blob: ee4053515a6b20a0ebc5c56950fc25b42420c519 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005#if V8_TARGET_ARCH_ARM64
6
Ben Murdochb8a8cc12014-11-26 15:28:44 +00007#include "src/code-stubs.h"
Ben Murdochda12d292016-06-02 14:46:10 +01008#include "src/api-arguments.h"
9#include "src/bootstrapper.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000010#include "src/codegen.h"
11#include "src/ic/handler-compiler.h"
12#include "src/ic/ic.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000013#include "src/ic/stub-cache.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000014#include "src/isolate.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000015#include "src/regexp/jsregexp.h"
16#include "src/regexp/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040017#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000018
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000019#include "src/arm64/code-stubs-arm64.h"
20#include "src/arm64/frames-arm64.h"
21
Ben Murdochb8a8cc12014-11-26 15:28:44 +000022namespace v8 {
23namespace internal {
24
25
26static void InitializeArrayConstructorDescriptor(
27 Isolate* isolate, CodeStubDescriptor* descriptor,
28 int constant_stack_parameter_count) {
29 // cp: context
30 // x1: function
31 // x2: allocation site with elements kind
32 // x0: number of arguments to the constructor function
33 Address deopt_handler = Runtime::FunctionForId(
34 Runtime::kArrayConstructor)->entry;
35
36 if (constant_stack_parameter_count == 0) {
37 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
38 JS_FUNCTION_STUB_MODE);
39 } else {
40 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000041 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000042 }
43}
44
45
46void ArrayNoArgumentConstructorStub::InitializeDescriptor(
47 CodeStubDescriptor* descriptor) {
48 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
49}
50
51
52void ArraySingleArgumentConstructorStub::InitializeDescriptor(
53 CodeStubDescriptor* descriptor) {
54 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
55}
56
57
58void ArrayNArgumentsConstructorStub::InitializeDescriptor(
59 CodeStubDescriptor* descriptor) {
60 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
61}
62
63
64static void InitializeInternalArrayConstructorDescriptor(
65 Isolate* isolate, CodeStubDescriptor* descriptor,
66 int constant_stack_parameter_count) {
67 Address deopt_handler = Runtime::FunctionForId(
68 Runtime::kInternalArrayConstructor)->entry;
69
70 if (constant_stack_parameter_count == 0) {
71 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
72 JS_FUNCTION_STUB_MODE);
73 } else {
74 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000075 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000076 }
77}
78
79
80void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
81 CodeStubDescriptor* descriptor) {
82 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
83}
84
Ben Murdochda12d292016-06-02 14:46:10 +010085void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
86 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
87 descriptor->Initialize(x0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
88}
Ben Murdochb8a8cc12014-11-26 15:28:44 +000089
90void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
91 CodeStubDescriptor* descriptor) {
92 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
93}
94
95
96void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
97 CodeStubDescriptor* descriptor) {
98 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
99}
100
101
102#define __ ACCESS_MASM(masm)
103
104
105void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
106 ExternalReference miss) {
107 // Update the static counter each time a new code stub is generated.
108 isolate()->counters()->code_stubs()->Increment();
109
110 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000111 int param_count = descriptor.GetRegisterParameterCount();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000112 {
113 // Call the runtime system in a fresh internal frame.
114 FrameScope scope(masm, StackFrame::INTERNAL);
115 DCHECK((param_count == 0) ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000116 x0.Is(descriptor.GetRegisterParameter(param_count - 1)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000117
118 // Push arguments
119 MacroAssembler::PushPopQueue queue(masm);
120 for (int i = 0; i < param_count; ++i) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000121 queue.Queue(descriptor.GetRegisterParameter(i));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000122 }
123 queue.PushQueued();
124
125 __ CallExternalReference(miss, param_count);
126 }
127
128 __ Ret();
129}
130
131
132void DoubleToIStub::Generate(MacroAssembler* masm) {
133 Label done;
134 Register input = source();
135 Register result = destination();
136 DCHECK(is_truncating());
137
138 DCHECK(result.Is64Bits());
139 DCHECK(jssp.Is(masm->StackPointer()));
140
141 int double_offset = offset();
142
143 DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
144 Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
145 Register scratch2 =
146 GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
147
148 __ Push(scratch1, scratch2);
149 // Account for saved regs if input is jssp.
150 if (input.is(jssp)) double_offset += 2 * kPointerSize;
151
152 if (!skip_fastpath()) {
153 __ Push(double_scratch);
154 if (input.is(jssp)) double_offset += 1 * kDoubleSize;
155 __ Ldr(double_scratch, MemOperand(input, double_offset));
156 // Try to convert with a FPU convert instruction. This handles all
157 // non-saturating cases.
158 __ TryConvertDoubleToInt64(result, double_scratch, &done);
159 __ Fmov(result, double_scratch);
160 } else {
161 __ Ldr(result, MemOperand(input, double_offset));
162 }
163
164 // If we reach here we need to manually convert the input to an int32.
165
166 // Extract the exponent.
167 Register exponent = scratch1;
168 __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
169 HeapNumber::kExponentBits);
170
171 // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
172 // the mantissa gets shifted completely out of the int32_t result.
173 __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
174 __ CzeroX(result, ge);
175 __ B(ge, &done);
176
177 // The Fcvtzs sequence handles all cases except where the conversion causes
178 // signed overflow in the int64_t target. Since we've already handled
179 // exponents >= 84, we can guarantee that 63 <= exponent < 84.
180
181 if (masm->emit_debug_code()) {
182 __ Cmp(exponent, HeapNumber::kExponentBias + 63);
183 // Exponents less than this should have been handled by the Fcvt case.
184 __ Check(ge, kUnexpectedValue);
185 }
186
187 // Isolate the mantissa bits, and set the implicit '1'.
188 Register mantissa = scratch2;
189 __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
190 __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
191
192 // Negate the mantissa if necessary.
193 __ Tst(result, kXSignMask);
194 __ Cneg(mantissa, mantissa, ne);
195
196 // Shift the mantissa bits in the correct place. We know that we have to shift
197 // it left here, because exponent >= 63 >= kMantissaBits.
198 __ Sub(exponent, exponent,
199 HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
200 __ Lsl(result, mantissa, exponent);
201
202 __ Bind(&done);
203 if (!skip_fastpath()) {
204 __ Pop(double_scratch);
205 }
206 __ Pop(scratch2, scratch1);
207 __ Ret();
208}
209
210
211// See call site for description.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000212static void EmitIdenticalObjectComparison(MacroAssembler* masm, Register left,
213 Register right, Register scratch,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000214 FPRegister double_scratch,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100215 Label* slow, Condition cond) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000216 DCHECK(!AreAliased(left, right, scratch));
217 Label not_identical, return_equal, heap_number;
218 Register result = x0;
219
220 __ Cmp(right, left);
221 __ B(ne, &not_identical);
222
223 // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
224 // so we do the second best thing - test it ourselves.
225 // They are both equal and they are not both Smis so both of them are not
226 // Smis. If it's not a heap number, then return equal.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000227 Register right_type = scratch;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000228 if ((cond == lt) || (cond == gt)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000229 // Call runtime on identical JSObjects. Otherwise return equal.
230 __ JumpIfObjectType(right, right_type, right_type, FIRST_JS_RECEIVER_TYPE,
231 slow, ge);
232 // Call runtime on identical symbols since we need to throw a TypeError.
233 __ Cmp(right_type, SYMBOL_TYPE);
234 __ B(eq, slow);
235 // Call runtime on identical SIMD values since we must throw a TypeError.
236 __ Cmp(right_type, SIMD128_VALUE_TYPE);
237 __ B(eq, slow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000238 } else if (cond == eq) {
239 __ JumpIfHeapNumber(right, &heap_number);
240 } else {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000241 __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
242 &heap_number);
243 // Comparing JS objects with <=, >= is complicated.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000244 __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000245 __ B(ge, slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000246 // Call runtime on identical symbols since we need to throw a TypeError.
247 __ Cmp(right_type, SYMBOL_TYPE);
248 __ B(eq, slow);
249 // Call runtime on identical SIMD values since we must throw a TypeError.
250 __ Cmp(right_type, SIMD128_VALUE_TYPE);
251 __ B(eq, slow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000252 // Normally here we fall through to return_equal, but undefined is
253 // special: (undefined == undefined) == true, but
254 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
255 if ((cond == le) || (cond == ge)) {
256 __ Cmp(right_type, ODDBALL_TYPE);
257 __ B(ne, &return_equal);
258 __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
259 if (cond == le) {
260 // undefined <= undefined should fail.
261 __ Mov(result, GREATER);
262 } else {
263 // undefined >= undefined should fail.
264 __ Mov(result, LESS);
265 }
266 __ Ret();
267 }
268 }
269
270 __ Bind(&return_equal);
271 if (cond == lt) {
272 __ Mov(result, GREATER); // Things aren't less than themselves.
273 } else if (cond == gt) {
274 __ Mov(result, LESS); // Things aren't greater than themselves.
275 } else {
276 __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
277 }
278 __ Ret();
279
280 // Cases lt and gt have been handled earlier, and case ne is never seen, as
281 // it is handled in the parser (see Parser::ParseBinaryExpression). We are
282 // only concerned with cases ge, le and eq here.
283 if ((cond != lt) && (cond != gt)) {
284 DCHECK((cond == ge) || (cond == le) || (cond == eq));
285 __ Bind(&heap_number);
286 // Left and right are identical pointers to a heap number object. Return
287 // non-equal if the heap number is a NaN, and equal otherwise. Comparing
288 // the number to itself will set the overflow flag iff the number is NaN.
289 __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
290 __ Fcmp(double_scratch, double_scratch);
291 __ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
292
293 if (cond == le) {
294 __ Mov(result, GREATER);
295 } else {
296 __ Mov(result, LESS);
297 }
298 __ Ret();
299 }
300
301 // No fall through here.
302 if (FLAG_debug_code) {
303 __ Unreachable();
304 }
305
306 __ Bind(&not_identical);
307}
308
309
310// See call site for description.
311static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
312 Register left,
313 Register right,
314 Register left_type,
315 Register right_type,
316 Register scratch) {
317 DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
318
319 if (masm->emit_debug_code()) {
320 // We assume that the arguments are not identical.
321 __ Cmp(left, right);
322 __ Assert(ne, kExpectedNonIdenticalObjects);
323 }
324
325 // If either operand is a JS object or an oddball value, then they are not
326 // equal since their pointers are different.
327 // There is no test for undetectability in strict equality.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000328 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000329 Label right_non_object;
330
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000331 __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000332 __ B(lt, &right_non_object);
333
334 // Return non-zero - x0 already contains a non-zero pointer.
335 DCHECK(left.is(x0) || right.is(x0));
336 Label return_not_equal;
337 __ Bind(&return_not_equal);
338 __ Ret();
339
340 __ Bind(&right_non_object);
341
342 // Check for oddballs: true, false, null, undefined.
343 __ Cmp(right_type, ODDBALL_TYPE);
344
345 // If right is not ODDBALL, test left. Otherwise, set eq condition.
346 __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
347
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000348 // If right or left is not ODDBALL, test left >= FIRST_JS_RECEIVER_TYPE.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000349 // Otherwise, right or left is ODDBALL, so set a ge condition.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000350 __ Ccmp(left_type, FIRST_JS_RECEIVER_TYPE, NVFlag, ne);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000351
352 __ B(ge, &return_not_equal);
353
354 // Internalized strings are unique, so they can only be equal if they are the
355 // same object. We have already tested that case, so if left and right are
356 // both internalized strings, they cannot be equal.
357 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
358 __ Orr(scratch, left_type, right_type);
359 __ TestAndBranchIfAllClear(
360 scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
361}
362
363
364// See call site for description.
365static void EmitSmiNonsmiComparison(MacroAssembler* masm,
366 Register left,
367 Register right,
368 FPRegister left_d,
369 FPRegister right_d,
370 Label* slow,
371 bool strict) {
372 DCHECK(!AreAliased(left_d, right_d));
373 DCHECK((left.is(x0) && right.is(x1)) ||
374 (right.is(x0) && left.is(x1)));
375 Register result = x0;
376
377 Label right_is_smi, done;
378 __ JumpIfSmi(right, &right_is_smi);
379
380 // Left is the smi. Check whether right is a heap number.
381 if (strict) {
382 // If right is not a number and left is a smi, then strict equality cannot
383 // succeed. Return non-equal.
384 Label is_heap_number;
385 __ JumpIfHeapNumber(right, &is_heap_number);
386 // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
387 if (!right.is(result)) {
388 __ Mov(result, NOT_EQUAL);
389 }
390 __ Ret();
391 __ Bind(&is_heap_number);
392 } else {
393 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
394 // runtime.
395 __ JumpIfNotHeapNumber(right, slow);
396 }
397
398 // Left is the smi. Right is a heap number. Load right value into right_d, and
399 // convert left smi into double in left_d.
400 __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
401 __ SmiUntagToDouble(left_d, left);
402 __ B(&done);
403
404 __ Bind(&right_is_smi);
405 // Right is a smi. Check whether the non-smi left is a heap number.
406 if (strict) {
407 // If left is not a number and right is a smi then strict equality cannot
408 // succeed. Return non-equal.
409 Label is_heap_number;
410 __ JumpIfHeapNumber(left, &is_heap_number);
411 // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
412 if (!left.is(result)) {
413 __ Mov(result, NOT_EQUAL);
414 }
415 __ Ret();
416 __ Bind(&is_heap_number);
417 } else {
418 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
419 // runtime.
420 __ JumpIfNotHeapNumber(left, slow);
421 }
422
423 // Right is the smi. Left is a heap number. Load left value into left_d, and
424 // convert right smi into double in right_d.
425 __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
426 __ SmiUntagToDouble(right_d, right);
427
428 // Fall through to both_loaded_as_doubles.
429 __ Bind(&done);
430}
431
432
Ben Murdochda12d292016-06-02 14:46:10 +0100433// Fast negative check for internalized-to-internalized equality or receiver
434// equality. Also handles the undetectable receiver to null/undefined
435// comparison.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000436// See call site for description.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100437static void EmitCheckForInternalizedStringsOrObjects(
438 MacroAssembler* masm, Register left, Register right, Register left_map,
439 Register right_map, Register left_type, Register right_type,
440 Label* possible_strings, Label* runtime_call) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000441 DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
442 Register result = x0;
Ben Murdoch097c5b22016-05-18 11:27:45 +0100443 DCHECK(left.is(x0) || right.is(x0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000444
Ben Murdochda12d292016-06-02 14:46:10 +0100445 Label object_test, return_equal, return_unequal, undetectable;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000446 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
447 // TODO(all): reexamine this branch sequence for optimisation wrt branch
448 // prediction.
449 __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
450 __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100451 __ Tbnz(left_type, MaskToBit(kIsNotStringMask), runtime_call);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000452 __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
453
Ben Murdoch097c5b22016-05-18 11:27:45 +0100454 // Both are internalized. We already checked they weren't the same pointer so
455 // they are not equal. Return non-equal by returning the non-zero object
456 // pointer in x0.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000457 __ Ret();
458
459 __ Bind(&object_test);
460
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000461 Register left_bitfield = left_type;
Ben Murdoch097c5b22016-05-18 11:27:45 +0100462 Register right_bitfield = right_type;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000463 __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
464 __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100465 __ Tbnz(right_bitfield, MaskToBit(1 << Map::kIsUndetectable), &undetectable);
466 __ Tbnz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal);
467
468 __ CompareInstanceType(right_map, right_type, FIRST_JS_RECEIVER_TYPE);
469 __ B(lt, runtime_call);
470 __ CompareInstanceType(left_map, left_type, FIRST_JS_RECEIVER_TYPE);
471 __ B(lt, runtime_call);
472
Ben Murdochda12d292016-06-02 14:46:10 +0100473 __ Bind(&return_unequal);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100474 // Return non-equal by returning the non-zero object pointer in x0.
475 __ Ret();
476
Ben Murdochda12d292016-06-02 14:46:10 +0100477 __ Bind(&undetectable);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100478 __ Tbz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal);
Ben Murdochda12d292016-06-02 14:46:10 +0100479
480 // If both sides are JSReceivers, then the result is false according to
481 // the HTML specification, which says that only comparisons with null or
482 // undefined are affected by special casing for document.all.
483 __ CompareInstanceType(right_map, right_type, ODDBALL_TYPE);
484 __ B(eq, &return_equal);
485 __ CompareInstanceType(left_map, left_type, ODDBALL_TYPE);
486 __ B(ne, &return_unequal);
487
488 __ Bind(&return_equal);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100489 __ Mov(result, EQUAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000490 __ Ret();
491}
492
493
494static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
495 CompareICState::State expected,
496 Label* fail) {
497 Label ok;
498 if (expected == CompareICState::SMI) {
499 __ JumpIfNotSmi(input, fail);
500 } else if (expected == CompareICState::NUMBER) {
501 __ JumpIfSmi(input, &ok);
502 __ JumpIfNotHeapNumber(input, fail);
503 }
504 // We could be strict about internalized/non-internalized here, but as long as
505 // hydrogen doesn't care, the stub doesn't have to care either.
506 __ Bind(&ok);
507}
508
509
510void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
511 Register lhs = x1;
512 Register rhs = x0;
513 Register result = x0;
514 Condition cond = GetCondition();
515
516 Label miss;
517 CompareICStub_CheckInputType(masm, lhs, left(), &miss);
518 CompareICStub_CheckInputType(masm, rhs, right(), &miss);
519
520 Label slow; // Call builtin.
521 Label not_smis, both_loaded_as_doubles;
522 Label not_two_smis, smi_done;
523 __ JumpIfEitherNotSmi(lhs, rhs, &not_two_smis);
524 __ SmiUntag(lhs);
525 __ Sub(result, lhs, Operand::UntagSmi(rhs));
526 __ Ret();
527
528 __ Bind(&not_two_smis);
529
530 // NOTICE! This code is only reached after a smi-fast-case check, so it is
531 // certain that at least one operand isn't a smi.
532
533 // Handle the case where the objects are identical. Either returns the answer
534 // or goes to slow. Only falls through if the objects were not identical.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100535 EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000536
537 // If either is a smi (we know that at least one is not a smi), then they can
538 // only be strictly equal if the other is a HeapNumber.
539 __ JumpIfBothNotSmi(lhs, rhs, &not_smis);
540
541 // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
542 // can:
543 // 1) Return the answer.
544 // 2) Branch to the slow case.
545 // 3) Fall through to both_loaded_as_doubles.
546 // In case 3, we have found out that we were dealing with a number-number
547 // comparison. The double values of the numbers have been loaded, right into
548 // rhs_d, left into lhs_d.
549 FPRegister rhs_d = d0;
550 FPRegister lhs_d = d1;
551 EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
552
553 __ Bind(&both_loaded_as_doubles);
554 // The arguments have been converted to doubles and stored in rhs_d and
555 // lhs_d.
556 Label nan;
557 __ Fcmp(lhs_d, rhs_d);
558 __ B(vs, &nan); // Overflow flag set if either is NaN.
559 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
560 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
561 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
562 __ Ret();
563
564 __ Bind(&nan);
565 // Left and/or right is a NaN. Load the result register with whatever makes
566 // the comparison fail, since comparisons with NaN always fail (except ne,
567 // which is filtered out at a higher level.)
568 DCHECK(cond != ne);
569 if ((cond == lt) || (cond == le)) {
570 __ Mov(result, GREATER);
571 } else {
572 __ Mov(result, LESS);
573 }
574 __ Ret();
575
576 __ Bind(&not_smis);
577 // At this point we know we are dealing with two different objects, and
578 // neither of them is a smi. The objects are in rhs_ and lhs_.
579
580 // Load the maps and types of the objects.
581 Register rhs_map = x10;
582 Register rhs_type = x11;
583 Register lhs_map = x12;
584 Register lhs_type = x13;
585 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
586 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
587 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
588 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
589
590 if (strict()) {
591 // This emits a non-equal return sequence for some object types, or falls
592 // through if it was not lucky.
593 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
594 }
595
596 Label check_for_internalized_strings;
597 Label flat_string_check;
598 // Check for heap number comparison. Branch to earlier double comparison code
599 // if they are heap numbers, otherwise, branch to internalized string check.
600 __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
601 __ B(ne, &check_for_internalized_strings);
602 __ Cmp(lhs_map, rhs_map);
603
604 // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
605 // string check.
606 __ B(ne, &flat_string_check);
607
608 // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
609 // comparison code.
610 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
611 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
612 __ B(&both_loaded_as_doubles);
613
614 __ Bind(&check_for_internalized_strings);
615 // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
616 // of internalized strings.
617 if ((cond == eq) && !strict()) {
618 // Returns an answer for two internalized strings or two detectable objects.
619 // Otherwise branches to the string case or not both strings case.
620 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
621 lhs_type, rhs_type,
622 &flat_string_check, &slow);
623 }
624
625 // Check for both being sequential one-byte strings,
626 // and inline if that is the case.
627 __ Bind(&flat_string_check);
628 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
629 x15, &slow);
630
631 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
632 x11);
633 if (cond == eq) {
634 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
635 x12);
636 } else {
637 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
638 x12, x13);
639 }
640
641 // Never fall through to here.
642 if (FLAG_debug_code) {
643 __ Unreachable();
644 }
645
646 __ Bind(&slow);
647
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000648 if (cond == eq) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100649 {
650 FrameScope scope(masm, StackFrame::INTERNAL);
651 __ Push(lhs, rhs);
652 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
653 }
654 // Turn true into 0 and false into some non-zero value.
655 STATIC_ASSERT(EQUAL == 0);
656 __ LoadRoot(x1, Heap::kTrueValueRootIndex);
657 __ Sub(x0, x0, x1);
658 __ Ret();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000659 } else {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100660 __ Push(lhs, rhs);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000661 int ncr; // NaN compare result
662 if ((cond == lt) || (cond == le)) {
663 ncr = GREATER;
664 } else {
665 DCHECK((cond == gt) || (cond == ge)); // remaining cases
666 ncr = LESS;
667 }
668 __ Mov(x10, Smi::FromInt(ncr));
669 __ Push(x10);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000670
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000671 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
672 // tagged as a small integer.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100673 __ TailCallRuntime(Runtime::kCompare);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000674 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000675
676 __ Bind(&miss);
677 GenerateMiss(masm);
678}
679
680
681void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
682 CPURegList saved_regs = kCallerSaved;
683 CPURegList saved_fp_regs = kCallerSavedFP;
684
685 // We don't allow a GC during a store buffer overflow so there is no need to
686 // store the registers in any particular way, but we do have to store and
687 // restore them.
688
689 // We don't care if MacroAssembler scratch registers are corrupted.
690 saved_regs.Remove(*(masm->TmpList()));
691 saved_fp_regs.Remove(*(masm->FPTmpList()));
692
693 __ PushCPURegList(saved_regs);
694 if (save_doubles()) {
695 __ PushCPURegList(saved_fp_regs);
696 }
697
698 AllowExternalCallThatCantCauseGC scope(masm);
699 __ Mov(x0, ExternalReference::isolate_address(isolate()));
700 __ CallCFunction(
701 ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
702
703 if (save_doubles()) {
704 __ PopCPURegList(saved_fp_regs);
705 }
706 __ PopCPURegList(saved_regs);
707 __ Ret();
708}
709
710
711void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
712 Isolate* isolate) {
713 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
714 stub1.GetCode();
715 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
716 stub2.GetCode();
717}
718
719
720void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
721 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
722 UseScratchRegisterScope temps(masm);
723 Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
724 Register return_address = temps.AcquireX();
725 __ Mov(return_address, lr);
726 // Restore lr with the value it had before the call to this stub (the value
727 // which must be pushed).
728 __ Mov(lr, saved_lr);
729 __ PushSafepointRegisters();
730 __ Ret(return_address);
731}
732
733
734void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
735 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
736 UseScratchRegisterScope temps(masm);
737 Register return_address = temps.AcquireX();
738 // Preserve the return address (lr will be clobbered by the pop).
739 __ Mov(return_address, lr);
740 __ PopSafepointRegisters();
741 __ Ret(return_address);
742}
743
744
745void MathPowStub::Generate(MacroAssembler* masm) {
746 // Stack on entry:
747 // jssp[0]: Exponent (as a tagged value).
748 // jssp[1]: Base (as a tagged value).
749 //
750 // The (tagged) result will be returned in x0, as a heap number.
751
752 Register result_tagged = x0;
753 Register base_tagged = x10;
754 Register exponent_tagged = MathPowTaggedDescriptor::exponent();
755 DCHECK(exponent_tagged.is(x11));
756 Register exponent_integer = MathPowIntegerDescriptor::exponent();
757 DCHECK(exponent_integer.is(x12));
758 Register scratch1 = x14;
759 Register scratch0 = x15;
760 Register saved_lr = x19;
761 FPRegister result_double = d0;
762 FPRegister base_double = d0;
763 FPRegister exponent_double = d1;
764 FPRegister base_double_copy = d2;
765 FPRegister scratch1_double = d6;
766 FPRegister scratch0_double = d7;
767
768 // A fast-path for integer exponents.
769 Label exponent_is_smi, exponent_is_integer;
770 // Bail out to runtime.
771 Label call_runtime;
772 // Allocate a heap number for the result, and return it.
773 Label done;
774
775 // Unpack the inputs.
776 if (exponent_type() == ON_STACK) {
777 Label base_is_smi;
778 Label unpack_exponent;
779
780 __ Pop(exponent_tagged, base_tagged);
781
782 __ JumpIfSmi(base_tagged, &base_is_smi);
783 __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
784 // base_tagged is a heap number, so load its double value.
785 __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
786 __ B(&unpack_exponent);
787 __ Bind(&base_is_smi);
788 // base_tagged is a SMI, so untag it and convert it to a double.
789 __ SmiUntagToDouble(base_double, base_tagged);
790
791 __ Bind(&unpack_exponent);
792 // x10 base_tagged The tagged base (input).
793 // x11 exponent_tagged The tagged exponent (input).
794 // d1 base_double The base as a double.
795 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
796 __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
797 // exponent_tagged is a heap number, so load its double value.
798 __ Ldr(exponent_double,
799 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
800 } else if (exponent_type() == TAGGED) {
801 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
802 __ Ldr(exponent_double,
803 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
804 }
805
806 // Handle double (heap number) exponents.
807 if (exponent_type() != INTEGER) {
808 // Detect integer exponents stored as doubles and handle those in the
809 // integer fast-path.
810 __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
811 scratch0_double, &exponent_is_integer);
812
813 if (exponent_type() == ON_STACK) {
814 FPRegister half_double = d3;
815 FPRegister minus_half_double = d4;
816 // Detect square root case. Crankshaft detects constant +/-0.5 at compile
817 // time and uses DoMathPowHalf instead. We then skip this check for
818 // non-constant cases of +/-0.5 as these hardly occur.
819
820 __ Fmov(minus_half_double, -0.5);
821 __ Fmov(half_double, 0.5);
822 __ Fcmp(minus_half_double, exponent_double);
823 __ Fccmp(half_double, exponent_double, NZFlag, ne);
824 // Condition flags at this point:
825 // 0.5; nZCv // Identified by eq && pl
826 // -0.5: NZcv // Identified by eq && mi
827 // other: ?z?? // Identified by ne
828 __ B(ne, &call_runtime);
829
830 // The exponent is 0.5 or -0.5.
831
832 // Given that exponent is known to be either 0.5 or -0.5, the following
833 // special cases could apply (according to ECMA-262 15.8.2.13):
834 //
835 // base.isNaN(): The result is NaN.
836 // (base == +INFINITY) || (base == -INFINITY)
837 // exponent == 0.5: The result is +INFINITY.
838 // exponent == -0.5: The result is +0.
839 // (base == +0) || (base == -0)
840 // exponent == 0.5: The result is +0.
841 // exponent == -0.5: The result is +INFINITY.
842 // (base < 0) && base.isFinite(): The result is NaN.
843 //
844 // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
845 // where base is -INFINITY or -0.
846
847 // Add +0 to base. This has no effect other than turning -0 into +0.
848 __ Fadd(base_double, base_double, fp_zero);
849 // The operation -0+0 results in +0 in all cases except where the
850 // FPCR rounding mode is 'round towards minus infinity' (RM). The
851 // ARM64 simulator does not currently simulate FPCR (where the rounding
852 // mode is set), so test the operation with some debug code.
853 if (masm->emit_debug_code()) {
854 UseScratchRegisterScope temps(masm);
855 Register temp = temps.AcquireX();
856 __ Fneg(scratch0_double, fp_zero);
857 // Verify that we correctly generated +0.0 and -0.0.
858 // bits(+0.0) = 0x0000000000000000
859 // bits(-0.0) = 0x8000000000000000
860 __ Fmov(temp, fp_zero);
861 __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
862 __ Fmov(temp, scratch0_double);
863 __ Eor(temp, temp, kDSignMask);
864 __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
865 // Check that -0.0 + 0.0 == +0.0.
866 __ Fadd(scratch0_double, scratch0_double, fp_zero);
867 __ Fmov(temp, scratch0_double);
868 __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
869 }
870
871 // If base is -INFINITY, make it +INFINITY.
872 // * Calculate base - base: All infinities will become NaNs since both
873 // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
874 // * If the result is NaN, calculate abs(base).
875 __ Fsub(scratch0_double, base_double, base_double);
876 __ Fcmp(scratch0_double, 0.0);
877 __ Fabs(scratch1_double, base_double);
878 __ Fcsel(base_double, scratch1_double, base_double, vs);
879
880 // Calculate the square root of base.
881 __ Fsqrt(result_double, base_double);
882 __ Fcmp(exponent_double, 0.0);
883 __ B(ge, &done); // Finish now for exponents of 0.5.
884 // Find the inverse for exponents of -0.5.
885 __ Fmov(scratch0_double, 1.0);
886 __ Fdiv(result_double, scratch0_double, result_double);
887 __ B(&done);
888 }
889
890 {
891 AllowExternalCallThatCantCauseGC scope(masm);
892 __ Mov(saved_lr, lr);
893 __ CallCFunction(
894 ExternalReference::power_double_double_function(isolate()),
895 0, 2);
896 __ Mov(lr, saved_lr);
897 __ B(&done);
898 }
899
900 // Handle SMI exponents.
901 __ Bind(&exponent_is_smi);
902 // x10 base_tagged The tagged base (input).
903 // x11 exponent_tagged The tagged exponent (input).
904 // d1 base_double The base as a double.
905 __ SmiUntag(exponent_integer, exponent_tagged);
906 }
907
908 __ Bind(&exponent_is_integer);
909 // x10 base_tagged The tagged base (input).
910 // x11 exponent_tagged The tagged exponent (input).
911 // x12 exponent_integer The exponent as an integer.
912 // d1 base_double The base as a double.
913
914 // Find abs(exponent). For negative exponents, we can find the inverse later.
915 Register exponent_abs = x13;
916 __ Cmp(exponent_integer, 0);
917 __ Cneg(exponent_abs, exponent_integer, mi);
918 // x13 exponent_abs The value of abs(exponent_integer).
919
920 // Repeatedly multiply to calculate the power.
921 // result = 1.0;
922 // For each bit n (exponent_integer{n}) {
923 // if (exponent_integer{n}) {
924 // result *= base;
925 // }
926 // base *= base;
927 // if (remaining bits in exponent_integer are all zero) {
928 // break;
929 // }
930 // }
931 Label power_loop, power_loop_entry, power_loop_exit;
932 __ Fmov(scratch1_double, base_double);
933 __ Fmov(base_double_copy, base_double);
934 __ Fmov(result_double, 1.0);
935 __ B(&power_loop_entry);
936
937 __ Bind(&power_loop);
938 __ Fmul(scratch1_double, scratch1_double, scratch1_double);
939 __ Lsr(exponent_abs, exponent_abs, 1);
940 __ Cbz(exponent_abs, &power_loop_exit);
941
942 __ Bind(&power_loop_entry);
943 __ Tbz(exponent_abs, 0, &power_loop);
944 __ Fmul(result_double, result_double, scratch1_double);
945 __ B(&power_loop);
946
947 __ Bind(&power_loop_exit);
948
949 // If the exponent was positive, result_double holds the result.
950 __ Tbz(exponent_integer, kXSignBit, &done);
951
952 // The exponent was negative, so find the inverse.
953 __ Fmov(scratch0_double, 1.0);
954 __ Fdiv(result_double, scratch0_double, result_double);
955 // ECMA-262 only requires Math.pow to return an 'implementation-dependent
956 // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
957 // to calculate the subnormal value 2^-1074. This method of calculating
958 // negative powers doesn't work because 2^1074 overflows to infinity. To
959 // catch this corner-case, we bail out if the result was 0. (This can only
960 // occur if the divisor is infinity or the base is zero.)
961 __ Fcmp(result_double, 0.0);
962 __ B(&done, ne);
963
964 if (exponent_type() == ON_STACK) {
965 // Bail out to runtime code.
966 __ Bind(&call_runtime);
967 // Put the arguments back on the stack.
968 __ Push(base_tagged, exponent_tagged);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000969 __ TailCallRuntime(Runtime::kMathPowRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000970
971 // Return.
972 __ Bind(&done);
973 __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
974 result_double);
975 DCHECK(result_tagged.is(x0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000976 __ Ret();
977 } else {
978 AllowExternalCallThatCantCauseGC scope(masm);
979 __ Mov(saved_lr, lr);
980 __ Fmov(base_double, base_double_copy);
981 __ Scvtf(exponent_double, exponent_integer);
982 __ CallCFunction(
983 ExternalReference::power_double_double_function(isolate()),
984 0, 2);
985 __ Mov(lr, saved_lr);
986 __ Bind(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000987 __ Ret();
988 }
989}
990
991
992void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
993 // It is important that the following stubs are generated in this order
994 // because pregenerated stubs can only call other pregenerated stubs.
995 // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
996 // CEntryStub.
997 CEntryStub::GenerateAheadOfTime(isolate);
998 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
999 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1000 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1001 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001002 CreateWeakCellStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001003 BinaryOpICStub::GenerateAheadOfTime(isolate);
1004 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1005 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1006 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001007 StoreFastElementStub::GenerateAheadOfTime(isolate);
1008 TypeofStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001009}
1010
1011
1012void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1013 StoreRegistersStateStub stub(isolate);
1014 stub.GetCode();
1015}
1016
1017
1018void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1019 RestoreRegistersStateStub stub(isolate);
1020 stub.GetCode();
1021}
1022
1023
1024void CodeStub::GenerateFPStubs(Isolate* isolate) {
1025 // Floating-point code doesn't get special handling in ARM64, so there's
1026 // nothing to do here.
1027 USE(isolate);
1028}
1029
1030
1031bool CEntryStub::NeedsImmovableCode() {
1032 // CEntryStub stores the return address on the stack before calling into
1033 // C++ code. In some cases, the VM accesses this address, but it is not used
1034 // when the C++ code returns to the stub because LR holds the return address
1035 // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
1036 // returning to dead code.
1037 // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
1038 // find any comment to confirm this, and I don't hit any crashes whatever
1039 // this function returns. The anaylsis should be properly confirmed.
1040 return true;
1041}
1042
1043
1044void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1045 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1046 stub.GetCode();
1047 CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
1048 stub_fp.GetCode();
1049}
1050
1051
1052void CEntryStub::Generate(MacroAssembler* masm) {
1053 // The Abort mechanism relies on CallRuntime, which in turn relies on
1054 // CEntryStub, so until this stub has been generated, we have to use a
1055 // fall-back Abort mechanism.
1056 //
1057 // Note that this stub must be generated before any use of Abort.
1058 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
1059
1060 ASM_LOCATION("CEntryStub::Generate entry");
1061 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1062
1063 // Register parameters:
1064 // x0: argc (including receiver, untagged)
1065 // x1: target
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001066 // If argv_in_register():
1067 // x11: argv (pointer to first argument)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001068 //
1069 // The stack on entry holds the arguments and the receiver, with the receiver
1070 // at the highest address:
1071 //
1072 // jssp]argc-1]: receiver
1073 // jssp[argc-2]: arg[argc-2]
1074 // ... ...
1075 // jssp[1]: arg[1]
1076 // jssp[0]: arg[0]
1077 //
1078 // The arguments are in reverse order, so that arg[argc-2] is actually the
1079 // first argument to the target function and arg[0] is the last.
1080 DCHECK(jssp.Is(__ StackPointer()));
1081 const Register& argc_input = x0;
1082 const Register& target_input = x1;
1083
1084 // Calculate argv, argc and the target address, and store them in
1085 // callee-saved registers so we can retry the call without having to reload
1086 // these arguments.
1087 // TODO(jbramley): If the first call attempt succeeds in the common case (as
1088 // it should), then we might be better off putting these parameters directly
1089 // into their argument registers, rather than using callee-saved registers and
1090 // preserving them on the stack.
1091 const Register& argv = x21;
1092 const Register& argc = x22;
1093 const Register& target = x23;
1094
1095 // Derive argv from the stack pointer so that it points to the first argument
1096 // (arg[argc-2]), or just below the receiver in case there are no arguments.
1097 // - Adjust for the arg[] array.
1098 Register temp_argv = x11;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001099 if (!argv_in_register()) {
1100 __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
1101 // - Adjust for the receiver.
1102 __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
1103 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001104
Ben Murdoch097c5b22016-05-18 11:27:45 +01001105 // Reserve three slots to preserve x21-x23 callee-saved registers. If the
1106 // result size is too large to be returned in registers then also reserve
1107 // space for the return value.
1108 int extra_stack_space = 3 + (result_size() <= 2 ? 0 : result_size());
1109 // Enter the exit frame.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001110 FrameScope scope(masm, StackFrame::MANUAL);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001111 __ EnterExitFrame(save_doubles(), x10, extra_stack_space);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001112 DCHECK(csp.Is(__ StackPointer()));
1113
1114 // Poke callee-saved registers into reserved space.
1115 __ Poke(argv, 1 * kPointerSize);
1116 __ Poke(argc, 2 * kPointerSize);
1117 __ Poke(target, 3 * kPointerSize);
1118
Ben Murdoch097c5b22016-05-18 11:27:45 +01001119 if (result_size() > 2) {
1120 // Save the location of the return value into x8 for call.
1121 __ Add(x8, __ StackPointer(), Operand(4 * kPointerSize));
1122 }
1123
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001124 // We normally only keep tagged values in callee-saved registers, as they
1125 // could be pushed onto the stack by called stubs and functions, and on the
1126 // stack they can confuse the GC. However, we're only calling C functions
1127 // which can push arbitrary data onto the stack anyway, and so the GC won't
1128 // examine that part of the stack.
1129 __ Mov(argc, argc_input);
1130 __ Mov(target, target_input);
1131 __ Mov(argv, temp_argv);
1132
1133 // x21 : argv
1134 // x22 : argc
1135 // x23 : call target
1136 //
1137 // The stack (on entry) holds the arguments and the receiver, with the
1138 // receiver at the highest address:
1139 //
1140 // argv[8]: receiver
1141 // argv -> argv[0]: arg[argc-2]
1142 // ... ...
1143 // argv[...]: arg[1]
1144 // argv[...]: arg[0]
1145 //
1146 // Immediately below (after) this is the exit frame, as constructed by
1147 // EnterExitFrame:
1148 // fp[8]: CallerPC (lr)
1149 // fp -> fp[0]: CallerFP (old fp)
1150 // fp[-8]: Space reserved for SPOffset.
1151 // fp[-16]: CodeObject()
1152 // csp[...]: Saved doubles, if saved_doubles is true.
1153 // csp[32]: Alignment padding, if necessary.
1154 // csp[24]: Preserved x23 (used for target).
1155 // csp[16]: Preserved x22 (used for argc).
1156 // csp[8]: Preserved x21 (used for argv).
1157 // csp -> csp[0]: Space reserved for the return address.
1158 //
1159 // After a successful call, the exit frame, preserved registers (x21-x23) and
1160 // the arguments (including the receiver) are dropped or popped as
1161 // appropriate. The stub then returns.
1162 //
1163 // After an unsuccessful call, the exit frame and suchlike are left
1164 // untouched, and the stub either throws an exception by jumping to one of
1165 // the exception_returned label.
1166
1167 DCHECK(csp.Is(__ StackPointer()));
1168
1169 // Prepare AAPCS64 arguments to pass to the builtin.
1170 __ Mov(x0, argc);
1171 __ Mov(x1, argv);
1172 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1173
1174 Label return_location;
1175 __ Adr(x12, &return_location);
1176 __ Poke(x12, 0);
1177
1178 if (__ emit_debug_code()) {
1179 // Verify that the slot below fp[kSPOffset]-8 points to the return location
1180 // (currently in x12).
1181 UseScratchRegisterScope temps(masm);
1182 Register temp = temps.AcquireX();
1183 __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
1184 __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
1185 __ Cmp(temp, x12);
1186 __ Check(eq, kReturnAddressNotFoundInFrame);
1187 }
1188
1189 // Call the builtin.
1190 __ Blr(target);
1191 __ Bind(&return_location);
1192
Ben Murdoch097c5b22016-05-18 11:27:45 +01001193 if (result_size() > 2) {
1194 DCHECK_EQ(3, result_size());
1195 // Read result values stored on stack.
1196 __ Ldr(x0, MemOperand(__ StackPointer(), 4 * kPointerSize));
1197 __ Ldr(x1, MemOperand(__ StackPointer(), 5 * kPointerSize));
1198 __ Ldr(x2, MemOperand(__ StackPointer(), 6 * kPointerSize));
1199 }
1200 // Result returned in x0, x1:x0 or x2:x1:x0 - do not destroy these registers!
1201
1202 // x0 result0 The return code from the call.
1203 // x1 result1 For calls which return ObjectPair or ObjectTriple.
1204 // x2 result2 For calls which return ObjectTriple.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001205 // x21 argv
1206 // x22 argc
1207 // x23 target
1208 const Register& result = x0;
1209
1210 // Check result for exception sentinel.
1211 Label exception_returned;
1212 __ CompareRoot(result, Heap::kExceptionRootIndex);
1213 __ B(eq, &exception_returned);
1214
1215 // The call succeeded, so unwind the stack and return.
1216
1217 // Restore callee-saved registers x21-x23.
1218 __ Mov(x11, argc);
1219
1220 __ Peek(argv, 1 * kPointerSize);
1221 __ Peek(argc, 2 * kPointerSize);
1222 __ Peek(target, 3 * kPointerSize);
1223
1224 __ LeaveExitFrame(save_doubles(), x10, true);
1225 DCHECK(jssp.Is(__ StackPointer()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001226 if (!argv_in_register()) {
1227 // Drop the remaining stack slots and return from the stub.
1228 __ Drop(x11);
1229 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001230 __ AssertFPCRState();
1231 __ Ret();
1232
1233 // The stack pointer is still csp if we aren't returning, and the frame
1234 // hasn't changed (except for the return address).
1235 __ SetStackPointer(csp);
1236
1237 // Handling of exception.
1238 __ Bind(&exception_returned);
1239
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001240 ExternalReference pending_handler_context_address(
1241 Isolate::kPendingHandlerContextAddress, isolate());
1242 ExternalReference pending_handler_code_address(
1243 Isolate::kPendingHandlerCodeAddress, isolate());
1244 ExternalReference pending_handler_offset_address(
1245 Isolate::kPendingHandlerOffsetAddress, isolate());
1246 ExternalReference pending_handler_fp_address(
1247 Isolate::kPendingHandlerFPAddress, isolate());
1248 ExternalReference pending_handler_sp_address(
1249 Isolate::kPendingHandlerSPAddress, isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001250
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001251 // Ask the runtime for help to determine the handler. This will set x0 to
1252 // contain the current pending exception, don't clobber it.
1253 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1254 isolate());
1255 DCHECK(csp.Is(masm->StackPointer()));
1256 {
1257 FrameScope scope(masm, StackFrame::MANUAL);
1258 __ Mov(x0, 0); // argc.
1259 __ Mov(x1, 0); // argv.
1260 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1261 __ CallCFunction(find_handler, 3);
1262 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001263
1264 // We didn't execute a return case, so the stack frame hasn't been updated
1265 // (except for the return address slot). However, we don't need to initialize
1266 // jssp because the throw method will immediately overwrite it when it
1267 // unwinds the stack.
1268 __ SetStackPointer(jssp);
1269
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001270 // Retrieve the handler context, SP and FP.
1271 __ Mov(cp, Operand(pending_handler_context_address));
1272 __ Ldr(cp, MemOperand(cp));
1273 __ Mov(jssp, Operand(pending_handler_sp_address));
1274 __ Ldr(jssp, MemOperand(jssp));
1275 __ Mov(fp, Operand(pending_handler_fp_address));
1276 __ Ldr(fp, MemOperand(fp));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001277
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001278 // If the handler is a JS frame, restore the context to the frame. Note that
1279 // the context will be set to (cp == 0) for non-JS frames.
1280 Label not_js_frame;
1281 __ Cbz(cp, &not_js_frame);
1282 __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1283 __ Bind(&not_js_frame);
1284
1285 // Compute the handler entry address and jump to it.
1286 __ Mov(x10, Operand(pending_handler_code_address));
1287 __ Ldr(x10, MemOperand(x10));
1288 __ Mov(x11, Operand(pending_handler_offset_address));
1289 __ Ldr(x11, MemOperand(x11));
1290 __ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag);
1291 __ Add(x10, x10, x11);
1292 __ Br(x10);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001293}
1294
1295
1296// This is the entry point from C++. 5 arguments are provided in x0-x4.
1297// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
1298// Input:
1299// x0: code entry.
1300// x1: function.
1301// x2: receiver.
1302// x3: argc.
1303// x4: argv.
1304// Output:
1305// x0: result.
1306void JSEntryStub::Generate(MacroAssembler* masm) {
1307 DCHECK(jssp.Is(__ StackPointer()));
1308 Register code_entry = x0;
1309
1310 // Enable instruction instrumentation. This only works on the simulator, and
1311 // will have no effect on the model or real hardware.
1312 __ EnableInstrumentation();
1313
1314 Label invoke, handler_entry, exit;
1315
1316 // Push callee-saved registers and synchronize the system stack pointer (csp)
1317 // and the JavaScript stack pointer (jssp).
1318 //
1319 // We must not write to jssp until after the PushCalleeSavedRegisters()
1320 // call, since jssp is itself a callee-saved register.
1321 __ SetStackPointer(csp);
1322 __ PushCalleeSavedRegisters();
1323 __ Mov(jssp, csp);
1324 __ SetStackPointer(jssp);
1325
1326 // Configure the FPCR. We don't restore it, so this is technically not allowed
1327 // according to AAPCS64. However, we only set default-NaN mode and this will
1328 // be harmless for most C code. Also, it works for ARM.
1329 __ ConfigureFPCR();
1330
1331 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1332
1333 // Set up the reserved register for 0.0.
1334 __ Fmov(fp_zero, 0.0);
1335
1336 // Build an entry frame (see layout below).
1337 int marker = type();
1338 int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
1339 __ Mov(x13, bad_frame_pointer);
1340 __ Mov(x12, Smi::FromInt(marker));
1341 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1342 __ Ldr(x10, MemOperand(x11));
1343
Ben Murdochda12d292016-06-02 14:46:10 +01001344 __ Push(x13, x12, xzr, x10);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001345 // Set up fp.
1346 __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
1347
1348 // Push the JS entry frame marker. Also set js_entry_sp if this is the
1349 // outermost JS call.
1350 Label non_outermost_js, done;
1351 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1352 __ Mov(x10, ExternalReference(js_entry_sp));
1353 __ Ldr(x11, MemOperand(x10));
1354 __ Cbnz(x11, &non_outermost_js);
1355 __ Str(fp, MemOperand(x10));
1356 __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1357 __ Push(x12);
1358 __ B(&done);
1359 __ Bind(&non_outermost_js);
1360 // We spare one instruction by pushing xzr since the marker is 0.
1361 DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
1362 __ Push(xzr);
1363 __ Bind(&done);
1364
1365 // The frame set up looks like this:
1366 // jssp[0] : JS entry frame marker.
1367 // jssp[1] : C entry FP.
1368 // jssp[2] : stack frame marker.
1369 // jssp[3] : stack frmae marker.
1370 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1371
1372
1373 // Jump to a faked try block that does the invoke, with a faked catch
1374 // block that sets the pending exception.
1375 __ B(&invoke);
1376
1377 // Prevent the constant pool from being emitted between the record of the
1378 // handler_entry position and the first instruction of the sequence here.
1379 // There is no risk because Assembler::Emit() emits the instruction before
1380 // checking for constant pool emission, but we do not want to depend on
1381 // that.
1382 {
1383 Assembler::BlockPoolsScope block_pools(masm);
1384 __ bind(&handler_entry);
1385 handler_offset_ = handler_entry.pos();
1386 // Caught exception: Store result (exception) in the pending exception
1387 // field in the JSEnv and return a failure sentinel. Coming in here the
1388 // fp will be invalid because the PushTryHandler below sets it to 0 to
1389 // signal the existence of the JSEntry frame.
1390 __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1391 isolate())));
1392 }
1393 __ Str(code_entry, MemOperand(x10));
1394 __ LoadRoot(x0, Heap::kExceptionRootIndex);
1395 __ B(&exit);
1396
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001397 // Invoke: Link this frame into the handler chain.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001398 __ Bind(&invoke);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001399 __ PushStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001400 // If an exception not caught by another handler occurs, this handler
1401 // returns control to the code after the B(&invoke) above, which
1402 // restores all callee-saved registers (including cp and fp) to their
1403 // saved values before returning a failure to C.
1404
1405 // Clear any pending exceptions.
1406 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1407 __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1408 isolate())));
1409 __ Str(x10, MemOperand(x11));
1410
1411 // Invoke the function by calling through the JS entry trampoline builtin.
1412 // Notice that we cannot store a reference to the trampoline code directly in
1413 // this stub, because runtime stubs are not traversed when doing GC.
1414
1415 // Expected registers by Builtins::JSEntryTrampoline
1416 // x0: code entry.
1417 // x1: function.
1418 // x2: receiver.
1419 // x3: argc.
1420 // x4: argv.
1421 ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
1422 ? Builtins::kJSConstructEntryTrampoline
1423 : Builtins::kJSEntryTrampoline,
1424 isolate());
1425 __ Mov(x10, entry);
1426
1427 // Call the JSEntryTrampoline.
1428 __ Ldr(x11, MemOperand(x10)); // Dereference the address.
1429 __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
1430 __ Blr(x12);
1431
1432 // Unlink this frame from the handler chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001433 __ PopStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001434
1435
1436 __ Bind(&exit);
1437 // x0 holds the result.
1438 // The stack pointer points to the top of the entry frame pushed on entry from
1439 // C++ (at the beginning of this stub):
1440 // jssp[0] : JS entry frame marker.
1441 // jssp[1] : C entry FP.
1442 // jssp[2] : stack frame marker.
1443 // jssp[3] : stack frmae marker.
1444 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1445
1446 // Check if the current stack frame is marked as the outermost JS frame.
1447 Label non_outermost_js_2;
1448 __ Pop(x10);
1449 __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1450 __ B(ne, &non_outermost_js_2);
1451 __ Mov(x11, ExternalReference(js_entry_sp));
1452 __ Str(xzr, MemOperand(x11));
1453 __ Bind(&non_outermost_js_2);
1454
1455 // Restore the top frame descriptors from the stack.
1456 __ Pop(x10);
1457 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1458 __ Str(x10, MemOperand(x11));
1459
1460 // Reset the stack to the callee saved registers.
1461 __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
1462 // Restore the callee-saved registers and return.
1463 DCHECK(jssp.Is(__ StackPointer()));
1464 __ Mov(csp, jssp);
1465 __ SetStackPointer(csp);
1466 __ PopCalleeSavedRegisters();
1467 // After this point, we must not modify jssp because it is a callee-saved
1468 // register which we have just restored.
1469 __ Ret();
1470}
1471
1472
1473void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1474 Label miss;
1475 Register receiver = LoadDescriptor::ReceiverRegister();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001476 // Ensure that the vector and slot registers won't be clobbered before
1477 // calling the miss handler.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001478 DCHECK(!AreAliased(x10, x11, LoadWithVectorDescriptor::VectorRegister(),
1479 LoadWithVectorDescriptor::SlotRegister()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001480
1481 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
1482 x11, &miss);
1483
1484 __ Bind(&miss);
1485 PropertyAccessCompiler::TailCallBuiltin(
1486 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1487}
1488
1489
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001490void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1491 // Return address is in lr.
1492 Label miss;
1493
1494 Register receiver = LoadDescriptor::ReceiverRegister();
1495 Register index = LoadDescriptor::NameRegister();
1496 Register result = x0;
1497 Register scratch = x10;
1498 DCHECK(!scratch.is(receiver) && !scratch.is(index));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001499 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1500 result.is(LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001501
1502 // StringCharAtGenerator doesn't use the result register until it's passed
1503 // the different miss possibilities. If it did, we would have a conflict
1504 // when FLAG_vector_ics is true.
1505 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1506 &miss, // When not a string.
1507 &miss, // When not a number.
1508 &miss, // When index out of range.
1509 STRING_INDEX_IS_ARRAY_INDEX,
1510 RECEIVER_IS_STRING);
1511 char_at_generator.GenerateFast(masm);
1512 __ Ret();
1513
1514 StubRuntimeCallHelper call_helper;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001515 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001516
1517 __ Bind(&miss);
1518 PropertyAccessCompiler::TailCallBuiltin(
1519 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1520}
1521
1522
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001523void InstanceOfStub::Generate(MacroAssembler* masm) {
1524 Register const object = x1; // Object (lhs).
1525 Register const function = x0; // Function (rhs).
1526 Register const object_map = x2; // Map of {object}.
1527 Register const function_map = x3; // Map of {function}.
1528 Register const function_prototype = x4; // Prototype of {function}.
1529 Register const scratch = x5;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001530
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001531 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1532 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001533
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001534 // Check if {object} is a smi.
1535 Label object_is_smi;
1536 __ JumpIfSmi(object, &object_is_smi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001537
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001538 // Lookup the {function} and the {object} map in the global instanceof cache.
1539 // Note: This is safe because we clear the global instanceof cache whenever
1540 // we change the prototype of any object.
1541 Label fast_case, slow_case;
1542 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1543 __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex,
1544 &fast_case);
1545 __ JumpIfNotRoot(object_map, Heap::kInstanceofCacheMapRootIndex, &fast_case);
1546 __ LoadRoot(x0, Heap::kInstanceofCacheAnswerRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001547 __ Ret();
1548
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001549 // If {object} is a smi we can safely return false if {function} is a JS
1550 // function, otherwise we have to miss to the runtime and throw an exception.
1551 __ Bind(&object_is_smi);
1552 __ JumpIfSmi(function, &slow_case);
1553 __ JumpIfNotObjectType(function, function_map, scratch, JS_FUNCTION_TYPE,
1554 &slow_case);
1555 __ LoadRoot(x0, Heap::kFalseValueRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001556 __ Ret();
1557
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001558 // Fast-case: The {function} must be a valid JSFunction.
1559 __ Bind(&fast_case);
1560 __ JumpIfSmi(function, &slow_case);
1561 __ JumpIfNotObjectType(function, function_map, scratch, JS_FUNCTION_TYPE,
1562 &slow_case);
1563
Ben Murdochda12d292016-06-02 14:46:10 +01001564 // Go to the runtime if the function is not a constructor.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001565 __ Ldrb(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01001566 __ Tbz(scratch, Map::kIsConstructor, &slow_case);
1567
1568 // Ensure that {function} has an instance prototype.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001569 __ Tbnz(scratch, Map::kHasNonInstancePrototype, &slow_case);
1570
1571 // Get the "prototype" (or initial map) of the {function}.
1572 __ Ldr(function_prototype,
1573 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1574 __ AssertNotSmi(function_prototype);
1575
1576 // Resolve the prototype if the {function} has an initial map. Afterwards the
1577 // {function_prototype} will be either the JSReceiver prototype object or the
1578 // hole value, which means that no instances of the {function} were created so
1579 // far and hence we should return false.
1580 Label function_prototype_valid;
1581 __ JumpIfNotObjectType(function_prototype, scratch, scratch, MAP_TYPE,
1582 &function_prototype_valid);
1583 __ Ldr(function_prototype,
1584 FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1585 __ Bind(&function_prototype_valid);
1586 __ AssertNotSmi(function_prototype);
1587
1588 // Update the global instanceof cache with the current {object} map and
1589 // {function}. The cached answer will be set when it is known below.
1590 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1591 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
1592
1593 // Loop through the prototype chain looking for the {function} prototype.
1594 // Assume true, and change to false if not found.
1595 Register const object_instance_type = function_map;
1596 Register const map_bit_field = function_map;
1597 Register const null = scratch;
1598 Register const result = x0;
1599
1600 Label done, loop, fast_runtime_fallback;
1601 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1602 __ LoadRoot(null, Heap::kNullValueRootIndex);
1603 __ Bind(&loop);
1604
1605 // Check if the object needs to be access checked.
1606 __ Ldrb(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1607 __ TestAndBranchIfAnySet(map_bit_field, 1 << Map::kIsAccessCheckNeeded,
1608 &fast_runtime_fallback);
1609 // Check if the current object is a Proxy.
1610 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
1611 __ B(eq, &fast_runtime_fallback);
1612
1613 __ Ldr(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1614 __ Cmp(object, function_prototype);
1615 __ B(eq, &done);
1616 __ Cmp(object, null);
1617 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1618 __ B(ne, &loop);
1619 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1620 __ Bind(&done);
1621 __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001622 __ Ret();
1623
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001624 // Found Proxy or access check needed: Call the runtime
1625 __ Bind(&fast_runtime_fallback);
1626 __ Push(object, function_prototype);
1627 // Invalidate the instanceof cache.
1628 __ Move(scratch, Smi::FromInt(0));
1629 __ StoreRoot(scratch, Heap::kInstanceofCacheFunctionRootIndex);
1630 __ TailCallRuntime(Runtime::kHasInPrototypeChain);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001631
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001632 // Slow-case: Call the %InstanceOf runtime function.
1633 __ bind(&slow_case);
1634 __ Push(object, function);
Ben Murdochda12d292016-06-02 14:46:10 +01001635 __ TailCallRuntime(is_es6_instanceof() ? Runtime::kOrdinaryHasInstance
1636 : Runtime::kInstanceOf);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001637}
1638
1639
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001640void RegExpExecStub::Generate(MacroAssembler* masm) {
1641#ifdef V8_INTERPRETED_REGEXP
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001642 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001643#else // V8_INTERPRETED_REGEXP
1644
1645 // Stack frame on entry.
1646 // jssp[0]: last_match_info (expected JSArray)
1647 // jssp[8]: previous index
1648 // jssp[16]: subject string
1649 // jssp[24]: JSRegExp object
1650 Label runtime;
1651
1652 // Use of registers for this function.
1653
1654 // Variable registers:
1655 // x10-x13 used as scratch registers
1656 // w0 string_type type of subject string
1657 // x2 jsstring_length subject string length
1658 // x3 jsregexp_object JSRegExp object
1659 // w4 string_encoding Latin1 or UC16
1660 // w5 sliced_string_offset if the string is a SlicedString
1661 // offset to the underlying string
1662 // w6 string_representation groups attributes of the string:
1663 // - is a string
1664 // - type of the string
1665 // - is a short external string
1666 Register string_type = w0;
1667 Register jsstring_length = x2;
1668 Register jsregexp_object = x3;
1669 Register string_encoding = w4;
1670 Register sliced_string_offset = w5;
1671 Register string_representation = w6;
1672
1673 // These are in callee save registers and will be preserved by the call
1674 // to the native RegExp code, as this code is called using the normal
1675 // C calling convention. When calling directly from generated code the
1676 // native RegExp code will not do a GC and therefore the content of
1677 // these registers are safe to use after the call.
1678
1679 // x19 subject subject string
1680 // x20 regexp_data RegExp data (FixedArray)
1681 // x21 last_match_info_elements info relative to the last match
1682 // (FixedArray)
1683 // x22 code_object generated regexp code
1684 Register subject = x19;
1685 Register regexp_data = x20;
1686 Register last_match_info_elements = x21;
1687 Register code_object = x22;
1688
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001689 // Stack frame.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001690 // jssp[00]: last_match_info (JSArray)
1691 // jssp[08]: previous index
1692 // jssp[16]: subject string
1693 // jssp[24]: JSRegExp object
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001694
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001695 const int kLastMatchInfoOffset = 0 * kPointerSize;
1696 const int kPreviousIndexOffset = 1 * kPointerSize;
1697 const int kSubjectOffset = 2 * kPointerSize;
1698 const int kJSRegExpOffset = 3 * kPointerSize;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001699
1700 // Ensure that a RegExp stack is allocated.
1701 ExternalReference address_of_regexp_stack_memory_address =
1702 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1703 ExternalReference address_of_regexp_stack_memory_size =
1704 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1705 __ Mov(x10, address_of_regexp_stack_memory_size);
1706 __ Ldr(x10, MemOperand(x10));
1707 __ Cbz(x10, &runtime);
1708
1709 // Check that the first argument is a JSRegExp object.
1710 DCHECK(jssp.Is(__ StackPointer()));
1711 __ Peek(jsregexp_object, kJSRegExpOffset);
1712 __ JumpIfSmi(jsregexp_object, &runtime);
1713 __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
1714
1715 // Check that the RegExp has been compiled (data contains a fixed array).
1716 __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
1717 if (FLAG_debug_code) {
1718 STATIC_ASSERT(kSmiTag == 0);
1719 __ Tst(regexp_data, kSmiTagMask);
1720 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1721 __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
1722 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1723 }
1724
1725 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1726 __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1727 __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
1728 __ B(ne, &runtime);
1729
1730 // Check that the number of captures fit in the static offsets vector buffer.
1731 // We have always at least one capture for the whole match, plus additional
1732 // ones due to capturing parentheses. A capture takes 2 registers.
1733 // The number of capture registers then is (number_of_captures + 1) * 2.
1734 __ Ldrsw(x10,
1735 UntagSmiFieldMemOperand(regexp_data,
1736 JSRegExp::kIrregexpCaptureCountOffset));
1737 // Check (number_of_captures + 1) * 2 <= offsets vector size
1738 // number_of_captures * 2 <= offsets vector size - 2
1739 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1740 __ Add(x10, x10, x10);
1741 __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1742 __ B(hi, &runtime);
1743
1744 // Initialize offset for possibly sliced string.
1745 __ Mov(sliced_string_offset, 0);
1746
1747 DCHECK(jssp.Is(__ StackPointer()));
1748 __ Peek(subject, kSubjectOffset);
1749 __ JumpIfSmi(subject, &runtime);
1750
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001751 __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
1752
1753 // Handle subject string according to its encoding and representation:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001754 // (1) Sequential string? If yes, go to (4).
1755 // (2) Sequential or cons? If not, go to (5).
1756 // (3) Cons string. If the string is flat, replace subject with first string
1757 // and go to (1). Otherwise bail out to runtime.
1758 // (4) Sequential string. Load regexp code according to encoding.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001759 // (E) Carry on.
1760 /// [...]
1761
1762 // Deferred code at the end of the stub:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001763 // (5) Long external string? If not, go to (7).
1764 // (6) External string. Make it, offset-wise, look like a sequential string.
1765 // Go to (4).
1766 // (7) Short external string or not a string? If yes, bail out to runtime.
1767 // (8) Sliced string. Replace subject with parent. Go to (1).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001768
Ben Murdoch097c5b22016-05-18 11:27:45 +01001769 Label check_underlying; // (1)
1770 Label seq_string; // (4)
1771 Label not_seq_nor_cons; // (5)
1772 Label external_string; // (6)
1773 Label not_long_external; // (7)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001774
Ben Murdoch097c5b22016-05-18 11:27:45 +01001775 __ Bind(&check_underlying);
1776 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
1777 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
1778
1779 // (1) Sequential string? If yes, go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001780 __ And(string_representation,
1781 string_type,
1782 kIsNotStringMask |
1783 kStringRepresentationMask |
1784 kShortExternalStringMask);
1785 // We depend on the fact that Strings of type
1786 // SeqString and not ShortExternalString are defined
1787 // by the following pattern:
1788 // string_type: 0XX0 XX00
1789 // ^ ^ ^^
1790 // | | ||
1791 // | | is a SeqString
1792 // | is not a short external String
1793 // is a String
1794 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1795 STATIC_ASSERT(kShortExternalStringTag != 0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001796 __ Cbz(string_representation, &seq_string); // Go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001797
Ben Murdoch097c5b22016-05-18 11:27:45 +01001798 // (2) Sequential or cons? If not, go to (5).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001799 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1800 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1801 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1802 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1803 __ Cmp(string_representation, kExternalStringTag);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001804 __ B(ge, &not_seq_nor_cons); // Go to (5).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001805
1806 // (3) Cons string. Check that it's flat.
1807 __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
1808 __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
1809 // Replace subject with first string.
1810 __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001811 __ B(&check_underlying);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001812
Ben Murdoch097c5b22016-05-18 11:27:45 +01001813 // (4) Sequential string. Load regexp code according to encoding.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001814 __ Bind(&seq_string);
1815
1816 // Check that the third argument is a positive smi less than the subject
1817 // string length. A negative value will be greater (unsigned comparison).
1818 DCHECK(jssp.Is(__ StackPointer()));
1819 __ Peek(x10, kPreviousIndexOffset);
1820 __ JumpIfNotSmi(x10, &runtime);
1821 __ Cmp(jsstring_length, x10);
1822 __ B(ls, &runtime);
1823
1824 // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
1825 // before entering the exit frame.
1826 __ SmiUntag(x1, x10);
1827
1828 // The third bit determines the string encoding in string_type.
1829 STATIC_ASSERT(kOneByteStringTag == 0x04);
1830 STATIC_ASSERT(kTwoByteStringTag == 0x00);
1831 STATIC_ASSERT(kStringEncodingMask == 0x04);
1832
1833 // Find the code object based on the assumptions above.
1834 // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
1835 // of kPointerSize to reach the latter.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001836 STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize ==
1837 JSRegExp::kDataUC16CodeOffset);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001838 __ Mov(x10, kPointerSize);
1839 // We will need the encoding later: Latin1 = 0x04
1840 // UC16 = 0x00
1841 __ Ands(string_encoding, string_type, kStringEncodingMask);
1842 __ CzeroX(x10, ne);
1843 __ Add(x10, regexp_data, x10);
1844 __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
1845
1846 // (E) Carry on. String handling is done.
1847
1848 // Check that the irregexp code has been generated for the actual string
1849 // encoding. If it has, the field contains a code object otherwise it contains
1850 // a smi (code flushing support).
1851 __ JumpIfSmi(code_object, &runtime);
1852
1853 // All checks done. Now push arguments for native regexp code.
1854 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
1855 x10,
1856 x11);
1857
1858 // Isolates: note we add an additional parameter here (isolate pointer).
1859 __ EnterExitFrame(false, x10, 1);
1860 DCHECK(csp.Is(__ StackPointer()));
1861
1862 // We have 9 arguments to pass to the regexp code, therefore we have to pass
1863 // one on the stack and the rest as registers.
1864
1865 // Note that the placement of the argument on the stack isn't standard
1866 // AAPCS64:
1867 // csp[0]: Space for the return address placed by DirectCEntryStub.
1868 // csp[8]: Argument 9, the current isolate address.
1869
1870 __ Mov(x10, ExternalReference::isolate_address(isolate()));
1871 __ Poke(x10, kPointerSize);
1872
1873 Register length = w11;
1874 Register previous_index_in_bytes = w12;
1875 Register start = x13;
1876
1877 // Load start of the subject string.
1878 __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
1879 // Load the length from the original subject string from the previous stack
1880 // frame. Therefore we have to use fp, which points exactly to two pointer
1881 // sizes below the previous sp. (Because creating a new stack frame pushes
1882 // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
1883 __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1884 __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
1885
1886 // Handle UC16 encoding, two bytes make one character.
1887 // string_encoding: if Latin1: 0x04
1888 // if UC16: 0x00
1889 STATIC_ASSERT(kStringEncodingMask == 0x04);
1890 __ Ubfx(string_encoding, string_encoding, 2, 1);
1891 __ Eor(string_encoding, string_encoding, 1);
1892 // string_encoding: if Latin1: 0
1893 // if UC16: 1
1894
1895 // Convert string positions from characters to bytes.
1896 // Previous index is in x1.
1897 __ Lsl(previous_index_in_bytes, w1, string_encoding);
1898 __ Lsl(length, length, string_encoding);
1899 __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
1900
1901 // Argument 1 (x0): Subject string.
1902 __ Mov(x0, subject);
1903
1904 // Argument 2 (x1): Previous index, already there.
1905
1906 // Argument 3 (x2): Get the start of input.
1907 // Start of input = start of string + previous index + substring offset
1908 // (0 if the string
1909 // is not sliced).
1910 __ Add(w10, previous_index_in_bytes, sliced_string_offset);
1911 __ Add(x2, start, Operand(w10, UXTW));
1912
1913 // Argument 4 (x3):
1914 // End of input = start of input + (length of input - previous index)
1915 __ Sub(w10, length, previous_index_in_bytes);
1916 __ Add(x3, x2, Operand(w10, UXTW));
1917
1918 // Argument 5 (x4): static offsets vector buffer.
1919 __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
1920
1921 // Argument 6 (x5): Set the number of capture registers to zero to force
1922 // global regexps to behave as non-global. This stub is not used for global
1923 // regexps.
1924 __ Mov(x5, 0);
1925
1926 // Argument 7 (x6): Start (high end) of backtracking stack memory area.
1927 __ Mov(x10, address_of_regexp_stack_memory_address);
1928 __ Ldr(x10, MemOperand(x10));
1929 __ Mov(x11, address_of_regexp_stack_memory_size);
1930 __ Ldr(x11, MemOperand(x11));
1931 __ Add(x6, x10, x11);
1932
1933 // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
1934 __ Mov(x7, 1);
1935
1936 // Locate the code entry and call it.
1937 __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
1938 DirectCEntryStub stub(isolate());
1939 stub.GenerateCall(masm, code_object);
1940
1941 __ LeaveExitFrame(false, x10, true);
1942
1943 // The generated regexp code returns an int32 in w0.
1944 Label failure, exception;
1945 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
1946 __ CompareAndBranch(w0,
1947 NativeRegExpMacroAssembler::EXCEPTION,
1948 eq,
1949 &exception);
1950 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
1951
1952 // Success: process the result from the native regexp code.
1953 Register number_of_capture_registers = x12;
1954
1955 // Calculate number of capture registers (number_of_captures + 1) * 2
1956 // and store it in the last match info.
1957 __ Ldrsw(x10,
1958 UntagSmiFieldMemOperand(regexp_data,
1959 JSRegExp::kIrregexpCaptureCountOffset));
1960 __ Add(x10, x10, x10);
1961 __ Add(number_of_capture_registers, x10, 2);
1962
1963 // Check that the fourth object is a JSArray object.
1964 DCHECK(jssp.Is(__ StackPointer()));
1965 __ Peek(x10, kLastMatchInfoOffset);
1966 __ JumpIfSmi(x10, &runtime);
1967 __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
1968
1969 // Check that the JSArray is the fast case.
1970 __ Ldr(last_match_info_elements,
1971 FieldMemOperand(x10, JSArray::kElementsOffset));
1972 __ Ldr(x10,
1973 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1974 __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
1975
1976 // Check that the last match info has space for the capture registers and the
1977 // additional information (overhead).
1978 // (number_of_captures + 1) * 2 + overhead <= last match info size
1979 // (number_of_captures * 2) + 2 + overhead <= last match info size
1980 // number_of_capture_registers + overhead <= last match info size
1981 __ Ldrsw(x10,
1982 UntagSmiFieldMemOperand(last_match_info_elements,
1983 FixedArray::kLengthOffset));
1984 __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
1985 __ Cmp(x11, x10);
1986 __ B(gt, &runtime);
1987
1988 // Store the capture count.
1989 __ SmiTag(x10, number_of_capture_registers);
1990 __ Str(x10,
1991 FieldMemOperand(last_match_info_elements,
1992 RegExpImpl::kLastCaptureCountOffset));
1993 // Store last subject and last input.
1994 __ Str(subject,
1995 FieldMemOperand(last_match_info_elements,
1996 RegExpImpl::kLastSubjectOffset));
1997 // Use x10 as the subject string in order to only need
1998 // one RecordWriteStub.
1999 __ Mov(x10, subject);
2000 __ RecordWriteField(last_match_info_elements,
2001 RegExpImpl::kLastSubjectOffset,
2002 x10,
2003 x11,
2004 kLRHasNotBeenSaved,
2005 kDontSaveFPRegs);
2006 __ Str(subject,
2007 FieldMemOperand(last_match_info_elements,
2008 RegExpImpl::kLastInputOffset));
2009 __ Mov(x10, subject);
2010 __ RecordWriteField(last_match_info_elements,
2011 RegExpImpl::kLastInputOffset,
2012 x10,
2013 x11,
2014 kLRHasNotBeenSaved,
2015 kDontSaveFPRegs);
2016
2017 Register last_match_offsets = x13;
2018 Register offsets_vector_index = x14;
2019 Register current_offset = x15;
2020
2021 // Get the static offsets vector filled by the native regexp code
2022 // and fill the last match info.
2023 ExternalReference address_of_static_offsets_vector =
2024 ExternalReference::address_of_static_offsets_vector(isolate());
2025 __ Mov(offsets_vector_index, address_of_static_offsets_vector);
2026
2027 Label next_capture, done;
2028 // Capture register counter starts from number of capture registers and
2029 // iterates down to zero (inclusive).
2030 __ Add(last_match_offsets,
2031 last_match_info_elements,
2032 RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
2033 __ Bind(&next_capture);
2034 __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
2035 __ B(mi, &done);
2036 // Read two 32 bit values from the static offsets vector buffer into
2037 // an X register
2038 __ Ldr(current_offset,
2039 MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
2040 // Store the smi values in the last match info.
2041 __ SmiTag(x10, current_offset);
2042 // Clearing the 32 bottom bits gives us a Smi.
2043 STATIC_ASSERT(kSmiTag == 0);
2044 __ Bic(x11, current_offset, kSmiShiftMask);
2045 __ Stp(x10,
2046 x11,
2047 MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
2048 __ B(&next_capture);
2049 __ Bind(&done);
2050
2051 // Return last match info.
2052 __ Peek(x0, kLastMatchInfoOffset);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002053 // Drop the 4 arguments of the stub from the stack.
2054 __ Drop(4);
2055 __ Ret();
2056
2057 __ Bind(&exception);
2058 Register exception_value = x0;
2059 // A stack overflow (on the backtrack stack) may have occured
2060 // in the RegExp code but no exception has been created yet.
2061 // If there is no pending exception, handle that in the runtime system.
2062 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
2063 __ Mov(x11,
2064 Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2065 isolate())));
2066 __ Ldr(exception_value, MemOperand(x11));
2067 __ Cmp(x10, exception_value);
2068 __ B(eq, &runtime);
2069
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002070 // For exception, throw the exception again.
2071 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002072
2073 __ Bind(&failure);
2074 __ Mov(x0, Operand(isolate()->factory()->null_value()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002075 // Drop the 4 arguments of the stub from the stack.
2076 __ Drop(4);
2077 __ Ret();
2078
2079 __ Bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002080 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002081
2082 // Deferred code for string handling.
Ben Murdoch097c5b22016-05-18 11:27:45 +01002083 // (5) Long external string? If not, go to (7).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002084 __ Bind(&not_seq_nor_cons);
2085 // Compare flags are still set.
Ben Murdoch097c5b22016-05-18 11:27:45 +01002086 __ B(ne, &not_long_external); // Go to (7).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002087
Ben Murdoch097c5b22016-05-18 11:27:45 +01002088 // (6) External string. Make it, offset-wise, look like a sequential string.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002089 __ Bind(&external_string);
2090 if (masm->emit_debug_code()) {
2091 // Assert that we do not have a cons or slice (indirect strings) here.
2092 // Sequential strings have already been ruled out.
2093 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2094 __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2095 __ Tst(x10, kIsIndirectStringMask);
2096 __ Check(eq, kExternalStringExpectedButNotFound);
2097 __ And(x10, x10, kStringRepresentationMask);
2098 __ Cmp(x10, 0);
2099 __ Check(ne, kExternalStringExpectedButNotFound);
2100 }
2101 __ Ldr(subject,
2102 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2103 // Move the pointer so that offset-wise, it looks like a sequential string.
2104 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2105 __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002106 __ B(&seq_string); // Go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002107
Ben Murdoch097c5b22016-05-18 11:27:45 +01002108 // (7) If this is a short external string or not a string, bail out to
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002109 // runtime.
2110 __ Bind(&not_long_external);
2111 STATIC_ASSERT(kShortExternalStringTag != 0);
2112 __ TestAndBranchIfAnySet(string_representation,
2113 kShortExternalStringMask | kIsNotStringMask,
2114 &runtime);
2115
Ben Murdoch097c5b22016-05-18 11:27:45 +01002116 // (8) Sliced string. Replace subject with parent.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002117 __ Ldr(sliced_string_offset,
2118 UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
2119 __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002120 __ B(&check_underlying); // Go to (1).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002121#endif
2122}
2123
2124
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002125static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub,
2126 Register argc, Register function,
2127 Register feedback_vector, Register index,
2128 Register new_target) {
2129 FrameScope scope(masm, StackFrame::INTERNAL);
2130
2131 // Number-of-arguments register must be smi-tagged to call out.
2132 __ SmiTag(argc);
2133 __ Push(argc, function, feedback_vector, index);
2134
2135 DCHECK(feedback_vector.Is(x2) && index.Is(x3));
2136 __ CallStub(stub);
2137
2138 __ Pop(index, feedback_vector, function, argc);
2139 __ SmiUntag(argc);
2140}
2141
2142
2143static void GenerateRecordCallTarget(MacroAssembler* masm, Register argc,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002144 Register function,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002145 Register feedback_vector, Register index,
2146 Register new_target, Register scratch1,
2147 Register scratch2, Register scratch3) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002148 ASM_LOCATION("GenerateRecordCallTarget");
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002149 DCHECK(!AreAliased(scratch1, scratch2, scratch3, argc, function,
2150 feedback_vector, index, new_target));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002151 // Cache the called function in a feedback vector slot. Cache states are
2152 // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
2153 // argc : number of arguments to the construct function
2154 // function : the function to call
2155 // feedback_vector : the feedback vector
2156 // index : slot in feedback vector (smi)
2157 Label initialize, done, miss, megamorphic, not_array_function;
2158
2159 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2160 masm->isolate()->heap()->megamorphic_symbol());
2161 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2162 masm->isolate()->heap()->uninitialized_symbol());
2163
2164 // Load the cache state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002165 Register feedback = scratch1;
2166 Register feedback_map = scratch2;
2167 Register feedback_value = scratch3;
2168 __ Add(feedback, feedback_vector,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002169 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002170 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002171
2172 // A monomorphic cache hit or an already megamorphic state: invoke the
2173 // function without changing the state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002174 // We don't know if feedback value is a WeakCell or a Symbol, but it's
2175 // harmless to read at this position in a symbol (see static asserts in
2176 // type-feedback-vector.h).
2177 Label check_allocation_site;
2178 __ Ldr(feedback_value, FieldMemOperand(feedback, WeakCell::kValueOffset));
2179 __ Cmp(function, feedback_value);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002180 __ B(eq, &done);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002181 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
2182 __ B(eq, &done);
2183 __ Ldr(feedback_map, FieldMemOperand(feedback, HeapObject::kMapOffset));
2184 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
2185 __ B(ne, &check_allocation_site);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002186
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002187 // If the weak cell is cleared, we have a new chance to become monomorphic.
2188 __ JumpIfSmi(feedback_value, &initialize);
2189 __ B(&megamorphic);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002190
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002191 __ bind(&check_allocation_site);
2192 // If we came here, we need to see if we are the array function.
2193 // If we didn't have a matching function, and we didn't find the megamorph
2194 // sentinel, then we have in the slot either some other function or an
2195 // AllocationSite.
2196 __ JumpIfNotRoot(feedback_map, Heap::kAllocationSiteMapRootIndex, &miss);
2197
2198 // Make sure the function is the Array() function
2199 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
2200 __ Cmp(function, scratch1);
2201 __ B(ne, &megamorphic);
2202 __ B(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002203
2204 __ Bind(&miss);
2205
2206 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2207 // megamorphic.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002208 __ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002209 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2210 // write-barrier is needed.
2211 __ Bind(&megamorphic);
2212 __ Add(scratch1, feedback_vector,
2213 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002214 __ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002215 __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2216 __ B(&done);
2217
2218 // An uninitialized cache is patched with the function or sentinel to
2219 // indicate the ElementsKind if function is the Array constructor.
2220 __ Bind(&initialize);
2221
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002222 // Make sure the function is the Array() function
2223 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
2224 __ Cmp(function, scratch1);
2225 __ B(ne, &not_array_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002226
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002227 // The target function is the Array constructor,
2228 // Create an AllocationSite if we don't already have it, store it in the
2229 // slot.
2230 CreateAllocationSiteStub create_stub(masm->isolate());
2231 CallStubInRecordCallTarget(masm, &create_stub, argc, function,
2232 feedback_vector, index, new_target);
2233 __ B(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002234
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002235 __ Bind(&not_array_function);
2236 CreateWeakCellStub weak_cell_stub(masm->isolate());
2237 CallStubInRecordCallTarget(masm, &weak_cell_stub, argc, function,
2238 feedback_vector, index, new_target);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002239 __ Bind(&done);
2240}
2241
2242
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002243void CallConstructStub::Generate(MacroAssembler* masm) {
2244 ASM_LOCATION("CallConstructStub::Generate");
2245 // x0 : number of arguments
2246 // x1 : the function to call
2247 // x2 : feedback vector
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002248 // x3 : slot in feedback vector (Smi, for RecordCallTarget)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002249 Register function = x1;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002250
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002251 Label non_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002252 // Check that the function is not a smi.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002253 __ JumpIfSmi(function, &non_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002254 // Check that the function is a JSFunction.
2255 Register object_type = x10;
2256 __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002257 &non_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002258
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002259 GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5, x11, x12);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002260
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002261 __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
2262 Label feedback_register_initialized;
2263 // Put the AllocationSite from the feedback vector into x2, or undefined.
2264 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
2265 __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
2266 __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
2267 &feedback_register_initialized);
2268 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
2269 __ bind(&feedback_register_initialized);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002270
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002271 __ AssertUndefinedOrAllocationSite(x2, x5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002272
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002273 __ Mov(x3, function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002274
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002275 // Tail call to the function-specific construct stub (still in the caller
2276 // context at this point).
2277 __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
2278 __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
2279 __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
2280 __ Br(x4);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002281
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002282 __ Bind(&non_function);
2283 __ Mov(x3, function);
2284 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002285}
2286
2287
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002288void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002289 // x1 - function
2290 // x3 - slot id
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002291 // x2 - vector
2292 // x4 - allocation site (loaded from vector[slot])
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002293 Register function = x1;
2294 Register feedback_vector = x2;
2295 Register index = x3;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002296 Register allocation_site = x4;
2297 Register scratch = x5;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002298
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002299 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002300 __ Cmp(function, scratch);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002301 __ B(ne, miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002302
2303 __ Mov(x0, Operand(arg_count()));
2304
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002305 // Increment the call count for monomorphic function calls.
2306 __ Add(feedback_vector, feedback_vector,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002307 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002308 __ Add(feedback_vector, feedback_vector,
2309 Operand(FixedArray::kHeaderSize + kPointerSize));
2310 __ Ldr(index, FieldMemOperand(feedback_vector, 0));
2311 __ Add(index, index, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2312 __ Str(index, FieldMemOperand(feedback_vector, 0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002313
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002314 // Set up arguments for the array constructor stub.
2315 Register allocation_site_arg = feedback_vector;
2316 Register new_target_arg = index;
2317 __ Mov(allocation_site_arg, allocation_site);
2318 __ Mov(new_target_arg, function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002319 ArrayConstructorStub stub(masm->isolate(), arg_count());
2320 __ TailCallStub(&stub);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002321}
2322
2323
2324void CallICStub::Generate(MacroAssembler* masm) {
2325 ASM_LOCATION("CallICStub");
2326
2327 // x1 - function
2328 // x3 - slot id (Smi)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002329 // x2 - vector
2330 Label extra_checks_or_miss, call, call_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002331 int argc = arg_count();
2332 ParameterCount actual(argc);
2333
2334 Register function = x1;
2335 Register feedback_vector = x2;
2336 Register index = x3;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002337
2338 // The checks. First, does x1 match the recorded monomorphic target?
2339 __ Add(x4, feedback_vector,
2340 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2341 __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
2342
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002343 // We don't know that we have a weak cell. We might have a private symbol
2344 // or an AllocationSite, but the memory is safe to examine.
2345 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2346 // FixedArray.
2347 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2348 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2349 // computed, meaning that it can't appear to be a pointer. If the low bit is
2350 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2351 // to be a pointer.
2352 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2353 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2354 WeakCell::kValueOffset &&
2355 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2356
2357 __ Ldr(x5, FieldMemOperand(x4, WeakCell::kValueOffset));
2358 __ Cmp(x5, function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002359 __ B(ne, &extra_checks_or_miss);
2360
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002361 // The compare above could have been a SMI/SMI comparison. Guard against this
2362 // convincing us that we have a monomorphic JSFunction.
2363 __ JumpIfSmi(function, &extra_checks_or_miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002364
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002365 // Increment the call count for monomorphic function calls.
2366 __ Add(feedback_vector, feedback_vector,
2367 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2368 __ Add(feedback_vector, feedback_vector,
2369 Operand(FixedArray::kHeaderSize + kPointerSize));
2370 __ Ldr(index, FieldMemOperand(feedback_vector, 0));
2371 __ Add(index, index, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2372 __ Str(index, FieldMemOperand(feedback_vector, 0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002373
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002374 __ Bind(&call_function);
2375 __ Mov(x0, argc);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002376 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2377 tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002378 RelocInfo::CODE_TARGET);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002379
2380 __ bind(&extra_checks_or_miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002381 Label uninitialized, miss, not_allocation_site;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002382
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002383 __ JumpIfRoot(x4, Heap::kmegamorphic_symbolRootIndex, &call);
2384
2385 __ Ldr(x5, FieldMemOperand(x4, HeapObject::kMapOffset));
2386 __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, &not_allocation_site);
2387
2388 HandleArrayCase(masm, &miss);
2389
2390 __ bind(&not_allocation_site);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002391
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002392 // The following cases attempt to handle MISS cases without going to the
2393 // runtime.
2394 if (FLAG_trace_ic) {
2395 __ jmp(&miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002396 }
2397
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002398 __ JumpIfRoot(x4, Heap::kuninitialized_symbolRootIndex, &miss);
2399
2400 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2401 // to handle it here. More complex cases are dealt with in the runtime.
2402 __ AssertNotSmi(x4);
2403 __ JumpIfNotObjectType(x4, x5, x5, JS_FUNCTION_TYPE, &miss);
2404 __ Add(x4, feedback_vector,
2405 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2406 __ LoadRoot(x5, Heap::kmegamorphic_symbolRootIndex);
2407 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002408
2409 __ Bind(&call);
2410 __ Mov(x0, argc);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002411 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002412 RelocInfo::CODE_TARGET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002413
2414 __ bind(&uninitialized);
2415
2416 // We are going monomorphic, provided we actually have a JSFunction.
2417 __ JumpIfSmi(function, &miss);
2418
2419 // Goto miss case if we do not have a function.
2420 __ JumpIfNotObjectType(function, x5, x5, JS_FUNCTION_TYPE, &miss);
2421
2422 // Make sure the function is not the Array() function, which requires special
2423 // behavior on MISS.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002424 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, x5);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002425 __ Cmp(function, x5);
2426 __ B(eq, &miss);
2427
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002428 // Make sure the function belongs to the same native context.
2429 __ Ldr(x4, FieldMemOperand(function, JSFunction::kContextOffset));
2430 __ Ldr(x4, ContextMemOperand(x4, Context::NATIVE_CONTEXT_INDEX));
2431 __ Ldr(x5, NativeContextMemOperand());
2432 __ Cmp(x4, x5);
2433 __ B(ne, &miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002434
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002435 // Initialize the call counter.
2436 __ Mov(x5, Smi::FromInt(CallICNexus::kCallCountIncrement));
2437 __ Adds(x4, feedback_vector,
2438 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2439 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize + kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002440
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002441 // Store the function. Use a stub since we need a frame for allocation.
2442 // x2 - vector
2443 // x3 - slot
2444 // x1 - function
2445 {
2446 FrameScope scope(masm, StackFrame::INTERNAL);
2447 CreateWeakCellStub create_stub(masm->isolate());
2448 __ Push(function);
2449 __ CallStub(&create_stub);
2450 __ Pop(function);
2451 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002452
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002453 __ B(&call_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002454
2455 // We are here because tracing is on or we encountered a MISS case we can't
2456 // handle here.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002457 __ bind(&miss);
2458 GenerateMiss(masm);
2459
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002460 __ B(&call);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002461}
2462
2463
2464void CallICStub::GenerateMiss(MacroAssembler* masm) {
2465 ASM_LOCATION("CallICStub[Miss]");
2466
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002467 FrameScope scope(masm, StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002468
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002469 // Push the receiver and the function and feedback info.
2470 __ Push(x1, x2, x3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002471
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002472 // Call the entry.
2473 __ CallRuntime(Runtime::kCallIC_Miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002474
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002475 // Move result to edi and exit the internal frame.
2476 __ Mov(x1, x0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002477}
2478
2479
2480void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2481 // If the receiver is a smi trigger the non-string case.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002482 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2483 __ JumpIfSmi(object_, receiver_not_string_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002484
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002485 // Fetch the instance type of the receiver into result register.
2486 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2487 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002488
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002489 // If the receiver is not a string trigger the non-string case.
2490 __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
2491 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002492
2493 // If the index is non-smi trigger the non-smi case.
2494 __ JumpIfNotSmi(index_, &index_not_smi_);
2495
2496 __ Bind(&got_smi_index_);
2497 // Check for index out of range.
2498 __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
2499 __ Cmp(result_, Operand::UntagSmi(index_));
2500 __ B(ls, index_out_of_range_);
2501
2502 __ SmiUntag(index_);
2503
2504 StringCharLoadGenerator::Generate(masm,
2505 object_,
2506 index_.W(),
2507 result_,
2508 &call_runtime_);
2509 __ SmiTag(result_);
2510 __ Bind(&exit_);
2511}
2512
2513
2514void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002515 MacroAssembler* masm, EmbedMode embed_mode,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002516 const RuntimeCallHelper& call_helper) {
2517 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2518
2519 __ Bind(&index_not_smi_);
2520 // If index is a heap number, try converting it to an integer.
2521 __ JumpIfNotHeapNumber(index_, index_not_number_);
2522 call_helper.BeforeCall(masm);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002523 if (embed_mode == PART_OF_IC_HANDLER) {
2524 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2525 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2526 } else {
2527 // Save object_ on the stack and pass index_ as argument for runtime call.
2528 __ Push(object_, index_);
2529 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002530 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002531 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002532 } else {
2533 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2534 // NumberToSmi discards numbers that are not exact integers.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002535 __ CallRuntime(Runtime::kNumberToSmi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002536 }
2537 // Save the conversion result before the pop instructions below
2538 // have a chance to overwrite it.
2539 __ Mov(index_, x0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002540 if (embed_mode == PART_OF_IC_HANDLER) {
2541 __ Pop(object_, LoadWithVectorDescriptor::SlotRegister(),
2542 LoadWithVectorDescriptor::VectorRegister());
2543 } else {
2544 __ Pop(object_);
2545 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002546 // Reload the instance type.
2547 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2548 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2549 call_helper.AfterCall(masm);
2550
2551 // If index is still not a smi, it must be out of range.
2552 __ JumpIfNotSmi(index_, index_out_of_range_);
2553 // Otherwise, return to the fast path.
2554 __ B(&got_smi_index_);
2555
2556 // Call runtime. We get here when the receiver is a string and the
2557 // index is a number, but the code of getting the actual character
2558 // is too complex (e.g., when the string needs to be flattened).
2559 __ Bind(&call_runtime_);
2560 call_helper.BeforeCall(masm);
2561 __ SmiTag(index_);
2562 __ Push(object_, index_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002563 __ CallRuntime(Runtime::kStringCharCodeAtRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002564 __ Mov(result_, x0);
2565 call_helper.AfterCall(masm);
2566 __ B(&exit_);
2567
2568 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2569}
2570
2571
2572void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2573 __ JumpIfNotSmi(code_, &slow_case_);
2574 __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
2575 __ B(hi, &slow_case_);
2576
2577 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2578 // At this point code register contains smi tagged one-byte char code.
2579 __ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
2580 __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2581 __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
2582 __ Bind(&exit_);
2583}
2584
2585
2586void StringCharFromCodeGenerator::GenerateSlow(
2587 MacroAssembler* masm,
2588 const RuntimeCallHelper& call_helper) {
2589 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2590
2591 __ Bind(&slow_case_);
2592 call_helper.BeforeCall(masm);
2593 __ Push(code_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002594 __ CallRuntime(Runtime::kStringCharFromCode);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002595 __ Mov(result_, x0);
2596 call_helper.AfterCall(masm);
2597 __ B(&exit_);
2598
2599 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2600}
2601
2602
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002603void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2604 // Inputs are in x0 (lhs) and x1 (rhs).
2605 DCHECK_EQ(CompareICState::BOOLEAN, state());
2606 ASM_LOCATION("CompareICStub[Booleans]");
2607 Label miss;
2608
2609 __ CheckMap(x1, x2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2610 __ CheckMap(x0, x3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002611 if (!Token::IsEqualityOp(op())) {
2612 __ Ldr(x1, FieldMemOperand(x1, Oddball::kToNumberOffset));
2613 __ AssertSmi(x1);
2614 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
2615 __ AssertSmi(x0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002616 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01002617 __ Sub(x0, x1, x0);
2618 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002619
2620 __ Bind(&miss);
2621 GenerateMiss(masm);
2622}
2623
2624
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002625void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2626 // Inputs are in x0 (lhs) and x1 (rhs).
2627 DCHECK(state() == CompareICState::SMI);
2628 ASM_LOCATION("CompareICStub[Smis]");
2629 Label miss;
2630 // Bail out (to 'miss') unless both x0 and x1 are smis.
2631 __ JumpIfEitherNotSmi(x0, x1, &miss);
2632
2633 if (GetCondition() == eq) {
2634 // For equality we do not care about the sign of the result.
2635 __ Sub(x0, x0, x1);
2636 } else {
2637 // Untag before subtracting to avoid handling overflow.
2638 __ SmiUntag(x1);
2639 __ Sub(x0, x1, Operand::UntagSmi(x0));
2640 }
2641 __ Ret();
2642
2643 __ Bind(&miss);
2644 GenerateMiss(masm);
2645}
2646
2647
2648void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2649 DCHECK(state() == CompareICState::NUMBER);
2650 ASM_LOCATION("CompareICStub[HeapNumbers]");
2651
2652 Label unordered, maybe_undefined1, maybe_undefined2;
2653 Label miss, handle_lhs, values_in_d_regs;
2654 Label untag_rhs, untag_lhs;
2655
2656 Register result = x0;
2657 Register rhs = x0;
2658 Register lhs = x1;
2659 FPRegister rhs_d = d0;
2660 FPRegister lhs_d = d1;
2661
2662 if (left() == CompareICState::SMI) {
2663 __ JumpIfNotSmi(lhs, &miss);
2664 }
2665 if (right() == CompareICState::SMI) {
2666 __ JumpIfNotSmi(rhs, &miss);
2667 }
2668
2669 __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
2670 __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
2671
2672 // Load rhs if it's a heap number.
2673 __ JumpIfSmi(rhs, &handle_lhs);
2674 __ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
2675 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
2676
2677 // Load lhs if it's a heap number.
2678 __ Bind(&handle_lhs);
2679 __ JumpIfSmi(lhs, &values_in_d_regs);
2680 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
2681 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
2682
2683 __ Bind(&values_in_d_regs);
2684 __ Fcmp(lhs_d, rhs_d);
2685 __ B(vs, &unordered); // Overflow flag set if either is NaN.
2686 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
2687 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
2688 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
2689 __ Ret();
2690
2691 __ Bind(&unordered);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002692 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002693 CompareICState::GENERIC, CompareICState::GENERIC);
2694 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2695
2696 __ Bind(&maybe_undefined1);
2697 if (Token::IsOrderedRelationalCompareOp(op())) {
2698 __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
2699 __ JumpIfSmi(lhs, &unordered);
2700 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
2701 __ B(&unordered);
2702 }
2703
2704 __ Bind(&maybe_undefined2);
2705 if (Token::IsOrderedRelationalCompareOp(op())) {
2706 __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
2707 }
2708
2709 __ Bind(&miss);
2710 GenerateMiss(masm);
2711}
2712
2713
2714void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2715 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2716 ASM_LOCATION("CompareICStub[InternalizedStrings]");
2717 Label miss;
2718
2719 Register result = x0;
2720 Register rhs = x0;
2721 Register lhs = x1;
2722
2723 // Check that both operands are heap objects.
2724 __ JumpIfEitherSmi(lhs, rhs, &miss);
2725
2726 // Check that both operands are internalized strings.
2727 Register rhs_map = x10;
2728 Register lhs_map = x11;
2729 Register rhs_type = x10;
2730 Register lhs_type = x11;
2731 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
2732 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
2733 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
2734 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
2735
2736 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2737 __ Orr(x12, lhs_type, rhs_type);
2738 __ TestAndBranchIfAnySet(
2739 x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
2740
2741 // Internalized strings are compared by identity.
2742 STATIC_ASSERT(EQUAL == 0);
2743 __ Cmp(lhs, rhs);
2744 __ Cset(result, ne);
2745 __ Ret();
2746
2747 __ Bind(&miss);
2748 GenerateMiss(masm);
2749}
2750
2751
2752void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2753 DCHECK(state() == CompareICState::UNIQUE_NAME);
2754 ASM_LOCATION("CompareICStub[UniqueNames]");
2755 DCHECK(GetCondition() == eq);
2756 Label miss;
2757
2758 Register result = x0;
2759 Register rhs = x0;
2760 Register lhs = x1;
2761
2762 Register lhs_instance_type = w2;
2763 Register rhs_instance_type = w3;
2764
2765 // Check that both operands are heap objects.
2766 __ JumpIfEitherSmi(lhs, rhs, &miss);
2767
2768 // Check that both operands are unique names. This leaves the instance
2769 // types loaded in tmp1 and tmp2.
2770 __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
2771 __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
2772 __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2773 __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
2774
2775 // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
2776 // should have kInternalizedTag set.
2777 __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
2778 __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
2779
2780 // Unique names are compared by identity.
2781 STATIC_ASSERT(EQUAL == 0);
2782 __ Cmp(lhs, rhs);
2783 __ Cset(result, ne);
2784 __ Ret();
2785
2786 __ Bind(&miss);
2787 GenerateMiss(masm);
2788}
2789
2790
2791void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2792 DCHECK(state() == CompareICState::STRING);
2793 ASM_LOCATION("CompareICStub[Strings]");
2794
2795 Label miss;
2796
2797 bool equality = Token::IsEqualityOp(op());
2798
2799 Register result = x0;
2800 Register rhs = x0;
2801 Register lhs = x1;
2802
2803 // Check that both operands are heap objects.
2804 __ JumpIfEitherSmi(rhs, lhs, &miss);
2805
2806 // Check that both operands are strings.
2807 Register rhs_map = x10;
2808 Register lhs_map = x11;
2809 Register rhs_type = x10;
2810 Register lhs_type = x11;
2811 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
2812 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
2813 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
2814 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
2815 STATIC_ASSERT(kNotStringTag != 0);
2816 __ Orr(x12, lhs_type, rhs_type);
2817 __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
2818
2819 // Fast check for identical strings.
2820 Label not_equal;
2821 __ Cmp(lhs, rhs);
2822 __ B(ne, &not_equal);
2823 __ Mov(result, EQUAL);
2824 __ Ret();
2825
2826 __ Bind(&not_equal);
2827 // Handle not identical strings
2828
2829 // Check that both strings are internalized strings. If they are, we're done
2830 // because we already know they are not identical. We know they are both
2831 // strings.
2832 if (equality) {
2833 DCHECK(GetCondition() == eq);
2834 STATIC_ASSERT(kInternalizedTag == 0);
2835 Label not_internalized_strings;
2836 __ Orr(x12, lhs_type, rhs_type);
2837 __ TestAndBranchIfAnySet(
2838 x12, kIsNotInternalizedMask, &not_internalized_strings);
2839 // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
2840 __ Ret();
2841 __ Bind(&not_internalized_strings);
2842 }
2843
2844 // Check that both strings are sequential one-byte.
2845 Label runtime;
2846 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
2847 x13, &runtime);
2848
2849 // Compare flat one-byte strings. Returns when done.
2850 if (equality) {
2851 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
2852 x12);
2853 } else {
2854 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
2855 x12, x13);
2856 }
2857
2858 // Handle more complex cases in runtime.
2859 __ Bind(&runtime);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002860 if (equality) {
Ben Murdochda12d292016-06-02 14:46:10 +01002861 {
2862 FrameScope scope(masm, StackFrame::INTERNAL);
2863 __ Push(lhs, rhs);
2864 __ CallRuntime(Runtime::kStringEqual);
2865 }
2866 __ LoadRoot(x1, Heap::kTrueValueRootIndex);
2867 __ Sub(x0, x0, x1);
2868 __ Ret();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002869 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01002870 __ Push(lhs, rhs);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002871 __ TailCallRuntime(Runtime::kStringCompare);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002872 }
2873
2874 __ Bind(&miss);
2875 GenerateMiss(masm);
2876}
2877
2878
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002879void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2880 DCHECK_EQ(CompareICState::RECEIVER, state());
2881 ASM_LOCATION("CompareICStub[Receivers]");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002882
2883 Label miss;
2884
2885 Register result = x0;
2886 Register rhs = x0;
2887 Register lhs = x1;
2888
2889 __ JumpIfEitherSmi(rhs, lhs, &miss);
2890
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002891 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2892 __ JumpIfObjectType(rhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
2893 __ JumpIfObjectType(lhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002894
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002895 DCHECK_EQ(eq, GetCondition());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002896 __ Sub(result, rhs, lhs);
2897 __ Ret();
2898
2899 __ Bind(&miss);
2900 GenerateMiss(masm);
2901}
2902
2903
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002904void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2905 ASM_LOCATION("CompareICStub[KnownReceivers]");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002906
2907 Label miss;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002908 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002909
2910 Register result = x0;
2911 Register rhs = x0;
2912 Register lhs = x1;
2913
2914 __ JumpIfEitherSmi(rhs, lhs, &miss);
2915
2916 Register rhs_map = x10;
2917 Register lhs_map = x11;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002918 Register map = x12;
2919 __ GetWeakValue(map, cell);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002920 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
2921 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002922 __ Cmp(rhs_map, map);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002923 __ B(ne, &miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002924 __ Cmp(lhs_map, map);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002925 __ B(ne, &miss);
2926
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002927 if (Token::IsEqualityOp(op())) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002928 __ Sub(result, rhs, lhs);
2929 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002930 } else {
2931 Register ncr = x2;
2932 if (op() == Token::LT || op() == Token::LTE) {
2933 __ Mov(ncr, Smi::FromInt(GREATER));
2934 } else {
2935 __ Mov(ncr, Smi::FromInt(LESS));
2936 }
2937 __ Push(lhs, rhs, ncr);
2938 __ TailCallRuntime(Runtime::kCompare);
2939 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002940
2941 __ Bind(&miss);
2942 GenerateMiss(masm);
2943}
2944
2945
2946// This method handles the case where a compare stub had the wrong
2947// implementation. It calls a miss handler, which re-writes the stub. All other
2948// CompareICStub::Generate* methods should fall back into this one if their
2949// operands were not the expected types.
2950void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2951 ASM_LOCATION("CompareICStub[Miss]");
2952
2953 Register stub_entry = x11;
2954 {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002955 FrameScope scope(masm, StackFrame::INTERNAL);
2956 Register op = x10;
2957 Register left = x1;
2958 Register right = x0;
2959 // Preserve some caller-saved registers.
2960 __ Push(x1, x0, lr);
2961 // Push the arguments.
2962 __ Mov(op, Smi::FromInt(this->op()));
2963 __ Push(left, right, op);
2964
2965 // Call the miss handler. This also pops the arguments.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002966 __ CallRuntime(Runtime::kCompareIC_Miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002967
2968 // Compute the entry point of the rewritten stub.
2969 __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
2970 // Restore caller-saved registers.
2971 __ Pop(lr, x0, x1);
2972 }
2973
2974 // Tail-call to the new stub.
2975 __ Jump(stub_entry);
2976}
2977
2978
2979void SubStringStub::Generate(MacroAssembler* masm) {
2980 ASM_LOCATION("SubStringStub::Generate");
2981 Label runtime;
2982
2983 // Stack frame on entry.
2984 // lr: return address
2985 // jssp[0]: substring "to" offset
2986 // jssp[8]: substring "from" offset
2987 // jssp[16]: pointer to string object
2988
2989 // This stub is called from the native-call %_SubString(...), so
2990 // nothing can be assumed about the arguments. It is tested that:
2991 // "string" is a sequential string,
2992 // both "from" and "to" are smis, and
2993 // 0 <= from <= to <= string.length (in debug mode.)
2994 // If any of these assumptions fail, we call the runtime system.
2995
2996 static const int kToOffset = 0 * kPointerSize;
2997 static const int kFromOffset = 1 * kPointerSize;
2998 static const int kStringOffset = 2 * kPointerSize;
2999
3000 Register to = x0;
3001 Register from = x15;
3002 Register input_string = x10;
3003 Register input_length = x11;
3004 Register input_type = x12;
3005 Register result_string = x0;
3006 Register result_length = x1;
3007 Register temp = x3;
3008
3009 __ Peek(to, kToOffset);
3010 __ Peek(from, kFromOffset);
3011
3012 // Check that both from and to are smis. If not, jump to runtime.
3013 __ JumpIfEitherNotSmi(from, to, &runtime);
3014 __ SmiUntag(from);
3015 __ SmiUntag(to);
3016
3017 // Calculate difference between from and to. If to < from, branch to runtime.
3018 __ Subs(result_length, to, from);
3019 __ B(mi, &runtime);
3020
3021 // Check from is positive.
3022 __ Tbnz(from, kWSignBit, &runtime);
3023
3024 // Make sure first argument is a string.
3025 __ Peek(input_string, kStringOffset);
3026 __ JumpIfSmi(input_string, &runtime);
3027 __ IsObjectJSStringType(input_string, input_type, &runtime);
3028
3029 Label single_char;
3030 __ Cmp(result_length, 1);
3031 __ B(eq, &single_char);
3032
3033 // Short-cut for the case of trivial substring.
3034 Label return_x0;
3035 __ Ldrsw(input_length,
3036 UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
3037
3038 __ Cmp(result_length, input_length);
3039 __ CmovX(x0, input_string, eq);
3040 // Return original string.
3041 __ B(eq, &return_x0);
3042
3043 // Longer than original string's length or negative: unsafe arguments.
3044 __ B(hi, &runtime);
3045
3046 // Shorter than original string's length: an actual substring.
3047
3048 // x0 to substring end character offset
3049 // x1 result_length length of substring result
3050 // x10 input_string pointer to input string object
3051 // x10 unpacked_string pointer to unpacked string object
3052 // x11 input_length length of input string
3053 // x12 input_type instance type of input string
3054 // x15 from substring start character offset
3055
3056 // Deal with different string types: update the index if necessary and put
3057 // the underlying string into register unpacked_string.
3058 Label underlying_unpacked, sliced_string, seq_or_external_string;
3059 Label update_instance_type;
3060 // If the string is not indirect, it can only be sequential or external.
3061 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3062 STATIC_ASSERT(kIsIndirectStringMask != 0);
3063
3064 // Test for string types, and branch/fall through to appropriate unpacking
3065 // code.
3066 __ Tst(input_type, kIsIndirectStringMask);
3067 __ B(eq, &seq_or_external_string);
3068 __ Tst(input_type, kSlicedNotConsMask);
3069 __ B(ne, &sliced_string);
3070
3071 Register unpacked_string = input_string;
3072
3073 // Cons string. Check whether it is flat, then fetch first part.
3074 __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
3075 __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
3076 __ Ldr(unpacked_string,
3077 FieldMemOperand(input_string, ConsString::kFirstOffset));
3078 __ B(&update_instance_type);
3079
3080 __ Bind(&sliced_string);
3081 // Sliced string. Fetch parent and correct start index by offset.
3082 __ Ldrsw(temp,
3083 UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
3084 __ Add(from, from, temp);
3085 __ Ldr(unpacked_string,
3086 FieldMemOperand(input_string, SlicedString::kParentOffset));
3087
3088 __ Bind(&update_instance_type);
3089 __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
3090 __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
3091 // Now control must go to &underlying_unpacked. Since the no code is generated
3092 // before then we fall through instead of generating a useless branch.
3093
3094 __ Bind(&seq_or_external_string);
3095 // Sequential or external string. Registers unpacked_string and input_string
3096 // alias, so there's nothing to do here.
3097 // Note that if code is added here, the above code must be updated.
3098
3099 // x0 result_string pointer to result string object (uninit)
3100 // x1 result_length length of substring result
3101 // x10 unpacked_string pointer to unpacked string object
3102 // x11 input_length length of input string
3103 // x12 input_type instance type of input string
3104 // x15 from substring start character offset
3105 __ Bind(&underlying_unpacked);
3106
3107 if (FLAG_string_slices) {
3108 Label copy_routine;
3109 __ Cmp(result_length, SlicedString::kMinLength);
3110 // Short slice. Copy instead of slicing.
3111 __ B(lt, &copy_routine);
3112 // Allocate new sliced string. At this point we do not reload the instance
3113 // type including the string encoding because we simply rely on the info
3114 // provided by the original string. It does not matter if the original
3115 // string's encoding is wrong because we always have to recheck encoding of
3116 // the newly created string's parent anyway due to externalized strings.
3117 Label two_byte_slice, set_slice_header;
3118 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3119 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3120 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
3121 __ AllocateOneByteSlicedString(result_string, result_length, x3, x4,
3122 &runtime);
3123 __ B(&set_slice_header);
3124
3125 __ Bind(&two_byte_slice);
3126 __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
3127 &runtime);
3128
3129 __ Bind(&set_slice_header);
3130 __ SmiTag(from);
3131 __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
3132 __ Str(unpacked_string,
3133 FieldMemOperand(result_string, SlicedString::kParentOffset));
3134 __ B(&return_x0);
3135
3136 __ Bind(&copy_routine);
3137 }
3138
3139 // x0 result_string pointer to result string object (uninit)
3140 // x1 result_length length of substring result
3141 // x10 unpacked_string pointer to unpacked string object
3142 // x11 input_length length of input string
3143 // x12 input_type instance type of input string
3144 // x13 unpacked_char0 pointer to first char of unpacked string (uninit)
3145 // x13 substring_char0 pointer to first char of substring (uninit)
3146 // x14 result_char0 pointer to first char of result (uninit)
3147 // x15 from substring start character offset
3148 Register unpacked_char0 = x13;
3149 Register substring_char0 = x13;
3150 Register result_char0 = x14;
3151 Label two_byte_sequential, sequential_string, allocate_result;
3152 STATIC_ASSERT(kExternalStringTag != 0);
3153 STATIC_ASSERT(kSeqStringTag == 0);
3154
3155 __ Tst(input_type, kExternalStringTag);
3156 __ B(eq, &sequential_string);
3157
3158 __ Tst(input_type, kShortExternalStringTag);
3159 __ B(ne, &runtime);
3160 __ Ldr(unpacked_char0,
3161 FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
3162 // unpacked_char0 points to the first character of the underlying string.
3163 __ B(&allocate_result);
3164
3165 __ Bind(&sequential_string);
3166 // Locate first character of underlying subject string.
3167 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3168 __ Add(unpacked_char0, unpacked_string,
3169 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3170
3171 __ Bind(&allocate_result);
3172 // Sequential one-byte string. Allocate the result.
3173 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3174 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
3175
3176 // Allocate and copy the resulting one-byte string.
3177 __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime);
3178
3179 // Locate first character of substring to copy.
3180 __ Add(substring_char0, unpacked_char0, from);
3181
3182 // Locate first character of result.
3183 __ Add(result_char0, result_string,
3184 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3185
3186 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3187 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3188 __ B(&return_x0);
3189
3190 // Allocate and copy the resulting two-byte string.
3191 __ Bind(&two_byte_sequential);
3192 __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
3193
3194 // Locate first character of substring to copy.
3195 __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
3196
3197 // Locate first character of result.
3198 __ Add(result_char0, result_string,
3199 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3200
3201 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3202 __ Add(result_length, result_length, result_length);
3203 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3204
3205 __ Bind(&return_x0);
3206 Counters* counters = isolate()->counters();
3207 __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
3208 __ Drop(3);
3209 __ Ret();
3210
3211 __ Bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003212 __ TailCallRuntime(Runtime::kSubString);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003213
3214 __ bind(&single_char);
3215 // x1: result_length
3216 // x10: input_string
3217 // x12: input_type
3218 // x15: from (untagged)
3219 __ SmiTag(from);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003220 StringCharAtGenerator generator(input_string, from, result_length, x0,
3221 &runtime, &runtime, &runtime,
3222 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003223 generator.GenerateFast(masm);
3224 __ Drop(3);
3225 __ Ret();
3226 generator.SkipSlow(masm, &runtime);
3227}
3228
3229
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003230void ToNumberStub::Generate(MacroAssembler* masm) {
3231 // The ToNumber stub takes one argument in x0.
3232 Label not_smi;
3233 __ JumpIfNotSmi(x0, &not_smi);
3234 __ Ret();
3235 __ Bind(&not_smi);
3236
3237 Label not_heap_number;
Ben Murdochda12d292016-06-02 14:46:10 +01003238 __ CompareObjectType(x0, x1, x1, HEAP_NUMBER_TYPE);
3239 // x0: receiver
3240 // x1: receiver instance type
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003241 __ B(ne, &not_heap_number);
3242 __ Ret();
3243 __ Bind(&not_heap_number);
3244
Ben Murdochda12d292016-06-02 14:46:10 +01003245 NonNumberToNumberStub stub(masm->isolate());
3246 __ TailCallStub(&stub);
3247}
3248
3249void NonNumberToNumberStub::Generate(MacroAssembler* masm) {
3250 // The NonNumberToNumber stub takes one argument in x0.
3251 __ AssertNotNumber(x0);
3252
3253 Label not_string;
3254 __ CompareObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE);
3255 // x0: receiver
3256 // x1: receiver instance type
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003257 __ B(hs, &not_string);
Ben Murdochda12d292016-06-02 14:46:10 +01003258 StringToNumberStub stub(masm->isolate());
3259 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003260 __ Bind(&not_string);
3261
3262 Label not_oddball;
3263 __ Cmp(x1, ODDBALL_TYPE);
3264 __ B(ne, &not_oddball);
3265 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
3266 __ Ret();
3267 __ Bind(&not_oddball);
3268
3269 __ Push(x0); // Push argument.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003270 __ TailCallRuntime(Runtime::kToNumber);
3271}
3272
Ben Murdochda12d292016-06-02 14:46:10 +01003273void StringToNumberStub::Generate(MacroAssembler* masm) {
3274 // The StringToNumber stub takes one argument in x0.
3275 __ AssertString(x0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003276
Ben Murdochda12d292016-06-02 14:46:10 +01003277 // Check if string has a cached array index.
3278 Label runtime;
3279 __ Ldr(x2, FieldMemOperand(x0, String::kHashFieldOffset));
3280 __ Tst(x2, Operand(String::kContainsCachedArrayIndexMask));
3281 __ B(ne, &runtime);
3282 __ IndexFromHash(x2, x0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003283 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003284
Ben Murdochda12d292016-06-02 14:46:10 +01003285 __ Bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003286 __ Push(x0); // Push argument.
Ben Murdochda12d292016-06-02 14:46:10 +01003287 __ TailCallRuntime(Runtime::kStringToNumber);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003288}
3289
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003290void ToStringStub::Generate(MacroAssembler* masm) {
3291 // The ToString stub takes one argument in x0.
3292 Label is_number;
3293 __ JumpIfSmi(x0, &is_number);
3294
3295 Label not_string;
3296 __ JumpIfObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE, &not_string, hs);
3297 // x0: receiver
3298 // x1: receiver instance type
3299 __ Ret();
3300 __ Bind(&not_string);
3301
3302 Label not_heap_number;
3303 __ Cmp(x1, HEAP_NUMBER_TYPE);
3304 __ B(ne, &not_heap_number);
3305 __ Bind(&is_number);
3306 NumberToStringStub stub(isolate());
3307 __ TailCallStub(&stub);
3308 __ Bind(&not_heap_number);
3309
3310 Label not_oddball;
3311 __ Cmp(x1, ODDBALL_TYPE);
3312 __ B(ne, &not_oddball);
3313 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToStringOffset));
3314 __ Ret();
3315 __ Bind(&not_oddball);
3316
3317 __ Push(x0); // Push argument.
3318 __ TailCallRuntime(Runtime::kToString);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003319}
3320
3321
Ben Murdoch097c5b22016-05-18 11:27:45 +01003322void ToNameStub::Generate(MacroAssembler* masm) {
3323 // The ToName stub takes one argument in x0.
3324 Label is_number;
3325 __ JumpIfSmi(x0, &is_number);
3326
3327 Label not_name;
3328 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
3329 __ JumpIfObjectType(x0, x1, x1, LAST_NAME_TYPE, &not_name, hi);
3330 // x0: receiver
3331 // x1: receiver instance type
3332 __ Ret();
3333 __ Bind(&not_name);
3334
3335 Label not_heap_number;
3336 __ Cmp(x1, HEAP_NUMBER_TYPE);
3337 __ B(ne, &not_heap_number);
3338 __ Bind(&is_number);
3339 NumberToStringStub stub(isolate());
3340 __ TailCallStub(&stub);
3341 __ Bind(&not_heap_number);
3342
3343 Label not_oddball;
3344 __ Cmp(x1, ODDBALL_TYPE);
3345 __ B(ne, &not_oddball);
3346 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToStringOffset));
3347 __ Ret();
3348 __ Bind(&not_oddball);
3349
3350 __ Push(x0); // Push argument.
3351 __ TailCallRuntime(Runtime::kToName);
3352}
3353
3354
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003355void StringHelper::GenerateFlatOneByteStringEquals(
3356 MacroAssembler* masm, Register left, Register right, Register scratch1,
3357 Register scratch2, Register scratch3) {
3358 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
3359 Register result = x0;
3360 Register left_length = scratch1;
3361 Register right_length = scratch2;
3362
3363 // Compare lengths. If lengths differ, strings can't be equal. Lengths are
3364 // smis, and don't need to be untagged.
3365 Label strings_not_equal, check_zero_length;
3366 __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
3367 __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
3368 __ Cmp(left_length, right_length);
3369 __ B(eq, &check_zero_length);
3370
3371 __ Bind(&strings_not_equal);
3372 __ Mov(result, Smi::FromInt(NOT_EQUAL));
3373 __ Ret();
3374
3375 // Check if the length is zero. If so, the strings must be equal (and empty.)
3376 Label compare_chars;
3377 __ Bind(&check_zero_length);
3378 STATIC_ASSERT(kSmiTag == 0);
3379 __ Cbnz(left_length, &compare_chars);
3380 __ Mov(result, Smi::FromInt(EQUAL));
3381 __ Ret();
3382
3383 // Compare characters. Falls through if all characters are equal.
3384 __ Bind(&compare_chars);
3385 GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
3386 scratch3, &strings_not_equal);
3387
3388 // Characters in strings are equal.
3389 __ Mov(result, Smi::FromInt(EQUAL));
3390 __ Ret();
3391}
3392
3393
3394void StringHelper::GenerateCompareFlatOneByteStrings(
3395 MacroAssembler* masm, Register left, Register right, Register scratch1,
3396 Register scratch2, Register scratch3, Register scratch4) {
3397 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
3398 Label result_not_equal, compare_lengths;
3399
3400 // Find minimum length and length difference.
3401 Register length_delta = scratch3;
3402 __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3403 __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3404 __ Subs(length_delta, scratch1, scratch2);
3405
3406 Register min_length = scratch1;
3407 __ Csel(min_length, scratch2, scratch1, gt);
3408 __ Cbz(min_length, &compare_lengths);
3409
3410 // Compare loop.
3411 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3412 scratch4, &result_not_equal);
3413
3414 // Compare lengths - strings up to min-length are equal.
3415 __ Bind(&compare_lengths);
3416
3417 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3418
3419 // Use length_delta as result if it's zero.
3420 Register result = x0;
3421 __ Subs(result, length_delta, 0);
3422
3423 __ Bind(&result_not_equal);
3424 Register greater = x10;
3425 Register less = x11;
3426 __ Mov(greater, Smi::FromInt(GREATER));
3427 __ Mov(less, Smi::FromInt(LESS));
3428 __ CmovX(result, greater, gt);
3429 __ CmovX(result, less, lt);
3430 __ Ret();
3431}
3432
3433
3434void StringHelper::GenerateOneByteCharsCompareLoop(
3435 MacroAssembler* masm, Register left, Register right, Register length,
3436 Register scratch1, Register scratch2, Label* chars_not_equal) {
3437 DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
3438
3439 // Change index to run from -length to -1 by adding length to string
3440 // start. This means that loop ends when index reaches zero, which
3441 // doesn't need an additional compare.
3442 __ SmiUntag(length);
3443 __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3444 __ Add(left, left, scratch1);
3445 __ Add(right, right, scratch1);
3446
3447 Register index = length;
3448 __ Neg(index, length); // index = -length;
3449
3450 // Compare loop
3451 Label loop;
3452 __ Bind(&loop);
3453 __ Ldrb(scratch1, MemOperand(left, index));
3454 __ Ldrb(scratch2, MemOperand(right, index));
3455 __ Cmp(scratch1, scratch2);
3456 __ B(ne, chars_not_equal);
3457 __ Add(index, index, 1);
3458 __ Cbnz(index, &loop);
3459}
3460
3461
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003462void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3463 // ----------- S t a t e -------------
3464 // -- x1 : left
3465 // -- x0 : right
3466 // -- lr : return address
3467 // -----------------------------------
3468
3469 // Load x2 with the allocation site. We stick an undefined dummy value here
3470 // and replace it with the real allocation site later when we instantiate this
3471 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3472 __ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
3473
3474 // Make sure that we actually patched the allocation site.
3475 if (FLAG_debug_code) {
3476 __ AssertNotSmi(x2, kExpectedAllocationSite);
3477 __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
3478 __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
3479 kExpectedAllocationSite);
3480 }
3481
3482 // Tail call into the stub that handles binary operations with allocation
3483 // sites.
3484 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3485 __ TailCallStub(&stub);
3486}
3487
3488
3489void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3490 // We need some extra registers for this stub, they have been allocated
3491 // but we need to save them before using them.
3492 regs_.Save(masm);
3493
3494 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3495 Label dont_need_remembered_set;
3496
3497 Register val = regs_.scratch0();
3498 __ Ldr(val, MemOperand(regs_.address()));
3499 __ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
3500
Ben Murdoch097c5b22016-05-18 11:27:45 +01003501 __ JumpIfInNewSpace(regs_.object(), &dont_need_remembered_set);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003502
3503 // First notify the incremental marker if necessary, then update the
3504 // remembered set.
3505 CheckNeedsToInformIncrementalMarker(
3506 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3507 InformIncrementalMarker(masm);
3508 regs_.Restore(masm); // Restore the extra scratch registers we used.
3509
3510 __ RememberedSetHelper(object(), address(),
3511 value(), // scratch1
3512 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3513
3514 __ Bind(&dont_need_remembered_set);
3515 }
3516
3517 CheckNeedsToInformIncrementalMarker(
3518 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3519 InformIncrementalMarker(masm);
3520 regs_.Restore(masm); // Restore the extra scratch registers we used.
3521 __ Ret();
3522}
3523
3524
3525void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3526 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3527 Register address =
3528 x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
3529 DCHECK(!address.Is(regs_.object()));
3530 DCHECK(!address.Is(x0));
3531 __ Mov(address, regs_.address());
3532 __ Mov(x0, regs_.object());
3533 __ Mov(x1, address);
3534 __ Mov(x2, ExternalReference::isolate_address(isolate()));
3535
3536 AllowExternalCallThatCantCauseGC scope(masm);
3537 ExternalReference function =
3538 ExternalReference::incremental_marking_record_write_function(
3539 isolate());
3540 __ CallCFunction(function, 3, 0);
3541
3542 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3543}
3544
3545
3546void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3547 MacroAssembler* masm,
3548 OnNoNeedToInformIncrementalMarker on_no_need,
3549 Mode mode) {
3550 Label on_black;
3551 Label need_incremental;
3552 Label need_incremental_pop_scratch;
3553
3554 Register mem_chunk = regs_.scratch0();
3555 Register counter = regs_.scratch1();
3556 __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
3557 __ Ldr(counter,
3558 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
3559 __ Subs(counter, counter, 1);
3560 __ Str(counter,
3561 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
3562 __ B(mi, &need_incremental);
3563
3564 // If the object is not black we don't have to inform the incremental marker.
3565 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3566
3567 regs_.Restore(masm); // Restore the extra scratch registers we used.
3568 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3569 __ RememberedSetHelper(object(), address(),
3570 value(), // scratch1
3571 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3572 } else {
3573 __ Ret();
3574 }
3575
3576 __ Bind(&on_black);
3577 // Get the value from the slot.
3578 Register val = regs_.scratch0();
3579 __ Ldr(val, MemOperand(regs_.address()));
3580
3581 if (mode == INCREMENTAL_COMPACTION) {
3582 Label ensure_not_white;
3583
3584 __ CheckPageFlagClear(val, regs_.scratch1(),
3585 MemoryChunk::kEvacuationCandidateMask,
3586 &ensure_not_white);
3587
3588 __ CheckPageFlagClear(regs_.object(),
3589 regs_.scratch1(),
3590 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3591 &need_incremental);
3592
3593 __ Bind(&ensure_not_white);
3594 }
3595
3596 // We need extra registers for this, so we push the object and the address
3597 // register temporarily.
3598 __ Push(regs_.address(), regs_.object());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003599 __ JumpIfWhite(val,
3600 regs_.scratch1(), // Scratch.
3601 regs_.object(), // Scratch.
3602 regs_.address(), // Scratch.
3603 regs_.scratch2(), // Scratch.
3604 &need_incremental_pop_scratch);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003605 __ Pop(regs_.object(), regs_.address());
3606
3607 regs_.Restore(masm); // Restore the extra scratch registers we used.
3608 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3609 __ RememberedSetHelper(object(), address(),
3610 value(), // scratch1
3611 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3612 } else {
3613 __ Ret();
3614 }
3615
3616 __ Bind(&need_incremental_pop_scratch);
3617 __ Pop(regs_.object(), regs_.address());
3618
3619 __ Bind(&need_incremental);
3620 // Fall through when we need to inform the incremental marker.
3621}
3622
3623
3624void RecordWriteStub::Generate(MacroAssembler* masm) {
3625 Label skip_to_incremental_noncompacting;
3626 Label skip_to_incremental_compacting;
3627
3628 // We patch these two first instructions back and forth between a nop and
3629 // real branch when we start and stop incremental heap marking.
3630 // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
3631 // are generated.
3632 // See RecordWriteStub::Patch for details.
3633 {
3634 InstructionAccurateScope scope(masm, 2);
3635 __ adr(xzr, &skip_to_incremental_noncompacting);
3636 __ adr(xzr, &skip_to_incremental_compacting);
3637 }
3638
3639 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3640 __ RememberedSetHelper(object(), address(),
3641 value(), // scratch1
3642 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3643 }
3644 __ Ret();
3645
3646 __ Bind(&skip_to_incremental_noncompacting);
3647 GenerateIncremental(masm, INCREMENTAL);
3648
3649 __ Bind(&skip_to_incremental_compacting);
3650 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3651}
3652
3653
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003654void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3655 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3656 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3657 int parameter_count_offset =
Ben Murdochda12d292016-06-02 14:46:10 +01003658 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003659 __ Ldr(x1, MemOperand(fp, parameter_count_offset));
3660 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3661 __ Add(x1, x1, 1);
3662 }
3663 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3664 __ Drop(x1);
3665 // Return to IC Miss stub, continuation still on stack.
3666 __ Ret();
3667}
3668
3669
3670void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003671 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3672 LoadICStub stub(isolate(), state());
3673 stub.GenerateForTrampoline(masm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003674}
3675
3676
3677void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003678 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3679 KeyedLoadICStub stub(isolate(), state());
3680 stub.GenerateForTrampoline(masm);
3681}
3682
3683
3684void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3685 __ EmitLoadTypeFeedbackVector(x2);
3686 CallICStub stub(isolate(), state());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003687 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3688}
3689
3690
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003691void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
3692
3693
3694void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3695 GenerateImpl(masm, true);
3696}
3697
3698
3699static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3700 Register receiver_map, Register scratch1,
3701 Register scratch2, bool is_polymorphic,
3702 Label* miss) {
3703 // feedback initially contains the feedback array
3704 Label next_loop, prepare_next;
3705 Label load_smi_map, compare_map;
3706 Label start_polymorphic;
3707
3708 Register cached_map = scratch1;
3709
3710 __ Ldr(cached_map,
3711 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3712 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3713 __ Cmp(receiver_map, cached_map);
3714 __ B(ne, &start_polymorphic);
3715 // found, now call handler.
3716 Register handler = feedback;
3717 __ Ldr(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3718 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
3719 __ Jump(feedback);
3720
3721 Register length = scratch2;
3722 __ Bind(&start_polymorphic);
3723 __ Ldr(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3724 if (!is_polymorphic) {
3725 __ Cmp(length, Operand(Smi::FromInt(2)));
3726 __ B(eq, miss);
3727 }
3728
3729 Register too_far = length;
3730 Register pointer_reg = feedback;
3731
3732 // +-----+------+------+-----+-----+ ... ----+
3733 // | map | len | wm0 | h0 | wm1 | hN |
3734 // +-----+------+------+-----+-----+ ... ----+
3735 // 0 1 2 len-1
3736 // ^ ^
3737 // | |
3738 // pointer_reg too_far
3739 // aka feedback scratch2
3740 // also need receiver_map
3741 // use cached_map (scratch1) to look in the weak map values.
3742 __ Add(too_far, feedback,
3743 Operand::UntagSmiAndScale(length, kPointerSizeLog2));
3744 __ Add(too_far, too_far, FixedArray::kHeaderSize - kHeapObjectTag);
3745 __ Add(pointer_reg, feedback,
3746 FixedArray::OffsetOfElementAt(2) - kHeapObjectTag);
3747
3748 __ Bind(&next_loop);
3749 __ Ldr(cached_map, MemOperand(pointer_reg));
3750 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3751 __ Cmp(receiver_map, cached_map);
3752 __ B(ne, &prepare_next);
3753 __ Ldr(handler, MemOperand(pointer_reg, kPointerSize));
3754 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
3755 __ Jump(handler);
3756
3757 __ Bind(&prepare_next);
3758 __ Add(pointer_reg, pointer_reg, kPointerSize * 2);
3759 __ Cmp(pointer_reg, too_far);
3760 __ B(lt, &next_loop);
3761
3762 // We exhausted our array of map handler pairs.
3763 __ jmp(miss);
3764}
3765
3766
3767static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3768 Register receiver_map, Register feedback,
3769 Register vector, Register slot,
3770 Register scratch, Label* compare_map,
3771 Label* load_smi_map, Label* try_array) {
3772 __ JumpIfSmi(receiver, load_smi_map);
3773 __ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3774 __ bind(compare_map);
3775 Register cached_map = scratch;
3776 // Move the weak map into the weak_cell register.
3777 __ Ldr(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3778 __ Cmp(cached_map, receiver_map);
3779 __ B(ne, try_array);
3780
3781 Register handler = feedback;
3782 __ Add(handler, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
3783 __ Ldr(handler,
3784 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
3785 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
3786 __ Jump(handler);
3787}
3788
3789
3790void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3791 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
3792 Register name = LoadWithVectorDescriptor::NameRegister(); // x2
3793 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
3794 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
3795 Register feedback = x4;
3796 Register receiver_map = x5;
3797 Register scratch1 = x6;
3798
3799 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
3800 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3801
3802 // Try to quickly handle the monomorphic case without knowing for sure
3803 // if we have a weak cell in feedback. We do know it's safe to look
3804 // at WeakCell::kValueOffset.
3805 Label try_array, load_smi_map, compare_map;
3806 Label not_array, miss;
3807 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3808 scratch1, &compare_map, &load_smi_map, &try_array);
3809
3810 // Is it a fixed array?
3811 __ Bind(&try_array);
3812 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3813 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, &not_array);
3814 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, true, &miss);
3815
3816 __ Bind(&not_array);
3817 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex, &miss);
3818 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
3819 Code::ComputeHandlerFlags(Code::LOAD_IC));
3820 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
3821 receiver, name, feedback,
3822 receiver_map, scratch1, x7);
3823
3824 __ Bind(&miss);
3825 LoadIC::GenerateMiss(masm);
3826
3827 __ Bind(&load_smi_map);
3828 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3829 __ jmp(&compare_map);
3830}
3831
3832
3833void KeyedLoadICStub::Generate(MacroAssembler* masm) {
3834 GenerateImpl(masm, false);
3835}
3836
3837
3838void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3839 GenerateImpl(masm, true);
3840}
3841
3842
3843void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3844 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
3845 Register key = LoadWithVectorDescriptor::NameRegister(); // x2
3846 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
3847 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
3848 Register feedback = x4;
3849 Register receiver_map = x5;
3850 Register scratch1 = x6;
3851
3852 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
3853 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3854
3855 // Try to quickly handle the monomorphic case without knowing for sure
3856 // if we have a weak cell in feedback. We do know it's safe to look
3857 // at WeakCell::kValueOffset.
3858 Label try_array, load_smi_map, compare_map;
3859 Label not_array, miss;
3860 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3861 scratch1, &compare_map, &load_smi_map, &try_array);
3862
3863 __ Bind(&try_array);
3864 // Is it a fixed array?
3865 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3866 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, &not_array);
3867
3868 // We have a polymorphic element handler.
3869 Label polymorphic, try_poly_name;
3870 __ Bind(&polymorphic);
3871 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, true, &miss);
3872
3873 __ Bind(&not_array);
3874 // Is it generic?
3875 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex,
3876 &try_poly_name);
3877 Handle<Code> megamorphic_stub =
3878 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3879 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3880
3881 __ Bind(&try_poly_name);
3882 // We might have a name in feedback, and a fixed array in the next slot.
3883 __ Cmp(key, feedback);
3884 __ B(ne, &miss);
3885 // If the name comparison succeeded, we know we have a fixed array with
3886 // at least one map/handler pair.
3887 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
3888 __ Ldr(feedback,
3889 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
3890 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, false, &miss);
3891
3892 __ Bind(&miss);
3893 KeyedLoadIC::GenerateMiss(masm);
3894
3895 __ Bind(&load_smi_map);
3896 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3897 __ jmp(&compare_map);
3898}
3899
3900
3901void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3902 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3903 VectorStoreICStub stub(isolate(), state());
3904 stub.GenerateForTrampoline(masm);
3905}
3906
3907
3908void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3909 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3910 VectorKeyedStoreICStub stub(isolate(), state());
3911 stub.GenerateForTrampoline(masm);
3912}
3913
3914
3915void VectorStoreICStub::Generate(MacroAssembler* masm) {
3916 GenerateImpl(masm, false);
3917}
3918
3919
3920void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3921 GenerateImpl(masm, true);
3922}
3923
3924
3925void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3926 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // x1
3927 Register key = VectorStoreICDescriptor::NameRegister(); // x2
3928 Register vector = VectorStoreICDescriptor::VectorRegister(); // x3
3929 Register slot = VectorStoreICDescriptor::SlotRegister(); // x4
3930 DCHECK(VectorStoreICDescriptor::ValueRegister().is(x0)); // x0
3931 Register feedback = x5;
3932 Register receiver_map = x6;
3933 Register scratch1 = x7;
3934
3935 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
3936 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3937
3938 // Try to quickly handle the monomorphic case without knowing for sure
3939 // if we have a weak cell in feedback. We do know it's safe to look
3940 // at WeakCell::kValueOffset.
3941 Label try_array, load_smi_map, compare_map;
3942 Label not_array, miss;
3943 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3944 scratch1, &compare_map, &load_smi_map, &try_array);
3945
3946 // Is it a fixed array?
3947 __ Bind(&try_array);
3948 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3949 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, &not_array);
3950 HandleArrayCases(masm, feedback, receiver_map, scratch1, x8, true, &miss);
3951
3952 __ Bind(&not_array);
3953 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex, &miss);
3954 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
3955 Code::ComputeHandlerFlags(Code::STORE_IC));
3956 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
3957 receiver, key, feedback,
3958 receiver_map, scratch1, x8);
3959
3960 __ Bind(&miss);
3961 StoreIC::GenerateMiss(masm);
3962
3963 __ Bind(&load_smi_map);
3964 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3965 __ jmp(&compare_map);
3966}
3967
3968
3969void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
3970 GenerateImpl(masm, false);
3971}
3972
3973
3974void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3975 GenerateImpl(masm, true);
3976}
3977
3978
3979static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
3980 Register receiver_map, Register scratch1,
3981 Register scratch2, Label* miss) {
3982 // feedback initially contains the feedback array
3983 Label next_loop, prepare_next;
3984 Label start_polymorphic;
3985 Label transition_call;
3986
3987 Register cached_map = scratch1;
3988 Register too_far = scratch2;
3989 Register pointer_reg = feedback;
3990
3991 __ Ldr(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3992
3993 // +-----+------+------+-----+-----+-----+ ... ----+
3994 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
3995 // +-----+------+------+-----+-----+ ----+ ... ----+
3996 // 0 1 2 len-1
3997 // ^ ^
3998 // | |
3999 // pointer_reg too_far
4000 // aka feedback scratch2
4001 // also need receiver_map
4002 // use cached_map (scratch1) to look in the weak map values.
4003 __ Add(too_far, feedback,
4004 Operand::UntagSmiAndScale(too_far, kPointerSizeLog2));
4005 __ Add(too_far, too_far, FixedArray::kHeaderSize - kHeapObjectTag);
4006 __ Add(pointer_reg, feedback,
4007 FixedArray::OffsetOfElementAt(0) - kHeapObjectTag);
4008
4009 __ Bind(&next_loop);
4010 __ Ldr(cached_map, MemOperand(pointer_reg));
4011 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4012 __ Cmp(receiver_map, cached_map);
4013 __ B(ne, &prepare_next);
4014 // Is it a transitioning store?
4015 __ Ldr(too_far, MemOperand(pointer_reg, kPointerSize));
4016 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
4017 __ B(ne, &transition_call);
4018
4019 __ Ldr(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4020 __ Add(pointer_reg, pointer_reg, Code::kHeaderSize - kHeapObjectTag);
4021 __ Jump(pointer_reg);
4022
4023 __ Bind(&transition_call);
4024 __ Ldr(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4025 __ JumpIfSmi(too_far, miss);
4026
4027 __ Ldr(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4028 // Load the map into the correct register.
4029 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4030 __ mov(feedback, too_far);
4031 __ Add(receiver_map, receiver_map, Code::kHeaderSize - kHeapObjectTag);
4032 __ Jump(receiver_map);
4033
4034 __ Bind(&prepare_next);
4035 __ Add(pointer_reg, pointer_reg, kPointerSize * 3);
4036 __ Cmp(pointer_reg, too_far);
4037 __ B(lt, &next_loop);
4038
4039 // We exhausted our array of map handler pairs.
4040 __ jmp(miss);
4041}
4042
4043
4044void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4045 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // x1
4046 Register key = VectorStoreICDescriptor::NameRegister(); // x2
4047 Register vector = VectorStoreICDescriptor::VectorRegister(); // x3
4048 Register slot = VectorStoreICDescriptor::SlotRegister(); // x4
4049 DCHECK(VectorStoreICDescriptor::ValueRegister().is(x0)); // x0
4050 Register feedback = x5;
4051 Register receiver_map = x6;
4052 Register scratch1 = x7;
4053
4054 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4055 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4056
4057 // Try to quickly handle the monomorphic case without knowing for sure
4058 // if we have a weak cell in feedback. We do know it's safe to look
4059 // at WeakCell::kValueOffset.
4060 Label try_array, load_smi_map, compare_map;
4061 Label not_array, miss;
4062 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4063 scratch1, &compare_map, &load_smi_map, &try_array);
4064
4065 __ Bind(&try_array);
4066 // Is it a fixed array?
4067 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4068 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, &not_array);
4069
4070 // We have a polymorphic element handler.
4071 Label try_poly_name;
4072 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, x8, &miss);
4073
4074 __ Bind(&not_array);
4075 // Is it generic?
4076 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex,
4077 &try_poly_name);
4078 Handle<Code> megamorphic_stub =
4079 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4080 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4081
4082 __ Bind(&try_poly_name);
4083 // We might have a name in feedback, and a fixed array in the next slot.
4084 __ Cmp(key, feedback);
4085 __ B(ne, &miss);
4086 // If the name comparison succeeded, we know we have a fixed array with
4087 // at least one map/handler pair.
4088 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4089 __ Ldr(feedback,
4090 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4091 HandleArrayCases(masm, feedback, receiver_map, scratch1, x8, false, &miss);
4092
4093 __ Bind(&miss);
4094 KeyedStoreIC::GenerateMiss(masm);
4095
4096 __ Bind(&load_smi_map);
4097 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4098 __ jmp(&compare_map);
4099}
4100
4101
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004102// The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by
4103// a "Push lr" instruction, followed by a call.
4104static const unsigned int kProfileEntryHookCallSize =
4105 Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004106
4107
4108void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4109 if (masm->isolate()->function_entry_hook() != NULL) {
4110 ProfileEntryHookStub stub(masm->isolate());
4111 Assembler::BlockConstPoolScope no_const_pools(masm);
4112 DontEmitDebugCodeScope no_debug_code(masm);
4113 Label entry_hook_call_start;
4114 __ Bind(&entry_hook_call_start);
4115 __ Push(lr);
4116 __ CallStub(&stub);
4117 DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004118 kProfileEntryHookCallSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004119
4120 __ Pop(lr);
4121 }
4122}
4123
4124
4125void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4126 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
4127
4128 // Save all kCallerSaved registers (including lr), since this can be called
4129 // from anywhere.
4130 // TODO(jbramley): What about FP registers?
4131 __ PushCPURegList(kCallerSaved);
4132 DCHECK(kCallerSaved.IncludesAliasOf(lr));
4133 const int kNumSavedRegs = kCallerSaved.Count();
4134
4135 // Compute the function's address as the first argument.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004136 __ Sub(x0, lr, kProfileEntryHookCallSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004137
4138#if V8_HOST_ARCH_ARM64
4139 uintptr_t entry_hook =
4140 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4141 __ Mov(x10, entry_hook);
4142#else
4143 // Under the simulator we need to indirect the entry hook through a trampoline
4144 // function at a known address.
4145 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4146 __ Mov(x10, Operand(ExternalReference(&dispatcher,
4147 ExternalReference::BUILTIN_CALL,
4148 isolate())));
4149 // It additionally takes an isolate as a third parameter
4150 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4151#endif
4152
4153 // The caller's return address is above the saved temporaries.
4154 // Grab its location for the second argument to the hook.
4155 __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
4156
4157 {
4158 // Create a dummy frame, as CallCFunction requires this.
4159 FrameScope frame(masm, StackFrame::MANUAL);
4160 __ CallCFunction(x10, 2, 0);
4161 }
4162
4163 __ PopCPURegList(kCallerSaved);
4164 __ Ret();
4165}
4166
4167
4168void DirectCEntryStub::Generate(MacroAssembler* masm) {
4169 // When calling into C++ code the stack pointer must be csp.
4170 // Therefore this code must use csp for peek/poke operations when the
4171 // stub is generated. When the stub is called
4172 // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
4173 // and configure the stack pointer *before* doing the call.
4174 const Register old_stack_pointer = __ StackPointer();
4175 __ SetStackPointer(csp);
4176
4177 // Put return address on the stack (accessible to GC through exit frame pc).
4178 __ Poke(lr, 0);
4179 // Call the C++ function.
4180 __ Blr(x10);
4181 // Return to calling code.
4182 __ Peek(lr, 0);
4183 __ AssertFPCRState();
4184 __ Ret();
4185
4186 __ SetStackPointer(old_stack_pointer);
4187}
4188
4189void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
4190 Register target) {
4191 // Make sure the caller configured the stack pointer (see comment in
4192 // DirectCEntryStub::Generate).
4193 DCHECK(csp.Is(__ StackPointer()));
4194
4195 intptr_t code =
4196 reinterpret_cast<intptr_t>(GetCode().location());
4197 __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
4198 __ Mov(x10, target);
4199 // Branch to the stub.
4200 __ Blr(lr);
4201}
4202
4203
4204// Probe the name dictionary in the 'elements' register.
4205// Jump to the 'done' label if a property with the given name is found.
4206// Jump to the 'miss' label otherwise.
4207//
4208// If lookup was successful 'scratch2' will be equal to elements + 4 * index.
4209// 'elements' and 'name' registers are preserved on miss.
4210void NameDictionaryLookupStub::GeneratePositiveLookup(
4211 MacroAssembler* masm,
4212 Label* miss,
4213 Label* done,
4214 Register elements,
4215 Register name,
4216 Register scratch1,
4217 Register scratch2) {
4218 DCHECK(!AreAliased(elements, name, scratch1, scratch2));
4219
4220 // Assert that name contains a string.
4221 __ AssertName(name);
4222
4223 // Compute the capacity mask.
4224 __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
4225 __ Sub(scratch1, scratch1, 1);
4226
4227 // Generate an unrolled loop that performs a few probes before giving up.
4228 for (int i = 0; i < kInlinedProbes; i++) {
4229 // Compute the masked index: (hash + i + i * i) & mask.
4230 __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
4231 if (i > 0) {
4232 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4233 // the hash in a separate instruction. The value hash + i + i * i is right
4234 // shifted in the following and instruction.
4235 DCHECK(NameDictionary::GetProbeOffset(i) <
4236 1 << (32 - Name::kHashFieldOffset));
4237 __ Add(scratch2, scratch2, Operand(
4238 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4239 }
4240 __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
4241
4242 // Scale the index by multiplying by the element size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004243 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004244 __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4245
4246 // Check if the key is identical to the name.
4247 UseScratchRegisterScope temps(masm);
4248 Register scratch3 = temps.AcquireX();
4249 __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4250 __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
4251 __ Cmp(name, scratch3);
4252 __ B(eq, done);
4253 }
4254
4255 // The inlined probes didn't find the entry.
4256 // Call the complete stub to scan the whole dictionary.
4257
4258 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4259 spill_list.Combine(lr);
4260 spill_list.Remove(scratch1);
4261 spill_list.Remove(scratch2);
4262
4263 __ PushCPURegList(spill_list);
4264
4265 if (name.is(x0)) {
4266 DCHECK(!elements.is(x1));
4267 __ Mov(x1, name);
4268 __ Mov(x0, elements);
4269 } else {
4270 __ Mov(x0, elements);
4271 __ Mov(x1, name);
4272 }
4273
4274 Label not_found;
4275 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4276 __ CallStub(&stub);
4277 __ Cbz(x0, &not_found);
4278 __ Mov(scratch2, x2); // Move entry index into scratch2.
4279 __ PopCPURegList(spill_list);
4280 __ B(done);
4281
4282 __ Bind(&not_found);
4283 __ PopCPURegList(spill_list);
4284 __ B(miss);
4285}
4286
4287
4288void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4289 Label* miss,
4290 Label* done,
4291 Register receiver,
4292 Register properties,
4293 Handle<Name> name,
4294 Register scratch0) {
4295 DCHECK(!AreAliased(receiver, properties, scratch0));
4296 DCHECK(name->IsUniqueName());
4297 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4298 // not equal to the name and kProbes-th slot is not used (its name is the
4299 // undefined value), it guarantees the hash table doesn't contain the
4300 // property. It's true even if some slots represent deleted properties
4301 // (their names are the hole value).
4302 for (int i = 0; i < kInlinedProbes; i++) {
4303 // scratch0 points to properties hash.
4304 // Compute the masked index: (hash + i + i * i) & mask.
4305 Register index = scratch0;
4306 // Capacity is smi 2^n.
4307 __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
4308 __ Sub(index, index, 1);
4309 __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
4310
4311 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004312 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004313 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4314
4315 Register entity_name = scratch0;
4316 // Having undefined at this place means the name is not contained.
4317 Register tmp = index;
4318 __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
4319 __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
4320
4321 __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
4322
4323 // Stop if found the property.
4324 __ Cmp(entity_name, Operand(name));
4325 __ B(eq, miss);
4326
4327 Label good;
4328 __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
4329
4330 // Check if the entry name is not a unique name.
4331 __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
4332 __ Ldrb(entity_name,
4333 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
4334 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
4335 __ Bind(&good);
4336 }
4337
4338 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4339 spill_list.Combine(lr);
4340 spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
4341
4342 __ PushCPURegList(spill_list);
4343
4344 __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
4345 __ Mov(x1, Operand(name));
4346 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
4347 __ CallStub(&stub);
4348 // Move stub return value to scratch0. Note that scratch0 is not included in
4349 // spill_list and won't be clobbered by PopCPURegList.
4350 __ Mov(scratch0, x0);
4351 __ PopCPURegList(spill_list);
4352
4353 __ Cbz(scratch0, done);
4354 __ B(miss);
4355}
4356
4357
4358void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4359 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4360 // we cannot call anything that could cause a GC from this stub.
4361 //
4362 // Arguments are in x0 and x1:
4363 // x0: property dictionary.
4364 // x1: the name of the property we are looking for.
4365 //
4366 // Return value is in x0 and is zero if lookup failed, non zero otherwise.
4367 // If the lookup is successful, x2 will contains the index of the entry.
4368
4369 Register result = x0;
4370 Register dictionary = x0;
4371 Register key = x1;
4372 Register index = x2;
4373 Register mask = x3;
4374 Register hash = x4;
4375 Register undefined = x5;
4376 Register entry_key = x6;
4377
4378 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4379
4380 __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
4381 __ Sub(mask, mask, 1);
4382
4383 __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4384 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4385
4386 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4387 // Compute the masked index: (hash + i + i * i) & mask.
4388 // Capacity is smi 2^n.
4389 if (i > 0) {
4390 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4391 // the hash in a separate instruction. The value hash + i + i * i is right
4392 // shifted in the following and instruction.
4393 DCHECK(NameDictionary::GetProbeOffset(i) <
4394 1 << (32 - Name::kHashFieldOffset));
4395 __ Add(index, hash,
4396 NameDictionary::GetProbeOffset(i) << Name::kHashShift);
4397 } else {
4398 __ Mov(index, hash);
4399 }
4400 __ And(index, mask, Operand(index, LSR, Name::kHashShift));
4401
4402 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004403 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004404 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4405
4406 __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
4407 __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
4408
4409 // Having undefined at this place means the name is not contained.
4410 __ Cmp(entry_key, undefined);
4411 __ B(eq, &not_in_dictionary);
4412
4413 // Stop if found the property.
4414 __ Cmp(entry_key, key);
4415 __ B(eq, &in_dictionary);
4416
4417 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4418 // Check if the entry name is not a unique name.
4419 __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4420 __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4421 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4422 }
4423 }
4424
4425 __ Bind(&maybe_in_dictionary);
4426 // If we are doing negative lookup then probing failure should be
4427 // treated as a lookup success. For positive lookup, probing failure
4428 // should be treated as lookup failure.
4429 if (mode() == POSITIVE_LOOKUP) {
4430 __ Mov(result, 0);
4431 __ Ret();
4432 }
4433
4434 __ Bind(&in_dictionary);
4435 __ Mov(result, 1);
4436 __ Ret();
4437
4438 __ Bind(&not_in_dictionary);
4439 __ Mov(result, 0);
4440 __ Ret();
4441}
4442
4443
4444template<class T>
4445static void CreateArrayDispatch(MacroAssembler* masm,
4446 AllocationSiteOverrideMode mode) {
4447 ASM_LOCATION("CreateArrayDispatch");
4448 if (mode == DISABLE_ALLOCATION_SITES) {
4449 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4450 __ TailCallStub(&stub);
4451
4452 } else if (mode == DONT_OVERRIDE) {
4453 Register kind = x3;
4454 int last_index =
4455 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4456 for (int i = 0; i <= last_index; ++i) {
4457 Label next;
4458 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4459 // TODO(jbramley): Is this the best way to handle this? Can we make the
4460 // tail calls conditional, rather than hopping over each one?
4461 __ CompareAndBranch(kind, candidate_kind, ne, &next);
4462 T stub(masm->isolate(), candidate_kind);
4463 __ TailCallStub(&stub);
4464 __ Bind(&next);
4465 }
4466
4467 // If we reached this point there is a problem.
4468 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4469
4470 } else {
4471 UNREACHABLE();
4472 }
4473}
4474
4475
4476// TODO(jbramley): If this needs to be a special case, make it a proper template
4477// specialization, and not a separate function.
4478static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4479 AllocationSiteOverrideMode mode) {
4480 ASM_LOCATION("CreateArrayDispatchOneArgument");
4481 // x0 - argc
4482 // x1 - constructor?
4483 // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4484 // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4485 // sp[0] - last argument
4486
4487 Register allocation_site = x2;
4488 Register kind = x3;
4489
4490 Label normal_sequence;
4491 if (mode == DONT_OVERRIDE) {
4492 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4493 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4494 STATIC_ASSERT(FAST_ELEMENTS == 2);
4495 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4496 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4497 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4498
4499 // Is the low bit set? If so, the array is holey.
4500 __ Tbnz(kind, 0, &normal_sequence);
4501 }
4502
4503 // Look at the last argument.
4504 // TODO(jbramley): What does a 0 argument represent?
4505 __ Peek(x10, 0);
4506 __ Cbz(x10, &normal_sequence);
4507
4508 if (mode == DISABLE_ALLOCATION_SITES) {
4509 ElementsKind initial = GetInitialFastElementsKind();
4510 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4511
4512 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4513 holey_initial,
4514 DISABLE_ALLOCATION_SITES);
4515 __ TailCallStub(&stub_holey);
4516
4517 __ Bind(&normal_sequence);
4518 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4519 initial,
4520 DISABLE_ALLOCATION_SITES);
4521 __ TailCallStub(&stub);
4522 } else if (mode == DONT_OVERRIDE) {
4523 // We are going to create a holey array, but our kind is non-holey.
4524 // Fix kind and retry (only if we have an allocation site in the slot).
4525 __ Orr(kind, kind, 1);
4526
4527 if (FLAG_debug_code) {
4528 __ Ldr(x10, FieldMemOperand(allocation_site, 0));
4529 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
4530 &normal_sequence);
4531 __ Assert(eq, kExpectedAllocationSite);
4532 }
4533
4534 // Save the resulting elements kind in type info. We can't just store 'kind'
4535 // in the AllocationSite::transition_info field because elements kind is
4536 // restricted to a portion of the field; upper bits need to be left alone.
4537 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4538 __ Ldr(x11, FieldMemOperand(allocation_site,
4539 AllocationSite::kTransitionInfoOffset));
4540 __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
4541 __ Str(x11, FieldMemOperand(allocation_site,
4542 AllocationSite::kTransitionInfoOffset));
4543
4544 __ Bind(&normal_sequence);
4545 int last_index =
4546 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4547 for (int i = 0; i <= last_index; ++i) {
4548 Label next;
4549 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4550 __ CompareAndBranch(kind, candidate_kind, ne, &next);
4551 ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
4552 __ TailCallStub(&stub);
4553 __ Bind(&next);
4554 }
4555
4556 // If we reached this point there is a problem.
4557 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4558 } else {
4559 UNREACHABLE();
4560 }
4561}
4562
4563
4564template<class T>
4565static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4566 int to_index = GetSequenceIndexFromFastElementsKind(
4567 TERMINAL_FAST_ELEMENTS_KIND);
4568 for (int i = 0; i <= to_index; ++i) {
4569 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4570 T stub(isolate, kind);
4571 stub.GetCode();
4572 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4573 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4574 stub1.GetCode();
4575 }
4576 }
4577}
4578
4579
4580void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4581 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4582 isolate);
4583 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4584 isolate);
4585 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4586 isolate);
4587}
4588
4589
4590void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4591 Isolate* isolate) {
4592 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4593 for (int i = 0; i < 2; i++) {
4594 // For internal arrays we only need a few things
4595 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4596 stubh1.GetCode();
4597 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4598 stubh2.GetCode();
4599 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4600 stubh3.GetCode();
4601 }
4602}
4603
4604
4605void ArrayConstructorStub::GenerateDispatchToArrayStub(
4606 MacroAssembler* masm,
4607 AllocationSiteOverrideMode mode) {
4608 Register argc = x0;
4609 if (argument_count() == ANY) {
4610 Label zero_case, n_case;
4611 __ Cbz(argc, &zero_case);
4612 __ Cmp(argc, 1);
4613 __ B(ne, &n_case);
4614
4615 // One argument.
4616 CreateArrayDispatchOneArgument(masm, mode);
4617
4618 __ Bind(&zero_case);
4619 // No arguments.
4620 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4621
4622 __ Bind(&n_case);
4623 // N arguments.
4624 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4625
4626 } else if (argument_count() == NONE) {
4627 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4628 } else if (argument_count() == ONE) {
4629 CreateArrayDispatchOneArgument(masm, mode);
4630 } else if (argument_count() == MORE_THAN_ONE) {
4631 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4632 } else {
4633 UNREACHABLE();
4634 }
4635}
4636
4637
4638void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4639 ASM_LOCATION("ArrayConstructorStub::Generate");
4640 // ----------- S t a t e -------------
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004641 // -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004642 // -- x1 : constructor
4643 // -- x2 : AllocationSite or undefined
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004644 // -- x3 : new target
4645 // -- sp[0] : last argument
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004646 // -----------------------------------
4647 Register constructor = x1;
4648 Register allocation_site = x2;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004649 Register new_target = x3;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004650
4651 if (FLAG_debug_code) {
4652 // The array construct code is only set for the global and natives
4653 // builtin Array functions which always have maps.
4654
4655 Label unexpected_map, map_ok;
4656 // Initial map for the builtin Array function should be a map.
4657 __ Ldr(x10, FieldMemOperand(constructor,
4658 JSFunction::kPrototypeOrInitialMapOffset));
4659 // Will both indicate a NULL and a Smi.
4660 __ JumpIfSmi(x10, &unexpected_map);
4661 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4662 __ Bind(&unexpected_map);
4663 __ Abort(kUnexpectedInitialMapForArrayFunction);
4664 __ Bind(&map_ok);
4665
4666 // We should either have undefined in the allocation_site register or a
4667 // valid AllocationSite.
4668 __ AssertUndefinedOrAllocationSite(allocation_site, x10);
4669 }
4670
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004671 // Enter the context of the Array function.
4672 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
4673
4674 Label subclassing;
4675 __ Cmp(new_target, constructor);
4676 __ B(ne, &subclassing);
4677
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004678 Register kind = x3;
4679 Label no_info;
4680 // Get the elements kind and case on that.
4681 __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
4682
4683 __ Ldrsw(kind,
4684 UntagSmiFieldMemOperand(allocation_site,
4685 AllocationSite::kTransitionInfoOffset));
4686 __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
4687 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4688
4689 __ Bind(&no_info);
4690 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004691
4692 // Subclassing support.
4693 __ Bind(&subclassing);
4694 switch (argument_count()) {
4695 case ANY:
4696 case MORE_THAN_ONE:
4697 __ Poke(constructor, Operand(x0, LSL, kPointerSizeLog2));
4698 __ Add(x0, x0, Operand(3));
4699 break;
4700 case NONE:
4701 __ Poke(constructor, 0 * kPointerSize);
4702 __ Mov(x0, Operand(3));
4703 break;
4704 case ONE:
4705 __ Poke(constructor, 1 * kPointerSize);
4706 __ Mov(x0, Operand(4));
4707 break;
4708 }
4709 __ Push(new_target, allocation_site);
4710 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004711}
4712
4713
4714void InternalArrayConstructorStub::GenerateCase(
4715 MacroAssembler* masm, ElementsKind kind) {
4716 Label zero_case, n_case;
4717 Register argc = x0;
4718
4719 __ Cbz(argc, &zero_case);
4720 __ CompareAndBranch(argc, 1, ne, &n_case);
4721
4722 // One argument.
4723 if (IsFastPackedElementsKind(kind)) {
4724 Label packed_case;
4725
4726 // We might need to create a holey array; look at the first argument.
4727 __ Peek(x10, 0);
4728 __ Cbz(x10, &packed_case);
4729
4730 InternalArraySingleArgumentConstructorStub
4731 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4732 __ TailCallStub(&stub1_holey);
4733
4734 __ Bind(&packed_case);
4735 }
4736 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4737 __ TailCallStub(&stub1);
4738
4739 __ Bind(&zero_case);
4740 // No arguments.
4741 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4742 __ TailCallStub(&stub0);
4743
4744 __ Bind(&n_case);
4745 // N arguments.
4746 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4747 __ TailCallStub(&stubN);
4748}
4749
4750
4751void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4752 // ----------- S t a t e -------------
4753 // -- x0 : argc
4754 // -- x1 : constructor
4755 // -- sp[0] : return address
4756 // -- sp[4] : last argument
4757 // -----------------------------------
4758
4759 Register constructor = x1;
4760
4761 if (FLAG_debug_code) {
4762 // The array construct code is only set for the global and natives
4763 // builtin Array functions which always have maps.
4764
4765 Label unexpected_map, map_ok;
4766 // Initial map for the builtin Array function should be a map.
4767 __ Ldr(x10, FieldMemOperand(constructor,
4768 JSFunction::kPrototypeOrInitialMapOffset));
4769 // Will both indicate a NULL and a Smi.
4770 __ JumpIfSmi(x10, &unexpected_map);
4771 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4772 __ Bind(&unexpected_map);
4773 __ Abort(kUnexpectedInitialMapForArrayFunction);
4774 __ Bind(&map_ok);
4775 }
4776
4777 Register kind = w3;
4778 // Figure out the right elements kind
4779 __ Ldr(x10, FieldMemOperand(constructor,
4780 JSFunction::kPrototypeOrInitialMapOffset));
4781
4782 // Retrieve elements_kind from map.
4783 __ LoadElementsKindFromMap(kind, x10);
4784
4785 if (FLAG_debug_code) {
4786 Label done;
4787 __ Cmp(x3, FAST_ELEMENTS);
4788 __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
4789 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4790 }
4791
4792 Label fast_elements_case;
4793 __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
4794 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4795
4796 __ Bind(&fast_elements_case);
4797 GenerateCase(masm, FAST_ELEMENTS);
4798}
4799
4800
Ben Murdoch097c5b22016-05-18 11:27:45 +01004801void FastNewObjectStub::Generate(MacroAssembler* masm) {
4802 // ----------- S t a t e -------------
4803 // -- x1 : target
4804 // -- x3 : new target
4805 // -- cp : context
4806 // -- lr : return address
4807 // -----------------------------------
4808 __ AssertFunction(x1);
4809 __ AssertReceiver(x3);
4810
4811 // Verify that the new target is a JSFunction.
4812 Label new_object;
4813 __ JumpIfNotObjectType(x3, x2, x2, JS_FUNCTION_TYPE, &new_object);
4814
4815 // Load the initial map and verify that it's in fact a map.
4816 __ Ldr(x2, FieldMemOperand(x3, JSFunction::kPrototypeOrInitialMapOffset));
4817 __ JumpIfSmi(x2, &new_object);
4818 __ JumpIfNotObjectType(x2, x0, x0, MAP_TYPE, &new_object);
4819
4820 // Fall back to runtime if the target differs from the new target's
4821 // initial map constructor.
4822 __ Ldr(x0, FieldMemOperand(x2, Map::kConstructorOrBackPointerOffset));
4823 __ CompareAndBranch(x0, x1, ne, &new_object);
4824
4825 // Allocate the JSObject on the heap.
4826 Label allocate, done_allocate;
4827 __ Ldrb(x4, FieldMemOperand(x2, Map::kInstanceSizeOffset));
4828 __ Allocate(x4, x0, x5, x6, &allocate, SIZE_IN_WORDS);
4829 __ Bind(&done_allocate);
4830
4831 // Initialize the JSObject fields.
4832 __ Mov(x1, x0);
4833 STATIC_ASSERT(JSObject::kMapOffset == 0 * kPointerSize);
4834 __ Str(x2, MemOperand(x1, kPointerSize, PostIndex));
4835 __ LoadRoot(x3, Heap::kEmptyFixedArrayRootIndex);
4836 STATIC_ASSERT(JSObject::kPropertiesOffset == 1 * kPointerSize);
4837 STATIC_ASSERT(JSObject::kElementsOffset == 2 * kPointerSize);
4838 __ Stp(x3, x3, MemOperand(x1, 2 * kPointerSize, PostIndex));
4839 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
4840
4841 // ----------- S t a t e -------------
4842 // -- x0 : result (untagged)
4843 // -- x1 : result fields (untagged)
4844 // -- x5 : result end (untagged)
4845 // -- x2 : initial map
4846 // -- cp : context
4847 // -- lr : return address
4848 // -----------------------------------
4849
4850 // Perform in-object slack tracking if requested.
4851 Label slack_tracking;
4852 STATIC_ASSERT(Map::kNoSlackTracking == 0);
4853 __ LoadRoot(x6, Heap::kUndefinedValueRootIndex);
4854 __ Ldr(w3, FieldMemOperand(x2, Map::kBitField3Offset));
4855 __ TestAndBranchIfAnySet(w3, Map::ConstructionCounter::kMask,
4856 &slack_tracking);
4857 {
4858 // Initialize all in-object fields with undefined.
4859 __ InitializeFieldsWithFiller(x1, x5, x6);
4860
4861 // Add the object tag to make the JSObject real.
4862 STATIC_ASSERT(kHeapObjectTag == 1);
4863 __ Add(x0, x0, kHeapObjectTag);
4864 __ Ret();
4865 }
4866 __ Bind(&slack_tracking);
4867 {
4868 // Decrease generous allocation count.
4869 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
4870 __ Sub(w3, w3, 1 << Map::ConstructionCounter::kShift);
4871 __ Str(w3, FieldMemOperand(x2, Map::kBitField3Offset));
4872
4873 // Initialize the in-object fields with undefined.
4874 __ Ldrb(x4, FieldMemOperand(x2, Map::kUnusedPropertyFieldsOffset));
4875 __ Sub(x4, x5, Operand(x4, LSL, kPointerSizeLog2));
4876 __ InitializeFieldsWithFiller(x1, x4, x6);
4877
4878 // Initialize the remaining (reserved) fields with one pointer filler map.
4879 __ LoadRoot(x6, Heap::kOnePointerFillerMapRootIndex);
4880 __ InitializeFieldsWithFiller(x1, x5, x6);
4881
4882 // Add the object tag to make the JSObject real.
4883 STATIC_ASSERT(kHeapObjectTag == 1);
4884 __ Add(x0, x0, kHeapObjectTag);
4885
4886 // Check if we can finalize the instance size.
4887 Label finalize;
4888 STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
4889 __ TestAndBranchIfAllClear(w3, Map::ConstructionCounter::kMask, &finalize);
4890 __ Ret();
4891
4892 // Finalize the instance size.
4893 __ Bind(&finalize);
4894 {
4895 FrameScope scope(masm, StackFrame::INTERNAL);
4896 __ Push(x0, x2);
4897 __ CallRuntime(Runtime::kFinalizeInstanceSize);
4898 __ Pop(x0);
4899 }
4900 __ Ret();
4901 }
4902
4903 // Fall back to %AllocateInNewSpace.
4904 __ Bind(&allocate);
4905 {
4906 FrameScope scope(masm, StackFrame::INTERNAL);
4907 STATIC_ASSERT(kSmiTag == 0);
4908 STATIC_ASSERT(kSmiTagSize == 1);
4909 __ Mov(x4,
4910 Operand(x4, LSL, kPointerSizeLog2 + kSmiTagSize + kSmiShiftSize));
4911 __ Push(x2, x4);
4912 __ CallRuntime(Runtime::kAllocateInNewSpace);
4913 __ Pop(x2);
4914 }
4915 STATIC_ASSERT(kHeapObjectTag == 1);
4916 __ Sub(x0, x0, kHeapObjectTag);
4917 __ Ldrb(x5, FieldMemOperand(x2, Map::kInstanceSizeOffset));
4918 __ Add(x5, x0, Operand(x5, LSL, kPointerSizeLog2));
4919 __ B(&done_allocate);
4920
4921 // Fall back to %NewObject.
4922 __ Bind(&new_object);
4923 __ Push(x1, x3);
4924 __ TailCallRuntime(Runtime::kNewObject);
4925}
4926
4927
4928void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
4929 // ----------- S t a t e -------------
4930 // -- x1 : function
4931 // -- cp : context
4932 // -- fp : frame pointer
4933 // -- lr : return address
4934 // -----------------------------------
4935 __ AssertFunction(x1);
4936
4937 // For Ignition we need to skip all possible handler/stub frames until
4938 // we reach the JavaScript frame for the function (similar to what the
4939 // runtime fallback implementation does). So make x2 point to that
4940 // JavaScript frame.
4941 {
4942 Label loop, loop_entry;
4943 __ Mov(x2, fp);
4944 __ B(&loop_entry);
4945 __ Bind(&loop);
4946 __ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
4947 __ Bind(&loop_entry);
Ben Murdochda12d292016-06-02 14:46:10 +01004948 __ Ldr(x3, MemOperand(x2, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004949 __ Cmp(x3, x1);
4950 __ B(ne, &loop);
4951 }
4952
4953 // Check if we have rest parameters (only possible if we have an
4954 // arguments adaptor frame below the function frame).
4955 Label no_rest_parameters;
Ben Murdochda12d292016-06-02 14:46:10 +01004956 __ Ldr(x2, MemOperand(x2, CommonFrameConstants::kCallerFPOffset));
4957 __ Ldr(x3, MemOperand(x2, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004958 __ Cmp(x3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
4959 __ B(ne, &no_rest_parameters);
4960
4961 // Check if the arguments adaptor frame contains more arguments than
4962 // specified by the function's internal formal parameter count.
4963 Label rest_parameters;
4964 __ Ldrsw(x0, UntagSmiMemOperand(
4965 x2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4966 __ Ldr(x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
4967 __ Ldrsw(
4968 x1, FieldMemOperand(x1, SharedFunctionInfo::kFormalParameterCountOffset));
4969 __ Subs(x0, x0, x1);
4970 __ B(gt, &rest_parameters);
4971
4972 // Return an empty rest parameter array.
4973 __ Bind(&no_rest_parameters);
4974 {
4975 // ----------- S t a t e -------------
4976 // -- cp : context
4977 // -- lr : return address
4978 // -----------------------------------
4979
4980 // Allocate an empty rest parameter array.
4981 Label allocate, done_allocate;
4982 __ Allocate(JSArray::kSize, x0, x1, x2, &allocate, TAG_OBJECT);
4983 __ Bind(&done_allocate);
4984
4985 // Setup the rest parameter array in x0.
4986 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, x1);
4987 __ Str(x1, FieldMemOperand(x0, JSArray::kMapOffset));
4988 __ LoadRoot(x1, Heap::kEmptyFixedArrayRootIndex);
4989 __ Str(x1, FieldMemOperand(x0, JSArray::kPropertiesOffset));
4990 __ Str(x1, FieldMemOperand(x0, JSArray::kElementsOffset));
4991 __ Mov(x1, Smi::FromInt(0));
4992 __ Str(x1, FieldMemOperand(x0, JSArray::kLengthOffset));
4993 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4994 __ Ret();
4995
4996 // Fall back to %AllocateInNewSpace.
4997 __ Bind(&allocate);
4998 {
4999 FrameScope scope(masm, StackFrame::INTERNAL);
5000 __ Push(Smi::FromInt(JSArray::kSize));
5001 __ CallRuntime(Runtime::kAllocateInNewSpace);
5002 }
5003 __ B(&done_allocate);
5004 }
5005
5006 __ Bind(&rest_parameters);
5007 {
5008 // Compute the pointer to the first rest parameter (skippping the receiver).
5009 __ Add(x2, x2, Operand(x0, LSL, kPointerSizeLog2));
5010 __ Add(x2, x2, StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize);
5011
5012 // ----------- S t a t e -------------
5013 // -- cp : context
5014 // -- x0 : number of rest parameters
5015 // -- x2 : pointer to first rest parameters
5016 // -- lr : return address
5017 // -----------------------------------
5018
5019 // Allocate space for the rest parameter array plus the backing store.
5020 Label allocate, done_allocate;
5021 __ Mov(x1, JSArray::kSize + FixedArray::kHeaderSize);
5022 __ Add(x1, x1, Operand(x0, LSL, kPointerSizeLog2));
5023 __ Allocate(x1, x3, x4, x5, &allocate, TAG_OBJECT);
5024 __ Bind(&done_allocate);
5025
5026 // Compute arguments.length in x6.
5027 __ SmiTag(x6, x0);
5028
5029 // Setup the elements array in x3.
5030 __ LoadRoot(x1, Heap::kFixedArrayMapRootIndex);
5031 __ Str(x1, FieldMemOperand(x3, FixedArray::kMapOffset));
5032 __ Str(x6, FieldMemOperand(x3, FixedArray::kLengthOffset));
5033 __ Add(x4, x3, FixedArray::kHeaderSize);
5034 {
5035 Label loop, done_loop;
5036 __ Add(x0, x4, Operand(x0, LSL, kPointerSizeLog2));
5037 __ Bind(&loop);
5038 __ Cmp(x4, x0);
5039 __ B(eq, &done_loop);
5040 __ Ldr(x5, MemOperand(x2, 0 * kPointerSize));
5041 __ Str(x5, FieldMemOperand(x4, 0 * kPointerSize));
5042 __ Sub(x2, x2, Operand(1 * kPointerSize));
5043 __ Add(x4, x4, Operand(1 * kPointerSize));
5044 __ B(&loop);
5045 __ Bind(&done_loop);
5046 }
5047
5048 // Setup the rest parameter array in x0.
5049 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, x1);
5050 __ Str(x1, FieldMemOperand(x0, JSArray::kMapOffset));
5051 __ LoadRoot(x1, Heap::kEmptyFixedArrayRootIndex);
5052 __ Str(x1, FieldMemOperand(x0, JSArray::kPropertiesOffset));
5053 __ Str(x3, FieldMemOperand(x0, JSArray::kElementsOffset));
5054 __ Str(x6, FieldMemOperand(x0, JSArray::kLengthOffset));
5055 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
5056 __ Ret();
5057
5058 // Fall back to %AllocateInNewSpace.
5059 __ Bind(&allocate);
5060 {
5061 FrameScope scope(masm, StackFrame::INTERNAL);
5062 __ SmiTag(x0);
5063 __ SmiTag(x1);
5064 __ Push(x0, x2, x1);
5065 __ CallRuntime(Runtime::kAllocateInNewSpace);
5066 __ Mov(x3, x0);
5067 __ Pop(x2, x0);
5068 __ SmiUntag(x0);
5069 }
5070 __ B(&done_allocate);
5071 }
5072}
5073
5074
5075void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
5076 // ----------- S t a t e -------------
5077 // -- x1 : function
5078 // -- cp : context
5079 // -- fp : frame pointer
5080 // -- lr : return address
5081 // -----------------------------------
5082 __ AssertFunction(x1);
5083
5084 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
5085 __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
5086 __ Ldrsw(
5087 x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
5088 __ Add(x3, fp, Operand(x2, LSL, kPointerSizeLog2));
5089 __ Add(x3, x3, Operand(StandardFrameConstants::kCallerSPOffset));
5090 __ SmiTag(x2);
5091
5092 // x1 : function
5093 // x2 : number of parameters (tagged)
5094 // x3 : parameters pointer
5095 //
5096 // Returns pointer to result object in x0.
5097
5098 // Make an untagged copy of the parameter count.
5099 // Note: arg_count_smi is an alias of param_count_smi.
5100 Register function = x1;
5101 Register arg_count_smi = x2;
5102 Register param_count_smi = x2;
5103 Register recv_arg = x3;
5104 Register param_count = x7;
5105 __ SmiUntag(param_count, param_count_smi);
5106
5107 // Check if the calling frame is an arguments adaptor frame.
5108 Register caller_fp = x11;
5109 Register caller_ctx = x12;
5110 Label runtime;
5111 Label adaptor_frame, try_allocate;
5112 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005113 __ Ldr(
5114 caller_ctx,
5115 MemOperand(caller_fp, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005116 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
5117 __ B(eq, &adaptor_frame);
5118
5119 // No adaptor, parameter count = argument count.
5120
5121 // x1 function function pointer
5122 // x2 arg_count_smi number of function arguments (smi)
5123 // x3 recv_arg pointer to receiver arguments
5124 // x4 mapped_params number of mapped params, min(params, args) (uninit)
5125 // x7 param_count number of function parameters
5126 // x11 caller_fp caller's frame pointer
5127 // x14 arg_count number of function arguments (uninit)
5128
5129 Register arg_count = x14;
5130 Register mapped_params = x4;
5131 __ Mov(arg_count, param_count);
5132 __ Mov(mapped_params, param_count);
5133 __ B(&try_allocate);
5134
5135 // We have an adaptor frame. Patch the parameters pointer.
5136 __ Bind(&adaptor_frame);
5137 __ Ldr(arg_count_smi,
5138 MemOperand(caller_fp,
5139 ArgumentsAdaptorFrameConstants::kLengthOffset));
5140 __ SmiUntag(arg_count, arg_count_smi);
5141 __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
5142 __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
5143
5144 // Compute the mapped parameter count = min(param_count, arg_count)
5145 __ Cmp(param_count, arg_count);
5146 __ Csel(mapped_params, param_count, arg_count, lt);
5147
5148 __ Bind(&try_allocate);
5149
5150 // x0 alloc_obj pointer to allocated objects: param map, backing
5151 // store, arguments (uninit)
5152 // x1 function function pointer
5153 // x2 arg_count_smi number of function arguments (smi)
5154 // x3 recv_arg pointer to receiver arguments
5155 // x4 mapped_params number of mapped parameters, min(params, args)
5156 // x7 param_count number of function parameters
5157 // x10 size size of objects to allocate (uninit)
5158 // x14 arg_count number of function arguments
5159
5160 // Compute the size of backing store, parameter map, and arguments object.
5161 // 1. Parameter map, has two extra words containing context and backing
5162 // store.
5163 const int kParameterMapHeaderSize =
5164 FixedArray::kHeaderSize + 2 * kPointerSize;
5165
5166 // Calculate the parameter map size, assuming it exists.
5167 Register size = x10;
5168 __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
5169 __ Add(size, size, kParameterMapHeaderSize);
5170
5171 // If there are no mapped parameters, set the running size total to zero.
5172 // Otherwise, use the parameter map size calculated earlier.
5173 __ Cmp(mapped_params, 0);
5174 __ CzeroX(size, eq);
5175
5176 // 2. Add the size of the backing store and arguments object.
5177 __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
5178 __ Add(size, size, FixedArray::kHeaderSize + JSSloppyArgumentsObject::kSize);
5179
5180 // Do the allocation of all three objects in one go. Assign this to x0, as it
5181 // will be returned to the caller.
5182 Register alloc_obj = x0;
5183 __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
5184
5185 // Get the arguments boilerplate from the current (global) context.
5186
5187 // x0 alloc_obj pointer to allocated objects (param map, backing
5188 // store, arguments)
5189 // x1 function function pointer
5190 // x2 arg_count_smi number of function arguments (smi)
5191 // x3 recv_arg pointer to receiver arguments
5192 // x4 mapped_params number of mapped parameters, min(params, args)
5193 // x7 param_count number of function parameters
5194 // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
5195 // x14 arg_count number of function arguments
5196
5197 Register global_ctx = x10;
5198 Register sloppy_args_map = x11;
5199 Register aliased_args_map = x10;
5200 __ Ldr(global_ctx, NativeContextMemOperand());
5201
5202 __ Ldr(sloppy_args_map,
5203 ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
5204 __ Ldr(
5205 aliased_args_map,
5206 ContextMemOperand(global_ctx, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX));
5207 __ Cmp(mapped_params, 0);
5208 __ CmovX(sloppy_args_map, aliased_args_map, ne);
5209
5210 // Copy the JS object part.
5211 __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
5212 __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
5213 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
5214 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
5215
5216 // Set up the callee in-object property.
5217 __ AssertNotSmi(function);
5218 __ Str(function,
5219 FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kCalleeOffset));
5220
5221 // Use the length and set that as an in-object property.
5222 __ Str(arg_count_smi,
5223 FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kLengthOffset));
5224
5225 // Set up the elements pointer in the allocated arguments object.
5226 // If we allocated a parameter map, "elements" will point there, otherwise
5227 // it will point to the backing store.
5228
5229 // x0 alloc_obj pointer to allocated objects (param map, backing
5230 // store, arguments)
5231 // x1 function function pointer
5232 // x2 arg_count_smi number of function arguments (smi)
5233 // x3 recv_arg pointer to receiver arguments
5234 // x4 mapped_params number of mapped parameters, min(params, args)
5235 // x5 elements pointer to parameter map or backing store (uninit)
5236 // x6 backing_store pointer to backing store (uninit)
5237 // x7 param_count number of function parameters
5238 // x14 arg_count number of function arguments
5239
5240 Register elements = x5;
5241 __ Add(elements, alloc_obj, JSSloppyArgumentsObject::kSize);
5242 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
5243
5244 // Initialize parameter map. If there are no mapped arguments, we're done.
5245 Label skip_parameter_map;
5246 __ Cmp(mapped_params, 0);
5247 // Set up backing store address, because it is needed later for filling in
5248 // the unmapped arguments.
5249 Register backing_store = x6;
5250 __ CmovX(backing_store, elements, eq);
5251 __ B(eq, &skip_parameter_map);
5252
5253 __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
5254 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
5255 __ Add(x10, mapped_params, 2);
5256 __ SmiTag(x10);
5257 __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
5258 __ Str(cp, FieldMemOperand(elements,
5259 FixedArray::kHeaderSize + 0 * kPointerSize));
5260 __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
5261 __ Add(x10, x10, kParameterMapHeaderSize);
5262 __ Str(x10, FieldMemOperand(elements,
5263 FixedArray::kHeaderSize + 1 * kPointerSize));
5264
5265 // Copy the parameter slots and the holes in the arguments.
5266 // We need to fill in mapped_parameter_count slots. Then index the context,
5267 // where parameters are stored in reverse order, at:
5268 //
5269 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
5270 //
5271 // The mapped parameter thus needs to get indices:
5272 //
5273 // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
5274 // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
5275 //
5276 // We loop from right to left.
5277
5278 // x0 alloc_obj pointer to allocated objects (param map, backing
5279 // store, arguments)
5280 // x1 function function pointer
5281 // x2 arg_count_smi number of function arguments (smi)
5282 // x3 recv_arg pointer to receiver arguments
5283 // x4 mapped_params number of mapped parameters, min(params, args)
5284 // x5 elements pointer to parameter map or backing store (uninit)
5285 // x6 backing_store pointer to backing store (uninit)
5286 // x7 param_count number of function parameters
5287 // x11 loop_count parameter loop counter (uninit)
5288 // x12 index parameter index (smi, uninit)
5289 // x13 the_hole hole value (uninit)
5290 // x14 arg_count number of function arguments
5291
5292 Register loop_count = x11;
5293 Register index = x12;
5294 Register the_hole = x13;
5295 Label parameters_loop, parameters_test;
5296 __ Mov(loop_count, mapped_params);
5297 __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
5298 __ Sub(index, index, mapped_params);
5299 __ SmiTag(index);
5300 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
5301 __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
5302 __ Add(backing_store, backing_store, kParameterMapHeaderSize);
5303
5304 __ B(&parameters_test);
5305
5306 __ Bind(&parameters_loop);
5307 __ Sub(loop_count, loop_count, 1);
5308 __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
5309 __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
5310 __ Str(index, MemOperand(elements, x10));
5311 __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
5312 __ Str(the_hole, MemOperand(backing_store, x10));
5313 __ Add(index, index, Smi::FromInt(1));
5314 __ Bind(&parameters_test);
5315 __ Cbnz(loop_count, &parameters_loop);
5316
5317 __ Bind(&skip_parameter_map);
5318 // Copy arguments header and remaining slots (if there are any.)
5319 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
5320 __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
5321 __ Str(arg_count_smi, FieldMemOperand(backing_store,
5322 FixedArray::kLengthOffset));
5323
5324 // x0 alloc_obj pointer to allocated objects (param map, backing
5325 // store, arguments)
5326 // x1 function function pointer
5327 // x2 arg_count_smi number of function arguments (smi)
5328 // x3 recv_arg pointer to receiver arguments
5329 // x4 mapped_params number of mapped parameters, min(params, args)
5330 // x6 backing_store pointer to backing store (uninit)
5331 // x14 arg_count number of function arguments
5332
5333 Label arguments_loop, arguments_test;
5334 __ Mov(x10, mapped_params);
5335 __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
5336 __ B(&arguments_test);
5337
5338 __ Bind(&arguments_loop);
5339 __ Sub(recv_arg, recv_arg, kPointerSize);
5340 __ Ldr(x11, MemOperand(recv_arg));
5341 __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
5342 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
5343 __ Add(x10, x10, 1);
5344
5345 __ Bind(&arguments_test);
5346 __ Cmp(x10, arg_count);
5347 __ B(lt, &arguments_loop);
5348
5349 __ Ret();
5350
5351 // Do the runtime call to allocate the arguments object.
5352 __ Bind(&runtime);
5353 __ Push(function, recv_arg, arg_count_smi);
5354 __ TailCallRuntime(Runtime::kNewSloppyArguments);
5355}
5356
5357
5358void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
5359 // ----------- S t a t e -------------
5360 // -- x1 : function
5361 // -- cp : context
5362 // -- fp : frame pointer
5363 // -- lr : return address
5364 // -----------------------------------
5365 __ AssertFunction(x1);
5366
5367 // For Ignition we need to skip all possible handler/stub frames until
5368 // we reach the JavaScript frame for the function (similar to what the
5369 // runtime fallback implementation does). So make x2 point to that
5370 // JavaScript frame.
5371 {
5372 Label loop, loop_entry;
5373 __ Mov(x2, fp);
5374 __ B(&loop_entry);
5375 __ Bind(&loop);
5376 __ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
5377 __ Bind(&loop_entry);
Ben Murdochda12d292016-06-02 14:46:10 +01005378 __ Ldr(x3, MemOperand(x2, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005379 __ Cmp(x3, x1);
5380 __ B(ne, &loop);
5381 }
5382
5383 // Check if we have an arguments adaptor frame below the function frame.
5384 Label arguments_adaptor, arguments_done;
5385 __ Ldr(x3, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005386 __ Ldr(x4, MemOperand(x3, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005387 __ Cmp(x4, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
5388 __ B(eq, &arguments_adaptor);
5389 {
5390 __ Ldr(x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
5391 __ Ldrsw(x0, FieldMemOperand(
5392 x1, SharedFunctionInfo::kFormalParameterCountOffset));
5393 __ Add(x2, x2, Operand(x0, LSL, kPointerSizeLog2));
5394 __ Add(x2, x2, StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize);
5395 }
5396 __ B(&arguments_done);
5397 __ Bind(&arguments_adaptor);
5398 {
5399 __ Ldrsw(x0, UntagSmiMemOperand(
5400 x3, ArgumentsAdaptorFrameConstants::kLengthOffset));
5401 __ Add(x2, x3, Operand(x0, LSL, kPointerSizeLog2));
5402 __ Add(x2, x2, StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize);
5403 }
5404 __ Bind(&arguments_done);
5405
5406 // ----------- S t a t e -------------
5407 // -- cp : context
5408 // -- x0 : number of rest parameters
5409 // -- x2 : pointer to first rest parameters
5410 // -- lr : return address
5411 // -----------------------------------
5412
5413 // Allocate space for the strict arguments object plus the backing store.
5414 Label allocate, done_allocate;
5415 __ Mov(x1, JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize);
5416 __ Add(x1, x1, Operand(x0, LSL, kPointerSizeLog2));
5417 __ Allocate(x1, x3, x4, x5, &allocate, TAG_OBJECT);
5418 __ Bind(&done_allocate);
5419
5420 // Compute arguments.length in x6.
5421 __ SmiTag(x6, x0);
5422
5423 // Setup the elements array in x3.
5424 __ LoadRoot(x1, Heap::kFixedArrayMapRootIndex);
5425 __ Str(x1, FieldMemOperand(x3, FixedArray::kMapOffset));
5426 __ Str(x6, FieldMemOperand(x3, FixedArray::kLengthOffset));
5427 __ Add(x4, x3, FixedArray::kHeaderSize);
5428 {
5429 Label loop, done_loop;
5430 __ Add(x0, x4, Operand(x0, LSL, kPointerSizeLog2));
5431 __ Bind(&loop);
5432 __ Cmp(x4, x0);
5433 __ B(eq, &done_loop);
5434 __ Ldr(x5, MemOperand(x2, 0 * kPointerSize));
5435 __ Str(x5, FieldMemOperand(x4, 0 * kPointerSize));
5436 __ Sub(x2, x2, Operand(1 * kPointerSize));
5437 __ Add(x4, x4, Operand(1 * kPointerSize));
5438 __ B(&loop);
5439 __ Bind(&done_loop);
5440 }
5441
5442 // Setup the strict arguments object in x0.
5443 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, x1);
5444 __ Str(x1, FieldMemOperand(x0, JSStrictArgumentsObject::kMapOffset));
5445 __ LoadRoot(x1, Heap::kEmptyFixedArrayRootIndex);
5446 __ Str(x1, FieldMemOperand(x0, JSStrictArgumentsObject::kPropertiesOffset));
5447 __ Str(x3, FieldMemOperand(x0, JSStrictArgumentsObject::kElementsOffset));
5448 __ Str(x6, FieldMemOperand(x0, JSStrictArgumentsObject::kLengthOffset));
5449 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
5450 __ Ret();
5451
5452 // Fall back to %AllocateInNewSpace.
5453 __ Bind(&allocate);
5454 {
5455 FrameScope scope(masm, StackFrame::INTERNAL);
5456 __ SmiTag(x0);
5457 __ SmiTag(x1);
5458 __ Push(x0, x2, x1);
5459 __ CallRuntime(Runtime::kAllocateInNewSpace);
5460 __ Mov(x3, x0);
5461 __ Pop(x2, x0);
5462 __ SmiUntag(x0);
5463 }
5464 __ B(&done_allocate);
5465}
5466
5467
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005468void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5469 Register context = cp;
5470 Register result = x0;
5471 Register slot = x2;
5472 Label slow_case;
5473
5474 // Go up the context chain to the script context.
5475 for (int i = 0; i < depth(); ++i) {
5476 __ Ldr(result, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5477 context = result;
5478 }
5479
5480 // Load the PropertyCell value at the specified slot.
5481 __ Add(result, context, Operand(slot, LSL, kPointerSizeLog2));
5482 __ Ldr(result, ContextMemOperand(result));
5483 __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
5484
5485 // If the result is not the_hole, return. Otherwise, handle in the runtime.
5486 __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &slow_case);
5487 __ Ret();
5488
5489 // Fallback to runtime.
5490 __ Bind(&slow_case);
5491 __ SmiTag(slot);
5492 __ Push(slot);
5493 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5494}
5495
5496
5497void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5498 Register context = cp;
5499 Register value = x0;
5500 Register slot = x2;
5501 Register context_temp = x10;
5502 Register cell = x10;
5503 Register cell_details = x11;
5504 Register cell_value = x12;
5505 Register cell_value_map = x13;
5506 Register value_map = x14;
5507 Label fast_heapobject_case, fast_smi_case, slow_case;
5508
5509 if (FLAG_debug_code) {
5510 __ CompareRoot(value, Heap::kTheHoleValueRootIndex);
5511 __ Check(ne, kUnexpectedValue);
5512 }
5513
5514 // Go up the context chain to the script context.
5515 for (int i = 0; i < depth(); i++) {
5516 __ Ldr(context_temp, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5517 context = context_temp;
5518 }
5519
5520 // Load the PropertyCell at the specified slot.
5521 __ Add(cell, context, Operand(slot, LSL, kPointerSizeLog2));
5522 __ Ldr(cell, ContextMemOperand(cell));
5523
5524 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5525 __ Ldr(cell_details,
5526 UntagSmiFieldMemOperand(cell, PropertyCell::kDetailsOffset));
5527 __ And(cell_details, cell_details,
5528 PropertyDetails::PropertyCellTypeField::kMask |
5529 PropertyDetails::KindField::kMask |
5530 PropertyDetails::kAttributesReadOnlyMask);
5531
5532 // Check if PropertyCell holds mutable data.
5533 Label not_mutable_data;
5534 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5535 PropertyCellType::kMutable) |
5536 PropertyDetails::KindField::encode(kData));
5537 __ B(ne, &not_mutable_data);
5538 __ JumpIfSmi(value, &fast_smi_case);
5539 __ Bind(&fast_heapobject_case);
5540 __ Str(value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5541 // RecordWriteField clobbers the value register, so we copy it before the
5542 // call.
5543 __ Mov(x11, value);
5544 __ RecordWriteField(cell, PropertyCell::kValueOffset, x11, x12,
5545 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5546 OMIT_SMI_CHECK);
5547 __ Ret();
5548
5549 __ Bind(&not_mutable_data);
5550 // Check if PropertyCell value matches the new value (relevant for Constant,
5551 // ConstantType and Undefined cells).
5552 Label not_same_value;
5553 __ Ldr(cell_value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5554 __ Cmp(cell_value, value);
5555 __ B(ne, &not_same_value);
5556
5557 // Make sure the PropertyCell is not marked READ_ONLY.
5558 __ Tst(cell_details, PropertyDetails::kAttributesReadOnlyMask);
5559 __ B(ne, &slow_case);
5560
5561 if (FLAG_debug_code) {
5562 Label done;
5563 // This can only be true for Constant, ConstantType and Undefined cells,
5564 // because we never store the_hole via this stub.
5565 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5566 PropertyCellType::kConstant) |
5567 PropertyDetails::KindField::encode(kData));
5568 __ B(eq, &done);
5569 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5570 PropertyCellType::kConstantType) |
5571 PropertyDetails::KindField::encode(kData));
5572 __ B(eq, &done);
5573 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5574 PropertyCellType::kUndefined) |
5575 PropertyDetails::KindField::encode(kData));
5576 __ Check(eq, kUnexpectedValue);
5577 __ Bind(&done);
5578 }
5579 __ Ret();
5580 __ Bind(&not_same_value);
5581
5582 // Check if PropertyCell contains data with constant type (and is not
5583 // READ_ONLY).
5584 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5585 PropertyCellType::kConstantType) |
5586 PropertyDetails::KindField::encode(kData));
5587 __ B(ne, &slow_case);
5588
5589 // Now either both old and new values must be smis or both must be heap
5590 // objects with same map.
5591 Label value_is_heap_object;
5592 __ JumpIfNotSmi(value, &value_is_heap_object);
5593 __ JumpIfNotSmi(cell_value, &slow_case);
5594 // Old and new values are smis, no need for a write barrier here.
5595 __ Bind(&fast_smi_case);
5596 __ Str(value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5597 __ Ret();
5598
5599 __ Bind(&value_is_heap_object);
5600 __ JumpIfSmi(cell_value, &slow_case);
5601
5602 __ Ldr(cell_value_map, FieldMemOperand(cell_value, HeapObject::kMapOffset));
5603 __ Ldr(value_map, FieldMemOperand(value, HeapObject::kMapOffset));
5604 __ Cmp(cell_value_map, value_map);
5605 __ B(eq, &fast_heapobject_case);
5606
5607 // Fall back to the runtime.
5608 __ Bind(&slow_case);
5609 __ SmiTag(slot);
5610 __ Push(slot, value);
5611 __ TailCallRuntime(is_strict(language_mode())
5612 ? Runtime::kStoreGlobalViaContext_Strict
5613 : Runtime::kStoreGlobalViaContext_Sloppy);
5614}
5615
5616
5617// The number of register that CallApiFunctionAndReturn will need to save on
5618// the stack. The space for these registers need to be allocated in the
5619// ExitFrame before calling CallApiFunctionAndReturn.
5620static const int kCallApiFunctionSpillSpace = 4;
5621
5622
5623static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5624 return static_cast<int>(ref0.address() - ref1.address());
5625}
5626
5627
5628// Calls an API function. Allocates HandleScope, extracts returned value
5629// from handle and propagates exceptions.
5630// 'stack_space' is the space to be unwound on exit (includes the call JS
5631// arguments space and the additional space allocated for the fast call).
5632// 'spill_offset' is the offset from the stack pointer where
5633// CallApiFunctionAndReturn can spill registers.
5634static void CallApiFunctionAndReturn(
5635 MacroAssembler* masm, Register function_address,
5636 ExternalReference thunk_ref, int stack_space,
5637 MemOperand* stack_space_operand, int spill_offset,
5638 MemOperand return_value_operand, MemOperand* context_restore_operand) {
5639 ASM_LOCATION("CallApiFunctionAndReturn");
5640 Isolate* isolate = masm->isolate();
5641 ExternalReference next_address =
5642 ExternalReference::handle_scope_next_address(isolate);
5643 const int kNextOffset = 0;
5644 const int kLimitOffset = AddressOffset(
5645 ExternalReference::handle_scope_limit_address(isolate), next_address);
5646 const int kLevelOffset = AddressOffset(
5647 ExternalReference::handle_scope_level_address(isolate), next_address);
5648
5649 DCHECK(function_address.is(x1) || function_address.is(x2));
5650
5651 Label profiler_disabled;
5652 Label end_profiler_check;
5653 __ Mov(x10, ExternalReference::is_profiling_address(isolate));
5654 __ Ldrb(w10, MemOperand(x10));
5655 __ Cbz(w10, &profiler_disabled);
5656 __ Mov(x3, thunk_ref);
5657 __ B(&end_profiler_check);
5658
5659 __ Bind(&profiler_disabled);
5660 __ Mov(x3, function_address);
5661 __ Bind(&end_profiler_check);
5662
5663 // Save the callee-save registers we are going to use.
5664 // TODO(all): Is this necessary? ARM doesn't do it.
5665 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
5666 __ Poke(x19, (spill_offset + 0) * kXRegSize);
5667 __ Poke(x20, (spill_offset + 1) * kXRegSize);
5668 __ Poke(x21, (spill_offset + 2) * kXRegSize);
5669 __ Poke(x22, (spill_offset + 3) * kXRegSize);
5670
5671 // Allocate HandleScope in callee-save registers.
5672 // We will need to restore the HandleScope after the call to the API function,
5673 // by allocating it in callee-save registers they will be preserved by C code.
5674 Register handle_scope_base = x22;
5675 Register next_address_reg = x19;
5676 Register limit_reg = x20;
5677 Register level_reg = w21;
5678
5679 __ Mov(handle_scope_base, next_address);
5680 __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5681 __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5682 __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5683 __ Add(level_reg, level_reg, 1);
5684 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5685
5686 if (FLAG_log_timer_events) {
5687 FrameScope frame(masm, StackFrame::MANUAL);
5688 __ PushSafepointRegisters();
5689 __ Mov(x0, ExternalReference::isolate_address(isolate));
5690 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5691 1);
5692 __ PopSafepointRegisters();
5693 }
5694
5695 // Native call returns to the DirectCEntry stub which redirects to the
5696 // return address pushed on stack (could have moved after GC).
5697 // DirectCEntry stub itself is generated early and never moves.
5698 DirectCEntryStub stub(isolate);
5699 stub.GenerateCall(masm, x3);
5700
5701 if (FLAG_log_timer_events) {
5702 FrameScope frame(masm, StackFrame::MANUAL);
5703 __ PushSafepointRegisters();
5704 __ Mov(x0, ExternalReference::isolate_address(isolate));
5705 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5706 1);
5707 __ PopSafepointRegisters();
5708 }
5709
5710 Label promote_scheduled_exception;
5711 Label delete_allocated_handles;
5712 Label leave_exit_frame;
5713 Label return_value_loaded;
5714
5715 // Load value from ReturnValue.
5716 __ Ldr(x0, return_value_operand);
5717 __ Bind(&return_value_loaded);
5718 // No more valid handles (the result handle was the last one). Restore
5719 // previous handle scope.
5720 __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5721 if (__ emit_debug_code()) {
5722 __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
5723 __ Cmp(w1, level_reg);
5724 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5725 }
5726 __ Sub(level_reg, level_reg, 1);
5727 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5728 __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
5729 __ Cmp(limit_reg, x1);
5730 __ B(ne, &delete_allocated_handles);
5731
5732 // Leave the API exit frame.
5733 __ Bind(&leave_exit_frame);
5734 // Restore callee-saved registers.
5735 __ Peek(x19, (spill_offset + 0) * kXRegSize);
5736 __ Peek(x20, (spill_offset + 1) * kXRegSize);
5737 __ Peek(x21, (spill_offset + 2) * kXRegSize);
5738 __ Peek(x22, (spill_offset + 3) * kXRegSize);
5739
5740 bool restore_context = context_restore_operand != NULL;
5741 if (restore_context) {
5742 __ Ldr(cp, *context_restore_operand);
5743 }
5744
5745 if (stack_space_operand != NULL) {
5746 __ Ldr(w2, *stack_space_operand);
5747 }
5748
5749 __ LeaveExitFrame(false, x1, !restore_context);
5750
5751 // Check if the function scheduled an exception.
5752 __ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
5753 __ Ldr(x5, MemOperand(x5));
5754 __ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex,
5755 &promote_scheduled_exception);
5756
5757 if (stack_space_operand != NULL) {
5758 __ Drop(x2, 1);
5759 } else {
5760 __ Drop(stack_space);
5761 }
5762 __ Ret();
5763
5764 // Re-throw by promoting a scheduled exception.
5765 __ Bind(&promote_scheduled_exception);
5766 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5767
5768 // HandleScope limit has changed. Delete allocated extensions.
5769 __ Bind(&delete_allocated_handles);
5770 __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5771 // Save the return value in a callee-save register.
5772 Register saved_result = x19;
5773 __ Mov(saved_result, x0);
5774 __ Mov(x0, ExternalReference::isolate_address(isolate));
5775 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5776 1);
5777 __ Mov(x0, saved_result);
5778 __ B(&leave_exit_frame);
5779}
5780
Ben Murdochda12d292016-06-02 14:46:10 +01005781void CallApiCallbackStub::Generate(MacroAssembler* masm) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005782 // ----------- S t a t e -------------
5783 // -- x0 : callee
5784 // -- x4 : call_data
5785 // -- x2 : holder
5786 // -- x1 : api_function_address
5787 // -- cp : context
5788 // --
5789 // -- sp[0] : last argument
5790 // -- ...
5791 // -- sp[(argc - 1) * 8] : first argument
5792 // -- sp[argc * 8] : receiver
5793 // -----------------------------------
5794
5795 Register callee = x0;
5796 Register call_data = x4;
5797 Register holder = x2;
5798 Register api_function_address = x1;
5799 Register context = cp;
5800
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005801 typedef FunctionCallbackArguments FCA;
5802
5803 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5804 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5805 STATIC_ASSERT(FCA::kDataIndex == 4);
5806 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5807 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5808 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5809 STATIC_ASSERT(FCA::kHolderIndex == 0);
5810 STATIC_ASSERT(FCA::kArgsLength == 7);
5811
5812 // FunctionCallbackArguments: context, callee and call data.
5813 __ Push(context, callee, call_data);
5814
Ben Murdochda12d292016-06-02 14:46:10 +01005815 if (!is_lazy()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005816 // Load context from callee
5817 __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5818 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005819
Ben Murdochda12d292016-06-02 14:46:10 +01005820 if (!call_data_undefined()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005821 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
5822 }
5823 Register isolate_reg = x5;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005824 __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005825
5826 // FunctionCallbackArguments:
5827 // return value, return value default, isolate, holder.
5828 __ Push(call_data, call_data, isolate_reg, holder);
5829
5830 // Prepare arguments.
5831 Register args = x6;
5832 __ Mov(args, masm->StackPointer());
5833
5834 // Allocate the v8::Arguments structure in the arguments' space, since it's
5835 // not controlled by GC.
5836 const int kApiStackSpace = 4;
5837
5838 // Allocate space for CallApiFunctionAndReturn can store some scratch
5839 // registeres on the stack.
5840 const int kCallApiFunctionSpillSpace = 4;
5841
5842 FrameScope frame_scope(masm, StackFrame::MANUAL);
5843 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5844
5845 DCHECK(!AreAliased(x0, api_function_address));
5846 // x0 = FunctionCallbackInfo&
5847 // Arguments is after the return address.
5848 __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
Ben Murdochda12d292016-06-02 14:46:10 +01005849 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
5850 __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
5851 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
5852 // FunctionCallbackInfo::length_ = argc and
5853 // FunctionCallbackInfo::is_construct_call = 0
5854 __ Mov(x10, argc());
5855 __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005856
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005857 ExternalReference thunk_ref =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005858 ExternalReference::invoke_function_callback(masm->isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005859
5860 AllowExternalCallThatCantCauseGC scope(masm);
5861 MemOperand context_restore_operand(
5862 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5863 // Stores return the first js argument
5864 int return_value_offset = 0;
Ben Murdochda12d292016-06-02 14:46:10 +01005865 if (is_store()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005866 return_value_offset = 2 + FCA::kArgsLength;
5867 } else {
5868 return_value_offset = 2 + FCA::kReturnValueOffset;
5869 }
5870 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005871 int stack_space = 0;
5872 MemOperand is_construct_call_operand =
5873 MemOperand(masm->StackPointer(), 4 * kPointerSize);
5874 MemOperand* stack_space_operand = &is_construct_call_operand;
Ben Murdochda12d292016-06-02 14:46:10 +01005875 stack_space = argc() + FCA::kArgsLength + 1;
5876 stack_space_operand = NULL;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005877
5878 const int spill_offset = 1 + kApiStackSpace;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005879 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5880 stack_space_operand, spill_offset,
5881 return_value_operand, &context_restore_operand);
5882}
5883
5884
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005885void CallApiGetterStub::Generate(MacroAssembler* masm) {
5886 // ----------- S t a t e -------------
Ben Murdoch097c5b22016-05-18 11:27:45 +01005887 // -- sp[0] : name
5888 // -- sp[8 .. (8 + kArgsLength*8)] : v8::PropertyCallbackInfo::args_
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005889 // -- ...
Ben Murdoch097c5b22016-05-18 11:27:45 +01005890 // -- x2 : api_function_address
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005891 // -----------------------------------
5892
5893 Register api_function_address = ApiGetterDescriptor::function_address();
5894 DCHECK(api_function_address.is(x2));
5895
Ben Murdoch097c5b22016-05-18 11:27:45 +01005896 // v8::PropertyCallbackInfo::args_ array and name handle.
5897 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5898
5899 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005900 __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
Ben Murdoch097c5b22016-05-18 11:27:45 +01005901 __ Add(x1, x0, 1 * kPointerSize); // x1 = v8::PCI::args_
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005902
5903 const int kApiStackSpace = 1;
5904
5905 // Allocate space for CallApiFunctionAndReturn can store some scratch
5906 // registeres on the stack.
5907 const int kCallApiFunctionSpillSpace = 4;
5908
5909 FrameScope frame_scope(masm, StackFrame::MANUAL);
5910 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5911
Ben Murdoch097c5b22016-05-18 11:27:45 +01005912 // Create v8::PropertyCallbackInfo object on the stack and initialize
5913 // it's args_ field.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005914 __ Poke(x1, 1 * kPointerSize);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005915 __ Add(x1, masm->StackPointer(), 1 * kPointerSize);
5916 // x1 = v8::PropertyCallbackInfo&
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005917
5918 ExternalReference thunk_ref =
5919 ExternalReference::invoke_accessor_getter_callback(isolate());
5920
5921 const int spill_offset = 1 + kApiStackSpace;
Ben Murdoch097c5b22016-05-18 11:27:45 +01005922 // +3 is to skip prolog, return address and name handle.
5923 MemOperand return_value_operand(
5924 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005925 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5926 kStackUnwindSpace, NULL, spill_offset,
Ben Murdoch097c5b22016-05-18 11:27:45 +01005927 return_value_operand, NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005928}
5929
5930
5931#undef __
5932
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005933} // namespace internal
5934} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005935
5936#endif // V8_TARGET_ARCH_ARM64