blob: 5d17edf8e752bed2c156f65c37144ee0c539bc8b [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
Steve Blockd0582a62009-12-15 09:54:21 +000040#include "serialize.h"
41
Steve Blocka7e24c12009-10-30 11:49:00 +000042namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49 static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50 return x == (x & kUInt32Mask);
51}
52
53static inline bool is_int32(int64_t x) {
54 static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55 return is_uint32(x - kMinIntValue);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59 static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60 return x < kMaxIntValue;
61}
62
63static inline bool is_uint32(uint64_t x) {
64 static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65 return x < kMaxUIntValue;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91 static Register toRegister(int code) {
92 Register r = { code };
93 return r;
94 }
95 bool is_valid() const { return 0 <= code_ && code_ < 16; }
96 bool is(Register reg) const { return code_ == reg.code_; }
97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
101 int bit() const {
102 return 1 << code_;
103 }
104
105 // Return the high bit of the register code as a 0 or 1. Used often
106 // when constructing the REX prefix byte.
107 int high_bit() const {
108 return code_ >> 3;
109 }
110 // Return the 3 low bits of the register code. Used when encoding registers
111 // in modR/M, SIB, and opcode bytes.
112 int low_bits() const {
113 return code_ & 0x7;
114 }
115
116 // (unfortunately we can't make this private in a struct when initializing
117 // by assignment.)
118 int code_;
119};
120
121extern Register rax;
122extern Register rcx;
123extern Register rdx;
124extern Register rbx;
125extern Register rsp;
126extern Register rbp;
127extern Register rsi;
128extern Register rdi;
129extern Register r8;
130extern Register r9;
131extern Register r10;
132extern Register r11;
133extern Register r12;
134extern Register r13;
135extern Register r14;
136extern Register r15;
137extern Register no_reg;
138
139
140struct MMXRegister {
141 bool is_valid() const { return 0 <= code_ && code_ < 2; }
142 int code() const {
143 ASSERT(is_valid());
144 return code_;
145 }
146
147 int code_;
148};
149
150extern MMXRegister mm0;
151extern MMXRegister mm1;
152extern MMXRegister mm2;
153extern MMXRegister mm3;
154extern MMXRegister mm4;
155extern MMXRegister mm5;
156extern MMXRegister mm6;
157extern MMXRegister mm7;
158extern MMXRegister mm8;
159extern MMXRegister mm9;
160extern MMXRegister mm10;
161extern MMXRegister mm11;
162extern MMXRegister mm12;
163extern MMXRegister mm13;
164extern MMXRegister mm14;
165extern MMXRegister mm15;
166
167
168struct XMMRegister {
169 bool is_valid() const { return 0 <= code_ && code_ < 16; }
170 int code() const {
171 ASSERT(is_valid());
172 return code_;
173 }
174
175 // Return the high bit of the register code as a 0 or 1. Used often
176 // when constructing the REX prefix byte.
177 int high_bit() const {
178 return code_ >> 3;
179 }
180 // Return the 3 low bits of the register code. Used when encoding registers
181 // in modR/M, SIB, and opcode bytes.
182 int low_bits() const {
183 return code_ & 0x7;
184 }
185
186 int code_;
187};
188
189extern XMMRegister xmm0;
190extern XMMRegister xmm1;
191extern XMMRegister xmm2;
192extern XMMRegister xmm3;
193extern XMMRegister xmm4;
194extern XMMRegister xmm5;
195extern XMMRegister xmm6;
196extern XMMRegister xmm7;
197extern XMMRegister xmm8;
198extern XMMRegister xmm9;
199extern XMMRegister xmm10;
200extern XMMRegister xmm11;
201extern XMMRegister xmm12;
202extern XMMRegister xmm13;
203extern XMMRegister xmm14;
204extern XMMRegister xmm15;
205
206enum Condition {
207 // any value < 0 is considered no_condition
208 no_condition = -1,
209
210 overflow = 0,
211 no_overflow = 1,
212 below = 2,
213 above_equal = 3,
214 equal = 4,
215 not_equal = 5,
216 below_equal = 6,
217 above = 7,
218 negative = 8,
219 positive = 9,
220 parity_even = 10,
221 parity_odd = 11,
222 less = 12,
223 greater_equal = 13,
224 less_equal = 14,
225 greater = 15,
226
Steve Block3ce2e202009-11-05 08:53:23 +0000227 // Fake conditions that are handled by the
228 // opcodes using them.
229 always = 16,
230 never = 17,
Steve Blocka7e24c12009-10-30 11:49:00 +0000231 // aliases
232 carry = below,
233 not_carry = above_equal,
234 zero = equal,
235 not_zero = not_equal,
236 sign = negative,
Steve Block3ce2e202009-11-05 08:53:23 +0000237 not_sign = positive,
238 last_condition = greater
Steve Blocka7e24c12009-10-30 11:49:00 +0000239};
240
241
242// Returns the equivalent of !cc.
243// Negation of the default no_condition (-1) results in a non-default
244// no_condition value (-2). As long as tests for no_condition check
245// for condition < 0, this will work as expected.
246inline Condition NegateCondition(Condition cc);
247
248// Corresponds to transposing the operands of a comparison.
249inline Condition ReverseCondition(Condition cc) {
250 switch (cc) {
251 case below:
252 return above;
253 case above:
254 return below;
255 case above_equal:
256 return below_equal;
257 case below_equal:
258 return above_equal;
259 case less:
260 return greater;
261 case greater:
262 return less;
263 case greater_equal:
264 return less_equal;
265 case less_equal:
266 return greater_equal;
267 default:
268 return cc;
269 };
270}
271
272enum Hint {
273 no_hint = 0,
274 not_taken = 0x2e,
275 taken = 0x3e
276};
277
278// The result of negating a hint is as if the corresponding condition
279// were negated by NegateCondition. That is, no_hint is mapped to
280// itself and not_taken and taken are mapped to each other.
281inline Hint NegateHint(Hint hint) {
282 return (hint == no_hint)
283 ? no_hint
284 : ((hint == not_taken) ? taken : not_taken);
285}
286
287
288// -----------------------------------------------------------------------------
289// Machine instruction Immediates
290
291class Immediate BASE_EMBEDDED {
292 public:
293 explicit Immediate(int32_t value) : value_(value) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000294
295 private:
296 int32_t value_;
297
298 friend class Assembler;
299};
300
301
302// -----------------------------------------------------------------------------
303// Machine instruction Operands
304
305enum ScaleFactor {
306 times_1 = 0,
307 times_2 = 1,
308 times_4 = 2,
309 times_8 = 3,
310 times_int_size = times_4,
311 times_half_pointer_size = times_4,
312 times_pointer_size = times_8
313};
314
315
316class Operand BASE_EMBEDDED {
317 public:
318 // [base + disp/r]
319 Operand(Register base, int32_t disp);
320
321 // [base + index*scale + disp/r]
322 Operand(Register base,
323 Register index,
324 ScaleFactor scale,
325 int32_t disp);
326
327 // [index*scale + disp/r]
328 Operand(Register index,
329 ScaleFactor scale,
330 int32_t disp);
331
332 private:
333 byte rex_;
334 byte buf_[10];
335 // The number of bytes in buf_.
336 unsigned int len_;
337 RelocInfo::Mode rmode_;
338
339 // Set the ModR/M byte without an encoded 'reg' register. The
340 // register is encoded later as part of the emit_operand operation.
341 // set_modrm can be called before or after set_sib and set_disp*.
342 inline void set_modrm(int mod, Register rm);
343
344 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
345 inline void set_sib(ScaleFactor scale, Register index, Register base);
346
347 // Adds operand displacement fields (offsets added to the memory address).
348 // Needs to be called after set_sib, not before it.
349 inline void set_disp8(int disp);
350 inline void set_disp32(int disp);
351
352 friend class Assembler;
353};
354
355
356// CpuFeatures keeps track of which features are supported by the target CPU.
357// Supported features must be enabled by a Scope before use.
358// Example:
359// if (CpuFeatures::IsSupported(SSE3)) {
360// CpuFeatures::Scope fscope(SSE3);
361// // Generate SSE3 floating point code.
362// } else {
363// // Generate standard x87 or SSE2 floating point code.
364// }
365class CpuFeatures : public AllStatic {
366 public:
Steve Blocka7e24c12009-10-30 11:49:00 +0000367 // Detect features of the target CPU. Set safe defaults if the serializer
368 // is enabled (snapshots must be portable).
369 static void Probe();
370 // Check whether a feature is supported by the target CPU.
Steve Blockd0582a62009-12-15 09:54:21 +0000371 static bool IsSupported(CpuFeature f) {
Steve Block3ce2e202009-11-05 08:53:23 +0000372 if (f == SSE2 && !FLAG_enable_sse2) return false;
373 if (f == SSE3 && !FLAG_enable_sse3) return false;
374 if (f == CMOV && !FLAG_enable_cmov) return false;
375 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
376 if (f == SAHF && !FLAG_enable_sahf) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +0000377 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
378 }
379 // Check whether a feature is currently enabled.
Steve Blockd0582a62009-12-15 09:54:21 +0000380 static bool IsEnabled(CpuFeature f) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000381 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
382 }
383 // Enable a specified feature within a scope.
384 class Scope BASE_EMBEDDED {
385#ifdef DEBUG
386 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000387 explicit Scope(CpuFeature f) {
388 uint64_t mask = (V8_UINT64_C(1) << f);
Steve Blocka7e24c12009-10-30 11:49:00 +0000389 ASSERT(CpuFeatures::IsSupported(f));
Steve Blockd0582a62009-12-15 09:54:21 +0000390 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000391 old_enabled_ = CpuFeatures::enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000392 CpuFeatures::enabled_ |= mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000393 }
394 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
395 private:
396 uint64_t old_enabled_;
397#else
398 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000399 explicit Scope(CpuFeature f) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000400#endif
401 };
402 private:
403 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
404 // anyone checks, but they shouldn't need to check.
Steve Blockd0582a62009-12-15 09:54:21 +0000405 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
Steve Blocka7e24c12009-10-30 11:49:00 +0000406 static uint64_t supported_;
407 static uint64_t enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000408 static uint64_t found_by_runtime_probing_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000409};
410
411
412class Assembler : public Malloced {
413 private:
414 // We check before assembling an instruction that there is sufficient
415 // space to write an instruction and its relocation information.
416 // The relocation writer's position must be kGap bytes above the end of
417 // the generated instructions. This leaves enough space for the
418 // longest possible x64 instruction, 15 bytes, and the longest possible
419 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
420 // (There is a 15 byte limit on x64 instruction length that rules out some
421 // otherwise valid instructions.)
422 // This allows for a single, fast space check per instruction.
423 static const int kGap = 32;
424
425 public:
426 // Create an assembler. Instructions and relocation information are emitted
427 // into a buffer, with the instructions starting from the beginning and the
428 // relocation information starting from the end of the buffer. See CodeDesc
429 // for a detailed comment on the layout (globals.h).
430 //
431 // If the provided buffer is NULL, the assembler allocates and grows its own
432 // buffer, and buffer_size determines the initial buffer size. The buffer is
433 // owned by the assembler and deallocated upon destruction of the assembler.
434 //
435 // If the provided buffer is not NULL, the assembler uses the provided buffer
436 // for code generation and assumes its size to be buffer_size. If the buffer
437 // is too small, a fatal error occurs. No deallocation of the buffer is done
438 // upon destruction of the assembler.
439 Assembler(void* buffer, int buffer_size);
440 ~Assembler();
441
442 // GetCode emits any pending (non-emitted) code and fills the descriptor
443 // desc. GetCode() is idempotent; it returns the same result if no other
444 // Assembler functions are invoked in between GetCode() calls.
445 void GetCode(CodeDesc* desc);
446
Steve Block3ce2e202009-11-05 08:53:23 +0000447 // Read/Modify the code target in the relative branch/call instruction at pc.
448 // On the x64 architecture, we use relative jumps with a 32-bit displacement
449 // to jump to other Code objects in the Code space in the heap.
450 // Jumps to C functions are done indirectly through a 64-bit register holding
451 // the absolute address of the target.
452 // These functions convert between absolute Addresses of Code objects and
453 // the relative displacements stored in the code.
Steve Blocka7e24c12009-10-30 11:49:00 +0000454 static inline Address target_address_at(Address pc);
455 static inline void set_target_address_at(Address pc, Address target);
Steve Blockd0582a62009-12-15 09:54:21 +0000456
457 // This sets the branch destination (which is in the instruction on x64).
458 // This is for calls and branches within generated code.
459 inline static void set_target_at(Address instruction_payload,
460 Address target) {
461 set_target_address_at(instruction_payload, target);
462 }
463
464 // This sets the branch destination (which is a load instruction on x64).
465 // This is for calls and branches to runtime code.
466 inline static void set_external_target_at(Address instruction_payload,
467 Address target) {
468 *reinterpret_cast<Address*>(instruction_payload) = target;
469 }
470
Steve Block3ce2e202009-11-05 08:53:23 +0000471 inline Handle<Object> code_target_object_handle_at(Address pc);
Steve Blockd0582a62009-12-15 09:54:21 +0000472 // Number of bytes taken up by the branch target in the code.
473 static const int kCallTargetSize = 4; // Use 32-bit displacement.
474 static const int kExternalTargetSize = 8; // Use 64-bit absolute.
Steve Blocka7e24c12009-10-30 11:49:00 +0000475 // Distance between the address of the code target in the call instruction
Steve Block3ce2e202009-11-05 08:53:23 +0000476 // and the return address pushed on the stack.
477 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
478 // Distance between the start of the JS return sequence and where the
479 // 32-bit displacement of a near call would be, relative to the pushed
480 // return address. TODO: Use return sequence length instead.
481 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
482 static const int kPatchReturnSequenceAddressOffset = 13 - 4;
483 // TODO(X64): Rename this, removing the "Real", after changing the above.
484 static const int kRealPatchReturnSequenceAddressOffset = 2;
Steve Blockd0582a62009-12-15 09:54:21 +0000485
486 // The x64 JS return sequence is padded with int3 to make it large
487 // enough to hold a call instruction when the debugger patches it.
488 static const int kCallInstructionLength = 13;
489 static const int kJSReturnSequenceLength = 13;
490
Steve Blocka7e24c12009-10-30 11:49:00 +0000491 // ---------------------------------------------------------------------------
492 // Code generation
493 //
494 // Function names correspond one-to-one to x64 instruction mnemonics.
495 // Unless specified otherwise, instructions operate on 64-bit operands.
496 //
497 // If we need versions of an assembly instruction that operate on different
498 // width arguments, we add a single-letter suffix specifying the width.
499 // This is done for the following instructions: mov, cmp, inc, dec,
500 // add, sub, and test.
501 // There are no versions of these instructions without the suffix.
502 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
503 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
504 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
505 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
506 //
507 // Some mnemonics, such as "and", are the same as C++ keywords.
508 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
509
510 // Insert the smallest number of nop instructions
511 // possible to align the pc offset to a multiple
512 // of m. m must be a power of 2.
513 void Align(int m);
514
515 // Stack
516 void pushfq();
517 void popfq();
518
519 void push(Immediate value);
520 void push(Register src);
521 void push(const Operand& src);
522 void push(Label* label, RelocInfo::Mode relocation_mode);
523
524 void pop(Register dst);
525 void pop(const Operand& dst);
526
527 void enter(Immediate size);
528 void leave();
529
530 // Moves
531 void movb(Register dst, const Operand& src);
532 void movb(Register dst, Immediate imm);
533 void movb(const Operand& dst, Register src);
534
Steve Block3ce2e202009-11-05 08:53:23 +0000535 // Move the low 16 bits of a 64-bit register value to a 16-bit
536 // memory location.
537 void movw(const Operand& dst, Register src);
538
Steve Blocka7e24c12009-10-30 11:49:00 +0000539 void movl(Register dst, Register src);
540 void movl(Register dst, const Operand& src);
541 void movl(const Operand& dst, Register src);
542 void movl(const Operand& dst, Immediate imm);
543 // Load a 32-bit immediate value, zero-extended to 64 bits.
544 void movl(Register dst, Immediate imm32);
545
546 // Move 64 bit register value to 64-bit memory location.
547 void movq(const Operand& dst, Register src);
548 // Move 64 bit memory location to 64-bit register value.
549 void movq(Register dst, const Operand& src);
550 void movq(Register dst, Register src);
551 // Sign extends immediate 32-bit value to 64 bits.
552 void movq(Register dst, Immediate x);
553 // Move the offset of the label location relative to the current
554 // position (after the move) to the destination.
555 void movl(const Operand& dst, Label* src);
556
557 // Move sign extended immediate to memory location.
558 void movq(const Operand& dst, Immediate value);
559 // New x64 instructions to load a 64-bit immediate into a register.
560 // All 64-bit immediates must have a relocation mode.
561 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
562 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
563 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
564 // Moves the address of the external reference into the register.
565 void movq(Register dst, ExternalReference ext);
566 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
567
Steve Block3ce2e202009-11-05 08:53:23 +0000568 void movsxbq(Register dst, const Operand& src);
569 void movsxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000570 void movsxlq(Register dst, Register src);
571 void movsxlq(Register dst, const Operand& src);
572 void movzxbq(Register dst, const Operand& src);
573 void movzxbl(Register dst, const Operand& src);
Steve Block3ce2e202009-11-05 08:53:23 +0000574 void movzxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000575 void movzxwl(Register dst, const Operand& src);
576
Leon Clarked91b9f72010-01-27 17:25:45 +0000577 // Repeated moves.
578
579 void repmovsb();
580 void repmovsw();
581 void repmovsl();
582 void repmovsq();
583
Steve Blocka7e24c12009-10-30 11:49:00 +0000584 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
585 void load_rax(void* ptr, RelocInfo::Mode rmode);
586 void load_rax(ExternalReference ext);
587
588 // Conditional moves.
589 void cmovq(Condition cc, Register dst, Register src);
590 void cmovq(Condition cc, Register dst, const Operand& src);
591 void cmovl(Condition cc, Register dst, Register src);
592 void cmovl(Condition cc, Register dst, const Operand& src);
593
594 // Exchange two registers
595 void xchg(Register dst, Register src);
596
597 // Arithmetics
598 void addl(Register dst, Register src) {
599 if (dst.low_bits() == 4) { // Forces SIB byte.
600 arithmetic_op_32(0x01, src, dst);
601 } else {
602 arithmetic_op_32(0x03, dst, src);
603 }
604 }
605
606 void addl(Register dst, Immediate src) {
607 immediate_arithmetic_op_32(0x0, dst, src);
608 }
609
610 void addl(Register dst, const Operand& src) {
611 arithmetic_op_32(0x03, dst, src);
612 }
613
614 void addl(const Operand& dst, Immediate src) {
615 immediate_arithmetic_op_32(0x0, dst, src);
616 }
617
618 void addq(Register dst, Register src) {
619 arithmetic_op(0x03, dst, src);
620 }
621
622 void addq(Register dst, const Operand& src) {
623 arithmetic_op(0x03, dst, src);
624 }
625
626 void addq(const Operand& dst, Register src) {
627 arithmetic_op(0x01, src, dst);
628 }
629
630 void addq(Register dst, Immediate src) {
631 immediate_arithmetic_op(0x0, dst, src);
632 }
633
634 void addq(const Operand& dst, Immediate src) {
635 immediate_arithmetic_op(0x0, dst, src);
636 }
637
638 void cmpb(Register dst, Immediate src) {
639 immediate_arithmetic_op_8(0x7, dst, src);
640 }
641
642 void cmpb_al(Immediate src);
643
644 void cmpb(Register dst, Register src) {
645 arithmetic_op(0x3A, dst, src);
646 }
647
648 void cmpb(Register dst, const Operand& src) {
649 arithmetic_op(0x3A, dst, src);
650 }
651
652 void cmpb(const Operand& dst, Register src) {
653 arithmetic_op(0x38, src, dst);
654 }
655
656 void cmpb(const Operand& dst, Immediate src) {
657 immediate_arithmetic_op_8(0x7, dst, src);
658 }
659
660 void cmpw(const Operand& dst, Immediate src) {
661 immediate_arithmetic_op_16(0x7, dst, src);
662 }
663
664 void cmpw(Register dst, Immediate src) {
665 immediate_arithmetic_op_16(0x7, dst, src);
666 }
667
668 void cmpw(Register dst, const Operand& src) {
669 arithmetic_op_16(0x3B, dst, src);
670 }
671
672 void cmpw(Register dst, Register src) {
673 arithmetic_op_16(0x3B, dst, src);
674 }
675
676 void cmpw(const Operand& dst, Register src) {
677 arithmetic_op_16(0x39, src, dst);
678 }
679
680 void cmpl(Register dst, Register src) {
681 arithmetic_op_32(0x3B, dst, src);
682 }
683
684 void cmpl(Register dst, const Operand& src) {
685 arithmetic_op_32(0x3B, dst, src);
686 }
687
688 void cmpl(const Operand& dst, Register src) {
689 arithmetic_op_32(0x39, src, dst);
690 }
691
692 void cmpl(Register dst, Immediate src) {
693 immediate_arithmetic_op_32(0x7, dst, src);
694 }
695
696 void cmpl(const Operand& dst, Immediate src) {
697 immediate_arithmetic_op_32(0x7, dst, src);
698 }
699
700 void cmpq(Register dst, Register src) {
701 arithmetic_op(0x3B, dst, src);
702 }
703
704 void cmpq(Register dst, const Operand& src) {
705 arithmetic_op(0x3B, dst, src);
706 }
707
708 void cmpq(const Operand& dst, Register src) {
709 arithmetic_op(0x39, src, dst);
710 }
711
712 void cmpq(Register dst, Immediate src) {
713 immediate_arithmetic_op(0x7, dst, src);
714 }
715
716 void cmpq(const Operand& dst, Immediate src) {
717 immediate_arithmetic_op(0x7, dst, src);
718 }
719
720 void and_(Register dst, Register src) {
721 arithmetic_op(0x23, dst, src);
722 }
723
724 void and_(Register dst, const Operand& src) {
725 arithmetic_op(0x23, dst, src);
726 }
727
728 void and_(const Operand& dst, Register src) {
729 arithmetic_op(0x21, src, dst);
730 }
731
732 void and_(Register dst, Immediate src) {
733 immediate_arithmetic_op(0x4, dst, src);
734 }
735
736 void and_(const Operand& dst, Immediate src) {
737 immediate_arithmetic_op(0x4, dst, src);
738 }
739
740 void andl(Register dst, Immediate src) {
741 immediate_arithmetic_op_32(0x4, dst, src);
742 }
743
Steve Block3ce2e202009-11-05 08:53:23 +0000744 void andl(Register dst, Register src) {
745 arithmetic_op_32(0x23, dst, src);
746 }
747
748
Steve Blocka7e24c12009-10-30 11:49:00 +0000749 void decq(Register dst);
750 void decq(const Operand& dst);
751 void decl(Register dst);
752 void decl(const Operand& dst);
Steve Block3ce2e202009-11-05 08:53:23 +0000753 void decb(Register dst);
754 void decb(const Operand& dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000755
756 // Sign-extends rax into rdx:rax.
757 void cqo();
758 // Sign-extends eax into edx:eax.
759 void cdq();
760
761 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
762 void idivq(Register src);
763 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
764 void idivl(Register src);
765
766 // Signed multiply instructions.
767 void imul(Register src); // rdx:rax = rax * src.
768 void imul(Register dst, Register src); // dst = dst * src.
769 void imul(Register dst, const Operand& src); // dst = dst * src.
770 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
771 // Multiply 32 bit registers
772 void imull(Register dst, Register src); // dst = dst * src.
773
774 void incq(Register dst);
775 void incq(const Operand& dst);
776 void incl(const Operand& dst);
777
778 void lea(Register dst, const Operand& src);
779
780 // Multiply rax by src, put the result in rdx:rax.
781 void mul(Register src);
782
783 void neg(Register dst);
784 void neg(const Operand& dst);
785 void negl(Register dst);
786
787 void not_(Register dst);
788 void not_(const Operand& dst);
789
790 void or_(Register dst, Register src) {
791 arithmetic_op(0x0B, dst, src);
792 }
793
794 void orl(Register dst, Register src) {
795 arithmetic_op_32(0x0B, dst, src);
796 }
797
798 void or_(Register dst, const Operand& src) {
799 arithmetic_op(0x0B, dst, src);
800 }
801
802 void or_(const Operand& dst, Register src) {
803 arithmetic_op(0x09, src, dst);
804 }
805
806 void or_(Register dst, Immediate src) {
807 immediate_arithmetic_op(0x1, dst, src);
808 }
809
Steve Block3ce2e202009-11-05 08:53:23 +0000810 void orl(Register dst, Immediate src) {
811 immediate_arithmetic_op_32(0x1, dst, src);
812 }
813
Steve Blocka7e24c12009-10-30 11:49:00 +0000814 void or_(const Operand& dst, Immediate src) {
815 immediate_arithmetic_op(0x1, dst, src);
816 }
817
Steve Block3ce2e202009-11-05 08:53:23 +0000818 void orl(const Operand& dst, Immediate src) {
819 immediate_arithmetic_op_32(0x1, dst, src);
820 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000821
Steve Block3ce2e202009-11-05 08:53:23 +0000822
823 void rcl(Register dst, Immediate imm8) {
824 shift(dst, imm8, 0x2);
825 }
826
827 void rol(Register dst, Immediate imm8) {
828 shift(dst, imm8, 0x0);
829 }
830
831 void rcr(Register dst, Immediate imm8) {
832 shift(dst, imm8, 0x3);
833 }
834
835 void ror(Register dst, Immediate imm8) {
836 shift(dst, imm8, 0x1);
837 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000838
839 // Shifts dst:src left by cl bits, affecting only dst.
840 void shld(Register dst, Register src);
841
842 // Shifts src:dst right by cl bits, affecting only dst.
843 void shrd(Register dst, Register src);
844
845 // Shifts dst right, duplicating sign bit, by shift_amount bits.
846 // Shifting by 1 is handled efficiently.
847 void sar(Register dst, Immediate shift_amount) {
848 shift(dst, shift_amount, 0x7);
849 }
850
851 // Shifts dst right, duplicating sign bit, by shift_amount bits.
852 // Shifting by 1 is handled efficiently.
853 void sarl(Register dst, Immediate shift_amount) {
854 shift_32(dst, shift_amount, 0x7);
855 }
856
857 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000858 void sar_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000859 shift(dst, 0x7);
860 }
861
862 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000863 void sarl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000864 shift_32(dst, 0x7);
865 }
866
867 void shl(Register dst, Immediate shift_amount) {
868 shift(dst, shift_amount, 0x4);
869 }
870
Steve Blockd0582a62009-12-15 09:54:21 +0000871 void shl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000872 shift(dst, 0x4);
873 }
874
Steve Blockd0582a62009-12-15 09:54:21 +0000875 void shll_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000876 shift_32(dst, 0x4);
877 }
878
879 void shll(Register dst, Immediate shift_amount) {
880 shift_32(dst, shift_amount, 0x4);
881 }
882
883 void shr(Register dst, Immediate shift_amount) {
884 shift(dst, shift_amount, 0x5);
885 }
886
Steve Blockd0582a62009-12-15 09:54:21 +0000887 void shr_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000888 shift(dst, 0x5);
889 }
890
Steve Blockd0582a62009-12-15 09:54:21 +0000891 void shrl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000892 shift_32(dst, 0x5);
893 }
894
895 void shrl(Register dst, Immediate shift_amount) {
896 shift_32(dst, shift_amount, 0x5);
897 }
898
899 void store_rax(void* dst, RelocInfo::Mode mode);
900 void store_rax(ExternalReference ref);
901
902 void subq(Register dst, Register src) {
903 arithmetic_op(0x2B, dst, src);
904 }
905
906 void subq(Register dst, const Operand& src) {
907 arithmetic_op(0x2B, dst, src);
908 }
909
910 void subq(const Operand& dst, Register src) {
911 arithmetic_op(0x29, src, dst);
912 }
913
914 void subq(Register dst, Immediate src) {
915 immediate_arithmetic_op(0x5, dst, src);
916 }
917
918 void subq(const Operand& dst, Immediate src) {
919 immediate_arithmetic_op(0x5, dst, src);
920 }
921
922 void subl(Register dst, Register src) {
923 arithmetic_op_32(0x2B, dst, src);
924 }
925
Leon Clarkee46be812010-01-19 14:06:41 +0000926 void subl(Register dst, const Operand& src) {
927 arithmetic_op_32(0x2B, dst, src);
928 }
929
Steve Blocka7e24c12009-10-30 11:49:00 +0000930 void subl(const Operand& dst, Immediate src) {
931 immediate_arithmetic_op_32(0x5, dst, src);
932 }
933
934 void subl(Register dst, Immediate src) {
935 immediate_arithmetic_op_32(0x5, dst, src);
936 }
937
938 void subb(Register dst, Immediate src) {
939 immediate_arithmetic_op_8(0x5, dst, src);
940 }
941
Steve Block3ce2e202009-11-05 08:53:23 +0000942 void testb(Register dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000943 void testb(Register reg, Immediate mask);
944 void testb(const Operand& op, Immediate mask);
Leon Clarkee46be812010-01-19 14:06:41 +0000945 void testb(const Operand& op, Register reg);
Steve Blocka7e24c12009-10-30 11:49:00 +0000946 void testl(Register dst, Register src);
947 void testl(Register reg, Immediate mask);
948 void testl(const Operand& op, Immediate mask);
949 void testq(const Operand& op, Register reg);
950 void testq(Register dst, Register src);
951 void testq(Register dst, Immediate mask);
952
953 void xor_(Register dst, Register src) {
Steve Blockd0582a62009-12-15 09:54:21 +0000954 if (dst.code() == src.code()) {
955 arithmetic_op_32(0x33, dst, src);
956 } else {
957 arithmetic_op(0x33, dst, src);
958 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000959 }
960
961 void xorl(Register dst, Register src) {
962 arithmetic_op_32(0x33, dst, src);
963 }
964
965 void xor_(Register dst, const Operand& src) {
966 arithmetic_op(0x33, dst, src);
967 }
968
969 void xor_(const Operand& dst, Register src) {
970 arithmetic_op(0x31, src, dst);
971 }
972
973 void xor_(Register dst, Immediate src) {
974 immediate_arithmetic_op(0x6, dst, src);
975 }
976
977 void xor_(const Operand& dst, Immediate src) {
978 immediate_arithmetic_op(0x6, dst, src);
979 }
980
981 // Bit operations.
982 void bt(const Operand& dst, Register src);
983 void bts(const Operand& dst, Register src);
984
985 // Miscellaneous
Steve Block3ce2e202009-11-05 08:53:23 +0000986 void clc();
Steve Blocka7e24c12009-10-30 11:49:00 +0000987 void cpuid();
988 void hlt();
989 void int3();
990 void nop();
991 void nop(int n);
992 void rdtsc();
993 void ret(int imm16);
994 void setcc(Condition cc, Register reg);
995
996 // Label operations & relative jumps (PPUM Appendix D)
997 //
998 // Takes a branch opcode (cc) and a label (L) and generates
999 // either a backward branch or a forward branch and links it
1000 // to the label fixup chain. Usage:
1001 //
1002 // Label L; // unbound label
1003 // j(cc, &L); // forward branch to unbound label
1004 // bind(&L); // bind label to the current pc
1005 // j(cc, &L); // backward branch to bound label
1006 // bind(&L); // illegal: a label may be bound only once
1007 //
1008 // Note: The same Label can be used for forward and backward branches
1009 // but it may be bound only once.
1010
1011 void bind(Label* L); // binds an unbound label L to the current code position
1012
1013 // Calls
1014 // Call near relative 32-bit displacement, relative to next instruction.
1015 void call(Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001016 void call(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001017
1018 // Call near absolute indirect, address in register
1019 void call(Register adr);
1020
1021 // Call near indirect
1022 void call(const Operand& operand);
1023
1024 // Jumps
1025 // Jump short or near relative.
Steve Block3ce2e202009-11-05 08:53:23 +00001026 // Use a 32-bit signed displacement.
Steve Blocka7e24c12009-10-30 11:49:00 +00001027 void jmp(Label* L); // unconditional jump to L
Steve Block3ce2e202009-11-05 08:53:23 +00001028 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001029
1030 // Jump near absolute indirect (r64)
1031 void jmp(Register adr);
1032
1033 // Jump near absolute indirect (m64)
1034 void jmp(const Operand& src);
1035
1036 // Conditional jumps
1037 void j(Condition cc, Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001038 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001039
1040 // Floating-point operations
1041 void fld(int i);
1042
1043 void fld1();
1044 void fldz();
1045
1046 void fld_s(const Operand& adr);
1047 void fld_d(const Operand& adr);
1048
1049 void fstp_s(const Operand& adr);
1050 void fstp_d(const Operand& adr);
Steve Block3ce2e202009-11-05 08:53:23 +00001051 void fstp(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001052
1053 void fild_s(const Operand& adr);
1054 void fild_d(const Operand& adr);
1055
1056 void fist_s(const Operand& adr);
1057
1058 void fistp_s(const Operand& adr);
1059 void fistp_d(const Operand& adr);
1060
1061 void fisttp_s(const Operand& adr);
Leon Clarked91b9f72010-01-27 17:25:45 +00001062 void fisttp_d(const Operand& adr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001063
1064 void fabs();
1065 void fchs();
1066
1067 void fadd(int i);
1068 void fsub(int i);
1069 void fmul(int i);
1070 void fdiv(int i);
1071
1072 void fisub_s(const Operand& adr);
1073
1074 void faddp(int i = 1);
1075 void fsubp(int i = 1);
1076 void fsubrp(int i = 1);
1077 void fmulp(int i = 1);
1078 void fdivp(int i = 1);
1079 void fprem();
1080 void fprem1();
1081
1082 void fxch(int i = 1);
1083 void fincstp();
1084 void ffree(int i = 0);
1085
1086 void ftst();
1087 void fucomp(int i);
1088 void fucompp();
Steve Block3ce2e202009-11-05 08:53:23 +00001089 void fucomi(int i);
1090 void fucomip();
1091
Steve Blocka7e24c12009-10-30 11:49:00 +00001092 void fcompp();
1093 void fnstsw_ax();
1094 void fwait();
1095 void fnclex();
1096
1097 void fsin();
1098 void fcos();
1099
1100 void frndint();
1101
1102 void sahf();
1103
1104 // SSE2 instructions
1105 void movsd(const Operand& dst, XMMRegister src);
Steve Block3ce2e202009-11-05 08:53:23 +00001106 void movsd(XMMRegister src, XMMRegister dst);
Steve Blocka7e24c12009-10-30 11:49:00 +00001107 void movsd(XMMRegister src, const Operand& dst);
1108
1109 void cvttss2si(Register dst, const Operand& src);
1110 void cvttsd2si(Register dst, const Operand& src);
1111
1112 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1113 void cvtlsi2sd(XMMRegister dst, Register src);
1114 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1115 void cvtqsi2sd(XMMRegister dst, Register src);
1116
1117 void addsd(XMMRegister dst, XMMRegister src);
1118 void subsd(XMMRegister dst, XMMRegister src);
1119 void mulsd(XMMRegister dst, XMMRegister src);
1120 void divsd(XMMRegister dst, XMMRegister src);
1121
1122
1123 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1124 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1125 void emit_sse_operand(XMMRegister dst, Register src);
1126
1127 // Use either movsd or movlpd.
1128 // void movdbl(XMMRegister dst, const Operand& src);
1129 // void movdbl(const Operand& dst, XMMRegister src);
1130
1131 // Debugging
1132 void Print();
1133
1134 // Check the code size generated from label to here.
1135 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1136
1137 // Mark address of the ExitJSFrame code.
1138 void RecordJSReturn();
1139
1140 // Record a comment relocation entry that can be used by a disassembler.
1141 // Use --debug_code to enable.
1142 void RecordComment(const char* msg);
1143
1144 void RecordPosition(int pos);
1145 void RecordStatementPosition(int pos);
1146 void WriteRecordedPositions();
1147
Steve Blockd0582a62009-12-15 09:54:21 +00001148 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
Steve Blocka7e24c12009-10-30 11:49:00 +00001149 int current_statement_position() const { return current_statement_position_; }
1150 int current_position() const { return current_position_; }
1151
1152 // Check if there is less than kGap bytes available in the buffer.
1153 // If this is the case, we need to grow the buffer before emitting
1154 // an instruction or relocation information.
1155 inline bool buffer_overflow() const {
1156 return pc_ >= reloc_info_writer.pos() - kGap;
1157 }
1158
1159 // Get the number of bytes available in the buffer.
Steve Blockd0582a62009-12-15 09:54:21 +00001160 inline int available_space() const {
1161 return static_cast<int>(reloc_info_writer.pos() - pc_);
1162 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001163
1164 // Avoid overflows for displacements etc.
1165 static const int kMaximalBufferSize = 512*MB;
1166 static const int kMinimalBufferSize = 4*KB;
1167
1168 protected:
1169 // void movsd(XMMRegister dst, const Operand& src);
1170 // void movsd(const Operand& dst, XMMRegister src);
1171
1172 // void emit_sse_operand(XMMRegister reg, const Operand& adr);
1173 // void emit_sse_operand(XMMRegister dst, XMMRegister src);
1174
1175
1176 private:
1177 byte* addr_at(int pos) { return buffer_ + pos; }
1178 byte byte_at(int pos) { return buffer_[pos]; }
1179 uint32_t long_at(int pos) {
1180 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1181 }
1182 void long_at_put(int pos, uint32_t x) {
1183 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1184 }
1185
1186 // code emission
1187 void GrowBuffer();
1188
1189 void emit(byte x) { *pc_++ = x; }
1190 inline void emitl(uint32_t x);
Steve Blocka7e24c12009-10-30 11:49:00 +00001191 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1192 inline void emitw(uint16_t x);
Steve Block3ce2e202009-11-05 08:53:23 +00001193 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001194 void emit(Immediate x) { emitl(x.value_); }
1195
1196 // Emits a REX prefix that encodes a 64-bit operand size and
1197 // the top bit of both register codes.
1198 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1199 // REX.W is set.
1200 inline void emit_rex_64(Register reg, Register rm_reg);
1201 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1202
1203 // Emits a REX prefix that encodes a 64-bit operand size and
1204 // the top bit of the destination, index, and base register codes.
1205 // The high bit of reg is used for REX.R, the high bit of op's base
1206 // register is used for REX.B, and the high bit of op's index register
1207 // is used for REX.X. REX.W is set.
1208 inline void emit_rex_64(Register reg, const Operand& op);
1209 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1210
1211 // Emits a REX prefix that encodes a 64-bit operand size and
1212 // the top bit of the register code.
1213 // The high bit of register is used for REX.B.
1214 // REX.W is set and REX.R and REX.X are clear.
1215 inline void emit_rex_64(Register rm_reg);
1216
1217 // Emits a REX prefix that encodes a 64-bit operand size and
1218 // the top bit of the index and base register codes.
1219 // The high bit of op's base register is used for REX.B, and the high
1220 // bit of op's index register is used for REX.X.
1221 // REX.W is set and REX.R clear.
1222 inline void emit_rex_64(const Operand& op);
1223
1224 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1225 void emit_rex_64() { emit(0x48); }
1226
1227 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1228 // REX.W is clear.
1229 inline void emit_rex_32(Register reg, Register rm_reg);
1230
1231 // The high bit of reg is used for REX.R, the high bit of op's base
1232 // register is used for REX.B, and the high bit of op's index register
1233 // is used for REX.X. REX.W is cleared.
1234 inline void emit_rex_32(Register reg, const Operand& op);
1235
1236 // High bit of rm_reg goes to REX.B.
1237 // REX.W, REX.R and REX.X are clear.
1238 inline void emit_rex_32(Register rm_reg);
1239
1240 // High bit of base goes to REX.B and high bit of index to REX.X.
1241 // REX.W and REX.R are clear.
1242 inline void emit_rex_32(const Operand& op);
1243
1244 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1245 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1246 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1247
1248 // The high bit of reg is used for REX.R, the high bit of op's base
1249 // register is used for REX.B, and the high bit of op's index register
1250 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1251 // is emitted.
1252 inline void emit_optional_rex_32(Register reg, const Operand& op);
1253
1254 // As for emit_optional_rex_32(Register, Register), except that
1255 // the registers are XMM registers.
1256 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1257
1258 // As for emit_optional_rex_32(Register, Register), except that
1259 // the registers are XMM registers.
1260 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1261
1262 // As for emit_optional_rex_32(Register, const Operand&), except that
1263 // the register is an XMM register.
1264 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1265
1266 // Optionally do as emit_rex_32(Register) if the register number has
1267 // the high bit set.
1268 inline void emit_optional_rex_32(Register rm_reg);
1269
1270 // Optionally do as emit_rex_32(const Operand&) if the operand register
1271 // numbers have a high bit set.
1272 inline void emit_optional_rex_32(const Operand& op);
1273
1274
1275 // Emit the ModR/M byte, and optionally the SIB byte and
1276 // 1- or 4-byte offset for a memory operand. Also encodes
1277 // the second operand of the operation, a register or operation
1278 // subcode, into the reg field of the ModR/M byte.
1279 void emit_operand(Register reg, const Operand& adr) {
1280 emit_operand(reg.low_bits(), adr);
1281 }
1282
1283 // Emit the ModR/M byte, and optionally the SIB byte and
1284 // 1- or 4-byte offset for a memory operand. Also used to encode
1285 // a three-bit opcode extension into the ModR/M byte.
1286 void emit_operand(int rm, const Operand& adr);
1287
1288 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1289 void emit_modrm(Register reg, Register rm_reg) {
1290 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1291 }
1292
1293 // Emit a ModR/M byte with an operation subcode in the reg field and
1294 // a register in the rm_reg field.
1295 void emit_modrm(int code, Register rm_reg) {
1296 ASSERT(is_uint3(code));
1297 emit(0xC0 | code << 3 | rm_reg.low_bits());
1298 }
1299
1300 // Emit the code-object-relative offset of the label's position
1301 inline void emit_code_relative_offset(Label* label);
1302
1303 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1304 // AND, OR, XOR, or CMP. The encodings of these operations are all
1305 // similar, differing just in the opcode or in the reg field of the
1306 // ModR/M byte.
1307 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1308 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1309 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1310 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1311 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1312 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1313 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1314 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1315 // Operate on a byte in memory or register.
1316 void immediate_arithmetic_op_8(byte subcode,
1317 Register dst,
1318 Immediate src);
1319 void immediate_arithmetic_op_8(byte subcode,
1320 const Operand& dst,
1321 Immediate src);
1322 // Operate on a word in memory or register.
1323 void immediate_arithmetic_op_16(byte subcode,
1324 Register dst,
1325 Immediate src);
1326 void immediate_arithmetic_op_16(byte subcode,
1327 const Operand& dst,
1328 Immediate src);
1329 // Operate on a 32-bit word in memory or register.
1330 void immediate_arithmetic_op_32(byte subcode,
1331 Register dst,
1332 Immediate src);
1333 void immediate_arithmetic_op_32(byte subcode,
1334 const Operand& dst,
1335 Immediate src);
1336
1337 // Emit machine code for a shift operation.
1338 void shift(Register dst, Immediate shift_amount, int subcode);
1339 void shift_32(Register dst, Immediate shift_amount, int subcode);
1340 // Shift dst by cl % 64 bits.
1341 void shift(Register dst, int subcode);
1342 void shift_32(Register dst, int subcode);
1343
1344 void emit_farith(int b1, int b2, int i);
1345
1346 // labels
1347 // void print(Label* L);
1348 void bind_to(Label* L, int pos);
1349 void link_to(Label* L, Label* appendix);
1350
1351 // record reloc info for current pc_
1352 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1353
1354 friend class CodePatcher;
1355 friend class EnsureSpace;
1356 friend class RegExpMacroAssemblerX64;
1357
1358 // Code buffer:
1359 // The buffer into which code and relocation info are generated.
1360 byte* buffer_;
1361 int buffer_size_;
1362 // True if the assembler owns the buffer, false if buffer is external.
1363 bool own_buffer_;
1364 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1365 static byte* spare_buffer_;
1366
1367 // code generation
1368 byte* pc_; // the program counter; moves forward
1369 RelocInfoWriter reloc_info_writer;
1370
Steve Block3ce2e202009-11-05 08:53:23 +00001371 List< Handle<Code> > code_targets_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001372 // push-pop elimination
1373 byte* last_pc_;
1374
1375 // source position information
1376 int current_statement_position_;
1377 int current_position_;
1378 int written_statement_position_;
1379 int written_position_;
1380};
1381
1382
1383// Helper class that ensures that there is enough space for generating
1384// instructions and relocation information. The constructor makes
1385// sure that there is enough space and (in debug mode) the destructor
1386// checks that we did not generate too much.
1387class EnsureSpace BASE_EMBEDDED {
1388 public:
1389 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1390 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1391#ifdef DEBUG
1392 space_before_ = assembler_->available_space();
1393#endif
1394 }
1395
1396#ifdef DEBUG
1397 ~EnsureSpace() {
1398 int bytes_generated = space_before_ - assembler_->available_space();
1399 ASSERT(bytes_generated < assembler_->kGap);
1400 }
1401#endif
1402
1403 private:
1404 Assembler* assembler_;
1405#ifdef DEBUG
1406 int space_before_;
1407#endif
1408};
1409
1410} } // namespace v8::internal
1411
1412#endif // V8_X64_ASSEMBLER_X64_H_