blob: 689f4bc1ae8065a2909e1071964158e9643c8c4d [file] [log] [blame]
Ben Murdochda12d292016-06-02 14:46:10 +01001// Copyright 2014 the V8 project authors. All rights reserved.
2//
3// Use of this source code is governed by a BSD-style license that can be
4// found in the LICENSE file.
5
6#include "src/crankshaft/s390/lithium-codegen-s390.h"
7
8#include "src/base/bits.h"
9#include "src/code-factory.h"
10#include "src/code-stubs.h"
11#include "src/crankshaft/hydrogen-osr.h"
12#include "src/crankshaft/s390/lithium-gap-resolver-s390.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15#include "src/profiler/cpu-profiler.h"
16
17namespace v8 {
18namespace internal {
19
20class SafepointGenerator final : public CallWrapper {
21 public:
22 SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
23 Safepoint::DeoptMode mode)
24 : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
25 virtual ~SafepointGenerator() {}
26
27 void BeforeCall(int call_size) const override {}
28
29 void AfterCall() const override {
30 codegen_->RecordSafepoint(pointers_, deopt_mode_);
31 }
32
33 private:
34 LCodeGen* codegen_;
35 LPointerMap* pointers_;
36 Safepoint::DeoptMode deopt_mode_;
37};
38
39#define __ masm()->
40
41bool LCodeGen::GenerateCode() {
42 LPhase phase("Z_Code generation", chunk());
43 DCHECK(is_unused());
44 status_ = GENERATING;
45
46 // Open a frame scope to indicate that there is a frame on the stack. The
47 // NONE indicates that the scope shouldn't actually generate code to set up
48 // the frame (that is done in GeneratePrologue).
49 FrameScope frame_scope(masm_, StackFrame::NONE);
50
51 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
52 GenerateJumpTable() && GenerateSafepointTable();
53}
54
55void LCodeGen::FinishCode(Handle<Code> code) {
56 DCHECK(is_done());
57 code->set_stack_slots(GetTotalFrameSlotCount());
58 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
59 PopulateDeoptimizationData(code);
60}
61
62void LCodeGen::SaveCallerDoubles() {
63 DCHECK(info()->saves_caller_doubles());
64 DCHECK(NeedsEagerFrame());
65 Comment(";;; Save clobbered callee double registers");
66 int count = 0;
67 BitVector* doubles = chunk()->allocated_double_registers();
68 BitVector::Iterator save_iterator(doubles);
69 while (!save_iterator.Done()) {
70 __ std(DoubleRegister::from_code(save_iterator.Current()),
71 MemOperand(sp, count * kDoubleSize));
72 save_iterator.Advance();
73 count++;
74 }
75}
76
77void LCodeGen::RestoreCallerDoubles() {
78 DCHECK(info()->saves_caller_doubles());
79 DCHECK(NeedsEagerFrame());
80 Comment(";;; Restore clobbered callee double registers");
81 BitVector* doubles = chunk()->allocated_double_registers();
82 BitVector::Iterator save_iterator(doubles);
83 int count = 0;
84 while (!save_iterator.Done()) {
85 __ ld(DoubleRegister::from_code(save_iterator.Current()),
86 MemOperand(sp, count * kDoubleSize));
87 save_iterator.Advance();
88 count++;
89 }
90}
91
92bool LCodeGen::GeneratePrologue() {
93 DCHECK(is_generating());
94
95 if (info()->IsOptimizing()) {
96 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
97
98 // r3: Callee's JS function.
99 // cp: Callee's context.
100 // fp: Caller's frame pointer.
101 // lr: Caller's pc.
102 // ip: Our own function entry (required by the prologue)
103 }
104
105 int prologue_offset = masm_->pc_offset();
106
107 if (prologue_offset) {
108 // Prologue logic requires its starting address in ip and the
109 // corresponding offset from the function entry. Need to add
110 // 4 bytes for the size of AHI/AGHI that AddP expands into.
111 prologue_offset += sizeof(FourByteInstr);
112 __ AddP(ip, ip, Operand(prologue_offset));
113 }
114 info()->set_prologue_offset(prologue_offset);
115 if (NeedsEagerFrame()) {
116 if (info()->IsStub()) {
117 __ StubPrologue(StackFrame::STUB, ip, prologue_offset);
118 } else {
119 __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
120 }
121 frame_is_built_ = true;
122 }
123
124 // Reserve space for the stack slots needed by the code.
125 int slots = GetStackSlotCount();
126 if (slots > 0) {
127 __ lay(sp, MemOperand(sp, -(slots * kPointerSize)));
128 if (FLAG_debug_code) {
129 __ Push(r2, r3);
130 __ mov(r2, Operand(slots * kPointerSize));
131 __ mov(r3, Operand(kSlotsZapValue));
132 Label loop;
133 __ bind(&loop);
134 __ StoreP(r3, MemOperand(sp, r2, kPointerSize));
135 __ lay(r2, MemOperand(r2, -kPointerSize));
136 __ CmpP(r2, Operand::Zero());
137 __ bne(&loop);
138 __ Pop(r2, r3);
139 }
140 }
141
142 if (info()->saves_caller_doubles()) {
143 SaveCallerDoubles();
144 }
145 return !is_aborted();
146}
147
148void LCodeGen::DoPrologue(LPrologue* instr) {
149 Comment(";;; Prologue begin");
150
151 // Possibly allocate a local context.
152 if (info()->scope()->num_heap_slots() > 0) {
153 Comment(";;; Allocate local context");
154 bool need_write_barrier = true;
155 // Argument to NewContext is the function, which is in r3.
156 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
157 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
158 if (info()->scope()->is_script_scope()) {
159 __ push(r3);
160 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
161 __ CallRuntime(Runtime::kNewScriptContext);
162 deopt_mode = Safepoint::kLazyDeopt;
163 } else if (slots <= FastNewContextStub::kMaximumSlots) {
164 FastNewContextStub stub(isolate(), slots);
165 __ CallStub(&stub);
166 // Result of FastNewContextStub is always in new space.
167 need_write_barrier = false;
168 } else {
169 __ push(r3);
170 __ CallRuntime(Runtime::kNewFunctionContext);
171 }
172 RecordSafepoint(deopt_mode);
173
174 // Context is returned in both r2 and cp. It replaces the context
175 // passed to us. It's saved in the stack and kept live in cp.
176 __ LoadRR(cp, r2);
177 __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
178 // Copy any necessary parameters into the context.
179 int num_parameters = scope()->num_parameters();
180 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
181 for (int i = first_parameter; i < num_parameters; i++) {
182 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
183 if (var->IsContextSlot()) {
184 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
185 (num_parameters - 1 - i) * kPointerSize;
186 // Load parameter from stack.
187 __ LoadP(r2, MemOperand(fp, parameter_offset));
188 // Store it in the context.
189 MemOperand target = ContextMemOperand(cp, var->index());
190 __ StoreP(r2, target);
191 // Update the write barrier. This clobbers r5 and r2.
192 if (need_write_barrier) {
193 __ RecordWriteContextSlot(cp, target.offset(), r2, r5,
194 GetLinkRegisterState(), kSaveFPRegs);
195 } else if (FLAG_debug_code) {
196 Label done;
197 __ JumpIfInNewSpace(cp, r2, &done);
198 __ Abort(kExpectedNewSpaceObject);
199 __ bind(&done);
200 }
201 }
202 }
203 Comment(";;; End allocate local context");
204 }
205
206 Comment(";;; Prologue end");
207}
208
209void LCodeGen::GenerateOsrPrologue() {
210 // Generate the OSR entry prologue at the first unknown OSR value, or if there
211 // are none, at the OSR entrypoint instruction.
212 if (osr_pc_offset_ >= 0) return;
213
214 osr_pc_offset_ = masm()->pc_offset();
215
216 // Adjust the frame size, subsuming the unoptimized frame into the
217 // optimized frame.
218 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
219 DCHECK(slots >= 0);
220 __ lay(sp, MemOperand(sp, -slots * kPointerSize));
221}
222
223void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
224 if (instr->IsCall()) {
225 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
226 }
227 if (!instr->IsLazyBailout() && !instr->IsGap()) {
228 safepoints_.BumpLastLazySafepointIndex();
229 }
230}
231
232bool LCodeGen::GenerateDeferredCode() {
233 DCHECK(is_generating());
234 if (deferred_.length() > 0) {
235 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
236 LDeferredCode* code = deferred_[i];
237
238 HValue* value =
239 instructions_->at(code->instruction_index())->hydrogen_value();
240 RecordAndWritePosition(
241 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
242
243 Comment(
244 ";;; <@%d,#%d> "
245 "-------------------- Deferred %s --------------------",
246 code->instruction_index(), code->instr()->hydrogen_value()->id(),
247 code->instr()->Mnemonic());
248 __ bind(code->entry());
249 if (NeedsDeferredFrame()) {
250 Comment(";;; Build frame");
251 DCHECK(!frame_is_built_);
252 DCHECK(info()->IsStub());
253 frame_is_built_ = true;
254 __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
255 __ PushCommonFrame(scratch0());
256 Comment(";;; Deferred code");
257 }
258 code->Generate();
259 if (NeedsDeferredFrame()) {
260 Comment(";;; Destroy frame");
261 DCHECK(frame_is_built_);
262 __ PopCommonFrame(scratch0());
263 frame_is_built_ = false;
264 }
265 __ b(code->exit());
266 }
267 }
268
269 return !is_aborted();
270}
271
272bool LCodeGen::GenerateJumpTable() {
273 // Check that the jump table is accessible from everywhere in the function
274 // code, i.e. that offsets in halfworld to the table can be encoded in the
275 // 32-bit signed immediate of a branch instruction.
276 // To simplify we consider the code size from the first instruction to the
277 // end of the jump table. We also don't consider the pc load delta.
278 // Each entry in the jump table generates one instruction and inlines one
279 // 32bit data after it.
280 // TODO(joransiu): The Int24 condition can likely be relaxed for S390
281 if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) {
282 Abort(kGeneratedCodeIsTooLarge);
283 }
284
285 if (jump_table_.length() > 0) {
286 Label needs_frame, call_deopt_entry;
287
288 Comment(";;; -------------------- Jump table --------------------");
289 Address base = jump_table_[0].address;
290
291 Register entry_offset = scratch0();
292
293 int length = jump_table_.length();
294 for (int i = 0; i < length; i++) {
295 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
296 __ bind(&table_entry->label);
297
298 DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
299 Address entry = table_entry->address;
300 DeoptComment(table_entry->deopt_info);
301
302 // Second-level deopt table entries are contiguous and small, so instead
303 // of loading the full, absolute address of each one, load an immediate
304 // offset which will be added to the base address later.
305 __ mov(entry_offset, Operand(entry - base));
306
307 if (table_entry->needs_frame) {
308 DCHECK(!info()->saves_caller_doubles());
309 Comment(";;; call deopt with frame");
310 __ PushCommonFrame();
311 __ b(r14, &needs_frame);
312 } else {
313 __ b(r14, &call_deopt_entry);
314 }
315 info()->LogDeoptCallPosition(masm()->pc_offset(),
316 table_entry->deopt_info.inlining_id);
317 }
318
319 if (needs_frame.is_linked()) {
320 __ bind(&needs_frame);
321 // This variant of deopt can only be used with stubs. Since we don't
322 // have a function pointer to install in the stack frame that we're
323 // building, install a special marker there instead.
324 DCHECK(info()->IsStub());
325 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
326 __ push(ip);
327 DCHECK(info()->IsStub());
328 }
329
330 Comment(";;; call deopt");
331 __ bind(&call_deopt_entry);
332
333 if (info()->saves_caller_doubles()) {
334 DCHECK(info()->IsStub());
335 RestoreCallerDoubles();
336 }
337
338 // Add the base address to the offset previously loaded in entry_offset.
339 __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
340 __ AddP(ip, entry_offset, ip);
341 __ Jump(ip);
342 }
343
344 // The deoptimization jump table is the last part of the instruction
345 // sequence. Mark the generated code as done unless we bailed out.
346 if (!is_aborted()) status_ = DONE;
347 return !is_aborted();
348}
349
350bool LCodeGen::GenerateSafepointTable() {
351 DCHECK(is_done());
352 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
353 return !is_aborted();
354}
355
356Register LCodeGen::ToRegister(int code) const {
357 return Register::from_code(code);
358}
359
360DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
361 return DoubleRegister::from_code(code);
362}
363
364Register LCodeGen::ToRegister(LOperand* op) const {
365 DCHECK(op->IsRegister());
366 return ToRegister(op->index());
367}
368
369Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
370 if (op->IsRegister()) {
371 return ToRegister(op->index());
372 } else if (op->IsConstantOperand()) {
373 LConstantOperand* const_op = LConstantOperand::cast(op);
374 HConstant* constant = chunk_->LookupConstant(const_op);
375 Handle<Object> literal = constant->handle(isolate());
376 Representation r = chunk_->LookupLiteralRepresentation(const_op);
377 if (r.IsInteger32()) {
378 AllowDeferredHandleDereference get_number;
379 DCHECK(literal->IsNumber());
380 __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
381 } else if (r.IsDouble()) {
382 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
383 } else {
384 DCHECK(r.IsSmiOrTagged());
385 __ Move(scratch, literal);
386 }
387 return scratch;
388 } else if (op->IsStackSlot()) {
389 __ LoadP(scratch, ToMemOperand(op));
390 return scratch;
391 }
392 UNREACHABLE();
393 return scratch;
394}
395
396void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
397 Register dst) {
398 DCHECK(IsInteger32(const_op));
399 HConstant* constant = chunk_->LookupConstant(const_op);
400 int32_t value = constant->Integer32Value();
401 if (IsSmi(const_op)) {
402 __ LoadSmiLiteral(dst, Smi::FromInt(value));
403 } else {
404 __ LoadIntLiteral(dst, value);
405 }
406}
407
408DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
409 DCHECK(op->IsDoubleRegister());
410 return ToDoubleRegister(op->index());
411}
412
413Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
414 HConstant* constant = chunk_->LookupConstant(op);
415 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
416 return constant->handle(isolate());
417}
418
419bool LCodeGen::IsInteger32(LConstantOperand* op) const {
420 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
421}
422
423bool LCodeGen::IsSmi(LConstantOperand* op) const {
424 return chunk_->LookupLiteralRepresentation(op).IsSmi();
425}
426
427int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
428 return ToRepresentation(op, Representation::Integer32());
429}
430
431intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
432 const Representation& r) const {
433 HConstant* constant = chunk_->LookupConstant(op);
434 int32_t value = constant->Integer32Value();
435 if (r.IsInteger32()) return value;
436 DCHECK(r.IsSmiOrTagged());
437 return reinterpret_cast<intptr_t>(Smi::FromInt(value));
438}
439
440Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
441 HConstant* constant = chunk_->LookupConstant(op);
442 return Smi::FromInt(constant->Integer32Value());
443}
444
445double LCodeGen::ToDouble(LConstantOperand* op) const {
446 HConstant* constant = chunk_->LookupConstant(op);
447 DCHECK(constant->HasDoubleValue());
448 return constant->DoubleValue();
449}
450
451Operand LCodeGen::ToOperand(LOperand* op) {
452 if (op->IsConstantOperand()) {
453 LConstantOperand* const_op = LConstantOperand::cast(op);
454 HConstant* constant = chunk()->LookupConstant(const_op);
455 Representation r = chunk_->LookupLiteralRepresentation(const_op);
456 if (r.IsSmi()) {
457 DCHECK(constant->HasSmiValue());
458 return Operand(Smi::FromInt(constant->Integer32Value()));
459 } else if (r.IsInteger32()) {
460 DCHECK(constant->HasInteger32Value());
461 return Operand(constant->Integer32Value());
462 } else if (r.IsDouble()) {
463 Abort(kToOperandUnsupportedDoubleImmediate);
464 }
465 DCHECK(r.IsTagged());
466 return Operand(constant->handle(isolate()));
467 } else if (op->IsRegister()) {
468 return Operand(ToRegister(op));
469 } else if (op->IsDoubleRegister()) {
470 Abort(kToOperandIsDoubleRegisterUnimplemented);
471 return Operand::Zero();
472 }
473 // Stack slots not implemented, use ToMemOperand instead.
474 UNREACHABLE();
475 return Operand::Zero();
476}
477
478static int ArgumentsOffsetWithoutFrame(int index) {
479 DCHECK(index < 0);
480 return -(index + 1) * kPointerSize;
481}
482
483MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
484 DCHECK(!op->IsRegister());
485 DCHECK(!op->IsDoubleRegister());
486 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
487 if (NeedsEagerFrame()) {
488 return MemOperand(fp, FrameSlotToFPOffset(op->index()));
489 } else {
490 // Retrieve parameter without eager stack-frame relative to the
491 // stack-pointer.
492 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
493 }
494}
495
496MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
497 DCHECK(op->IsDoubleStackSlot());
498 if (NeedsEagerFrame()) {
499 return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
500 } else {
501 // Retrieve parameter without eager stack-frame relative to the
502 // stack-pointer.
503 return MemOperand(sp,
504 ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
505 }
506}
507
508void LCodeGen::WriteTranslation(LEnvironment* environment,
509 Translation* translation) {
510 if (environment == NULL) return;
511
512 // The translation includes one command per value in the environment.
513 int translation_size = environment->translation_size();
514
515 WriteTranslation(environment->outer(), translation);
516 WriteTranslationFrame(environment, translation);
517
518 int object_index = 0;
519 int dematerialized_index = 0;
520 for (int i = 0; i < translation_size; ++i) {
521 LOperand* value = environment->values()->at(i);
522 AddToTranslation(
523 environment, translation, value, environment->HasTaggedValueAt(i),
524 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
525 }
526}
527
528void LCodeGen::AddToTranslation(LEnvironment* environment,
529 Translation* translation, LOperand* op,
530 bool is_tagged, bool is_uint32,
531 int* object_index_pointer,
532 int* dematerialized_index_pointer) {
533 if (op == LEnvironment::materialization_marker()) {
534 int object_index = (*object_index_pointer)++;
535 if (environment->ObjectIsDuplicateAt(object_index)) {
536 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
537 translation->DuplicateObject(dupe_of);
538 return;
539 }
540 int object_length = environment->ObjectLengthAt(object_index);
541 if (environment->ObjectIsArgumentsAt(object_index)) {
542 translation->BeginArgumentsObject(object_length);
543 } else {
544 translation->BeginCapturedObject(object_length);
545 }
546 int dematerialized_index = *dematerialized_index_pointer;
547 int env_offset = environment->translation_size() + dematerialized_index;
548 *dematerialized_index_pointer += object_length;
549 for (int i = 0; i < object_length; ++i) {
550 LOperand* value = environment->values()->at(env_offset + i);
551 AddToTranslation(environment, translation, value,
552 environment->HasTaggedValueAt(env_offset + i),
553 environment->HasUint32ValueAt(env_offset + i),
554 object_index_pointer, dematerialized_index_pointer);
555 }
556 return;
557 }
558
559 if (op->IsStackSlot()) {
560 int index = op->index();
561 if (is_tagged) {
562 translation->StoreStackSlot(index);
563 } else if (is_uint32) {
564 translation->StoreUint32StackSlot(index);
565 } else {
566 translation->StoreInt32StackSlot(index);
567 }
568 } else if (op->IsDoubleStackSlot()) {
569 int index = op->index();
570 translation->StoreDoubleStackSlot(index);
571 } else if (op->IsRegister()) {
572 Register reg = ToRegister(op);
573 if (is_tagged) {
574 translation->StoreRegister(reg);
575 } else if (is_uint32) {
576 translation->StoreUint32Register(reg);
577 } else {
578 translation->StoreInt32Register(reg);
579 }
580 } else if (op->IsDoubleRegister()) {
581 DoubleRegister reg = ToDoubleRegister(op);
582 translation->StoreDoubleRegister(reg);
583 } else if (op->IsConstantOperand()) {
584 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
585 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
586 translation->StoreLiteral(src_index);
587 } else {
588 UNREACHABLE();
589 }
590}
591
592void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
593 LInstruction* instr) {
594 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
595}
596
597void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
598 LInstruction* instr,
599 SafepointMode safepoint_mode) {
600 DCHECK(instr != NULL);
601 __ Call(code, mode);
602 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
603
604 // Signal that we don't inline smi code before these stubs in the
605 // optimizing code generator.
606 if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
607 __ nop();
608 }
609}
610
611void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
612 LInstruction* instr, SaveFPRegsMode save_doubles) {
613 DCHECK(instr != NULL);
614
615 __ CallRuntime(function, num_arguments, save_doubles);
616
617 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
618}
619
620void LCodeGen::LoadContextFromDeferred(LOperand* context) {
621 if (context->IsRegister()) {
622 __ Move(cp, ToRegister(context));
623 } else if (context->IsStackSlot()) {
624 __ LoadP(cp, ToMemOperand(context));
625 } else if (context->IsConstantOperand()) {
626 HConstant* constant =
627 chunk_->LookupConstant(LConstantOperand::cast(context));
628 __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
629 } else {
630 UNREACHABLE();
631 }
632}
633
634void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
635 LInstruction* instr, LOperand* context) {
636 LoadContextFromDeferred(context);
637 __ CallRuntimeSaveDoubles(id);
638 RecordSafepointWithRegisters(instr->pointer_map(), argc,
639 Safepoint::kNoLazyDeopt);
640}
641
642void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
643 Safepoint::DeoptMode mode) {
644 environment->set_has_been_used();
645 if (!environment->HasBeenRegistered()) {
646 // Physical stack frame layout:
647 // -x ............. -4 0 ..................................... y
648 // [incoming arguments] [spill slots] [pushed outgoing arguments]
649
650 // Layout of the environment:
651 // 0 ..................................................... size-1
652 // [parameters] [locals] [expression stack including arguments]
653
654 // Layout of the translation:
655 // 0 ........................................................ size - 1 + 4
656 // [expression stack including arguments] [locals] [4 words] [parameters]
657 // |>------------ translation_size ------------<|
658
659 int frame_count = 0;
660 int jsframe_count = 0;
661 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
662 ++frame_count;
663 if (e->frame_type() == JS_FUNCTION) {
664 ++jsframe_count;
665 }
666 }
667 Translation translation(&translations_, frame_count, jsframe_count, zone());
668 WriteTranslation(environment, &translation);
669 int deoptimization_index = deoptimizations_.length();
670 int pc_offset = masm()->pc_offset();
671 environment->Register(deoptimization_index, translation.index(),
672 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
673 deoptimizations_.Add(environment, zone());
674 }
675}
676
677void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
678 Deoptimizer::DeoptReason deopt_reason,
679 Deoptimizer::BailoutType bailout_type,
680 CRegister cr) {
681 LEnvironment* environment = instr->environment();
682 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
683 DCHECK(environment->HasBeenRegistered());
684 int id = environment->deoptimization_index();
685 Address entry =
686 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
687 if (entry == NULL) {
688 Abort(kBailoutWasNotPrepared);
689 return;
690 }
691
692 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
693 Register scratch = scratch0();
694 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
695 Label no_deopt;
696
697 // Store the condition on the stack if necessary
698 if (cond != al) {
699 Label done;
700 __ LoadImmP(scratch, Operand::Zero());
701 __ b(NegateCondition(cond), &done, Label::kNear);
702 __ LoadImmP(scratch, Operand(1));
703 __ bind(&done);
704 __ push(scratch);
705 }
706
707 Label done;
708 __ Push(r3);
709 __ mov(scratch, Operand(count));
710 __ LoadW(r3, MemOperand(scratch));
711 __ Sub32(r3, r3, Operand(1));
712 __ Cmp32(r3, Operand::Zero());
713 __ bne(&no_deopt, Label::kNear);
714
715 __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times));
716 __ StoreW(r3, MemOperand(scratch));
717 __ Pop(r3);
718
719 if (cond != al) {
720 // Clean up the stack before the deoptimizer call
721 __ pop(scratch);
722 }
723
724 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
725
726 __ b(&done);
727
728 __ bind(&no_deopt);
729 __ StoreW(r3, MemOperand(scratch));
730 __ Pop(r3);
731
732 if (cond != al) {
733 // Clean up the stack before the deoptimizer call
734 __ pop(scratch);
735 }
736
737 __ bind(&done);
738
739 if (cond != al) {
740 cond = ne;
741 __ CmpP(scratch, Operand::Zero());
742 }
743 }
744
745 if (info()->ShouldTrapOnDeopt()) {
746 __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
747 }
748
749 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
750
751 DCHECK(info()->IsStub() || frame_is_built_);
752 // Go through jump table if we need to handle condition, build frame, or
753 // restore caller doubles.
754 if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
755 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
756 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
757 } else {
758 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
759 !frame_is_built_);
760 // We often have several deopts to the same entry, reuse the last
761 // jump entry if this is the case.
762 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
763 jump_table_.is_empty() ||
764 !table_entry.IsEquivalentTo(jump_table_.last())) {
765 jump_table_.Add(table_entry, zone());
766 }
767 __ b(cond, &jump_table_.last().label /*, cr*/);
768 }
769}
770
771void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
772 Deoptimizer::DeoptReason deopt_reason,
773 CRegister cr) {
774 Deoptimizer::BailoutType bailout_type =
775 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
776 DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr);
777}
778
779void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
780 SafepointMode safepoint_mode) {
781 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
782 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
783 } else {
784 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
785 RecordSafepointWithRegisters(instr->pointer_map(), 0,
786 Safepoint::kLazyDeopt);
787 }
788}
789
790void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
791 int arguments, Safepoint::DeoptMode deopt_mode) {
792 DCHECK(expected_safepoint_kind_ == kind);
793
794 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
795 Safepoint safepoint =
796 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
797 for (int i = 0; i < operands->length(); i++) {
798 LOperand* pointer = operands->at(i);
799 if (pointer->IsStackSlot()) {
800 safepoint.DefinePointerSlot(pointer->index(), zone());
801 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
802 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
803 }
804 }
805}
806
807void LCodeGen::RecordSafepoint(LPointerMap* pointers,
808 Safepoint::DeoptMode deopt_mode) {
809 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
810}
811
812void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
813 LPointerMap empty_pointers(zone());
814 RecordSafepoint(&empty_pointers, deopt_mode);
815}
816
817void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
818 int arguments,
819 Safepoint::DeoptMode deopt_mode) {
820 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
821}
822
823void LCodeGen::RecordAndWritePosition(int position) {
824 if (position == RelocInfo::kNoPosition) return;
825 masm()->positions_recorder()->RecordPosition(position);
826 masm()->positions_recorder()->WriteRecordedPositions();
827}
828
829static const char* LabelType(LLabel* label) {
830 if (label->is_loop_header()) return " (loop header)";
831 if (label->is_osr_entry()) return " (OSR entry)";
832 return "";
833}
834
835void LCodeGen::DoLabel(LLabel* label) {
836 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
837 current_instruction_, label->hydrogen_value()->id(),
838 label->block_id(), LabelType(label));
839 __ bind(label->label());
840 current_block_ = label->block_id();
841 DoGap(label);
842}
843
844void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
845
846void LCodeGen::DoGap(LGap* gap) {
847 for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
848 i++) {
849 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
850 LParallelMove* move = gap->GetParallelMove(inner_pos);
851 if (move != NULL) DoParallelMove(move);
852 }
853}
854
855void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
856
857void LCodeGen::DoParameter(LParameter* instr) {
858 // Nothing to do.
859}
860
861void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
862 GenerateOsrPrologue();
863}
864
865void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
866 Register dividend = ToRegister(instr->dividend());
867 int32_t divisor = instr->divisor();
868 DCHECK(dividend.is(ToRegister(instr->result())));
869
870 // Theoretically, a variation of the branch-free code for integer division by
871 // a power of 2 (calculating the remainder via an additional multiplication
872 // (which gets simplified to an 'and') and subtraction) should be faster, and
873 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
874 // indicate that positive dividends are heavily favored, so the branching
875 // version performs better.
876 HMod* hmod = instr->hydrogen();
877 int32_t shift = WhichPowerOf2Abs(divisor);
878 Label dividend_is_not_negative, done;
879 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
880 __ CmpP(dividend, Operand::Zero());
881 __ bge(&dividend_is_not_negative, Label::kNear);
882 if (shift) {
883 // Note that this is correct even for kMinInt operands.
884 __ LoadComplementRR(dividend, dividend);
885 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
886 __ LoadComplementRR(dividend, dividend);
887 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
888 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
889 }
890 } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
891 __ mov(dividend, Operand::Zero());
892 } else {
893 DeoptimizeIf(al, instr, Deoptimizer::kMinusZero);
894 }
895 __ b(&done, Label::kNear);
896 }
897
898 __ bind(&dividend_is_not_negative);
899 if (shift) {
900 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
901 } else {
902 __ mov(dividend, Operand::Zero());
903 }
904 __ bind(&done);
905}
906
907void LCodeGen::DoModByConstI(LModByConstI* instr) {
908 Register dividend = ToRegister(instr->dividend());
909 int32_t divisor = instr->divisor();
910 Register result = ToRegister(instr->result());
911 DCHECK(!dividend.is(result));
912
913 if (divisor == 0) {
914 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
915 return;
916 }
917
918 __ TruncatingDiv(result, dividend, Abs(divisor));
919 __ mov(ip, Operand(Abs(divisor)));
920 __ Mul(result, result, ip);
921 __ SubP(result, dividend, result /*, LeaveOE, SetRC*/);
922
923 // Check for negative zero.
924 HMod* hmod = instr->hydrogen();
925 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
926 Label remainder_not_zero;
927 __ bne(&remainder_not_zero, Label::kNear /*, cr0*/);
928 __ Cmp32(dividend, Operand::Zero());
929 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
930 __ bind(&remainder_not_zero);
931 }
932}
933
934void LCodeGen::DoModI(LModI* instr) {
935 HMod* hmod = instr->hydrogen();
936 Register left_reg = ToRegister(instr->left());
937 Register right_reg = ToRegister(instr->right());
938 Register result_reg = ToRegister(instr->result());
939 Label done;
940
941 // Check for x % 0.
942 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
943 __ Cmp32(right_reg, Operand::Zero());
944 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
945 }
946
947 // Check for kMinInt % -1, dr will return undefined, which is not what we
948 // want. We have to deopt if we care about -0, because we can't return that.
949 if (hmod->CheckFlag(HValue::kCanOverflow)) {
950 Label no_overflow_possible;
951 __ Cmp32(left_reg, Operand(kMinInt));
952 __ bne(&no_overflow_possible, Label::kNear);
953 __ Cmp32(right_reg, Operand(-1));
954 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
955 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
956 } else {
957 __ b(ne, &no_overflow_possible, Label::kNear);
958 __ mov(result_reg, Operand::Zero());
959 __ b(&done, Label::kNear);
960 }
961 __ bind(&no_overflow_possible);
962 }
963
964 // Divide instruction dr will implicity use register pair
965 // r0 & r1 below.
966 DCHECK(!left_reg.is(r1));
967 DCHECK(!right_reg.is(r1));
968 DCHECK(!result_reg.is(r1));
969 __ LoadRR(r0, left_reg);
970 __ srda(r0, Operand(32));
971 __ dr(r0, right_reg); // R0:R1 = R1 / divisor - R0 remainder
972
973 __ LoadAndTestP_ExtendSrc(result_reg, r0); // Copy remainder to resultreg
974
975 // If we care about -0, test if the dividend is <0 and the result is 0.
976 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
977 __ bne(&done, Label::kNear);
978 __ Cmp32(left_reg, Operand::Zero());
979 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
980 }
981
982 __ bind(&done);
983}
984
985void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
986 Register dividend = ToRegister(instr->dividend());
987 int32_t divisor = instr->divisor();
988 Register result = ToRegister(instr->result());
989 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
990 DCHECK(!result.is(dividend));
991
992 // Check for (0 / -x) that will produce negative zero.
993 HDiv* hdiv = instr->hydrogen();
994 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
995 __ Cmp32(dividend, Operand::Zero());
996 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
997 }
998 // Check for (kMinInt / -1).
999 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1000 __ Cmp32(dividend, Operand(0x80000000));
1001 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1002 }
1003
1004 int32_t shift = WhichPowerOf2Abs(divisor);
1005
1006 // Deoptimize if remainder will not be 0.
1007 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
1008 __ TestBitRange(dividend, shift - 1, 0, r0);
1009 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, cr0);
1010 }
1011
1012 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1013 __ LoadComplementRR(result, dividend);
1014 return;
1015 }
1016 if (shift == 0) {
1017 __ LoadRR(result, dividend);
1018 } else {
1019 if (shift == 1) {
1020 __ ShiftRight(result, dividend, Operand(31));
1021 } else {
1022 __ ShiftRightArith(result, dividend, Operand(31));
1023 __ ShiftRight(result, result, Operand(32 - shift));
1024 }
1025 __ AddP(result, dividend, result);
1026 __ ShiftRightArith(result, result, Operand(shift));
1027#if V8_TARGET_ARCH_S390X
1028 __ lgfr(result, result);
1029#endif
1030 }
1031 if (divisor < 0) __ LoadComplementRR(result, result);
1032}
1033
1034void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1035 Register dividend = ToRegister(instr->dividend());
1036 int32_t divisor = instr->divisor();
1037 Register result = ToRegister(instr->result());
1038 DCHECK(!dividend.is(result));
1039
1040 if (divisor == 0) {
1041 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1042 return;
1043 }
1044
1045 // Check for (0 / -x) that will produce negative zero.
1046 HDiv* hdiv = instr->hydrogen();
1047 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1048 __ Cmp32(dividend, Operand::Zero());
1049 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1050 }
1051
1052 __ TruncatingDiv(result, dividend, Abs(divisor));
1053 if (divisor < 0) __ LoadComplementRR(result, result);
1054
1055 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1056 Register scratch = scratch0();
1057 __ mov(ip, Operand(divisor));
1058 __ Mul(scratch, result, ip);
1059 __ Cmp32(scratch, dividend);
1060 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1061 }
1062}
1063
1064// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1065void LCodeGen::DoDivI(LDivI* instr) {
1066 HBinaryOperation* hdiv = instr->hydrogen();
1067 const Register dividend = ToRegister(instr->dividend());
1068 const Register divisor = ToRegister(instr->divisor());
1069 Register result = ToRegister(instr->result());
1070
1071 DCHECK(!dividend.is(result));
1072 DCHECK(!divisor.is(result));
1073
1074 // Check for x / 0.
1075 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1076 __ Cmp32(divisor, Operand::Zero());
1077 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1078 }
1079
1080 // Check for (0 / -x) that will produce negative zero.
1081 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1082 Label dividend_not_zero;
1083 __ Cmp32(dividend, Operand::Zero());
1084 __ bne(&dividend_not_zero, Label::kNear);
1085 __ Cmp32(divisor, Operand::Zero());
1086 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1087 __ bind(&dividend_not_zero);
1088 }
1089
1090 // Check for (kMinInt / -1).
1091 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1092 Label dividend_not_min_int;
1093 __ Cmp32(dividend, Operand(kMinInt));
1094 __ bne(&dividend_not_min_int, Label::kNear);
1095 __ Cmp32(divisor, Operand(-1));
1096 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1097 __ bind(&dividend_not_min_int);
1098 }
1099
1100 __ LoadRR(r0, dividend);
1101 __ srda(r0, Operand(32));
1102 __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
1103
1104 __ LoadAndTestP_ExtendSrc(result, r1); // Move quotient to result register
1105
1106 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1107 // Deoptimize if remainder is not 0.
1108 __ Cmp32(r0, Operand::Zero());
1109 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1110 }
1111}
1112
1113void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1114 HBinaryOperation* hdiv = instr->hydrogen();
1115 Register dividend = ToRegister(instr->dividend());
1116 Register result = ToRegister(instr->result());
1117 int32_t divisor = instr->divisor();
1118 bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);
1119
1120 // If the divisor is positive, things are easy: There can be no deopts and we
1121 // can simply do an arithmetic right shift.
1122 int32_t shift = WhichPowerOf2Abs(divisor);
1123 if (divisor > 0) {
1124 if (shift || !result.is(dividend)) {
1125 __ ShiftRightArith(result, dividend, Operand(shift));
1126#if V8_TARGET_ARCH_S390X
1127 __ lgfr(result, result);
1128#endif
1129 }
1130 return;
1131 }
1132
1133// If the divisor is negative, we have to negate and handle edge cases.
1134#if V8_TARGET_ARCH_S390X
1135 if (divisor == -1 && can_overflow) {
1136 __ Cmp32(dividend, Operand(0x80000000));
1137 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1138 }
1139#endif
1140
1141 __ LoadComplementRR(result, dividend);
1142 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1143 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, cr0);
1144 }
1145
1146// If the negation could not overflow, simply shifting is OK.
1147#if !V8_TARGET_ARCH_S390X
1148 if (!can_overflow) {
1149#endif
1150 if (shift) {
1151 __ ShiftRightArithP(result, result, Operand(shift));
1152 }
1153 return;
1154#if !V8_TARGET_ARCH_S390X
1155 }
1156
1157 // Dividing by -1 is basically negation, unless we overflow.
1158 if (divisor == -1) {
1159 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
1160 return;
1161 }
1162
1163 Label overflow_label, done;
1164 __ b(overflow, &overflow_label, Label::kNear);
1165 __ ShiftRightArith(result, result, Operand(shift));
1166#if V8_TARGET_ARCH_S390X
1167 __ lgfr(result, result);
1168#endif
1169 __ b(&done, Label::kNear);
1170 __ bind(&overflow_label);
1171 __ mov(result, Operand(kMinInt / divisor));
1172 __ bind(&done);
1173#endif
1174}
1175
1176void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1177 Register dividend = ToRegister(instr->dividend());
1178 int32_t divisor = instr->divisor();
1179 Register result = ToRegister(instr->result());
1180 DCHECK(!dividend.is(result));
1181
1182 if (divisor == 0) {
1183 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1184 return;
1185 }
1186
1187 // Check for (0 / -x) that will produce negative zero.
1188 HMathFloorOfDiv* hdiv = instr->hydrogen();
1189 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1190 __ Cmp32(dividend, Operand::Zero());
1191 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1192 }
1193
1194 // Easy case: We need no dynamic check for the dividend and the flooring
1195 // division is the same as the truncating division.
1196 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1197 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1198 __ TruncatingDiv(result, dividend, Abs(divisor));
1199 if (divisor < 0) __ LoadComplementRR(result, result);
1200 return;
1201 }
1202
1203 // In the general case we may need to adjust before and after the truncating
1204 // division to get a flooring division.
1205 Register temp = ToRegister(instr->temp());
1206 DCHECK(!temp.is(dividend) && !temp.is(result));
1207 Label needs_adjustment, done;
1208 __ Cmp32(dividend, Operand::Zero());
1209 __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1210 __ TruncatingDiv(result, dividend, Abs(divisor));
1211 if (divisor < 0) __ LoadComplementRR(result, result);
1212 __ b(&done, Label::kNear);
1213 __ bind(&needs_adjustment);
1214 __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1215 __ TruncatingDiv(result, temp, Abs(divisor));
1216 if (divisor < 0) __ LoadComplementRR(result, result);
1217 __ SubP(result, result, Operand(1));
1218 __ bind(&done);
1219}
1220
1221// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1222void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1223 HBinaryOperation* hdiv = instr->hydrogen();
1224 const Register dividend = ToRegister(instr->dividend());
1225 const Register divisor = ToRegister(instr->divisor());
1226 Register result = ToRegister(instr->result());
1227
1228 DCHECK(!dividend.is(result));
1229 DCHECK(!divisor.is(result));
1230
1231 // Check for x / 0.
1232 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1233 __ Cmp32(divisor, Operand::Zero());
1234 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1235 }
1236
1237 // Check for (0 / -x) that will produce negative zero.
1238 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1239 Label dividend_not_zero;
1240 __ Cmp32(dividend, Operand::Zero());
1241 __ bne(&dividend_not_zero, Label::kNear);
1242 __ Cmp32(divisor, Operand::Zero());
1243 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1244 __ bind(&dividend_not_zero);
1245 }
1246
1247 // Check for (kMinInt / -1).
1248 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1249 Label no_overflow_possible;
1250 __ Cmp32(dividend, Operand(kMinInt));
1251 __ bne(&no_overflow_possible, Label::kNear);
1252 __ Cmp32(divisor, Operand(-1));
1253 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1254 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1255 } else {
1256 __ bne(&no_overflow_possible, Label::kNear);
1257 __ LoadRR(result, dividend);
1258 }
1259 __ bind(&no_overflow_possible);
1260 }
1261
1262 __ LoadRR(r0, dividend);
1263 __ srda(r0, Operand(32));
1264 __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
1265
1266 __ lr(result, r1); // Move quotient to result register
1267
1268 Label done;
1269 Register scratch = scratch0();
1270 // If both operands have the same sign then we are done.
1271 __ Xor(scratch, dividend, divisor);
1272 __ ltr(scratch, scratch); // use 32 bit version LoadAndTestRR even in 64 bit
1273 __ bge(&done, Label::kNear);
1274
1275 // If there is no remainder then we are done.
1276 __ lr(scratch, result);
1277 __ msr(scratch, divisor);
1278 __ Cmp32(dividend, scratch);
1279 __ beq(&done, Label::kNear);
1280
1281 // We performed a truncating division. Correct the result.
1282 __ Sub32(result, result, Operand(1));
1283 __ bind(&done);
1284}
1285
1286void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1287 DoubleRegister addend = ToDoubleRegister(instr->addend());
1288 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1289 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1290 DoubleRegister result = ToDoubleRegister(instr->result());
1291
1292 // Unable to use madbr as the intermediate value is not rounded
1293 // to proper precision
1294 __ ldr(result, multiplier);
1295 __ mdbr(result, multiplicand);
1296 __ adbr(result, addend);
1297}
1298
1299void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1300 DoubleRegister minuend = ToDoubleRegister(instr->minuend());
1301 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1302 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1303 DoubleRegister result = ToDoubleRegister(instr->result());
1304
1305 // Unable to use msdbr as the intermediate value is not rounded
1306 // to proper precision
1307 __ ldr(result, multiplier);
1308 __ mdbr(result, multiplicand);
1309 __ sdbr(result, minuend);
1310}
1311
1312void LCodeGen::DoMulI(LMulI* instr) {
1313 Register scratch = scratch0();
1314 Register result = ToRegister(instr->result());
1315 // Note that result may alias left.
1316 Register left = ToRegister(instr->left());
1317 LOperand* right_op = instr->right();
1318
1319 bool bailout_on_minus_zero =
1320 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1321 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1322
1323 if (right_op->IsConstantOperand()) {
1324 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1325
1326 if (bailout_on_minus_zero && (constant < 0)) {
1327 // The case of a null constant will be handled separately.
1328 // If constant is negative and left is null, the result should be -0.
1329 __ CmpP(left, Operand::Zero());
1330 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1331 }
1332
1333 switch (constant) {
1334 case -1:
1335 if (can_overflow) {
1336#if V8_TARGET_ARCH_S390X
1337 if (instr->hydrogen()->representation().IsSmi()) {
1338#endif
1339 __ LoadComplementRR(result, left);
1340 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1341#if V8_TARGET_ARCH_S390X
1342 } else {
1343 __ LoadComplementRR(result, left);
1344 __ TestIfInt32(result, r0);
1345 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1346 }
1347#endif
1348 } else {
1349 __ LoadComplementRR(result, left);
1350 }
1351 break;
1352 case 0:
1353 if (bailout_on_minus_zero) {
1354// If left is strictly negative and the constant is null, the
1355// result is -0. Deoptimize if required, otherwise return 0.
1356#if V8_TARGET_ARCH_S390X
1357 if (instr->hydrogen()->representation().IsSmi()) {
1358#endif
1359 __ Cmp32(left, Operand::Zero());
1360#if V8_TARGET_ARCH_S390X
1361 } else {
1362 __ Cmp32(left, Operand::Zero());
1363 }
1364#endif
1365 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1366 }
1367 __ LoadImmP(result, Operand::Zero());
1368 break;
1369 case 1:
1370 __ Move(result, left);
1371 break;
1372 default:
1373 // Multiplying by powers of two and powers of two plus or minus
1374 // one can be done faster with shifted operands.
1375 // For other constants we emit standard code.
1376 int32_t mask = constant >> 31;
1377 uint32_t constant_abs = (constant + mask) ^ mask;
1378
1379 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1380 int32_t shift = WhichPowerOf2(constant_abs);
1381 __ ShiftLeftP(result, left, Operand(shift));
1382 // Correct the sign of the result if the constant is negative.
1383 if (constant < 0) __ LoadComplementRR(result, result);
1384 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1385 int32_t shift = WhichPowerOf2(constant_abs - 1);
1386 __ ShiftLeftP(scratch, left, Operand(shift));
1387 __ AddP(result, scratch, left);
1388 // Correct the sign of the result if the constant is negative.
1389 if (constant < 0) __ LoadComplementRR(result, result);
1390 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1391 int32_t shift = WhichPowerOf2(constant_abs + 1);
1392 __ ShiftLeftP(scratch, left, Operand(shift));
1393 __ SubP(result, scratch, left);
1394 // Correct the sign of the result if the constant is negative.
1395 if (constant < 0) __ LoadComplementRR(result, result);
1396 } else {
1397 // Generate standard code.
1398 __ Move(result, left);
1399 __ MulP(result, Operand(constant));
1400 }
1401 }
1402
1403 } else {
1404 DCHECK(right_op->IsRegister());
1405 Register right = ToRegister(right_op);
1406
1407 if (can_overflow) {
1408#if V8_TARGET_ARCH_S390X
1409 // result = left * right.
1410 if (instr->hydrogen()->representation().IsSmi()) {
1411 __ SmiUntag(result, left);
1412 __ SmiUntag(scratch, right);
1413 __ msgr(result, scratch);
1414 } else {
1415 __ LoadRR(result, left);
1416 __ msgr(result, right);
1417 }
1418 __ TestIfInt32(result, r0);
1419 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1420 if (instr->hydrogen()->representation().IsSmi()) {
1421 __ SmiTag(result);
1422 }
1423#else
1424 // r0:scratch = scratch * right
1425 if (instr->hydrogen()->representation().IsSmi()) {
1426 __ SmiUntag(scratch, left);
1427 __ mr_z(r0, right);
1428 __ LoadRR(result, scratch);
1429 } else {
1430 // r0:scratch = scratch * right
1431 __ LoadRR(scratch, left);
1432 __ mr_z(r0, right);
1433 __ LoadRR(result, scratch);
1434 }
1435 __ TestIfInt32(r0, result, scratch);
1436 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1437#endif
1438 } else {
1439 if (instr->hydrogen()->representation().IsSmi()) {
1440 __ SmiUntag(result, left);
1441 __ Mul(result, result, right);
1442 } else {
1443 __ Mul(result, left, right);
1444 }
1445 }
1446
1447 if (bailout_on_minus_zero) {
1448 Label done;
1449#if V8_TARGET_ARCH_S390X
1450 if (instr->hydrogen()->representation().IsSmi()) {
1451#endif
1452 __ XorP(r0, left, right);
1453 __ LoadAndTestRR(r0, r0);
1454 __ bge(&done, Label::kNear);
1455#if V8_TARGET_ARCH_S390X
1456 } else {
1457 __ XorP(r0, left, right);
1458 __ Cmp32(r0, Operand::Zero());
1459 __ bge(&done, Label::kNear);
1460 }
1461#endif
1462 // Bail out if the result is minus zero.
1463 __ CmpP(result, Operand::Zero());
1464 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1465 __ bind(&done);
1466 }
1467 }
1468}
1469
1470void LCodeGen::DoBitI(LBitI* instr) {
1471 LOperand* left_op = instr->left();
1472 LOperand* right_op = instr->right();
1473 DCHECK(left_op->IsRegister());
1474 Register left = ToRegister(left_op);
1475 Register result = ToRegister(instr->result());
1476
1477 if (right_op->IsConstantOperand()) {
1478 switch (instr->op()) {
1479 case Token::BIT_AND:
1480 __ AndP(result, left, Operand(ToOperand(right_op)));
1481 break;
1482 case Token::BIT_OR:
1483 __ OrP(result, left, Operand(ToOperand(right_op)));
1484 break;
1485 case Token::BIT_XOR:
1486 __ XorP(result, left, Operand(ToOperand(right_op)));
1487 break;
1488 default:
1489 UNREACHABLE();
1490 break;
1491 }
1492 } else if (right_op->IsStackSlot()) {
1493 // Reg-Mem instruction clobbers, so copy src to dst first.
1494 if (!left.is(result)) __ LoadRR(result, left);
1495 switch (instr->op()) {
1496 case Token::BIT_AND:
1497 __ AndP(result, ToMemOperand(right_op));
1498 break;
1499 case Token::BIT_OR:
1500 __ OrP(result, ToMemOperand(right_op));
1501 break;
1502 case Token::BIT_XOR:
1503 __ XorP(result, ToMemOperand(right_op));
1504 break;
1505 default:
1506 UNREACHABLE();
1507 break;
1508 }
1509 } else {
1510 DCHECK(right_op->IsRegister());
1511
1512 switch (instr->op()) {
1513 case Token::BIT_AND:
1514 __ AndP(result, left, ToRegister(right_op));
1515 break;
1516 case Token::BIT_OR:
1517 __ OrP(result, left, ToRegister(right_op));
1518 break;
1519 case Token::BIT_XOR:
1520 __ XorP(result, left, ToRegister(right_op));
1521 break;
1522 default:
1523 UNREACHABLE();
1524 break;
1525 }
1526 }
1527}
1528
1529void LCodeGen::DoShiftI(LShiftI* instr) {
1530 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1531 // result may alias either of them.
1532 LOperand* right_op = instr->right();
1533 Register left = ToRegister(instr->left());
1534 Register result = ToRegister(instr->result());
1535 Register scratch = scratch0();
1536 if (right_op->IsRegister()) {
1537 // Mask the right_op operand.
1538 __ AndP(scratch, ToRegister(right_op), Operand(0x1F));
1539 switch (instr->op()) {
1540 case Token::ROR:
1541 // rotate_right(a, b) == rotate_left(a, 32 - b)
1542 __ LoadComplementRR(scratch, scratch);
1543 __ rll(result, left, scratch, Operand(32));
1544#if V8_TARGET_ARCH_S390X
1545 __ lgfr(result, result);
1546#endif
1547 break;
1548 case Token::SAR:
1549 __ ShiftRightArith(result, left, scratch);
1550#if V8_TARGET_ARCH_S390X
1551 __ lgfr(result, result);
1552#endif
1553 break;
1554 case Token::SHR:
1555 __ ShiftRight(result, left, scratch);
1556#if V8_TARGET_ARCH_S390X
1557 __ lgfr(result, result);
1558#endif
1559 if (instr->can_deopt()) {
1560#if V8_TARGET_ARCH_S390X
1561 __ ltgfr(result, result /*, SetRC*/);
1562#else
1563 __ ltr(result, result); // Set the <,==,> condition
1564#endif
1565 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, cr0);
1566 }
1567 break;
1568 case Token::SHL:
1569 __ ShiftLeft(result, left, scratch);
1570#if V8_TARGET_ARCH_S390X
1571 __ lgfr(result, result);
1572#endif
1573 break;
1574 default:
1575 UNREACHABLE();
1576 break;
1577 }
1578 } else {
1579 // Mask the right_op operand.
1580 int value = ToInteger32(LConstantOperand::cast(right_op));
1581 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1582 switch (instr->op()) {
1583 case Token::ROR:
1584 if (shift_count != 0) {
1585 __ rll(result, left, Operand(32 - shift_count));
1586#if V8_TARGET_ARCH_S390X
1587 __ lgfr(result, result);
1588#endif
1589 } else {
1590 __ Move(result, left);
1591 }
1592 break;
1593 case Token::SAR:
1594 if (shift_count != 0) {
1595 __ ShiftRightArith(result, left, Operand(shift_count));
1596#if V8_TARGET_ARCH_S390X
1597 __ lgfr(result, result);
1598#endif
1599 } else {
1600 __ Move(result, left);
1601 }
1602 break;
1603 case Token::SHR:
1604 if (shift_count != 0) {
1605 __ ShiftRight(result, left, Operand(shift_count));
1606#if V8_TARGET_ARCH_S390X
1607 __ lgfr(result, result);
1608#endif
1609 } else {
1610 if (instr->can_deopt()) {
1611 __ Cmp32(left, Operand::Zero());
1612 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue);
1613 }
1614 __ Move(result, left);
1615 }
1616 break;
1617 case Token::SHL:
1618 if (shift_count != 0) {
1619#if V8_TARGET_ARCH_S390X
1620 if (instr->hydrogen_value()->representation().IsSmi()) {
1621 __ ShiftLeftP(result, left, Operand(shift_count));
1622#else
1623 if (instr->hydrogen_value()->representation().IsSmi() &&
1624 instr->can_deopt()) {
1625 if (shift_count != 1) {
1626 __ ShiftLeft(result, left, Operand(shift_count - 1));
1627#if V8_TARGET_ARCH_S390X
1628 __ lgfr(result, result);
1629#endif
1630 __ SmiTagCheckOverflow(result, result, scratch);
1631 } else {
1632 __ SmiTagCheckOverflow(result, left, scratch);
1633 }
1634 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
1635#endif
1636 } else {
1637 __ ShiftLeft(result, left, Operand(shift_count));
1638#if V8_TARGET_ARCH_S390X
1639 __ lgfr(result, result);
1640#endif
1641 }
1642 } else {
1643 __ Move(result, left);
1644 }
1645 break;
1646 default:
1647 UNREACHABLE();
1648 break;
1649 }
1650 }
1651}
1652
1653void LCodeGen::DoSubI(LSubI* instr) {
1654 LOperand* left = instr->left();
1655 LOperand* right = instr->right();
1656 LOperand* result = instr->result();
1657
1658 bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
1659 instr->hydrogen()->representation().IsExternal());
1660
1661#if V8_TARGET_ARCH_S390X
1662 // The overflow detection needs to be tested on the lower 32-bits.
1663 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1664 // to set the CC overflow bit properly. The result is then sign-extended.
1665 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1666#else
1667 bool checkOverflow = true;
1668#endif
1669
1670 if (right->IsConstantOperand()) {
1671 if (!isInteger || !checkOverflow)
1672 __ SubP(ToRegister(result), ToRegister(left), ToOperand(right));
1673 else
1674 __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right));
1675 } else if (right->IsRegister()) {
1676 if (!isInteger)
1677 __ SubP(ToRegister(result), ToRegister(left), ToRegister(right));
1678 else if (!checkOverflow)
1679 __ SubP_ExtendSrc(ToRegister(result), ToRegister(left),
1680 ToRegister(right));
1681 else
1682 __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right));
1683 } else {
1684 if (!left->Equals(instr->result()))
1685 __ LoadRR(ToRegister(result), ToRegister(left));
1686
1687 MemOperand mem = ToMemOperand(right);
1688 if (!isInteger) {
1689 __ SubP(ToRegister(result), mem);
1690 } else {
1691#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
1692 // We want to read the 32-bits directly from memory
1693 MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
1694#else
1695 MemOperand Upper32Mem = ToMemOperand(right);
1696#endif
1697 if (checkOverflow) {
1698 __ Sub32(ToRegister(result), Upper32Mem);
1699 } else {
1700 __ SubP_ExtendSrc(ToRegister(result), Upper32Mem);
1701 }
1702 }
1703 }
1704
1705#if V8_TARGET_ARCH_S390X
1706 if (isInteger && checkOverflow)
1707 __ lgfr(ToRegister(result), ToRegister(result));
1708#endif
1709 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1710 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1711 }
1712}
1713
1714void LCodeGen::DoRSubI(LRSubI* instr) {
1715 LOperand* left = instr->left();
1716 LOperand* right = instr->right();
1717 LOperand* result = instr->result();
1718
1719 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
1720 right->IsConstantOperand());
1721
1722#if V8_TARGET_ARCH_S390X
1723 // The overflow detection needs to be tested on the lower 32-bits.
1724 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1725 // to set the CC overflow bit properly. The result is then sign-extended.
1726 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1727#else
1728 bool checkOverflow = true;
1729#endif
1730
1731 Operand right_operand = ToOperand(right);
1732 __ mov(r0, right_operand);
1733
1734 if (!checkOverflow) {
1735 __ SubP_ExtendSrc(ToRegister(result), r0, ToRegister(left));
1736 } else {
1737 __ Sub32(ToRegister(result), r0, ToRegister(left));
1738 }
1739}
1740
1741void LCodeGen::DoConstantI(LConstantI* instr) {
1742 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1743}
1744
1745void LCodeGen::DoConstantS(LConstantS* instr) {
1746 __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
1747}
1748
1749void LCodeGen::DoConstantD(LConstantD* instr) {
1750 DCHECK(instr->result()->IsDoubleRegister());
1751 DoubleRegister result = ToDoubleRegister(instr->result());
1752 uint64_t bits = instr->bits();
1753 __ LoadDoubleLiteral(result, bits, scratch0());
1754}
1755
1756void LCodeGen::DoConstantE(LConstantE* instr) {
1757 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1758}
1759
1760void LCodeGen::DoConstantT(LConstantT* instr) {
1761 Handle<Object> object = instr->value(isolate());
1762 AllowDeferredHandleDereference smi_check;
1763 __ Move(ToRegister(instr->result()), object);
1764}
1765
1766MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
1767 String::Encoding encoding) {
1768 if (index->IsConstantOperand()) {
1769 int offset = ToInteger32(LConstantOperand::cast(index));
1770 if (encoding == String::TWO_BYTE_ENCODING) {
1771 offset *= kUC16Size;
1772 }
1773 STATIC_ASSERT(kCharSize == 1);
1774 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1775 }
1776 Register scratch = scratch0();
1777 DCHECK(!scratch.is(string));
1778 DCHECK(!scratch.is(ToRegister(index)));
1779 // TODO(joransiu) : Fold Add into FieldMemOperand
1780 if (encoding == String::ONE_BYTE_ENCODING) {
1781 __ AddP(scratch, string, ToRegister(index));
1782 } else {
1783 STATIC_ASSERT(kUC16Size == 2);
1784 __ ShiftLeftP(scratch, ToRegister(index), Operand(1));
1785 __ AddP(scratch, string, scratch);
1786 }
1787 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1788}
1789
1790void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1791 String::Encoding encoding = instr->hydrogen()->encoding();
1792 Register string = ToRegister(instr->string());
1793 Register result = ToRegister(instr->result());
1794
1795 if (FLAG_debug_code) {
1796 Register scratch = scratch0();
1797 __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1798 __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1799
1800 __ AndP(scratch, scratch,
1801 Operand(kStringRepresentationMask | kStringEncodingMask));
1802 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1803 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1804 __ CmpP(scratch,
1805 Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
1806 : two_byte_seq_type));
1807 __ Check(eq, kUnexpectedStringType);
1808 }
1809
1810 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1811 if (encoding == String::ONE_BYTE_ENCODING) {
1812 __ llc(result, operand);
1813 } else {
1814 __ llh(result, operand);
1815 }
1816}
1817
1818void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1819 String::Encoding encoding = instr->hydrogen()->encoding();
1820 Register string = ToRegister(instr->string());
1821 Register value = ToRegister(instr->value());
1822
1823 if (FLAG_debug_code) {
1824 Register index = ToRegister(instr->index());
1825 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1826 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1827 int encoding_mask =
1828 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1829 ? one_byte_seq_type
1830 : two_byte_seq_type;
1831 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1832 }
1833
1834 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1835 if (encoding == String::ONE_BYTE_ENCODING) {
1836 __ stc(value, operand);
1837 } else {
1838 __ sth(value, operand);
1839 }
1840}
1841
1842void LCodeGen::DoAddI(LAddI* instr) {
1843 LOperand* left = instr->left();
1844 LOperand* right = instr->right();
1845 LOperand* result = instr->result();
1846 bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
1847 instr->hydrogen()->representation().IsExternal());
1848#if V8_TARGET_ARCH_S390X
1849 // The overflow detection needs to be tested on the lower 32-bits.
1850 // As a result, on 64-bit, we need to force 32-bit arithmetic operations
1851 // to set the CC overflow bit properly. The result is then sign-extended.
1852 bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1853#else
1854 bool checkOverflow = true;
1855#endif
1856
1857 if (right->IsConstantOperand()) {
1858 if (!isInteger || !checkOverflow)
1859 __ AddP(ToRegister(result), ToRegister(left), ToOperand(right));
1860 else
1861 __ Add32(ToRegister(result), ToRegister(left), ToOperand(right));
1862 } else if (right->IsRegister()) {
1863 if (!isInteger)
1864 __ AddP(ToRegister(result), ToRegister(left), ToRegister(right));
1865 else if (!checkOverflow)
1866 __ AddP_ExtendSrc(ToRegister(result), ToRegister(left),
1867 ToRegister(right));
1868 else
1869 __ Add32(ToRegister(result), ToRegister(left), ToRegister(right));
1870 } else {
1871 if (!left->Equals(instr->result()))
1872 __ LoadRR(ToRegister(result), ToRegister(left));
1873
1874 MemOperand mem = ToMemOperand(right);
1875 if (!isInteger) {
1876 __ AddP(ToRegister(result), mem);
1877 } else {
1878#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
1879 // We want to read the 32-bits directly from memory
1880 MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
1881#else
1882 MemOperand Upper32Mem = ToMemOperand(right);
1883#endif
1884 if (checkOverflow) {
1885 __ Add32(ToRegister(result), Upper32Mem);
1886 } else {
1887 __ AddP_ExtendSrc(ToRegister(result), Upper32Mem);
1888 }
1889 }
1890 }
1891
1892#if V8_TARGET_ARCH_S390X
1893 if (isInteger && checkOverflow)
1894 __ lgfr(ToRegister(result), ToRegister(result));
1895#endif
1896 // Doptimize on overflow
1897 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1898 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1899 }
1900}
1901
1902void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1903 LOperand* left = instr->left();
1904 LOperand* right = instr->right();
1905 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1906 Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
1907 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1908 Register left_reg = ToRegister(left);
1909 Register right_reg = EmitLoadRegister(right, ip);
1910 Register result_reg = ToRegister(instr->result());
1911 Label return_left, done;
1912#if V8_TARGET_ARCH_S390X
1913 if (instr->hydrogen_value()->representation().IsSmi()) {
1914#endif
1915 __ CmpP(left_reg, right_reg);
1916#if V8_TARGET_ARCH_S390X
1917 } else {
1918 __ Cmp32(left_reg, right_reg);
1919 }
1920#endif
1921 __ b(cond, &return_left, Label::kNear);
1922 __ Move(result_reg, right_reg);
1923 __ b(&done, Label::kNear);
1924 __ bind(&return_left);
1925 __ Move(result_reg, left_reg);
1926 __ bind(&done);
1927 } else {
1928 DCHECK(instr->hydrogen()->representation().IsDouble());
1929 DoubleRegister left_reg = ToDoubleRegister(left);
1930 DoubleRegister right_reg = ToDoubleRegister(right);
1931 DoubleRegister result_reg = ToDoubleRegister(instr->result());
1932 Label check_nan_left, check_zero, return_left, return_right, done;
1933 __ cdbr(left_reg, right_reg);
1934 __ bunordered(&check_nan_left, Label::kNear);
1935 __ beq(&check_zero);
1936 __ b(cond, &return_left, Label::kNear);
1937 __ b(&return_right, Label::kNear);
1938
1939 __ bind(&check_zero);
1940 __ lzdr(kDoubleRegZero);
1941 __ cdbr(left_reg, kDoubleRegZero);
1942 __ bne(&return_left, Label::kNear); // left == right != 0.
1943
1944 // At this point, both left and right are either 0 or -0.
1945 // N.B. The following works because +0 + -0 == +0
1946 if (operation == HMathMinMax::kMathMin) {
1947 // For min we want logical-or of sign bit: -(-L + -R)
1948 __ lcdbr(left_reg, left_reg);
1949 __ ldr(result_reg, left_reg);
1950 if (left_reg.is(right_reg)) {
1951 __ adbr(result_reg, right_reg);
1952 } else {
1953 __ sdbr(result_reg, right_reg);
1954 }
1955 __ lcdbr(result_reg, result_reg);
1956 } else {
1957 // For max we want logical-and of sign bit: (L + R)
1958 __ ldr(result_reg, left_reg);
1959 __ adbr(result_reg, right_reg);
1960 }
1961 __ b(&done, Label::kNear);
1962
1963 __ bind(&check_nan_left);
1964 __ cdbr(left_reg, left_reg);
1965 __ bunordered(&return_left, Label::kNear); // left == NaN.
1966
1967 __ bind(&return_right);
1968 if (!right_reg.is(result_reg)) {
1969 __ ldr(result_reg, right_reg);
1970 }
1971 __ b(&done, Label::kNear);
1972
1973 __ bind(&return_left);
1974 if (!left_reg.is(result_reg)) {
1975 __ ldr(result_reg, left_reg);
1976 }
1977 __ bind(&done);
1978 }
1979}
1980
1981void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1982 DoubleRegister left = ToDoubleRegister(instr->left());
1983 DoubleRegister right = ToDoubleRegister(instr->right());
1984 DoubleRegister result = ToDoubleRegister(instr->result());
1985 // All operations except MOD are computed in-place.
1986 DCHECK(instr->op() == Token::MOD || left.is(result));
1987 switch (instr->op()) {
1988 case Token::ADD:
1989 __ adbr(result, right);
1990 break;
1991 case Token::SUB:
1992 __ sdbr(result, right);
1993 break;
1994 case Token::MUL:
1995 __ mdbr(result, right);
1996 break;
1997 case Token::DIV:
1998 __ ddbr(result, right);
1999 break;
2000 case Token::MOD: {
2001 __ PrepareCallCFunction(0, 2, scratch0());
2002 __ MovToFloatParameters(left, right);
2003 __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
2004 0, 2);
2005 // Move the result in the double result register.
2006 __ MovFromFloatResult(result);
2007 break;
2008 }
2009 default:
2010 UNREACHABLE();
2011 break;
2012 }
2013}
2014
2015void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2016 DCHECK(ToRegister(instr->context()).is(cp));
2017 DCHECK(ToRegister(instr->left()).is(r3));
2018 DCHECK(ToRegister(instr->right()).is(r2));
2019 DCHECK(ToRegister(instr->result()).is(r2));
2020
2021 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
2022 CallCode(code, RelocInfo::CODE_TARGET, instr);
2023}
2024
2025template <class InstrType>
2026void LCodeGen::EmitBranch(InstrType instr, Condition cond) {
2027 int left_block = instr->TrueDestination(chunk_);
2028 int right_block = instr->FalseDestination(chunk_);
2029
2030 int next_block = GetNextEmittedBlock();
2031
2032 if (right_block == left_block || cond == al) {
2033 EmitGoto(left_block);
2034 } else if (left_block == next_block) {
2035 __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block));
2036 } else if (right_block == next_block) {
2037 __ b(cond, chunk_->GetAssemblyLabel(left_block));
2038 } else {
2039 __ b(cond, chunk_->GetAssemblyLabel(left_block));
2040 __ b(chunk_->GetAssemblyLabel(right_block));
2041 }
2042}
2043
2044template <class InstrType>
2045void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) {
2046 int true_block = instr->TrueDestination(chunk_);
2047 __ b(cond, chunk_->GetAssemblyLabel(true_block));
2048}
2049
2050template <class InstrType>
2051void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) {
2052 int false_block = instr->FalseDestination(chunk_);
2053 __ b(cond, chunk_->GetAssemblyLabel(false_block));
2054}
2055
2056void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
2057
2058void LCodeGen::DoBranch(LBranch* instr) {
2059 Representation r = instr->hydrogen()->value()->representation();
2060 DoubleRegister dbl_scratch = double_scratch0();
2061
2062 if (r.IsInteger32()) {
2063 DCHECK(!info()->IsStub());
2064 Register reg = ToRegister(instr->value());
2065 __ Cmp32(reg, Operand::Zero());
2066 EmitBranch(instr, ne);
2067 } else if (r.IsSmi()) {
2068 DCHECK(!info()->IsStub());
2069 Register reg = ToRegister(instr->value());
2070 __ CmpP(reg, Operand::Zero());
2071 EmitBranch(instr, ne);
2072 } else if (r.IsDouble()) {
2073 DCHECK(!info()->IsStub());
2074 DoubleRegister reg = ToDoubleRegister(instr->value());
2075 __ lzdr(kDoubleRegZero);
2076 __ cdbr(reg, kDoubleRegZero);
2077 // Test the double value. Zero and NaN are false.
2078 Condition lt_gt = static_cast<Condition>(lt | gt);
2079
2080 EmitBranch(instr, lt_gt);
2081 } else {
2082 DCHECK(r.IsTagged());
2083 Register reg = ToRegister(instr->value());
2084 HType type = instr->hydrogen()->value()->type();
2085 if (type.IsBoolean()) {
2086 DCHECK(!info()->IsStub());
2087 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2088 EmitBranch(instr, eq);
2089 } else if (type.IsSmi()) {
2090 DCHECK(!info()->IsStub());
2091 __ CmpP(reg, Operand::Zero());
2092 EmitBranch(instr, ne);
2093 } else if (type.IsJSArray()) {
2094 DCHECK(!info()->IsStub());
2095 EmitBranch(instr, al);
2096 } else if (type.IsHeapNumber()) {
2097 DCHECK(!info()->IsStub());
2098 __ ld(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2099 // Test the double value. Zero and NaN are false.
2100 __ lzdr(kDoubleRegZero);
2101 __ cdbr(dbl_scratch, kDoubleRegZero);
2102 Condition lt_gt = static_cast<Condition>(lt | gt);
2103 EmitBranch(instr, lt_gt);
2104 } else if (type.IsString()) {
2105 DCHECK(!info()->IsStub());
2106 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2107 __ CmpP(ip, Operand::Zero());
2108 EmitBranch(instr, ne);
2109 } else {
2110 ToBooleanICStub::Types expected =
2111 instr->hydrogen()->expected_input_types();
2112 // Avoid deopts in the case where we've never executed this path before.
2113 if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
2114
2115 if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
2116 // undefined -> false.
2117 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2118 __ beq(instr->FalseLabel(chunk_));
2119 }
2120 if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
2121 // Boolean -> its value.
2122 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2123 __ beq(instr->TrueLabel(chunk_));
2124 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2125 __ beq(instr->FalseLabel(chunk_));
2126 }
2127 if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
2128 // 'null' -> false.
2129 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2130 __ beq(instr->FalseLabel(chunk_));
2131 }
2132
2133 if (expected.Contains(ToBooleanICStub::SMI)) {
2134 // Smis: 0 -> false, all other -> true.
2135 __ CmpP(reg, Operand::Zero());
2136 __ beq(instr->FalseLabel(chunk_));
2137 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2138 } else if (expected.NeedsMap()) {
2139 // If we need a map later and have a Smi -> deopt.
2140 __ TestIfSmi(reg);
2141 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
2142 }
2143
2144 const Register map = scratch0();
2145 if (expected.NeedsMap()) {
2146 __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2147
2148 if (expected.CanBeUndetectable()) {
2149 // Undetectable -> false.
2150 __ tm(FieldMemOperand(map, Map::kBitFieldOffset),
2151 Operand(1 << Map::kIsUndetectable));
2152 __ bne(instr->FalseLabel(chunk_));
2153 }
2154 }
2155
2156 if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
2157 // spec object -> true.
2158 __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2159 __ bge(instr->TrueLabel(chunk_));
2160 }
2161
2162 if (expected.Contains(ToBooleanICStub::STRING)) {
2163 // String value -> false iff empty.
2164 Label not_string;
2165 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2166 __ bge(&not_string, Label::kNear);
2167 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2168 __ CmpP(ip, Operand::Zero());
2169 __ bne(instr->TrueLabel(chunk_));
2170 __ b(instr->FalseLabel(chunk_));
2171 __ bind(&not_string);
2172 }
2173
2174 if (expected.Contains(ToBooleanICStub::SYMBOL)) {
2175 // Symbol value -> true.
2176 __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2177 __ beq(instr->TrueLabel(chunk_));
2178 }
2179
2180 if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
2181 // SIMD value -> true.
2182 Label not_simd;
2183 __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
2184 __ beq(instr->TrueLabel(chunk_));
2185 }
2186
2187 if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
2188 // heap number -> false iff +0, -0, or NaN.
2189 Label not_heap_number;
2190 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2191 __ bne(&not_heap_number, Label::kNear);
2192 __ LoadDouble(dbl_scratch,
2193 FieldMemOperand(reg, HeapNumber::kValueOffset));
2194 __ lzdr(kDoubleRegZero);
2195 __ cdbr(dbl_scratch, kDoubleRegZero);
2196 __ bunordered(instr->FalseLabel(chunk_)); // NaN -> false.
2197 __ beq(instr->FalseLabel(chunk_)); // +0, -0 -> false.
2198 __ b(instr->TrueLabel(chunk_));
2199 __ bind(&not_heap_number);
2200 }
2201
2202 if (!expected.IsGeneric()) {
2203 // We've seen something for the first time -> deopt.
2204 // This can only happen if we are not generic already.
2205 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
2206 }
2207 }
2208 }
2209}
2210
2211void LCodeGen::EmitGoto(int block) {
2212 if (!IsNextEmittedBlock(block)) {
2213 __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
2214 }
2215}
2216
2217void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
2218
2219Condition LCodeGen::TokenToCondition(Token::Value op) {
2220 Condition cond = kNoCondition;
2221 switch (op) {
2222 case Token::EQ:
2223 case Token::EQ_STRICT:
2224 cond = eq;
2225 break;
2226 case Token::NE:
2227 case Token::NE_STRICT:
2228 cond = ne;
2229 break;
2230 case Token::LT:
2231 cond = lt;
2232 break;
2233 case Token::GT:
2234 cond = gt;
2235 break;
2236 case Token::LTE:
2237 cond = le;
2238 break;
2239 case Token::GTE:
2240 cond = ge;
2241 break;
2242 case Token::IN:
2243 case Token::INSTANCEOF:
2244 default:
2245 UNREACHABLE();
2246 }
2247 return cond;
2248}
2249
2250void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2251 LOperand* left = instr->left();
2252 LOperand* right = instr->right();
2253 bool is_unsigned =
2254 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2255 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2256 Condition cond = TokenToCondition(instr->op());
2257
2258 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2259 // We can statically evaluate the comparison.
2260 double left_val = ToDouble(LConstantOperand::cast(left));
2261 double right_val = ToDouble(LConstantOperand::cast(right));
2262 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2263 ? instr->TrueDestination(chunk_)
2264 : instr->FalseDestination(chunk_);
2265 EmitGoto(next_block);
2266 } else {
2267 if (instr->is_double()) {
2268 // Compare left and right operands as doubles and load the
2269 // resulting flags into the normal status register.
2270 __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right));
2271 // If a NaN is involved, i.e. the result is unordered,
2272 // jump to false block label.
2273 __ bunordered(instr->FalseLabel(chunk_));
2274 } else {
2275 if (right->IsConstantOperand()) {
2276 int32_t value = ToInteger32(LConstantOperand::cast(right));
2277 if (instr->hydrogen_value()->representation().IsSmi()) {
2278 if (is_unsigned) {
2279 __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2280 } else {
2281 __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2282 }
2283 } else {
2284 if (is_unsigned) {
2285 __ CmpLogical32(ToRegister(left), ToOperand(right));
2286 } else {
2287 __ Cmp32(ToRegister(left), ToOperand(right));
2288 }
2289 }
2290 } else if (left->IsConstantOperand()) {
2291 int32_t value = ToInteger32(LConstantOperand::cast(left));
2292 if (instr->hydrogen_value()->representation().IsSmi()) {
2293 if (is_unsigned) {
2294 __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2295 } else {
2296 __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2297 }
2298 } else {
2299 if (is_unsigned) {
2300 __ CmpLogical32(ToRegister(right), ToOperand(left));
2301 } else {
2302 __ Cmp32(ToRegister(right), ToOperand(left));
2303 }
2304 }
2305 // We commuted the operands, so commute the condition.
2306 cond = CommuteCondition(cond);
2307 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2308 if (is_unsigned) {
2309 __ CmpLogicalP(ToRegister(left), ToRegister(right));
2310 } else {
2311 __ CmpP(ToRegister(left), ToRegister(right));
2312 }
2313 } else {
2314 if (is_unsigned) {
2315 __ CmpLogical32(ToRegister(left), ToRegister(right));
2316 } else {
2317 __ Cmp32(ToRegister(left), ToRegister(right));
2318 }
2319 }
2320 }
2321 EmitBranch(instr, cond);
2322 }
2323}
2324
2325void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2326 Register left = ToRegister(instr->left());
2327 Register right = ToRegister(instr->right());
2328
2329 __ CmpP(left, right);
2330 EmitBranch(instr, eq);
2331}
2332
2333void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2334 if (instr->hydrogen()->representation().IsTagged()) {
2335 Register input_reg = ToRegister(instr->object());
2336 __ CmpP(input_reg, Operand(factory()->the_hole_value()));
2337 EmitBranch(instr, eq);
2338 return;
2339 }
2340
2341 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2342 __ cdbr(input_reg, input_reg);
2343 EmitFalseBranch(instr, ordered);
2344
2345 Register scratch = scratch0();
2346 // Convert to GPR and examine the upper 32 bits
2347 __ lgdr(scratch, input_reg);
2348 __ srlg(scratch, scratch, Operand(32));
2349 __ Cmp32(scratch, Operand(kHoleNanUpper32));
2350 EmitBranch(instr, eq);
2351}
2352
2353Condition LCodeGen::EmitIsString(Register input, Register temp1,
2354 Label* is_not_string,
2355 SmiCheck check_needed = INLINE_SMI_CHECK) {
2356 if (check_needed == INLINE_SMI_CHECK) {
2357 __ JumpIfSmi(input, is_not_string);
2358 }
2359 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2360
2361 return lt;
2362}
2363
2364void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2365 Register reg = ToRegister(instr->value());
2366 Register temp1 = ToRegister(instr->temp());
2367
2368 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2369 ? OMIT_SMI_CHECK
2370 : INLINE_SMI_CHECK;
2371 Condition true_cond =
2372 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2373
2374 EmitBranch(instr, true_cond);
2375}
2376
2377void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2378 Register input_reg = EmitLoadRegister(instr->value(), ip);
2379 __ TestIfSmi(input_reg);
2380 EmitBranch(instr, eq);
2381}
2382
2383void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2384 Register input = ToRegister(instr->value());
2385 Register temp = ToRegister(instr->temp());
2386
2387 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2388 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2389 }
2390 __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2391 __ tm(FieldMemOperand(temp, Map::kBitFieldOffset),
2392 Operand(1 << Map::kIsUndetectable));
2393 EmitBranch(instr, ne);
2394}
2395
2396static Condition ComputeCompareCondition(Token::Value op) {
2397 switch (op) {
2398 case Token::EQ_STRICT:
2399 case Token::EQ:
2400 return eq;
2401 case Token::LT:
2402 return lt;
2403 case Token::GT:
2404 return gt;
2405 case Token::LTE:
2406 return le;
2407 case Token::GTE:
2408 return ge;
2409 default:
2410 UNREACHABLE();
2411 return kNoCondition;
2412 }
2413}
2414
2415void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2416 DCHECK(ToRegister(instr->context()).is(cp));
2417 DCHECK(ToRegister(instr->left()).is(r3));
2418 DCHECK(ToRegister(instr->right()).is(r2));
2419
2420 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2421 CallCode(code, RelocInfo::CODE_TARGET, instr);
2422 __ CompareRoot(r2, Heap::kTrueValueRootIndex);
2423 EmitBranch(instr, eq);
2424}
2425
2426static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2427 InstanceType from = instr->from();
2428 InstanceType to = instr->to();
2429 if (from == FIRST_TYPE) return to;
2430 DCHECK(from == to || to == LAST_TYPE);
2431 return from;
2432}
2433
2434static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2435 InstanceType from = instr->from();
2436 InstanceType to = instr->to();
2437 if (from == to) return eq;
2438 if (to == LAST_TYPE) return ge;
2439 if (from == FIRST_TYPE) return le;
2440 UNREACHABLE();
2441 return eq;
2442}
2443
2444void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2445 Register scratch = scratch0();
2446 Register input = ToRegister(instr->value());
2447
2448 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2449 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2450 }
2451
2452 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2453 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2454}
2455
2456void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2457 Register input = ToRegister(instr->value());
2458 Register result = ToRegister(instr->result());
2459
2460 __ AssertString(input);
2461
2462 __ LoadlW(result, FieldMemOperand(input, String::kHashFieldOffset));
2463 __ IndexFromHash(result, result);
2464}
2465
2466void LCodeGen::DoHasCachedArrayIndexAndBranch(
2467 LHasCachedArrayIndexAndBranch* instr) {
2468 Register input = ToRegister(instr->value());
2469 Register scratch = scratch0();
2470
2471 __ LoadlW(scratch, FieldMemOperand(input, String::kHashFieldOffset));
2472 __ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
2473 __ AndP(r0, scratch);
2474 EmitBranch(instr, eq);
2475}
2476
2477// Branches to a label or falls through with the answer in flags. Trashes
2478// the temp registers, but not the input.
2479void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
2480 Handle<String> class_name, Register input,
2481 Register temp, Register temp2) {
2482 DCHECK(!input.is(temp));
2483 DCHECK(!input.is(temp2));
2484 DCHECK(!temp.is(temp2));
2485
2486 __ JumpIfSmi(input, is_false);
2487
2488 __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
2489 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2490 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2491 __ bge(is_true);
2492 } else {
2493 __ bge(is_false);
2494 }
2495
2496 // Check if the constructor in the map is a function.
2497 Register instance_type = ip;
2498 __ GetMapConstructor(temp, temp, temp2, instance_type);
2499
2500 // Objects with a non-function constructor have class 'Object'.
2501 __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
2502 if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2503 __ bne(is_true);
2504 } else {
2505 __ bne(is_false);
2506 }
2507
2508 // temp now contains the constructor function. Grab the
2509 // instance class name from there.
2510 __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2511 __ LoadP(temp,
2512 FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
2513 // The class name we are testing against is internalized since it's a literal.
2514 // The name in the constructor is internalized because of the way the context
2515 // is booted. This routine isn't expected to work for random API-created
2516 // classes and it doesn't have to because you can't access it with natives
2517 // syntax. Since both sides are internalized it is sufficient to use an
2518 // identity comparison.
2519 __ CmpP(temp, Operand(class_name));
2520 // End with the answer in flags.
2521}
2522
2523void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2524 Register input = ToRegister(instr->value());
2525 Register temp = scratch0();
2526 Register temp2 = ToRegister(instr->temp());
2527 Handle<String> class_name = instr->hydrogen()->class_name();
2528
2529 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2530 class_name, input, temp, temp2);
2531
2532 EmitBranch(instr, eq);
2533}
2534
2535void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2536 Register reg = ToRegister(instr->value());
2537 Register temp = ToRegister(instr->temp());
2538
2539 __ mov(temp, Operand(instr->map()));
2540 __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2541 EmitBranch(instr, eq);
2542}
2543
2544void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2545 DCHECK(ToRegister(instr->context()).is(cp));
2546 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2547 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2548 DCHECK(ToRegister(instr->result()).is(r2));
2549 InstanceOfStub stub(isolate());
2550 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2551}
2552
2553void LCodeGen::DoHasInPrototypeChainAndBranch(
2554 LHasInPrototypeChainAndBranch* instr) {
2555 Register const object = ToRegister(instr->object());
2556 Register const object_map = scratch0();
2557 Register const object_instance_type = ip;
2558 Register const object_prototype = object_map;
2559 Register const prototype = ToRegister(instr->prototype());
2560
2561 // The {object} must be a spec object. It's sufficient to know that {object}
2562 // is not a smi, since all other non-spec objects have {null} prototypes and
2563 // will be ruled out below.
2564 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2565 __ TestIfSmi(object);
2566 EmitFalseBranch(instr, eq);
2567 }
2568 // Loop through the {object}s prototype chain looking for the {prototype}.
2569 __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2570 Label loop;
2571 __ bind(&loop);
2572
2573 // Deoptimize if the object needs to be access checked.
2574 __ LoadlB(object_instance_type,
2575 FieldMemOperand(object_map, Map::kBitFieldOffset));
2576 __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
2577 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, cr0);
2578 // Deoptimize for proxies.
2579 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2580 DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2581 __ LoadP(object_prototype,
2582 FieldMemOperand(object_map, Map::kPrototypeOffset));
2583 __ CmpP(object_prototype, prototype);
2584 EmitTrueBranch(instr, eq);
2585 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2586 EmitFalseBranch(instr, eq);
2587 __ LoadP(object_map,
2588 FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2589 __ b(&loop);
2590}
2591
2592void LCodeGen::DoCmpT(LCmpT* instr) {
2593 DCHECK(ToRegister(instr->context()).is(cp));
2594 Token::Value op = instr->op();
2595
2596 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2597 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2598 // This instruction also signals no smi code inlined
2599 __ CmpP(r2, Operand::Zero());
2600
2601 Condition condition = ComputeCompareCondition(op);
2602 Label true_value, done;
2603
2604 __ b(condition, &true_value, Label::kNear);
2605
2606 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2607 __ b(&done, Label::kNear);
2608
2609 __ bind(&true_value);
2610 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2611
2612 __ bind(&done);
2613}
2614
2615void LCodeGen::DoReturn(LReturn* instr) {
2616 if (FLAG_trace && info()->IsOptimizing()) {
2617 // Push the return value on the stack as the parameter.
2618 // Runtime::TraceExit returns its parameter in r2. We're leaving the code
2619 // managed by the register allocator and tearing down the frame, it's
2620 // safe to write to the context register.
2621 __ push(r2);
2622 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2623 __ CallRuntime(Runtime::kTraceExit);
2624 }
2625 if (info()->saves_caller_doubles()) {
2626 RestoreCallerDoubles();
2627 }
2628 if (instr->has_constant_parameter_count()) {
2629 int parameter_count = ToInteger32(instr->constant_parameter_count());
2630 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2631 if (NeedsEagerFrame()) {
2632 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
2633 } else if (sp_delta != 0) {
2634 // TODO(joransiu): Clean this up into Macro Assembler
2635 if (sp_delta >= 0 && sp_delta < 4096)
2636 __ la(sp, MemOperand(sp, sp_delta));
2637 else
2638 __ lay(sp, MemOperand(sp, sp_delta));
2639 }
2640 } else {
2641 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2642 Register reg = ToRegister(instr->parameter_count());
2643 // The argument count parameter is a smi
2644 if (NeedsEagerFrame()) {
2645 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2646 }
2647 __ SmiToPtrArrayOffset(r0, reg);
2648 __ AddP(sp, sp, r0);
2649 }
2650
2651 __ Ret();
2652}
2653
2654template <class T>
2655void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2656 Register vector_register = ToRegister(instr->temp_vector());
2657 Register slot_register = LoadDescriptor::SlotRegister();
2658 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2659 DCHECK(slot_register.is(r2));
2660
2661 AllowDeferredHandleDereference vector_structure_check;
2662 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2663 __ Move(vector_register, vector);
2664 // No need to allocate this register.
2665 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2666 int index = vector->GetIndex(slot);
2667 __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
2668}
2669
2670template <class T>
2671void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2672 Register vector_register = ToRegister(instr->temp_vector());
2673 Register slot_register = ToRegister(instr->temp_slot());
2674
2675 AllowDeferredHandleDereference vector_structure_check;
2676 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2677 __ Move(vector_register, vector);
2678 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2679 int index = vector->GetIndex(slot);
2680 __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
2681}
2682
2683void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2684 DCHECK(ToRegister(instr->context()).is(cp));
2685 DCHECK(ToRegister(instr->global_object())
2686 .is(LoadDescriptor::ReceiverRegister()));
2687 DCHECK(ToRegister(instr->result()).is(r2));
2688
2689 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
2690 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2691 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2692 isolate(), instr->typeof_mode(), PREMONOMORPHIC)
2693 .code();
2694 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2695}
2696
2697void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2698 Register context = ToRegister(instr->context());
2699 Register result = ToRegister(instr->result());
2700 __ LoadP(result, ContextMemOperand(context, instr->slot_index()));
2701 if (instr->hydrogen()->RequiresHoleCheck()) {
2702 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2703 if (instr->hydrogen()->DeoptimizesOnHole()) {
2704 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2705 } else {
2706 Label skip;
2707 __ bne(&skip, Label::kNear);
2708 __ mov(result, Operand(factory()->undefined_value()));
2709 __ bind(&skip);
2710 }
2711 }
2712}
2713
2714void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2715 Register context = ToRegister(instr->context());
2716 Register value = ToRegister(instr->value());
2717 Register scratch = scratch0();
2718 MemOperand target = ContextMemOperand(context, instr->slot_index());
2719
2720 Label skip_assignment;
2721
2722 if (instr->hydrogen()->RequiresHoleCheck()) {
2723 __ LoadP(scratch, target);
2724 __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
2725 if (instr->hydrogen()->DeoptimizesOnHole()) {
2726 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2727 } else {
2728 __ bne(&skip_assignment);
2729 }
2730 }
2731
2732 __ StoreP(value, target);
2733 if (instr->hydrogen()->NeedsWriteBarrier()) {
2734 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2735 ? OMIT_SMI_CHECK
2736 : INLINE_SMI_CHECK;
2737 __ RecordWriteContextSlot(context, target.offset(), value, scratch,
2738 GetLinkRegisterState(), kSaveFPRegs,
2739 EMIT_REMEMBERED_SET, check_needed);
2740 }
2741
2742 __ bind(&skip_assignment);
2743}
2744
2745void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2746 HObjectAccess access = instr->hydrogen()->access();
2747 int offset = access.offset();
2748 Register object = ToRegister(instr->object());
2749
2750 if (access.IsExternalMemory()) {
2751 Register result = ToRegister(instr->result());
2752 MemOperand operand = MemOperand(object, offset);
2753 __ LoadRepresentation(result, operand, access.representation(), r0);
2754 return;
2755 }
2756
2757 if (instr->hydrogen()->representation().IsDouble()) {
2758 DCHECK(access.IsInobject());
2759 DoubleRegister result = ToDoubleRegister(instr->result());
2760 __ ld(result, FieldMemOperand(object, offset));
2761 return;
2762 }
2763
2764 Register result = ToRegister(instr->result());
2765 if (!access.IsInobject()) {
2766 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2767 object = result;
2768 }
2769
2770 Representation representation = access.representation();
2771
2772#if V8_TARGET_ARCH_S390X
2773 // 64-bit Smi optimization
2774 if (representation.IsSmi() &&
2775 instr->hydrogen()->representation().IsInteger32()) {
2776 // Read int value directly from upper half of the smi.
2777 offset = SmiWordOffset(offset);
2778 representation = Representation::Integer32();
2779 }
2780#endif
2781
2782 __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
2783 r0);
2784}
2785
2786void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2787 DCHECK(ToRegister(instr->context()).is(cp));
2788 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2789 DCHECK(ToRegister(instr->result()).is(r2));
2790
2791 // Name is always in r4.
2792 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
2793 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2794 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2795 isolate(), NOT_INSIDE_TYPEOF,
2796 instr->hydrogen()->initialization_state())
2797 .code();
2798 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2799}
2800
2801void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2802 Register scratch = scratch0();
2803 Register function = ToRegister(instr->function());
2804 Register result = ToRegister(instr->result());
2805
2806 // Get the prototype or initial map from the function.
2807 __ LoadP(result,
2808 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2809
2810 // Check that the function has a prototype or an initial map.
2811 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2812 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2813
2814 // If the function does not have an initial map, we're done.
2815 Label done;
2816 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2817 __ bne(&done, Label::kNear);
2818
2819 // Get the prototype from the initial map.
2820 __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
2821
2822 // All done.
2823 __ bind(&done);
2824}
2825
2826void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2827 Register result = ToRegister(instr->result());
2828 __ LoadRoot(result, instr->index());
2829}
2830
2831void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2832 Register arguments = ToRegister(instr->arguments());
2833 Register result = ToRegister(instr->result());
2834 // There are two words between the frame pointer and the last argument.
2835 // Subtracting from length accounts for one of them add one more.
2836 if (instr->length()->IsConstantOperand()) {
2837 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2838 if (instr->index()->IsConstantOperand()) {
2839 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2840 int index = (const_length - const_index) + 1;
2841 __ LoadP(result, MemOperand(arguments, index * kPointerSize));
2842 } else {
2843 Register index = ToRegister(instr->index());
2844 __ SubP(result, index, Operand(const_length + 1));
2845 __ LoadComplementRR(result, result);
2846 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2847 __ LoadP(result, MemOperand(arguments, result));
2848 }
2849 } else if (instr->index()->IsConstantOperand()) {
2850 Register length = ToRegister(instr->length());
2851 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2852 int loc = const_index - 1;
2853 if (loc != 0) {
2854 __ SubP(result, length, Operand(loc));
2855 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2856 __ LoadP(result, MemOperand(arguments, result));
2857 } else {
2858 __ ShiftLeftP(result, length, Operand(kPointerSizeLog2));
2859 __ LoadP(result, MemOperand(arguments, result));
2860 }
2861 } else {
2862 Register length = ToRegister(instr->length());
2863 Register index = ToRegister(instr->index());
2864 __ SubP(result, length, index);
2865 __ AddP(result, result, Operand(1));
2866 __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
2867 __ LoadP(result, MemOperand(arguments, result));
2868 }
2869}
2870
2871void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2872 Register external_pointer = ToRegister(instr->elements());
2873 Register key = no_reg;
2874 ElementsKind elements_kind = instr->elements_kind();
2875 bool key_is_constant = instr->key()->IsConstantOperand();
2876 int constant_key = 0;
2877 if (key_is_constant) {
2878 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2879 if (constant_key & 0xF0000000) {
2880 Abort(kArrayIndexConstantValueTooBig);
2881 }
2882 } else {
2883 key = ToRegister(instr->key());
2884 }
2885 int element_size_shift = ElementsKindToShiftSize(elements_kind);
2886 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2887 int base_offset = instr->base_offset();
2888 bool use_scratch = false;
2889
2890 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2891 DoubleRegister result = ToDoubleRegister(instr->result());
2892 if (key_is_constant) {
2893 base_offset += constant_key << element_size_shift;
2894 if (!is_int20(base_offset)) {
2895 __ mov(scratch0(), Operand(base_offset));
2896 base_offset = 0;
2897 use_scratch = true;
2898 }
2899 } else {
2900 __ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi);
2901 use_scratch = true;
2902 }
2903 if (elements_kind == FLOAT32_ELEMENTS) {
2904 if (!use_scratch) {
2905 __ ldeb(result, MemOperand(external_pointer, base_offset));
2906 } else {
2907 __ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset));
2908 }
2909 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2910 if (!use_scratch) {
2911 __ ld(result, MemOperand(external_pointer, base_offset));
2912 } else {
2913 __ ld(result, MemOperand(scratch0(), external_pointer, base_offset));
2914 }
2915 }
2916 } else {
2917 Register result = ToRegister(instr->result());
2918 MemOperand mem_operand =
2919 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
2920 constant_key, element_size_shift, base_offset);
2921 switch (elements_kind) {
2922 case INT8_ELEMENTS:
2923 __ LoadB(result, mem_operand);
2924 break;
2925 case UINT8_ELEMENTS:
2926 case UINT8_CLAMPED_ELEMENTS:
2927 __ LoadlB(result, mem_operand);
2928 break;
2929 case INT16_ELEMENTS:
2930 __ LoadHalfWordP(result, mem_operand);
2931 break;
2932 case UINT16_ELEMENTS:
2933 __ LoadLogicalHalfWordP(result, mem_operand);
2934 break;
2935 case INT32_ELEMENTS:
2936 __ LoadW(result, mem_operand, r0);
2937 break;
2938 case UINT32_ELEMENTS:
2939 __ LoadlW(result, mem_operand, r0);
2940 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2941 __ CmpLogical32(result, Operand(0x80000000));
2942 DeoptimizeIf(ge, instr, Deoptimizer::kNegativeValue);
2943 }
2944 break;
2945 case FLOAT32_ELEMENTS:
2946 case FLOAT64_ELEMENTS:
2947 case FAST_HOLEY_DOUBLE_ELEMENTS:
2948 case FAST_HOLEY_ELEMENTS:
2949 case FAST_HOLEY_SMI_ELEMENTS:
2950 case FAST_DOUBLE_ELEMENTS:
2951 case FAST_ELEMENTS:
2952 case FAST_SMI_ELEMENTS:
2953 case DICTIONARY_ELEMENTS:
2954 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2955 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2956 case FAST_STRING_WRAPPER_ELEMENTS:
2957 case SLOW_STRING_WRAPPER_ELEMENTS:
2958 case NO_ELEMENTS:
2959 UNREACHABLE();
2960 break;
2961 }
2962 }
2963}
2964
2965void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2966 Register elements = ToRegister(instr->elements());
2967 bool key_is_constant = instr->key()->IsConstantOperand();
2968 Register key = no_reg;
2969 DoubleRegister result = ToDoubleRegister(instr->result());
2970 Register scratch = scratch0();
2971
2972 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2973 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2974 int constant_key = 0;
2975 if (key_is_constant) {
2976 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2977 if (constant_key & 0xF0000000) {
2978 Abort(kArrayIndexConstantValueTooBig);
2979 }
2980 } else {
2981 key = ToRegister(instr->key());
2982 }
2983
2984 bool use_scratch = false;
2985 intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize;
2986 if (!key_is_constant) {
2987 use_scratch = true;
2988 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
2989 }
2990
2991 // Memory references support up to 20-bits signed displacement in RXY form
2992 // Include Register::kExponentOffset in check, so we are guaranteed not to
2993 // overflow displacement later.
2994 if (!is_int20(base_offset + Register::kExponentOffset)) {
2995 use_scratch = true;
2996 if (key_is_constant) {
2997 __ mov(scratch, Operand(base_offset));
2998 } else {
2999 __ AddP(scratch, Operand(base_offset));
3000 }
3001 base_offset = 0;
3002 }
3003
3004 if (!use_scratch) {
3005 __ ld(result, MemOperand(elements, base_offset));
3006 } else {
3007 __ ld(result, MemOperand(scratch, elements, base_offset));
3008 }
3009
3010 if (instr->hydrogen()->RequiresHoleCheck()) {
3011 if (!use_scratch) {
3012 __ LoadlW(r0,
3013 MemOperand(elements, base_offset + Register::kExponentOffset));
3014 } else {
3015 __ LoadlW(r0, MemOperand(scratch, elements,
3016 base_offset + Register::kExponentOffset));
3017 }
3018 __ Cmp32(r0, Operand(kHoleNanUpper32));
3019 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
3020 }
3021}
3022
3023void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3024 HLoadKeyed* hinstr = instr->hydrogen();
3025 Register elements = ToRegister(instr->elements());
3026 Register result = ToRegister(instr->result());
3027 Register scratch = scratch0();
3028 int offset = instr->base_offset();
3029
3030 if (instr->key()->IsConstantOperand()) {
3031 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3032 offset += ToInteger32(const_operand) * kPointerSize;
3033 } else {
3034 Register key = ToRegister(instr->key());
3035 // Even though the HLoadKeyed instruction forces the input
3036 // representation for the key to be an integer, the input gets replaced
3037 // during bound check elimination with the index argument to the bounds
3038 // check, which can be tagged, so that case must be handled here, too.
3039 if (hinstr->key()->representation().IsSmi()) {
3040 __ SmiToPtrArrayOffset(scratch, key);
3041 } else {
3042 __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
3043 }
3044 }
3045
3046 bool requires_hole_check = hinstr->RequiresHoleCheck();
3047 Representation representation = hinstr->representation();
3048
3049#if V8_TARGET_ARCH_S390X
3050 // 64-bit Smi optimization
3051 if (representation.IsInteger32() &&
3052 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
3053 DCHECK(!requires_hole_check);
3054 // Read int value directly from upper half of the smi.
3055 offset = SmiWordOffset(offset);
3056 }
3057#endif
3058
3059 if (instr->key()->IsConstantOperand()) {
3060 __ LoadRepresentation(result, MemOperand(elements, offset), representation,
3061 r1);
3062 } else {
3063 __ LoadRepresentation(result, MemOperand(scratch, elements, offset),
3064 representation, r1);
3065 }
3066
3067 // Check for the hole value.
3068 if (requires_hole_check) {
3069 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
3070 __ TestIfSmi(result);
3071 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
3072 } else {
3073 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3074 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
3075 }
3076 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3077 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3078 Label done;
3079 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3080 __ CmpP(result, scratch);
3081 __ bne(&done);
3082 if (info()->IsStub()) {
3083 // A stub can safely convert the hole to undefined only if the array
3084 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3085 // it needs to bail out.
3086 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3087 __ LoadP(result, FieldMemOperand(result, Cell::kValueOffset));
3088 __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kArrayProtectorValid), r0);
3089 DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3090 }
3091 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3092 __ bind(&done);
3093 }
3094}
3095
3096void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3097 if (instr->is_fixed_typed_array()) {
3098 DoLoadKeyedExternalArray(instr);
3099 } else if (instr->hydrogen()->representation().IsDouble()) {
3100 DoLoadKeyedFixedDoubleArray(instr);
3101 } else {
3102 DoLoadKeyedFixedArray(instr);
3103 }
3104}
3105
3106MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
3107 bool key_is_constant, bool key_is_smi,
3108 int constant_key,
3109 int element_size_shift,
3110 int base_offset) {
3111 Register scratch = scratch0();
3112
3113 if (key_is_constant) {
3114 int offset = (base_offset + (constant_key << element_size_shift));
3115 if (!is_int20(offset)) {
3116 __ mov(scratch, Operand(offset));
3117 return MemOperand(base, scratch);
3118 } else {
3119 return MemOperand(base,
3120 (constant_key << element_size_shift) + base_offset);
3121 }
3122 }
3123
3124 bool needs_shift =
3125 (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
3126
3127 if (needs_shift) {
3128 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
3129 } else {
3130 scratch = key;
3131 }
3132
3133 if (!is_int20(base_offset)) {
3134 __ AddP(scratch, Operand(base_offset));
3135 base_offset = 0;
3136 }
3137 return MemOperand(scratch, base, base_offset);
3138}
3139
3140void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3141 DCHECK(ToRegister(instr->context()).is(cp));
3142 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3143 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3144
3145 if (instr->hydrogen()->HasVectorAndSlot()) {
3146 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3147 }
3148
3149 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3150 isolate(), instr->hydrogen()->initialization_state())
3151 .code();
3152 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3153}
3154
3155void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3156 Register scratch = scratch0();
3157 Register result = ToRegister(instr->result());
3158
3159 if (instr->hydrogen()->from_inlined()) {
3160 __ lay(result, MemOperand(sp, -2 * kPointerSize));
3161 } else if (instr->hydrogen()->arguments_adaptor()) {
3162 // Check if the calling frame is an arguments adaptor frame.
3163 Label done, adapted;
3164 __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3165 __ LoadP(
3166 result,
3167 MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
3168 __ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3169
3170 // Result is the frame pointer for the frame if not adapted and for the real
3171 // frame below the adaptor frame if adapted.
3172 __ beq(&adapted, Label::kNear);
3173 __ LoadRR(result, fp);
3174 __ b(&done, Label::kNear);
3175
3176 __ bind(&adapted);
3177 __ LoadRR(result, scratch);
3178 __ bind(&done);
3179 } else {
3180 __ LoadRR(result, fp);
3181 }
3182}
3183
3184void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3185 Register elem = ToRegister(instr->elements());
3186 Register result = ToRegister(instr->result());
3187
3188 Label done;
3189
3190 // If no arguments adaptor frame the number of arguments is fixed.
3191 __ CmpP(fp, elem);
3192 __ mov(result, Operand(scope()->num_parameters()));
3193 __ beq(&done, Label::kNear);
3194
3195 // Arguments adaptor frame present. Get argument length from there.
3196 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3197 __ LoadP(result,
3198 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3199 __ SmiUntag(result);
3200
3201 // Argument length is in result register.
3202 __ bind(&done);
3203}
3204
3205void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3206 Register receiver = ToRegister(instr->receiver());
3207 Register function = ToRegister(instr->function());
3208 Register result = ToRegister(instr->result());
3209 Register scratch = scratch0();
3210
3211 // If the receiver is null or undefined, we have to pass the global
3212 // object as a receiver to normal functions. Values have to be
3213 // passed unchanged to builtins and strict-mode functions.
3214 Label global_object, result_in_receiver;
3215
3216 if (!instr->hydrogen()->known_function()) {
3217 // Do not transform the receiver to object for strict mode
3218 // functions or builtins.
3219 __ LoadP(scratch,
3220 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3221 __ LoadlW(scratch, FieldMemOperand(
3222 scratch, SharedFunctionInfo::kCompilerHintsOffset));
3223 __ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
3224 (1 << SharedFunctionInfo::kNativeBit)));
3225 __ bne(&result_in_receiver, Label::kNear);
3226 }
3227
3228 // Normal function. Replace undefined or null with global receiver.
3229 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
3230 __ beq(&global_object, Label::kNear);
3231 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
3232 __ beq(&global_object, Label::kNear);
3233
3234 // Deoptimize if the receiver is not a JS object.
3235 __ TestIfSmi(receiver);
3236 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
3237 __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3238 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
3239
3240 __ b(&result_in_receiver, Label::kNear);
3241 __ bind(&global_object);
3242 __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
3243 __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3244 __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3245
3246 if (result.is(receiver)) {
3247 __ bind(&result_in_receiver);
3248 } else {
3249 Label result_ok;
3250 __ b(&result_ok, Label::kNear);
3251 __ bind(&result_in_receiver);
3252 __ LoadRR(result, receiver);
3253 __ bind(&result_ok);
3254 }
3255}
3256
3257void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3258 Register receiver = ToRegister(instr->receiver());
3259 Register function = ToRegister(instr->function());
3260 Register length = ToRegister(instr->length());
3261 Register elements = ToRegister(instr->elements());
3262 Register scratch = scratch0();
3263 DCHECK(receiver.is(r2)); // Used for parameter count.
3264 DCHECK(function.is(r3)); // Required by InvokeFunction.
3265 DCHECK(ToRegister(instr->result()).is(r2));
3266
3267 // Copy the arguments to this function possibly from the
3268 // adaptor frame below it.
3269 const uint32_t kArgumentsLimit = 1 * KB;
3270 __ CmpLogicalP(length, Operand(kArgumentsLimit));
3271 DeoptimizeIf(gt, instr, Deoptimizer::kTooManyArguments);
3272
3273 // Push the receiver and use the register to keep the original
3274 // number of arguments.
3275 __ push(receiver);
3276 __ LoadRR(receiver, length);
3277 // The arguments are at a one pointer size offset from elements.
3278 __ AddP(elements, Operand(1 * kPointerSize));
3279
3280 // Loop through the arguments pushing them onto the execution
3281 // stack.
3282 Label invoke, loop;
3283 // length is a small non-negative integer, due to the test above.
3284 __ CmpP(length, Operand::Zero());
3285 __ beq(&invoke, Label::kNear);
3286 __ bind(&loop);
3287 __ ShiftLeftP(r1, length, Operand(kPointerSizeLog2));
3288 __ LoadP(scratch, MemOperand(elements, r1));
3289 __ push(scratch);
3290 __ BranchOnCount(length, &loop);
3291
3292 __ bind(&invoke);
3293
3294 InvokeFlag flag = CALL_FUNCTION;
3295 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3296 DCHECK(!info()->saves_caller_doubles());
3297 // TODO(ishell): drop current frame before pushing arguments to the stack.
3298 flag = JUMP_FUNCTION;
3299 ParameterCount actual(r2);
3300 // It is safe to use r5, r6 and r7 as scratch registers here given that
3301 // 1) we are not going to return to caller function anyway,
3302 // 2) r5 (new.target) will be initialized below.
3303 PrepareForTailCall(actual, r5, r6, r7);
3304 }
3305
3306 DCHECK(instr->HasPointerMap());
3307 LPointerMap* pointers = instr->pointer_map();
3308 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3309 // The number of arguments is stored in receiver which is r2, as expected
3310 // by InvokeFunction.
3311 ParameterCount actual(receiver);
3312 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3313}
3314
3315void LCodeGen::DoPushArgument(LPushArgument* instr) {
3316 LOperand* argument = instr->value();
3317 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3318 Abort(kDoPushArgumentNotImplementedForDoubleType);
3319 } else {
3320 Register argument_reg = EmitLoadRegister(argument, ip);
3321 __ push(argument_reg);
3322 }
3323}
3324
3325void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
3326
3327void LCodeGen::DoThisFunction(LThisFunction* instr) {
3328 Register result = ToRegister(instr->result());
3329 __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3330}
3331
3332void LCodeGen::DoContext(LContext* instr) {
3333 // If there is a non-return use, the context must be moved to a register.
3334 Register result = ToRegister(instr->result());
3335 if (info()->IsOptimizing()) {
3336 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3337 } else {
3338 // If there is no frame, the context must be in cp.
3339 DCHECK(result.is(cp));
3340 }
3341}
3342
3343void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3344 DCHECK(ToRegister(instr->context()).is(cp));
3345 __ Move(scratch0(), instr->hydrogen()->pairs());
3346 __ push(scratch0());
3347 __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
3348 __ push(scratch0());
3349 CallRuntime(Runtime::kDeclareGlobals, instr);
3350}
3351
3352void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3353 int formal_parameter_count, int arity,
3354 bool is_tail_call, LInstruction* instr) {
3355 bool dont_adapt_arguments =
3356 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3357 bool can_invoke_directly =
3358 dont_adapt_arguments || formal_parameter_count == arity;
3359
3360 Register function_reg = r3;
3361
3362 LPointerMap* pointers = instr->pointer_map();
3363
3364 if (can_invoke_directly) {
3365 // Change context.
3366 __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3367
3368 // Always initialize new target and number of actual arguments.
3369 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
3370 __ mov(r2, Operand(arity));
3371
3372 bool is_self_call = function.is_identical_to(info()->closure());
3373
3374 // Invoke function.
3375 if (is_self_call) {
3376 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3377 if (is_tail_call) {
3378 __ Jump(self, RelocInfo::CODE_TARGET);
3379 } else {
3380 __ Call(self, RelocInfo::CODE_TARGET);
3381 }
3382 } else {
3383 __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3384 if (is_tail_call) {
3385 __ JumpToJSEntry(ip);
3386 } else {
3387 __ CallJSEntry(ip);
3388 }
3389 }
3390
3391 if (!is_tail_call) {
3392 // Set up deoptimization.
3393 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3394 }
3395 } else {
3396 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3397 ParameterCount actual(arity);
3398 ParameterCount expected(formal_parameter_count);
3399 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3400 __ InvokeFunction(function_reg, expected, actual, flag, generator);
3401 }
3402}
3403
3404void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3405 DCHECK(instr->context() != NULL);
3406 DCHECK(ToRegister(instr->context()).is(cp));
3407 Register input = ToRegister(instr->value());
3408 Register result = ToRegister(instr->result());
3409 Register scratch = scratch0();
3410
3411 // Deoptimize if not a heap number.
3412 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3413 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
3414 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3415
3416 Label done;
3417 Register exponent = scratch0();
3418 scratch = no_reg;
3419 __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3420 // Check the sign of the argument. If the argument is positive, just
3421 // return it.
3422 __ Cmp32(exponent, Operand::Zero());
3423 // Move the input to the result if necessary.
3424 __ Move(result, input);
3425 __ bge(&done);
3426
3427 // Input is negative. Reverse its sign.
3428 // Preserve the value of all registers.
3429 {
3430 PushSafepointRegistersScope scope(this);
3431
3432 // Registers were saved at the safepoint, so we can use
3433 // many scratch registers.
3434 Register tmp1 = input.is(r3) ? r2 : r3;
3435 Register tmp2 = input.is(r4) ? r2 : r4;
3436 Register tmp3 = input.is(r5) ? r2 : r5;
3437 Register tmp4 = input.is(r6) ? r2 : r6;
3438
3439 // exponent: floating point exponent value.
3440
3441 Label allocated, slow;
3442 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3443 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3444 __ b(&allocated);
3445
3446 // Slow case: Call the runtime system to do the number allocation.
3447 __ bind(&slow);
3448
3449 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3450 instr->context());
3451 // Set the pointer to the new heap number in tmp.
3452 if (!tmp1.is(r2)) __ LoadRR(tmp1, r2);
3453 // Restore input_reg after call to runtime.
3454 __ LoadFromSafepointRegisterSlot(input, input);
3455 __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3456
3457 __ bind(&allocated);
3458 // exponent: floating point exponent value.
3459 // tmp1: allocated heap number.
3460
3461 // Clear the sign bit.
3462 __ nilf(exponent, Operand(~HeapNumber::kSignMask));
3463 __ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3464 __ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3465 __ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3466
3467 __ StoreToSafepointRegisterSlot(tmp1, result);
3468 }
3469
3470 __ bind(&done);
3471}
3472
3473void LCodeGen::EmitMathAbs(LMathAbs* instr) {
3474 Register input = ToRegister(instr->value());
3475 Register result = ToRegister(instr->result());
3476 Label done;
3477 __ CmpP(input, Operand::Zero());
3478 __ Move(result, input);
3479 __ bge(&done, Label::kNear);
3480 __ LoadComplementRR(result, result);
3481 // Deoptimize on overflow.
3482 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
3483 __ bind(&done);
3484}
3485
3486#if V8_TARGET_ARCH_S390X
3487void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
3488 Register input = ToRegister(instr->value());
3489 Register result = ToRegister(instr->result());
3490 Label done;
3491 __ Cmp32(input, Operand::Zero());
3492 __ Move(result, input);
3493 __ bge(&done, Label::kNear);
3494
3495 // Deoptimize on overflow.
3496 __ Cmp32(input, Operand(0x80000000));
3497 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3498
3499 __ LoadComplementRR(result, result);
3500 __ bind(&done);
3501}
3502#endif
3503
3504void LCodeGen::DoMathAbs(LMathAbs* instr) {
3505 // Class for deferred case.
3506 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3507 public:
3508 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3509 : LDeferredCode(codegen), instr_(instr) {}
3510 void Generate() override {
3511 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3512 }
3513 LInstruction* instr() override { return instr_; }
3514
3515 private:
3516 LMathAbs* instr_;
3517 };
3518
3519 Representation r = instr->hydrogen()->value()->representation();
3520 if (r.IsDouble()) {
3521 DoubleRegister input = ToDoubleRegister(instr->value());
3522 DoubleRegister result = ToDoubleRegister(instr->result());
3523 __ lpdbr(result, input);
3524#if V8_TARGET_ARCH_S390X
3525 } else if (r.IsInteger32()) {
3526 EmitInteger32MathAbs(instr);
3527 } else if (r.IsSmi()) {
3528#else
3529 } else if (r.IsSmiOrInteger32()) {
3530#endif
3531 EmitMathAbs(instr);
3532 } else {
3533 // Representation is tagged.
3534 DeferredMathAbsTaggedHeapNumber* deferred =
3535 new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3536 Register input = ToRegister(instr->value());
3537 // Smi check.
3538 __ JumpIfNotSmi(input, deferred->entry());
3539 // If smi, handle it directly.
3540 EmitMathAbs(instr);
3541 __ bind(deferred->exit());
3542 }
3543}
3544
3545void LCodeGen::DoMathFloor(LMathFloor* instr) {
3546 DoubleRegister input = ToDoubleRegister(instr->value());
3547 Register result = ToRegister(instr->result());
3548 Register input_high = scratch0();
3549 Register scratch = ip;
3550 Label done, exact;
3551
3552 __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
3553 &exact);
3554 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3555
3556 __ bind(&exact);
3557 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3558 // Test for -0.
3559 __ CmpP(result, Operand::Zero());
3560 __ bne(&done, Label::kNear);
3561 __ Cmp32(input_high, Operand::Zero());
3562 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
3563 }
3564 __ bind(&done);
3565}
3566
3567void LCodeGen::DoMathRound(LMathRound* instr) {
3568 DoubleRegister input = ToDoubleRegister(instr->value());
3569 Register result = ToRegister(instr->result());
3570 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3571 DoubleRegister input_plus_dot_five = double_scratch1;
3572 Register scratch1 = scratch0();
3573 Register scratch2 = ip;
3574 DoubleRegister dot_five = double_scratch0();
3575 Label convert, done;
3576
3577 __ LoadDoubleLiteral(dot_five, 0.5, r0);
3578 __ lpdbr(double_scratch1, input);
3579 __ cdbr(double_scratch1, dot_five);
3580 DeoptimizeIf(unordered, instr, Deoptimizer::kLostPrecisionOrNaN);
3581 // If input is in [-0.5, -0], the result is -0.
3582 // If input is in [+0, +0.5[, the result is +0.
3583 // If the input is +0.5, the result is 1.
3584 __ bgt(&convert, Label::kNear); // Out of [-0.5, +0.5].
3585 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3586 // [-0.5, -0] (negative) yields minus zero.
3587 __ TestDoubleSign(input, scratch1);
3588 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
3589 }
3590 Label return_zero;
3591 __ cdbr(input, dot_five);
3592 __ bne(&return_zero, Label::kNear);
3593 __ LoadImmP(result, Operand(1)); // +0.5.
3594 __ b(&done, Label::kNear);
3595 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3596 // flag kBailoutOnMinusZero.
3597 __ bind(&return_zero);
3598 __ LoadImmP(result, Operand::Zero());
3599 __ b(&done, Label::kNear);
3600
3601 __ bind(&convert);
3602 __ ldr(input_plus_dot_five, input);
3603 __ adbr(input_plus_dot_five, dot_five);
3604 // Reuse dot_five (double_scratch0) as we no longer need this value.
3605 __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
3606 double_scratch0(), &done, &done);
3607 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3608 __ bind(&done);
3609}
3610
3611void LCodeGen::DoMathFround(LMathFround* instr) {
3612 DoubleRegister input_reg = ToDoubleRegister(instr->value());
3613 DoubleRegister output_reg = ToDoubleRegister(instr->result());
3614
3615 // Round double to float
3616 __ ledbr(output_reg, input_reg);
3617 // Extend from float to double
3618 __ ldebr(output_reg, output_reg);
3619}
3620
3621void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3622 DoubleRegister input = ToDoubleRegister(instr->value());
3623 DoubleRegister result = ToDoubleRegister(instr->result());
3624 __ sqdbr(result, input);
3625}
3626
3627void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3628 DoubleRegister input = ToDoubleRegister(instr->value());
3629 DoubleRegister result = ToDoubleRegister(instr->result());
3630 DoubleRegister temp = double_scratch0();
3631
3632 // Note that according to ECMA-262 15.8.2.13:
3633 // Math.pow(-Infinity, 0.5) == Infinity
3634 // Math.sqrt(-Infinity) == NaN
3635 Label skip, done;
3636
3637 __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
3638 __ cdbr(input, temp);
3639 __ bne(&skip, Label::kNear);
3640 __ lcdbr(result, temp);
3641 __ b(&done, Label::kNear);
3642
3643 // Add +0 to convert -0 to +0.
3644 __ bind(&skip);
3645 __ ldr(result, input);
3646 __ lzdr(kDoubleRegZero);
3647 __ adbr(result, kDoubleRegZero);
3648 __ sqdbr(result, result);
3649 __ bind(&done);
3650}
3651
3652void LCodeGen::DoPower(LPower* instr) {
3653 Representation exponent_type = instr->hydrogen()->right()->representation();
3654 // Having marked this as a call, we can use any registers.
3655 // Just make sure that the input/output registers are the expected ones.
3656 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3657 DCHECK(!instr->right()->IsDoubleRegister() ||
3658 ToDoubleRegister(instr->right()).is(d2));
3659 DCHECK(!instr->right()->IsRegister() ||
3660 ToRegister(instr->right()).is(tagged_exponent));
3661 DCHECK(ToDoubleRegister(instr->left()).is(d1));
3662 DCHECK(ToDoubleRegister(instr->result()).is(d3));
3663
3664 if (exponent_type.IsSmi()) {
3665 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3666 __ CallStub(&stub);
3667 } else if (exponent_type.IsTagged()) {
3668 Label no_deopt;
3669 __ JumpIfSmi(tagged_exponent, &no_deopt);
3670 __ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3671 __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
3672 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3673 __ bind(&no_deopt);
3674 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3675 __ CallStub(&stub);
3676 } else if (exponent_type.IsInteger32()) {
3677 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3678 __ CallStub(&stub);
3679 } else {
3680 DCHECK(exponent_type.IsDouble());
3681 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3682 __ CallStub(&stub);
3683 }
3684}
3685
3686void LCodeGen::DoMathExp(LMathExp* instr) {
3687 DoubleRegister input = ToDoubleRegister(instr->value());
3688 DoubleRegister result = ToDoubleRegister(instr->result());
3689 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3690 DoubleRegister double_scratch2 = double_scratch0();
3691 Register temp1 = ToRegister(instr->temp1());
3692 Register temp2 = ToRegister(instr->temp2());
3693
3694 MathExpGenerator::EmitMathExp(masm(), input, result, double_scratch1,
3695 double_scratch2, temp1, temp2, scratch0());
3696}
3697
3698void LCodeGen::DoMathLog(LMathLog* instr) {
3699 __ PrepareCallCFunction(0, 1, scratch0());
3700 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3701 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 0,
3702 1);
3703 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3704}
3705
3706void LCodeGen::DoMathClz32(LMathClz32* instr) {
3707 Register input = ToRegister(instr->value());
3708 Register result = ToRegister(instr->result());
3709 Label done;
3710 __ llgfr(result, input);
3711 __ flogr(r0, result);
3712 __ LoadRR(result, r0);
3713 __ CmpP(r0, Operand::Zero());
3714 __ beq(&done, Label::kNear);
3715 __ SubP(result, Operand(32));
3716 __ bind(&done);
3717}
3718
3719void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3720 Register scratch1, Register scratch2,
3721 Register scratch3) {
3722#if DEBUG
3723 if (actual.is_reg()) {
3724 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3725 } else {
3726 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3727 }
3728#endif
3729 if (FLAG_code_comments) {
3730 if (actual.is_reg()) {
3731 Comment(";;; PrepareForTailCall, actual: %s {", actual.reg().ToString());
3732 } else {
3733 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3734 }
3735 }
3736
3737 // Check if next frame is an arguments adaptor frame.
3738 Register caller_args_count_reg = scratch1;
3739 Label no_arguments_adaptor, formal_parameter_count_loaded;
3740 __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3741 __ LoadP(scratch3,
3742 MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3743 __ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3744 __ bne(&no_arguments_adaptor);
3745
3746 // Drop current frame and load arguments count from arguments adaptor frame.
3747 __ LoadRR(fp, scratch2);
3748 __ LoadP(caller_args_count_reg,
3749 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3750 __ SmiUntag(caller_args_count_reg);
3751 __ b(&formal_parameter_count_loaded);
3752
3753 __ bind(&no_arguments_adaptor);
3754 // Load caller's formal parameter count
3755 __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3756
3757 __ bind(&formal_parameter_count_loaded);
3758 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3759
3760 Comment(";;; }");
3761}
3762
3763void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3764 HInvokeFunction* hinstr = instr->hydrogen();
3765 DCHECK(ToRegister(instr->context()).is(cp));
3766 DCHECK(ToRegister(instr->function()).is(r3));
3767 DCHECK(instr->HasPointerMap());
3768
3769 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3770
3771 if (is_tail_call) {
3772 DCHECK(!info()->saves_caller_doubles());
3773 ParameterCount actual(instr->arity());
3774 // It is safe to use r5, r6 and r7 as scratch registers here given that
3775 // 1) we are not going to return to caller function anyway,
3776 // 2) r5 (new.target) will be initialized below.
3777 PrepareForTailCall(actual, r5, r6, r7);
3778 }
3779
3780 Handle<JSFunction> known_function = hinstr->known_function();
3781 if (known_function.is_null()) {
3782 LPointerMap* pointers = instr->pointer_map();
3783 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3784 ParameterCount actual(instr->arity());
3785 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3786 __ InvokeFunction(r3, no_reg, actual, flag, generator);
3787 } else {
3788 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3789 instr->arity(), is_tail_call, instr);
3790 }
3791}
3792
3793void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3794 DCHECK(ToRegister(instr->result()).is(r2));
3795
3796 if (instr->hydrogen()->IsTailCall()) {
3797 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3798
3799 if (instr->target()->IsConstantOperand()) {
3800 LConstantOperand* target = LConstantOperand::cast(instr->target());
3801 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3802 __ Jump(code, RelocInfo::CODE_TARGET);
3803 } else {
3804 DCHECK(instr->target()->IsRegister());
3805 Register target = ToRegister(instr->target());
3806 __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3807 __ JumpToJSEntry(ip);
3808 }
3809 } else {
3810 LPointerMap* pointers = instr->pointer_map();
3811 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3812
3813 if (instr->target()->IsConstantOperand()) {
3814 LConstantOperand* target = LConstantOperand::cast(instr->target());
3815 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3816 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3817 __ Call(code, RelocInfo::CODE_TARGET);
3818 } else {
3819 DCHECK(instr->target()->IsRegister());
3820 Register target = ToRegister(instr->target());
3821 generator.BeforeCall(__ CallSize(target));
3822 __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3823 __ CallJSEntry(ip);
3824 }
3825 generator.AfterCall();
3826 }
3827}
3828
3829void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3830 DCHECK(ToRegister(instr->context()).is(cp));
3831 DCHECK(ToRegister(instr->constructor()).is(r3));
3832 DCHECK(ToRegister(instr->result()).is(r2));
3833
3834 __ mov(r2, Operand(instr->arity()));
3835 if (instr->arity() == 1) {
3836 // We only need the allocation site for the case we have a length argument.
3837 // The case may bail out to the runtime, which will determine the correct
3838 // elements kind with the site.
3839 __ Move(r4, instr->hydrogen()->site());
3840 } else {
3841 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
3842 }
3843 ElementsKind kind = instr->hydrogen()->elements_kind();
3844 AllocationSiteOverrideMode override_mode =
3845 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3846 ? DISABLE_ALLOCATION_SITES
3847 : DONT_OVERRIDE;
3848
3849 if (instr->arity() == 0) {
3850 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3851 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3852 } else if (instr->arity() == 1) {
3853 Label done;
3854 if (IsFastPackedElementsKind(kind)) {
3855 Label packed_case;
3856 // We might need a change here
3857 // look at the first argument
3858 __ LoadP(r7, MemOperand(sp, 0));
3859 __ CmpP(r7, Operand::Zero());
3860 __ beq(&packed_case, Label::kNear);
3861
3862 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3863 ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
3864 override_mode);
3865 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3866 __ b(&done, Label::kNear);
3867 __ bind(&packed_case);
3868 }
3869
3870 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3871 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3872 __ bind(&done);
3873 } else {
3874 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3875 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3876 }
3877}
3878
3879void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3880 CallRuntime(instr->function(), instr->arity(), instr);
3881}
3882
3883void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3884 Register function = ToRegister(instr->function());
3885 Register code_object = ToRegister(instr->code_object());
3886 __ lay(code_object,
3887 MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag));
3888 __ StoreP(code_object,
3889 FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
3890}
3891
3892void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3893 Register result = ToRegister(instr->result());
3894 Register base = ToRegister(instr->base_object());
3895 if (instr->offset()->IsConstantOperand()) {
3896 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3897 __ lay(result, MemOperand(base, ToInteger32(offset)));
3898 } else {
3899 Register offset = ToRegister(instr->offset());
3900 __ lay(result, MemOperand(base, offset));
3901 }
3902}
3903
3904void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3905 HStoreNamedField* hinstr = instr->hydrogen();
3906 Representation representation = instr->representation();
3907
3908 Register object = ToRegister(instr->object());
3909 Register scratch = scratch0();
3910 HObjectAccess access = hinstr->access();
3911 int offset = access.offset();
3912
3913 if (access.IsExternalMemory()) {
3914 Register value = ToRegister(instr->value());
3915 MemOperand operand = MemOperand(object, offset);
3916 __ StoreRepresentation(value, operand, representation, r0);
3917 return;
3918 }
3919
3920 __ AssertNotSmi(object);
3921
3922#if V8_TARGET_ARCH_S390X
3923 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
3924 IsInteger32(LConstantOperand::cast(instr->value())));
3925#else
3926 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
3927 IsSmi(LConstantOperand::cast(instr->value())));
3928#endif
3929 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3930 DCHECK(access.IsInobject());
3931 DCHECK(!hinstr->has_transition());
3932 DCHECK(!hinstr->NeedsWriteBarrier());
3933 DoubleRegister value = ToDoubleRegister(instr->value());
3934 DCHECK(offset >= 0);
3935 __ std(value, FieldMemOperand(object, offset));
3936 return;
3937 }
3938
3939 if (hinstr->has_transition()) {
3940 Handle<Map> transition = hinstr->transition_map();
3941 AddDeprecationDependency(transition);
3942 __ mov(scratch, Operand(transition));
3943 __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
3944 if (hinstr->NeedsWriteBarrierForMap()) {
3945 Register temp = ToRegister(instr->temp());
3946 // Update the write barrier for the map field.
3947 __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
3948 kSaveFPRegs);
3949 }
3950 }
3951
3952 // Do the store.
3953 Register record_dest = object;
3954 Register record_value = no_reg;
3955 Register record_scratch = scratch;
3956#if V8_TARGET_ARCH_S390X
3957 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3958 DCHECK(access.IsInobject());
3959 DoubleRegister value = ToDoubleRegister(instr->value());
3960 __ std(value, FieldMemOperand(object, offset));
3961 if (hinstr->NeedsWriteBarrier()) {
3962 record_value = ToRegister(instr->value());
3963 }
3964 } else {
3965 if (representation.IsSmi() &&
3966 hinstr->value()->representation().IsInteger32()) {
3967 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3968 // 64-bit Smi optimization
3969 // Store int value directly to upper half of the smi.
3970 offset = SmiWordOffset(offset);
3971 representation = Representation::Integer32();
3972 }
3973#endif
3974 if (access.IsInobject()) {
3975 Register value = ToRegister(instr->value());
3976 MemOperand operand = FieldMemOperand(object, offset);
3977 __ StoreRepresentation(value, operand, representation, r0);
3978 record_value = value;
3979 } else {
3980 Register value = ToRegister(instr->value());
3981 __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3982 MemOperand operand = FieldMemOperand(scratch, offset);
3983 __ StoreRepresentation(value, operand, representation, r0);
3984 record_dest = scratch;
3985 record_value = value;
3986 record_scratch = object;
3987 }
3988#if V8_TARGET_ARCH_S390X
3989 }
3990#endif
3991
3992 if (hinstr->NeedsWriteBarrier()) {
3993 __ RecordWriteField(record_dest, offset, record_value, record_scratch,
3994 GetLinkRegisterState(), kSaveFPRegs,
3995 EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
3996 hinstr->PointersToHereCheckForValue());
3997 }
3998}
3999
4000void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4001 DCHECK(ToRegister(instr->context()).is(cp));
4002 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4003 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4004
4005 if (instr->hydrogen()->HasVectorAndSlot()) {
4006 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
4007 }
4008
4009 __ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
4010 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
4011 isolate(), instr->language_mode(),
4012 instr->hydrogen()->initialization_state())
4013 .code();
4014 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4015}
4016
4017void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4018 Representation representation = instr->hydrogen()->length()->representation();
4019 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
4020 DCHECK(representation.IsSmiOrInteger32());
4021
4022 Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
4023 if (instr->length()->IsConstantOperand()) {
4024 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
4025 Register index = ToRegister(instr->index());
4026 if (representation.IsSmi()) {
4027 __ CmpLogicalP(index, Operand(Smi::FromInt(length)));
4028 } else {
4029 __ CmpLogical32(index, Operand(length));
4030 }
4031 cc = CommuteCondition(cc);
4032 } else if (instr->index()->IsConstantOperand()) {
4033 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
4034 Register length = ToRegister(instr->length());
4035 if (representation.IsSmi()) {
4036 __ CmpLogicalP(length, Operand(Smi::FromInt(index)));
4037 } else {
4038 __ CmpLogical32(length, Operand(index));
4039 }
4040 } else {
4041 Register index = ToRegister(instr->index());
4042 Register length = ToRegister(instr->length());
4043 if (representation.IsSmi()) {
4044 __ CmpLogicalP(length, index);
4045 } else {
4046 __ CmpLogical32(length, index);
4047 }
4048 }
4049 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4050 Label done;
4051 __ b(NegateCondition(cc), &done, Label::kNear);
4052 __ stop("eliminated bounds check failed");
4053 __ bind(&done);
4054 } else {
4055 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
4056 }
4057}
4058
4059void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4060 Register external_pointer = ToRegister(instr->elements());
4061 Register key = no_reg;
4062 ElementsKind elements_kind = instr->elements_kind();
4063 bool key_is_constant = instr->key()->IsConstantOperand();
4064 int constant_key = 0;
4065 if (key_is_constant) {
4066 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4067 if (constant_key & 0xF0000000) {
4068 Abort(kArrayIndexConstantValueTooBig);
4069 }
4070 } else {
4071 key = ToRegister(instr->key());
4072 }
4073 int element_size_shift = ElementsKindToShiftSize(elements_kind);
4074 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4075 int base_offset = instr->base_offset();
4076
4077 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
4078 Register address = scratch0();
4079 DoubleRegister value(ToDoubleRegister(instr->value()));
4080 if (key_is_constant) {
4081 if (constant_key != 0) {
4082 base_offset += constant_key << element_size_shift;
4083 if (!is_int20(base_offset)) {
4084 __ mov(address, Operand(base_offset));
4085 __ AddP(address, external_pointer);
4086 } else {
4087 __ AddP(address, external_pointer, Operand(base_offset));
4088 }
4089 base_offset = 0;
4090 } else {
4091 address = external_pointer;
4092 }
4093 } else {
4094 __ IndexToArrayOffset(address, key, element_size_shift, key_is_smi);
4095 __ AddP(address, external_pointer);
4096 }
4097 if (elements_kind == FLOAT32_ELEMENTS) {
4098 __ ledbr(double_scratch0(), value);
4099 __ StoreFloat32(double_scratch0(), MemOperand(address, base_offset));
4100 } else { // Storing doubles, not floats.
4101 __ StoreDouble(value, MemOperand(address, base_offset));
4102 }
4103 } else {
4104 Register value(ToRegister(instr->value()));
4105 MemOperand mem_operand =
4106 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
4107 constant_key, element_size_shift, base_offset);
4108 switch (elements_kind) {
4109 case UINT8_ELEMENTS:
4110 case UINT8_CLAMPED_ELEMENTS:
4111 case INT8_ELEMENTS:
4112 if (key_is_constant) {
4113 __ StoreByte(value, mem_operand, r0);
4114 } else {
4115 __ StoreByte(value, mem_operand);
4116 }
4117 break;
4118 case INT16_ELEMENTS:
4119 case UINT16_ELEMENTS:
4120 if (key_is_constant) {
4121 __ StoreHalfWord(value, mem_operand, r0);
4122 } else {
4123 __ StoreHalfWord(value, mem_operand);
4124 }
4125 break;
4126 case INT32_ELEMENTS:
4127 case UINT32_ELEMENTS:
4128 if (key_is_constant) {
4129 __ StoreW(value, mem_operand, r0);
4130 } else {
4131 __ StoreW(value, mem_operand);
4132 }
4133 break;
4134 case FLOAT32_ELEMENTS:
4135 case FLOAT64_ELEMENTS:
4136 case FAST_DOUBLE_ELEMENTS:
4137 case FAST_ELEMENTS:
4138 case FAST_SMI_ELEMENTS:
4139 case FAST_HOLEY_DOUBLE_ELEMENTS:
4140 case FAST_HOLEY_ELEMENTS:
4141 case FAST_HOLEY_SMI_ELEMENTS:
4142 case DICTIONARY_ELEMENTS:
4143 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4144 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4145 case FAST_STRING_WRAPPER_ELEMENTS:
4146 case SLOW_STRING_WRAPPER_ELEMENTS:
4147 case NO_ELEMENTS:
4148 UNREACHABLE();
4149 break;
4150 }
4151 }
4152}
4153
4154void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4155 DoubleRegister value = ToDoubleRegister(instr->value());
4156 Register elements = ToRegister(instr->elements());
4157 Register key = no_reg;
4158 Register scratch = scratch0();
4159 DoubleRegister double_scratch = double_scratch0();
4160 bool key_is_constant = instr->key()->IsConstantOperand();
4161 int constant_key = 0;
4162
4163 // Calculate the effective address of the slot in the array to store the
4164 // double value.
4165 if (key_is_constant) {
4166 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4167 if (constant_key & 0xF0000000) {
4168 Abort(kArrayIndexConstantValueTooBig);
4169 }
4170 } else {
4171 key = ToRegister(instr->key());
4172 }
4173 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4174 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4175 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
4176 bool use_scratch = false;
4177 intptr_t address_offset = base_offset;
4178
4179 if (key_is_constant) {
4180 // Memory references support up to 20-bits signed displacement in RXY form
4181 if (!is_int20((address_offset))) {
4182 __ mov(scratch, Operand(address_offset));
4183 address_offset = 0;
4184 use_scratch = true;
4185 }
4186 } else {
4187 use_scratch = true;
4188 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
4189 // Memory references support up to 20-bits signed displacement in RXY form
4190 if (!is_int20((address_offset))) {
4191 __ AddP(scratch, Operand(address_offset));
4192 address_offset = 0;
4193 }
4194 }
4195
4196 if (instr->NeedsCanonicalization()) {
4197 // Turn potential sNaN value into qNaN.
4198 __ CanonicalizeNaN(double_scratch, value);
4199 DCHECK(address_offset >= 0);
4200 if (use_scratch)
4201 __ std(double_scratch, MemOperand(scratch, elements, address_offset));
4202 else
4203 __ std(double_scratch, MemOperand(elements, address_offset));
4204 } else {
4205 if (use_scratch)
4206 __ std(value, MemOperand(scratch, elements, address_offset));
4207 else
4208 __ std(value, MemOperand(elements, address_offset));
4209 }
4210}
4211
4212void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4213 HStoreKeyed* hinstr = instr->hydrogen();
4214 Register value = ToRegister(instr->value());
4215 Register elements = ToRegister(instr->elements());
4216 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4217 Register scratch = scratch0();
4218 int offset = instr->base_offset();
4219
4220 // Do the store.
4221 if (instr->key()->IsConstantOperand()) {
4222 DCHECK(!hinstr->NeedsWriteBarrier());
4223 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4224 offset += ToInteger32(const_operand) * kPointerSize;
4225 } else {
4226 // Even though the HLoadKeyed instruction forces the input
4227 // representation for the key to be an integer, the input gets replaced
4228 // during bound check elimination with the index argument to the bounds
4229 // check, which can be tagged, so that case must be handled here, too.
4230 if (hinstr->key()->representation().IsSmi()) {
4231 __ SmiToPtrArrayOffset(scratch, key);
4232 } else {
4233 if (instr->hydrogen()->IsDehoisted() ||
4234 !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
4235#if V8_TARGET_ARCH_S390X
4236 // If array access is dehoisted, the key, being an int32, can contain
4237 // a negative value, as needs to be sign-extended to 64-bit for
4238 // memory access.
4239 __ lgfr(key, key);
4240#endif
4241 __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
4242 } else {
4243 // Small optimization to reduce pathlength. After Bounds Check,
4244 // the key is guaranteed to be non-negative. Leverage RISBG,
4245 // which also performs zero-extension.
4246 __ risbg(scratch, key, Operand(32 - kPointerSizeLog2),
4247 Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2),
4248 true);
4249 }
4250 }
4251 }
4252
4253 Representation representation = hinstr->value()->representation();
4254
4255#if V8_TARGET_ARCH_S390X
4256 // 64-bit Smi optimization
4257 if (representation.IsInteger32()) {
4258 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4259 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4260 // Store int value directly to upper half of the smi.
4261 offset = SmiWordOffset(offset);
4262 }
4263#endif
4264
4265 if (instr->key()->IsConstantOperand()) {
4266 __ StoreRepresentation(value, MemOperand(elements, offset), representation,
4267 scratch);
4268 } else {
4269 __ StoreRepresentation(value, MemOperand(scratch, elements, offset),
4270 representation, r0);
4271 }
4272
4273 if (hinstr->NeedsWriteBarrier()) {
4274 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4275 ? OMIT_SMI_CHECK
4276 : INLINE_SMI_CHECK;
4277 // Compute address of modified element and store it into key register.
4278 if (instr->key()->IsConstantOperand()) {
4279 __ lay(key, MemOperand(elements, offset));
4280 } else {
4281 __ lay(key, MemOperand(scratch, elements, offset));
4282 }
4283 __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
4284 EMIT_REMEMBERED_SET, check_needed,
4285 hinstr->PointersToHereCheckForValue());
4286 }
4287}
4288
4289void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4290 // By cases: external, fast double
4291 if (instr->is_fixed_typed_array()) {
4292 DoStoreKeyedExternalArray(instr);
4293 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4294 DoStoreKeyedFixedDoubleArray(instr);
4295 } else {
4296 DoStoreKeyedFixedArray(instr);
4297 }
4298}
4299
4300void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4301 DCHECK(ToRegister(instr->context()).is(cp));
4302 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4303 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4304 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4305
4306 if (instr->hydrogen()->HasVectorAndSlot()) {
4307 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4308 }
4309
4310 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4311 isolate(), instr->language_mode(),
4312 instr->hydrogen()->initialization_state())
4313 .code();
4314 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4315}
4316
4317void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4318 class DeferredMaybeGrowElements final : public LDeferredCode {
4319 public:
4320 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4321 : LDeferredCode(codegen), instr_(instr) {}
4322 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4323 LInstruction* instr() override { return instr_; }
4324
4325 private:
4326 LMaybeGrowElements* instr_;
4327 };
4328
4329 Register result = r2;
4330 DeferredMaybeGrowElements* deferred =
4331 new (zone()) DeferredMaybeGrowElements(this, instr);
4332 LOperand* key = instr->key();
4333 LOperand* current_capacity = instr->current_capacity();
4334
4335 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4336 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4337 DCHECK(key->IsConstantOperand() || key->IsRegister());
4338 DCHECK(current_capacity->IsConstantOperand() ||
4339 current_capacity->IsRegister());
4340
4341 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4342 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4343 int32_t constant_capacity =
4344 ToInteger32(LConstantOperand::cast(current_capacity));
4345 if (constant_key >= constant_capacity) {
4346 // Deferred case.
4347 __ b(deferred->entry());
4348 }
4349 } else if (key->IsConstantOperand()) {
4350 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4351 __ Cmp32(ToRegister(current_capacity), Operand(constant_key));
4352 __ ble(deferred->entry());
4353 } else if (current_capacity->IsConstantOperand()) {
4354 int32_t constant_capacity =
4355 ToInteger32(LConstantOperand::cast(current_capacity));
4356 __ Cmp32(ToRegister(key), Operand(constant_capacity));
4357 __ bge(deferred->entry());
4358 } else {
4359 __ Cmp32(ToRegister(key), ToRegister(current_capacity));
4360 __ bge(deferred->entry());
4361 }
4362
4363 if (instr->elements()->IsRegister()) {
4364 __ Move(result, ToRegister(instr->elements()));
4365 } else {
4366 __ LoadP(result, ToMemOperand(instr->elements()));
4367 }
4368
4369 __ bind(deferred->exit());
4370}
4371
4372void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4373 // TODO(3095996): Get rid of this. For now, we need to make the
4374 // result register contain a valid pointer because it is already
4375 // contained in the register pointer map.
4376 Register result = r2;
4377 __ LoadImmP(result, Operand::Zero());
4378
4379 // We have to call a stub.
4380 {
4381 PushSafepointRegistersScope scope(this);
4382 if (instr->object()->IsRegister()) {
4383 __ Move(result, ToRegister(instr->object()));
4384 } else {
4385 __ LoadP(result, ToMemOperand(instr->object()));
4386 }
4387
4388 LOperand* key = instr->key();
4389 if (key->IsConstantOperand()) {
4390 __ LoadSmiLiteral(r5, ToSmi(LConstantOperand::cast(key)));
4391 } else {
4392 __ SmiTag(r5, ToRegister(key));
4393 }
4394
4395 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4396 instr->hydrogen()->kind());
4397 __ CallStub(&stub);
4398 RecordSafepointWithLazyDeopt(
4399 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4400 __ StoreToSafepointRegisterSlot(result, result);
4401 }
4402
4403 // Deopt on smi, which means the elements array changed to dictionary mode.
4404 __ TestIfSmi(result);
4405 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
4406}
4407
4408void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4409 Register object_reg = ToRegister(instr->object());
4410 Register scratch = scratch0();
4411
4412 Handle<Map> from_map = instr->original_map();
4413 Handle<Map> to_map = instr->transitioned_map();
4414 ElementsKind from_kind = instr->from_kind();
4415 ElementsKind to_kind = instr->to_kind();
4416
4417 Label not_applicable;
4418 __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4419 __ CmpP(scratch, Operand(from_map));
4420 __ bne(&not_applicable);
4421
4422 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4423 Register new_map_reg = ToRegister(instr->new_map_temp());
4424 __ mov(new_map_reg, Operand(to_map));
4425 __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4426 // Write barrier.
4427 __ RecordWriteForMap(object_reg, new_map_reg, scratch,
4428 GetLinkRegisterState(), kDontSaveFPRegs);
4429 } else {
4430 DCHECK(ToRegister(instr->context()).is(cp));
4431 DCHECK(object_reg.is(r2));
4432 PushSafepointRegistersScope scope(this);
4433 __ Move(r3, to_map);
4434 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4435 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4436 __ CallStub(&stub);
4437 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4438 Safepoint::kLazyDeopt);
4439 }
4440 __ bind(&not_applicable);
4441}
4442
4443void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4444 Register object = ToRegister(instr->object());
4445 Register temp1 = ToRegister(instr->temp1());
4446 Register temp2 = ToRegister(instr->temp2());
4447 Label no_memento_found;
4448 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
4449 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
4450 __ bind(&no_memento_found);
4451}
4452
4453void LCodeGen::DoStringAdd(LStringAdd* instr) {
4454 DCHECK(ToRegister(instr->context()).is(cp));
4455 DCHECK(ToRegister(instr->left()).is(r3));
4456 DCHECK(ToRegister(instr->right()).is(r2));
4457 StringAddStub stub(isolate(), instr->hydrogen()->flags(),
4458 instr->hydrogen()->pretenure_flag());
4459 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4460}
4461
4462void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4463 class DeferredStringCharCodeAt final : public LDeferredCode {
4464 public:
4465 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4466 : LDeferredCode(codegen), instr_(instr) {}
4467 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4468 LInstruction* instr() override { return instr_; }
4469
4470 private:
4471 LStringCharCodeAt* instr_;
4472 };
4473
4474 DeferredStringCharCodeAt* deferred =
4475 new (zone()) DeferredStringCharCodeAt(this, instr);
4476
4477 StringCharLoadGenerator::Generate(
4478 masm(), ToRegister(instr->string()), ToRegister(instr->index()),
4479 ToRegister(instr->result()), deferred->entry());
4480 __ bind(deferred->exit());
4481}
4482
4483void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4484 Register string = ToRegister(instr->string());
4485 Register result = ToRegister(instr->result());
4486 Register scratch = scratch0();
4487
4488 // TODO(3095996): Get rid of this. For now, we need to make the
4489 // result register contain a valid pointer because it is already
4490 // contained in the register pointer map.
4491 __ LoadImmP(result, Operand::Zero());
4492
4493 PushSafepointRegistersScope scope(this);
4494 __ push(string);
4495 // Push the index as a smi. This is safe because of the checks in
4496 // DoStringCharCodeAt above.
4497 if (instr->index()->IsConstantOperand()) {
4498 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4499 __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
4500 __ push(scratch);
4501 } else {
4502 Register index = ToRegister(instr->index());
4503 __ SmiTag(index);
4504 __ push(index);
4505 }
4506 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4507 instr->context());
4508 __ AssertSmi(r2);
4509 __ SmiUntag(r2);
4510 __ StoreToSafepointRegisterSlot(r2, result);
4511}
4512
4513void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4514 class DeferredStringCharFromCode final : public LDeferredCode {
4515 public:
4516 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4517 : LDeferredCode(codegen), instr_(instr) {}
4518 void Generate() override {
4519 codegen()->DoDeferredStringCharFromCode(instr_);
4520 }
4521 LInstruction* instr() override { return instr_; }
4522
4523 private:
4524 LStringCharFromCode* instr_;
4525 };
4526
4527 DeferredStringCharFromCode* deferred =
4528 new (zone()) DeferredStringCharFromCode(this, instr);
4529
4530 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4531 Register char_code = ToRegister(instr->char_code());
4532 Register result = ToRegister(instr->result());
4533 DCHECK(!char_code.is(result));
4534
4535 __ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode));
4536 __ bgt(deferred->entry());
4537 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4538 __ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2));
4539 __ AddP(result, r0);
4540 __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4541 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4542 __ beq(deferred->entry());
4543 __ bind(deferred->exit());
4544}
4545
4546void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4547 Register char_code = ToRegister(instr->char_code());
4548 Register result = ToRegister(instr->result());
4549
4550 // TODO(3095996): Get rid of this. For now, we need to make the
4551 // result register contain a valid pointer because it is already
4552 // contained in the register pointer map.
4553 __ LoadImmP(result, Operand::Zero());
4554
4555 PushSafepointRegistersScope scope(this);
4556 __ SmiTag(char_code);
4557 __ push(char_code);
4558 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4559 instr->context());
4560 __ StoreToSafepointRegisterSlot(r2, result);
4561}
4562
4563void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4564 LOperand* input = instr->value();
4565 DCHECK(input->IsRegister() || input->IsStackSlot());
4566 LOperand* output = instr->result();
4567 DCHECK(output->IsDoubleRegister());
4568 if (input->IsStackSlot()) {
4569 Register scratch = scratch0();
4570 __ LoadP(scratch, ToMemOperand(input));
4571 __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
4572 } else {
4573 __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
4574 }
4575}
4576
4577void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4578 LOperand* input = instr->value();
4579 LOperand* output = instr->result();
4580 __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
4581}
4582
4583void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4584 class DeferredNumberTagI final : public LDeferredCode {
4585 public:
4586 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4587 : LDeferredCode(codegen), instr_(instr) {}
4588 void Generate() override {
4589 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4590 instr_->temp2(), SIGNED_INT32);
4591 }
4592 LInstruction* instr() override { return instr_; }
4593
4594 private:
4595 LNumberTagI* instr_;
4596 };
4597
4598 Register src = ToRegister(instr->value());
4599 Register dst = ToRegister(instr->result());
4600
4601 DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
4602#if V8_TARGET_ARCH_S390X
4603 __ SmiTag(dst, src);
4604#else
4605 // Add src to itself to defect SMI overflow.
4606 __ Add32(dst, src, src);
4607 __ b(overflow, deferred->entry());
4608#endif
4609 __ bind(deferred->exit());
4610}
4611
4612void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4613 class DeferredNumberTagU final : public LDeferredCode {
4614 public:
4615 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4616 : LDeferredCode(codegen), instr_(instr) {}
4617 void Generate() override {
4618 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4619 instr_->temp2(), UNSIGNED_INT32);
4620 }
4621 LInstruction* instr() override { return instr_; }
4622
4623 private:
4624 LNumberTagU* instr_;
4625 };
4626
4627 Register input = ToRegister(instr->value());
4628 Register result = ToRegister(instr->result());
4629
4630 DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
4631 __ CmpLogicalP(input, Operand(Smi::kMaxValue));
4632 __ bgt(deferred->entry());
4633 __ SmiTag(result, input);
4634 __ bind(deferred->exit());
4635}
4636
4637void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
4638 LOperand* temp1, LOperand* temp2,
4639 IntegerSignedness signedness) {
4640 Label done, slow;
4641 Register src = ToRegister(value);
4642 Register dst = ToRegister(instr->result());
4643 Register tmp1 = scratch0();
4644 Register tmp2 = ToRegister(temp1);
4645 Register tmp3 = ToRegister(temp2);
4646 DoubleRegister dbl_scratch = double_scratch0();
4647
4648 if (signedness == SIGNED_INT32) {
4649 // There was overflow, so bits 30 and 31 of the original integer
4650 // disagree. Try to allocate a heap number in new space and store
4651 // the value in there. If that fails, call the runtime system.
4652 if (dst.is(src)) {
4653 __ SmiUntag(src, dst);
4654 __ xilf(src, Operand(HeapNumber::kSignMask));
4655 }
4656 __ ConvertIntToDouble(src, dbl_scratch);
4657 } else {
4658 __ ConvertUnsignedIntToDouble(src, dbl_scratch);
4659 }
4660
4661 if (FLAG_inline_new) {
4662 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4663 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4664 __ b(&done);
4665 }
4666
4667 // Slow case: Call the runtime system to do the number allocation.
4668 __ bind(&slow);
4669 {
4670 // TODO(3095996): Put a valid pointer value in the stack slot where the
4671 // result register is stored, as this register is in the pointer map, but
4672 // contains an integer value.
4673 __ LoadImmP(dst, Operand::Zero());
4674
4675 // Preserve the value of all registers.
4676 PushSafepointRegistersScope scope(this);
4677
4678 // NumberTagI and NumberTagD use the context from the frame, rather than
4679 // the environment's HContext or HInlinedContext value.
4680 // They only call Runtime::kAllocateHeapNumber.
4681 // The corresponding HChange instructions are added in a phase that does
4682 // not have easy access to the local context.
4683 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4684 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4685 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4686 Safepoint::kNoLazyDeopt);
4687 __ StoreToSafepointRegisterSlot(r2, dst);
4688 }
4689
4690 // Done. Put the value in dbl_scratch into the value of the allocated heap
4691 // number.
4692 __ bind(&done);
4693 __ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4694}
4695
4696void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4697 class DeferredNumberTagD final : public LDeferredCode {
4698 public:
4699 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4700 : LDeferredCode(codegen), instr_(instr) {}
4701 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4702 LInstruction* instr() override { return instr_; }
4703
4704 private:
4705 LNumberTagD* instr_;
4706 };
4707
4708 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4709 Register scratch = scratch0();
4710 Register reg = ToRegister(instr->result());
4711 Register temp1 = ToRegister(instr->temp());
4712 Register temp2 = ToRegister(instr->temp2());
4713
4714 DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
4715 if (FLAG_inline_new) {
4716 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4717 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4718 } else {
4719 __ b(deferred->entry());
4720 }
4721 __ bind(deferred->exit());
4722 __ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4723}
4724
4725void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4726 // TODO(3095996): Get rid of this. For now, we need to make the
4727 // result register contain a valid pointer because it is already
4728 // contained in the register pointer map.
4729 Register reg = ToRegister(instr->result());
4730 __ LoadImmP(reg, Operand::Zero());
4731
4732 PushSafepointRegistersScope scope(this);
4733 // NumberTagI and NumberTagD use the context from the frame, rather than
4734 // the environment's HContext or HInlinedContext value.
4735 // They only call Runtime::kAllocateHeapNumber.
4736 // The corresponding HChange instructions are added in a phase that does
4737 // not have easy access to the local context.
4738 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4739 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4740 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4741 Safepoint::kNoLazyDeopt);
4742 __ StoreToSafepointRegisterSlot(r2, reg);
4743}
4744
4745void LCodeGen::DoSmiTag(LSmiTag* instr) {
4746 HChange* hchange = instr->hydrogen();
4747 Register input = ToRegister(instr->value());
4748 Register output = ToRegister(instr->result());
4749 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4750 hchange->value()->CheckFlag(HValue::kUint32)) {
4751 __ TestUnsignedSmiCandidate(input, r0);
4752 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, cr0);
4753 }
4754#if !V8_TARGET_ARCH_S390X
4755 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4756 !hchange->value()->CheckFlag(HValue::kUint32)) {
4757 __ SmiTagCheckOverflow(output, input, r0);
4758 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
4759 } else {
4760#endif
4761 __ SmiTag(output, input);
4762#if !V8_TARGET_ARCH_S390X
4763 }
4764#endif
4765}
4766
4767void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4768 Register input = ToRegister(instr->value());
4769 Register result = ToRegister(instr->result());
4770 if (instr->needs_check()) {
4771 __ tmll(input, Operand(kHeapObjectTag));
4772 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
4773 __ SmiUntag(result, input);
4774 } else {
4775 __ SmiUntag(result, input);
4776 }
4777}
4778
4779void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4780 DoubleRegister result_reg,
4781 NumberUntagDMode mode) {
4782 bool can_convert_undefined_to_nan =
4783 instr->hydrogen()->can_convert_undefined_to_nan();
4784 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4785
4786 Register scratch = scratch0();
4787 DCHECK(!result_reg.is(double_scratch0()));
4788
4789 Label convert, load_smi, done;
4790
4791 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4792 // Smi check.
4793 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4794
4795 // Heap number map check.
4796 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4797 __ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex));
4798
4799 if (can_convert_undefined_to_nan) {
4800 __ bne(&convert, Label::kNear);
4801 } else {
4802 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
4803 }
4804 // load heap number
4805 __ ld(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4806 if (deoptimize_on_minus_zero) {
4807 __ TestDoubleIsMinusZero(result_reg, scratch, ip);
4808 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
4809 }
4810 __ b(&done, Label::kNear);
4811 if (can_convert_undefined_to_nan) {
4812 __ bind(&convert);
4813 // Convert undefined (and hole) to NaN.
4814 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4815 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
4816 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4817 __ ld(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4818 __ b(&done, Label::kNear);
4819 }
4820 } else {
4821 __ SmiUntag(scratch, input_reg);
4822 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4823 }
4824 // Smi to double register conversion
4825 __ bind(&load_smi);
4826 // scratch: untagged value of input_reg
4827 __ ConvertIntToDouble(scratch, result_reg);
4828 __ bind(&done);
4829}
4830
4831void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4832 Register input_reg = ToRegister(instr->value());
4833 Register scratch1 = scratch0();
4834 Register scratch2 = ToRegister(instr->temp());
4835 DoubleRegister double_scratch = double_scratch0();
4836 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4837
4838 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4839 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4840
4841 Label done;
4842
4843 // Heap number map check.
4844 __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4845 __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex);
4846
4847 if (instr->truncating()) {
4848 // Performs a truncating conversion of a floating point number as used by
4849 // the JS bitwise operations.
4850 Label no_heap_number, check_bools, check_false;
4851 __ bne(&no_heap_number, Label::kNear);
4852 __ LoadRR(scratch2, input_reg);
4853 __ TruncateHeapNumberToI(input_reg, scratch2);
4854 __ b(&done, Label::kNear);
4855
4856 // Check for Oddballs. Undefined/False is converted to zero and True to one
4857 // for truncating conversions.
4858 __ bind(&no_heap_number);
4859 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4860 __ bne(&check_bools);
4861 __ LoadImmP(input_reg, Operand::Zero());
4862 __ b(&done, Label::kNear);
4863
4864 __ bind(&check_bools);
4865 __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
4866 __ bne(&check_false, Label::kNear);
4867 __ LoadImmP(input_reg, Operand(1));
4868 __ b(&done, Label::kNear);
4869
4870 __ bind(&check_false);
4871 __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
4872 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
4873 __ LoadImmP(input_reg, Operand::Zero());
4874 } else {
4875 // Deoptimize if we don't have a heap number.
4876 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
4877
4878 __ ld(double_scratch2,
4879 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4880 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4881 // preserve heap number pointer in scratch2 for minus zero check below
4882 __ LoadRR(scratch2, input_reg);
4883 }
4884 __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
4885 double_scratch);
4886 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4887
4888 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4889 __ CmpP(input_reg, Operand::Zero());
4890 __ bne(&done, Label::kNear);
4891 __ TestHeapNumberSign(scratch2, scratch1);
4892 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
4893 }
4894 }
4895 __ bind(&done);
4896}
4897
4898void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4899 class DeferredTaggedToI final : public LDeferredCode {
4900 public:
4901 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4902 : LDeferredCode(codegen), instr_(instr) {}
4903 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4904 LInstruction* instr() override { return instr_; }
4905
4906 private:
4907 LTaggedToI* instr_;
4908 };
4909
4910 LOperand* input = instr->value();
4911 DCHECK(input->IsRegister());
4912 DCHECK(input->Equals(instr->result()));
4913
4914 Register input_reg = ToRegister(input);
4915
4916 if (instr->hydrogen()->value()->representation().IsSmi()) {
4917 __ SmiUntag(input_reg);
4918 } else {
4919 DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
4920
4921 // Branch to deferred code if the input is a HeapObject.
4922 __ JumpIfNotSmi(input_reg, deferred->entry());
4923
4924 __ SmiUntag(input_reg);
4925 __ bind(deferred->exit());
4926 }
4927}
4928
4929void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4930 LOperand* input = instr->value();
4931 DCHECK(input->IsRegister());
4932 LOperand* result = instr->result();
4933 DCHECK(result->IsDoubleRegister());
4934
4935 Register input_reg = ToRegister(input);
4936 DoubleRegister result_reg = ToDoubleRegister(result);
4937
4938 HValue* value = instr->hydrogen()->value();
4939 NumberUntagDMode mode = value->representation().IsSmi()
4940 ? NUMBER_CANDIDATE_IS_SMI
4941 : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4942
4943 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4944}
4945
4946void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4947 Register result_reg = ToRegister(instr->result());
4948 Register scratch1 = scratch0();
4949 DoubleRegister double_input = ToDoubleRegister(instr->value());
4950 DoubleRegister double_scratch = double_scratch0();
4951
4952 if (instr->truncating()) {
4953 __ TruncateDoubleToI(result_reg, double_input);
4954 } else {
4955 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
4956 double_scratch);
4957 // Deoptimize if the input wasn't a int32 (inside a double).
4958 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4959 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4960 Label done;
4961 __ CmpP(result_reg, Operand::Zero());
4962 __ bne(&done, Label::kNear);
4963 __ TestDoubleSign(double_input, scratch1);
4964 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
4965 __ bind(&done);
4966 }
4967 }
4968}
4969
4970void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4971 Register result_reg = ToRegister(instr->result());
4972 Register scratch1 = scratch0();
4973 DoubleRegister double_input = ToDoubleRegister(instr->value());
4974 DoubleRegister double_scratch = double_scratch0();
4975
4976 if (instr->truncating()) {
4977 __ TruncateDoubleToI(result_reg, double_input);
4978 } else {
4979 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
4980 double_scratch);
4981 // Deoptimize if the input wasn't a int32 (inside a double).
4982 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4983 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4984 Label done;
4985 __ CmpP(result_reg, Operand::Zero());
4986 __ bne(&done, Label::kNear);
4987 __ TestDoubleSign(double_input, scratch1);
4988 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
4989 __ bind(&done);
4990 }
4991 }
4992#if V8_TARGET_ARCH_S390X
4993 __ SmiTag(result_reg);
4994#else
4995 __ SmiTagCheckOverflow(result_reg, r0);
4996 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
4997#endif
4998}
4999
5000void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
5001 LOperand* input = instr->value();
5002 __ TestIfSmi(ToRegister(input));
5003 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
5004}
5005
5006void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
5007 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
5008 LOperand* input = instr->value();
5009 __ TestIfSmi(ToRegister(input));
5010 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
5011 }
5012}
5013
5014void LCodeGen::DoCheckArrayBufferNotNeutered(
5015 LCheckArrayBufferNotNeutered* instr) {
5016 Register view = ToRegister(instr->view());
5017 Register scratch = scratch0();
5018
5019 __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
5020 __ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
5021 __ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
5022 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, cr0);
5023}
5024
5025void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
5026 Register input = ToRegister(instr->value());
5027 Register scratch = scratch0();
5028
5029 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5030
5031 if (instr->hydrogen()->is_interval_check()) {
5032 InstanceType first;
5033 InstanceType last;
5034 instr->hydrogen()->GetCheckInterval(&first, &last);
5035
5036 __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
5037 Operand(first));
5038
5039 // If there is only one type in the interval check for equality.
5040 if (first == last) {
5041 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
5042 } else {
5043 DeoptimizeIf(lt, instr, Deoptimizer::kWrongInstanceType);
5044 // Omit check for the last type.
5045 if (last != LAST_TYPE) {
5046 __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
5047 Operand(last));
5048 DeoptimizeIf(gt, instr, Deoptimizer::kWrongInstanceType);
5049 }
5050 }
5051 } else {
5052 uint8_t mask;
5053 uint8_t tag;
5054 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5055
5056 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5057
5058 if (base::bits::IsPowerOfTwo32(mask)) {
5059 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5060 __ AndP(scratch, Operand(mask));
5061 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType);
5062 } else {
5063 __ AndP(scratch, Operand(mask));
5064 __ CmpP(scratch, Operand(tag));
5065 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
5066 }
5067 }
5068}
5069
5070void LCodeGen::DoCheckValue(LCheckValue* instr) {
5071 Register reg = ToRegister(instr->value());
5072 Handle<HeapObject> object = instr->hydrogen()->object().handle();
5073 AllowDeferredHandleDereference smi_check;
5074 if (isolate()->heap()->InNewSpace(*object)) {
5075 Register reg = ToRegister(instr->value());
5076 Handle<Cell> cell = isolate()->factory()->NewCell(object);
5077 __ mov(ip, Operand(cell));
5078 __ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset));
5079 } else {
5080 __ CmpP(reg, Operand(object));
5081 }
5082 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
5083}
5084
5085void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5086 Register temp = ToRegister(instr->temp());
5087 {
5088 PushSafepointRegistersScope scope(this);
5089 __ push(object);
5090 __ LoadImmP(cp, Operand::Zero());
5091 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5092 RecordSafepointWithRegisters(instr->pointer_map(), 1,
5093 Safepoint::kNoLazyDeopt);
5094 __ StoreToSafepointRegisterSlot(r2, temp);
5095 }
5096 __ TestIfSmi(temp);
5097 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, cr0);
5098}
5099
5100void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5101 class DeferredCheckMaps final : public LDeferredCode {
5102 public:
5103 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5104 : LDeferredCode(codegen), instr_(instr), object_(object) {
5105 SetExit(check_maps());
5106 }
5107 void Generate() override {
5108 codegen()->DoDeferredInstanceMigration(instr_, object_);
5109 }
5110 Label* check_maps() { return &check_maps_; }
5111 LInstruction* instr() override { return instr_; }
5112
5113 private:
5114 LCheckMaps* instr_;
5115 Label check_maps_;
5116 Register object_;
5117 };
5118
5119 if (instr->hydrogen()->IsStabilityCheck()) {
5120 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5121 for (int i = 0; i < maps->size(); ++i) {
5122 AddStabilityDependency(maps->at(i).handle());
5123 }
5124 return;
5125 }
5126
5127 LOperand* input = instr->value();
5128 DCHECK(input->IsRegister());
5129 Register reg = ToRegister(input);
5130
5131 DeferredCheckMaps* deferred = NULL;
5132 if (instr->hydrogen()->HasMigrationTarget()) {
5133 deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
5134 __ bind(deferred->check_maps());
5135 }
5136
5137 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5138 Label success;
5139 for (int i = 0; i < maps->size() - 1; i++) {
5140 Handle<Map> map = maps->at(i).handle();
5141 __ CompareMap(reg, map, &success);
5142 __ beq(&success);
5143 }
5144
5145 Handle<Map> map = maps->at(maps->size() - 1).handle();
5146 __ CompareMap(reg, map, &success);
5147 if (instr->hydrogen()->HasMigrationTarget()) {
5148 __ bne(deferred->entry());
5149 } else {
5150 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5151 }
5152
5153 __ bind(&success);
5154}
5155
5156void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5157 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5158 Register result_reg = ToRegister(instr->result());
5159 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
5160}
5161
5162void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5163 Register unclamped_reg = ToRegister(instr->unclamped());
5164 Register result_reg = ToRegister(instr->result());
5165 __ ClampUint8(result_reg, unclamped_reg);
5166}
5167
5168void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5169 Register scratch = scratch0();
5170 Register input_reg = ToRegister(instr->unclamped());
5171 Register result_reg = ToRegister(instr->result());
5172 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5173 Label is_smi, done, heap_number;
5174
5175 // Both smi and heap number cases are handled.
5176 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
5177
5178 // Check for heap number
5179 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5180 __ CmpP(scratch, Operand(factory()->heap_number_map()));
5181 __ beq(&heap_number, Label::kNear);
5182
5183 // Check for undefined. Undefined is converted to zero for clamping
5184 // conversions.
5185 __ CmpP(input_reg, Operand(factory()->undefined_value()));
5186 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
5187 __ LoadImmP(result_reg, Operand::Zero());
5188 __ b(&done, Label::kNear);
5189
5190 // Heap number
5191 __ bind(&heap_number);
5192 __ ld(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5193 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
5194 __ b(&done, Label::kNear);
5195
5196 // smi
5197 __ bind(&is_smi);
5198 __ ClampUint8(result_reg, result_reg);
5199
5200 __ bind(&done);
5201}
5202
5203void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5204 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5205 Register result_reg = ToRegister(instr->result());
5206 __ lgdr(result_reg, value_reg);
5207 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5208 __ srlg(result_reg, result_reg, Operand(32));
5209 } else {
5210 __ llgfr(result_reg, result_reg);
5211 }
5212}
5213
5214void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5215 Register hi_reg = ToRegister(instr->hi());
5216 Register lo_reg = ToRegister(instr->lo());
5217 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5218 Register scratch = scratch0();
5219
5220 // Combine hi_reg:lo_reg into a single 64-bit register.
5221 __ sllg(scratch, hi_reg, Operand(32));
5222 __ lr(scratch, lo_reg);
5223
5224 // Bitwise convert from GPR to FPR
5225 __ ldgr(result_reg, scratch);
5226}
5227
5228void LCodeGen::DoAllocate(LAllocate* instr) {
5229 class DeferredAllocate final : public LDeferredCode {
5230 public:
5231 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5232 : LDeferredCode(codegen), instr_(instr) {}
5233 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5234 LInstruction* instr() override { return instr_; }
5235
5236 private:
5237 LAllocate* instr_;
5238 };
5239
5240 DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
5241
5242 Register result = ToRegister(instr->result());
5243 Register scratch = ToRegister(instr->temp1());
5244 Register scratch2 = ToRegister(instr->temp2());
5245
5246 // Allocate memory for the object.
5247 AllocationFlags flags = TAG_OBJECT;
5248 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5249 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5250 }
5251 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5252 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5253 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5254 }
5255
5256 if (instr->size()->IsConstantOperand()) {
5257 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5258 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5259 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5260 } else {
5261 Register size = ToRegister(instr->size());
5262 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5263 }
5264
5265 __ bind(deferred->exit());
5266
5267 if (instr->hydrogen()->MustPrefillWithFiller()) {
5268 if (instr->size()->IsConstantOperand()) {
5269 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5270 __ LoadIntLiteral(scratch, size);
5271 } else {
5272 scratch = ToRegister(instr->size());
5273 }
5274 __ lay(scratch, MemOperand(scratch, -kPointerSize));
5275 Label loop;
5276 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5277 __ bind(&loop);
5278 __ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag));
5279#if V8_TARGET_ARCH_S390X
5280 __ lay(scratch, MemOperand(scratch, -kPointerSize));
5281#else
5282 // TODO(joransiu): Improve the following sequence.
5283 // Need to use AHI instead of LAY as top nibble is not set with LAY, causing
5284 // incorrect result with the signed compare
5285 __ AddP(scratch, Operand(-kPointerSize));
5286#endif
5287 __ CmpP(scratch, Operand::Zero());
5288 __ bge(&loop);
5289 }
5290}
5291
5292void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5293 Register result = ToRegister(instr->result());
5294
5295 // TODO(3095996): Get rid of this. For now, we need to make the
5296 // result register contain a valid pointer because it is already
5297 // contained in the register pointer map.
5298 __ LoadSmiLiteral(result, Smi::FromInt(0));
5299
5300 PushSafepointRegistersScope scope(this);
5301 if (instr->size()->IsRegister()) {
5302 Register size = ToRegister(instr->size());
5303 DCHECK(!size.is(result));
5304 __ SmiTag(size);
5305 __ push(size);
5306 } else {
5307 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5308#if !V8_TARGET_ARCH_S390X
5309 if (size >= 0 && size <= Smi::kMaxValue) {
5310#endif
5311 __ Push(Smi::FromInt(size));
5312#if !V8_TARGET_ARCH_S390X
5313 } else {
5314 // We should never get here at runtime => abort
5315 __ stop("invalid allocation size");
5316 return;
5317 }
5318#endif
5319 }
5320
5321 int flags = AllocateDoubleAlignFlag::encode(
5322 instr->hydrogen()->MustAllocateDoubleAligned());
5323 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5324 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5325 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5326 } else {
5327 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5328 }
5329 __ Push(Smi::FromInt(flags));
5330
5331 CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
5332 instr->context());
5333 __ StoreToSafepointRegisterSlot(r2, result);
5334}
5335
5336void LCodeGen::DoTypeof(LTypeof* instr) {
5337 DCHECK(ToRegister(instr->value()).is(r5));
5338 DCHECK(ToRegister(instr->result()).is(r2));
5339 Label end, do_call;
5340 Register value_register = ToRegister(instr->value());
5341 __ JumpIfNotSmi(value_register, &do_call);
5342 __ mov(r2, Operand(isolate()->factory()->number_string()));
5343 __ b(&end);
5344 __ bind(&do_call);
5345 TypeofStub stub(isolate());
5346 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5347 __ bind(&end);
5348}
5349
5350void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5351 Register input = ToRegister(instr->value());
5352
5353 Condition final_branch_condition =
5354 EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
5355 instr->type_literal());
5356 if (final_branch_condition != kNoCondition) {
5357 EmitBranch(instr, final_branch_condition);
5358 }
5359}
5360
5361Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
5362 Register input, Handle<String> type_name) {
5363 Condition final_branch_condition = kNoCondition;
5364 Register scratch = scratch0();
5365 Factory* factory = isolate()->factory();
5366 if (String::Equals(type_name, factory->number_string())) {
5367 __ JumpIfSmi(input, true_label);
5368 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5369 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5370 final_branch_condition = eq;
5371
5372 } else if (String::Equals(type_name, factory->string_string())) {
5373 __ JumpIfSmi(input, false_label);
5374 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5375 final_branch_condition = lt;
5376
5377 } else if (String::Equals(type_name, factory->symbol_string())) {
5378 __ JumpIfSmi(input, false_label);
5379 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5380 final_branch_condition = eq;
5381
5382 } else if (String::Equals(type_name, factory->boolean_string())) {
5383 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5384 __ beq(true_label);
5385 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5386 final_branch_condition = eq;
5387
5388 } else if (String::Equals(type_name, factory->undefined_string())) {
5389 __ CompareRoot(input, Heap::kNullValueRootIndex);
5390 __ beq(false_label);
5391 __ JumpIfSmi(input, false_label);
5392 // Check for undetectable objects => true.
5393 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5394 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5395 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5396 __ CmpP(r0, Operand::Zero());
5397 final_branch_condition = ne;
5398
5399 } else if (String::Equals(type_name, factory->function_string())) {
5400 __ JumpIfSmi(input, false_label);
5401 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5402 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5403 __ AndP(scratch, scratch,
5404 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5405 __ CmpP(scratch, Operand(1 << Map::kIsCallable));
5406 final_branch_condition = eq;
5407
5408 } else if (String::Equals(type_name, factory->object_string())) {
5409 __ JumpIfSmi(input, false_label);
5410 __ CompareRoot(input, Heap::kNullValueRootIndex);
5411 __ beq(true_label);
5412 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5413 __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5414 __ blt(false_label);
5415 // Check for callable or undetectable objects => false.
5416 __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5417 __ AndP(r0, scratch,
5418 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5419 __ CmpP(r0, Operand::Zero());
5420 final_branch_condition = eq;
5421
5422// clang-format off
5423#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5424 } else if (String::Equals(type_name, factory->type##_string())) { \
5425 __ JumpIfSmi(input, false_label); \
5426 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
5427 __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \
5428 final_branch_condition = eq;
5429 SIMD128_TYPES(SIMD128_TYPE)
5430#undef SIMD128_TYPE
5431 // clang-format on
5432
5433 } else {
5434 __ b(false_label);
5435 }
5436
5437 return final_branch_condition;
5438}
5439
5440void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5441 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5442 // Ensure that we have enough space after the previous lazy-bailout
5443 // instruction for patching the code here.
5444 int current_pc = masm()->pc_offset();
5445 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5446 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5447 DCHECK_EQ(0, padding_size % 2);
5448 while (padding_size > 0) {
5449 __ nop();
5450 padding_size -= 2;
5451 }
5452 }
5453 }
5454 last_lazy_deopt_pc_ = masm()->pc_offset();
5455}
5456
5457void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5458 last_lazy_deopt_pc_ = masm()->pc_offset();
5459 DCHECK(instr->HasEnvironment());
5460 LEnvironment* env = instr->environment();
5461 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5462 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5463}
5464
5465void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5466 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5467 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5468 // needed return address), even though the implementation of LAZY and EAGER is
5469 // now identical. When LAZY is eventually completely folded into EAGER, remove
5470 // the special case below.
5471 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5472 type = Deoptimizer::LAZY;
5473 }
5474
5475 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5476}
5477
5478void LCodeGen::DoDummy(LDummy* instr) {
5479 // Nothing to see here, move on!
5480}
5481
5482void LCodeGen::DoDummyUse(LDummyUse* instr) {
5483 // Nothing to see here, move on!
5484}
5485
5486void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5487 PushSafepointRegistersScope scope(this);
5488 LoadContextFromDeferred(instr->context());
5489 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5490 RecordSafepointWithLazyDeopt(
5491 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5492 DCHECK(instr->HasEnvironment());
5493 LEnvironment* env = instr->environment();
5494 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5495}
5496
5497void LCodeGen::DoStackCheck(LStackCheck* instr) {
5498 class DeferredStackCheck final : public LDeferredCode {
5499 public:
5500 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5501 : LDeferredCode(codegen), instr_(instr) {}
5502 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5503 LInstruction* instr() override { return instr_; }
5504
5505 private:
5506 LStackCheck* instr_;
5507 };
5508
5509 DCHECK(instr->HasEnvironment());
5510 LEnvironment* env = instr->environment();
5511 // There is no LLazyBailout instruction for stack-checks. We have to
5512 // prepare for lazy deoptimization explicitly here.
5513 if (instr->hydrogen()->is_function_entry()) {
5514 // Perform stack overflow check.
5515 Label done;
5516 __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
5517 __ bge(&done, Label::kNear);
5518 DCHECK(instr->context()->IsRegister());
5519 DCHECK(ToRegister(instr->context()).is(cp));
5520 CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
5521 instr);
5522 __ bind(&done);
5523 } else {
5524 DCHECK(instr->hydrogen()->is_backwards_branch());
5525 // Perform stack overflow check if this goto needs it before jumping.
5526 DeferredStackCheck* deferred_stack_check =
5527 new (zone()) DeferredStackCheck(this, instr);
5528 __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
5529 __ blt(deferred_stack_check->entry());
5530 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5531 __ bind(instr->done_label());
5532 deferred_stack_check->SetExit(instr->done_label());
5533 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5534 // Don't record a deoptimization index for the safepoint here.
5535 // This will be done explicitly when emitting call and the safepoint in
5536 // the deferred code.
5537 }
5538}
5539
5540void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5541 // This is a pseudo-instruction that ensures that the environment here is
5542 // properly registered for deoptimization and records the assembler's PC
5543 // offset.
5544 LEnvironment* environment = instr->environment();
5545
5546 // If the environment were already registered, we would have no way of
5547 // backpatching it with the spill slot operands.
5548 DCHECK(!environment->HasBeenRegistered());
5549 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5550
5551 GenerateOsrPrologue();
5552}
5553
5554void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5555 Label use_cache, call_runtime;
5556 __ CheckEnumCache(&call_runtime);
5557
5558 __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
5559 __ b(&use_cache);
5560
5561 // Get the set of properties to enumerate.
5562 __ bind(&call_runtime);
5563 __ push(r2);
5564 CallRuntime(Runtime::kForInEnumerate, instr);
5565 __ bind(&use_cache);
5566}
5567
5568void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5569 Register map = ToRegister(instr->map());
5570 Register result = ToRegister(instr->result());
5571 Label load_cache, done;
5572 __ EnumLength(result, map);
5573 __ CmpSmiLiteral(result, Smi::FromInt(0), r0);
5574 __ bne(&load_cache, Label::kNear);
5575 __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5576 __ b(&done, Label::kNear);
5577
5578 __ bind(&load_cache);
5579 __ LoadInstanceDescriptors(map, result);
5580 __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5581 __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5582 __ CmpP(result, Operand::Zero());
5583 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
5584
5585 __ bind(&done);
5586}
5587
5588void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5589 Register object = ToRegister(instr->value());
5590 Register map = ToRegister(instr->map());
5591 __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5592 __ CmpP(map, scratch0());
5593 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5594}
5595
5596void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5597 Register result, Register object,
5598 Register index) {
5599 PushSafepointRegistersScope scope(this);
5600 __ Push(object, index);
5601 __ LoadImmP(cp, Operand::Zero());
5602 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5603 RecordSafepointWithRegisters(instr->pointer_map(), 2,
5604 Safepoint::kNoLazyDeopt);
5605 __ StoreToSafepointRegisterSlot(r2, result);
5606}
5607
5608void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5609 class DeferredLoadMutableDouble final : public LDeferredCode {
5610 public:
5611 DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
5612 Register result, Register object, Register index)
5613 : LDeferredCode(codegen),
5614 instr_(instr),
5615 result_(result),
5616 object_(object),
5617 index_(index) {}
5618 void Generate() override {
5619 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5620 }
5621 LInstruction* instr() override { return instr_; }
5622
5623 private:
5624 LLoadFieldByIndex* instr_;
5625 Register result_;
5626 Register object_;
5627 Register index_;
5628 };
5629
5630 Register object = ToRegister(instr->object());
5631 Register index = ToRegister(instr->index());
5632 Register result = ToRegister(instr->result());
5633 Register scratch = scratch0();
5634
5635 DeferredLoadMutableDouble* deferred;
5636 deferred = new (zone())
5637 DeferredLoadMutableDouble(this, instr, result, object, index);
5638
5639 Label out_of_object, done;
5640
5641 __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
5642 __ bne(deferred->entry());
5643 __ ShiftRightArithP(index, index, Operand(1));
5644
5645 __ CmpP(index, Operand::Zero());
5646 __ blt(&out_of_object, Label::kNear);
5647
5648 __ SmiToPtrArrayOffset(r0, index);
5649 __ AddP(scratch, object, r0);
5650 __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5651
5652 __ b(&done, Label::kNear);
5653
5654 __ bind(&out_of_object);
5655 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5656 // Index is equal to negated out of object property index plus 1.
5657 __ SmiToPtrArrayOffset(r0, index);
5658 __ SubP(scratch, result, r0);
5659 __ LoadP(result,
5660 FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
5661 __ bind(deferred->exit());
5662 __ bind(&done);
5663}
5664
5665#undef __
5666
5667} // namespace internal
5668} // namespace v8