blob: 2de1c2a1a9edf33c66a4497c3b63759018a9d7e3 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <limits.h> // For LONG_MIN, LONG_MAX.
6
7#include "src/v8.h"
8
9#if V8_TARGET_ARCH_MIPS64
10
11#include "src/base/division-by-constant.h"
12#include "src/bootstrapper.h"
13#include "src/codegen.h"
14#include "src/cpu-profiler.h"
15#include "src/debug.h"
16#include "src/isolate-inl.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040017#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000018
19namespace v8 {
20namespace internal {
21
22MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
23 : Assembler(arg_isolate, buffer, size),
24 generating_stub_(false),
Emily Bernierd0a1eb72015-03-24 16:35:39 -040025 has_frame_(false),
26 has_double_zero_reg_set_(false) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +000027 if (isolate() != NULL) {
28 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
29 isolate());
30 }
31}
32
33
34void MacroAssembler::Load(Register dst,
35 const MemOperand& src,
36 Representation r) {
37 DCHECK(!r.IsDouble());
38 if (r.IsInteger8()) {
39 lb(dst, src);
40 } else if (r.IsUInteger8()) {
41 lbu(dst, src);
42 } else if (r.IsInteger16()) {
43 lh(dst, src);
44 } else if (r.IsUInteger16()) {
45 lhu(dst, src);
46 } else if (r.IsInteger32()) {
47 lw(dst, src);
48 } else {
49 ld(dst, src);
50 }
51}
52
53
54void MacroAssembler::Store(Register src,
55 const MemOperand& dst,
56 Representation r) {
57 DCHECK(!r.IsDouble());
58 if (r.IsInteger8() || r.IsUInteger8()) {
59 sb(src, dst);
60 } else if (r.IsInteger16() || r.IsUInteger16()) {
61 sh(src, dst);
62 } else if (r.IsInteger32()) {
63 sw(src, dst);
64 } else {
65 if (r.IsHeapObject()) {
66 AssertNotSmi(src);
67 } else if (r.IsSmi()) {
68 AssertSmi(src);
69 }
70 sd(src, dst);
71 }
72}
73
74
75void MacroAssembler::LoadRoot(Register destination,
76 Heap::RootListIndex index) {
77 ld(destination, MemOperand(s6, index << kPointerSizeLog2));
78}
79
80
81void MacroAssembler::LoadRoot(Register destination,
82 Heap::RootListIndex index,
83 Condition cond,
84 Register src1, const Operand& src2) {
85 Branch(2, NegateCondition(cond), src1, src2);
86 ld(destination, MemOperand(s6, index << kPointerSizeLog2));
87}
88
89
90void MacroAssembler::StoreRoot(Register source,
91 Heap::RootListIndex index) {
92 sd(source, MemOperand(s6, index << kPointerSizeLog2));
93}
94
95
96void MacroAssembler::StoreRoot(Register source,
97 Heap::RootListIndex index,
98 Condition cond,
99 Register src1, const Operand& src2) {
100 Branch(2, NegateCondition(cond), src1, src2);
101 sd(source, MemOperand(s6, index << kPointerSizeLog2));
102}
103
104
105// Push and pop all registers that can hold pointers.
106void MacroAssembler::PushSafepointRegisters() {
107 // Safepoints expect a block of kNumSafepointRegisters values on the
108 // stack, so adjust the stack for unsaved registers.
109 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
110 DCHECK(num_unsaved >= 0);
111 if (num_unsaved > 0) {
112 Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
113 }
114 MultiPush(kSafepointSavedRegisters);
115}
116
117
118void MacroAssembler::PopSafepointRegisters() {
119 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
120 MultiPop(kSafepointSavedRegisters);
121 if (num_unsaved > 0) {
122 Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
123 }
124}
125
126
127void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
128 sd(src, SafepointRegisterSlot(dst));
129}
130
131
132void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
133 ld(dst, SafepointRegisterSlot(src));
134}
135
136
137int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
138 // The registers are pushed starting with the highest encoding,
139 // which means that lowest encodings are closest to the stack pointer.
140 return kSafepointRegisterStackIndexMap[reg_code];
141}
142
143
144MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
145 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
146}
147
148
149MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
150 UNIMPLEMENTED_MIPS();
151 // General purpose registers are pushed last on the stack.
152 int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
153 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
154 return MemOperand(sp, doubles_size + register_offset);
155}
156
157
158void MacroAssembler::InNewSpace(Register object,
159 Register scratch,
160 Condition cc,
161 Label* branch) {
162 DCHECK(cc == eq || cc == ne);
163 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
164 Branch(branch, cc, scratch,
165 Operand(ExternalReference::new_space_start(isolate())));
166}
167
168
169void MacroAssembler::RecordWriteField(
170 Register object,
171 int offset,
172 Register value,
173 Register dst,
174 RAStatus ra_status,
175 SaveFPRegsMode save_fp,
176 RememberedSetAction remembered_set_action,
177 SmiCheck smi_check,
178 PointersToHereCheck pointers_to_here_check_for_value) {
179 DCHECK(!AreAliased(value, dst, t8, object));
180 // First, check if a write barrier is even needed. The tests below
181 // catch stores of Smis.
182 Label done;
183
184 // Skip barrier if writing a smi.
185 if (smi_check == INLINE_SMI_CHECK) {
186 JumpIfSmi(value, &done);
187 }
188
189 // Although the object register is tagged, the offset is relative to the start
190 // of the object, so so offset must be a multiple of kPointerSize.
191 DCHECK(IsAligned(offset, kPointerSize));
192
193 Daddu(dst, object, Operand(offset - kHeapObjectTag));
194 if (emit_debug_code()) {
195 Label ok;
196 And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
197 Branch(&ok, eq, t8, Operand(zero_reg));
198 stop("Unaligned cell in write barrier");
199 bind(&ok);
200 }
201
202 RecordWrite(object,
203 dst,
204 value,
205 ra_status,
206 save_fp,
207 remembered_set_action,
208 OMIT_SMI_CHECK,
209 pointers_to_here_check_for_value);
210
211 bind(&done);
212
213 // Clobber clobbered input registers when running with the debug-code flag
214 // turned on to provoke errors.
215 if (emit_debug_code()) {
216 li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
217 li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
218 }
219}
220
221
222// Will clobber 4 registers: object, map, dst, ip. The
223// register 'object' contains a heap object pointer.
224void MacroAssembler::RecordWriteForMap(Register object,
225 Register map,
226 Register dst,
227 RAStatus ra_status,
228 SaveFPRegsMode fp_mode) {
229 if (emit_debug_code()) {
230 DCHECK(!dst.is(at));
231 ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
232 Check(eq,
233 kWrongAddressOrValuePassedToRecordWrite,
234 dst,
235 Operand(isolate()->factory()->meta_map()));
236 }
237
238 if (!FLAG_incremental_marking) {
239 return;
240 }
241
242 if (emit_debug_code()) {
243 ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
244 Check(eq,
245 kWrongAddressOrValuePassedToRecordWrite,
246 map,
247 Operand(at));
248 }
249
250 Label done;
251
252 // A single check of the map's pages interesting flag suffices, since it is
253 // only set during incremental collection, and then it's also guaranteed that
254 // the from object's page's interesting flag is also set. This optimization
255 // relies on the fact that maps can never be in new space.
256 CheckPageFlag(map,
257 map, // Used as scratch.
258 MemoryChunk::kPointersToHereAreInterestingMask,
259 eq,
260 &done);
261
262 Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
263 if (emit_debug_code()) {
264 Label ok;
265 And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
266 Branch(&ok, eq, at, Operand(zero_reg));
267 stop("Unaligned cell in write barrier");
268 bind(&ok);
269 }
270
271 // Record the actual write.
272 if (ra_status == kRAHasNotBeenSaved) {
273 push(ra);
274 }
275 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
276 fp_mode);
277 CallStub(&stub);
278 if (ra_status == kRAHasNotBeenSaved) {
279 pop(ra);
280 }
281
282 bind(&done);
283
284 // Count number of write barriers in generated code.
285 isolate()->counters()->write_barriers_static()->Increment();
286 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
287
288 // Clobber clobbered registers when running with the debug-code flag
289 // turned on to provoke errors.
290 if (emit_debug_code()) {
291 li(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
292 li(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
293 }
294}
295
296
297// Will clobber 4 registers: object, address, scratch, ip. The
298// register 'object' contains a heap object pointer. The heap object
299// tag is shifted away.
300void MacroAssembler::RecordWrite(
301 Register object,
302 Register address,
303 Register value,
304 RAStatus ra_status,
305 SaveFPRegsMode fp_mode,
306 RememberedSetAction remembered_set_action,
307 SmiCheck smi_check,
308 PointersToHereCheck pointers_to_here_check_for_value) {
309 DCHECK(!AreAliased(object, address, value, t8));
310 DCHECK(!AreAliased(object, address, value, t9));
311
312 if (emit_debug_code()) {
313 ld(at, MemOperand(address));
314 Assert(
315 eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
316 }
317
318 if (remembered_set_action == OMIT_REMEMBERED_SET &&
319 !FLAG_incremental_marking) {
320 return;
321 }
322
323 // First, check if a write barrier is even needed. The tests below
324 // catch stores of smis and stores into the young generation.
325 Label done;
326
327 if (smi_check == INLINE_SMI_CHECK) {
328 DCHECK_EQ(0, kSmiTag);
329 JumpIfSmi(value, &done);
330 }
331
332 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
333 CheckPageFlag(value,
334 value, // Used as scratch.
335 MemoryChunk::kPointersToHereAreInterestingMask,
336 eq,
337 &done);
338 }
339 CheckPageFlag(object,
340 value, // Used as scratch.
341 MemoryChunk::kPointersFromHereAreInterestingMask,
342 eq,
343 &done);
344
345 // Record the actual write.
346 if (ra_status == kRAHasNotBeenSaved) {
347 push(ra);
348 }
349 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
350 fp_mode);
351 CallStub(&stub);
352 if (ra_status == kRAHasNotBeenSaved) {
353 pop(ra);
354 }
355
356 bind(&done);
357
358 // Count number of write barriers in generated code.
359 isolate()->counters()->write_barriers_static()->Increment();
360 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
361 value);
362
363 // Clobber clobbered registers when running with the debug-code flag
364 // turned on to provoke errors.
365 if (emit_debug_code()) {
366 li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
367 li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
368 }
369}
370
371
372void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
373 Register address,
374 Register scratch,
375 SaveFPRegsMode fp_mode,
376 RememberedSetFinalAction and_then) {
377 Label done;
378 if (emit_debug_code()) {
379 Label ok;
380 JumpIfNotInNewSpace(object, scratch, &ok);
381 stop("Remembered set pointer is in new space");
382 bind(&ok);
383 }
384 // Load store buffer top.
385 ExternalReference store_buffer =
386 ExternalReference::store_buffer_top(isolate());
387 li(t8, Operand(store_buffer));
388 ld(scratch, MemOperand(t8));
389 // Store pointer to buffer and increment buffer top.
390 sd(address, MemOperand(scratch));
391 Daddu(scratch, scratch, kPointerSize);
392 // Write back new top of buffer.
393 sd(scratch, MemOperand(t8));
394 // Call stub on end of buffer.
395 // Check for end of buffer.
396 And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
397 DCHECK(!scratch.is(t8));
398 if (and_then == kFallThroughAtEnd) {
399 Branch(&done, eq, t8, Operand(zero_reg));
400 } else {
401 DCHECK(and_then == kReturnAtEnd);
402 Ret(eq, t8, Operand(zero_reg));
403 }
404 push(ra);
405 StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
406 CallStub(&store_buffer_overflow);
407 pop(ra);
408 bind(&done);
409 if (and_then == kReturnAtEnd) {
410 Ret();
411 }
412}
413
414
415// -----------------------------------------------------------------------------
416// Allocation support.
417
418
419void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
420 Register scratch,
421 Label* miss) {
422 Label same_contexts;
423
424 DCHECK(!holder_reg.is(scratch));
425 DCHECK(!holder_reg.is(at));
426 DCHECK(!scratch.is(at));
427
428 // Load current lexical context from the stack frame.
429 ld(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
430 // In debug mode, make sure the lexical context is set.
431#ifdef DEBUG
432 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
433 scratch, Operand(zero_reg));
434#endif
435
436 // Load the native context of the current context.
437 int offset =
438 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
439 ld(scratch, FieldMemOperand(scratch, offset));
440 ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
441
442 // Check the context is a native context.
443 if (emit_debug_code()) {
444 push(holder_reg); // Temporarily save holder on the stack.
445 // Read the first word and compare to the native_context_map.
446 ld(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
447 LoadRoot(at, Heap::kNativeContextMapRootIndex);
448 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
449 holder_reg, Operand(at));
450 pop(holder_reg); // Restore holder.
451 }
452
453 // Check if both contexts are the same.
454 ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
455 Branch(&same_contexts, eq, scratch, Operand(at));
456
457 // Check the context is a native context.
458 if (emit_debug_code()) {
459 push(holder_reg); // Temporarily save holder on the stack.
460 mov(holder_reg, at); // Move at to its holding place.
461 LoadRoot(at, Heap::kNullValueRootIndex);
462 Check(ne, kJSGlobalProxyContextShouldNotBeNull,
463 holder_reg, Operand(at));
464
465 ld(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
466 LoadRoot(at, Heap::kNativeContextMapRootIndex);
467 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
468 holder_reg, Operand(at));
469 // Restore at is not needed. at is reloaded below.
470 pop(holder_reg); // Restore holder.
471 // Restore at to holder's context.
472 ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
473 }
474
475 // Check that the security token in the calling global object is
476 // compatible with the security token in the receiving global
477 // object.
478 int token_offset = Context::kHeaderSize +
479 Context::SECURITY_TOKEN_INDEX * kPointerSize;
480
481 ld(scratch, FieldMemOperand(scratch, token_offset));
482 ld(at, FieldMemOperand(at, token_offset));
483 Branch(miss, ne, scratch, Operand(at));
484
485 bind(&same_contexts);
486}
487
488
489// Compute the hash code from the untagged key. This must be kept in sync with
490// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
491// code-stub-hydrogen.cc
492void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
493 // First of all we assign the hash seed to scratch.
494 LoadRoot(scratch, Heap::kHashSeedRootIndex);
495 SmiUntag(scratch);
496
497 // Xor original key with a seed.
498 xor_(reg0, reg0, scratch);
499
500 // Compute the hash code from the untagged key. This must be kept in sync
501 // with ComputeIntegerHash in utils.h.
502 //
503 // hash = ~hash + (hash << 15);
504 // The algorithm uses 32-bit integer values.
505 nor(scratch, reg0, zero_reg);
506 sll(at, reg0, 15);
507 addu(reg0, scratch, at);
508
509 // hash = hash ^ (hash >> 12);
510 srl(at, reg0, 12);
511 xor_(reg0, reg0, at);
512
513 // hash = hash + (hash << 2);
514 sll(at, reg0, 2);
515 addu(reg0, reg0, at);
516
517 // hash = hash ^ (hash >> 4);
518 srl(at, reg0, 4);
519 xor_(reg0, reg0, at);
520
521 // hash = hash * 2057;
522 sll(scratch, reg0, 11);
523 sll(at, reg0, 3);
524 addu(reg0, reg0, at);
525 addu(reg0, reg0, scratch);
526
527 // hash = hash ^ (hash >> 16);
528 srl(at, reg0, 16);
529 xor_(reg0, reg0, at);
530}
531
532
533void MacroAssembler::LoadFromNumberDictionary(Label* miss,
534 Register elements,
535 Register key,
536 Register result,
537 Register reg0,
538 Register reg1,
539 Register reg2) {
540 // Register use:
541 //
542 // elements - holds the slow-case elements of the receiver on entry.
543 // Unchanged unless 'result' is the same register.
544 //
545 // key - holds the smi key on entry.
546 // Unchanged unless 'result' is the same register.
547 //
548 //
549 // result - holds the result on exit if the load succeeded.
550 // Allowed to be the same as 'key' or 'result'.
551 // Unchanged on bailout so 'key' or 'result' can be used
552 // in further computation.
553 //
554 // Scratch registers:
555 //
556 // reg0 - holds the untagged key on entry and holds the hash once computed.
557 //
558 // reg1 - Used to hold the capacity mask of the dictionary.
559 //
560 // reg2 - Used for the index into the dictionary.
561 // at - Temporary (avoid MacroAssembler instructions also using 'at').
562 Label done;
563
564 GetNumberHash(reg0, reg1);
565
566 // Compute the capacity mask.
567 ld(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
568 SmiUntag(reg1, reg1);
569 Dsubu(reg1, reg1, Operand(1));
570
571 // Generate an unrolled loop that performs a few probes before giving up.
572 for (int i = 0; i < kNumberDictionaryProbes; i++) {
573 // Use reg2 for index calculations and keep the hash intact in reg0.
574 mov(reg2, reg0);
575 // Compute the masked index: (hash + i + i * i) & mask.
576 if (i > 0) {
577 Daddu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
578 }
579 and_(reg2, reg2, reg1);
580
581 // Scale the index by multiplying by the element size.
582 DCHECK(SeededNumberDictionary::kEntrySize == 3);
583 dsll(at, reg2, 1); // 2x.
584 daddu(reg2, reg2, at); // reg2 = reg2 * 3.
585
586 // Check if the key is identical to the name.
587 dsll(at, reg2, kPointerSizeLog2);
588 daddu(reg2, elements, at);
589
590 ld(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
591 if (i != kNumberDictionaryProbes - 1) {
592 Branch(&done, eq, key, Operand(at));
593 } else {
594 Branch(miss, ne, key, Operand(at));
595 }
596 }
597
598 bind(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400599 // Check that the value is a field property.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000600 // reg2: elements + (index * kPointerSize).
601 const int kDetailsOffset =
602 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
603 ld(reg1, FieldMemOperand(reg2, kDetailsOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400604 DCHECK_EQ(FIELD, 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000605 And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
606 Branch(miss, ne, at, Operand(zero_reg));
607
608 // Get the value at the masked, scaled index and return.
609 const int kValueOffset =
610 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
611 ld(result, FieldMemOperand(reg2, kValueOffset));
612}
613
614
615// ---------------------------------------------------------------------------
616// Instruction macros.
617
618void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
619 if (rt.is_reg()) {
620 addu(rd, rs, rt.rm());
621 } else {
622 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
623 addiu(rd, rs, rt.imm64_);
624 } else {
625 // li handles the relocation.
626 DCHECK(!rs.is(at));
627 li(at, rt);
628 addu(rd, rs, at);
629 }
630 }
631}
632
633
634void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
635 if (rt.is_reg()) {
636 daddu(rd, rs, rt.rm());
637 } else {
638 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
639 daddiu(rd, rs, rt.imm64_);
640 } else {
641 // li handles the relocation.
642 DCHECK(!rs.is(at));
643 li(at, rt);
644 daddu(rd, rs, at);
645 }
646 }
647}
648
649
650void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
651 if (rt.is_reg()) {
652 subu(rd, rs, rt.rm());
653 } else {
654 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
655 addiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
656 } else {
657 // li handles the relocation.
658 DCHECK(!rs.is(at));
659 li(at, rt);
660 subu(rd, rs, at);
661 }
662 }
663}
664
665
666void MacroAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
667 if (rt.is_reg()) {
668 dsubu(rd, rs, rt.rm());
669 } else {
670 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
671 daddiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
672 } else {
673 // li handles the relocation.
674 DCHECK(!rs.is(at));
675 li(at, rt);
676 dsubu(rd, rs, at);
677 }
678 }
679}
680
681
682void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
683 if (rt.is_reg()) {
684 mul(rd, rs, rt.rm());
685 } else {
686 // li handles the relocation.
687 DCHECK(!rs.is(at));
688 li(at, rt);
689 mul(rd, rs, at);
690 }
691}
692
693
694void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
695 if (rt.is_reg()) {
696 if (kArchVariant != kMips64r6) {
697 mult(rs, rt.rm());
698 mfhi(rd);
699 } else {
700 muh(rd, rs, rt.rm());
701 }
702 } else {
703 // li handles the relocation.
704 DCHECK(!rs.is(at));
705 li(at, rt);
706 if (kArchVariant != kMips64r6) {
707 mult(rs, at);
708 mfhi(rd);
709 } else {
710 muh(rd, rs, at);
711 }
712 }
713}
714
715
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400716void MacroAssembler::Mulhu(Register rd, Register rs, const Operand& rt) {
717 if (rt.is_reg()) {
718 if (kArchVariant != kMips64r6) {
719 multu(rs, rt.rm());
720 mfhi(rd);
721 } else {
722 muhu(rd, rs, rt.rm());
723 }
724 } else {
725 // li handles the relocation.
726 DCHECK(!rs.is(at));
727 li(at, rt);
728 if (kArchVariant != kMips64r6) {
729 multu(rs, at);
730 mfhi(rd);
731 } else {
732 muhu(rd, rs, at);
733 }
734 }
735}
736
737
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000738void MacroAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
739 if (rt.is_reg()) {
740 if (kArchVariant == kMips64r6) {
741 dmul(rd, rs, rt.rm());
742 } else {
743 dmult(rs, rt.rm());
744 mflo(rd);
745 }
746 } else {
747 // li handles the relocation.
748 DCHECK(!rs.is(at));
749 li(at, rt);
750 if (kArchVariant == kMips64r6) {
751 dmul(rd, rs, at);
752 } else {
753 dmult(rs, at);
754 mflo(rd);
755 }
756 }
757}
758
759
760void MacroAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
761 if (rt.is_reg()) {
762 if (kArchVariant == kMips64r6) {
763 dmuh(rd, rs, rt.rm());
764 } else {
765 dmult(rs, rt.rm());
766 mfhi(rd);
767 }
768 } else {
769 // li handles the relocation.
770 DCHECK(!rs.is(at));
771 li(at, rt);
772 if (kArchVariant == kMips64r6) {
773 dmuh(rd, rs, at);
774 } else {
775 dmult(rs, at);
776 mfhi(rd);
777 }
778 }
779}
780
781
782void MacroAssembler::Mult(Register rs, const Operand& rt) {
783 if (rt.is_reg()) {
784 mult(rs, rt.rm());
785 } else {
786 // li handles the relocation.
787 DCHECK(!rs.is(at));
788 li(at, rt);
789 mult(rs, at);
790 }
791}
792
793
794void MacroAssembler::Dmult(Register rs, const Operand& rt) {
795 if (rt.is_reg()) {
796 dmult(rs, rt.rm());
797 } else {
798 // li handles the relocation.
799 DCHECK(!rs.is(at));
800 li(at, rt);
801 dmult(rs, at);
802 }
803}
804
805
806void MacroAssembler::Multu(Register rs, const Operand& rt) {
807 if (rt.is_reg()) {
808 multu(rs, rt.rm());
809 } else {
810 // li handles the relocation.
811 DCHECK(!rs.is(at));
812 li(at, rt);
813 multu(rs, at);
814 }
815}
816
817
818void MacroAssembler::Dmultu(Register rs, const Operand& rt) {
819 if (rt.is_reg()) {
820 dmultu(rs, rt.rm());
821 } else {
822 // li handles the relocation.
823 DCHECK(!rs.is(at));
824 li(at, rt);
825 dmultu(rs, at);
826 }
827}
828
829
830void MacroAssembler::Div(Register rs, const Operand& rt) {
831 if (rt.is_reg()) {
832 div(rs, rt.rm());
833 } else {
834 // li handles the relocation.
835 DCHECK(!rs.is(at));
836 li(at, rt);
837 div(rs, at);
838 }
839}
840
841
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400842void MacroAssembler::Div(Register res, Register rs, const Operand& rt) {
843 if (rt.is_reg()) {
844 if (kArchVariant != kMips64r6) {
845 div(rs, rt.rm());
846 mflo(res);
847 } else {
848 div(res, rs, rt.rm());
849 }
850 } else {
851 // li handles the relocation.
852 DCHECK(!rs.is(at));
853 li(at, rt);
854 if (kArchVariant != kMips64r6) {
855 div(rs, at);
856 mflo(res);
857 } else {
858 div(res, rs, at);
859 }
860 }
861}
862
863
864void MacroAssembler::Mod(Register rd, Register rs, const Operand& rt) {
865 if (rt.is_reg()) {
866 if (kArchVariant != kMips64r6) {
867 div(rs, rt.rm());
868 mfhi(rd);
869 } else {
870 mod(rd, rs, rt.rm());
871 }
872 } else {
873 // li handles the relocation.
874 DCHECK(!rs.is(at));
875 li(at, rt);
876 if (kArchVariant != kMips64r6) {
877 div(rs, at);
878 mfhi(rd);
879 } else {
880 mod(rd, rs, at);
881 }
882 }
883}
884
885
886void MacroAssembler::Modu(Register rd, Register rs, const Operand& rt) {
887 if (rt.is_reg()) {
888 if (kArchVariant != kMips64r6) {
889 divu(rs, rt.rm());
890 mfhi(rd);
891 } else {
892 modu(rd, rs, rt.rm());
893 }
894 } else {
895 // li handles the relocation.
896 DCHECK(!rs.is(at));
897 li(at, rt);
898 if (kArchVariant != kMips64r6) {
899 divu(rs, at);
900 mfhi(rd);
901 } else {
902 modu(rd, rs, at);
903 }
904 }
905}
906
907
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000908void MacroAssembler::Ddiv(Register rs, const Operand& rt) {
909 if (rt.is_reg()) {
910 ddiv(rs, rt.rm());
911 } else {
912 // li handles the relocation.
913 DCHECK(!rs.is(at));
914 li(at, rt);
915 ddiv(rs, at);
916 }
917}
918
919
920void MacroAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
921 if (kArchVariant != kMips64r6) {
922 if (rt.is_reg()) {
923 ddiv(rs, rt.rm());
924 mflo(rd);
925 } else {
926 // li handles the relocation.
927 DCHECK(!rs.is(at));
928 li(at, rt);
929 ddiv(rs, at);
930 mflo(rd);
931 }
932 } else {
933 if (rt.is_reg()) {
934 ddiv(rd, rs, rt.rm());
935 } else {
936 // li handles the relocation.
937 DCHECK(!rs.is(at));
938 li(at, rt);
939 ddiv(rd, rs, at);
940 }
941 }
942}
943
944
945void MacroAssembler::Divu(Register rs, const Operand& rt) {
946 if (rt.is_reg()) {
947 divu(rs, rt.rm());
948 } else {
949 // li handles the relocation.
950 DCHECK(!rs.is(at));
951 li(at, rt);
952 divu(rs, at);
953 }
954}
955
956
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400957void MacroAssembler::Divu(Register res, Register rs, const Operand& rt) {
958 if (rt.is_reg()) {
959 if (kArchVariant != kMips64r6) {
960 divu(rs, rt.rm());
961 mflo(res);
962 } else {
963 divu(res, rs, rt.rm());
964 }
965 } else {
966 // li handles the relocation.
967 DCHECK(!rs.is(at));
968 li(at, rt);
969 if (kArchVariant != kMips64r6) {
970 divu(rs, at);
971 mflo(res);
972 } else {
973 divu(res, rs, at);
974 }
975 }
976}
977
978
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000979void MacroAssembler::Ddivu(Register rs, const Operand& rt) {
980 if (rt.is_reg()) {
981 ddivu(rs, rt.rm());
982 } else {
983 // li handles the relocation.
984 DCHECK(!rs.is(at));
985 li(at, rt);
986 ddivu(rs, at);
987 }
988}
989
990
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400991void MacroAssembler::Ddivu(Register res, Register rs, const Operand& rt) {
992 if (rt.is_reg()) {
993 if (kArchVariant != kMips64r6) {
994 ddivu(rs, rt.rm());
995 mflo(res);
996 } else {
997 ddivu(res, rs, rt.rm());
998 }
999 } else {
1000 // li handles the relocation.
1001 DCHECK(!rs.is(at));
1002 li(at, rt);
1003 if (kArchVariant != kMips64r6) {
1004 ddivu(rs, at);
1005 mflo(res);
1006 } else {
1007 ddivu(res, rs, at);
1008 }
1009 }
1010}
1011
1012
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001013void MacroAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
1014 if (kArchVariant != kMips64r6) {
1015 if (rt.is_reg()) {
1016 ddiv(rs, rt.rm());
1017 mfhi(rd);
1018 } else {
1019 // li handles the relocation.
1020 DCHECK(!rs.is(at));
1021 li(at, rt);
1022 ddiv(rs, at);
1023 mfhi(rd);
1024 }
1025 } else {
1026 if (rt.is_reg()) {
1027 dmod(rd, rs, rt.rm());
1028 } else {
1029 // li handles the relocation.
1030 DCHECK(!rs.is(at));
1031 li(at, rt);
1032 dmod(rd, rs, at);
1033 }
1034 }
1035}
1036
1037
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001038void MacroAssembler::Dmodu(Register rd, Register rs, const Operand& rt) {
1039 if (kArchVariant != kMips64r6) {
1040 if (rt.is_reg()) {
1041 ddivu(rs, rt.rm());
1042 mfhi(rd);
1043 } else {
1044 // li handles the relocation.
1045 DCHECK(!rs.is(at));
1046 li(at, rt);
1047 ddivu(rs, at);
1048 mfhi(rd);
1049 }
1050 } else {
1051 if (rt.is_reg()) {
1052 dmodu(rd, rs, rt.rm());
1053 } else {
1054 // li handles the relocation.
1055 DCHECK(!rs.is(at));
1056 li(at, rt);
1057 dmodu(rd, rs, at);
1058 }
1059 }
1060}
1061
1062
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001063void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
1064 if (rt.is_reg()) {
1065 and_(rd, rs, rt.rm());
1066 } else {
1067 if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
1068 andi(rd, rs, rt.imm64_);
1069 } else {
1070 // li handles the relocation.
1071 DCHECK(!rs.is(at));
1072 li(at, rt);
1073 and_(rd, rs, at);
1074 }
1075 }
1076}
1077
1078
1079void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
1080 if (rt.is_reg()) {
1081 or_(rd, rs, rt.rm());
1082 } else {
1083 if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
1084 ori(rd, rs, rt.imm64_);
1085 } else {
1086 // li handles the relocation.
1087 DCHECK(!rs.is(at));
1088 li(at, rt);
1089 or_(rd, rs, at);
1090 }
1091 }
1092}
1093
1094
1095void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
1096 if (rt.is_reg()) {
1097 xor_(rd, rs, rt.rm());
1098 } else {
1099 if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
1100 xori(rd, rs, rt.imm64_);
1101 } else {
1102 // li handles the relocation.
1103 DCHECK(!rs.is(at));
1104 li(at, rt);
1105 xor_(rd, rs, at);
1106 }
1107 }
1108}
1109
1110
1111void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
1112 if (rt.is_reg()) {
1113 nor(rd, rs, rt.rm());
1114 } else {
1115 // li handles the relocation.
1116 DCHECK(!rs.is(at));
1117 li(at, rt);
1118 nor(rd, rs, at);
1119 }
1120}
1121
1122
1123void MacroAssembler::Neg(Register rs, const Operand& rt) {
1124 DCHECK(rt.is_reg());
1125 DCHECK(!at.is(rs));
1126 DCHECK(!at.is(rt.rm()));
1127 li(at, -1);
1128 xor_(rs, rt.rm(), at);
1129}
1130
1131
1132void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
1133 if (rt.is_reg()) {
1134 slt(rd, rs, rt.rm());
1135 } else {
1136 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
1137 slti(rd, rs, rt.imm64_);
1138 } else {
1139 // li handles the relocation.
1140 DCHECK(!rs.is(at));
1141 li(at, rt);
1142 slt(rd, rs, at);
1143 }
1144 }
1145}
1146
1147
1148void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
1149 if (rt.is_reg()) {
1150 sltu(rd, rs, rt.rm());
1151 } else {
1152 if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
1153 sltiu(rd, rs, rt.imm64_);
1154 } else {
1155 // li handles the relocation.
1156 DCHECK(!rs.is(at));
1157 li(at, rt);
1158 sltu(rd, rs, at);
1159 }
1160 }
1161}
1162
1163
1164void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001165 if (rt.is_reg()) {
1166 rotrv(rd, rs, rt.rm());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001167 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001168 rotr(rd, rs, rt.imm64_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001169 }
1170}
1171
1172
1173void MacroAssembler::Dror(Register rd, Register rs, const Operand& rt) {
1174 if (rt.is_reg()) {
1175 drotrv(rd, rs, rt.rm());
1176 } else {
1177 drotr(rd, rs, rt.imm64_);
1178 }
1179}
1180
1181
1182void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
1183 pref(hint, rs);
1184}
1185
1186
1187// ------------Pseudo-instructions-------------
1188
1189void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
1190 lwr(rd, rs);
1191 lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
1192}
1193
1194
1195void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
1196 swr(rd, rs);
1197 swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
1198}
1199
1200
1201// Do 64-bit load from unaligned address. Note this only handles
1202// the specific case of 32-bit aligned, but not 64-bit aligned.
1203void MacroAssembler::Uld(Register rd, const MemOperand& rs, Register scratch) {
1204 // Assert fail if the offset from start of object IS actually aligned.
1205 // ONLY use with known misalignment, since there is performance cost.
1206 DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
1207 // TODO(plind): endian dependency.
1208 lwu(rd, rs);
1209 lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
1210 dsll32(scratch, scratch, 0);
1211 Daddu(rd, rd, scratch);
1212}
1213
1214
1215// Do 64-bit store to unaligned address. Note this only handles
1216// the specific case of 32-bit aligned, but not 64-bit aligned.
1217void MacroAssembler::Usd(Register rd, const MemOperand& rs, Register scratch) {
1218 // Assert fail if the offset from start of object IS actually aligned.
1219 // ONLY use with known misalignment, since there is performance cost.
1220 DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
1221 // TODO(plind): endian dependency.
1222 sw(rd, rs);
1223 dsrl32(scratch, rd, 0);
1224 sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
1225}
1226
1227
1228void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
1229 AllowDeferredHandleDereference smi_check;
1230 if (value->IsSmi()) {
1231 li(dst, Operand(value), mode);
1232 } else {
1233 DCHECK(value->IsHeapObject());
1234 if (isolate()->heap()->InNewSpace(*value)) {
1235 Handle<Cell> cell = isolate()->factory()->NewCell(value);
1236 li(dst, Operand(cell));
1237 ld(dst, FieldMemOperand(dst, Cell::kValueOffset));
1238 } else {
1239 li(dst, Operand(value));
1240 }
1241 }
1242}
1243
1244
1245void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
1246 DCHECK(!j.is_reg());
1247 BlockTrampolinePoolScope block_trampoline_pool(this);
1248 if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
1249 // Normal load of an immediate value which does not need Relocation Info.
1250 if (is_int32(j.imm64_)) {
1251 if (is_int16(j.imm64_)) {
1252 daddiu(rd, zero_reg, (j.imm64_ & kImm16Mask));
1253 } else if (!(j.imm64_ & kHiMask)) {
1254 ori(rd, zero_reg, (j.imm64_ & kImm16Mask));
1255 } else if (!(j.imm64_ & kImm16Mask)) {
1256 lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
1257 } else {
1258 lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
1259 ori(rd, rd, (j.imm64_ & kImm16Mask));
1260 }
1261 } else {
1262 lui(rd, (j.imm64_ >> 48) & kImm16Mask);
1263 ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
1264 dsll(rd, rd, 16);
1265 ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
1266 dsll(rd, rd, 16);
1267 ori(rd, rd, j.imm64_ & kImm16Mask);
1268 }
1269 } else if (MustUseReg(j.rmode_)) {
1270 RecordRelocInfo(j.rmode_, j.imm64_);
1271 lui(rd, (j.imm64_ >> 32) & kImm16Mask);
1272 ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
1273 dsll(rd, rd, 16);
1274 ori(rd, rd, j.imm64_ & kImm16Mask);
1275 } else if (mode == ADDRESS_LOAD) {
1276 // We always need the same number of instructions as we may need to patch
1277 // this code to load another value which may need all 4 instructions.
1278 lui(rd, (j.imm64_ >> 32) & kImm16Mask);
1279 ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
1280 dsll(rd, rd, 16);
1281 ori(rd, rd, j.imm64_ & kImm16Mask);
1282 } else {
1283 lui(rd, (j.imm64_ >> 48) & kImm16Mask);
1284 ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
1285 dsll(rd, rd, 16);
1286 ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
1287 dsll(rd, rd, 16);
1288 ori(rd, rd, j.imm64_ & kImm16Mask);
1289 }
1290}
1291
1292
1293void MacroAssembler::MultiPush(RegList regs) {
1294 int16_t num_to_push = NumberOfBitsSet(regs);
1295 int16_t stack_offset = num_to_push * kPointerSize;
1296
1297 Dsubu(sp, sp, Operand(stack_offset));
1298 for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
1299 if ((regs & (1 << i)) != 0) {
1300 stack_offset -= kPointerSize;
1301 sd(ToRegister(i), MemOperand(sp, stack_offset));
1302 }
1303 }
1304}
1305
1306
1307void MacroAssembler::MultiPushReversed(RegList regs) {
1308 int16_t num_to_push = NumberOfBitsSet(regs);
1309 int16_t stack_offset = num_to_push * kPointerSize;
1310
1311 Dsubu(sp, sp, Operand(stack_offset));
1312 for (int16_t i = 0; i < kNumRegisters; i++) {
1313 if ((regs & (1 << i)) != 0) {
1314 stack_offset -= kPointerSize;
1315 sd(ToRegister(i), MemOperand(sp, stack_offset));
1316 }
1317 }
1318}
1319
1320
1321void MacroAssembler::MultiPop(RegList regs) {
1322 int16_t stack_offset = 0;
1323
1324 for (int16_t i = 0; i < kNumRegisters; i++) {
1325 if ((regs & (1 << i)) != 0) {
1326 ld(ToRegister(i), MemOperand(sp, stack_offset));
1327 stack_offset += kPointerSize;
1328 }
1329 }
1330 daddiu(sp, sp, stack_offset);
1331}
1332
1333
1334void MacroAssembler::MultiPopReversed(RegList regs) {
1335 int16_t stack_offset = 0;
1336
1337 for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
1338 if ((regs & (1 << i)) != 0) {
1339 ld(ToRegister(i), MemOperand(sp, stack_offset));
1340 stack_offset += kPointerSize;
1341 }
1342 }
1343 daddiu(sp, sp, stack_offset);
1344}
1345
1346
1347void MacroAssembler::MultiPushFPU(RegList regs) {
1348 int16_t num_to_push = NumberOfBitsSet(regs);
1349 int16_t stack_offset = num_to_push * kDoubleSize;
1350
1351 Dsubu(sp, sp, Operand(stack_offset));
1352 for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
1353 if ((regs & (1 << i)) != 0) {
1354 stack_offset -= kDoubleSize;
1355 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
1356 }
1357 }
1358}
1359
1360
1361void MacroAssembler::MultiPushReversedFPU(RegList regs) {
1362 int16_t num_to_push = NumberOfBitsSet(regs);
1363 int16_t stack_offset = num_to_push * kDoubleSize;
1364
1365 Dsubu(sp, sp, Operand(stack_offset));
1366 for (int16_t i = 0; i < kNumRegisters; i++) {
1367 if ((regs & (1 << i)) != 0) {
1368 stack_offset -= kDoubleSize;
1369 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
1370 }
1371 }
1372}
1373
1374
1375void MacroAssembler::MultiPopFPU(RegList regs) {
1376 int16_t stack_offset = 0;
1377
1378 for (int16_t i = 0; i < kNumRegisters; i++) {
1379 if ((regs & (1 << i)) != 0) {
1380 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
1381 stack_offset += kDoubleSize;
1382 }
1383 }
1384 daddiu(sp, sp, stack_offset);
1385}
1386
1387
1388void MacroAssembler::MultiPopReversedFPU(RegList regs) {
1389 int16_t stack_offset = 0;
1390
1391 for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
1392 if ((regs & (1 << i)) != 0) {
1393 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
1394 stack_offset += kDoubleSize;
1395 }
1396 }
1397 daddiu(sp, sp, stack_offset);
1398}
1399
1400
1401void MacroAssembler::FlushICache(Register address, unsigned instructions) {
1402 RegList saved_regs = kJSCallerSaved | ra.bit();
1403 MultiPush(saved_regs);
1404 AllowExternalCallThatCantCauseGC scope(this);
1405
1406 // Save to a0 in case address == a4.
1407 Move(a0, address);
1408 PrepareCallCFunction(2, a4);
1409
1410 li(a1, instructions * kInstrSize);
1411 CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
1412 MultiPop(saved_regs);
1413}
1414
1415
1416void MacroAssembler::Ext(Register rt,
1417 Register rs,
1418 uint16_t pos,
1419 uint16_t size) {
1420 DCHECK(pos < 32);
1421 DCHECK(pos + size < 33);
1422 ext_(rt, rs, pos, size);
1423}
1424
1425
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001426void MacroAssembler::Dext(Register rt, Register rs, uint16_t pos,
1427 uint16_t size) {
1428 DCHECK(pos < 32);
1429 DCHECK(pos + size < 33);
1430 dext_(rt, rs, pos, size);
1431}
1432
1433
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001434void MacroAssembler::Ins(Register rt,
1435 Register rs,
1436 uint16_t pos,
1437 uint16_t size) {
1438 DCHECK(pos < 32);
1439 DCHECK(pos + size <= 32);
1440 DCHECK(size != 0);
1441 ins_(rt, rs, pos, size);
1442}
1443
1444
1445void MacroAssembler::Cvt_d_uw(FPURegister fd,
1446 FPURegister fs,
1447 FPURegister scratch) {
1448 // Move the data from fs to t8.
1449 mfc1(t8, fs);
1450 Cvt_d_uw(fd, t8, scratch);
1451}
1452
1453
1454void MacroAssembler::Cvt_d_uw(FPURegister fd,
1455 Register rs,
1456 FPURegister scratch) {
1457 // Convert rs to a FP value in fd (and fd + 1).
1458 // We do this by converting rs minus the MSB to avoid sign conversion,
1459 // then adding 2^31 to the result (if needed).
1460
1461 DCHECK(!fd.is(scratch));
1462 DCHECK(!rs.is(t9));
1463 DCHECK(!rs.is(at));
1464
1465 // Save rs's MSB to t9.
1466 Ext(t9, rs, 31, 1);
1467 // Remove rs's MSB.
1468 Ext(at, rs, 0, 31);
1469 // Move the result to fd.
1470 mtc1(at, fd);
1471 mthc1(zero_reg, fd);
1472
1473 // Convert fd to a real FP value.
1474 cvt_d_w(fd, fd);
1475
1476 Label conversion_done;
1477
1478 // If rs's MSB was 0, it's done.
1479 // Otherwise we need to add that to the FP register.
1480 Branch(&conversion_done, eq, t9, Operand(zero_reg));
1481
1482 // Load 2^31 into f20 as its float representation.
1483 li(at, 0x41E00000);
1484 mtc1(zero_reg, scratch);
1485 mthc1(at, scratch);
1486 // Add it to fd.
1487 add_d(fd, fd, scratch);
1488
1489 bind(&conversion_done);
1490}
1491
1492
1493void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
1494 round_l_d(fd, fs);
1495}
1496
1497
1498void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
1499 floor_l_d(fd, fs);
1500}
1501
1502
1503void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
1504 ceil_l_d(fd, fs);
1505}
1506
1507
1508void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
1509 trunc_l_d(fd, fs);
1510}
1511
1512
1513void MacroAssembler::Trunc_l_ud(FPURegister fd,
1514 FPURegister fs,
1515 FPURegister scratch) {
1516 // Load to GPR.
1517 dmfc1(t8, fs);
1518 // Reset sign bit.
1519 li(at, 0x7fffffffffffffff);
1520 and_(t8, t8, at);
1521 dmtc1(t8, fs);
1522 trunc_l_d(fd, fs);
1523}
1524
1525
1526void MacroAssembler::Trunc_uw_d(FPURegister fd,
1527 FPURegister fs,
1528 FPURegister scratch) {
1529 Trunc_uw_d(fs, t8, scratch);
1530 mtc1(t8, fd);
1531}
1532
1533
1534void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
1535 trunc_w_d(fd, fs);
1536}
1537
1538
1539void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
1540 round_w_d(fd, fs);
1541}
1542
1543
1544void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
1545 floor_w_d(fd, fs);
1546}
1547
1548
1549void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
1550 ceil_w_d(fd, fs);
1551}
1552
1553
1554void MacroAssembler::Trunc_uw_d(FPURegister fd,
1555 Register rs,
1556 FPURegister scratch) {
1557 DCHECK(!fd.is(scratch));
1558 DCHECK(!rs.is(at));
1559
1560 // Load 2^31 into scratch as its float representation.
1561 li(at, 0x41E00000);
1562 mtc1(zero_reg, scratch);
1563 mthc1(at, scratch);
1564 // Test if scratch > fd.
1565 // If fd < 2^31 we can convert it normally.
1566 Label simple_convert;
1567 BranchF(&simple_convert, NULL, lt, fd, scratch);
1568
1569 // First we subtract 2^31 from fd, then trunc it to rs
1570 // and add 2^31 to rs.
1571 sub_d(scratch, fd, scratch);
1572 trunc_w_d(scratch, scratch);
1573 mfc1(rs, scratch);
1574 Or(rs, rs, 1 << 31);
1575
1576 Label done;
1577 Branch(&done);
1578 // Simple conversion.
1579 bind(&simple_convert);
1580 trunc_w_d(scratch, fd);
1581 mfc1(rs, scratch);
1582
1583 bind(&done);
1584}
1585
1586
1587void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
1588 FPURegister ft, FPURegister scratch) {
1589 if (0) { // TODO(plind): find reasonable arch-variant symbol names.
1590 madd_d(fd, fr, fs, ft);
1591 } else {
1592 // Can not change source regs's value.
1593 DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
1594 mul_d(scratch, fs, ft);
1595 add_d(fd, fr, scratch);
1596 }
1597}
1598
1599
1600void MacroAssembler::BranchF(Label* target,
1601 Label* nan,
1602 Condition cc,
1603 FPURegister cmp1,
1604 FPURegister cmp2,
1605 BranchDelaySlot bd) {
1606 BlockTrampolinePoolScope block_trampoline_pool(this);
1607 if (cc == al) {
1608 Branch(bd, target);
1609 return;
1610 }
1611
1612 DCHECK(nan || target);
1613 // Check for unordered (NaN) cases.
1614 if (nan) {
1615 if (kArchVariant != kMips64r6) {
1616 c(UN, D, cmp1, cmp2);
1617 bc1t(nan);
1618 } else {
1619 // Use f31 for comparison result. It has to be unavailable to lithium
1620 // register allocator.
1621 DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
1622 cmp(UN, L, f31, cmp1, cmp2);
1623 bc1nez(nan, f31);
1624 }
1625 }
1626
1627 if (kArchVariant != kMips64r6) {
1628 if (target) {
1629 // Here NaN cases were either handled by this function or are assumed to
1630 // have been handled by the caller.
1631 switch (cc) {
1632 case lt:
1633 c(OLT, D, cmp1, cmp2);
1634 bc1t(target);
1635 break;
1636 case gt:
1637 c(ULE, D, cmp1, cmp2);
1638 bc1f(target);
1639 break;
1640 case ge:
1641 c(ULT, D, cmp1, cmp2);
1642 bc1f(target);
1643 break;
1644 case le:
1645 c(OLE, D, cmp1, cmp2);
1646 bc1t(target);
1647 break;
1648 case eq:
1649 c(EQ, D, cmp1, cmp2);
1650 bc1t(target);
1651 break;
1652 case ueq:
1653 c(UEQ, D, cmp1, cmp2);
1654 bc1t(target);
1655 break;
1656 case ne:
1657 c(EQ, D, cmp1, cmp2);
1658 bc1f(target);
1659 break;
1660 case nue:
1661 c(UEQ, D, cmp1, cmp2);
1662 bc1f(target);
1663 break;
1664 default:
1665 CHECK(0);
1666 }
1667 }
1668 } else {
1669 if (target) {
1670 // Here NaN cases were either handled by this function or are assumed to
1671 // have been handled by the caller.
1672 // Unsigned conditions are treated as their signed counterpart.
1673 // Use f31 for comparison result, it is valid in fp64 (FR = 1) mode.
1674 DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
1675 switch (cc) {
1676 case lt:
1677 cmp(OLT, L, f31, cmp1, cmp2);
1678 bc1nez(target, f31);
1679 break;
1680 case gt:
1681 cmp(ULE, L, f31, cmp1, cmp2);
1682 bc1eqz(target, f31);
1683 break;
1684 case ge:
1685 cmp(ULT, L, f31, cmp1, cmp2);
1686 bc1eqz(target, f31);
1687 break;
1688 case le:
1689 cmp(OLE, L, f31, cmp1, cmp2);
1690 bc1nez(target, f31);
1691 break;
1692 case eq:
1693 cmp(EQ, L, f31, cmp1, cmp2);
1694 bc1nez(target, f31);
1695 break;
1696 case ueq:
1697 cmp(UEQ, L, f31, cmp1, cmp2);
1698 bc1nez(target, f31);
1699 break;
1700 case ne:
1701 cmp(EQ, L, f31, cmp1, cmp2);
1702 bc1eqz(target, f31);
1703 break;
1704 case nue:
1705 cmp(UEQ, L, f31, cmp1, cmp2);
1706 bc1eqz(target, f31);
1707 break;
1708 default:
1709 CHECK(0);
1710 }
1711 }
1712 }
1713
1714 if (bd == PROTECT) {
1715 nop();
1716 }
1717}
1718
1719
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001720void MacroAssembler::Move(FPURegister dst, float imm) {
1721 li(at, Operand(bit_cast<int32_t>(imm)));
1722 mtc1(at, dst);
1723}
1724
1725
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001726void MacroAssembler::Move(FPURegister dst, double imm) {
1727 static const DoubleRepresentation minus_zero(-0.0);
1728 static const DoubleRepresentation zero(0.0);
1729 DoubleRepresentation value_rep(imm);
1730 // Handle special values first.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001731 if (value_rep == zero && has_double_zero_reg_set_) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001732 mov_d(dst, kDoubleRegZero);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001733 } else if (value_rep == minus_zero && has_double_zero_reg_set_) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001734 neg_d(dst, kDoubleRegZero);
1735 } else {
1736 uint32_t lo, hi;
1737 DoubleAsTwoUInt32(imm, &lo, &hi);
1738 // Move the low part of the double into the lower bits of the corresponding
1739 // FPU register.
1740 if (lo != 0) {
1741 li(at, Operand(lo));
1742 mtc1(at, dst);
1743 } else {
1744 mtc1(zero_reg, dst);
1745 }
1746 // Move the high part of the double into the high bits of the corresponding
1747 // FPU register.
1748 if (hi != 0) {
1749 li(at, Operand(hi));
1750 mthc1(at, dst);
1751 } else {
1752 mthc1(zero_reg, dst);
1753 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001754 if (dst.is(kDoubleRegZero)) has_double_zero_reg_set_ = true;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001755 }
1756}
1757
1758
1759void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
1760 if (kArchVariant == kMips64r6) {
1761 Label done;
1762 Branch(&done, ne, rt, Operand(zero_reg));
1763 mov(rd, rs);
1764 bind(&done);
1765 } else {
1766 movz(rd, rs, rt);
1767 }
1768}
1769
1770
1771void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
1772 if (kArchVariant == kMips64r6) {
1773 Label done;
1774 Branch(&done, eq, rt, Operand(zero_reg));
1775 mov(rd, rs);
1776 bind(&done);
1777 } else {
1778 movn(rd, rs, rt);
1779 }
1780}
1781
1782
1783void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
1784 movt(rd, rs, cc);
1785}
1786
1787
1788void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
1789 movf(rd, rs, cc);
1790}
1791
1792
1793void MacroAssembler::Clz(Register rd, Register rs) {
1794 clz(rd, rs);
1795}
1796
1797
1798void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
1799 Register result,
1800 DoubleRegister double_input,
1801 Register scratch,
1802 DoubleRegister double_scratch,
1803 Register except_flag,
1804 CheckForInexactConversion check_inexact) {
1805 DCHECK(!result.is(scratch));
1806 DCHECK(!double_input.is(double_scratch));
1807 DCHECK(!except_flag.is(scratch));
1808
1809 Label done;
1810
1811 // Clear the except flag (0 = no exception)
1812 mov(except_flag, zero_reg);
1813
1814 // Test for values that can be exactly represented as a signed 32-bit integer.
1815 cvt_w_d(double_scratch, double_input);
1816 mfc1(result, double_scratch);
1817 cvt_d_w(double_scratch, double_scratch);
1818 BranchF(&done, NULL, eq, double_input, double_scratch);
1819
1820 int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
1821
1822 if (check_inexact == kDontCheckForInexactConversion) {
1823 // Ignore inexact exceptions.
1824 except_mask &= ~kFCSRInexactFlagMask;
1825 }
1826
1827 // Save FCSR.
1828 cfc1(scratch, FCSR);
1829 // Disable FPU exceptions.
1830 ctc1(zero_reg, FCSR);
1831
1832 // Do operation based on rounding mode.
1833 switch (rounding_mode) {
1834 case kRoundToNearest:
1835 Round_w_d(double_scratch, double_input);
1836 break;
1837 case kRoundToZero:
1838 Trunc_w_d(double_scratch, double_input);
1839 break;
1840 case kRoundToPlusInf:
1841 Ceil_w_d(double_scratch, double_input);
1842 break;
1843 case kRoundToMinusInf:
1844 Floor_w_d(double_scratch, double_input);
1845 break;
1846 } // End of switch-statement.
1847
1848 // Retrieve FCSR.
1849 cfc1(except_flag, FCSR);
1850 // Restore FCSR.
1851 ctc1(scratch, FCSR);
1852 // Move the converted value into the result register.
1853 mfc1(result, double_scratch);
1854
1855 // Check for fpu exceptions.
1856 And(except_flag, except_flag, Operand(except_mask));
1857
1858 bind(&done);
1859}
1860
1861
1862void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
1863 DoubleRegister double_input,
1864 Label* done) {
1865 DoubleRegister single_scratch = kLithiumScratchDouble.low();
1866 Register scratch = at;
1867 Register scratch2 = t9;
1868
1869 // Clear cumulative exception flags and save the FCSR.
1870 cfc1(scratch2, FCSR);
1871 ctc1(zero_reg, FCSR);
1872 // Try a conversion to a signed integer.
1873 trunc_w_d(single_scratch, double_input);
1874 mfc1(result, single_scratch);
1875 // Retrieve and restore the FCSR.
1876 cfc1(scratch, FCSR);
1877 ctc1(scratch2, FCSR);
1878 // Check for overflow and NaNs.
1879 And(scratch,
1880 scratch,
1881 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
1882 // If we had no exceptions we are done.
1883 Branch(done, eq, scratch, Operand(zero_reg));
1884}
1885
1886
1887void MacroAssembler::TruncateDoubleToI(Register result,
1888 DoubleRegister double_input) {
1889 Label done;
1890
1891 TryInlineTruncateDoubleToI(result, double_input, &done);
1892
1893 // If we fell through then inline version didn't succeed - call stub instead.
1894 push(ra);
1895 Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
1896 sdc1(double_input, MemOperand(sp, 0));
1897
1898 DoubleToIStub stub(isolate(), sp, result, 0, true, true);
1899 CallStub(&stub);
1900
1901 Daddu(sp, sp, Operand(kDoubleSize));
1902 pop(ra);
1903
1904 bind(&done);
1905}
1906
1907
1908void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
1909 Label done;
1910 DoubleRegister double_scratch = f12;
1911 DCHECK(!result.is(object));
1912
1913 ldc1(double_scratch,
1914 MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
1915 TryInlineTruncateDoubleToI(result, double_scratch, &done);
1916
1917 // If we fell through then inline version didn't succeed - call stub instead.
1918 push(ra);
1919 DoubleToIStub stub(isolate(),
1920 object,
1921 result,
1922 HeapNumber::kValueOffset - kHeapObjectTag,
1923 true,
1924 true);
1925 CallStub(&stub);
1926 pop(ra);
1927
1928 bind(&done);
1929}
1930
1931
1932void MacroAssembler::TruncateNumberToI(Register object,
1933 Register result,
1934 Register heap_number_map,
1935 Register scratch,
1936 Label* not_number) {
1937 Label done;
1938 DCHECK(!result.is(object));
1939
1940 UntagAndJumpIfSmi(result, object, &done);
1941 JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
1942 TruncateHeapNumberToI(result, object);
1943
1944 bind(&done);
1945}
1946
1947
1948void MacroAssembler::GetLeastBitsFromSmi(Register dst,
1949 Register src,
1950 int num_least_bits) {
1951 // Ext(dst, src, kSmiTagSize, num_least_bits);
1952 SmiUntag(dst, src);
1953 And(dst, dst, Operand((1 << num_least_bits) - 1));
1954}
1955
1956
1957void MacroAssembler::GetLeastBitsFromInt32(Register dst,
1958 Register src,
1959 int num_least_bits) {
1960 DCHECK(!src.is(dst));
1961 And(dst, src, Operand((1 << num_least_bits) - 1));
1962}
1963
1964
1965// Emulated condtional branches do not emit a nop in the branch delay slot.
1966//
1967// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
1968#define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \
1969 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
1970 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
1971
1972
1973void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
1974 BranchShort(offset, bdslot);
1975}
1976
1977
1978void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
1979 const Operand& rt,
1980 BranchDelaySlot bdslot) {
1981 BranchShort(offset, cond, rs, rt, bdslot);
1982}
1983
1984
1985void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
1986 if (L->is_bound()) {
1987 if (is_near(L)) {
1988 BranchShort(L, bdslot);
1989 } else {
1990 Jr(L, bdslot);
1991 }
1992 } else {
1993 if (is_trampoline_emitted()) {
1994 Jr(L, bdslot);
1995 } else {
1996 BranchShort(L, bdslot);
1997 }
1998 }
1999}
2000
2001
2002void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
2003 const Operand& rt,
2004 BranchDelaySlot bdslot) {
2005 if (L->is_bound()) {
2006 if (is_near(L)) {
2007 BranchShort(L, cond, rs, rt, bdslot);
2008 } else {
2009 if (cond != cc_always) {
2010 Label skip;
2011 Condition neg_cond = NegateCondition(cond);
2012 BranchShort(&skip, neg_cond, rs, rt);
2013 Jr(L, bdslot);
2014 bind(&skip);
2015 } else {
2016 Jr(L, bdslot);
2017 }
2018 }
2019 } else {
2020 if (is_trampoline_emitted()) {
2021 if (cond != cc_always) {
2022 Label skip;
2023 Condition neg_cond = NegateCondition(cond);
2024 BranchShort(&skip, neg_cond, rs, rt);
2025 Jr(L, bdslot);
2026 bind(&skip);
2027 } else {
2028 Jr(L, bdslot);
2029 }
2030 } else {
2031 BranchShort(L, cond, rs, rt, bdslot);
2032 }
2033 }
2034}
2035
2036
2037void MacroAssembler::Branch(Label* L,
2038 Condition cond,
2039 Register rs,
2040 Heap::RootListIndex index,
2041 BranchDelaySlot bdslot) {
2042 LoadRoot(at, index);
2043 Branch(L, cond, rs, Operand(at), bdslot);
2044}
2045
2046
2047void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
2048 b(offset);
2049
2050 // Emit a nop in the branch delay slot if required.
2051 if (bdslot == PROTECT)
2052 nop();
2053}
2054
2055
2056void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
2057 const Operand& rt,
2058 BranchDelaySlot bdslot) {
2059 BRANCH_ARGS_CHECK(cond, rs, rt);
2060 DCHECK(!rs.is(zero_reg));
2061 Register r2 = no_reg;
2062 Register scratch = at;
2063
2064 if (rt.is_reg()) {
2065 // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
2066 // rt.
2067 BlockTrampolinePoolScope block_trampoline_pool(this);
2068 r2 = rt.rm_;
2069 switch (cond) {
2070 case cc_always:
2071 b(offset);
2072 break;
2073 case eq:
2074 beq(rs, r2, offset);
2075 break;
2076 case ne:
2077 bne(rs, r2, offset);
2078 break;
2079 // Signed comparison.
2080 case greater:
2081 if (r2.is(zero_reg)) {
2082 bgtz(rs, offset);
2083 } else {
2084 slt(scratch, r2, rs);
2085 bne(scratch, zero_reg, offset);
2086 }
2087 break;
2088 case greater_equal:
2089 if (r2.is(zero_reg)) {
2090 bgez(rs, offset);
2091 } else {
2092 slt(scratch, rs, r2);
2093 beq(scratch, zero_reg, offset);
2094 }
2095 break;
2096 case less:
2097 if (r2.is(zero_reg)) {
2098 bltz(rs, offset);
2099 } else {
2100 slt(scratch, rs, r2);
2101 bne(scratch, zero_reg, offset);
2102 }
2103 break;
2104 case less_equal:
2105 if (r2.is(zero_reg)) {
2106 blez(rs, offset);
2107 } else {
2108 slt(scratch, r2, rs);
2109 beq(scratch, zero_reg, offset);
2110 }
2111 break;
2112 // Unsigned comparison.
2113 case Ugreater:
2114 if (r2.is(zero_reg)) {
2115 bgtz(rs, offset);
2116 } else {
2117 sltu(scratch, r2, rs);
2118 bne(scratch, zero_reg, offset);
2119 }
2120 break;
2121 case Ugreater_equal:
2122 if (r2.is(zero_reg)) {
2123 bgez(rs, offset);
2124 } else {
2125 sltu(scratch, rs, r2);
2126 beq(scratch, zero_reg, offset);
2127 }
2128 break;
2129 case Uless:
2130 if (r2.is(zero_reg)) {
2131 // No code needs to be emitted.
2132 return;
2133 } else {
2134 sltu(scratch, rs, r2);
2135 bne(scratch, zero_reg, offset);
2136 }
2137 break;
2138 case Uless_equal:
2139 if (r2.is(zero_reg)) {
2140 b(offset);
2141 } else {
2142 sltu(scratch, r2, rs);
2143 beq(scratch, zero_reg, offset);
2144 }
2145 break;
2146 default:
2147 UNREACHABLE();
2148 }
2149 } else {
2150 // Be careful to always use shifted_branch_offset only just before the
2151 // branch instruction, as the location will be remember for patching the
2152 // target.
2153 BlockTrampolinePoolScope block_trampoline_pool(this);
2154 switch (cond) {
2155 case cc_always:
2156 b(offset);
2157 break;
2158 case eq:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002159 if (rt.imm64_ == 0) {
2160 beq(rs, zero_reg, offset);
2161 } else {
2162 // We don't want any other register but scratch clobbered.
2163 DCHECK(!scratch.is(rs));
2164 r2 = scratch;
2165 li(r2, rt);
2166 beq(rs, r2, offset);
2167 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002168 break;
2169 case ne:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002170 if (rt.imm64_ == 0) {
2171 bne(rs, zero_reg, offset);
2172 } else {
2173 // We don't want any other register but scratch clobbered.
2174 DCHECK(!scratch.is(rs));
2175 r2 = scratch;
2176 li(r2, rt);
2177 bne(rs, r2, offset);
2178 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002179 break;
2180 // Signed comparison.
2181 case greater:
2182 if (rt.imm64_ == 0) {
2183 bgtz(rs, offset);
2184 } else {
2185 r2 = scratch;
2186 li(r2, rt);
2187 slt(scratch, r2, rs);
2188 bne(scratch, zero_reg, offset);
2189 }
2190 break;
2191 case greater_equal:
2192 if (rt.imm64_ == 0) {
2193 bgez(rs, offset);
2194 } else if (is_int16(rt.imm64_)) {
2195 slti(scratch, rs, rt.imm64_);
2196 beq(scratch, zero_reg, offset);
2197 } else {
2198 r2 = scratch;
2199 li(r2, rt);
2200 slt(scratch, rs, r2);
2201 beq(scratch, zero_reg, offset);
2202 }
2203 break;
2204 case less:
2205 if (rt.imm64_ == 0) {
2206 bltz(rs, offset);
2207 } else if (is_int16(rt.imm64_)) {
2208 slti(scratch, rs, rt.imm64_);
2209 bne(scratch, zero_reg, offset);
2210 } else {
2211 r2 = scratch;
2212 li(r2, rt);
2213 slt(scratch, rs, r2);
2214 bne(scratch, zero_reg, offset);
2215 }
2216 break;
2217 case less_equal:
2218 if (rt.imm64_ == 0) {
2219 blez(rs, offset);
2220 } else {
2221 r2 = scratch;
2222 li(r2, rt);
2223 slt(scratch, r2, rs);
2224 beq(scratch, zero_reg, offset);
2225 }
2226 break;
2227 // Unsigned comparison.
2228 case Ugreater:
2229 if (rt.imm64_ == 0) {
2230 bgtz(rs, offset);
2231 } else {
2232 r2 = scratch;
2233 li(r2, rt);
2234 sltu(scratch, r2, rs);
2235 bne(scratch, zero_reg, offset);
2236 }
2237 break;
2238 case Ugreater_equal:
2239 if (rt.imm64_ == 0) {
2240 bgez(rs, offset);
2241 } else if (is_int16(rt.imm64_)) {
2242 sltiu(scratch, rs, rt.imm64_);
2243 beq(scratch, zero_reg, offset);
2244 } else {
2245 r2 = scratch;
2246 li(r2, rt);
2247 sltu(scratch, rs, r2);
2248 beq(scratch, zero_reg, offset);
2249 }
2250 break;
2251 case Uless:
2252 if (rt.imm64_ == 0) {
2253 // No code needs to be emitted.
2254 return;
2255 } else if (is_int16(rt.imm64_)) {
2256 sltiu(scratch, rs, rt.imm64_);
2257 bne(scratch, zero_reg, offset);
2258 } else {
2259 r2 = scratch;
2260 li(r2, rt);
2261 sltu(scratch, rs, r2);
2262 bne(scratch, zero_reg, offset);
2263 }
2264 break;
2265 case Uless_equal:
2266 if (rt.imm64_ == 0) {
2267 b(offset);
2268 } else {
2269 r2 = scratch;
2270 li(r2, rt);
2271 sltu(scratch, r2, rs);
2272 beq(scratch, zero_reg, offset);
2273 }
2274 break;
2275 default:
2276 UNREACHABLE();
2277 }
2278 }
2279 // Emit a nop in the branch delay slot if required.
2280 if (bdslot == PROTECT)
2281 nop();
2282}
2283
2284
2285void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
2286 // We use branch_offset as an argument for the branch instructions to be sure
2287 // it is called just before generating the branch instruction, as needed.
2288
2289 b(shifted_branch_offset(L, false));
2290
2291 // Emit a nop in the branch delay slot if required.
2292 if (bdslot == PROTECT)
2293 nop();
2294}
2295
2296
2297void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
2298 const Operand& rt,
2299 BranchDelaySlot bdslot) {
2300 BRANCH_ARGS_CHECK(cond, rs, rt);
2301
2302 int32_t offset = 0;
2303 Register r2 = no_reg;
2304 Register scratch = at;
2305 if (rt.is_reg()) {
2306 BlockTrampolinePoolScope block_trampoline_pool(this);
2307 r2 = rt.rm_;
2308 // Be careful to always use shifted_branch_offset only just before the
2309 // branch instruction, as the location will be remember for patching the
2310 // target.
2311 switch (cond) {
2312 case cc_always:
2313 offset = shifted_branch_offset(L, false);
2314 b(offset);
2315 break;
2316 case eq:
2317 offset = shifted_branch_offset(L, false);
2318 beq(rs, r2, offset);
2319 break;
2320 case ne:
2321 offset = shifted_branch_offset(L, false);
2322 bne(rs, r2, offset);
2323 break;
2324 // Signed comparison.
2325 case greater:
2326 if (r2.is(zero_reg)) {
2327 offset = shifted_branch_offset(L, false);
2328 bgtz(rs, offset);
2329 } else {
2330 slt(scratch, r2, rs);
2331 offset = shifted_branch_offset(L, false);
2332 bne(scratch, zero_reg, offset);
2333 }
2334 break;
2335 case greater_equal:
2336 if (r2.is(zero_reg)) {
2337 offset = shifted_branch_offset(L, false);
2338 bgez(rs, offset);
2339 } else {
2340 slt(scratch, rs, r2);
2341 offset = shifted_branch_offset(L, false);
2342 beq(scratch, zero_reg, offset);
2343 }
2344 break;
2345 case less:
2346 if (r2.is(zero_reg)) {
2347 offset = shifted_branch_offset(L, false);
2348 bltz(rs, offset);
2349 } else {
2350 slt(scratch, rs, r2);
2351 offset = shifted_branch_offset(L, false);
2352 bne(scratch, zero_reg, offset);
2353 }
2354 break;
2355 case less_equal:
2356 if (r2.is(zero_reg)) {
2357 offset = shifted_branch_offset(L, false);
2358 blez(rs, offset);
2359 } else {
2360 slt(scratch, r2, rs);
2361 offset = shifted_branch_offset(L, false);
2362 beq(scratch, zero_reg, offset);
2363 }
2364 break;
2365 // Unsigned comparison.
2366 case Ugreater:
2367 if (r2.is(zero_reg)) {
2368 offset = shifted_branch_offset(L, false);
2369 bgtz(rs, offset);
2370 } else {
2371 sltu(scratch, r2, rs);
2372 offset = shifted_branch_offset(L, false);
2373 bne(scratch, zero_reg, offset);
2374 }
2375 break;
2376 case Ugreater_equal:
2377 if (r2.is(zero_reg)) {
2378 offset = shifted_branch_offset(L, false);
2379 bgez(rs, offset);
2380 } else {
2381 sltu(scratch, rs, r2);
2382 offset = shifted_branch_offset(L, false);
2383 beq(scratch, zero_reg, offset);
2384 }
2385 break;
2386 case Uless:
2387 if (r2.is(zero_reg)) {
2388 // No code needs to be emitted.
2389 return;
2390 } else {
2391 sltu(scratch, rs, r2);
2392 offset = shifted_branch_offset(L, false);
2393 bne(scratch, zero_reg, offset);
2394 }
2395 break;
2396 case Uless_equal:
2397 if (r2.is(zero_reg)) {
2398 offset = shifted_branch_offset(L, false);
2399 b(offset);
2400 } else {
2401 sltu(scratch, r2, rs);
2402 offset = shifted_branch_offset(L, false);
2403 beq(scratch, zero_reg, offset);
2404 }
2405 break;
2406 default:
2407 UNREACHABLE();
2408 }
2409 } else {
2410 // Be careful to always use shifted_branch_offset only just before the
2411 // branch instruction, as the location will be remember for patching the
2412 // target.
2413 BlockTrampolinePoolScope block_trampoline_pool(this);
2414 switch (cond) {
2415 case cc_always:
2416 offset = shifted_branch_offset(L, false);
2417 b(offset);
2418 break;
2419 case eq:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002420 if (rt.imm64_ == 0) {
2421 offset = shifted_branch_offset(L, false);
2422 beq(rs, zero_reg, offset);
2423 } else {
2424 DCHECK(!scratch.is(rs));
2425 r2 = scratch;
2426 li(r2, rt);
2427 offset = shifted_branch_offset(L, false);
2428 beq(rs, r2, offset);
2429 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002430 break;
2431 case ne:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002432 if (rt.imm64_ == 0) {
2433 offset = shifted_branch_offset(L, false);
2434 bne(rs, zero_reg, offset);
2435 } else {
2436 DCHECK(!scratch.is(rs));
2437 r2 = scratch;
2438 li(r2, rt);
2439 offset = shifted_branch_offset(L, false);
2440 bne(rs, r2, offset);
2441 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002442 break;
2443 // Signed comparison.
2444 case greater:
2445 if (rt.imm64_ == 0) {
2446 offset = shifted_branch_offset(L, false);
2447 bgtz(rs, offset);
2448 } else {
2449 DCHECK(!scratch.is(rs));
2450 r2 = scratch;
2451 li(r2, rt);
2452 slt(scratch, r2, rs);
2453 offset = shifted_branch_offset(L, false);
2454 bne(scratch, zero_reg, offset);
2455 }
2456 break;
2457 case greater_equal:
2458 if (rt.imm64_ == 0) {
2459 offset = shifted_branch_offset(L, false);
2460 bgez(rs, offset);
2461 } else if (is_int16(rt.imm64_)) {
2462 slti(scratch, rs, rt.imm64_);
2463 offset = shifted_branch_offset(L, false);
2464 beq(scratch, zero_reg, offset);
2465 } else {
2466 DCHECK(!scratch.is(rs));
2467 r2 = scratch;
2468 li(r2, rt);
2469 slt(scratch, rs, r2);
2470 offset = shifted_branch_offset(L, false);
2471 beq(scratch, zero_reg, offset);
2472 }
2473 break;
2474 case less:
2475 if (rt.imm64_ == 0) {
2476 offset = shifted_branch_offset(L, false);
2477 bltz(rs, offset);
2478 } else if (is_int16(rt.imm64_)) {
2479 slti(scratch, rs, rt.imm64_);
2480 offset = shifted_branch_offset(L, false);
2481 bne(scratch, zero_reg, offset);
2482 } else {
2483 DCHECK(!scratch.is(rs));
2484 r2 = scratch;
2485 li(r2, rt);
2486 slt(scratch, rs, r2);
2487 offset = shifted_branch_offset(L, false);
2488 bne(scratch, zero_reg, offset);
2489 }
2490 break;
2491 case less_equal:
2492 if (rt.imm64_ == 0) {
2493 offset = shifted_branch_offset(L, false);
2494 blez(rs, offset);
2495 } else {
2496 DCHECK(!scratch.is(rs));
2497 r2 = scratch;
2498 li(r2, rt);
2499 slt(scratch, r2, rs);
2500 offset = shifted_branch_offset(L, false);
2501 beq(scratch, zero_reg, offset);
2502 }
2503 break;
2504 // Unsigned comparison.
2505 case Ugreater:
2506 if (rt.imm64_ == 0) {
2507 offset = shifted_branch_offset(L, false);
2508 bne(rs, zero_reg, offset);
2509 } else {
2510 DCHECK(!scratch.is(rs));
2511 r2 = scratch;
2512 li(r2, rt);
2513 sltu(scratch, r2, rs);
2514 offset = shifted_branch_offset(L, false);
2515 bne(scratch, zero_reg, offset);
2516 }
2517 break;
2518 case Ugreater_equal:
2519 if (rt.imm64_ == 0) {
2520 offset = shifted_branch_offset(L, false);
2521 bgez(rs, offset);
2522 } else if (is_int16(rt.imm64_)) {
2523 sltiu(scratch, rs, rt.imm64_);
2524 offset = shifted_branch_offset(L, false);
2525 beq(scratch, zero_reg, offset);
2526 } else {
2527 DCHECK(!scratch.is(rs));
2528 r2 = scratch;
2529 li(r2, rt);
2530 sltu(scratch, rs, r2);
2531 offset = shifted_branch_offset(L, false);
2532 beq(scratch, zero_reg, offset);
2533 }
2534 break;
2535 case Uless:
2536 if (rt.imm64_ == 0) {
2537 // No code needs to be emitted.
2538 return;
2539 } else if (is_int16(rt.imm64_)) {
2540 sltiu(scratch, rs, rt.imm64_);
2541 offset = shifted_branch_offset(L, false);
2542 bne(scratch, zero_reg, offset);
2543 } else {
2544 DCHECK(!scratch.is(rs));
2545 r2 = scratch;
2546 li(r2, rt);
2547 sltu(scratch, rs, r2);
2548 offset = shifted_branch_offset(L, false);
2549 bne(scratch, zero_reg, offset);
2550 }
2551 break;
2552 case Uless_equal:
2553 if (rt.imm64_ == 0) {
2554 offset = shifted_branch_offset(L, false);
2555 beq(rs, zero_reg, offset);
2556 } else {
2557 DCHECK(!scratch.is(rs));
2558 r2 = scratch;
2559 li(r2, rt);
2560 sltu(scratch, r2, rs);
2561 offset = shifted_branch_offset(L, false);
2562 beq(scratch, zero_reg, offset);
2563 }
2564 break;
2565 default:
2566 UNREACHABLE();
2567 }
2568 }
2569 // Check that offset could actually hold on an int16_t.
2570 DCHECK(is_int16(offset));
2571 // Emit a nop in the branch delay slot if required.
2572 if (bdslot == PROTECT)
2573 nop();
2574}
2575
2576
2577void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
2578 BranchAndLinkShort(offset, bdslot);
2579}
2580
2581
2582void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
2583 const Operand& rt,
2584 BranchDelaySlot bdslot) {
2585 BranchAndLinkShort(offset, cond, rs, rt, bdslot);
2586}
2587
2588
2589void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
2590 if (L->is_bound()) {
2591 if (is_near(L)) {
2592 BranchAndLinkShort(L, bdslot);
2593 } else {
2594 Jalr(L, bdslot);
2595 }
2596 } else {
2597 if (is_trampoline_emitted()) {
2598 Jalr(L, bdslot);
2599 } else {
2600 BranchAndLinkShort(L, bdslot);
2601 }
2602 }
2603}
2604
2605
2606void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
2607 const Operand& rt,
2608 BranchDelaySlot bdslot) {
2609 if (L->is_bound()) {
2610 if (is_near(L)) {
2611 BranchAndLinkShort(L, cond, rs, rt, bdslot);
2612 } else {
2613 Label skip;
2614 Condition neg_cond = NegateCondition(cond);
2615 BranchShort(&skip, neg_cond, rs, rt);
2616 Jalr(L, bdslot);
2617 bind(&skip);
2618 }
2619 } else {
2620 if (is_trampoline_emitted()) {
2621 Label skip;
2622 Condition neg_cond = NegateCondition(cond);
2623 BranchShort(&skip, neg_cond, rs, rt);
2624 Jalr(L, bdslot);
2625 bind(&skip);
2626 } else {
2627 BranchAndLinkShort(L, cond, rs, rt, bdslot);
2628 }
2629 }
2630}
2631
2632
2633// We need to use a bgezal or bltzal, but they can't be used directly with the
2634// slt instructions. We could use sub or add instead but we would miss overflow
2635// cases, so we keep slt and add an intermediate third instruction.
2636void MacroAssembler::BranchAndLinkShort(int16_t offset,
2637 BranchDelaySlot bdslot) {
2638 bal(offset);
2639
2640 // Emit a nop in the branch delay slot if required.
2641 if (bdslot == PROTECT)
2642 nop();
2643}
2644
2645
2646void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
2647 Register rs, const Operand& rt,
2648 BranchDelaySlot bdslot) {
2649 BRANCH_ARGS_CHECK(cond, rs, rt);
2650 Register r2 = no_reg;
2651 Register scratch = at;
2652
2653 if (rt.is_reg()) {
2654 r2 = rt.rm_;
2655 } else if (cond != cc_always) {
2656 r2 = scratch;
2657 li(r2, rt);
2658 }
2659
2660 {
2661 BlockTrampolinePoolScope block_trampoline_pool(this);
2662 switch (cond) {
2663 case cc_always:
2664 bal(offset);
2665 break;
2666 case eq:
2667 bne(rs, r2, 2);
2668 nop();
2669 bal(offset);
2670 break;
2671 case ne:
2672 beq(rs, r2, 2);
2673 nop();
2674 bal(offset);
2675 break;
2676
2677 // Signed comparison.
2678 case greater:
2679 // rs > rt
2680 slt(scratch, r2, rs);
2681 beq(scratch, zero_reg, 2);
2682 nop();
2683 bal(offset);
2684 break;
2685 case greater_equal:
2686 // rs >= rt
2687 slt(scratch, rs, r2);
2688 bne(scratch, zero_reg, 2);
2689 nop();
2690 bal(offset);
2691 break;
2692 case less:
2693 // rs < r2
2694 slt(scratch, rs, r2);
2695 bne(scratch, zero_reg, 2);
2696 nop();
2697 bal(offset);
2698 break;
2699 case less_equal:
2700 // rs <= r2
2701 slt(scratch, r2, rs);
2702 bne(scratch, zero_reg, 2);
2703 nop();
2704 bal(offset);
2705 break;
2706
2707
2708 // Unsigned comparison.
2709 case Ugreater:
2710 // rs > rt
2711 sltu(scratch, r2, rs);
2712 beq(scratch, zero_reg, 2);
2713 nop();
2714 bal(offset);
2715 break;
2716 case Ugreater_equal:
2717 // rs >= rt
2718 sltu(scratch, rs, r2);
2719 bne(scratch, zero_reg, 2);
2720 nop();
2721 bal(offset);
2722 break;
2723 case Uless:
2724 // rs < r2
2725 sltu(scratch, rs, r2);
2726 bne(scratch, zero_reg, 2);
2727 nop();
2728 bal(offset);
2729 break;
2730 case Uless_equal:
2731 // rs <= r2
2732 sltu(scratch, r2, rs);
2733 bne(scratch, zero_reg, 2);
2734 nop();
2735 bal(offset);
2736 break;
2737 default:
2738 UNREACHABLE();
2739 }
2740 }
2741 // Emit a nop in the branch delay slot if required.
2742 if (bdslot == PROTECT)
2743 nop();
2744}
2745
2746
2747void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
2748 bal(shifted_branch_offset(L, false));
2749
2750 // Emit a nop in the branch delay slot if required.
2751 if (bdslot == PROTECT)
2752 nop();
2753}
2754
2755
2756void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
2757 const Operand& rt,
2758 BranchDelaySlot bdslot) {
2759 BRANCH_ARGS_CHECK(cond, rs, rt);
2760
2761 int32_t offset = 0;
2762 Register r2 = no_reg;
2763 Register scratch = at;
2764 if (rt.is_reg()) {
2765 r2 = rt.rm_;
2766 } else if (cond != cc_always) {
2767 r2 = scratch;
2768 li(r2, rt);
2769 }
2770
2771 {
2772 BlockTrampolinePoolScope block_trampoline_pool(this);
2773 switch (cond) {
2774 case cc_always:
2775 offset = shifted_branch_offset(L, false);
2776 bal(offset);
2777 break;
2778 case eq:
2779 bne(rs, r2, 2);
2780 nop();
2781 offset = shifted_branch_offset(L, false);
2782 bal(offset);
2783 break;
2784 case ne:
2785 beq(rs, r2, 2);
2786 nop();
2787 offset = shifted_branch_offset(L, false);
2788 bal(offset);
2789 break;
2790
2791 // Signed comparison.
2792 case greater:
2793 // rs > rt
2794 slt(scratch, r2, rs);
2795 beq(scratch, zero_reg, 2);
2796 nop();
2797 offset = shifted_branch_offset(L, false);
2798 bal(offset);
2799 break;
2800 case greater_equal:
2801 // rs >= rt
2802 slt(scratch, rs, r2);
2803 bne(scratch, zero_reg, 2);
2804 nop();
2805 offset = shifted_branch_offset(L, false);
2806 bal(offset);
2807 break;
2808 case less:
2809 // rs < r2
2810 slt(scratch, rs, r2);
2811 bne(scratch, zero_reg, 2);
2812 nop();
2813 offset = shifted_branch_offset(L, false);
2814 bal(offset);
2815 break;
2816 case less_equal:
2817 // rs <= r2
2818 slt(scratch, r2, rs);
2819 bne(scratch, zero_reg, 2);
2820 nop();
2821 offset = shifted_branch_offset(L, false);
2822 bal(offset);
2823 break;
2824
2825
2826 // Unsigned comparison.
2827 case Ugreater:
2828 // rs > rt
2829 sltu(scratch, r2, rs);
2830 beq(scratch, zero_reg, 2);
2831 nop();
2832 offset = shifted_branch_offset(L, false);
2833 bal(offset);
2834 break;
2835 case Ugreater_equal:
2836 // rs >= rt
2837 sltu(scratch, rs, r2);
2838 bne(scratch, zero_reg, 2);
2839 nop();
2840 offset = shifted_branch_offset(L, false);
2841 bal(offset);
2842 break;
2843 case Uless:
2844 // rs < r2
2845 sltu(scratch, rs, r2);
2846 bne(scratch, zero_reg, 2);
2847 nop();
2848 offset = shifted_branch_offset(L, false);
2849 bal(offset);
2850 break;
2851 case Uless_equal:
2852 // rs <= r2
2853 sltu(scratch, r2, rs);
2854 bne(scratch, zero_reg, 2);
2855 nop();
2856 offset = shifted_branch_offset(L, false);
2857 bal(offset);
2858 break;
2859
2860 default:
2861 UNREACHABLE();
2862 }
2863 }
2864 // Check that offset could actually hold on an int16_t.
2865 DCHECK(is_int16(offset));
2866
2867 // Emit a nop in the branch delay slot if required.
2868 if (bdslot == PROTECT)
2869 nop();
2870}
2871
2872
2873void MacroAssembler::Jump(Register target,
2874 Condition cond,
2875 Register rs,
2876 const Operand& rt,
2877 BranchDelaySlot bd) {
2878 BlockTrampolinePoolScope block_trampoline_pool(this);
2879 if (cond == cc_always) {
2880 jr(target);
2881 } else {
2882 BRANCH_ARGS_CHECK(cond, rs, rt);
2883 Branch(2, NegateCondition(cond), rs, rt);
2884 jr(target);
2885 }
2886 // Emit a nop in the branch delay slot if required.
2887 if (bd == PROTECT)
2888 nop();
2889}
2890
2891
2892void MacroAssembler::Jump(intptr_t target,
2893 RelocInfo::Mode rmode,
2894 Condition cond,
2895 Register rs,
2896 const Operand& rt,
2897 BranchDelaySlot bd) {
2898 Label skip;
2899 if (cond != cc_always) {
2900 Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
2901 }
2902 // The first instruction of 'li' may be placed in the delay slot.
2903 // This is not an issue, t9 is expected to be clobbered anyway.
2904 li(t9, Operand(target, rmode));
2905 Jump(t9, al, zero_reg, Operand(zero_reg), bd);
2906 bind(&skip);
2907}
2908
2909
2910void MacroAssembler::Jump(Address target,
2911 RelocInfo::Mode rmode,
2912 Condition cond,
2913 Register rs,
2914 const Operand& rt,
2915 BranchDelaySlot bd) {
2916 DCHECK(!RelocInfo::IsCodeTarget(rmode));
2917 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
2918}
2919
2920
2921void MacroAssembler::Jump(Handle<Code> code,
2922 RelocInfo::Mode rmode,
2923 Condition cond,
2924 Register rs,
2925 const Operand& rt,
2926 BranchDelaySlot bd) {
2927 DCHECK(RelocInfo::IsCodeTarget(rmode));
2928 AllowDeferredHandleDereference embedding_raw_address;
2929 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
2930}
2931
2932
2933int MacroAssembler::CallSize(Register target,
2934 Condition cond,
2935 Register rs,
2936 const Operand& rt,
2937 BranchDelaySlot bd) {
2938 int size = 0;
2939
2940 if (cond == cc_always) {
2941 size += 1;
2942 } else {
2943 size += 3;
2944 }
2945
2946 if (bd == PROTECT)
2947 size += 1;
2948
2949 return size * kInstrSize;
2950}
2951
2952
2953// Note: To call gcc-compiled C code on mips, you must call thru t9.
2954void MacroAssembler::Call(Register target,
2955 Condition cond,
2956 Register rs,
2957 const Operand& rt,
2958 BranchDelaySlot bd) {
2959 BlockTrampolinePoolScope block_trampoline_pool(this);
2960 Label start;
2961 bind(&start);
2962 if (cond == cc_always) {
2963 jalr(target);
2964 } else {
2965 BRANCH_ARGS_CHECK(cond, rs, rt);
2966 Branch(2, NegateCondition(cond), rs, rt);
2967 jalr(target);
2968 }
2969 // Emit a nop in the branch delay slot if required.
2970 if (bd == PROTECT)
2971 nop();
2972
2973 DCHECK_EQ(CallSize(target, cond, rs, rt, bd),
2974 SizeOfCodeGeneratedSince(&start));
2975}
2976
2977
2978int MacroAssembler::CallSize(Address target,
2979 RelocInfo::Mode rmode,
2980 Condition cond,
2981 Register rs,
2982 const Operand& rt,
2983 BranchDelaySlot bd) {
2984 int size = CallSize(t9, cond, rs, rt, bd);
2985 return size + 4 * kInstrSize;
2986}
2987
2988
2989void MacroAssembler::Call(Address target,
2990 RelocInfo::Mode rmode,
2991 Condition cond,
2992 Register rs,
2993 const Operand& rt,
2994 BranchDelaySlot bd) {
2995 BlockTrampolinePoolScope block_trampoline_pool(this);
2996 Label start;
2997 bind(&start);
2998 int64_t target_int = reinterpret_cast<int64_t>(target);
2999 // Must record previous source positions before the
3000 // li() generates a new code target.
3001 positions_recorder()->WriteRecordedPositions();
3002 li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
3003 Call(t9, cond, rs, rt, bd);
3004 DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
3005 SizeOfCodeGeneratedSince(&start));
3006}
3007
3008
3009int MacroAssembler::CallSize(Handle<Code> code,
3010 RelocInfo::Mode rmode,
3011 TypeFeedbackId ast_id,
3012 Condition cond,
3013 Register rs,
3014 const Operand& rt,
3015 BranchDelaySlot bd) {
3016 AllowDeferredHandleDereference using_raw_address;
3017 return CallSize(reinterpret_cast<Address>(code.location()),
3018 rmode, cond, rs, rt, bd);
3019}
3020
3021
3022void MacroAssembler::Call(Handle<Code> code,
3023 RelocInfo::Mode rmode,
3024 TypeFeedbackId ast_id,
3025 Condition cond,
3026 Register rs,
3027 const Operand& rt,
3028 BranchDelaySlot bd) {
3029 BlockTrampolinePoolScope block_trampoline_pool(this);
3030 Label start;
3031 bind(&start);
3032 DCHECK(RelocInfo::IsCodeTarget(rmode));
3033 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
3034 SetRecordedAstId(ast_id);
3035 rmode = RelocInfo::CODE_TARGET_WITH_ID;
3036 }
3037 AllowDeferredHandleDereference embedding_raw_address;
3038 Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
3039 DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
3040 SizeOfCodeGeneratedSince(&start));
3041}
3042
3043
3044void MacroAssembler::Ret(Condition cond,
3045 Register rs,
3046 const Operand& rt,
3047 BranchDelaySlot bd) {
3048 Jump(ra, cond, rs, rt, bd);
3049}
3050
3051
3052void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
3053 BlockTrampolinePoolScope block_trampoline_pool(this);
3054
3055 uint64_t imm28;
3056 imm28 = jump_address(L);
3057 imm28 &= kImm28Mask;
3058 { BlockGrowBufferScope block_buf_growth(this);
3059 // Buffer growth (and relocation) must be blocked for internal references
3060 // until associated instructions are emitted and available to be patched.
3061 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3062 j(imm28);
3063 }
3064 // Emit a nop in the branch delay slot if required.
3065 if (bdslot == PROTECT)
3066 nop();
3067}
3068
3069
3070void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
3071 BlockTrampolinePoolScope block_trampoline_pool(this);
3072
3073 uint64_t imm64;
3074 imm64 = jump_address(L);
3075 { BlockGrowBufferScope block_buf_growth(this);
3076 // Buffer growth (and relocation) must be blocked for internal references
3077 // until associated instructions are emitted and available to be patched.
3078 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3079 li(at, Operand(imm64), ADDRESS_LOAD);
3080 }
3081 jr(at);
3082
3083 // Emit a nop in the branch delay slot if required.
3084 if (bdslot == PROTECT)
3085 nop();
3086}
3087
3088
3089void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
3090 BlockTrampolinePoolScope block_trampoline_pool(this);
3091
3092 uint64_t imm64;
3093 imm64 = jump_address(L);
3094 { BlockGrowBufferScope block_buf_growth(this);
3095 // Buffer growth (and relocation) must be blocked for internal references
3096 // until associated instructions are emitted and available to be patched.
3097 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3098 li(at, Operand(imm64), ADDRESS_LOAD);
3099 }
3100 jalr(at);
3101
3102 // Emit a nop in the branch delay slot if required.
3103 if (bdslot == PROTECT)
3104 nop();
3105}
3106
3107
3108void MacroAssembler::DropAndRet(int drop) {
3109 Ret(USE_DELAY_SLOT);
3110 daddiu(sp, sp, drop * kPointerSize);
3111}
3112
3113void MacroAssembler::DropAndRet(int drop,
3114 Condition cond,
3115 Register r1,
3116 const Operand& r2) {
3117 // Both Drop and Ret need to be conditional.
3118 Label skip;
3119 if (cond != cc_always) {
3120 Branch(&skip, NegateCondition(cond), r1, r2);
3121 }
3122
3123 Drop(drop);
3124 Ret();
3125
3126 if (cond != cc_always) {
3127 bind(&skip);
3128 }
3129}
3130
3131
3132void MacroAssembler::Drop(int count,
3133 Condition cond,
3134 Register reg,
3135 const Operand& op) {
3136 if (count <= 0) {
3137 return;
3138 }
3139
3140 Label skip;
3141
3142 if (cond != al) {
3143 Branch(&skip, NegateCondition(cond), reg, op);
3144 }
3145
3146 daddiu(sp, sp, count * kPointerSize);
3147
3148 if (cond != al) {
3149 bind(&skip);
3150 }
3151}
3152
3153
3154
3155void MacroAssembler::Swap(Register reg1,
3156 Register reg2,
3157 Register scratch) {
3158 if (scratch.is(no_reg)) {
3159 Xor(reg1, reg1, Operand(reg2));
3160 Xor(reg2, reg2, Operand(reg1));
3161 Xor(reg1, reg1, Operand(reg2));
3162 } else {
3163 mov(scratch, reg1);
3164 mov(reg1, reg2);
3165 mov(reg2, scratch);
3166 }
3167}
3168
3169
3170void MacroAssembler::Call(Label* target) {
3171 BranchAndLink(target);
3172}
3173
3174
3175void MacroAssembler::Push(Handle<Object> handle) {
3176 li(at, Operand(handle));
3177 push(at);
3178}
3179
3180
3181void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
3182 DCHECK(!src.is(scratch));
3183 mov(scratch, src);
3184 dsrl32(src, src, 0);
3185 dsll32(src, src, 0);
3186 push(src);
3187 dsll32(scratch, scratch, 0);
3188 push(scratch);
3189}
3190
3191
3192void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
3193 DCHECK(!dst.is(scratch));
3194 pop(scratch);
3195 dsrl32(scratch, scratch, 0);
3196 pop(dst);
3197 dsrl32(dst, dst, 0);
3198 dsll32(dst, dst, 0);
3199 or_(dst, dst, scratch);
3200}
3201
3202
3203void MacroAssembler::DebugBreak() {
3204 PrepareCEntryArgs(0);
3205 PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
3206 CEntryStub ces(isolate(), 1);
3207 DCHECK(AllowThisStubCall(&ces));
3208 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3209}
3210
3211
3212// ---------------------------------------------------------------------------
3213// Exception handling.
3214
3215void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3216 int handler_index) {
3217 // Adjust this code if not the case.
3218 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3219 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3220 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3221 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3222 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3223 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3224
3225 // For the JSEntry handler, we must preserve a0-a3 and s0.
3226 // a5-a7 are available. We will build up the handler from the bottom by
3227 // pushing on the stack.
3228 // Set up the code object (a5) and the state (a6) for pushing.
3229 unsigned state =
3230 StackHandler::IndexField::encode(handler_index) |
3231 StackHandler::KindField::encode(kind);
3232 li(a5, Operand(CodeObject()), CONSTANT_SIZE);
3233 li(a6, Operand(state));
3234
3235 // Push the frame pointer, context, state, and code object.
3236 if (kind == StackHandler::JS_ENTRY) {
3237 DCHECK_EQ(Smi::FromInt(0), 0);
3238 // The second zero_reg indicates no context.
3239 // The first zero_reg is the NULL frame pointer.
3240 // The operands are reversed to match the order of MultiPush/Pop.
3241 Push(zero_reg, zero_reg, a6, a5);
3242 } else {
3243 MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit());
3244 }
3245
3246 // Link the current handler as the next handler.
3247 li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
3248 ld(a5, MemOperand(a6));
3249 push(a5);
3250 // Set this new handler as the current one.
3251 sd(sp, MemOperand(a6));
3252}
3253
3254
3255void MacroAssembler::PopTryHandler() {
3256 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3257 pop(a1);
3258 Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
3259 li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
3260 sd(a1, MemOperand(at));
3261}
3262
3263
3264void MacroAssembler::JumpToHandlerEntry() {
3265 // Compute the handler entry address and jump to it. The handler table is
3266 // a fixed array of (smi-tagged) code offsets.
3267 // v0 = exception, a1 = code object, a2 = state.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003268 ld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003269 Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3270 dsrl(a2, a2, StackHandler::kKindWidth); // Handler index.
3271 dsll(a2, a2, kPointerSizeLog2);
3272 Daddu(a2, a3, a2);
3273 ld(a2, MemOperand(a2)); // Smi-tagged offset.
3274 Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
3275 dsra32(t9, a2, 0);
3276 Daddu(t9, t9, a1);
3277 Jump(t9); // Jump.
3278}
3279
3280
3281void MacroAssembler::Throw(Register value) {
3282 // Adjust this code if not the case.
3283 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3284 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3285 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3286 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3287 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3288 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3289
3290 // The exception is expected in v0.
3291 Move(v0, value);
3292
3293 // Drop the stack pointer to the top of the top handler.
3294 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
3295 isolate())));
3296 ld(sp, MemOperand(a3));
3297
3298 // Restore the next handler.
3299 pop(a2);
3300 sd(a2, MemOperand(a3));
3301
3302 // Get the code object (a1) and state (a2). Restore the context and frame
3303 // pointer.
3304 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
3305
3306 // If the handler is a JS frame, restore the context to the frame.
3307 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
3308 // or cp.
3309 Label done;
3310 Branch(&done, eq, cp, Operand(zero_reg));
3311 sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3312 bind(&done);
3313
3314 JumpToHandlerEntry();
3315}
3316
3317
3318void MacroAssembler::ThrowUncatchable(Register value) {
3319 // Adjust this code if not the case.
3320 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3321 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3322 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3323 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3324 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3325 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3326
3327 // The exception is expected in v0.
3328 if (!value.is(v0)) {
3329 mov(v0, value);
3330 }
3331 // Drop the stack pointer to the top of the top stack handler.
3332 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
3333 ld(sp, MemOperand(a3));
3334
3335 // Unwind the handlers until the ENTRY handler is found.
3336 Label fetch_next, check_kind;
3337 jmp(&check_kind);
3338 bind(&fetch_next);
3339 ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
3340
3341 bind(&check_kind);
3342 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
3343 ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
3344 And(a2, a2, Operand(StackHandler::KindField::kMask));
3345 Branch(&fetch_next, ne, a2, Operand(zero_reg));
3346
3347 // Set the top handler address to next handler past the top ENTRY handler.
3348 pop(a2);
3349 sd(a2, MemOperand(a3));
3350
3351 // Get the code object (a1) and state (a2). Clear the context and frame
3352 // pointer (0 was saved in the handler).
3353 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
3354
3355 JumpToHandlerEntry();
3356}
3357
3358
3359void MacroAssembler::Allocate(int object_size,
3360 Register result,
3361 Register scratch1,
3362 Register scratch2,
3363 Label* gc_required,
3364 AllocationFlags flags) {
3365 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3366 if (!FLAG_inline_new) {
3367 if (emit_debug_code()) {
3368 // Trash the registers to simulate an allocation failure.
3369 li(result, 0x7091);
3370 li(scratch1, 0x7191);
3371 li(scratch2, 0x7291);
3372 }
3373 jmp(gc_required);
3374 return;
3375 }
3376
3377 DCHECK(!result.is(scratch1));
3378 DCHECK(!result.is(scratch2));
3379 DCHECK(!scratch1.is(scratch2));
3380 DCHECK(!scratch1.is(t9));
3381 DCHECK(!scratch2.is(t9));
3382 DCHECK(!result.is(t9));
3383
3384 // Make object size into bytes.
3385 if ((flags & SIZE_IN_WORDS) != 0) {
3386 object_size *= kPointerSize;
3387 }
3388 DCHECK(0 == (object_size & kObjectAlignmentMask));
3389
3390 // Check relative positions of allocation top and limit addresses.
3391 // ARM adds additional checks to make sure the ldm instruction can be
3392 // used. On MIPS we don't have ldm so we don't need additional checks either.
3393 ExternalReference allocation_top =
3394 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3395 ExternalReference allocation_limit =
3396 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3397
3398 intptr_t top =
3399 reinterpret_cast<intptr_t>(allocation_top.address());
3400 intptr_t limit =
3401 reinterpret_cast<intptr_t>(allocation_limit.address());
3402 DCHECK((limit - top) == kPointerSize);
3403
3404 // Set up allocation top address and object size registers.
3405 Register topaddr = scratch1;
3406 li(topaddr, Operand(allocation_top));
3407
3408 // This code stores a temporary value in t9.
3409 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3410 // Load allocation top into result and allocation limit into t9.
3411 ld(result, MemOperand(topaddr));
3412 ld(t9, MemOperand(topaddr, kPointerSize));
3413 } else {
3414 if (emit_debug_code()) {
3415 // Assert that result actually contains top on entry. t9 is used
3416 // immediately below so this use of t9 does not cause difference with
3417 // respect to register content between debug and release mode.
3418 ld(t9, MemOperand(topaddr));
3419 Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
3420 }
3421 // Load allocation limit into t9. Result already contains allocation top.
3422 ld(t9, MemOperand(topaddr, limit - top));
3423 }
3424
3425 DCHECK(kPointerSize == kDoubleSize);
3426 if (emit_debug_code()) {
3427 And(at, result, Operand(kDoubleAlignmentMask));
3428 Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
3429 }
3430
3431 // Calculate new top and bail out if new space is exhausted. Use result
3432 // to calculate the new top.
3433 Daddu(scratch2, result, Operand(object_size));
3434 Branch(gc_required, Ugreater, scratch2, Operand(t9));
3435 sd(scratch2, MemOperand(topaddr));
3436
3437 // Tag object if requested.
3438 if ((flags & TAG_OBJECT) != 0) {
3439 Daddu(result, result, Operand(kHeapObjectTag));
3440 }
3441}
3442
3443
3444void MacroAssembler::Allocate(Register object_size,
3445 Register result,
3446 Register scratch1,
3447 Register scratch2,
3448 Label* gc_required,
3449 AllocationFlags flags) {
3450 if (!FLAG_inline_new) {
3451 if (emit_debug_code()) {
3452 // Trash the registers to simulate an allocation failure.
3453 li(result, 0x7091);
3454 li(scratch1, 0x7191);
3455 li(scratch2, 0x7291);
3456 }
3457 jmp(gc_required);
3458 return;
3459 }
3460
3461 DCHECK(!result.is(scratch1));
3462 DCHECK(!result.is(scratch2));
3463 DCHECK(!scratch1.is(scratch2));
3464 DCHECK(!object_size.is(t9));
3465 DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
3466
3467 // Check relative positions of allocation top and limit addresses.
3468 // ARM adds additional checks to make sure the ldm instruction can be
3469 // used. On MIPS we don't have ldm so we don't need additional checks either.
3470 ExternalReference allocation_top =
3471 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3472 ExternalReference allocation_limit =
3473 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3474 intptr_t top =
3475 reinterpret_cast<intptr_t>(allocation_top.address());
3476 intptr_t limit =
3477 reinterpret_cast<intptr_t>(allocation_limit.address());
3478 DCHECK((limit - top) == kPointerSize);
3479
3480 // Set up allocation top address and object size registers.
3481 Register topaddr = scratch1;
3482 li(topaddr, Operand(allocation_top));
3483
3484 // This code stores a temporary value in t9.
3485 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3486 // Load allocation top into result and allocation limit into t9.
3487 ld(result, MemOperand(topaddr));
3488 ld(t9, MemOperand(topaddr, kPointerSize));
3489 } else {
3490 if (emit_debug_code()) {
3491 // Assert that result actually contains top on entry. t9 is used
3492 // immediately below so this use of t9 does not cause difference with
3493 // respect to register content between debug and release mode.
3494 ld(t9, MemOperand(topaddr));
3495 Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
3496 }
3497 // Load allocation limit into t9. Result already contains allocation top.
3498 ld(t9, MemOperand(topaddr, limit - top));
3499 }
3500
3501 DCHECK(kPointerSize == kDoubleSize);
3502 if (emit_debug_code()) {
3503 And(at, result, Operand(kDoubleAlignmentMask));
3504 Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
3505 }
3506
3507 // Calculate new top and bail out if new space is exhausted. Use result
3508 // to calculate the new top. Object size may be in words so a shift is
3509 // required to get the number of bytes.
3510 if ((flags & SIZE_IN_WORDS) != 0) {
3511 dsll(scratch2, object_size, kPointerSizeLog2);
3512 Daddu(scratch2, result, scratch2);
3513 } else {
3514 Daddu(scratch2, result, Operand(object_size));
3515 }
3516 Branch(gc_required, Ugreater, scratch2, Operand(t9));
3517
3518 // Update allocation top. result temporarily holds the new top.
3519 if (emit_debug_code()) {
3520 And(t9, scratch2, Operand(kObjectAlignmentMask));
3521 Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg));
3522 }
3523 sd(scratch2, MemOperand(topaddr));
3524
3525 // Tag object if requested.
3526 if ((flags & TAG_OBJECT) != 0) {
3527 Daddu(result, result, Operand(kHeapObjectTag));
3528 }
3529}
3530
3531
3532void MacroAssembler::UndoAllocationInNewSpace(Register object,
3533 Register scratch) {
3534 ExternalReference new_space_allocation_top =
3535 ExternalReference::new_space_allocation_top_address(isolate());
3536
3537 // Make sure the object has no tag before resetting top.
3538 And(object, object, Operand(~kHeapObjectTagMask));
3539#ifdef DEBUG
3540 // Check that the object un-allocated is below the current top.
3541 li(scratch, Operand(new_space_allocation_top));
3542 ld(scratch, MemOperand(scratch));
3543 Check(less, kUndoAllocationOfNonAllocatedMemory,
3544 object, Operand(scratch));
3545#endif
3546 // Write the address of the object to un-allocate as the current top.
3547 li(scratch, Operand(new_space_allocation_top));
3548 sd(object, MemOperand(scratch));
3549}
3550
3551
3552void MacroAssembler::AllocateTwoByteString(Register result,
3553 Register length,
3554 Register scratch1,
3555 Register scratch2,
3556 Register scratch3,
3557 Label* gc_required) {
3558 // Calculate the number of bytes needed for the characters in the string while
3559 // observing object alignment.
3560 DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3561 dsll(scratch1, length, 1); // Length in bytes, not chars.
3562 daddiu(scratch1, scratch1,
3563 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3564 And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
3565
3566 // Allocate two-byte string in new space.
3567 Allocate(scratch1,
3568 result,
3569 scratch2,
3570 scratch3,
3571 gc_required,
3572 TAG_OBJECT);
3573
3574 // Set the map, length and hash field.
3575 InitializeNewString(result,
3576 length,
3577 Heap::kStringMapRootIndex,
3578 scratch1,
3579 scratch2);
3580}
3581
3582
3583void MacroAssembler::AllocateOneByteString(Register result, Register length,
3584 Register scratch1, Register scratch2,
3585 Register scratch3,
3586 Label* gc_required) {
3587 // Calculate the number of bytes needed for the characters in the string
3588 // while observing object alignment.
3589 DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3590 DCHECK(kCharSize == 1);
3591 daddiu(scratch1, length,
3592 kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3593 And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
3594
3595 // Allocate one-byte string in new space.
3596 Allocate(scratch1,
3597 result,
3598 scratch2,
3599 scratch3,
3600 gc_required,
3601 TAG_OBJECT);
3602
3603 // Set the map, length and hash field.
3604 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3605 scratch1, scratch2);
3606}
3607
3608
3609void MacroAssembler::AllocateTwoByteConsString(Register result,
3610 Register length,
3611 Register scratch1,
3612 Register scratch2,
3613 Label* gc_required) {
3614 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3615 TAG_OBJECT);
3616 InitializeNewString(result,
3617 length,
3618 Heap::kConsStringMapRootIndex,
3619 scratch1,
3620 scratch2);
3621}
3622
3623
3624void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3625 Register scratch1,
3626 Register scratch2,
3627 Label* gc_required) {
3628 Allocate(ConsString::kSize,
3629 result,
3630 scratch1,
3631 scratch2,
3632 gc_required,
3633 TAG_OBJECT);
3634
3635 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3636 scratch1, scratch2);
3637}
3638
3639
3640void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3641 Register length,
3642 Register scratch1,
3643 Register scratch2,
3644 Label* gc_required) {
3645 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3646 TAG_OBJECT);
3647
3648 InitializeNewString(result,
3649 length,
3650 Heap::kSlicedStringMapRootIndex,
3651 scratch1,
3652 scratch2);
3653}
3654
3655
3656void MacroAssembler::AllocateOneByteSlicedString(Register result,
3657 Register length,
3658 Register scratch1,
3659 Register scratch2,
3660 Label* gc_required) {
3661 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3662 TAG_OBJECT);
3663
3664 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3665 scratch1, scratch2);
3666}
3667
3668
3669void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
3670 Label* not_unique_name) {
3671 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3672 Label succeed;
3673 And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3674 Branch(&succeed, eq, at, Operand(zero_reg));
3675 Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
3676
3677 bind(&succeed);
3678}
3679
3680
3681// Allocates a heap number or jumps to the label if the young space is full and
3682// a scavenge is needed.
3683void MacroAssembler::AllocateHeapNumber(Register result,
3684 Register scratch1,
3685 Register scratch2,
3686 Register heap_number_map,
3687 Label* need_gc,
3688 TaggingMode tagging_mode,
3689 MutableMode mode) {
3690 // Allocate an object in the heap for the heap number and tag it as a heap
3691 // object.
3692 Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
3693 tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
3694
3695 Heap::RootListIndex map_index = mode == MUTABLE
3696 ? Heap::kMutableHeapNumberMapRootIndex
3697 : Heap::kHeapNumberMapRootIndex;
3698 AssertIsRoot(heap_number_map, map_index);
3699
3700 // Store heap number map in the allocated object.
3701 if (tagging_mode == TAG_RESULT) {
3702 sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
3703 } else {
3704 sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3705 }
3706}
3707
3708
3709void MacroAssembler::AllocateHeapNumberWithValue(Register result,
3710 FPURegister value,
3711 Register scratch1,
3712 Register scratch2,
3713 Label* gc_required) {
3714 LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
3715 AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
3716 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3717}
3718
3719
3720// Copies a fixed number of fields of heap objects from src to dst.
3721void MacroAssembler::CopyFields(Register dst,
3722 Register src,
3723 RegList temps,
3724 int field_count) {
3725 DCHECK((temps & dst.bit()) == 0);
3726 DCHECK((temps & src.bit()) == 0);
3727 // Primitive implementation using only one temporary register.
3728
3729 Register tmp = no_reg;
3730 // Find a temp register in temps list.
3731 for (int i = 0; i < kNumRegisters; i++) {
3732 if ((temps & (1 << i)) != 0) {
3733 tmp.code_ = i;
3734 break;
3735 }
3736 }
3737 DCHECK(!tmp.is(no_reg));
3738
3739 for (int i = 0; i < field_count; i++) {
3740 ld(tmp, FieldMemOperand(src, i * kPointerSize));
3741 sd(tmp, FieldMemOperand(dst, i * kPointerSize));
3742 }
3743}
3744
3745
3746void MacroAssembler::CopyBytes(Register src,
3747 Register dst,
3748 Register length,
3749 Register scratch) {
3750 Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
3751
3752 // Align src before copying in word size chunks.
3753 Branch(&byte_loop, le, length, Operand(kPointerSize));
3754 bind(&align_loop_1);
3755 And(scratch, src, kPointerSize - 1);
3756 Branch(&word_loop, eq, scratch, Operand(zero_reg));
3757 lbu(scratch, MemOperand(src));
3758 Daddu(src, src, 1);
3759 sb(scratch, MemOperand(dst));
3760 Daddu(dst, dst, 1);
3761 Dsubu(length, length, Operand(1));
3762 Branch(&align_loop_1, ne, length, Operand(zero_reg));
3763
3764 // Copy bytes in word size chunks.
3765 bind(&word_loop);
3766 if (emit_debug_code()) {
3767 And(scratch, src, kPointerSize - 1);
3768 Assert(eq, kExpectingAlignmentForCopyBytes,
3769 scratch, Operand(zero_reg));
3770 }
3771 Branch(&byte_loop, lt, length, Operand(kPointerSize));
3772 ld(scratch, MemOperand(src));
3773 Daddu(src, src, kPointerSize);
3774
3775 // TODO(kalmard) check if this can be optimized to use sw in most cases.
3776 // Can't use unaligned access - copy byte by byte.
3777 sb(scratch, MemOperand(dst, 0));
3778 dsrl(scratch, scratch, 8);
3779 sb(scratch, MemOperand(dst, 1));
3780 dsrl(scratch, scratch, 8);
3781 sb(scratch, MemOperand(dst, 2));
3782 dsrl(scratch, scratch, 8);
3783 sb(scratch, MemOperand(dst, 3));
3784 dsrl(scratch, scratch, 8);
3785 sb(scratch, MemOperand(dst, 4));
3786 dsrl(scratch, scratch, 8);
3787 sb(scratch, MemOperand(dst, 5));
3788 dsrl(scratch, scratch, 8);
3789 sb(scratch, MemOperand(dst, 6));
3790 dsrl(scratch, scratch, 8);
3791 sb(scratch, MemOperand(dst, 7));
3792 Daddu(dst, dst, 8);
3793
3794 Dsubu(length, length, Operand(kPointerSize));
3795 Branch(&word_loop);
3796
3797 // Copy the last bytes if any left.
3798 bind(&byte_loop);
3799 Branch(&done, eq, length, Operand(zero_reg));
3800 bind(&byte_loop_1);
3801 lbu(scratch, MemOperand(src));
3802 Daddu(src, src, 1);
3803 sb(scratch, MemOperand(dst));
3804 Daddu(dst, dst, 1);
3805 Dsubu(length, length, Operand(1));
3806 Branch(&byte_loop_1, ne, length, Operand(zero_reg));
3807 bind(&done);
3808}
3809
3810
3811void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3812 Register end_offset,
3813 Register filler) {
3814 Label loop, entry;
3815 Branch(&entry);
3816 bind(&loop);
3817 sd(filler, MemOperand(start_offset));
3818 Daddu(start_offset, start_offset, kPointerSize);
3819 bind(&entry);
3820 Branch(&loop, lt, start_offset, Operand(end_offset));
3821}
3822
3823
3824void MacroAssembler::CheckFastElements(Register map,
3825 Register scratch,
3826 Label* fail) {
3827 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3828 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3829 STATIC_ASSERT(FAST_ELEMENTS == 2);
3830 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3831 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3832 Branch(fail, hi, scratch,
3833 Operand(Map::kMaximumBitField2FastHoleyElementValue));
3834}
3835
3836
3837void MacroAssembler::CheckFastObjectElements(Register map,
3838 Register scratch,
3839 Label* fail) {
3840 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3841 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3842 STATIC_ASSERT(FAST_ELEMENTS == 2);
3843 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3844 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3845 Branch(fail, ls, scratch,
3846 Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3847 Branch(fail, hi, scratch,
3848 Operand(Map::kMaximumBitField2FastHoleyElementValue));
3849}
3850
3851
3852void MacroAssembler::CheckFastSmiElements(Register map,
3853 Register scratch,
3854 Label* fail) {
3855 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3856 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3857 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3858 Branch(fail, hi, scratch,
3859 Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3860}
3861
3862
3863void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3864 Register key_reg,
3865 Register elements_reg,
3866 Register scratch1,
3867 Register scratch2,
3868 Register scratch3,
3869 Label* fail,
3870 int elements_offset) {
3871 Label smi_value, maybe_nan, have_double_value, is_nan, done;
3872 Register mantissa_reg = scratch2;
3873 Register exponent_reg = scratch3;
3874
3875 // Handle smi values specially.
3876 JumpIfSmi(value_reg, &smi_value);
3877
3878 // Ensure that the object is a heap number
3879 CheckMap(value_reg,
3880 scratch1,
3881 Heap::kHeapNumberMapRootIndex,
3882 fail,
3883 DONT_DO_SMI_CHECK);
3884
3885 // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
3886 // in the exponent.
3887 li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
3888 lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
3889 Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
3890
3891 lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
3892
3893 bind(&have_double_value);
3894 // dsll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
3895 dsra(scratch1, key_reg, 32 - kDoubleSizeLog2);
3896 Daddu(scratch1, scratch1, elements_reg);
3897 sw(mantissa_reg, FieldMemOperand(
3898 scratch1, FixedDoubleArray::kHeaderSize - elements_offset));
3899 uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset +
3900 sizeof(kHoleNanLower32);
3901 sw(exponent_reg, FieldMemOperand(scratch1, offset));
3902 jmp(&done);
3903
3904 bind(&maybe_nan);
3905 // Could be NaN, Infinity or -Infinity. If fraction is not zero, it's NaN,
3906 // otherwise it's Infinity or -Infinity, and the non-NaN code path applies.
3907 lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
3908 Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
3909 bind(&is_nan);
3910 // Load canonical NaN for storing into the double array.
3911 LoadRoot(at, Heap::kNanValueRootIndex);
3912 lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset));
3913 lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset));
3914 jmp(&have_double_value);
3915
3916 bind(&smi_value);
3917 Daddu(scratch1, elements_reg,
3918 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag -
3919 elements_offset));
3920 // dsll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
3921 dsra(scratch2, key_reg, 32 - kDoubleSizeLog2);
3922 Daddu(scratch1, scratch1, scratch2);
3923 // scratch1 is now effective address of the double element
3924
3925 Register untagged_value = elements_reg;
3926 SmiUntag(untagged_value, value_reg);
3927 mtc1(untagged_value, f2);
3928 cvt_d_w(f0, f2);
3929 sdc1(f0, MemOperand(scratch1, 0));
3930 bind(&done);
3931}
3932
3933
3934void MacroAssembler::CompareMapAndBranch(Register obj,
3935 Register scratch,
3936 Handle<Map> map,
3937 Label* early_success,
3938 Condition cond,
3939 Label* branch_to) {
3940 ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3941 CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
3942}
3943
3944
3945void MacroAssembler::CompareMapAndBranch(Register obj_map,
3946 Handle<Map> map,
3947 Label* early_success,
3948 Condition cond,
3949 Label* branch_to) {
3950 Branch(branch_to, cond, obj_map, Operand(map));
3951}
3952
3953
3954void MacroAssembler::CheckMap(Register obj,
3955 Register scratch,
3956 Handle<Map> map,
3957 Label* fail,
3958 SmiCheckType smi_check_type) {
3959 if (smi_check_type == DO_SMI_CHECK) {
3960 JumpIfSmi(obj, fail);
3961 }
3962 Label success;
3963 CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
3964 bind(&success);
3965}
3966
3967
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003968void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3969 Register scratch2, Handle<WeakCell> cell,
3970 Handle<Code> success,
3971 SmiCheckType smi_check_type) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003972 Label fail;
3973 if (smi_check_type == DO_SMI_CHECK) {
3974 JumpIfSmi(obj, &fail);
3975 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003976 ld(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3977 GetWeakValue(scratch2, cell);
3978 Jump(success, RelocInfo::CODE_TARGET, eq, scratch1, Operand(scratch2));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003979 bind(&fail);
3980}
3981
3982
3983void MacroAssembler::CheckMap(Register obj,
3984 Register scratch,
3985 Heap::RootListIndex index,
3986 Label* fail,
3987 SmiCheckType smi_check_type) {
3988 if (smi_check_type == DO_SMI_CHECK) {
3989 JumpIfSmi(obj, fail);
3990 }
3991 ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3992 LoadRoot(at, index);
3993 Branch(fail, ne, scratch, Operand(at));
3994}
3995
3996
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003997void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
3998 li(value, Operand(cell));
3999 ld(value, FieldMemOperand(value, WeakCell::kValueOffset));
4000}
4001
4002
4003void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
4004 Label* miss) {
4005 GetWeakValue(value, cell);
4006 JumpIfSmi(value, miss);
4007}
4008
4009
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004010void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
4011 if (IsMipsSoftFloatABI) {
4012 Move(dst, v0, v1);
4013 } else {
4014 Move(dst, f0); // Reg f0 is o32 ABI FP return value.
4015 }
4016}
4017
4018
4019void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
4020 if (IsMipsSoftFloatABI) {
4021 Move(dst, a0, a1);
4022 } else {
4023 Move(dst, f12); // Reg f12 is o32 ABI FP first argument value.
4024 }
4025}
4026
4027
4028void MacroAssembler::MovToFloatParameter(DoubleRegister src) {
4029 if (!IsMipsSoftFloatABI) {
4030 Move(f12, src);
4031 } else {
4032 Move(a0, a1, src);
4033 }
4034}
4035
4036
4037void MacroAssembler::MovToFloatResult(DoubleRegister src) {
4038 if (!IsMipsSoftFloatABI) {
4039 Move(f0, src);
4040 } else {
4041 Move(v0, v1, src);
4042 }
4043}
4044
4045
4046void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
4047 DoubleRegister src2) {
4048 if (!IsMipsSoftFloatABI) {
4049 const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
4050 if (src2.is(f12)) {
4051 DCHECK(!src1.is(fparg2));
4052 Move(fparg2, src2);
4053 Move(f12, src1);
4054 } else {
4055 Move(f12, src1);
4056 Move(fparg2, src2);
4057 }
4058 } else {
4059 Move(a0, a1, src1);
4060 Move(a2, a3, src2);
4061 }
4062}
4063
4064
4065// -----------------------------------------------------------------------------
4066// JavaScript invokes.
4067
4068void MacroAssembler::InvokePrologue(const ParameterCount& expected,
4069 const ParameterCount& actual,
4070 Handle<Code> code_constant,
4071 Register code_reg,
4072 Label* done,
4073 bool* definitely_mismatches,
4074 InvokeFlag flag,
4075 const CallWrapper& call_wrapper) {
4076 bool definitely_matches = false;
4077 *definitely_mismatches = false;
4078 Label regular_invoke;
4079
4080 // Check whether the expected and actual arguments count match. If not,
4081 // setup registers according to contract with ArgumentsAdaptorTrampoline:
4082 // a0: actual arguments count
4083 // a1: function (passed through to callee)
4084 // a2: expected arguments count
4085
4086 // The code below is made a lot easier because the calling code already sets
4087 // up actual and expected registers according to the contract if values are
4088 // passed in registers.
4089 DCHECK(actual.is_immediate() || actual.reg().is(a0));
4090 DCHECK(expected.is_immediate() || expected.reg().is(a2));
4091 DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
4092
4093 if (expected.is_immediate()) {
4094 DCHECK(actual.is_immediate());
4095 if (expected.immediate() == actual.immediate()) {
4096 definitely_matches = true;
4097 } else {
4098 li(a0, Operand(actual.immediate()));
4099 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
4100 if (expected.immediate() == sentinel) {
4101 // Don't worry about adapting arguments for builtins that
4102 // don't want that done. Skip adaption code by making it look
4103 // like we have a match between expected and actual number of
4104 // arguments.
4105 definitely_matches = true;
4106 } else {
4107 *definitely_mismatches = true;
4108 li(a2, Operand(expected.immediate()));
4109 }
4110 }
4111 } else if (actual.is_immediate()) {
4112 Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
4113 li(a0, Operand(actual.immediate()));
4114 } else {
4115 Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
4116 }
4117
4118 if (!definitely_matches) {
4119 if (!code_constant.is_null()) {
4120 li(a3, Operand(code_constant));
4121 daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
4122 }
4123
4124 Handle<Code> adaptor =
4125 isolate()->builtins()->ArgumentsAdaptorTrampoline();
4126 if (flag == CALL_FUNCTION) {
4127 call_wrapper.BeforeCall(CallSize(adaptor));
4128 Call(adaptor);
4129 call_wrapper.AfterCall();
4130 if (!*definitely_mismatches) {
4131 Branch(done);
4132 }
4133 } else {
4134 Jump(adaptor, RelocInfo::CODE_TARGET);
4135 }
4136 bind(&regular_invoke);
4137 }
4138}
4139
4140
4141void MacroAssembler::InvokeCode(Register code,
4142 const ParameterCount& expected,
4143 const ParameterCount& actual,
4144 InvokeFlag flag,
4145 const CallWrapper& call_wrapper) {
4146 // You can't call a function without a valid frame.
4147 DCHECK(flag == JUMP_FUNCTION || has_frame());
4148
4149 Label done;
4150
4151 bool definitely_mismatches = false;
4152 InvokePrologue(expected, actual, Handle<Code>::null(), code,
4153 &done, &definitely_mismatches, flag,
4154 call_wrapper);
4155 if (!definitely_mismatches) {
4156 if (flag == CALL_FUNCTION) {
4157 call_wrapper.BeforeCall(CallSize(code));
4158 Call(code);
4159 call_wrapper.AfterCall();
4160 } else {
4161 DCHECK(flag == JUMP_FUNCTION);
4162 Jump(code);
4163 }
4164 // Continue here if InvokePrologue does handle the invocation due to
4165 // mismatched parameter counts.
4166 bind(&done);
4167 }
4168}
4169
4170
4171void MacroAssembler::InvokeFunction(Register function,
4172 const ParameterCount& actual,
4173 InvokeFlag flag,
4174 const CallWrapper& call_wrapper) {
4175 // You can't call a function without a valid frame.
4176 DCHECK(flag == JUMP_FUNCTION || has_frame());
4177
4178 // Contract with called JS functions requires that function is passed in a1.
4179 DCHECK(function.is(a1));
4180 Register expected_reg = a2;
4181 Register code_reg = a3;
4182 ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
4183 ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
4184 // The argument count is stored as int32_t on 64-bit platforms.
4185 // TODO(plind): Smi on 32-bit platforms.
4186 lw(expected_reg,
4187 FieldMemOperand(code_reg,
4188 SharedFunctionInfo::kFormalParameterCountOffset));
4189 ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
4190 ParameterCount expected(expected_reg);
4191 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
4192}
4193
4194
4195void MacroAssembler::InvokeFunction(Register function,
4196 const ParameterCount& expected,
4197 const ParameterCount& actual,
4198 InvokeFlag flag,
4199 const CallWrapper& call_wrapper) {
4200 // You can't call a function without a valid frame.
4201 DCHECK(flag == JUMP_FUNCTION || has_frame());
4202
4203 // Contract with called JS functions requires that function is passed in a1.
4204 DCHECK(function.is(a1));
4205
4206 // Get the function and setup the context.
4207 ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
4208
4209 // We call indirectly through the code field in the function to
4210 // allow recompilation to take effect without changing any of the
4211 // call sites.
4212 ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
4213 InvokeCode(a3, expected, actual, flag, call_wrapper);
4214}
4215
4216
4217void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
4218 const ParameterCount& expected,
4219 const ParameterCount& actual,
4220 InvokeFlag flag,
4221 const CallWrapper& call_wrapper) {
4222 li(a1, function);
4223 InvokeFunction(a1, expected, actual, flag, call_wrapper);
4224}
4225
4226
4227void MacroAssembler::IsObjectJSObjectType(Register heap_object,
4228 Register map,
4229 Register scratch,
4230 Label* fail) {
4231 ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
4232 IsInstanceJSObjectType(map, scratch, fail);
4233}
4234
4235
4236void MacroAssembler::IsInstanceJSObjectType(Register map,
4237 Register scratch,
4238 Label* fail) {
4239 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
4240 Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
4241 Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
4242}
4243
4244
4245void MacroAssembler::IsObjectJSStringType(Register object,
4246 Register scratch,
4247 Label* fail) {
4248 DCHECK(kNotStringTag != 0);
4249
4250 ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
4251 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4252 And(scratch, scratch, Operand(kIsNotStringMask));
4253 Branch(fail, ne, scratch, Operand(zero_reg));
4254}
4255
4256
4257void MacroAssembler::IsObjectNameType(Register object,
4258 Register scratch,
4259 Label* fail) {
4260 ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
4261 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4262 Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE));
4263}
4264
4265
4266// ---------------------------------------------------------------------------
4267// Support functions.
4268
4269
4270void MacroAssembler::TryGetFunctionPrototype(Register function,
4271 Register result,
4272 Register scratch,
4273 Label* miss,
4274 bool miss_on_bound_function) {
4275 Label non_instance;
4276 if (miss_on_bound_function) {
4277 // Check that the receiver isn't a smi.
4278 JumpIfSmi(function, miss);
4279
4280 // Check that the function really is a function. Load map into result reg.
4281 GetObjectType(function, result, scratch);
4282 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
4283
4284 ld(scratch,
4285 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
4286 lwu(scratch,
4287 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
4288 And(scratch, scratch,
4289 Operand(1 << SharedFunctionInfo::kBoundFunction));
4290 Branch(miss, ne, scratch, Operand(zero_reg));
4291
4292 // Make sure that the function has an instance prototype.
4293 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
4294 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
4295 Branch(&non_instance, ne, scratch, Operand(zero_reg));
4296 }
4297
4298 // Get the prototype or initial map from the function.
4299 ld(result,
4300 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4301
4302 // If the prototype or initial map is the hole, don't return it and
4303 // simply miss the cache instead. This will allow us to allocate a
4304 // prototype object on-demand in the runtime system.
4305 LoadRoot(t8, Heap::kTheHoleValueRootIndex);
4306 Branch(miss, eq, result, Operand(t8));
4307
4308 // If the function does not have an initial map, we're done.
4309 Label done;
4310 GetObjectType(result, scratch, scratch);
4311 Branch(&done, ne, scratch, Operand(MAP_TYPE));
4312
4313 // Get the prototype from the initial map.
4314 ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
4315
4316 if (miss_on_bound_function) {
4317 jmp(&done);
4318
4319 // Non-instance prototype: Fetch prototype from constructor field
4320 // in initial map.
4321 bind(&non_instance);
4322 ld(result, FieldMemOperand(result, Map::kConstructorOffset));
4323 }
4324
4325 // All done.
4326 bind(&done);
4327}
4328
4329
4330void MacroAssembler::GetObjectType(Register object,
4331 Register map,
4332 Register type_reg) {
4333 ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
4334 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
4335}
4336
4337
4338// -----------------------------------------------------------------------------
4339// Runtime calls.
4340
4341void MacroAssembler::CallStub(CodeStub* stub,
4342 TypeFeedbackId ast_id,
4343 Condition cond,
4344 Register r1,
4345 const Operand& r2,
4346 BranchDelaySlot bd) {
4347 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
4348 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id,
4349 cond, r1, r2, bd);
4350}
4351
4352
4353void MacroAssembler::TailCallStub(CodeStub* stub,
4354 Condition cond,
4355 Register r1,
4356 const Operand& r2,
4357 BranchDelaySlot bd) {
4358 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
4359}
4360
4361
4362static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
4363 int64_t offset = (ref0.address() - ref1.address());
4364 DCHECK(static_cast<int>(offset) == offset);
4365 return static_cast<int>(offset);
4366}
4367
4368
4369void MacroAssembler::CallApiFunctionAndReturn(
4370 Register function_address,
4371 ExternalReference thunk_ref,
4372 int stack_space,
4373 MemOperand return_value_operand,
4374 MemOperand* context_restore_operand) {
4375 ExternalReference next_address =
4376 ExternalReference::handle_scope_next_address(isolate());
4377 const int kNextOffset = 0;
4378 const int kLimitOffset = AddressOffset(
4379 ExternalReference::handle_scope_limit_address(isolate()),
4380 next_address);
4381 const int kLevelOffset = AddressOffset(
4382 ExternalReference::handle_scope_level_address(isolate()),
4383 next_address);
4384
4385 DCHECK(function_address.is(a1) || function_address.is(a2));
4386
4387 Label profiler_disabled;
4388 Label end_profiler_check;
4389 li(t9, Operand(ExternalReference::is_profiling_address(isolate())));
4390 lb(t9, MemOperand(t9, 0));
4391 Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
4392
4393 // Additional parameter is the address of the actual callback.
4394 li(t9, Operand(thunk_ref));
4395 jmp(&end_profiler_check);
4396
4397 bind(&profiler_disabled);
4398 mov(t9, function_address);
4399 bind(&end_profiler_check);
4400
4401 // Allocate HandleScope in callee-save registers.
4402 li(s3, Operand(next_address));
4403 ld(s0, MemOperand(s3, kNextOffset));
4404 ld(s1, MemOperand(s3, kLimitOffset));
4405 ld(s2, MemOperand(s3, kLevelOffset));
4406 Daddu(s2, s2, Operand(1));
4407 sd(s2, MemOperand(s3, kLevelOffset));
4408
4409 if (FLAG_log_timer_events) {
4410 FrameScope frame(this, StackFrame::MANUAL);
4411 PushSafepointRegisters();
4412 PrepareCallCFunction(1, a0);
4413 li(a0, Operand(ExternalReference::isolate_address(isolate())));
4414 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
4415 PopSafepointRegisters();
4416 }
4417
4418 // Native call returns to the DirectCEntry stub which redirects to the
4419 // return address pushed on stack (could have moved after GC).
4420 // DirectCEntry stub itself is generated early and never moves.
4421 DirectCEntryStub stub(isolate());
4422 stub.GenerateCall(this, t9);
4423
4424 if (FLAG_log_timer_events) {
4425 FrameScope frame(this, StackFrame::MANUAL);
4426 PushSafepointRegisters();
4427 PrepareCallCFunction(1, a0);
4428 li(a0, Operand(ExternalReference::isolate_address(isolate())));
4429 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
4430 PopSafepointRegisters();
4431 }
4432
4433 Label promote_scheduled_exception;
4434 Label exception_handled;
4435 Label delete_allocated_handles;
4436 Label leave_exit_frame;
4437 Label return_value_loaded;
4438
4439 // Load value from ReturnValue.
4440 ld(v0, return_value_operand);
4441 bind(&return_value_loaded);
4442
4443 // No more valid handles (the result handle was the last one). Restore
4444 // previous handle scope.
4445 sd(s0, MemOperand(s3, kNextOffset));
4446 if (emit_debug_code()) {
4447 ld(a1, MemOperand(s3, kLevelOffset));
4448 Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
4449 }
4450 Dsubu(s2, s2, Operand(1));
4451 sd(s2, MemOperand(s3, kLevelOffset));
4452 ld(at, MemOperand(s3, kLimitOffset));
4453 Branch(&delete_allocated_handles, ne, s1, Operand(at));
4454
4455 // Check if the function scheduled an exception.
4456 bind(&leave_exit_frame);
4457 LoadRoot(a4, Heap::kTheHoleValueRootIndex);
4458 li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
4459 ld(a5, MemOperand(at));
4460 Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
4461 bind(&exception_handled);
4462
4463 bool restore_context = context_restore_operand != NULL;
4464 if (restore_context) {
4465 ld(cp, *context_restore_operand);
4466 }
4467 li(s0, Operand(stack_space));
4468 LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN);
4469
4470 bind(&promote_scheduled_exception);
4471 {
4472 FrameScope frame(this, StackFrame::INTERNAL);
4473 CallExternalReference(
4474 ExternalReference(Runtime::kPromoteScheduledException, isolate()),
4475 0);
4476 }
4477 jmp(&exception_handled);
4478
4479 // HandleScope limit has changed. Delete allocated extensions.
4480 bind(&delete_allocated_handles);
4481 sd(s1, MemOperand(s3, kLimitOffset));
4482 mov(s0, v0);
4483 mov(a0, v0);
4484 PrepareCallCFunction(1, s1);
4485 li(a0, Operand(ExternalReference::isolate_address(isolate())));
4486 CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
4487 1);
4488 mov(v0, s0);
4489 jmp(&leave_exit_frame);
4490}
4491
4492
4493bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
4494 return has_frame_ || !stub->SometimesSetsUpAFrame();
4495}
4496
4497
4498void MacroAssembler::IndexFromHash(Register hash, Register index) {
4499 // If the hash field contains an array index pick it out. The assert checks
4500 // that the constants for the maximum number of digits for an array index
4501 // cached in the hash field and the number of bits reserved for it does not
4502 // conflict.
4503 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
4504 (1 << String::kArrayIndexValueBits));
4505 DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
4506}
4507
4508
4509void MacroAssembler::ObjectToDoubleFPURegister(Register object,
4510 FPURegister result,
4511 Register scratch1,
4512 Register scratch2,
4513 Register heap_number_map,
4514 Label* not_number,
4515 ObjectToDoubleFlags flags) {
4516 Label done;
4517 if ((flags & OBJECT_NOT_SMI) == 0) {
4518 Label not_smi;
4519 JumpIfNotSmi(object, &not_smi);
4520 // Remove smi tag and convert to double.
4521 // dsra(scratch1, object, kSmiTagSize);
4522 dsra32(scratch1, object, 0);
4523 mtc1(scratch1, result);
4524 cvt_d_w(result, result);
4525 Branch(&done);
4526 bind(&not_smi);
4527 }
4528 // Check for heap number and load double value from it.
4529 ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
4530 Branch(not_number, ne, scratch1, Operand(heap_number_map));
4531
4532 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
4533 // If exponent is all ones the number is either a NaN or +/-Infinity.
4534 Register exponent = scratch1;
4535 Register mask_reg = scratch2;
4536 lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
4537 li(mask_reg, HeapNumber::kExponentMask);
4538
4539 And(exponent, exponent, mask_reg);
4540 Branch(not_number, eq, exponent, Operand(mask_reg));
4541 }
4542 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
4543 bind(&done);
4544}
4545
4546
4547void MacroAssembler::SmiToDoubleFPURegister(Register smi,
4548 FPURegister value,
4549 Register scratch1) {
4550 // dsra(scratch1, smi, kSmiTagSize);
4551 dsra32(scratch1, smi, 0);
4552 mtc1(scratch1, value);
4553 cvt_d_w(value, value);
4554}
4555
4556
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004557void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left,
4558 const Operand& right,
4559 Register overflow_dst,
4560 Register scratch) {
4561 if (right.is_reg()) {
4562 AdduAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch);
4563 } else {
4564 if (dst.is(left)) {
4565 mov(scratch, left); // Preserve left.
4566 daddiu(dst, left, right.immediate()); // Left is overwritten.
4567 xor_(scratch, dst, scratch); // Original left.
4568 // Load right since xori takes uint16 as immediate.
4569 daddiu(t9, zero_reg, right.immediate());
4570 xor_(overflow_dst, dst, t9);
4571 and_(overflow_dst, overflow_dst, scratch);
4572 } else {
4573 daddiu(dst, left, right.immediate());
4574 xor_(overflow_dst, dst, left);
4575 // Load right since xori takes uint16 as immediate.
4576 daddiu(t9, zero_reg, right.immediate());
4577 xor_(scratch, dst, t9);
4578 and_(overflow_dst, scratch, overflow_dst);
4579 }
4580 }
4581}
4582
4583
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004584void MacroAssembler::AdduAndCheckForOverflow(Register dst,
4585 Register left,
4586 Register right,
4587 Register overflow_dst,
4588 Register scratch) {
4589 DCHECK(!dst.is(overflow_dst));
4590 DCHECK(!dst.is(scratch));
4591 DCHECK(!overflow_dst.is(scratch));
4592 DCHECK(!overflow_dst.is(left));
4593 DCHECK(!overflow_dst.is(right));
4594
4595 if (left.is(right) && dst.is(left)) {
4596 DCHECK(!dst.is(t9));
4597 DCHECK(!scratch.is(t9));
4598 DCHECK(!left.is(t9));
4599 DCHECK(!right.is(t9));
4600 DCHECK(!overflow_dst.is(t9));
4601 mov(t9, right);
4602 right = t9;
4603 }
4604
4605 if (dst.is(left)) {
4606 mov(scratch, left); // Preserve left.
4607 daddu(dst, left, right); // Left is overwritten.
4608 xor_(scratch, dst, scratch); // Original left.
4609 xor_(overflow_dst, dst, right);
4610 and_(overflow_dst, overflow_dst, scratch);
4611 } else if (dst.is(right)) {
4612 mov(scratch, right); // Preserve right.
4613 daddu(dst, left, right); // Right is overwritten.
4614 xor_(scratch, dst, scratch); // Original right.
4615 xor_(overflow_dst, dst, left);
4616 and_(overflow_dst, overflow_dst, scratch);
4617 } else {
4618 daddu(dst, left, right);
4619 xor_(overflow_dst, dst, left);
4620 xor_(scratch, dst, right);
4621 and_(overflow_dst, scratch, overflow_dst);
4622 }
4623}
4624
4625
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004626void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left,
4627 const Operand& right,
4628 Register overflow_dst,
4629 Register scratch) {
4630 if (right.is_reg()) {
4631 SubuAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch);
4632 } else {
4633 if (dst.is(left)) {
4634 mov(scratch, left); // Preserve left.
4635 daddiu(dst, left, -(right.immediate())); // Left is overwritten.
4636 xor_(overflow_dst, dst, scratch); // scratch is original left.
4637 // Load right since xori takes uint16 as immediate.
4638 daddiu(t9, zero_reg, right.immediate());
4639 xor_(scratch, scratch, t9); // scratch is original left.
4640 and_(overflow_dst, scratch, overflow_dst);
4641 } else {
4642 daddiu(dst, left, -(right.immediate()));
4643 xor_(overflow_dst, dst, left);
4644 // Load right since xori takes uint16 as immediate.
4645 daddiu(t9, zero_reg, right.immediate());
4646 xor_(scratch, left, t9);
4647 and_(overflow_dst, scratch, overflow_dst);
4648 }
4649 }
4650}
4651
4652
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004653void MacroAssembler::SubuAndCheckForOverflow(Register dst,
4654 Register left,
4655 Register right,
4656 Register overflow_dst,
4657 Register scratch) {
4658 DCHECK(!dst.is(overflow_dst));
4659 DCHECK(!dst.is(scratch));
4660 DCHECK(!overflow_dst.is(scratch));
4661 DCHECK(!overflow_dst.is(left));
4662 DCHECK(!overflow_dst.is(right));
4663 DCHECK(!scratch.is(left));
4664 DCHECK(!scratch.is(right));
4665
4666 // This happens with some crankshaft code. Since Subu works fine if
4667 // left == right, let's not make that restriction here.
4668 if (left.is(right)) {
4669 mov(dst, zero_reg);
4670 mov(overflow_dst, zero_reg);
4671 return;
4672 }
4673
4674 if (dst.is(left)) {
4675 mov(scratch, left); // Preserve left.
4676 dsubu(dst, left, right); // Left is overwritten.
4677 xor_(overflow_dst, dst, scratch); // scratch is original left.
4678 xor_(scratch, scratch, right); // scratch is original left.
4679 and_(overflow_dst, scratch, overflow_dst);
4680 } else if (dst.is(right)) {
4681 mov(scratch, right); // Preserve right.
4682 dsubu(dst, left, right); // Right is overwritten.
4683 xor_(overflow_dst, dst, left);
4684 xor_(scratch, left, scratch); // Original right.
4685 and_(overflow_dst, scratch, overflow_dst);
4686 } else {
4687 dsubu(dst, left, right);
4688 xor_(overflow_dst, dst, left);
4689 xor_(scratch, left, right);
4690 and_(overflow_dst, scratch, overflow_dst);
4691 }
4692}
4693
4694
4695void MacroAssembler::CallRuntime(const Runtime::Function* f,
4696 int num_arguments,
4697 SaveFPRegsMode save_doubles) {
4698 // All parameters are on the stack. v0 has the return value after call.
4699
4700 // If the expected number of arguments of the runtime function is
4701 // constant, we check that the actual number of arguments match the
4702 // expectation.
4703 CHECK(f->nargs < 0 || f->nargs == num_arguments);
4704
4705 // TODO(1236192): Most runtime routines don't need the number of
4706 // arguments passed in because it is constant. At some point we
4707 // should remove this need and make the runtime routine entry code
4708 // smarter.
4709 PrepareCEntryArgs(num_arguments);
4710 PrepareCEntryFunction(ExternalReference(f, isolate()));
4711 CEntryStub stub(isolate(), 1, save_doubles);
4712 CallStub(&stub);
4713}
4714
4715
4716void MacroAssembler::CallExternalReference(const ExternalReference& ext,
4717 int num_arguments,
4718 BranchDelaySlot bd) {
4719 PrepareCEntryArgs(num_arguments);
4720 PrepareCEntryFunction(ext);
4721
4722 CEntryStub stub(isolate(), 1);
4723 CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd);
4724}
4725
4726
4727void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
4728 int num_arguments,
4729 int result_size) {
4730 // TODO(1236192): Most runtime routines don't need the number of
4731 // arguments passed in because it is constant. At some point we
4732 // should remove this need and make the runtime routine entry code
4733 // smarter.
4734 PrepareCEntryArgs(num_arguments);
4735 JumpToExternalReference(ext);
4736}
4737
4738
4739void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
4740 int num_arguments,
4741 int result_size) {
4742 TailCallExternalReference(ExternalReference(fid, isolate()),
4743 num_arguments,
4744 result_size);
4745}
4746
4747
4748void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
4749 BranchDelaySlot bd) {
4750 PrepareCEntryFunction(builtin);
4751 CEntryStub stub(isolate(), 1);
4752 Jump(stub.GetCode(),
4753 RelocInfo::CODE_TARGET,
4754 al,
4755 zero_reg,
4756 Operand(zero_reg),
4757 bd);
4758}
4759
4760
4761void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
4762 InvokeFlag flag,
4763 const CallWrapper& call_wrapper) {
4764 // You can't call a builtin without a valid frame.
4765 DCHECK(flag == JUMP_FUNCTION || has_frame());
4766
4767 GetBuiltinEntry(t9, id);
4768 if (flag == CALL_FUNCTION) {
4769 call_wrapper.BeforeCall(CallSize(t9));
4770 Call(t9);
4771 call_wrapper.AfterCall();
4772 } else {
4773 DCHECK(flag == JUMP_FUNCTION);
4774 Jump(t9);
4775 }
4776}
4777
4778
4779void MacroAssembler::GetBuiltinFunction(Register target,
4780 Builtins::JavaScript id) {
4781 // Load the builtins object into target register.
4782 ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
4783 ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
4784 // Load the JavaScript builtin function from the builtins object.
4785 ld(target, FieldMemOperand(target,
4786 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
4787}
4788
4789
4790void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
4791 DCHECK(!target.is(a1));
4792 GetBuiltinFunction(a1, id);
4793 // Load the code entry point from the builtins object.
4794 ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
4795}
4796
4797
4798void MacroAssembler::SetCounter(StatsCounter* counter, int value,
4799 Register scratch1, Register scratch2) {
4800 if (FLAG_native_code_counters && counter->Enabled()) {
4801 li(scratch1, Operand(value));
4802 li(scratch2, Operand(ExternalReference(counter)));
4803 sd(scratch1, MemOperand(scratch2));
4804 }
4805}
4806
4807
4808void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
4809 Register scratch1, Register scratch2) {
4810 DCHECK(value > 0);
4811 if (FLAG_native_code_counters && counter->Enabled()) {
4812 li(scratch2, Operand(ExternalReference(counter)));
4813 ld(scratch1, MemOperand(scratch2));
4814 Daddu(scratch1, scratch1, Operand(value));
4815 sd(scratch1, MemOperand(scratch2));
4816 }
4817}
4818
4819
4820void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
4821 Register scratch1, Register scratch2) {
4822 DCHECK(value > 0);
4823 if (FLAG_native_code_counters && counter->Enabled()) {
4824 li(scratch2, Operand(ExternalReference(counter)));
4825 ld(scratch1, MemOperand(scratch2));
4826 Dsubu(scratch1, scratch1, Operand(value));
4827 sd(scratch1, MemOperand(scratch2));
4828 }
4829}
4830
4831
4832// -----------------------------------------------------------------------------
4833// Debugging.
4834
4835void MacroAssembler::Assert(Condition cc, BailoutReason reason,
4836 Register rs, Operand rt) {
4837 if (emit_debug_code())
4838 Check(cc, reason, rs, rt);
4839}
4840
4841
4842void MacroAssembler::AssertFastElements(Register elements) {
4843 if (emit_debug_code()) {
4844 DCHECK(!elements.is(at));
4845 Label ok;
4846 push(elements);
4847 ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
4848 LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4849 Branch(&ok, eq, elements, Operand(at));
4850 LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
4851 Branch(&ok, eq, elements, Operand(at));
4852 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
4853 Branch(&ok, eq, elements, Operand(at));
4854 Abort(kJSObjectWithFastElementsMapHasSlowElements);
4855 bind(&ok);
4856 pop(elements);
4857 }
4858}
4859
4860
4861void MacroAssembler::Check(Condition cc, BailoutReason reason,
4862 Register rs, Operand rt) {
4863 Label L;
4864 Branch(&L, cc, rs, rt);
4865 Abort(reason);
4866 // Will not return here.
4867 bind(&L);
4868}
4869
4870
4871void MacroAssembler::Abort(BailoutReason reason) {
4872 Label abort_start;
4873 bind(&abort_start);
4874#ifdef DEBUG
4875 const char* msg = GetBailoutReason(reason);
4876 if (msg != NULL) {
4877 RecordComment("Abort message: ");
4878 RecordComment(msg);
4879 }
4880
4881 if (FLAG_trap_on_abort) {
4882 stop(msg);
4883 return;
4884 }
4885#endif
4886
4887 li(a0, Operand(Smi::FromInt(reason)));
4888 push(a0);
4889 // Disable stub call restrictions to always allow calls to abort.
4890 if (!has_frame_) {
4891 // We don't actually want to generate a pile of code for this, so just
4892 // claim there is a stack frame, without generating one.
4893 FrameScope scope(this, StackFrame::NONE);
4894 CallRuntime(Runtime::kAbort, 1);
4895 } else {
4896 CallRuntime(Runtime::kAbort, 1);
4897 }
4898 // Will not return here.
4899 if (is_trampoline_pool_blocked()) {
4900 // If the calling code cares about the exact number of
4901 // instructions generated, we insert padding here to keep the size
4902 // of the Abort macro constant.
4903 // Currently in debug mode with debug_code enabled the number of
4904 // generated instructions is 10, so we use this as a maximum value.
4905 static const int kExpectedAbortInstructions = 10;
4906 int abort_instructions = InstructionsGeneratedSince(&abort_start);
4907 DCHECK(abort_instructions <= kExpectedAbortInstructions);
4908 while (abort_instructions++ < kExpectedAbortInstructions) {
4909 nop();
4910 }
4911 }
4912}
4913
4914
4915void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
4916 if (context_chain_length > 0) {
4917 // Move up the chain of contexts to the context containing the slot.
4918 ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4919 for (int i = 1; i < context_chain_length; i++) {
4920 ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4921 }
4922 } else {
4923 // Slot is in the current function context. Move it into the
4924 // destination register in case we store into it (the write barrier
4925 // cannot be allowed to destroy the context in esi).
4926 Move(dst, cp);
4927 }
4928}
4929
4930
4931void MacroAssembler::LoadTransitionedArrayMapConditional(
4932 ElementsKind expected_kind,
4933 ElementsKind transitioned_kind,
4934 Register map_in_out,
4935 Register scratch,
4936 Label* no_map_match) {
4937 // Load the global or builtins object from the current context.
4938 ld(scratch,
4939 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
4940 ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
4941
4942 // Check that the function's map is the same as the expected cached map.
4943 ld(scratch,
4944 MemOperand(scratch,
4945 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
4946 size_t offset = expected_kind * kPointerSize +
4947 FixedArrayBase::kHeaderSize;
4948 ld(at, FieldMemOperand(scratch, offset));
4949 Branch(no_map_match, ne, map_in_out, Operand(at));
4950
4951 // Use the transitioned cached map.
4952 offset = transitioned_kind * kPointerSize +
4953 FixedArrayBase::kHeaderSize;
4954 ld(map_in_out, FieldMemOperand(scratch, offset));
4955}
4956
4957
4958void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4959 // Load the global or builtins object from the current context.
4960 ld(function,
4961 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
4962 // Load the native context from the global or builtins object.
4963 ld(function, FieldMemOperand(function,
4964 GlobalObject::kNativeContextOffset));
4965 // Load the function from the native context.
4966 ld(function, MemOperand(function, Context::SlotOffset(index)));
4967}
4968
4969
4970void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4971 Register map,
4972 Register scratch) {
4973 // Load the initial map. The global functions all have initial maps.
4974 ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4975 if (emit_debug_code()) {
4976 Label ok, fail;
4977 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4978 Branch(&ok);
4979 bind(&fail);
4980 Abort(kGlobalFunctionsMustHaveInitialMap);
4981 bind(&ok);
4982 }
4983}
4984
4985
4986void MacroAssembler::StubPrologue() {
4987 Push(ra, fp, cp);
4988 Push(Smi::FromInt(StackFrame::STUB));
4989 // Adjust FP to point to saved FP.
4990 Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
4991}
4992
4993
4994void MacroAssembler::Prologue(bool code_pre_aging) {
4995 PredictableCodeSizeScope predictible_code_size_scope(
4996 this, kNoCodeAgeSequenceLength);
4997 // The following three instructions must remain together and unmodified
4998 // for code aging to work properly.
4999 if (code_pre_aging) {
5000 // Pre-age the code.
5001 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
5002 nop(Assembler::CODE_AGE_MARKER_NOP);
5003 // Load the stub address to t9 and call it,
5004 // GetCodeAgeAndParity() extracts the stub address from this instruction.
5005 li(t9,
5006 Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
5007 ADDRESS_LOAD);
5008 nop(); // Prevent jalr to jal optimization.
5009 jalr(t9, a0);
5010 nop(); // Branch delay slot nop.
5011 nop(); // Pad the empty space.
5012 } else {
5013 Push(ra, fp, cp, a1);
5014 nop(Assembler::CODE_AGE_SEQUENCE_NOP);
5015 nop(Assembler::CODE_AGE_SEQUENCE_NOP);
5016 nop(Assembler::CODE_AGE_SEQUENCE_NOP);
5017 // Adjust fp to point to caller's fp.
5018 Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
5019 }
5020}
5021
5022
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005023void MacroAssembler::EnterFrame(StackFrame::Type type,
5024 bool load_constant_pool_pointer_reg) {
5025 // Out-of-line constant pool not implemented on mips64.
5026 UNREACHABLE();
5027}
5028
5029
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005030void MacroAssembler::EnterFrame(StackFrame::Type type) {
5031 daddiu(sp, sp, -5 * kPointerSize);
5032 li(t8, Operand(Smi::FromInt(type)));
5033 li(t9, Operand(CodeObject()), CONSTANT_SIZE);
5034 sd(ra, MemOperand(sp, 4 * kPointerSize));
5035 sd(fp, MemOperand(sp, 3 * kPointerSize));
5036 sd(cp, MemOperand(sp, 2 * kPointerSize));
5037 sd(t8, MemOperand(sp, 1 * kPointerSize));
5038 sd(t9, MemOperand(sp, 0 * kPointerSize));
5039 // Adjust FP to point to saved FP.
5040 Daddu(fp, sp,
5041 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
5042}
5043
5044
5045void MacroAssembler::LeaveFrame(StackFrame::Type type) {
5046 mov(sp, fp);
5047 ld(fp, MemOperand(sp, 0 * kPointerSize));
5048 ld(ra, MemOperand(sp, 1 * kPointerSize));
5049 daddiu(sp, sp, 2 * kPointerSize);
5050}
5051
5052
5053void MacroAssembler::EnterExitFrame(bool save_doubles,
5054 int stack_space) {
5055 // Set up the frame structure on the stack.
5056 STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
5057 STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
5058 STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
5059
5060 // This is how the stack will look:
5061 // fp + 2 (==kCallerSPDisplacement) - old stack's end
5062 // [fp + 1 (==kCallerPCOffset)] - saved old ra
5063 // [fp + 0 (==kCallerFPOffset)] - saved old fp
5064 // [fp - 1 (==kSPOffset)] - sp of the called function
5065 // [fp - 2 (==kCodeOffset)] - CodeObject
5066 // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
5067 // new stack (will contain saved ra)
5068
5069 // Save registers.
5070 daddiu(sp, sp, -4 * kPointerSize);
5071 sd(ra, MemOperand(sp, 3 * kPointerSize));
5072 sd(fp, MemOperand(sp, 2 * kPointerSize));
5073 daddiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer.
5074
5075 if (emit_debug_code()) {
5076 sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
5077 }
5078
5079 // Accessed from ExitFrame::code_slot.
5080 li(t8, Operand(CodeObject()), CONSTANT_SIZE);
5081 sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
5082
5083 // Save the frame pointer and the context in top.
5084 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
5085 sd(fp, MemOperand(t8));
5086 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
5087 sd(cp, MemOperand(t8));
5088
5089 const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
5090 if (save_doubles) {
5091 // The stack is already aligned to 0 modulo 8 for stores with sdc1.
5092 int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
5093 int space = kNumOfSavedRegisters * kDoubleSize ;
5094 Dsubu(sp, sp, Operand(space));
5095 // Remember: we only need to save every 2nd double FPU value.
5096 for (int i = 0; i < kNumOfSavedRegisters; i++) {
5097 FPURegister reg = FPURegister::from_code(2 * i);
5098 sdc1(reg, MemOperand(sp, i * kDoubleSize));
5099 }
5100 }
5101
5102 // Reserve place for the return address, stack space and an optional slot
5103 // (used by the DirectCEntryStub to hold the return value if a struct is
5104 // returned) and align the frame preparing for calling the runtime function.
5105 DCHECK(stack_space >= 0);
5106 Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
5107 if (frame_alignment > 0) {
5108 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
5109 And(sp, sp, Operand(-frame_alignment)); // Align stack.
5110 }
5111
5112 // Set the exit frame sp value to point just before the return address
5113 // location.
5114 daddiu(at, sp, kPointerSize);
5115 sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
5116}
5117
5118
5119void MacroAssembler::LeaveExitFrame(bool save_doubles,
5120 Register argument_count,
5121 bool restore_context,
5122 bool do_return) {
5123 // Optionally restore all double registers.
5124 if (save_doubles) {
5125 // Remember: we only need to restore every 2nd double FPU value.
5126 int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
5127 Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize +
5128 kNumOfSavedRegisters * kDoubleSize));
5129 for (int i = 0; i < kNumOfSavedRegisters; i++) {
5130 FPURegister reg = FPURegister::from_code(2 * i);
5131 ldc1(reg, MemOperand(t8, i * kDoubleSize));
5132 }
5133 }
5134
5135 // Clear top frame.
5136 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
5137 sd(zero_reg, MemOperand(t8));
5138
5139 // Restore current context from top and clear it in debug mode.
5140 if (restore_context) {
5141 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
5142 ld(cp, MemOperand(t8));
5143 }
5144#ifdef DEBUG
5145 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
5146 sd(a3, MemOperand(t8));
5147#endif
5148
5149 // Pop the arguments, restore registers, and return.
5150 mov(sp, fp); // Respect ABI stack constraint.
5151 ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
5152 ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
5153
5154 if (argument_count.is_valid()) {
5155 dsll(t8, argument_count, kPointerSizeLog2);
5156 daddu(sp, sp, t8);
5157 }
5158
5159 if (do_return) {
5160 Ret(USE_DELAY_SLOT);
5161 // If returning, the instruction in the delay slot will be the addiu below.
5162 }
5163 daddiu(sp, sp, 2 * kPointerSize);
5164}
5165
5166
5167void MacroAssembler::InitializeNewString(Register string,
5168 Register length,
5169 Heap::RootListIndex map_index,
5170 Register scratch1,
5171 Register scratch2) {
5172 // dsll(scratch1, length, kSmiTagSize);
5173 dsll32(scratch1, length, 0);
5174 LoadRoot(scratch2, map_index);
5175 sd(scratch1, FieldMemOperand(string, String::kLengthOffset));
5176 li(scratch1, Operand(String::kEmptyHashField));
5177 sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
5178 sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
5179}
5180
5181
5182int MacroAssembler::ActivationFrameAlignment() {
5183#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
5184 // Running on the real platform. Use the alignment as mandated by the local
5185 // environment.
5186 // Note: This will break if we ever start generating snapshots on one Mips
5187 // platform for another Mips platform with a different alignment.
5188 return base::OS::ActivationFrameAlignment();
5189#else // V8_HOST_ARCH_MIPS
5190 // If we are using the simulator then we should always align to the expected
5191 // alignment. As the simulator is used to generate snapshots we do not know
5192 // if the target platform will need alignment, so this is controlled from a
5193 // flag.
5194 return FLAG_sim_stack_alignment;
5195#endif // V8_HOST_ARCH_MIPS
5196}
5197
5198
5199void MacroAssembler::AssertStackIsAligned() {
5200 if (emit_debug_code()) {
5201 const int frame_alignment = ActivationFrameAlignment();
5202 const int frame_alignment_mask = frame_alignment - 1;
5203
5204 if (frame_alignment > kPointerSize) {
5205 Label alignment_as_expected;
5206 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
5207 andi(at, sp, frame_alignment_mask);
5208 Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
5209 // Don't use Check here, as it will call Runtime_Abort re-entering here.
5210 stop("Unexpected stack alignment");
5211 bind(&alignment_as_expected);
5212 }
5213 }
5214}
5215
5216
5217void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
5218 Register reg,
5219 Register scratch,
5220 Label* not_power_of_two_or_zero) {
5221 Dsubu(scratch, reg, Operand(1));
5222 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
5223 scratch, Operand(zero_reg));
5224 and_(at, scratch, reg); // In the delay slot.
5225 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
5226}
5227
5228
5229void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
5230 DCHECK(!reg.is(overflow));
5231 mov(overflow, reg); // Save original value.
5232 SmiTag(reg);
5233 xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0.
5234}
5235
5236
5237void MacroAssembler::SmiTagCheckOverflow(Register dst,
5238 Register src,
5239 Register overflow) {
5240 if (dst.is(src)) {
5241 // Fall back to slower case.
5242 SmiTagCheckOverflow(dst, overflow);
5243 } else {
5244 DCHECK(!dst.is(src));
5245 DCHECK(!dst.is(overflow));
5246 DCHECK(!src.is(overflow));
5247 SmiTag(dst, src);
5248 xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0.
5249 }
5250}
5251
5252
5253void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
5254 if (SmiValuesAre32Bits()) {
5255 lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
5256 } else {
5257 lw(dst, src);
5258 SmiUntag(dst);
5259 }
5260}
5261
5262
5263void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
5264 if (SmiValuesAre32Bits()) {
5265 // TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
5266 lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
5267 dsll(dst, dst, scale);
5268 } else {
5269 lw(dst, src);
5270 DCHECK(scale >= kSmiTagSize);
5271 sll(dst, dst, scale - kSmiTagSize);
5272 }
5273}
5274
5275
5276// Returns 2 values: the Smi and a scaled version of the int within the Smi.
5277void MacroAssembler::SmiLoadWithScale(Register d_smi,
5278 Register d_scaled,
5279 MemOperand src,
5280 int scale) {
5281 if (SmiValuesAre32Bits()) {
5282 ld(d_smi, src);
5283 dsra(d_scaled, d_smi, kSmiShift - scale);
5284 } else {
5285 lw(d_smi, src);
5286 DCHECK(scale >= kSmiTagSize);
5287 sll(d_scaled, d_smi, scale - kSmiTagSize);
5288 }
5289}
5290
5291
5292// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
5293void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
5294 Register d_scaled,
5295 MemOperand src,
5296 int scale) {
5297 if (SmiValuesAre32Bits()) {
5298 lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
5299 dsll(d_scaled, d_int, scale);
5300 } else {
5301 lw(d_int, src);
5302 // Need both the int and the scaled in, so use two instructions.
5303 SmiUntag(d_int);
5304 sll(d_scaled, d_int, scale);
5305 }
5306}
5307
5308
5309void MacroAssembler::UntagAndJumpIfSmi(Register dst,
5310 Register src,
5311 Label* smi_case) {
5312 // DCHECK(!dst.is(src));
5313 JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
5314 SmiUntag(dst, src);
5315}
5316
5317
5318void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
5319 Register src,
5320 Label* non_smi_case) {
5321 // DCHECK(!dst.is(src));
5322 JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
5323 SmiUntag(dst, src);
5324}
5325
5326void MacroAssembler::JumpIfSmi(Register value,
5327 Label* smi_label,
5328 Register scratch,
5329 BranchDelaySlot bd) {
5330 DCHECK_EQ(0, kSmiTag);
5331 andi(scratch, value, kSmiTagMask);
5332 Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
5333}
5334
5335void MacroAssembler::JumpIfNotSmi(Register value,
5336 Label* not_smi_label,
5337 Register scratch,
5338 BranchDelaySlot bd) {
5339 DCHECK_EQ(0, kSmiTag);
5340 andi(scratch, value, kSmiTagMask);
5341 Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
5342}
5343
5344
5345void MacroAssembler::JumpIfNotBothSmi(Register reg1,
5346 Register reg2,
5347 Label* on_not_both_smi) {
5348 STATIC_ASSERT(kSmiTag == 0);
5349 // TODO(plind): Find some better to fix this assert issue.
5350#if defined(__APPLE__)
5351 DCHECK_EQ(1, kSmiTagMask);
5352#else
5353 DCHECK_EQ((uint64_t)1, kSmiTagMask);
5354#endif
5355 or_(at, reg1, reg2);
5356 JumpIfNotSmi(at, on_not_both_smi);
5357}
5358
5359
5360void MacroAssembler::JumpIfEitherSmi(Register reg1,
5361 Register reg2,
5362 Label* on_either_smi) {
5363 STATIC_ASSERT(kSmiTag == 0);
5364 // TODO(plind): Find some better to fix this assert issue.
5365#if defined(__APPLE__)
5366 DCHECK_EQ(1, kSmiTagMask);
5367#else
5368 DCHECK_EQ((uint64_t)1, kSmiTagMask);
5369#endif
5370 // Both Smi tags must be 1 (not Smi).
5371 and_(at, reg1, reg2);
5372 JumpIfSmi(at, on_either_smi);
5373}
5374
5375
5376void MacroAssembler::AssertNotSmi(Register object) {
5377 if (emit_debug_code()) {
5378 STATIC_ASSERT(kSmiTag == 0);
5379 andi(at, object, kSmiTagMask);
5380 Check(ne, kOperandIsASmi, at, Operand(zero_reg));
5381 }
5382}
5383
5384
5385void MacroAssembler::AssertSmi(Register object) {
5386 if (emit_debug_code()) {
5387 STATIC_ASSERT(kSmiTag == 0);
5388 andi(at, object, kSmiTagMask);
5389 Check(eq, kOperandIsASmi, at, Operand(zero_reg));
5390 }
5391}
5392
5393
5394void MacroAssembler::AssertString(Register object) {
5395 if (emit_debug_code()) {
5396 STATIC_ASSERT(kSmiTag == 0);
5397 SmiTst(object, a4);
5398 Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg));
5399 push(object);
5400 ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
5401 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
5402 Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE));
5403 pop(object);
5404 }
5405}
5406
5407
5408void MacroAssembler::AssertName(Register object) {
5409 if (emit_debug_code()) {
5410 STATIC_ASSERT(kSmiTag == 0);
5411 SmiTst(object, a4);
5412 Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg));
5413 push(object);
5414 ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
5415 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
5416 Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE));
5417 pop(object);
5418 }
5419}
5420
5421
5422void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
5423 Register scratch) {
5424 if (emit_debug_code()) {
5425 Label done_checking;
5426 AssertNotSmi(object);
5427 LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5428 Branch(&done_checking, eq, object, Operand(scratch));
5429 push(object);
5430 ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
5431 LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
5432 Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch));
5433 pop(object);
5434 bind(&done_checking);
5435 }
5436}
5437
5438
5439void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
5440 if (emit_debug_code()) {
5441 DCHECK(!reg.is(at));
5442 LoadRoot(at, index);
5443 Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
5444 }
5445}
5446
5447
5448void MacroAssembler::JumpIfNotHeapNumber(Register object,
5449 Register heap_number_map,
5450 Register scratch,
5451 Label* on_not_heap_number) {
5452 ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
5453 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
5454 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
5455}
5456
5457
5458void MacroAssembler::LookupNumberStringCache(Register object,
5459 Register result,
5460 Register scratch1,
5461 Register scratch2,
5462 Register scratch3,
5463 Label* not_found) {
5464 // Use of registers. Register result is used as a temporary.
5465 Register number_string_cache = result;
5466 Register mask = scratch3;
5467
5468 // Load the number string cache.
5469 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
5470
5471 // Make the hash mask from the length of the number string cache. It
5472 // contains two elements (number and string) for each cache entry.
5473 ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
5474 // Divide length by two (length is a smi).
5475 // dsra(mask, mask, kSmiTagSize + 1);
5476 dsra32(mask, mask, 1);
5477 Daddu(mask, mask, -1); // Make mask.
5478
5479 // Calculate the entry in the number string cache. The hash value in the
5480 // number string cache for smis is just the smi value, and the hash for
5481 // doubles is the xor of the upper and lower words. See
5482 // Heap::GetNumberStringCache.
5483 Label is_smi;
5484 Label load_result_from_cache;
5485 JumpIfSmi(object, &is_smi);
5486 CheckMap(object,
5487 scratch1,
5488 Heap::kHeapNumberMapRootIndex,
5489 not_found,
5490 DONT_DO_SMI_CHECK);
5491
5492 STATIC_ASSERT(8 == kDoubleSize);
5493 Daddu(scratch1,
5494 object,
5495 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
5496 ld(scratch2, MemOperand(scratch1, kPointerSize));
5497 ld(scratch1, MemOperand(scratch1, 0));
5498 Xor(scratch1, scratch1, Operand(scratch2));
5499 And(scratch1, scratch1, Operand(mask));
5500
5501 // Calculate address of entry in string cache: each entry consists
5502 // of two pointer sized fields.
5503 dsll(scratch1, scratch1, kPointerSizeLog2 + 1);
5504 Daddu(scratch1, number_string_cache, scratch1);
5505
5506 Register probe = mask;
5507 ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
5508 JumpIfSmi(probe, not_found);
5509 ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
5510 ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
5511 BranchF(&load_result_from_cache, NULL, eq, f12, f14);
5512 Branch(not_found);
5513
5514 bind(&is_smi);
5515 Register scratch = scratch1;
5516 // dsra(scratch, object, 1); // Shift away the tag.
5517 dsra32(scratch, scratch, 0);
5518 And(scratch, mask, Operand(scratch));
5519
5520 // Calculate address of entry in string cache: each entry consists
5521 // of two pointer sized fields.
5522 dsll(scratch, scratch, kPointerSizeLog2 + 1);
5523 Daddu(scratch, number_string_cache, scratch);
5524
5525 // Check if the entry is the smi we are looking for.
5526 ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
5527 Branch(not_found, ne, object, Operand(probe));
5528
5529 // Get the result from the cache.
5530 bind(&load_result_from_cache);
5531 ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
5532
5533 IncrementCounter(isolate()->counters()->number_to_string_native(),
5534 1,
5535 scratch1,
5536 scratch2);
5537}
5538
5539
5540void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
5541 Register first, Register second, Register scratch1, Register scratch2,
5542 Label* failure) {
5543 // Test that both first and second are sequential one-byte strings.
5544 // Assume that they are non-smis.
5545 ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
5546 ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
5547 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
5548 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
5549
5550 JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
5551 scratch2, failure);
5552}
5553
5554
5555void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
5556 Register second,
5557 Register scratch1,
5558 Register scratch2,
5559 Label* failure) {
5560 // Check that neither is a smi.
5561 STATIC_ASSERT(kSmiTag == 0);
5562 And(scratch1, first, Operand(second));
5563 JumpIfSmi(scratch1, failure);
5564 JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
5565 scratch2, failure);
5566}
5567
5568
5569void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
5570 Register first, Register second, Register scratch1, Register scratch2,
5571 Label* failure) {
5572 const int kFlatOneByteStringMask =
5573 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
5574 const int kFlatOneByteStringTag =
5575 kStringTag | kOneByteStringTag | kSeqStringTag;
5576 DCHECK(kFlatOneByteStringTag <= 0xffff); // Ensure this fits 16-bit immed.
5577 andi(scratch1, first, kFlatOneByteStringMask);
5578 Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag));
5579 andi(scratch2, second, kFlatOneByteStringMask);
5580 Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag));
5581}
5582
5583
5584void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
5585 Register scratch,
5586 Label* failure) {
5587 const int kFlatOneByteStringMask =
5588 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
5589 const int kFlatOneByteStringTag =
5590 kStringTag | kOneByteStringTag | kSeqStringTag;
5591 And(scratch, type, Operand(kFlatOneByteStringMask));
5592 Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag));
5593}
5594
5595
5596static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
5597
5598int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
5599 int num_double_arguments) {
5600 int stack_passed_words = 0;
5601 num_reg_arguments += 2 * num_double_arguments;
5602
5603 // O32: Up to four simple arguments are passed in registers a0..a3.
5604 // N64: Up to eight simple arguments are passed in registers a0..a7.
5605 if (num_reg_arguments > kRegisterPassedArguments) {
5606 stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
5607 }
5608 stack_passed_words += kCArgSlotCount;
5609 return stack_passed_words;
5610}
5611
5612
5613void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
5614 Register index,
5615 Register value,
5616 Register scratch,
5617 uint32_t encoding_mask) {
5618 Label is_object;
5619 SmiTst(string, at);
5620 Check(ne, kNonObject, at, Operand(zero_reg));
5621
5622 ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
5623 lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
5624
5625 andi(at, at, kStringRepresentationMask | kStringEncodingMask);
5626 li(scratch, Operand(encoding_mask));
5627 Check(eq, kUnexpectedStringType, at, Operand(scratch));
5628
5629 // TODO(plind): requires Smi size check code for mips32.
5630
5631 ld(at, FieldMemOperand(string, String::kLengthOffset));
5632 Check(lt, kIndexIsTooLarge, index, Operand(at));
5633
5634 DCHECK(Smi::FromInt(0) == 0);
5635 Check(ge, kIndexIsNegative, index, Operand(zero_reg));
5636}
5637
5638
5639void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
5640 int num_double_arguments,
5641 Register scratch) {
5642 int frame_alignment = ActivationFrameAlignment();
5643
5644 // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
5645 // O32: Up to four simple arguments are passed in registers a0..a3.
5646 // Those four arguments must have reserved argument slots on the stack for
5647 // mips, even though those argument slots are not normally used.
5648 // Both ABIs: Remaining arguments are pushed on the stack, above (higher
5649 // address than) the (O32) argument slots. (arg slot calculation handled by
5650 // CalculateStackPassedWords()).
5651 int stack_passed_arguments = CalculateStackPassedWords(
5652 num_reg_arguments, num_double_arguments);
5653 if (frame_alignment > kPointerSize) {
5654 // Make stack end at alignment and make room for num_arguments - 4 words
5655 // and the original value of sp.
5656 mov(scratch, sp);
5657 Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
5658 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
5659 And(sp, sp, Operand(-frame_alignment));
5660 sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
5661 } else {
5662 Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
5663 }
5664}
5665
5666
5667void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
5668 Register scratch) {
5669 PrepareCallCFunction(num_reg_arguments, 0, scratch);
5670}
5671
5672
5673void MacroAssembler::CallCFunction(ExternalReference function,
5674 int num_reg_arguments,
5675 int num_double_arguments) {
5676 li(t8, Operand(function));
5677 CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
5678}
5679
5680
5681void MacroAssembler::CallCFunction(Register function,
5682 int num_reg_arguments,
5683 int num_double_arguments) {
5684 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
5685}
5686
5687
5688void MacroAssembler::CallCFunction(ExternalReference function,
5689 int num_arguments) {
5690 CallCFunction(function, num_arguments, 0);
5691}
5692
5693
5694void MacroAssembler::CallCFunction(Register function,
5695 int num_arguments) {
5696 CallCFunction(function, num_arguments, 0);
5697}
5698
5699
5700void MacroAssembler::CallCFunctionHelper(Register function,
5701 int num_reg_arguments,
5702 int num_double_arguments) {
5703 DCHECK(has_frame());
5704 // Make sure that the stack is aligned before calling a C function unless
5705 // running in the simulator. The simulator has its own alignment check which
5706 // provides more information.
5707 // The argument stots are presumed to have been set up by
5708 // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
5709
5710#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
5711 if (emit_debug_code()) {
5712 int frame_alignment = base::OS::ActivationFrameAlignment();
5713 int frame_alignment_mask = frame_alignment - 1;
5714 if (frame_alignment > kPointerSize) {
5715 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
5716 Label alignment_as_expected;
5717 And(at, sp, Operand(frame_alignment_mask));
5718 Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
5719 // Don't use Check here, as it will call Runtime_Abort possibly
5720 // re-entering here.
5721 stop("Unexpected alignment in CallCFunction");
5722 bind(&alignment_as_expected);
5723 }
5724 }
5725#endif // V8_HOST_ARCH_MIPS
5726
5727 // Just call directly. The function called cannot cause a GC, or
5728 // allow preemption, so the return address in the link register
5729 // stays correct.
5730
5731 if (!function.is(t9)) {
5732 mov(t9, function);
5733 function = t9;
5734 }
5735
5736 Call(function);
5737
5738 int stack_passed_arguments = CalculateStackPassedWords(
5739 num_reg_arguments, num_double_arguments);
5740
5741 if (base::OS::ActivationFrameAlignment() > kPointerSize) {
5742 ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
5743 } else {
5744 Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
5745 }
5746}
5747
5748
5749#undef BRANCH_ARGS_CHECK
5750
5751
5752void MacroAssembler::PatchRelocatedValue(Register li_location,
5753 Register scratch,
5754 Register new_value) {
5755 lwu(scratch, MemOperand(li_location));
5756 // At this point scratch is a lui(at, ...) instruction.
5757 if (emit_debug_code()) {
5758 And(scratch, scratch, kOpcodeMask);
5759 Check(eq, kTheInstructionToPatchShouldBeALui,
5760 scratch, Operand(LUI));
5761 lwu(scratch, MemOperand(li_location));
5762 }
5763 dsrl32(t9, new_value, 0);
5764 Ins(scratch, t9, 0, kImm16Bits);
5765 sw(scratch, MemOperand(li_location));
5766
5767 lwu(scratch, MemOperand(li_location, kInstrSize));
5768 // scratch is now ori(at, ...).
5769 if (emit_debug_code()) {
5770 And(scratch, scratch, kOpcodeMask);
5771 Check(eq, kTheInstructionToPatchShouldBeAnOri,
5772 scratch, Operand(ORI));
5773 lwu(scratch, MemOperand(li_location, kInstrSize));
5774 }
5775 dsrl(t9, new_value, kImm16Bits);
5776 Ins(scratch, t9, 0, kImm16Bits);
5777 sw(scratch, MemOperand(li_location, kInstrSize));
5778
5779 lwu(scratch, MemOperand(li_location, kInstrSize * 3));
5780 // scratch is now ori(at, ...).
5781 if (emit_debug_code()) {
5782 And(scratch, scratch, kOpcodeMask);
5783 Check(eq, kTheInstructionToPatchShouldBeAnOri,
5784 scratch, Operand(ORI));
5785 lwu(scratch, MemOperand(li_location, kInstrSize * 3));
5786 }
5787
5788 Ins(scratch, new_value, 0, kImm16Bits);
5789 sw(scratch, MemOperand(li_location, kInstrSize * 3));
5790
5791 // Update the I-cache so the new lui and ori can be executed.
5792 FlushICache(li_location, 4);
5793}
5794
5795void MacroAssembler::GetRelocatedValue(Register li_location,
5796 Register value,
5797 Register scratch) {
5798 lwu(value, MemOperand(li_location));
5799 if (emit_debug_code()) {
5800 And(value, value, kOpcodeMask);
5801 Check(eq, kTheInstructionShouldBeALui,
5802 value, Operand(LUI));
5803 lwu(value, MemOperand(li_location));
5804 }
5805
5806 // value now holds a lui instruction. Extract the immediate.
5807 andi(value, value, kImm16Mask);
5808 dsll32(value, value, kImm16Bits);
5809
5810 lwu(scratch, MemOperand(li_location, kInstrSize));
5811 if (emit_debug_code()) {
5812 And(scratch, scratch, kOpcodeMask);
5813 Check(eq, kTheInstructionShouldBeAnOri,
5814 scratch, Operand(ORI));
5815 lwu(scratch, MemOperand(li_location, kInstrSize));
5816 }
5817 // "scratch" now holds an ori instruction. Extract the immediate.
5818 andi(scratch, scratch, kImm16Mask);
5819 dsll32(scratch, scratch, 0);
5820
5821 or_(value, value, scratch);
5822
5823 lwu(scratch, MemOperand(li_location, kInstrSize * 3));
5824 if (emit_debug_code()) {
5825 And(scratch, scratch, kOpcodeMask);
5826 Check(eq, kTheInstructionShouldBeAnOri,
5827 scratch, Operand(ORI));
5828 lwu(scratch, MemOperand(li_location, kInstrSize * 3));
5829 }
5830 // "scratch" now holds an ori instruction. Extract the immediate.
5831 andi(scratch, scratch, kImm16Mask);
5832 dsll(scratch, scratch, kImm16Bits);
5833
5834 or_(value, value, scratch);
5835 // Sign extend extracted address.
5836 dsra(value, value, kImm16Bits);
5837}
5838
5839
5840void MacroAssembler::CheckPageFlag(
5841 Register object,
5842 Register scratch,
5843 int mask,
5844 Condition cc,
5845 Label* condition_met) {
5846 And(scratch, object, Operand(~Page::kPageAlignmentMask));
5847 ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
5848 And(scratch, scratch, Operand(mask));
5849 Branch(condition_met, cc, scratch, Operand(zero_reg));
5850}
5851
5852
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005853void MacroAssembler::JumpIfBlack(Register object,
5854 Register scratch0,
5855 Register scratch1,
5856 Label* on_black) {
5857 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
5858 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
5859}
5860
5861
5862void MacroAssembler::HasColor(Register object,
5863 Register bitmap_scratch,
5864 Register mask_scratch,
5865 Label* has_color,
5866 int first_bit,
5867 int second_bit) {
5868 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
5869 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
5870
5871 GetMarkBits(object, bitmap_scratch, mask_scratch);
5872
5873 Label other_color;
5874 // Note that we are using a 4-byte aligned 8-byte load.
5875 Uld(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5876 And(t8, t9, Operand(mask_scratch));
5877 Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
5878 // Shift left 1 by adding.
5879 Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
5880 And(t8, t9, Operand(mask_scratch));
5881 Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
5882
5883 bind(&other_color);
5884}
5885
5886
5887// Detect some, but not all, common pointer-free objects. This is used by the
5888// incremental write barrier which doesn't care about oddballs (they are always
5889// marked black immediately so this code is not hit).
5890void MacroAssembler::JumpIfDataObject(Register value,
5891 Register scratch,
5892 Label* not_data_object) {
5893 DCHECK(!AreAliased(value, scratch, t8, no_reg));
5894 Label is_data_object;
5895 ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5896 LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
5897 Branch(&is_data_object, eq, t8, Operand(scratch));
5898 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
5899 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
5900 // If it's a string and it's not a cons string then it's an object containing
5901 // no GC pointers.
5902 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5903 And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
5904 Branch(not_data_object, ne, t8, Operand(zero_reg));
5905 bind(&is_data_object);
5906}
5907
5908
5909void MacroAssembler::GetMarkBits(Register addr_reg,
5910 Register bitmap_reg,
5911 Register mask_reg) {
5912 DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
5913 // addr_reg is divided into fields:
5914 // |63 page base 20|19 high 8|7 shift 3|2 0|
5915 // 'high' gives the index of the cell holding color bits for the object.
5916 // 'shift' gives the offset in the cell for this object's color.
5917 And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
5918 Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
5919 const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
5920 Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
5921 dsll(t8, t8, Bitmap::kBytesPerCellLog2);
5922 Daddu(bitmap_reg, bitmap_reg, t8);
5923 li(t8, Operand(1));
5924 dsllv(mask_reg, t8, mask_reg);
5925}
5926
5927
5928void MacroAssembler::EnsureNotWhite(
5929 Register value,
5930 Register bitmap_scratch,
5931 Register mask_scratch,
5932 Register load_scratch,
5933 Label* value_is_white_and_not_data) {
5934 DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
5935 GetMarkBits(value, bitmap_scratch, mask_scratch);
5936
5937 // If the value is black or grey we don't need to do anything.
5938 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
5939 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
5940 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
5941 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
5942
5943 Label done;
5944
5945 // Since both black and grey have a 1 in the first position and white does
5946 // not have a 1 there we only need to check one bit.
5947 // Note that we are using a 4-byte aligned 8-byte load.
5948 Uld(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
5949 And(t8, mask_scratch, load_scratch);
5950 Branch(&done, ne, t8, Operand(zero_reg));
5951
5952 if (emit_debug_code()) {
5953 // Check for impossible bit pattern.
5954 Label ok;
5955 // sll may overflow, making the check conservative.
5956 dsll(t8, mask_scratch, 1);
5957 And(t8, load_scratch, t8);
5958 Branch(&ok, eq, t8, Operand(zero_reg));
5959 stop("Impossible marking bit pattern");
5960 bind(&ok);
5961 }
5962
5963 // Value is white. We check whether it is data that doesn't need scanning.
5964 // Currently only checks for HeapNumber and non-cons strings.
5965 Register map = load_scratch; // Holds map while checking type.
5966 Register length = load_scratch; // Holds length of object after testing type.
5967 Label is_data_object;
5968
5969 // Check for heap-number
5970 ld(map, FieldMemOperand(value, HeapObject::kMapOffset));
5971 LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
5972 {
5973 Label skip;
5974 Branch(&skip, ne, t8, Operand(map));
5975 li(length, HeapNumber::kSize);
5976 Branch(&is_data_object);
5977 bind(&skip);
5978 }
5979
5980 // Check for strings.
5981 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
5982 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
5983 // If it's a string and it's not a cons string then it's an object containing
5984 // no GC pointers.
5985 Register instance_type = load_scratch;
5986 lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
5987 And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
5988 Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
5989 // It's a non-indirect (non-cons and non-slice) string.
5990 // If it's external, the length is just ExternalString::kSize.
5991 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
5992 // External strings are the only ones with the kExternalStringTag bit
5993 // set.
5994 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
5995 DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
5996 And(t8, instance_type, Operand(kExternalStringTag));
5997 {
5998 Label skip;
5999 Branch(&skip, eq, t8, Operand(zero_reg));
6000 li(length, ExternalString::kSize);
6001 Branch(&is_data_object);
6002 bind(&skip);
6003 }
6004
6005 // Sequential string, either Latin1 or UC16.
6006 // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
6007 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
6008 // getting the length multiplied by 2.
6009 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
6010 DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
6011 lw(t9, UntagSmiFieldMemOperand(value, String::kLengthOffset));
6012 And(t8, instance_type, Operand(kStringEncodingMask));
6013 {
6014 Label skip;
6015 Branch(&skip, ne, t8, Operand(zero_reg));
6016 // Adjust length for UC16.
6017 dsll(t9, t9, 1);
6018 bind(&skip);
6019 }
6020 Daddu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
6021 DCHECK(!length.is(t8));
6022 And(length, length, Operand(~kObjectAlignmentMask));
6023
6024 bind(&is_data_object);
6025 // Value is a data object, and it is white. Mark it black. Since we know
6026 // that the object is white we can make it black by flipping one bit.
6027 Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
6028 Or(t8, t8, Operand(mask_scratch));
6029 Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
6030
6031 And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
6032 Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
6033 Daddu(t8, t8, Operand(length));
6034 Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
6035
6036 bind(&done);
6037}
6038
6039
6040void MacroAssembler::LoadInstanceDescriptors(Register map,
6041 Register descriptors) {
6042 ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
6043}
6044
6045
6046void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
6047 ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
6048 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
6049}
6050
6051
6052void MacroAssembler::EnumLength(Register dst, Register map) {
6053 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
6054 ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
6055 And(dst, dst, Operand(Map::EnumLengthBits::kMask));
6056 SmiTag(dst);
6057}
6058
6059
6060void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
6061 Register empty_fixed_array_value = a6;
6062 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
6063 Label next, start;
6064 mov(a2, a0);
6065
6066 // Check if the enum length field is properly initialized, indicating that
6067 // there is an enum cache.
6068 ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
6069
6070 EnumLength(a3, a1);
6071 Branch(
6072 call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
6073
6074 jmp(&start);
6075
6076 bind(&next);
6077 ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
6078
6079 // For all objects but the receiver, check that the cache is empty.
6080 EnumLength(a3, a1);
6081 Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0)));
6082
6083 bind(&start);
6084
6085 // Check that there are no elements. Register a2 contains the current JS
6086 // object we've reached through the prototype chain.
6087 Label no_elements;
6088 ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
6089 Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
6090
6091 // Second chance, the object may be using the empty slow element dictionary.
6092 LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
6093 Branch(call_runtime, ne, a2, Operand(at));
6094
6095 bind(&no_elements);
6096 ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
6097 Branch(&next, ne, a2, Operand(null_value));
6098}
6099
6100
6101void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
6102 DCHECK(!output_reg.is(input_reg));
6103 Label done;
6104 li(output_reg, Operand(255));
6105 // Normal branch: nop in delay slot.
6106 Branch(&done, gt, input_reg, Operand(output_reg));
6107 // Use delay slot in this branch.
6108 Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
6109 mov(output_reg, zero_reg); // In delay slot.
6110 mov(output_reg, input_reg); // Value is in range 0..255.
6111 bind(&done);
6112}
6113
6114
6115void MacroAssembler::ClampDoubleToUint8(Register result_reg,
6116 DoubleRegister input_reg,
6117 DoubleRegister temp_double_reg) {
6118 Label above_zero;
6119 Label done;
6120 Label in_bounds;
6121
6122 Move(temp_double_reg, 0.0);
6123 BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
6124
6125 // Double value is less than zero, NaN or Inf, return 0.
6126 mov(result_reg, zero_reg);
6127 Branch(&done);
6128
6129 // Double value is >= 255, return 255.
6130 bind(&above_zero);
6131 Move(temp_double_reg, 255.0);
6132 BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
6133 li(result_reg, Operand(255));
6134 Branch(&done);
6135
6136 // In 0-255 range, round and truncate.
6137 bind(&in_bounds);
6138 cvt_w_d(temp_double_reg, input_reg);
6139 mfc1(result_reg, temp_double_reg);
6140 bind(&done);
6141}
6142
6143
6144void MacroAssembler::TestJSArrayForAllocationMemento(
6145 Register receiver_reg,
6146 Register scratch_reg,
6147 Label* no_memento_found,
6148 Condition cond,
6149 Label* allocation_memento_present) {
6150 ExternalReference new_space_start =
6151 ExternalReference::new_space_start(isolate());
6152 ExternalReference new_space_allocation_top =
6153 ExternalReference::new_space_allocation_top_address(isolate());
6154 Daddu(scratch_reg, receiver_reg,
6155 Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
6156 Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start));
6157 li(at, Operand(new_space_allocation_top));
6158 ld(at, MemOperand(at));
6159 Branch(no_memento_found, gt, scratch_reg, Operand(at));
6160 ld(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
6161 if (allocation_memento_present) {
6162 Branch(allocation_memento_present, cond, scratch_reg,
6163 Operand(isolate()->factory()->allocation_memento_map()));
6164 }
6165}
6166
6167
6168Register GetRegisterThatIsNotOneOf(Register reg1,
6169 Register reg2,
6170 Register reg3,
6171 Register reg4,
6172 Register reg5,
6173 Register reg6) {
6174 RegList regs = 0;
6175 if (reg1.is_valid()) regs |= reg1.bit();
6176 if (reg2.is_valid()) regs |= reg2.bit();
6177 if (reg3.is_valid()) regs |= reg3.bit();
6178 if (reg4.is_valid()) regs |= reg4.bit();
6179 if (reg5.is_valid()) regs |= reg5.bit();
6180 if (reg6.is_valid()) regs |= reg6.bit();
6181
6182 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
6183 Register candidate = Register::FromAllocationIndex(i);
6184 if (regs & candidate.bit()) continue;
6185 return candidate;
6186 }
6187 UNREACHABLE();
6188 return no_reg;
6189}
6190
6191
6192void MacroAssembler::JumpIfDictionaryInPrototypeChain(
6193 Register object,
6194 Register scratch0,
6195 Register scratch1,
6196 Label* found) {
6197 DCHECK(!scratch1.is(scratch0));
6198 Factory* factory = isolate()->factory();
6199 Register current = scratch0;
6200 Label loop_again;
6201
6202 // Scratch contained elements pointer.
6203 Move(current, object);
6204
6205 // Loop based on the map going up the prototype chain.
6206 bind(&loop_again);
6207 ld(current, FieldMemOperand(current, HeapObject::kMapOffset));
6208 lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
6209 DecodeField<Map::ElementsKindBits>(scratch1);
6210 Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS));
6211 ld(current, FieldMemOperand(current, Map::kPrototypeOffset));
6212 Branch(&loop_again, ne, current, Operand(factory->null_value()));
6213}
6214
6215
6216bool AreAliased(Register reg1,
6217 Register reg2,
6218 Register reg3,
6219 Register reg4,
6220 Register reg5,
6221 Register reg6,
6222 Register reg7,
6223 Register reg8) {
6224 int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
6225 reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
6226 reg7.is_valid() + reg8.is_valid();
6227
6228 RegList regs = 0;
6229 if (reg1.is_valid()) regs |= reg1.bit();
6230 if (reg2.is_valid()) regs |= reg2.bit();
6231 if (reg3.is_valid()) regs |= reg3.bit();
6232 if (reg4.is_valid()) regs |= reg4.bit();
6233 if (reg5.is_valid()) regs |= reg5.bit();
6234 if (reg6.is_valid()) regs |= reg6.bit();
6235 if (reg7.is_valid()) regs |= reg7.bit();
6236 if (reg8.is_valid()) regs |= reg8.bit();
6237 int n_of_non_aliasing_regs = NumRegs(regs);
6238
6239 return n_of_valid_regs != n_of_non_aliasing_regs;
6240}
6241
6242
6243CodePatcher::CodePatcher(byte* address,
6244 int instructions,
6245 FlushICache flush_cache)
6246 : address_(address),
6247 size_(instructions * Assembler::kInstrSize),
6248 masm_(NULL, address, size_ + Assembler::kGap),
6249 flush_cache_(flush_cache) {
6250 // Create a new macro assembler pointing to the address of the code to patch.
6251 // The size is adjusted with kGap on order for the assembler to generate size
6252 // bytes of instructions without failing with buffer size constraints.
6253 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
6254}
6255
6256
6257CodePatcher::~CodePatcher() {
6258 // Indicate that code has changed.
6259 if (flush_cache_ == FLUSH) {
6260 CpuFeatures::FlushICache(address_, size_);
6261 }
6262 // Check that the code was patched as expected.
6263 DCHECK(masm_.pc_ == address_ + size_);
6264 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
6265}
6266
6267
6268void CodePatcher::Emit(Instr instr) {
6269 masm()->emit(instr);
6270}
6271
6272
6273void CodePatcher::Emit(Address addr) {
6274 // masm()->emit(reinterpret_cast<Instr>(addr));
6275}
6276
6277
6278void CodePatcher::ChangeBranchCondition(Condition cond) {
6279 Instr instr = Assembler::instr_at(masm_.pc_);
6280 DCHECK(Assembler::IsBranch(instr));
6281 uint32_t opcode = Assembler::GetOpcodeField(instr);
6282 // Currently only the 'eq' and 'ne' cond values are supported and the simple
6283 // branch instructions (with opcode being the branch type).
6284 // There are some special cases (see Assembler::IsBranch()) so extending this
6285 // would be tricky.
6286 DCHECK(opcode == BEQ ||
6287 opcode == BNE ||
6288 opcode == BLEZ ||
6289 opcode == BGTZ ||
6290 opcode == BEQL ||
6291 opcode == BNEL ||
6292 opcode == BLEZL ||
6293 opcode == BGTZL);
6294 opcode = (cond == eq) ? BEQ : BNE;
6295 instr = (instr & ~kOpcodeMask) | opcode;
6296 masm_.emit(instr);
6297}
6298
6299
6300void MacroAssembler::TruncatingDiv(Register result,
6301 Register dividend,
6302 int32_t divisor) {
6303 DCHECK(!dividend.is(result));
6304 DCHECK(!dividend.is(at));
6305 DCHECK(!result.is(at));
6306 base::MagicNumbersForDivision<uint32_t> mag =
6307 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04006308 li(at, Operand(static_cast<int32_t>(mag.multiplier)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00006309 Mulh(result, dividend, Operand(at));
6310 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
6311 if (divisor > 0 && neg) {
6312 Addu(result, result, Operand(dividend));
6313 }
6314 if (divisor < 0 && !neg && mag.multiplier > 0) {
6315 Subu(result, result, Operand(dividend));
6316 }
6317 if (mag.shift > 0) sra(result, result, mag.shift);
6318 srl(at, dividend, 31);
6319 Addu(result, result, Operand(at));
6320}
6321
6322
6323} } // namespace v8::internal
6324
6325#endif // V8_TARGET_ARCH_MIPS64