3671 _, _, // 28
3672 X, _, _,
3673 _, _, // 29
3674 X, _, _,
3675 _, _, // 30
3676 X, _, _,
3677 _, _, // 31
3678 1, 5, _,
3679 _, _, // 32
3680 2, 0, 5,
3681 _, _, // 33
3682 2, 1, 5,
3683 _, _, // 34
3684 X, _, _,
3685 _, _, // 35
3686 2, 2, 5,
3687 _, _, // 36
3688 3, 0, 2,
3689 5, _, // 37
3690 X, _, _,
3691 _, _, // 38
3692 X, _, _,
3693 _, _, // 39
3694 2, 3, 5,
3695 _, _, // 40
3696 3, 0, 3,
3697 5, _, // 41
3698 3, 1, 3,
3699 5, _, // 42
3700 X, _, _,
3701 _, _, // 43
3702 X, _, _,
3703 _, _, // 44
3704 X, _, _,
3705 _, _, // 45
3706 X, _, _,
3707 _, _, // 46
3708 X, _, _,
3709 _, _, // 47
3710 X, _, _,
3711 _, _, // 48
3712 X, _, _,
3713 _, _, // 49
3714 X, _, _,
3715 _, _, // 50
3716 X, _, _,
3717 _, _, // 51
3718 X, _, _,
3719 _, _, // 52
3720 X, _, _,
3721 _, _, // 53
3722 X, _, _,
3723 _, _, // 54
3724 X, _, _,
3725 _, _, // 55
3726 X, _, _,
3727 _, _, // 56
3728 X, _, _,
3729 _, _, // 57
3730 X, _, _,
3731 _, _, // 58
3732 X, _, _,
3733 _, _, // 59
3734 X, _, _,
3735 _, _, // 60
3736 X, _, _,
3737 _, _, // 61
3738 X, _, _,
3739 _, _, // 62
3740 X, _, _,
3741 _, _, // 63
3742 1, 6, _,
3743 _, _, // 64
3744 2, 0, 6,
3745 _, _, // 65
3746 2, 1, 6,
3747 _, _, // 66
3748 X, _, _,
3749 _, _, // 67
3750 2, 2, 6,
3751 _, _, // 68
3752 3, 0, 2,
3753 6, _, // 69
3754 X, _, _,
3755 _, _, // 70
3756 X, _, _,
3757 _, _, // 71
3758 2, 3, 6,
3759 _, _, // 72
3760 3, 0, 3,
3761 6, _, // 73
3762 3, 1, 3,
3763 6, _, // 74
3764 X, _, _,
3765 _, _, // 75
3766 X, _, _,
3767 _, _, // 76
3768 X, _, _,
3769 _, _, // 77
3770 X, _, _,
3771 _, _, // 78
3772 X, _, _,
3773 _, _, // 79
3774 2, 4, 6,
3775 _, _, // 80
3776 3, 0, 4,
3777 6, _, // 81
3778 3, 1, 4,
3779 6, _, // 82
3780 X, _, _,
3781 _, _, // 83
3782 3, 2, 4,
3783 6, _, // 84
3784 4, 0, 2,
3785 4, 6, // 85
3786 X, _, _,
3787 _, _, // 86
3788 X, _, _,
3789 _, _, // 87
3790 X, _, _,
3791 _, _, // 88
3792 X, _, _,
3793 _, _, // 89
3794 X, _, _,
3795 _, _, // 90
3796 X, _, _,
3797 _, _, // 91
3798 X, _, _,
3799 _, _, // 92
3800 X, _, _,
3801 _, _, // 93
3802 X, _, _,
3803 _, _, // 94
3804 X, _, _,
3805 _, _, // 95
3806 X, _, _,
3807 _, _, // 96
3808 X, _, _,
3809 _, _, // 97
3810 X, _, _,
3811 _, _, // 98
3812 X, _, _,
3813 _, _, // 99
3814 X, _, _,
3815 _, _, // 100
3816 X, _, _,
3817 _, _, // 101
3818 X, _, _,
3819 _, _, // 102
3820 X, _, _,
3821 _, _, // 103
3822 X, _, _,
3823 _, _, // 104
3824 X, _, _,
3825 _, _, // 105
3826 X, _, _,
3827 _, _, // 106
3828 X, _, _,
3829 _, _, // 107
3830 X, _, _,
3831 _, _, // 108
3832 X, _, _,
3833 _, _, // 109
3834 X, _, _,
3835 _, _, // 110
3836 X, _, _,
3837 _, _, // 111
3838 X, _, _,
3839 _, _, // 112
3840 X, _, _,
3841 _, _, // 113
3842 X, _, _,
3843 _, _, // 114
3844 X, _, _,
3845 _, _, // 115
3846 X, _, _,
3847 _, _, // 116
3848 X, _, _,
3849 _, _, // 117
3850 X, _, _,
3851 _, _, // 118
3852 X, _, _,
3853 _, _, // 119
3854 X, _, _,
3855 _, _, // 120
3856 X, _, _,
3857 _, _, // 121
3858 X, _, _,
3859 _, _, // 122
3860 X, _, _,
3861 _, _, // 123
3862 X, _, _,
3863 _, _, // 124
3864 X, _, _,
3865 _, _, // 125
3866 X, _, _,
3867 _, _, // 126
3868 X, _, _,
3869 _, _, // 127
3870 1, 7, _,
3871 _, _, // 128
3872 2, 0, 7,
3873 _, _, // 129
3874 2, 1, 7,
3875 _, _, // 130
3876 X, _, _,
3877 _, _, // 131
3878 2, 2, 7,
3879 _, _, // 132
3880 3, 0, 2,
3881 7, _, // 133
3882 X, _, _,
3883 _, _, // 134
3884 X, _, _,
3885 _, _, // 135
3886 2, 3, 7,
3887 _, _, // 136
3888 3, 0, 3,
3889 7, _, // 137
3890 3, 1, 3,
3891 7, _, // 138
3892 X, _, _,
3893 _, _, // 139
3894 X, _, _,
3895 _, _, // 140
3896 X, _, _,
3897 _, _, // 141
3898 X, _, _,
3899 _, _, // 142
3900 X, _, _,
3901 _, _, // 143
3902 2, 4, 7,
3903 _, _, // 144
3904 3, 0, 4,
3905 7, _, // 145
3906 3, 1, 4,
3907 7, _, // 146
3908 X, _, _,
3909 _, _, // 147
3910 3, 2, 4,
3911 7, _, // 148
3912 4, 0, 2,
3913 4, 7, // 149
3914 X, _, _,
3915 _, _, // 150
3916 X, _, _,
3917 _, _, // 151
3918 X, _, _,
3919 _, _, // 152
3920 X, _, _,
3921 _, _, // 153
3922 X, _, _,
3923 _, _, // 154
3924 X, _, _,
3925 _, _, // 155
3926 X, _, _,
3927 _, _, // 156
3928 X, _, _,
3929 _, _, // 157
3930 X, _, _,
3931 _, _, // 158
3932 X, _, _,
3933 _, _, // 159
3934 2, 5, 7,
3935 _, _, // 160
3936 3, 0, 5,
3937 7, _, // 161
3938 3, 1, 5,
3939 7, _, // 162
3940 X, _, _,
3941 _, _, // 163
3942 3, 2, 5,
3943 7, _, // 164
3944 4, 0, 2,
3945 5, 7, // 165
3946 X, _, _,
3947 _, _, // 166
3948 X, _, _,
3949 _, _, // 167
3950 3, 3, 5,
3951 7, _, // 168
3952 4, 0, 3,
3953 5, 7, // 169
3954 4, 1, 3,
3955 5, 7 // 170
3956};
3957#undef _
3958#undef X
3959
3960
3961// Takes a word of mark bits. Returns the number of objects that start in the
3962// range. Puts the offsets of the words in the supplied array.
3963static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
3964 int objects = 0;
3965 int offset = 0;
3966
3967 // No consecutive 1 bits.
3968 DCHECK((mark_bits & 0x180) != 0x180);
3969 DCHECK((mark_bits & 0x18000) != 0x18000);
3970 DCHECK((mark_bits & 0x1800000) != 0x1800000);
3971
3972 while (mark_bits != 0) {
3973 int byte = (mark_bits & 0xff);
3974 mark_bits >>= 8;
3975 if (byte != 0) {
3976 DCHECK(byte < kStartTableLines); // No consecutive 1 bits.
3977 char* table = kStartTable + byte * kStartTableEntriesPerLine;
3978 int objects_in_these_8_words = table[0];
3979 DCHECK(objects_in_these_8_words != kStartTableInvalidLine);
3980 DCHECK(objects_in_these_8_words < kStartTableEntriesPerLine);
3981 for (int i = 0; i < objects_in_these_8_words; i++) {
3982 starts[objects++] = offset + table[1 + i];
3983 }
3984 }
3985 offset += 8;
3986 }
3987 return objects;
3988}
3989
3990
3991int MarkCompactCollector::SweepInParallel(PagedSpace* space,
3992 int required_freed_bytes) {
3993 int max_freed = 0;
3994 int max_freed_overall = 0;
3995 PageIterator it(space);
3996 while (it.has_next()) {
3997 Page* p = it.next();
3998 max_freed = SweepInParallel(p, space);
3999 DCHECK(max_freed >= 0);
4000 if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
4001 return max_freed;
4002 }
4003 max_freed_overall = Max(max_freed, max_freed_overall);
4004 if (p == space->end_of_unswept_pages()) break;
4005 }
4006 return max_freed_overall;
4007}
4008
4009
4010int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
4011 int max_freed = 0;
4012 if (page->TryParallelSweeping()) {
4013 FreeList* free_list = space == heap()->old_pointer_space()
4014 ? free_list_old_pointer_space_.get()
4015 : free_list_old_data_space_.get();
4016 FreeList private_free_list(space);
4017 max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
4018 IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
4019 free_list->Concatenate(&private_free_list);
4020 }
4021 return max_freed;
4022}
4023
4024
4025void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
4026 space->ClearStats();
4027
4028 // We defensively initialize end_of_unswept_pages_ here with the first page
4029 // of the pages list.
4030 space->set_end_of_unswept_pages(space->FirstPage());
4031
4032 PageIterator it(space);
4033
4034 int pages_swept = 0;
4035 bool unused_page_present = false;
4036 bool parallel_sweeping_active = false;
4037
4038 while (it.has_next()) {
4039 Page* p = it.next();
4040 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4041
4042 // Clear sweeping flags indicating that marking bits are still intact.
4043 p->ClearWasSwept();
4044
4045 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
4046 p->IsEvacuationCandidate()) {
4047 // Will be processed in EvacuateNewSpaceAndCandidates.
4048 DCHECK(evacuation_candidates_.length() > 0);
4049 continue;
4050 }
4051
4052 // One unused page is kept, all further are released before sweeping them.
4053 if (p->LiveBytes() == 0) {
4054 if (unused_page_present) {
4055 if (FLAG_gc_verbose) {
4056 PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
4057 reinterpret_cast<intptr_t>(p));
4058 }
4059 // Adjust unswept free bytes because releasing a page expects said
4060 // counter to be accurate for unswept pages.
4061 space->IncreaseUnsweptFreeBytes(p);
4062 space->ReleasePage(p);
4063 continue;
4064 }
4065 unused_page_present = true;
4066 }
4067
4068 switch (sweeper) {
4069 case CONCURRENT_SWEEPING:
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004070 if (!parallel_sweeping_active) {
4071 if (FLAG_gc_verbose) {
4072 PrintF("Sweeping 0x%" V8PRIxPTR ".\n",
4073 reinterpret_cast<intptr_t>(p));
4074 }
4075 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
4076 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4077 pages_swept++;
4078 parallel_sweeping_active = true;
4079 } else {
4080 if (FLAG_gc_verbose) {
4081 PrintF("Sweeping 0x%" V8PRIxPTR " in parallel.\n",
4082 reinterpret_cast<intptr_t>(p));
4083 }
4084 p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
4085 space->IncreaseUnsweptFreeBytes(p);
4086 }
4087 space->set_end_of_unswept_pages(p);
4088 break;
4089 case SEQUENTIAL_SWEEPING: {
4090 if (FLAG_gc_verbose) {
4091 PrintF("Sweeping 0x%" V8PRIxPTR ".\n", reinterpret_cast<intptr_t>(p));
4092 }
4093 if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
4094 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
4095 ZAP_FREE_SPACE>(space, NULL, p, NULL);
4096 } else if (space->identity() == CODE_SPACE) {
4097 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
4098 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4099 } else {
4100 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
4101 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4102 }
4103 pages_swept++;
4104 break;
4105 }
4106 default: { UNREACHABLE(); }
4107 }
4108 }
4109
4110 if (FLAG_gc_verbose) {
4111 PrintF("SweepSpace: %s (%d pages swept)\n",
4112 AllocationSpaceName(space->identity()), pages_swept);
4113 }
4114
4115 // Give pages that are queued to be freed back to the OS.
4116 heap()->FreeQueuedChunks();
4117}
4118
4119
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004120void MarkCompactCollector::SweepSpaces() {
4121 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
4122 double start_time = 0.0;
4123 if (FLAG_print_cumulative_gc_stat) {
4124 start_time = base::OS::TimeCurrentMillis();
4125 }
4126
4127#ifdef DEBUG
4128 state_ = SWEEP_SPACES;
4129#endif
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004130 MoveEvacuationCandidatesToEndOfPagesList();
4131
4132 // Noncompacting collections simply sweep the spaces to clear the mark
4133 // bits and free the nonlive blocks (for old and map spaces). We sweep
4134 // the map space last because freeing non-live maps overwrites them and
4135 // the other spaces rely on possibly non-live maps to get the sizes for
4136 // non-live objects.
4137 {
4138 GCTracer::Scope sweep_scope(heap()->tracer(),
4139 GCTracer::Scope::MC_SWEEP_OLDSPACE);
4140 {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004141 SweepSpace(heap()->old_pointer_space(), CONCURRENT_SWEEPING);
4142 SweepSpace(heap()->old_data_space(), CONCURRENT_SWEEPING);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004143 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004144 sweeping_in_progress_ = true;
4145 if (FLAG_concurrent_sweeping) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004146 StartSweeperThreads();
4147 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004148 }
4149 RemoveDeadInvalidatedCode();
4150
4151 {
4152 GCTracer::Scope sweep_scope(heap()->tracer(),
4153 GCTracer::Scope::MC_SWEEP_CODE);
4154 SweepSpace(heap()->code_space(), SEQUENTIAL_SWEEPING);
4155 }
4156
4157 {
4158 GCTracer::Scope sweep_scope(heap()->tracer(),
4159 GCTracer::Scope::MC_SWEEP_CELL);
4160 SweepSpace(heap()->cell_space(), SEQUENTIAL_SWEEPING);
4161 SweepSpace(heap()->property_cell_space(), SEQUENTIAL_SWEEPING);
4162 }
4163
4164 EvacuateNewSpaceAndCandidates();
4165
4166 // ClearNonLiveTransitions depends on precise sweeping of map space to
4167 // detect whether unmarked map became dead in this collection or in one
4168 // of the previous ones.
4169 {
4170 GCTracer::Scope sweep_scope(heap()->tracer(),
4171 GCTracer::Scope::MC_SWEEP_MAP);
4172 SweepSpace(heap()->map_space(), SEQUENTIAL_SWEEPING);
4173 }
4174
4175 // Deallocate unmarked objects and clear marked bits for marked objects.
4176 heap_->lo_space()->FreeUnmarkedObjects();
4177
4178 // Deallocate evacuated candidate pages.
4179 ReleaseEvacuationCandidates();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004180 CodeRange* code_range = heap()->isolate()->code_range();
4181 if (code_range != NULL && code_range->valid()) {
4182 code_range->ReserveEmergencyBlock();
4183 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004184
4185 if (FLAG_print_cumulative_gc_stat) {
4186 heap_->tracer()->AddSweepingTime(base::OS::TimeCurrentMillis() -
4187 start_time);
4188 }
4189}
4190
4191
4192void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
4193 PageIterator it(space);
4194 while (it.has_next()) {
4195 Page* p = it.next();
4196 if (p->parallel_sweeping() == MemoryChunk::SWEEPING_FINALIZE) {
4197 p->set_parallel_sweeping(MemoryChunk::SWEEPING_DONE);
4198 p->SetWasSwept();
4199 }
4200 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4201 }
4202}
4203
4204
4205void MarkCompactCollector::ParallelSweepSpacesComplete() {
4206 ParallelSweepSpaceComplete(heap()->old_pointer_space());
4207 ParallelSweepSpaceComplete(heap()->old_data_space());
4208}
4209
4210
4211void MarkCompactCollector::EnableCodeFlushing(bool enable) {
4212 if (isolate()->debug()->is_loaded() ||
4213 isolate()->debug()->has_break_points()) {
4214 enable = false;
4215 }
4216
4217 if (enable) {
4218 if (code_flusher_ != NULL) return;
4219 code_flusher_ = new CodeFlusher(isolate());
4220 } else {
4221 if (code_flusher_ == NULL) return;
4222 code_flusher_->EvictAllCandidates();
4223 delete code_flusher_;
4224 code_flusher_ = NULL;
4225 }
4226
4227 if (FLAG_trace_code_flushing) {
4228 PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
4229 }
4230}
4231
4232
4233// TODO(1466) ReportDeleteIfNeeded is not called currently.
4234// Our profiling tools do not expect intersections between
4235// code objects. We should either reenable it or change our tools.
4236void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
4237 Isolate* isolate) {
4238 if (obj->IsCode()) {
4239 PROFILE(isolate, CodeDeleteEvent(obj->address()));
4240 }
4241}
4242
4243
4244Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); }
4245
4246
4247void MarkCompactCollector::Initialize() {
4248 MarkCompactMarkingVisitor::Initialize();
4249 IncrementalMarking::Initialize();
4250}
4251
4252
4253bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
4254 return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
4255}
4256
4257
4258bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
4259 SlotsBuffer** buffer_address, SlotType type,
4260 Address addr, AdditionMode mode) {
4261 SlotsBuffer* buffer = *buffer_address;
4262 if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
4263 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
4264 allocator->DeallocateChain(buffer_address);
4265 return false;
4266 }
4267 buffer = allocator->AllocateBuffer(buffer);
4268 *buffer_address = buffer;
4269 }
4270 DCHECK(buffer->HasSpaceForTypedSlot());
4271 buffer->Add(reinterpret_cast<ObjectSlot>(type));
4272 buffer->Add(reinterpret_cast<ObjectSlot>(addr));
4273 return true;
4274}
4275
4276
4277static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
4278 if (RelocInfo::IsCodeTarget(rmode)) {
4279 return SlotsBuffer::CODE_TARGET_SLOT;
4280 } else if (RelocInfo::IsEmbeddedObject(rmode)) {
4281 return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
4282 } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
4283 return SlotsBuffer::DEBUG_TARGET_SLOT;
4284 } else if (RelocInfo::IsJSReturn(rmode)) {
4285 return SlotsBuffer::JS_RETURN_SLOT;
4286 }
4287 UNREACHABLE();
4288 return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
4289}
4290
4291
4292void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
4293 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4294 RelocInfo::Mode rmode = rinfo->rmode();
4295 if (target_page->IsEvacuationCandidate() &&
4296 (rinfo->host() == NULL ||
4297 !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
4298 bool success;
4299 if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
4300 // This doesn't need to be typed since it is just a normal heap pointer.
4301 Object** target_pointer =
4302 reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
4303 success = SlotsBuffer::AddTo(
4304 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4305 target_pointer, SlotsBuffer::FAIL_ON_OVERFLOW);
4306 } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
4307 success = SlotsBuffer::AddTo(
4308 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4309 SlotsBuffer::CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address(),
4310 SlotsBuffer::FAIL_ON_OVERFLOW);
4311 } else {
4312 success = SlotsBuffer::AddTo(
4313 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4314 SlotTypeForRMode(rmode), rinfo->pc(), SlotsBuffer::FAIL_ON_OVERFLOW);
4315 }
4316 if (!success) {
4317 EvictEvacuationCandidate(target_page);
4318 }
4319 }
4320}
4321
4322
4323void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
4324 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4325 if (target_page->IsEvacuationCandidate() &&
4326 !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
4327 if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4328 target_page->slots_buffer_address(),
4329 SlotsBuffer::CODE_ENTRY_SLOT, slot,
4330 SlotsBuffer::FAIL_ON_OVERFLOW)) {
4331 EvictEvacuationCandidate(target_page);
4332 }
4333 }
4334}
4335
4336
4337void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
4338 DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
4339 if (is_compacting()) {
4340 Code* host =
4341 isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(
4342 pc);
4343 MarkBit mark_bit = Marking::MarkBitFrom(host);
4344 if (Marking::IsBlack(mark_bit)) {
4345 RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
4346 RecordRelocSlot(&rinfo, target);
4347 }
4348 }
4349}
4350
4351
4352static inline SlotsBuffer::SlotType DecodeSlotType(
4353 SlotsBuffer::ObjectSlot slot) {
4354 return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
4355}
4356
4357
4358void SlotsBuffer::UpdateSlots(Heap* heap) {
4359 PointersUpdatingVisitor v(heap);
4360
4361 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4362 ObjectSlot slot = slots_[slot_idx];
4363 if (!IsTypedSlot(slot)) {
4364 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4365 } else {
4366 ++slot_idx;
4367 DCHECK(slot_idx < idx_);
4368 UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
4369 reinterpret_cast<Address>(slots_[slot_idx]));
4370 }
4371 }
4372}
4373
4374
4375void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
4376 PointersUpdatingVisitor v(heap);
4377
4378 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4379 ObjectSlot slot = slots_[slot_idx];
4380 if (!IsTypedSlot(slot)) {
4381 if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
4382 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4383 }
4384 } else {
4385 ++slot_idx;
4386 DCHECK(slot_idx < idx_);
4387 Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
4388 if (!IsOnInvalidatedCodeObject(pc)) {
4389 UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
4390 reinterpret_cast<Address>(slots_[slot_idx]));
4391 }
4392 }
4393 }
4394}
4395
4396
4397SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
4398 return new SlotsBuffer(next_buffer);
4399}
4400
4401
4402void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
4403 delete buffer;
4404}
4405
4406
4407void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
4408 SlotsBuffer* buffer = *buffer_address;
4409 while (buffer != NULL) {
4410 SlotsBuffer* next_buffer = buffer->next();
4411 DeallocateBuffer(buffer);
4412 buffer = next_buffer;
4413 }
4414 *buffer_address = NULL;
4415}
4416}
4417} // namespace v8::internal