blob: fbda59b66c4a7cab35c9ce1850f2c5c33cab0366 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/crankshaft/x64/lithium-codegen-x64.h"
8
9#include "src/base/bits.h"
10#include "src/code-factory.h"
11#include "src/code-stubs.h"
12#include "src/crankshaft/hydrogen-osr.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15#include "src/profiler/cpu-profiler.h"
16
17namespace v8 {
18namespace internal {
19
20
21// When invoking builtins, we need to record the safepoint in the middle of
22// the invoke instruction sequence generated by the macro assembler.
23class SafepointGenerator final : public CallWrapper {
24 public:
25 SafepointGenerator(LCodeGen* codegen,
26 LPointerMap* pointers,
27 Safepoint::DeoptMode mode)
28 : codegen_(codegen),
29 pointers_(pointers),
30 deopt_mode_(mode) { }
31 virtual ~SafepointGenerator() {}
32
33 void BeforeCall(int call_size) const override {}
34
35 void AfterCall() const override {
36 codegen_->RecordSafepoint(pointers_, deopt_mode_);
37 }
38
39 private:
40 LCodeGen* codegen_;
41 LPointerMap* pointers_;
42 Safepoint::DeoptMode deopt_mode_;
43};
44
45
46#define __ masm()->
47
48bool LCodeGen::GenerateCode() {
49 LPhase phase("Z_Code generation", chunk());
50 DCHECK(is_unused());
51 status_ = GENERATING;
52
53 // Open a frame scope to indicate that there is a frame on the stack. The
54 // MANUAL indicates that the scope shouldn't actually generate code to set up
55 // the frame (that is done in GeneratePrologue).
56 FrameScope frame_scope(masm_, StackFrame::MANUAL);
57
58 return GeneratePrologue() &&
59 GenerateBody() &&
60 GenerateDeferredCode() &&
61 GenerateJumpTable() &&
62 GenerateSafepointTable();
63}
64
65
66void LCodeGen::FinishCode(Handle<Code> code) {
67 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +010068 code->set_stack_slots(GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000069 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
70 PopulateDeoptimizationData(code);
71}
72
73
74#ifdef _MSC_VER
75void LCodeGen::MakeSureStackPagesMapped(int offset) {
76 const int kPageSize = 4 * KB;
77 for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
78 __ movp(Operand(rsp, offset), rax);
79 }
80}
81#endif
82
83
84void LCodeGen::SaveCallerDoubles() {
85 DCHECK(info()->saves_caller_doubles());
86 DCHECK(NeedsEagerFrame());
87 Comment(";;; Save clobbered callee double registers");
88 int count = 0;
89 BitVector* doubles = chunk()->allocated_double_registers();
90 BitVector::Iterator save_iterator(doubles);
91 while (!save_iterator.Done()) {
92 __ Movsd(MemOperand(rsp, count * kDoubleSize),
93 XMMRegister::from_code(save_iterator.Current()));
94 save_iterator.Advance();
95 count++;
96 }
97}
98
99
100void LCodeGen::RestoreCallerDoubles() {
101 DCHECK(info()->saves_caller_doubles());
102 DCHECK(NeedsEagerFrame());
103 Comment(";;; Restore clobbered callee double registers");
104 BitVector* doubles = chunk()->allocated_double_registers();
105 BitVector::Iterator save_iterator(doubles);
106 int count = 0;
107 while (!save_iterator.Done()) {
108 __ Movsd(XMMRegister::from_code(save_iterator.Current()),
109 MemOperand(rsp, count * kDoubleSize));
110 save_iterator.Advance();
111 count++;
112 }
113}
114
115
116bool LCodeGen::GeneratePrologue() {
117 DCHECK(is_generating());
118
119 if (info()->IsOptimizing()) {
120 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000121 }
122
123 info()->set_prologue_offset(masm_->pc_offset());
124 if (NeedsEagerFrame()) {
125 DCHECK(!frame_is_built_);
126 frame_is_built_ = true;
127 if (info()->IsStub()) {
Ben Murdochda12d292016-06-02 14:46:10 +0100128 __ StubPrologue(StackFrame::STUB);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000129 } else {
130 __ Prologue(info()->GeneratePreagedPrologue());
131 }
132 }
133
134 // Reserve space for the stack slots needed by the code.
135 int slots = GetStackSlotCount();
136 if (slots > 0) {
137 if (FLAG_debug_code) {
138 __ subp(rsp, Immediate(slots * kPointerSize));
139#ifdef _MSC_VER
140 MakeSureStackPagesMapped(slots * kPointerSize);
141#endif
142 __ Push(rax);
143 __ Set(rax, slots);
144 __ Set(kScratchRegister, kSlotsZapValue);
145 Label loop;
146 __ bind(&loop);
147 __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
148 kScratchRegister);
149 __ decl(rax);
150 __ j(not_zero, &loop);
151 __ Pop(rax);
152 } else {
153 __ subp(rsp, Immediate(slots * kPointerSize));
154#ifdef _MSC_VER
155 MakeSureStackPagesMapped(slots * kPointerSize);
156#endif
157 }
158
159 if (info()->saves_caller_doubles()) {
160 SaveCallerDoubles();
161 }
162 }
163 return !is_aborted();
164}
165
166
167void LCodeGen::DoPrologue(LPrologue* instr) {
168 Comment(";;; Prologue begin");
169
170 // Possibly allocate a local context.
171 if (info_->num_heap_slots() > 0) {
172 Comment(";;; Allocate local context");
173 bool need_write_barrier = true;
174 // Argument to NewContext is the function, which is still in rdi.
175 int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
176 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
177 if (info()->scope()->is_script_scope()) {
178 __ Push(rdi);
179 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
180 __ CallRuntime(Runtime::kNewScriptContext);
181 deopt_mode = Safepoint::kLazyDeopt;
182 } else if (slots <= FastNewContextStub::kMaximumSlots) {
183 FastNewContextStub stub(isolate(), slots);
184 __ CallStub(&stub);
185 // Result of FastNewContextStub is always in new space.
186 need_write_barrier = false;
187 } else {
188 __ Push(rdi);
189 __ CallRuntime(Runtime::kNewFunctionContext);
190 }
191 RecordSafepoint(deopt_mode);
192
193 // Context is returned in rax. It replaces the context passed to us.
194 // It's saved in the stack and kept live in rsi.
195 __ movp(rsi, rax);
196 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
197
198 // Copy any necessary parameters into the context.
199 int num_parameters = scope()->num_parameters();
200 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
201 for (int i = first_parameter; i < num_parameters; i++) {
202 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
203 if (var->IsContextSlot()) {
204 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
205 (num_parameters - 1 - i) * kPointerSize;
206 // Load parameter from stack.
207 __ movp(rax, Operand(rbp, parameter_offset));
208 // Store it in the context.
209 int context_offset = Context::SlotOffset(var->index());
210 __ movp(Operand(rsi, context_offset), rax);
211 // Update the write barrier. This clobbers rax and rbx.
212 if (need_write_barrier) {
213 __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
214 } else if (FLAG_debug_code) {
215 Label done;
216 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
217 __ Abort(kExpectedNewSpaceObject);
218 __ bind(&done);
219 }
220 }
221 }
222 Comment(";;; End allocate local context");
223 }
224
225 Comment(";;; Prologue end");
226}
227
228
229void LCodeGen::GenerateOsrPrologue() {
230 // Generate the OSR entry prologue at the first unknown OSR value, or if there
231 // are none, at the OSR entrypoint instruction.
232 if (osr_pc_offset_ >= 0) return;
233
234 osr_pc_offset_ = masm()->pc_offset();
235
236 // Adjust the frame size, subsuming the unoptimized frame into the
237 // optimized frame.
238 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
239 DCHECK(slots >= 0);
240 __ subp(rsp, Immediate(slots * kPointerSize));
241}
242
243
244void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
245 if (instr->IsCall()) {
246 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
247 }
248 if (!instr->IsLazyBailout() && !instr->IsGap()) {
249 safepoints_.BumpLastLazySafepointIndex();
250 }
251}
252
253
254void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
255 if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
256 instr->hydrogen_value()->representation().IsInteger32() &&
257 instr->result()->IsRegister()) {
258 __ AssertZeroExtended(ToRegister(instr->result()));
259 }
260
261 if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
262 // We sign extend the dehoisted key at the definition point when the pointer
263 // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
264 // points and MustSignExtendResult is always false. We can't use
265 // STATIC_ASSERT here as the pointer size is 32-bit for x32.
266 DCHECK(kPointerSize == kInt64Size);
267 if (instr->result()->IsRegister()) {
268 Register result_reg = ToRegister(instr->result());
269 __ movsxlq(result_reg, result_reg);
270 } else {
271 // Sign extend the 32bit result in the stack slots.
272 DCHECK(instr->result()->IsStackSlot());
273 Operand src = ToOperand(instr->result());
274 __ movsxlq(kScratchRegister, src);
275 __ movq(src, kScratchRegister);
276 }
277 }
278}
279
280
281bool LCodeGen::GenerateJumpTable() {
282 if (jump_table_.length() == 0) return !is_aborted();
283
284 Label needs_frame;
285 Comment(";;; -------------------- Jump table --------------------");
286 for (int i = 0; i < jump_table_.length(); i++) {
287 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
288 __ bind(&table_entry->label);
289 Address entry = table_entry->address;
290 DeoptComment(table_entry->deopt_info);
291 if (table_entry->needs_frame) {
292 DCHECK(!info()->saves_caller_doubles());
293 __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
294 __ call(&needs_frame);
295 } else {
296 if (info()->saves_caller_doubles()) {
297 DCHECK(info()->IsStub());
298 RestoreCallerDoubles();
299 }
300 __ call(entry, RelocInfo::RUNTIME_ENTRY);
301 }
302 info()->LogDeoptCallPosition(masm()->pc_offset(),
303 table_entry->deopt_info.inlining_id);
304 }
305
306 if (needs_frame.is_linked()) {
307 __ bind(&needs_frame);
308 /* stack layout
Ben Murdochda12d292016-06-02 14:46:10 +0100309 3: return address <-- rsp
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000310 2: garbage
311 1: garbage
312 0: garbage
313 */
Ben Murdochda12d292016-06-02 14:46:10 +0100314 // Reserve space for stub marker.
315 __ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize));
316 __ Push(MemOperand(
317 rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address.
318 __ Push(kScratchRegister);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000319
320 /* stack layout
Ben Murdochda12d292016-06-02 14:46:10 +0100321 3: return address
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000322 2: garbage
323 1: return address
324 0: entry address <-- rsp
325 */
326
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000327 // Create a stack frame.
Ben Murdochda12d292016-06-02 14:46:10 +0100328 __ movp(MemOperand(rsp, 3 * kPointerSize), rbp);
329 __ leap(rbp, MemOperand(rsp, 3 * kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000330
331 // This variant of deopt can only be used with stubs. Since we don't
332 // have a function pointer to install in the stack frame that we're
333 // building, install a special marker there instead.
334 DCHECK(info()->IsStub());
335 __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
336
337 /* stack layout
Ben Murdochda12d292016-06-02 14:46:10 +0100338 3: old rbp
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000339 2: stub marker
340 1: return address
341 0: entry address <-- rsp
342 */
343 __ ret(0);
344 }
345
346 return !is_aborted();
347}
348
349
350bool LCodeGen::GenerateDeferredCode() {
351 DCHECK(is_generating());
352 if (deferred_.length() > 0) {
353 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
354 LDeferredCode* code = deferred_[i];
355
356 HValue* value =
357 instructions_->at(code->instruction_index())->hydrogen_value();
358 RecordAndWritePosition(
359 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
360
361 Comment(";;; <@%d,#%d> "
362 "-------------------- Deferred %s --------------------",
363 code->instruction_index(),
364 code->instr()->hydrogen_value()->id(),
365 code->instr()->Mnemonic());
366 __ bind(code->entry());
367 if (NeedsDeferredFrame()) {
368 Comment(";;; Build frame");
369 DCHECK(!frame_is_built_);
370 DCHECK(info()->IsStub());
371 frame_is_built_ = true;
372 // Build the frame in such a way that esi isn't trashed.
373 __ pushq(rbp); // Caller's frame pointer.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000374 __ Push(Smi::FromInt(StackFrame::STUB));
Ben Murdochda12d292016-06-02 14:46:10 +0100375 __ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000376 Comment(";;; Deferred code");
377 }
378 code->Generate();
379 if (NeedsDeferredFrame()) {
380 __ bind(code->done());
381 Comment(";;; Destroy frame");
382 DCHECK(frame_is_built_);
383 frame_is_built_ = false;
384 __ movp(rsp, rbp);
385 __ popq(rbp);
386 }
387 __ jmp(code->exit());
388 }
389 }
390
391 // Deferred code is the last part of the instruction sequence. Mark
392 // the generated code as done unless we bailed out.
393 if (!is_aborted()) status_ = DONE;
394 return !is_aborted();
395}
396
397
398bool LCodeGen::GenerateSafepointTable() {
399 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +0100400 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000401 return !is_aborted();
402}
403
404
405Register LCodeGen::ToRegister(int index) const {
406 return Register::from_code(index);
407}
408
409
410XMMRegister LCodeGen::ToDoubleRegister(int index) const {
411 return XMMRegister::from_code(index);
412}
413
414
415Register LCodeGen::ToRegister(LOperand* op) const {
416 DCHECK(op->IsRegister());
417 return ToRegister(op->index());
418}
419
420
421XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
422 DCHECK(op->IsDoubleRegister());
423 return ToDoubleRegister(op->index());
424}
425
426
427bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
428 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
429}
430
431
432bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
433 return chunk_->LookupLiteralRepresentation(op).IsExternal();
434}
435
436
437bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
438 return op->IsConstantOperand() &&
439 chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
440}
441
442
443bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
444 return chunk_->LookupLiteralRepresentation(op).IsSmi();
445}
446
447
448int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
449 return ToRepresentation(op, Representation::Integer32());
450}
451
452
453int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
454 const Representation& r) const {
455 HConstant* constant = chunk_->LookupConstant(op);
456 int32_t value = constant->Integer32Value();
457 if (r.IsInteger32()) return value;
458 DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
459 return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
460}
461
462
463Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
464 HConstant* constant = chunk_->LookupConstant(op);
465 return Smi::FromInt(constant->Integer32Value());
466}
467
468
469double LCodeGen::ToDouble(LConstantOperand* op) const {
470 HConstant* constant = chunk_->LookupConstant(op);
471 DCHECK(constant->HasDoubleValue());
472 return constant->DoubleValue();
473}
474
475
476ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
477 HConstant* constant = chunk_->LookupConstant(op);
478 DCHECK(constant->HasExternalReferenceValue());
479 return constant->ExternalReferenceValue();
480}
481
482
483Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
484 HConstant* constant = chunk_->LookupConstant(op);
485 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
486 return constant->handle(isolate());
487}
488
489
490static int ArgumentsOffsetWithoutFrame(int index) {
491 DCHECK(index < 0);
492 return -(index + 1) * kPointerSize + kPCOnStackSize;
493}
494
495
496Operand LCodeGen::ToOperand(LOperand* op) const {
497 // Does not handle registers. In X64 assembler, plain registers are not
498 // representable as an Operand.
499 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
500 if (NeedsEagerFrame()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100501 return Operand(rbp, FrameSlotToFPOffset(op->index()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000502 } else {
503 // Retrieve parameter without eager stack-frame relative to the
504 // stack-pointer.
505 return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
506 }
507}
508
509
510void LCodeGen::WriteTranslation(LEnvironment* environment,
511 Translation* translation) {
512 if (environment == NULL) return;
513
514 // The translation includes one command per value in the environment.
515 int translation_size = environment->translation_size();
516
517 WriteTranslation(environment->outer(), translation);
518 WriteTranslationFrame(environment, translation);
519
520 int object_index = 0;
521 int dematerialized_index = 0;
522 for (int i = 0; i < translation_size; ++i) {
523 LOperand* value = environment->values()->at(i);
524 AddToTranslation(
525 environment, translation, value, environment->HasTaggedValueAt(i),
526 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
527 }
528}
529
530
531void LCodeGen::AddToTranslation(LEnvironment* environment,
532 Translation* translation,
533 LOperand* op,
534 bool is_tagged,
535 bool is_uint32,
536 int* object_index_pointer,
537 int* dematerialized_index_pointer) {
538 if (op == LEnvironment::materialization_marker()) {
539 int object_index = (*object_index_pointer)++;
540 if (environment->ObjectIsDuplicateAt(object_index)) {
541 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
542 translation->DuplicateObject(dupe_of);
543 return;
544 }
545 int object_length = environment->ObjectLengthAt(object_index);
546 if (environment->ObjectIsArgumentsAt(object_index)) {
547 translation->BeginArgumentsObject(object_length);
548 } else {
549 translation->BeginCapturedObject(object_length);
550 }
551 int dematerialized_index = *dematerialized_index_pointer;
552 int env_offset = environment->translation_size() + dematerialized_index;
553 *dematerialized_index_pointer += object_length;
554 for (int i = 0; i < object_length; ++i) {
555 LOperand* value = environment->values()->at(env_offset + i);
556 AddToTranslation(environment,
557 translation,
558 value,
559 environment->HasTaggedValueAt(env_offset + i),
560 environment->HasUint32ValueAt(env_offset + i),
561 object_index_pointer,
562 dematerialized_index_pointer);
563 }
564 return;
565 }
566
567 if (op->IsStackSlot()) {
568 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000569 if (is_tagged) {
570 translation->StoreStackSlot(index);
571 } else if (is_uint32) {
572 translation->StoreUint32StackSlot(index);
573 } else {
574 translation->StoreInt32StackSlot(index);
575 }
576 } else if (op->IsDoubleStackSlot()) {
577 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000578 translation->StoreDoubleStackSlot(index);
579 } else if (op->IsRegister()) {
580 Register reg = ToRegister(op);
581 if (is_tagged) {
582 translation->StoreRegister(reg);
583 } else if (is_uint32) {
584 translation->StoreUint32Register(reg);
585 } else {
586 translation->StoreInt32Register(reg);
587 }
588 } else if (op->IsDoubleRegister()) {
589 XMMRegister reg = ToDoubleRegister(op);
590 translation->StoreDoubleRegister(reg);
591 } else if (op->IsConstantOperand()) {
592 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
593 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
594 translation->StoreLiteral(src_index);
595 } else {
596 UNREACHABLE();
597 }
598}
599
600
601void LCodeGen::CallCodeGeneric(Handle<Code> code,
602 RelocInfo::Mode mode,
603 LInstruction* instr,
604 SafepointMode safepoint_mode,
605 int argc) {
606 DCHECK(instr != NULL);
607 __ call(code, mode);
608 RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
609
610 // Signal that we don't inline smi code before these stubs in the
611 // optimizing code generator.
612 if (code->kind() == Code::BINARY_OP_IC ||
613 code->kind() == Code::COMPARE_IC) {
614 __ nop();
615 }
616}
617
618
619void LCodeGen::CallCode(Handle<Code> code,
620 RelocInfo::Mode mode,
621 LInstruction* instr) {
622 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
623}
624
625
626void LCodeGen::CallRuntime(const Runtime::Function* function,
627 int num_arguments,
628 LInstruction* instr,
629 SaveFPRegsMode save_doubles) {
630 DCHECK(instr != NULL);
631 DCHECK(instr->HasPointerMap());
632
633 __ CallRuntime(function, num_arguments, save_doubles);
634
635 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
636}
637
638
639void LCodeGen::LoadContextFromDeferred(LOperand* context) {
640 if (context->IsRegister()) {
641 if (!ToRegister(context).is(rsi)) {
642 __ movp(rsi, ToRegister(context));
643 }
644 } else if (context->IsStackSlot()) {
645 __ movp(rsi, ToOperand(context));
646 } else if (context->IsConstantOperand()) {
647 HConstant* constant =
648 chunk_->LookupConstant(LConstantOperand::cast(context));
649 __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
650 } else {
651 UNREACHABLE();
652 }
653}
654
655
656
657void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
658 int argc,
659 LInstruction* instr,
660 LOperand* context) {
661 LoadContextFromDeferred(context);
662
663 __ CallRuntimeSaveDoubles(id);
664 RecordSafepointWithRegisters(
665 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
666}
667
668
669void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
670 Safepoint::DeoptMode mode) {
671 environment->set_has_been_used();
672 if (!environment->HasBeenRegistered()) {
673 // Physical stack frame layout:
674 // -x ............. -4 0 ..................................... y
675 // [incoming arguments] [spill slots] [pushed outgoing arguments]
676
677 // Layout of the environment:
678 // 0 ..................................................... size-1
679 // [parameters] [locals] [expression stack including arguments]
680
681 // Layout of the translation:
682 // 0 ........................................................ size - 1 + 4
683 // [expression stack including arguments] [locals] [4 words] [parameters]
684 // |>------------ translation_size ------------<|
685
686 int frame_count = 0;
687 int jsframe_count = 0;
688 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
689 ++frame_count;
690 if (e->frame_type() == JS_FUNCTION) {
691 ++jsframe_count;
692 }
693 }
694 Translation translation(&translations_, frame_count, jsframe_count, zone());
695 WriteTranslation(environment, &translation);
696 int deoptimization_index = deoptimizations_.length();
697 int pc_offset = masm()->pc_offset();
698 environment->Register(deoptimization_index,
699 translation.index(),
700 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
701 deoptimizations_.Add(environment, environment->zone());
702 }
703}
704
705
706void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
707 Deoptimizer::DeoptReason deopt_reason,
708 Deoptimizer::BailoutType bailout_type) {
709 LEnvironment* environment = instr->environment();
710 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
711 DCHECK(environment->HasBeenRegistered());
712 int id = environment->deoptimization_index();
713 Address entry =
714 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
715 if (entry == NULL) {
716 Abort(kBailoutWasNotPrepared);
717 return;
718 }
719
720 if (DeoptEveryNTimes()) {
721 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
722 Label no_deopt;
723 __ pushfq();
724 __ pushq(rax);
725 Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
726 __ movl(rax, count_operand);
727 __ subl(rax, Immediate(1));
728 __ j(not_zero, &no_deopt, Label::kNear);
729 if (FLAG_trap_on_deopt) __ int3();
730 __ movl(rax, Immediate(FLAG_deopt_every_n_times));
731 __ movl(count_operand, rax);
732 __ popq(rax);
733 __ popfq();
734 DCHECK(frame_is_built_);
735 __ call(entry, RelocInfo::RUNTIME_ENTRY);
736 __ bind(&no_deopt);
737 __ movl(count_operand, rax);
738 __ popq(rax);
739 __ popfq();
740 }
741
742 if (info()->ShouldTrapOnDeopt()) {
743 Label done;
744 if (cc != no_condition) {
745 __ j(NegateCondition(cc), &done, Label::kNear);
746 }
747 __ int3();
748 __ bind(&done);
749 }
750
751 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
752
753 DCHECK(info()->IsStub() || frame_is_built_);
754 // Go through jump table if we need to handle condition, build frame, or
755 // restore caller doubles.
756 if (cc == no_condition && frame_is_built_ &&
757 !info()->saves_caller_doubles()) {
758 DeoptComment(deopt_info);
759 __ call(entry, RelocInfo::RUNTIME_ENTRY);
760 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
761 } else {
762 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
763 !frame_is_built_);
764 // We often have several deopts to the same entry, reuse the last
765 // jump entry if this is the case.
766 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
767 jump_table_.is_empty() ||
768 !table_entry.IsEquivalentTo(jump_table_.last())) {
769 jump_table_.Add(table_entry, zone());
770 }
771 if (cc == no_condition) {
772 __ jmp(&jump_table_.last().label);
773 } else {
774 __ j(cc, &jump_table_.last().label);
775 }
776 }
777}
778
779
780void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
781 Deoptimizer::DeoptReason deopt_reason) {
782 Deoptimizer::BailoutType bailout_type = info()->IsStub()
783 ? Deoptimizer::LAZY
784 : Deoptimizer::EAGER;
785 DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
786}
787
788
789void LCodeGen::RecordSafepointWithLazyDeopt(
790 LInstruction* instr, SafepointMode safepoint_mode, int argc) {
791 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
792 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
793 } else {
794 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
795 RecordSafepointWithRegisters(
796 instr->pointer_map(), argc, Safepoint::kLazyDeopt);
797 }
798}
799
800
801void LCodeGen::RecordSafepoint(
802 LPointerMap* pointers,
803 Safepoint::Kind kind,
804 int arguments,
805 Safepoint::DeoptMode deopt_mode) {
806 DCHECK(kind == expected_safepoint_kind_);
807
808 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
809
810 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
811 kind, arguments, deopt_mode);
812 for (int i = 0; i < operands->length(); i++) {
813 LOperand* pointer = operands->at(i);
814 if (pointer->IsStackSlot()) {
815 safepoint.DefinePointerSlot(pointer->index(), zone());
816 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
817 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
818 }
819 }
820}
821
822
823void LCodeGen::RecordSafepoint(LPointerMap* pointers,
824 Safepoint::DeoptMode deopt_mode) {
825 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
826}
827
828
829void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
830 LPointerMap empty_pointers(zone());
831 RecordSafepoint(&empty_pointers, deopt_mode);
832}
833
834
835void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
836 int arguments,
837 Safepoint::DeoptMode deopt_mode) {
838 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
839}
840
841
842void LCodeGen::RecordAndWritePosition(int position) {
843 if (position == RelocInfo::kNoPosition) return;
844 masm()->positions_recorder()->RecordPosition(position);
845 masm()->positions_recorder()->WriteRecordedPositions();
846}
847
848
849static const char* LabelType(LLabel* label) {
850 if (label->is_loop_header()) return " (loop header)";
851 if (label->is_osr_entry()) return " (OSR entry)";
852 return "";
853}
854
855
856void LCodeGen::DoLabel(LLabel* label) {
857 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
858 current_instruction_,
859 label->hydrogen_value()->id(),
860 label->block_id(),
861 LabelType(label));
862 __ bind(label->label());
863 current_block_ = label->block_id();
864 DoGap(label);
865}
866
867
868void LCodeGen::DoParallelMove(LParallelMove* move) {
869 resolver_.Resolve(move);
870}
871
872
873void LCodeGen::DoGap(LGap* gap) {
874 for (int i = LGap::FIRST_INNER_POSITION;
875 i <= LGap::LAST_INNER_POSITION;
876 i++) {
877 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
878 LParallelMove* move = gap->GetParallelMove(inner_pos);
879 if (move != NULL) DoParallelMove(move);
880 }
881}
882
883
884void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
885 DoGap(instr);
886}
887
888
889void LCodeGen::DoParameter(LParameter* instr) {
890 // Nothing to do.
891}
892
893
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000894void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
895 GenerateOsrPrologue();
896}
897
898
899void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
900 Register dividend = ToRegister(instr->dividend());
901 int32_t divisor = instr->divisor();
902 DCHECK(dividend.is(ToRegister(instr->result())));
903
904 // Theoretically, a variation of the branch-free code for integer division by
905 // a power of 2 (calculating the remainder via an additional multiplication
906 // (which gets simplified to an 'and') and subtraction) should be faster, and
907 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
908 // indicate that positive dividends are heavily favored, so the branching
909 // version performs better.
910 HMod* hmod = instr->hydrogen();
911 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
912 Label dividend_is_not_negative, done;
913 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
914 __ testl(dividend, dividend);
915 __ j(not_sign, &dividend_is_not_negative, Label::kNear);
916 // Note that this is correct even for kMinInt operands.
917 __ negl(dividend);
918 __ andl(dividend, Immediate(mask));
919 __ negl(dividend);
920 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
921 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
922 }
923 __ jmp(&done, Label::kNear);
924 }
925
926 __ bind(&dividend_is_not_negative);
927 __ andl(dividend, Immediate(mask));
928 __ bind(&done);
929}
930
931
932void LCodeGen::DoModByConstI(LModByConstI* instr) {
933 Register dividend = ToRegister(instr->dividend());
934 int32_t divisor = instr->divisor();
935 DCHECK(ToRegister(instr->result()).is(rax));
936
937 if (divisor == 0) {
938 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
939 return;
940 }
941
942 __ TruncatingDiv(dividend, Abs(divisor));
943 __ imull(rdx, rdx, Immediate(Abs(divisor)));
944 __ movl(rax, dividend);
945 __ subl(rax, rdx);
946
947 // Check for negative zero.
948 HMod* hmod = instr->hydrogen();
949 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
950 Label remainder_not_zero;
951 __ j(not_zero, &remainder_not_zero, Label::kNear);
952 __ cmpl(dividend, Immediate(0));
953 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
954 __ bind(&remainder_not_zero);
955 }
956}
957
958
959void LCodeGen::DoModI(LModI* instr) {
960 HMod* hmod = instr->hydrogen();
961
962 Register left_reg = ToRegister(instr->left());
963 DCHECK(left_reg.is(rax));
964 Register right_reg = ToRegister(instr->right());
965 DCHECK(!right_reg.is(rax));
966 DCHECK(!right_reg.is(rdx));
967 Register result_reg = ToRegister(instr->result());
968 DCHECK(result_reg.is(rdx));
969
970 Label done;
971 // Check for x % 0, idiv would signal a divide error. We have to
972 // deopt in this case because we can't return a NaN.
973 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
974 __ testl(right_reg, right_reg);
975 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
976 }
977
978 // Check for kMinInt % -1, idiv would signal a divide error. We
979 // have to deopt if we care about -0, because we can't return that.
980 if (hmod->CheckFlag(HValue::kCanOverflow)) {
981 Label no_overflow_possible;
982 __ cmpl(left_reg, Immediate(kMinInt));
983 __ j(not_zero, &no_overflow_possible, Label::kNear);
984 __ cmpl(right_reg, Immediate(-1));
985 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
986 DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
987 } else {
988 __ j(not_equal, &no_overflow_possible, Label::kNear);
989 __ Set(result_reg, 0);
990 __ jmp(&done, Label::kNear);
991 }
992 __ bind(&no_overflow_possible);
993 }
994
995 // Sign extend dividend in eax into edx:eax, since we are using only the low
996 // 32 bits of the values.
997 __ cdq();
998
999 // If we care about -0, test if the dividend is <0 and the result is 0.
1000 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1001 Label positive_left;
1002 __ testl(left_reg, left_reg);
1003 __ j(not_sign, &positive_left, Label::kNear);
1004 __ idivl(right_reg);
1005 __ testl(result_reg, result_reg);
1006 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1007 __ jmp(&done, Label::kNear);
1008 __ bind(&positive_left);
1009 }
1010 __ idivl(right_reg);
1011 __ bind(&done);
1012}
1013
1014
1015void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1016 Register dividend = ToRegister(instr->dividend());
1017 int32_t divisor = instr->divisor();
1018 DCHECK(dividend.is(ToRegister(instr->result())));
1019
1020 // If the divisor is positive, things are easy: There can be no deopts and we
1021 // can simply do an arithmetic right shift.
1022 if (divisor == 1) return;
1023 int32_t shift = WhichPowerOf2Abs(divisor);
1024 if (divisor > 1) {
1025 __ sarl(dividend, Immediate(shift));
1026 return;
1027 }
1028
1029 // If the divisor is negative, we have to negate and handle edge cases.
1030 __ negl(dividend);
1031 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1032 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1033 }
1034
1035 // Dividing by -1 is basically negation, unless we overflow.
1036 if (divisor == -1) {
1037 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1038 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1039 }
1040 return;
1041 }
1042
1043 // If the negation could not overflow, simply shifting is OK.
1044 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1045 __ sarl(dividend, Immediate(shift));
1046 return;
1047 }
1048
1049 Label not_kmin_int, done;
1050 __ j(no_overflow, &not_kmin_int, Label::kNear);
1051 __ movl(dividend, Immediate(kMinInt / divisor));
1052 __ jmp(&done, Label::kNear);
1053 __ bind(&not_kmin_int);
1054 __ sarl(dividend, Immediate(shift));
1055 __ bind(&done);
1056}
1057
1058
1059void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1060 Register dividend = ToRegister(instr->dividend());
1061 int32_t divisor = instr->divisor();
1062 DCHECK(ToRegister(instr->result()).is(rdx));
1063
1064 if (divisor == 0) {
1065 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1066 return;
1067 }
1068
1069 // Check for (0 / -x) that will produce negative zero.
1070 HMathFloorOfDiv* hdiv = instr->hydrogen();
1071 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1072 __ testl(dividend, dividend);
1073 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1074 }
1075
1076 // Easy case: We need no dynamic check for the dividend and the flooring
1077 // division is the same as the truncating division.
1078 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1079 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1080 __ TruncatingDiv(dividend, Abs(divisor));
1081 if (divisor < 0) __ negl(rdx);
1082 return;
1083 }
1084
1085 // In the general case we may need to adjust before and after the truncating
1086 // division to get a flooring division.
1087 Register temp = ToRegister(instr->temp3());
1088 DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
1089 Label needs_adjustment, done;
1090 __ cmpl(dividend, Immediate(0));
1091 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1092 __ TruncatingDiv(dividend, Abs(divisor));
1093 if (divisor < 0) __ negl(rdx);
1094 __ jmp(&done, Label::kNear);
1095 __ bind(&needs_adjustment);
1096 __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1097 __ TruncatingDiv(temp, Abs(divisor));
1098 if (divisor < 0) __ negl(rdx);
1099 __ decl(rdx);
1100 __ bind(&done);
1101}
1102
1103
1104// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1105void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1106 HBinaryOperation* hdiv = instr->hydrogen();
1107 Register dividend = ToRegister(instr->dividend());
1108 Register divisor = ToRegister(instr->divisor());
1109 Register remainder = ToRegister(instr->temp());
1110 Register result = ToRegister(instr->result());
1111 DCHECK(dividend.is(rax));
1112 DCHECK(remainder.is(rdx));
1113 DCHECK(result.is(rax));
1114 DCHECK(!divisor.is(rax));
1115 DCHECK(!divisor.is(rdx));
1116
1117 // Check for x / 0.
1118 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1119 __ testl(divisor, divisor);
1120 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1121 }
1122
1123 // Check for (0 / -x) that will produce negative zero.
1124 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1125 Label dividend_not_zero;
1126 __ testl(dividend, dividend);
1127 __ j(not_zero, &dividend_not_zero, Label::kNear);
1128 __ testl(divisor, divisor);
1129 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1130 __ bind(&dividend_not_zero);
1131 }
1132
1133 // Check for (kMinInt / -1).
1134 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1135 Label dividend_not_min_int;
1136 __ cmpl(dividend, Immediate(kMinInt));
1137 __ j(not_zero, &dividend_not_min_int, Label::kNear);
1138 __ cmpl(divisor, Immediate(-1));
1139 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1140 __ bind(&dividend_not_min_int);
1141 }
1142
1143 // Sign extend to rdx (= remainder).
1144 __ cdq();
1145 __ idivl(divisor);
1146
1147 Label done;
1148 __ testl(remainder, remainder);
1149 __ j(zero, &done, Label::kNear);
1150 __ xorl(remainder, divisor);
1151 __ sarl(remainder, Immediate(31));
1152 __ addl(result, remainder);
1153 __ bind(&done);
1154}
1155
1156
1157void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1158 Register dividend = ToRegister(instr->dividend());
1159 int32_t divisor = instr->divisor();
1160 Register result = ToRegister(instr->result());
1161 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1162 DCHECK(!result.is(dividend));
1163
1164 // Check for (0 / -x) that will produce negative zero.
1165 HDiv* hdiv = instr->hydrogen();
1166 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1167 __ testl(dividend, dividend);
1168 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1169 }
1170 // Check for (kMinInt / -1).
1171 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1172 __ cmpl(dividend, Immediate(kMinInt));
1173 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1174 }
1175 // Deoptimize if remainder will not be 0.
1176 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1177 divisor != 1 && divisor != -1) {
1178 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1179 __ testl(dividend, Immediate(mask));
1180 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1181 }
1182 __ Move(result, dividend);
1183 int32_t shift = WhichPowerOf2Abs(divisor);
1184 if (shift > 0) {
1185 // The arithmetic shift is always OK, the 'if' is an optimization only.
1186 if (shift > 1) __ sarl(result, Immediate(31));
1187 __ shrl(result, Immediate(32 - shift));
1188 __ addl(result, dividend);
1189 __ sarl(result, Immediate(shift));
1190 }
1191 if (divisor < 0) __ negl(result);
1192}
1193
1194
1195void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1196 Register dividend = ToRegister(instr->dividend());
1197 int32_t divisor = instr->divisor();
1198 DCHECK(ToRegister(instr->result()).is(rdx));
1199
1200 if (divisor == 0) {
1201 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1202 return;
1203 }
1204
1205 // Check for (0 / -x) that will produce negative zero.
1206 HDiv* hdiv = instr->hydrogen();
1207 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1208 __ testl(dividend, dividend);
1209 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1210 }
1211
1212 __ TruncatingDiv(dividend, Abs(divisor));
1213 if (divisor < 0) __ negl(rdx);
1214
1215 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1216 __ movl(rax, rdx);
1217 __ imull(rax, rax, Immediate(divisor));
1218 __ subl(rax, dividend);
1219 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
1220 }
1221}
1222
1223
1224// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1225void LCodeGen::DoDivI(LDivI* instr) {
1226 HBinaryOperation* hdiv = instr->hydrogen();
1227 Register dividend = ToRegister(instr->dividend());
1228 Register divisor = ToRegister(instr->divisor());
1229 Register remainder = ToRegister(instr->temp());
1230 DCHECK(dividend.is(rax));
1231 DCHECK(remainder.is(rdx));
1232 DCHECK(ToRegister(instr->result()).is(rax));
1233 DCHECK(!divisor.is(rax));
1234 DCHECK(!divisor.is(rdx));
1235
1236 // Check for x / 0.
1237 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1238 __ testl(divisor, divisor);
1239 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1240 }
1241
1242 // Check for (0 / -x) that will produce negative zero.
1243 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1244 Label dividend_not_zero;
1245 __ testl(dividend, dividend);
1246 __ j(not_zero, &dividend_not_zero, Label::kNear);
1247 __ testl(divisor, divisor);
1248 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1249 __ bind(&dividend_not_zero);
1250 }
1251
1252 // Check for (kMinInt / -1).
1253 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1254 Label dividend_not_min_int;
1255 __ cmpl(dividend, Immediate(kMinInt));
1256 __ j(not_zero, &dividend_not_min_int, Label::kNear);
1257 __ cmpl(divisor, Immediate(-1));
1258 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1259 __ bind(&dividend_not_min_int);
1260 }
1261
1262 // Sign extend to rdx (= remainder).
1263 __ cdq();
1264 __ idivl(divisor);
1265
1266 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1267 // Deoptimize if remainder is not 0.
1268 __ testl(remainder, remainder);
1269 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1270 }
1271}
1272
1273
1274void LCodeGen::DoMulI(LMulI* instr) {
1275 Register left = ToRegister(instr->left());
1276 LOperand* right = instr->right();
1277
1278 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1279 if (instr->hydrogen_value()->representation().IsSmi()) {
1280 __ movp(kScratchRegister, left);
1281 } else {
1282 __ movl(kScratchRegister, left);
1283 }
1284 }
1285
1286 bool can_overflow =
1287 instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1288 if (right->IsConstantOperand()) {
1289 int32_t right_value = ToInteger32(LConstantOperand::cast(right));
1290 if (right_value == -1) {
1291 __ negl(left);
1292 } else if (right_value == 0) {
1293 __ xorl(left, left);
1294 } else if (right_value == 2) {
1295 __ addl(left, left);
1296 } else if (!can_overflow) {
1297 // If the multiplication is known to not overflow, we
1298 // can use operations that don't set the overflow flag
1299 // correctly.
1300 switch (right_value) {
1301 case 1:
1302 // Do nothing.
1303 break;
1304 case 3:
1305 __ leal(left, Operand(left, left, times_2, 0));
1306 break;
1307 case 4:
1308 __ shll(left, Immediate(2));
1309 break;
1310 case 5:
1311 __ leal(left, Operand(left, left, times_4, 0));
1312 break;
1313 case 8:
1314 __ shll(left, Immediate(3));
1315 break;
1316 case 9:
1317 __ leal(left, Operand(left, left, times_8, 0));
1318 break;
1319 case 16:
1320 __ shll(left, Immediate(4));
1321 break;
1322 default:
1323 __ imull(left, left, Immediate(right_value));
1324 break;
1325 }
1326 } else {
1327 __ imull(left, left, Immediate(right_value));
1328 }
1329 } else if (right->IsStackSlot()) {
1330 if (instr->hydrogen_value()->representation().IsSmi()) {
1331 __ SmiToInteger64(left, left);
1332 __ imulp(left, ToOperand(right));
1333 } else {
1334 __ imull(left, ToOperand(right));
1335 }
1336 } else {
1337 if (instr->hydrogen_value()->representation().IsSmi()) {
1338 __ SmiToInteger64(left, left);
1339 __ imulp(left, ToRegister(right));
1340 } else {
1341 __ imull(left, ToRegister(right));
1342 }
1343 }
1344
1345 if (can_overflow) {
1346 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1347 }
1348
1349 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1350 // Bail out if the result is supposed to be negative zero.
1351 Label done;
1352 if (instr->hydrogen_value()->representation().IsSmi()) {
1353 __ testp(left, left);
1354 } else {
1355 __ testl(left, left);
1356 }
1357 __ j(not_zero, &done, Label::kNear);
1358 if (right->IsConstantOperand()) {
1359 // Constant can't be represented as 32-bit Smi due to immediate size
1360 // limit.
1361 DCHECK(SmiValuesAre32Bits()
1362 ? !instr->hydrogen_value()->representation().IsSmi()
1363 : SmiValuesAre31Bits());
1364 if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1365 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
1366 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1367 __ cmpl(kScratchRegister, Immediate(0));
1368 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
1369 }
1370 } else if (right->IsStackSlot()) {
1371 if (instr->hydrogen_value()->representation().IsSmi()) {
1372 __ orp(kScratchRegister, ToOperand(right));
1373 } else {
1374 __ orl(kScratchRegister, ToOperand(right));
1375 }
1376 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1377 } else {
1378 // Test the non-zero operand for negative sign.
1379 if (instr->hydrogen_value()->representation().IsSmi()) {
1380 __ orp(kScratchRegister, ToRegister(right));
1381 } else {
1382 __ orl(kScratchRegister, ToRegister(right));
1383 }
1384 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1385 }
1386 __ bind(&done);
1387 }
1388}
1389
1390
1391void LCodeGen::DoBitI(LBitI* instr) {
1392 LOperand* left = instr->left();
1393 LOperand* right = instr->right();
1394 DCHECK(left->Equals(instr->result()));
1395 DCHECK(left->IsRegister());
1396
1397 if (right->IsConstantOperand()) {
1398 int32_t right_operand =
1399 ToRepresentation(LConstantOperand::cast(right),
1400 instr->hydrogen()->right()->representation());
1401 switch (instr->op()) {
1402 case Token::BIT_AND:
1403 __ andl(ToRegister(left), Immediate(right_operand));
1404 break;
1405 case Token::BIT_OR:
1406 __ orl(ToRegister(left), Immediate(right_operand));
1407 break;
1408 case Token::BIT_XOR:
1409 if (right_operand == int32_t(~0)) {
1410 __ notl(ToRegister(left));
1411 } else {
1412 __ xorl(ToRegister(left), Immediate(right_operand));
1413 }
1414 break;
1415 default:
1416 UNREACHABLE();
1417 break;
1418 }
1419 } else if (right->IsStackSlot()) {
1420 switch (instr->op()) {
1421 case Token::BIT_AND:
1422 if (instr->IsInteger32()) {
1423 __ andl(ToRegister(left), ToOperand(right));
1424 } else {
1425 __ andp(ToRegister(left), ToOperand(right));
1426 }
1427 break;
1428 case Token::BIT_OR:
1429 if (instr->IsInteger32()) {
1430 __ orl(ToRegister(left), ToOperand(right));
1431 } else {
1432 __ orp(ToRegister(left), ToOperand(right));
1433 }
1434 break;
1435 case Token::BIT_XOR:
1436 if (instr->IsInteger32()) {
1437 __ xorl(ToRegister(left), ToOperand(right));
1438 } else {
1439 __ xorp(ToRegister(left), ToOperand(right));
1440 }
1441 break;
1442 default:
1443 UNREACHABLE();
1444 break;
1445 }
1446 } else {
1447 DCHECK(right->IsRegister());
1448 switch (instr->op()) {
1449 case Token::BIT_AND:
1450 if (instr->IsInteger32()) {
1451 __ andl(ToRegister(left), ToRegister(right));
1452 } else {
1453 __ andp(ToRegister(left), ToRegister(right));
1454 }
1455 break;
1456 case Token::BIT_OR:
1457 if (instr->IsInteger32()) {
1458 __ orl(ToRegister(left), ToRegister(right));
1459 } else {
1460 __ orp(ToRegister(left), ToRegister(right));
1461 }
1462 break;
1463 case Token::BIT_XOR:
1464 if (instr->IsInteger32()) {
1465 __ xorl(ToRegister(left), ToRegister(right));
1466 } else {
1467 __ xorp(ToRegister(left), ToRegister(right));
1468 }
1469 break;
1470 default:
1471 UNREACHABLE();
1472 break;
1473 }
1474 }
1475}
1476
1477
1478void LCodeGen::DoShiftI(LShiftI* instr) {
1479 LOperand* left = instr->left();
1480 LOperand* right = instr->right();
1481 DCHECK(left->Equals(instr->result()));
1482 DCHECK(left->IsRegister());
1483 if (right->IsRegister()) {
1484 DCHECK(ToRegister(right).is(rcx));
1485
1486 switch (instr->op()) {
1487 case Token::ROR:
1488 __ rorl_cl(ToRegister(left));
1489 break;
1490 case Token::SAR:
1491 __ sarl_cl(ToRegister(left));
1492 break;
1493 case Token::SHR:
1494 __ shrl_cl(ToRegister(left));
1495 if (instr->can_deopt()) {
1496 __ testl(ToRegister(left), ToRegister(left));
1497 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1498 }
1499 break;
1500 case Token::SHL:
1501 __ shll_cl(ToRegister(left));
1502 break;
1503 default:
1504 UNREACHABLE();
1505 break;
1506 }
1507 } else {
1508 int32_t value = ToInteger32(LConstantOperand::cast(right));
1509 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1510 switch (instr->op()) {
1511 case Token::ROR:
1512 if (shift_count != 0) {
1513 __ rorl(ToRegister(left), Immediate(shift_count));
1514 }
1515 break;
1516 case Token::SAR:
1517 if (shift_count != 0) {
1518 __ sarl(ToRegister(left), Immediate(shift_count));
1519 }
1520 break;
1521 case Token::SHR:
1522 if (shift_count != 0) {
1523 __ shrl(ToRegister(left), Immediate(shift_count));
1524 } else if (instr->can_deopt()) {
1525 __ testl(ToRegister(left), ToRegister(left));
1526 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1527 }
1528 break;
1529 case Token::SHL:
1530 if (shift_count != 0) {
1531 if (instr->hydrogen_value()->representation().IsSmi()) {
1532 if (SmiValuesAre32Bits()) {
1533 __ shlp(ToRegister(left), Immediate(shift_count));
1534 } else {
1535 DCHECK(SmiValuesAre31Bits());
1536 if (instr->can_deopt()) {
1537 if (shift_count != 1) {
1538 __ shll(ToRegister(left), Immediate(shift_count - 1));
1539 }
1540 __ Integer32ToSmi(ToRegister(left), ToRegister(left));
1541 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1542 } else {
1543 __ shll(ToRegister(left), Immediate(shift_count));
1544 }
1545 }
1546 } else {
1547 __ shll(ToRegister(left), Immediate(shift_count));
1548 }
1549 }
1550 break;
1551 default:
1552 UNREACHABLE();
1553 break;
1554 }
1555 }
1556}
1557
1558
1559void LCodeGen::DoSubI(LSubI* instr) {
1560 LOperand* left = instr->left();
1561 LOperand* right = instr->right();
1562 DCHECK(left->Equals(instr->result()));
1563
1564 if (right->IsConstantOperand()) {
1565 int32_t right_operand =
1566 ToRepresentation(LConstantOperand::cast(right),
1567 instr->hydrogen()->right()->representation());
1568 __ subl(ToRegister(left), Immediate(right_operand));
1569 } else if (right->IsRegister()) {
1570 if (instr->hydrogen_value()->representation().IsSmi()) {
1571 __ subp(ToRegister(left), ToRegister(right));
1572 } else {
1573 __ subl(ToRegister(left), ToRegister(right));
1574 }
1575 } else {
1576 if (instr->hydrogen_value()->representation().IsSmi()) {
1577 __ subp(ToRegister(left), ToOperand(right));
1578 } else {
1579 __ subl(ToRegister(left), ToOperand(right));
1580 }
1581 }
1582
1583 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1584 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1585 }
1586}
1587
1588
1589void LCodeGen::DoConstantI(LConstantI* instr) {
1590 Register dst = ToRegister(instr->result());
1591 if (instr->value() == 0) {
1592 __ xorl(dst, dst);
1593 } else {
1594 __ movl(dst, Immediate(instr->value()));
1595 }
1596}
1597
1598
1599void LCodeGen::DoConstantS(LConstantS* instr) {
1600 __ Move(ToRegister(instr->result()), instr->value());
1601}
1602
1603
1604void LCodeGen::DoConstantD(LConstantD* instr) {
1605 __ Move(ToDoubleRegister(instr->result()), instr->bits());
1606}
1607
1608
1609void LCodeGen::DoConstantE(LConstantE* instr) {
1610 __ LoadAddress(ToRegister(instr->result()), instr->value());
1611}
1612
1613
1614void LCodeGen::DoConstantT(LConstantT* instr) {
1615 Handle<Object> object = instr->value(isolate());
1616 AllowDeferredHandleDereference smi_check;
1617 __ Move(ToRegister(instr->result()), object);
1618}
1619
1620
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001621Operand LCodeGen::BuildSeqStringOperand(Register string,
1622 LOperand* index,
1623 String::Encoding encoding) {
1624 if (index->IsConstantOperand()) {
1625 int offset = ToInteger32(LConstantOperand::cast(index));
1626 if (encoding == String::TWO_BYTE_ENCODING) {
1627 offset *= kUC16Size;
1628 }
1629 STATIC_ASSERT(kCharSize == 1);
1630 return FieldOperand(string, SeqString::kHeaderSize + offset);
1631 }
1632 return FieldOperand(
1633 string, ToRegister(index),
1634 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1635 SeqString::kHeaderSize);
1636}
1637
1638
1639void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1640 String::Encoding encoding = instr->hydrogen()->encoding();
1641 Register result = ToRegister(instr->result());
1642 Register string = ToRegister(instr->string());
1643
1644 if (FLAG_debug_code) {
1645 __ Push(string);
1646 __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
1647 __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
1648
1649 __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1650 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1651 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1652 __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1653 ? one_byte_seq_type : two_byte_seq_type));
1654 __ Check(equal, kUnexpectedStringType);
1655 __ Pop(string);
1656 }
1657
1658 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1659 if (encoding == String::ONE_BYTE_ENCODING) {
1660 __ movzxbl(result, operand);
1661 } else {
1662 __ movzxwl(result, operand);
1663 }
1664}
1665
1666
1667void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1668 String::Encoding encoding = instr->hydrogen()->encoding();
1669 Register string = ToRegister(instr->string());
1670
1671 if (FLAG_debug_code) {
1672 Register value = ToRegister(instr->value());
1673 Register index = ToRegister(instr->index());
1674 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1675 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1676 int encoding_mask =
1677 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1678 ? one_byte_seq_type : two_byte_seq_type;
1679 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1680 }
1681
1682 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1683 if (instr->value()->IsConstantOperand()) {
1684 int value = ToInteger32(LConstantOperand::cast(instr->value()));
1685 DCHECK_LE(0, value);
1686 if (encoding == String::ONE_BYTE_ENCODING) {
1687 DCHECK_LE(value, String::kMaxOneByteCharCode);
1688 __ movb(operand, Immediate(value));
1689 } else {
1690 DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1691 __ movw(operand, Immediate(value));
1692 }
1693 } else {
1694 Register value = ToRegister(instr->value());
1695 if (encoding == String::ONE_BYTE_ENCODING) {
1696 __ movb(operand, value);
1697 } else {
1698 __ movw(operand, value);
1699 }
1700 }
1701}
1702
1703
1704void LCodeGen::DoAddI(LAddI* instr) {
1705 LOperand* left = instr->left();
1706 LOperand* right = instr->right();
1707
1708 Representation target_rep = instr->hydrogen()->representation();
1709 bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
1710
1711 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1712 if (right->IsConstantOperand()) {
1713 // No support for smi-immediates for 32-bit SMI.
1714 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1715 int32_t offset =
1716 ToRepresentation(LConstantOperand::cast(right),
1717 instr->hydrogen()->right()->representation());
1718 if (is_p) {
1719 __ leap(ToRegister(instr->result()),
1720 MemOperand(ToRegister(left), offset));
1721 } else {
1722 __ leal(ToRegister(instr->result()),
1723 MemOperand(ToRegister(left), offset));
1724 }
1725 } else {
1726 Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1727 if (is_p) {
1728 __ leap(ToRegister(instr->result()), address);
1729 } else {
1730 __ leal(ToRegister(instr->result()), address);
1731 }
1732 }
1733 } else {
1734 if (right->IsConstantOperand()) {
1735 // No support for smi-immediates for 32-bit SMI.
1736 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1737 int32_t right_operand =
1738 ToRepresentation(LConstantOperand::cast(right),
1739 instr->hydrogen()->right()->representation());
1740 if (is_p) {
1741 __ addp(ToRegister(left), Immediate(right_operand));
1742 } else {
1743 __ addl(ToRegister(left), Immediate(right_operand));
1744 }
1745 } else if (right->IsRegister()) {
1746 if (is_p) {
1747 __ addp(ToRegister(left), ToRegister(right));
1748 } else {
1749 __ addl(ToRegister(left), ToRegister(right));
1750 }
1751 } else {
1752 if (is_p) {
1753 __ addp(ToRegister(left), ToOperand(right));
1754 } else {
1755 __ addl(ToRegister(left), ToOperand(right));
1756 }
1757 }
1758 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1759 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1760 }
1761 }
1762}
1763
1764
1765void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1766 LOperand* left = instr->left();
1767 LOperand* right = instr->right();
1768 DCHECK(left->Equals(instr->result()));
1769 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1770 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1771 Label return_left;
1772 Condition condition = (operation == HMathMinMax::kMathMin)
1773 ? less_equal
1774 : greater_equal;
1775 Register left_reg = ToRegister(left);
1776 if (right->IsConstantOperand()) {
1777 Immediate right_imm = Immediate(
1778 ToRepresentation(LConstantOperand::cast(right),
1779 instr->hydrogen()->right()->representation()));
1780 DCHECK(SmiValuesAre32Bits()
1781 ? !instr->hydrogen()->representation().IsSmi()
1782 : SmiValuesAre31Bits());
1783 __ cmpl(left_reg, right_imm);
1784 __ j(condition, &return_left, Label::kNear);
1785 __ movp(left_reg, right_imm);
1786 } else if (right->IsRegister()) {
1787 Register right_reg = ToRegister(right);
1788 if (instr->hydrogen_value()->representation().IsSmi()) {
1789 __ cmpp(left_reg, right_reg);
1790 } else {
1791 __ cmpl(left_reg, right_reg);
1792 }
1793 __ j(condition, &return_left, Label::kNear);
1794 __ movp(left_reg, right_reg);
1795 } else {
1796 Operand right_op = ToOperand(right);
1797 if (instr->hydrogen_value()->representation().IsSmi()) {
1798 __ cmpp(left_reg, right_op);
1799 } else {
1800 __ cmpl(left_reg, right_op);
1801 }
1802 __ j(condition, &return_left, Label::kNear);
1803 __ movp(left_reg, right_op);
1804 }
1805 __ bind(&return_left);
1806 } else {
1807 DCHECK(instr->hydrogen()->representation().IsDouble());
1808 Label not_nan, distinct, return_left, return_right;
1809 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1810 XMMRegister left_reg = ToDoubleRegister(left);
1811 XMMRegister right_reg = ToDoubleRegister(right);
1812 __ Ucomisd(left_reg, right_reg);
1813 __ j(parity_odd, &not_nan, Label::kNear); // Both are not NaN.
1814
1815 // One of the numbers is NaN. Find which one and return it.
1816 __ Ucomisd(left_reg, left_reg);
1817 __ j(parity_even, &return_left, Label::kNear); // left is NaN.
1818 __ jmp(&return_right, Label::kNear); // right is NaN.
1819
1820 __ bind(&not_nan);
1821 __ j(not_equal, &distinct, Label::kNear); // left != right.
1822
1823 // left == right
1824 XMMRegister xmm_scratch = double_scratch0();
1825 __ Xorpd(xmm_scratch, xmm_scratch);
1826 __ Ucomisd(left_reg, xmm_scratch);
1827 __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
1828
1829 // At this point, both left and right are either +0 or -0.
1830 if (operation == HMathMinMax::kMathMin) {
1831 __ Orpd(left_reg, right_reg);
1832 } else {
1833 __ Andpd(left_reg, right_reg);
1834 }
1835 __ jmp(&return_left, Label::kNear);
1836
1837 __ bind(&distinct);
1838 __ j(condition, &return_left, Label::kNear);
1839
1840 __ bind(&return_right);
1841 __ Movapd(left_reg, right_reg);
1842
1843 __ bind(&return_left);
1844 }
1845}
1846
1847
1848void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1849 XMMRegister left = ToDoubleRegister(instr->left());
1850 XMMRegister right = ToDoubleRegister(instr->right());
1851 XMMRegister result = ToDoubleRegister(instr->result());
1852 switch (instr->op()) {
1853 case Token::ADD:
1854 if (CpuFeatures::IsSupported(AVX)) {
1855 CpuFeatureScope scope(masm(), AVX);
1856 __ vaddsd(result, left, right);
1857 } else {
1858 DCHECK(result.is(left));
1859 __ addsd(left, right);
1860 }
1861 break;
1862 case Token::SUB:
1863 if (CpuFeatures::IsSupported(AVX)) {
1864 CpuFeatureScope scope(masm(), AVX);
1865 __ vsubsd(result, left, right);
1866 } else {
1867 DCHECK(result.is(left));
1868 __ subsd(left, right);
1869 }
1870 break;
1871 case Token::MUL:
1872 if (CpuFeatures::IsSupported(AVX)) {
1873 CpuFeatureScope scope(masm(), AVX);
1874 __ vmulsd(result, left, right);
1875 } else {
1876 DCHECK(result.is(left));
1877 __ mulsd(left, right);
1878 }
1879 break;
1880 case Token::DIV:
1881 if (CpuFeatures::IsSupported(AVX)) {
1882 CpuFeatureScope scope(masm(), AVX);
1883 __ vdivsd(result, left, right);
1884 } else {
1885 DCHECK(result.is(left));
1886 __ divsd(left, right);
1887 }
1888 // Don't delete this mov. It may improve performance on some CPUs,
1889 // when there is a (v)mulsd depending on the result
1890 __ Movapd(result, result);
1891 break;
1892 case Token::MOD: {
1893 XMMRegister xmm_scratch = double_scratch0();
1894 __ PrepareCallCFunction(2);
1895 __ Movapd(xmm_scratch, left);
1896 DCHECK(right.is(xmm1));
1897 __ CallCFunction(
1898 ExternalReference::mod_two_doubles_operation(isolate()), 2);
1899 __ Movapd(result, xmm_scratch);
1900 break;
1901 }
1902 default:
1903 UNREACHABLE();
1904 break;
1905 }
1906}
1907
1908
1909void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1910 DCHECK(ToRegister(instr->context()).is(rsi));
1911 DCHECK(ToRegister(instr->left()).is(rdx));
1912 DCHECK(ToRegister(instr->right()).is(rax));
1913 DCHECK(ToRegister(instr->result()).is(rax));
1914
Ben Murdoch097c5b22016-05-18 11:27:45 +01001915 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001916 CallCode(code, RelocInfo::CODE_TARGET, instr);
1917}
1918
1919
1920template<class InstrType>
1921void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
1922 int left_block = instr->TrueDestination(chunk_);
1923 int right_block = instr->FalseDestination(chunk_);
1924
1925 int next_block = GetNextEmittedBlock();
1926
1927 if (right_block == left_block || cc == no_condition) {
1928 EmitGoto(left_block);
1929 } else if (left_block == next_block) {
1930 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1931 } else if (right_block == next_block) {
1932 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1933 } else {
1934 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1935 if (cc != always) {
1936 __ jmp(chunk_->GetAssemblyLabel(right_block));
1937 }
1938 }
1939}
1940
1941
1942template <class InstrType>
1943void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
1944 int true_block = instr->TrueDestination(chunk_);
1945 __ j(cc, chunk_->GetAssemblyLabel(true_block));
1946}
1947
1948
1949template <class InstrType>
1950void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
1951 int false_block = instr->FalseDestination(chunk_);
1952 __ j(cc, chunk_->GetAssemblyLabel(false_block));
1953}
1954
1955
1956void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
1957 __ int3();
1958}
1959
1960
1961void LCodeGen::DoBranch(LBranch* instr) {
1962 Representation r = instr->hydrogen()->value()->representation();
1963 if (r.IsInteger32()) {
1964 DCHECK(!info()->IsStub());
1965 Register reg = ToRegister(instr->value());
1966 __ testl(reg, reg);
1967 EmitBranch(instr, not_zero);
1968 } else if (r.IsSmi()) {
1969 DCHECK(!info()->IsStub());
1970 Register reg = ToRegister(instr->value());
1971 __ testp(reg, reg);
1972 EmitBranch(instr, not_zero);
1973 } else if (r.IsDouble()) {
1974 DCHECK(!info()->IsStub());
1975 XMMRegister reg = ToDoubleRegister(instr->value());
1976 XMMRegister xmm_scratch = double_scratch0();
1977 __ Xorpd(xmm_scratch, xmm_scratch);
1978 __ Ucomisd(reg, xmm_scratch);
1979 EmitBranch(instr, not_equal);
1980 } else {
1981 DCHECK(r.IsTagged());
1982 Register reg = ToRegister(instr->value());
1983 HType type = instr->hydrogen()->value()->type();
1984 if (type.IsBoolean()) {
1985 DCHECK(!info()->IsStub());
1986 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1987 EmitBranch(instr, equal);
1988 } else if (type.IsSmi()) {
1989 DCHECK(!info()->IsStub());
1990 __ SmiCompare(reg, Smi::FromInt(0));
1991 EmitBranch(instr, not_equal);
1992 } else if (type.IsJSArray()) {
1993 DCHECK(!info()->IsStub());
1994 EmitBranch(instr, no_condition);
1995 } else if (type.IsHeapNumber()) {
1996 DCHECK(!info()->IsStub());
1997 XMMRegister xmm_scratch = double_scratch0();
1998 __ Xorpd(xmm_scratch, xmm_scratch);
1999 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2000 EmitBranch(instr, not_equal);
2001 } else if (type.IsString()) {
2002 DCHECK(!info()->IsStub());
2003 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2004 EmitBranch(instr, not_equal);
2005 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01002006 ToBooleanICStub::Types expected =
2007 instr->hydrogen()->expected_input_types();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002008 // Avoid deopts in the case where we've never executed this path before.
Ben Murdochda12d292016-06-02 14:46:10 +01002009 if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002010
Ben Murdochda12d292016-06-02 14:46:10 +01002011 if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002012 // undefined -> false.
2013 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2014 __ j(equal, instr->FalseLabel(chunk_));
2015 }
Ben Murdochda12d292016-06-02 14:46:10 +01002016 if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002017 // true -> true.
2018 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2019 __ j(equal, instr->TrueLabel(chunk_));
2020 // false -> false.
2021 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2022 __ j(equal, instr->FalseLabel(chunk_));
2023 }
Ben Murdochda12d292016-06-02 14:46:10 +01002024 if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002025 // 'null' -> false.
2026 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2027 __ j(equal, instr->FalseLabel(chunk_));
2028 }
2029
Ben Murdochda12d292016-06-02 14:46:10 +01002030 if (expected.Contains(ToBooleanICStub::SMI)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002031 // Smis: 0 -> false, all other -> true.
2032 __ Cmp(reg, Smi::FromInt(0));
2033 __ j(equal, instr->FalseLabel(chunk_));
2034 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2035 } else if (expected.NeedsMap()) {
2036 // If we need a map later and have a Smi -> deopt.
2037 __ testb(reg, Immediate(kSmiTagMask));
2038 DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
2039 }
2040
2041 const Register map = kScratchRegister;
2042 if (expected.NeedsMap()) {
2043 __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
2044
2045 if (expected.CanBeUndetectable()) {
2046 // Undetectable -> false.
2047 __ testb(FieldOperand(map, Map::kBitFieldOffset),
2048 Immediate(1 << Map::kIsUndetectable));
2049 __ j(not_zero, instr->FalseLabel(chunk_));
2050 }
2051 }
2052
Ben Murdochda12d292016-06-02 14:46:10 +01002053 if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002054 // spec object -> true.
2055 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
2056 __ j(above_equal, instr->TrueLabel(chunk_));
2057 }
2058
Ben Murdochda12d292016-06-02 14:46:10 +01002059 if (expected.Contains(ToBooleanICStub::STRING)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002060 // String value -> false iff empty.
2061 Label not_string;
2062 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2063 __ j(above_equal, &not_string, Label::kNear);
2064 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2065 __ j(not_zero, instr->TrueLabel(chunk_));
2066 __ jmp(instr->FalseLabel(chunk_));
2067 __ bind(&not_string);
2068 }
2069
Ben Murdochda12d292016-06-02 14:46:10 +01002070 if (expected.Contains(ToBooleanICStub::SYMBOL)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002071 // Symbol value -> true.
2072 __ CmpInstanceType(map, SYMBOL_TYPE);
2073 __ j(equal, instr->TrueLabel(chunk_));
2074 }
2075
Ben Murdochda12d292016-06-02 14:46:10 +01002076 if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002077 // SIMD value -> true.
2078 __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
2079 __ j(equal, instr->TrueLabel(chunk_));
2080 }
2081
Ben Murdochda12d292016-06-02 14:46:10 +01002082 if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002083 // heap number -> false iff +0, -0, or NaN.
2084 Label not_heap_number;
2085 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2086 __ j(not_equal, &not_heap_number, Label::kNear);
2087 XMMRegister xmm_scratch = double_scratch0();
2088 __ Xorpd(xmm_scratch, xmm_scratch);
2089 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2090 __ j(zero, instr->FalseLabel(chunk_));
2091 __ jmp(instr->TrueLabel(chunk_));
2092 __ bind(&not_heap_number);
2093 }
2094
2095 if (!expected.IsGeneric()) {
2096 // We've seen something for the first time -> deopt.
2097 // This can only happen if we are not generic already.
2098 DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
2099 }
2100 }
2101 }
2102}
2103
2104
2105void LCodeGen::EmitGoto(int block) {
2106 if (!IsNextEmittedBlock(block)) {
2107 __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
2108 }
2109}
2110
2111
2112void LCodeGen::DoGoto(LGoto* instr) {
2113 EmitGoto(instr->block_id());
2114}
2115
2116
2117inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2118 Condition cond = no_condition;
2119 switch (op) {
2120 case Token::EQ:
2121 case Token::EQ_STRICT:
2122 cond = equal;
2123 break;
2124 case Token::NE:
2125 case Token::NE_STRICT:
2126 cond = not_equal;
2127 break;
2128 case Token::LT:
2129 cond = is_unsigned ? below : less;
2130 break;
2131 case Token::GT:
2132 cond = is_unsigned ? above : greater;
2133 break;
2134 case Token::LTE:
2135 cond = is_unsigned ? below_equal : less_equal;
2136 break;
2137 case Token::GTE:
2138 cond = is_unsigned ? above_equal : greater_equal;
2139 break;
2140 case Token::IN:
2141 case Token::INSTANCEOF:
2142 default:
2143 UNREACHABLE();
2144 }
2145 return cond;
2146}
2147
2148
2149void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2150 LOperand* left = instr->left();
2151 LOperand* right = instr->right();
2152 bool is_unsigned =
2153 instr->is_double() ||
2154 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2155 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2156 Condition cc = TokenToCondition(instr->op(), is_unsigned);
2157
2158 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2159 // We can statically evaluate the comparison.
2160 double left_val = ToDouble(LConstantOperand::cast(left));
2161 double right_val = ToDouble(LConstantOperand::cast(right));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002162 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2163 ? instr->TrueDestination(chunk_)
2164 : instr->FalseDestination(chunk_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002165 EmitGoto(next_block);
2166 } else {
2167 if (instr->is_double()) {
2168 // Don't base result on EFLAGS when a NaN is involved. Instead
2169 // jump to the false block.
2170 __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
2171 __ j(parity_even, instr->FalseLabel(chunk_));
2172 } else {
2173 int32_t value;
2174 if (right->IsConstantOperand()) {
2175 value = ToInteger32(LConstantOperand::cast(right));
2176 if (instr->hydrogen_value()->representation().IsSmi()) {
2177 __ Cmp(ToRegister(left), Smi::FromInt(value));
2178 } else {
2179 __ cmpl(ToRegister(left), Immediate(value));
2180 }
2181 } else if (left->IsConstantOperand()) {
2182 value = ToInteger32(LConstantOperand::cast(left));
2183 if (instr->hydrogen_value()->representation().IsSmi()) {
2184 if (right->IsRegister()) {
2185 __ Cmp(ToRegister(right), Smi::FromInt(value));
2186 } else {
2187 __ Cmp(ToOperand(right), Smi::FromInt(value));
2188 }
2189 } else if (right->IsRegister()) {
2190 __ cmpl(ToRegister(right), Immediate(value));
2191 } else {
2192 __ cmpl(ToOperand(right), Immediate(value));
2193 }
2194 // We commuted the operands, so commute the condition.
2195 cc = CommuteCondition(cc);
2196 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2197 if (right->IsRegister()) {
2198 __ cmpp(ToRegister(left), ToRegister(right));
2199 } else {
2200 __ cmpp(ToRegister(left), ToOperand(right));
2201 }
2202 } else {
2203 if (right->IsRegister()) {
2204 __ cmpl(ToRegister(left), ToRegister(right));
2205 } else {
2206 __ cmpl(ToRegister(left), ToOperand(right));
2207 }
2208 }
2209 }
2210 EmitBranch(instr, cc);
2211 }
2212}
2213
2214
2215void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2216 Register left = ToRegister(instr->left());
2217
2218 if (instr->right()->IsConstantOperand()) {
2219 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2220 __ Cmp(left, right);
2221 } else {
2222 Register right = ToRegister(instr->right());
2223 __ cmpp(left, right);
2224 }
2225 EmitBranch(instr, equal);
2226}
2227
2228
2229void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2230 if (instr->hydrogen()->representation().IsTagged()) {
2231 Register input_reg = ToRegister(instr->object());
2232 __ Cmp(input_reg, factory()->the_hole_value());
2233 EmitBranch(instr, equal);
2234 return;
2235 }
2236
2237 XMMRegister input_reg = ToDoubleRegister(instr->object());
2238 __ Ucomisd(input_reg, input_reg);
2239 EmitFalseBranch(instr, parity_odd);
2240
2241 __ subp(rsp, Immediate(kDoubleSize));
2242 __ Movsd(MemOperand(rsp, 0), input_reg);
2243 __ addp(rsp, Immediate(kDoubleSize));
2244
2245 int offset = sizeof(kHoleNanUpper32);
2246 __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
2247 EmitBranch(instr, equal);
2248}
2249
2250
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002251Condition LCodeGen::EmitIsString(Register input,
2252 Register temp1,
2253 Label* is_not_string,
2254 SmiCheck check_needed = INLINE_SMI_CHECK) {
2255 if (check_needed == INLINE_SMI_CHECK) {
2256 __ JumpIfSmi(input, is_not_string);
2257 }
2258
2259 Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2260
2261 return cond;
2262}
2263
2264
2265void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2266 Register reg = ToRegister(instr->value());
2267 Register temp = ToRegister(instr->temp());
2268
2269 SmiCheck check_needed =
2270 instr->hydrogen()->value()->type().IsHeapObject()
2271 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2272
2273 Condition true_cond = EmitIsString(
2274 reg, temp, instr->FalseLabel(chunk_), check_needed);
2275
2276 EmitBranch(instr, true_cond);
2277}
2278
2279
2280void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2281 Condition is_smi;
2282 if (instr->value()->IsRegister()) {
2283 Register input = ToRegister(instr->value());
2284 is_smi = masm()->CheckSmi(input);
2285 } else {
2286 Operand input = ToOperand(instr->value());
2287 is_smi = masm()->CheckSmi(input);
2288 }
2289 EmitBranch(instr, is_smi);
2290}
2291
2292
2293void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2294 Register input = ToRegister(instr->value());
2295 Register temp = ToRegister(instr->temp());
2296
2297 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2298 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2299 }
2300 __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
2301 __ testb(FieldOperand(temp, Map::kBitFieldOffset),
2302 Immediate(1 << Map::kIsUndetectable));
2303 EmitBranch(instr, not_zero);
2304}
2305
2306
2307void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2308 DCHECK(ToRegister(instr->context()).is(rsi));
2309 DCHECK(ToRegister(instr->left()).is(rdx));
2310 DCHECK(ToRegister(instr->right()).is(rax));
2311
Ben Murdochda12d292016-06-02 14:46:10 +01002312 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002313 CallCode(code, RelocInfo::CODE_TARGET, instr);
Ben Murdochda12d292016-06-02 14:46:10 +01002314 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
2315 EmitBranch(instr, equal);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002316}
2317
2318
2319static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2320 InstanceType from = instr->from();
2321 InstanceType to = instr->to();
2322 if (from == FIRST_TYPE) return to;
2323 DCHECK(from == to || to == LAST_TYPE);
2324 return from;
2325}
2326
2327
2328static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2329 InstanceType from = instr->from();
2330 InstanceType to = instr->to();
2331 if (from == to) return equal;
2332 if (to == LAST_TYPE) return above_equal;
2333 if (from == FIRST_TYPE) return below_equal;
2334 UNREACHABLE();
2335 return equal;
2336}
2337
2338
2339void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2340 Register input = ToRegister(instr->value());
2341
2342 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2343 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2344 }
2345
2346 __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
2347 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2348}
2349
2350
2351void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2352 Register input = ToRegister(instr->value());
2353 Register result = ToRegister(instr->result());
2354
2355 __ AssertString(input);
2356
2357 __ movl(result, FieldOperand(input, String::kHashFieldOffset));
2358 DCHECK(String::kHashShift >= kSmiTagSize);
2359 __ IndexFromHash(result, result);
2360}
2361
2362
2363void LCodeGen::DoHasCachedArrayIndexAndBranch(
2364 LHasCachedArrayIndexAndBranch* instr) {
2365 Register input = ToRegister(instr->value());
2366
2367 __ testl(FieldOperand(input, String::kHashFieldOffset),
2368 Immediate(String::kContainsCachedArrayIndexMask));
2369 EmitBranch(instr, equal);
2370}
2371
2372
2373// Branches to a label or falls through with the answer in the z flag.
2374// Trashes the temp register.
2375void LCodeGen::EmitClassOfTest(Label* is_true,
2376 Label* is_false,
2377 Handle<String> class_name,
2378 Register input,
2379 Register temp,
2380 Register temp2) {
2381 DCHECK(!input.is(temp));
2382 DCHECK(!input.is(temp2));
2383 DCHECK(!temp.is(temp2));
2384
2385 __ JumpIfSmi(input, is_false);
2386
Ben Murdochda12d292016-06-02 14:46:10 +01002387 __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
2388 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002389 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
Ben Murdochda12d292016-06-02 14:46:10 +01002390 __ j(above_equal, is_true);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002391 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01002392 __ j(above_equal, is_false);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002393 }
2394
2395 // Check if the constructor in the map is a function.
2396 __ GetMapConstructor(temp, temp, kScratchRegister);
2397
2398 // Objects with a non-function constructor have class 'Object'.
2399 __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
2400 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2401 __ j(not_equal, is_true);
2402 } else {
2403 __ j(not_equal, is_false);
2404 }
2405
2406 // temp now contains the constructor function. Grab the
2407 // instance class name from there.
2408 __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2409 __ movp(temp, FieldOperand(temp,
2410 SharedFunctionInfo::kInstanceClassNameOffset));
2411 // The class name we are testing against is internalized since it's a literal.
2412 // The name in the constructor is internalized because of the way the context
2413 // is booted. This routine isn't expected to work for random API-created
2414 // classes and it doesn't have to because you can't access it with natives
2415 // syntax. Since both sides are internalized it is sufficient to use an
2416 // identity comparison.
2417 DCHECK(class_name->IsInternalizedString());
2418 __ Cmp(temp, class_name);
2419 // End with the answer in the z flag.
2420}
2421
2422
2423void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2424 Register input = ToRegister(instr->value());
2425 Register temp = ToRegister(instr->temp());
2426 Register temp2 = ToRegister(instr->temp2());
2427 Handle<String> class_name = instr->hydrogen()->class_name();
2428
2429 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2430 class_name, input, temp, temp2);
2431
2432 EmitBranch(instr, equal);
2433}
2434
2435
2436void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2437 Register reg = ToRegister(instr->value());
2438
2439 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2440 EmitBranch(instr, equal);
2441}
2442
2443
2444void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2445 DCHECK(ToRegister(instr->context()).is(rsi));
2446 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2447 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2448 DCHECK(ToRegister(instr->result()).is(rax));
2449 InstanceOfStub stub(isolate());
2450 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2451}
2452
2453
2454void LCodeGen::DoHasInPrototypeChainAndBranch(
2455 LHasInPrototypeChainAndBranch* instr) {
2456 Register const object = ToRegister(instr->object());
2457 Register const object_map = kScratchRegister;
2458 Register const object_prototype = object_map;
2459 Register const prototype = ToRegister(instr->prototype());
2460
2461 // The {object} must be a spec object. It's sufficient to know that {object}
2462 // is not a smi, since all other non-spec objects have {null} prototypes and
2463 // will be ruled out below.
2464 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2465 Condition is_smi = __ CheckSmi(object);
2466 EmitFalseBranch(instr, is_smi);
2467 }
2468
2469 // Loop through the {object}s prototype chain looking for the {prototype}.
2470 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2471 Label loop;
2472 __ bind(&loop);
2473
2474
2475 // Deoptimize if the object needs to be access checked.
2476 __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
2477 Immediate(1 << Map::kIsAccessCheckNeeded));
2478 DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
2479 // Deoptimize for proxies.
2480 __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2481 DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
2482
2483 __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2484 __ cmpp(object_prototype, prototype);
2485 EmitTrueBranch(instr, equal);
2486 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2487 EmitFalseBranch(instr, equal);
2488 __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2489 __ jmp(&loop);
2490}
2491
2492
2493void LCodeGen::DoCmpT(LCmpT* instr) {
2494 DCHECK(ToRegister(instr->context()).is(rsi));
2495 Token::Value op = instr->op();
2496
Ben Murdoch097c5b22016-05-18 11:27:45 +01002497 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002498 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2499
2500 Condition condition = TokenToCondition(op, false);
2501 Label true_value, done;
2502 __ testp(rax, rax);
2503 __ j(condition, &true_value, Label::kNear);
2504 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2505 __ jmp(&done, Label::kNear);
2506 __ bind(&true_value);
2507 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2508 __ bind(&done);
2509}
2510
2511
2512void LCodeGen::DoReturn(LReturn* instr) {
2513 if (FLAG_trace && info()->IsOptimizing()) {
2514 // Preserve the return value on the stack and rely on the runtime call
2515 // to return the value in the same register. We're leaving the code
2516 // managed by the register allocator and tearing down the frame, it's
2517 // safe to write to the context register.
2518 __ Push(rax);
2519 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2520 __ CallRuntime(Runtime::kTraceExit);
2521 }
2522 if (info()->saves_caller_doubles()) {
2523 RestoreCallerDoubles();
2524 }
2525 if (NeedsEagerFrame()) {
2526 __ movp(rsp, rbp);
2527 __ popq(rbp);
2528 }
2529 if (instr->has_constant_parameter_count()) {
2530 __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
2531 rcx);
2532 } else {
2533 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2534 Register reg = ToRegister(instr->parameter_count());
2535 // The argument count parameter is a smi
2536 __ SmiToInteger32(reg, reg);
2537 Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
2538 __ PopReturnAddressTo(return_addr_reg);
2539 __ shlp(reg, Immediate(kPointerSizeLog2));
2540 __ addp(rsp, reg);
2541 __ jmp(return_addr_reg);
2542 }
2543}
2544
2545
2546template <class T>
2547void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2548 Register vector_register = ToRegister(instr->temp_vector());
2549 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
2550 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2551 DCHECK(slot_register.is(rax));
2552
2553 AllowDeferredHandleDereference vector_structure_check;
2554 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2555 __ Move(vector_register, vector);
2556 // No need to allocate this register.
2557 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2558 int index = vector->GetIndex(slot);
2559 __ Move(slot_register, Smi::FromInt(index));
2560}
2561
2562
2563template <class T>
2564void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2565 Register vector_register = ToRegister(instr->temp_vector());
2566 Register slot_register = ToRegister(instr->temp_slot());
2567
2568 AllowDeferredHandleDereference vector_structure_check;
2569 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2570 __ Move(vector_register, vector);
2571 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2572 int index = vector->GetIndex(slot);
2573 __ Move(slot_register, Smi::FromInt(index));
2574}
2575
2576
2577void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2578 DCHECK(ToRegister(instr->context()).is(rsi));
2579 DCHECK(ToRegister(instr->global_object())
2580 .is(LoadDescriptor::ReceiverRegister()));
2581 DCHECK(ToRegister(instr->result()).is(rax));
2582
2583 __ Move(LoadDescriptor::NameRegister(), instr->name());
2584 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002585 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2586 isolate(), instr->typeof_mode(), PREMONOMORPHIC)
2587 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002588 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2589}
2590
2591
2592void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2593 Register context = ToRegister(instr->context());
2594 Register result = ToRegister(instr->result());
2595 __ movp(result, ContextOperand(context, instr->slot_index()));
2596 if (instr->hydrogen()->RequiresHoleCheck()) {
2597 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2598 if (instr->hydrogen()->DeoptimizesOnHole()) {
2599 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2600 } else {
2601 Label is_not_hole;
2602 __ j(not_equal, &is_not_hole, Label::kNear);
2603 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2604 __ bind(&is_not_hole);
2605 }
2606 }
2607}
2608
2609
2610void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2611 Register context = ToRegister(instr->context());
2612 Register value = ToRegister(instr->value());
2613
2614 Operand target = ContextOperand(context, instr->slot_index());
2615
2616 Label skip_assignment;
2617 if (instr->hydrogen()->RequiresHoleCheck()) {
2618 __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
2619 if (instr->hydrogen()->DeoptimizesOnHole()) {
2620 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2621 } else {
2622 __ j(not_equal, &skip_assignment);
2623 }
2624 }
2625 __ movp(target, value);
2626
2627 if (instr->hydrogen()->NeedsWriteBarrier()) {
2628 SmiCheck check_needed =
2629 instr->hydrogen()->value()->type().IsHeapObject()
2630 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2631 int offset = Context::SlotOffset(instr->slot_index());
2632 Register scratch = ToRegister(instr->temp());
2633 __ RecordWriteContextSlot(context,
2634 offset,
2635 value,
2636 scratch,
2637 kSaveFPRegs,
2638 EMIT_REMEMBERED_SET,
2639 check_needed);
2640 }
2641
2642 __ bind(&skip_assignment);
2643}
2644
2645
2646void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2647 HObjectAccess access = instr->hydrogen()->access();
2648 int offset = access.offset();
2649
2650 if (access.IsExternalMemory()) {
2651 Register result = ToRegister(instr->result());
2652 if (instr->object()->IsConstantOperand()) {
2653 DCHECK(result.is(rax));
2654 __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
2655 } else {
2656 Register object = ToRegister(instr->object());
2657 __ Load(result, MemOperand(object, offset), access.representation());
2658 }
2659 return;
2660 }
2661
2662 Register object = ToRegister(instr->object());
2663 if (instr->hydrogen()->representation().IsDouble()) {
2664 DCHECK(access.IsInobject());
2665 XMMRegister result = ToDoubleRegister(instr->result());
2666 __ Movsd(result, FieldOperand(object, offset));
2667 return;
2668 }
2669
2670 Register result = ToRegister(instr->result());
2671 if (!access.IsInobject()) {
2672 __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
2673 object = result;
2674 }
2675
2676 Representation representation = access.representation();
2677 if (representation.IsSmi() && SmiValuesAre32Bits() &&
2678 instr->hydrogen()->representation().IsInteger32()) {
2679 if (FLAG_debug_code) {
2680 Register scratch = kScratchRegister;
2681 __ Load(scratch, FieldOperand(object, offset), representation);
2682 __ AssertSmi(scratch);
2683 }
2684
2685 // Read int value directly from upper half of the smi.
2686 STATIC_ASSERT(kSmiTag == 0);
2687 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2688 offset += kPointerSize / 2;
2689 representation = Representation::Integer32();
2690 }
2691 __ Load(result, FieldOperand(object, offset), representation);
2692}
2693
2694
2695void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2696 DCHECK(ToRegister(instr->context()).is(rsi));
2697 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2698 DCHECK(ToRegister(instr->result()).is(rax));
2699
2700 __ Move(LoadDescriptor::NameRegister(), instr->name());
2701 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002702 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2703 isolate(), NOT_INSIDE_TYPEOF,
2704 instr->hydrogen()->initialization_state())
2705 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002706 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2707}
2708
2709
2710void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2711 Register function = ToRegister(instr->function());
2712 Register result = ToRegister(instr->result());
2713
2714 // Get the prototype or initial map from the function.
2715 __ movp(result,
2716 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2717
2718 // Check that the function has a prototype or an initial map.
2719 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2720 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2721
2722 // If the function does not have an initial map, we're done.
2723 Label done;
2724 __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2725 __ j(not_equal, &done, Label::kNear);
2726
2727 // Get the prototype from the initial map.
2728 __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
2729
2730 // All done.
2731 __ bind(&done);
2732}
2733
2734
2735void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2736 Register result = ToRegister(instr->result());
2737 __ LoadRoot(result, instr->index());
2738}
2739
2740
2741void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2742 Register arguments = ToRegister(instr->arguments());
2743 Register result = ToRegister(instr->result());
2744
2745 if (instr->length()->IsConstantOperand() &&
2746 instr->index()->IsConstantOperand()) {
2747 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2748 int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2749 if (const_index >= 0 && const_index < const_length) {
2750 StackArgumentsAccessor args(arguments, const_length,
2751 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2752 __ movp(result, args.GetArgumentOperand(const_index));
2753 } else if (FLAG_debug_code) {
2754 __ int3();
2755 }
2756 } else {
2757 Register length = ToRegister(instr->length());
2758 // There are two words between the frame pointer and the last argument.
2759 // Subtracting from length accounts for one of them add one more.
2760 if (instr->index()->IsRegister()) {
2761 __ subl(length, ToRegister(instr->index()));
2762 } else {
2763 __ subl(length, ToOperand(instr->index()));
2764 }
2765 StackArgumentsAccessor args(arguments, length,
2766 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2767 __ movp(result, args.GetArgumentOperand(0));
2768 }
2769}
2770
2771
2772void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2773 ElementsKind elements_kind = instr->elements_kind();
2774 LOperand* key = instr->key();
2775 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
2776 Register key_reg = ToRegister(key);
2777 Representation key_representation =
2778 instr->hydrogen()->key()->representation();
2779 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
2780 __ SmiToInteger64(key_reg, key_reg);
2781 } else if (instr->hydrogen()->IsDehoisted()) {
2782 // Sign extend key because it could be a 32 bit negative value
2783 // and the dehoisted address computation happens in 64 bits
2784 __ movsxlq(key_reg, key_reg);
2785 }
2786 }
2787 Operand operand(BuildFastArrayOperand(
2788 instr->elements(),
2789 key,
2790 instr->hydrogen()->key()->representation(),
2791 elements_kind,
2792 instr->base_offset()));
2793
2794 if (elements_kind == FLOAT32_ELEMENTS) {
2795 XMMRegister result(ToDoubleRegister(instr->result()));
2796 __ Cvtss2sd(result, operand);
2797 } else if (elements_kind == FLOAT64_ELEMENTS) {
2798 __ Movsd(ToDoubleRegister(instr->result()), operand);
2799 } else {
2800 Register result(ToRegister(instr->result()));
2801 switch (elements_kind) {
2802 case INT8_ELEMENTS:
2803 __ movsxbl(result, operand);
2804 break;
2805 case UINT8_ELEMENTS:
2806 case UINT8_CLAMPED_ELEMENTS:
2807 __ movzxbl(result, operand);
2808 break;
2809 case INT16_ELEMENTS:
2810 __ movsxwl(result, operand);
2811 break;
2812 case UINT16_ELEMENTS:
2813 __ movzxwl(result, operand);
2814 break;
2815 case INT32_ELEMENTS:
2816 __ movl(result, operand);
2817 break;
2818 case UINT32_ELEMENTS:
2819 __ movl(result, operand);
2820 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2821 __ testl(result, result);
2822 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
2823 }
2824 break;
2825 case FLOAT32_ELEMENTS:
2826 case FLOAT64_ELEMENTS:
2827 case FAST_ELEMENTS:
2828 case FAST_SMI_ELEMENTS:
2829 case FAST_DOUBLE_ELEMENTS:
2830 case FAST_HOLEY_ELEMENTS:
2831 case FAST_HOLEY_SMI_ELEMENTS:
2832 case FAST_HOLEY_DOUBLE_ELEMENTS:
2833 case DICTIONARY_ELEMENTS:
2834 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2835 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01002836 case FAST_STRING_WRAPPER_ELEMENTS:
2837 case SLOW_STRING_WRAPPER_ELEMENTS:
2838 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002839 UNREACHABLE();
2840 break;
2841 }
2842 }
2843}
2844
2845
2846void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2847 XMMRegister result(ToDoubleRegister(instr->result()));
2848 LOperand* key = instr->key();
2849 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2850 instr->hydrogen()->IsDehoisted()) {
2851 // Sign extend key because it could be a 32 bit negative value
2852 // and the dehoisted address computation happens in 64 bits
2853 __ movsxlq(ToRegister(key), ToRegister(key));
2854 }
2855 if (instr->hydrogen()->RequiresHoleCheck()) {
2856 Operand hole_check_operand = BuildFastArrayOperand(
2857 instr->elements(),
2858 key,
2859 instr->hydrogen()->key()->representation(),
2860 FAST_DOUBLE_ELEMENTS,
2861 instr->base_offset() + sizeof(kHoleNanLower32));
2862 __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
2863 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2864 }
2865
2866 Operand double_load_operand = BuildFastArrayOperand(
2867 instr->elements(),
2868 key,
2869 instr->hydrogen()->key()->representation(),
2870 FAST_DOUBLE_ELEMENTS,
2871 instr->base_offset());
2872 __ Movsd(result, double_load_operand);
2873}
2874
2875
2876void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2877 HLoadKeyed* hinstr = instr->hydrogen();
2878 Register result = ToRegister(instr->result());
2879 LOperand* key = instr->key();
2880 bool requires_hole_check = hinstr->RequiresHoleCheck();
2881 Representation representation = hinstr->representation();
2882 int offset = instr->base_offset();
2883
2884 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2885 instr->hydrogen()->IsDehoisted()) {
2886 // Sign extend key because it could be a 32 bit negative value
2887 // and the dehoisted address computation happens in 64 bits
2888 __ movsxlq(ToRegister(key), ToRegister(key));
2889 }
2890 if (representation.IsInteger32() && SmiValuesAre32Bits() &&
2891 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2892 DCHECK(!requires_hole_check);
2893 if (FLAG_debug_code) {
2894 Register scratch = kScratchRegister;
2895 __ Load(scratch,
2896 BuildFastArrayOperand(instr->elements(),
2897 key,
2898 instr->hydrogen()->key()->representation(),
2899 FAST_ELEMENTS,
2900 offset),
2901 Representation::Smi());
2902 __ AssertSmi(scratch);
2903 }
2904 // Read int value directly from upper half of the smi.
2905 STATIC_ASSERT(kSmiTag == 0);
2906 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2907 offset += kPointerSize / 2;
2908 }
2909
2910 __ Load(result,
2911 BuildFastArrayOperand(instr->elements(), key,
2912 instr->hydrogen()->key()->representation(),
2913 FAST_ELEMENTS, offset),
2914 representation);
2915
2916 // Check for the hole value.
2917 if (requires_hole_check) {
2918 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
2919 Condition smi = __ CheckSmi(result);
2920 DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi);
2921 } else {
2922 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2923 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2924 }
2925 } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2926 DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
2927 Label done;
2928 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2929 __ j(not_equal, &done);
2930 if (info()->IsStub()) {
2931 // A stub can safely convert the hole to undefined only if the array
2932 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
2933 // it needs to bail out.
2934 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2935 __ Cmp(FieldOperand(result, Cell::kValueOffset),
2936 Smi::FromInt(Isolate::kArrayProtectorValid));
2937 DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
2938 }
2939 __ Move(result, isolate()->factory()->undefined_value());
2940 __ bind(&done);
2941 }
2942}
2943
2944
2945void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2946 if (instr->is_fixed_typed_array()) {
2947 DoLoadKeyedExternalArray(instr);
2948 } else if (instr->hydrogen()->representation().IsDouble()) {
2949 DoLoadKeyedFixedDoubleArray(instr);
2950 } else {
2951 DoLoadKeyedFixedArray(instr);
2952 }
2953}
2954
2955
2956Operand LCodeGen::BuildFastArrayOperand(
2957 LOperand* elements_pointer,
2958 LOperand* key,
2959 Representation key_representation,
2960 ElementsKind elements_kind,
2961 uint32_t offset) {
2962 Register elements_pointer_reg = ToRegister(elements_pointer);
2963 int shift_size = ElementsKindToShiftSize(elements_kind);
2964 if (key->IsConstantOperand()) {
2965 int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
2966 if (constant_value & 0xF0000000) {
2967 Abort(kArrayIndexConstantValueTooBig);
2968 }
2969 return Operand(elements_pointer_reg,
2970 (constant_value << shift_size) + offset);
2971 } else {
2972 // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
2973 DCHECK(key_representation.IsInteger32());
2974
2975 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2976 return Operand(elements_pointer_reg,
2977 ToRegister(key),
2978 scale_factor,
2979 offset);
2980 }
2981}
2982
2983
2984void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2985 DCHECK(ToRegister(instr->context()).is(rsi));
2986 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2987 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
2988
2989 if (instr->hydrogen()->HasVectorAndSlot()) {
2990 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
2991 }
2992
2993 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
Ben Murdoch097c5b22016-05-18 11:27:45 +01002994 isolate(), instr->hydrogen()->initialization_state())
2995 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002996 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2997}
2998
2999
3000void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3001 Register result = ToRegister(instr->result());
3002
3003 if (instr->hydrogen()->from_inlined()) {
3004 __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
Ben Murdochda12d292016-06-02 14:46:10 +01003005 } else if (instr->hydrogen()->arguments_adaptor()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003006 // Check for arguments adapter frame.
3007 Label done, adapted;
3008 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01003009 __ Cmp(Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003010 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3011 __ j(equal, &adapted, Label::kNear);
3012
3013 // No arguments adaptor frame.
3014 __ movp(result, rbp);
3015 __ jmp(&done, Label::kNear);
3016
3017 // Arguments adaptor frame present.
3018 __ bind(&adapted);
3019 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3020
3021 // Result is the frame pointer for the frame if not adapted and for the real
3022 // frame below the adaptor frame if adapted.
3023 __ bind(&done);
Ben Murdochda12d292016-06-02 14:46:10 +01003024 } else {
3025 __ movp(result, rbp);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003026 }
3027}
3028
3029
3030void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3031 Register result = ToRegister(instr->result());
3032
3033 Label done;
3034
3035 // If no arguments adaptor frame the number of arguments is fixed.
3036 if (instr->elements()->IsRegister()) {
3037 __ cmpp(rbp, ToRegister(instr->elements()));
3038 } else {
3039 __ cmpp(rbp, ToOperand(instr->elements()));
3040 }
3041 __ movl(result, Immediate(scope()->num_parameters()));
3042 __ j(equal, &done, Label::kNear);
3043
3044 // Arguments adaptor frame present. Get argument length from there.
3045 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3046 __ SmiToInteger32(result,
3047 Operand(result,
3048 ArgumentsAdaptorFrameConstants::kLengthOffset));
3049
3050 // Argument length is in result register.
3051 __ bind(&done);
3052}
3053
3054
3055void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3056 Register receiver = ToRegister(instr->receiver());
3057 Register function = ToRegister(instr->function());
3058
3059 // If the receiver is null or undefined, we have to pass the global
3060 // object as a receiver to normal functions. Values have to be
3061 // passed unchanged to builtins and strict-mode functions.
3062 Label global_object, receiver_ok;
3063 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3064
3065 if (!instr->hydrogen()->known_function()) {
3066 // Do not transform the receiver to object for strict mode
3067 // functions.
3068 __ movp(kScratchRegister,
3069 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3070 __ testb(FieldOperand(kScratchRegister,
3071 SharedFunctionInfo::kStrictModeByteOffset),
3072 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
3073 __ j(not_equal, &receiver_ok, dist);
3074
3075 // Do not transform the receiver to object for builtins.
3076 __ testb(FieldOperand(kScratchRegister,
3077 SharedFunctionInfo::kNativeByteOffset),
3078 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
3079 __ j(not_equal, &receiver_ok, dist);
3080 }
3081
3082 // Normal function. Replace undefined or null with global receiver.
3083 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
3084 __ j(equal, &global_object, Label::kNear);
3085 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
3086 __ j(equal, &global_object, Label::kNear);
3087
3088 // The receiver should be a JS object.
3089 Condition is_smi = __ CheckSmi(receiver);
3090 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
3091 __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
3092 DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
3093
3094 __ jmp(&receiver_ok, Label::kNear);
3095 __ bind(&global_object);
3096 __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
3097 __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
3098 __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
3099
3100 __ bind(&receiver_ok);
3101}
3102
3103
3104void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3105 Register receiver = ToRegister(instr->receiver());
3106 Register function = ToRegister(instr->function());
3107 Register length = ToRegister(instr->length());
3108 Register elements = ToRegister(instr->elements());
3109 DCHECK(receiver.is(rax)); // Used for parameter count.
3110 DCHECK(function.is(rdi)); // Required by InvokeFunction.
3111 DCHECK(ToRegister(instr->result()).is(rax));
3112
3113 // Copy the arguments to this function possibly from the
3114 // adaptor frame below it.
3115 const uint32_t kArgumentsLimit = 1 * KB;
3116 __ cmpp(length, Immediate(kArgumentsLimit));
3117 DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
3118
3119 __ Push(receiver);
3120 __ movp(receiver, length);
3121
3122 // Loop through the arguments pushing them onto the execution
3123 // stack.
3124 Label invoke, loop;
3125 // length is a small non-negative integer, due to the test above.
3126 __ testl(length, length);
3127 __ j(zero, &invoke, Label::kNear);
3128 __ bind(&loop);
3129 StackArgumentsAccessor args(elements, length,
3130 ARGUMENTS_DONT_CONTAIN_RECEIVER);
3131 __ Push(args.GetArgumentOperand(0));
3132 __ decl(length);
3133 __ j(not_zero, &loop);
3134
3135 // Invoke the function.
3136 __ bind(&invoke);
Ben Murdochda12d292016-06-02 14:46:10 +01003137
3138 InvokeFlag flag = CALL_FUNCTION;
3139 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3140 DCHECK(!info()->saves_caller_doubles());
3141 // TODO(ishell): drop current frame before pushing arguments to the stack.
3142 flag = JUMP_FUNCTION;
3143 ParameterCount actual(rax);
3144 // It is safe to use rbx, rcx and r8 as scratch registers here given that
3145 // 1) we are not going to return to caller function anyway,
3146 // 2) rbx (expected number of arguments) will be initialized below.
3147 PrepareForTailCall(actual, rbx, rcx, r8);
3148 }
3149
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003150 DCHECK(instr->HasPointerMap());
3151 LPointerMap* pointers = instr->pointer_map();
Ben Murdochda12d292016-06-02 14:46:10 +01003152 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003153 ParameterCount actual(rax);
Ben Murdochda12d292016-06-02 14:46:10 +01003154 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003155}
3156
3157
3158void LCodeGen::DoPushArgument(LPushArgument* instr) {
3159 LOperand* argument = instr->value();
3160 EmitPushTaggedOperand(argument);
3161}
3162
3163
3164void LCodeGen::DoDrop(LDrop* instr) {
3165 __ Drop(instr->count());
3166}
3167
3168
3169void LCodeGen::DoThisFunction(LThisFunction* instr) {
3170 Register result = ToRegister(instr->result());
3171 __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3172}
3173
3174
3175void LCodeGen::DoContext(LContext* instr) {
3176 Register result = ToRegister(instr->result());
3177 if (info()->IsOptimizing()) {
3178 __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
3179 } else {
3180 // If there is no frame, the context must be in rsi.
3181 DCHECK(result.is(rsi));
3182 }
3183}
3184
3185
3186void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3187 DCHECK(ToRegister(instr->context()).is(rsi));
3188 __ Push(instr->hydrogen()->pairs());
3189 __ Push(Smi::FromInt(instr->hydrogen()->flags()));
3190 CallRuntime(Runtime::kDeclareGlobals, instr);
3191}
3192
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003193void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3194 int formal_parameter_count, int arity,
Ben Murdochda12d292016-06-02 14:46:10 +01003195 bool is_tail_call, LInstruction* instr) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003196 bool dont_adapt_arguments =
3197 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3198 bool can_invoke_directly =
3199 dont_adapt_arguments || formal_parameter_count == arity;
3200
3201 Register function_reg = rdi;
3202 LPointerMap* pointers = instr->pointer_map();
3203
3204 if (can_invoke_directly) {
3205 // Change context.
3206 __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
3207
3208 // Always initialize new target and number of actual arguments.
3209 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3210 __ Set(rax, arity);
3211
Ben Murdochda12d292016-06-02 14:46:10 +01003212 bool is_self_call = function.is_identical_to(info()->closure());
3213
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003214 // Invoke function.
Ben Murdochda12d292016-06-02 14:46:10 +01003215 if (is_self_call) {
3216 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3217 if (is_tail_call) {
3218 __ Jump(self, RelocInfo::CODE_TARGET);
3219 } else {
3220 __ Call(self, RelocInfo::CODE_TARGET);
3221 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003222 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003223 Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
3224 if (is_tail_call) {
3225 __ Jump(target);
3226 } else {
3227 __ Call(target);
3228 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003229 }
3230
Ben Murdochda12d292016-06-02 14:46:10 +01003231 if (!is_tail_call) {
3232 // Set up deoptimization.
3233 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
3234 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003235 } else {
3236 // We need to adapt arguments.
Ben Murdochda12d292016-06-02 14:46:10 +01003237 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3238 ParameterCount actual(arity);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003239 ParameterCount expected(formal_parameter_count);
Ben Murdochda12d292016-06-02 14:46:10 +01003240 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3241 __ InvokeFunction(function_reg, no_reg, expected, actual, flag, generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003242 }
3243}
3244
3245
3246void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3247 DCHECK(ToRegister(instr->result()).is(rax));
3248
3249 if (instr->hydrogen()->IsTailCall()) {
3250 if (NeedsEagerFrame()) __ leave();
3251
3252 if (instr->target()->IsConstantOperand()) {
3253 LConstantOperand* target = LConstantOperand::cast(instr->target());
3254 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3255 __ jmp(code, RelocInfo::CODE_TARGET);
3256 } else {
3257 DCHECK(instr->target()->IsRegister());
3258 Register target = ToRegister(instr->target());
3259 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3260 __ jmp(target);
3261 }
3262 } else {
3263 LPointerMap* pointers = instr->pointer_map();
3264 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3265
3266 if (instr->target()->IsConstantOperand()) {
3267 LConstantOperand* target = LConstantOperand::cast(instr->target());
3268 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3269 generator.BeforeCall(__ CallSize(code));
3270 __ call(code, RelocInfo::CODE_TARGET);
3271 } else {
3272 DCHECK(instr->target()->IsRegister());
3273 Register target = ToRegister(instr->target());
3274 generator.BeforeCall(__ CallSize(target));
3275 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3276 __ call(target);
3277 }
3278 generator.AfterCall();
3279 }
3280}
3281
3282
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003283void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3284 Register input_reg = ToRegister(instr->value());
3285 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3286 Heap::kHeapNumberMapRootIndex);
3287 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3288
3289 Label slow, allocated, done;
3290 Register tmp = input_reg.is(rax) ? rcx : rax;
3291 Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
3292
3293 // Preserve the value of all registers.
3294 PushSafepointRegistersScope scope(this);
3295
3296 __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3297 // Check the sign of the argument. If the argument is positive, just
3298 // return it. We do not need to patch the stack since |input| and
3299 // |result| are the same register and |input| will be restored
3300 // unchanged by popping safepoint registers.
3301 __ testl(tmp, Immediate(HeapNumber::kSignMask));
3302 __ j(zero, &done);
3303
3304 __ AllocateHeapNumber(tmp, tmp2, &slow);
3305 __ jmp(&allocated, Label::kNear);
3306
3307 // Slow case: Call the runtime system to do the number allocation.
3308 __ bind(&slow);
3309 CallRuntimeFromDeferred(
3310 Runtime::kAllocateHeapNumber, 0, instr, instr->context());
3311 // Set the pointer to the new heap number in tmp.
3312 if (!tmp.is(rax)) __ movp(tmp, rax);
3313 // Restore input_reg after call to runtime.
3314 __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3315
3316 __ bind(&allocated);
3317 __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
3318 __ shlq(tmp2, Immediate(1));
3319 __ shrq(tmp2, Immediate(1));
3320 __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
3321 __ StoreToSafepointRegisterSlot(input_reg, tmp);
3322
3323 __ bind(&done);
3324}
3325
3326
3327void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3328 Register input_reg = ToRegister(instr->value());
3329 __ testl(input_reg, input_reg);
3330 Label is_positive;
3331 __ j(not_sign, &is_positive, Label::kNear);
3332 __ negl(input_reg); // Sets flags.
3333 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3334 __ bind(&is_positive);
3335}
3336
3337
3338void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3339 Register input_reg = ToRegister(instr->value());
3340 __ testp(input_reg, input_reg);
3341 Label is_positive;
3342 __ j(not_sign, &is_positive, Label::kNear);
3343 __ negp(input_reg); // Sets flags.
3344 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3345 __ bind(&is_positive);
3346}
3347
3348
3349void LCodeGen::DoMathAbs(LMathAbs* instr) {
3350 // Class for deferred case.
3351 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3352 public:
3353 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3354 : LDeferredCode(codegen), instr_(instr) { }
3355 void Generate() override {
3356 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3357 }
3358 LInstruction* instr() override { return instr_; }
3359
3360 private:
3361 LMathAbs* instr_;
3362 };
3363
3364 DCHECK(instr->value()->Equals(instr->result()));
3365 Representation r = instr->hydrogen()->value()->representation();
3366
3367 if (r.IsDouble()) {
3368 XMMRegister scratch = double_scratch0();
3369 XMMRegister input_reg = ToDoubleRegister(instr->value());
3370 __ Xorpd(scratch, scratch);
3371 __ Subsd(scratch, input_reg);
3372 __ Andpd(input_reg, scratch);
3373 } else if (r.IsInteger32()) {
3374 EmitIntegerMathAbs(instr);
3375 } else if (r.IsSmi()) {
3376 EmitSmiMathAbs(instr);
3377 } else { // Tagged case.
3378 DeferredMathAbsTaggedHeapNumber* deferred =
3379 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3380 Register input_reg = ToRegister(instr->value());
3381 // Smi check.
3382 __ JumpIfNotSmi(input_reg, deferred->entry());
3383 EmitSmiMathAbs(instr);
3384 __ bind(deferred->exit());
3385 }
3386}
3387
Ben Murdochda12d292016-06-02 14:46:10 +01003388void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3389 XMMRegister output_reg = ToDoubleRegister(instr->result());
3390 XMMRegister input_reg = ToDoubleRegister(instr->value());
3391 CpuFeatureScope scope(masm(), SSE4_1);
3392 __ Roundsd(output_reg, input_reg, kRoundDown);
3393}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003394
Ben Murdochda12d292016-06-02 14:46:10 +01003395void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003396 XMMRegister xmm_scratch = double_scratch0();
3397 Register output_reg = ToRegister(instr->result());
3398 XMMRegister input_reg = ToDoubleRegister(instr->value());
3399
3400 if (CpuFeatures::IsSupported(SSE4_1)) {
3401 CpuFeatureScope scope(masm(), SSE4_1);
3402 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3403 // Deoptimize if minus zero.
3404 __ Movq(output_reg, input_reg);
3405 __ subq(output_reg, Immediate(1));
3406 DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero);
3407 }
3408 __ Roundsd(xmm_scratch, input_reg, kRoundDown);
3409 __ Cvttsd2si(output_reg, xmm_scratch);
3410 __ cmpl(output_reg, Immediate(0x1));
3411 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3412 } else {
3413 Label negative_sign, done;
3414 // Deoptimize on unordered.
3415 __ Xorpd(xmm_scratch, xmm_scratch); // Zero the register.
3416 __ Ucomisd(input_reg, xmm_scratch);
3417 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
3418 __ j(below, &negative_sign, Label::kNear);
3419
3420 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3421 // Check for negative zero.
3422 Label positive_sign;
3423 __ j(above, &positive_sign, Label::kNear);
3424 __ Movmskpd(output_reg, input_reg);
3425 __ testl(output_reg, Immediate(1));
3426 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
3427 __ Set(output_reg, 0);
3428 __ jmp(&done);
3429 __ bind(&positive_sign);
3430 }
3431
3432 // Use truncating instruction (OK because input is positive).
3433 __ Cvttsd2si(output_reg, input_reg);
3434 // Overflow is signalled with minint.
3435 __ cmpl(output_reg, Immediate(0x1));
3436 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3437 __ jmp(&done, Label::kNear);
3438
3439 // Non-zero negative reaches here.
3440 __ bind(&negative_sign);
3441 // Truncate, then compare and compensate.
3442 __ Cvttsd2si(output_reg, input_reg);
3443 __ Cvtlsi2sd(xmm_scratch, output_reg);
3444 __ Ucomisd(input_reg, xmm_scratch);
3445 __ j(equal, &done, Label::kNear);
3446 __ subl(output_reg, Immediate(1));
3447 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3448
3449 __ bind(&done);
3450 }
3451}
3452
Ben Murdochda12d292016-06-02 14:46:10 +01003453void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3454 XMMRegister xmm_scratch = double_scratch0();
3455 XMMRegister output_reg = ToDoubleRegister(instr->result());
3456 XMMRegister input_reg = ToDoubleRegister(instr->value());
3457 CpuFeatureScope scope(masm(), SSE4_1);
3458 Label done;
3459 __ Roundsd(output_reg, input_reg, kRoundUp);
3460 __ Move(xmm_scratch, -0.5);
3461 __ Addsd(xmm_scratch, output_reg);
3462 __ Ucomisd(xmm_scratch, input_reg);
3463 __ j(below_equal, &done, Label::kNear);
3464 __ Move(xmm_scratch, 1.0);
3465 __ Subsd(output_reg, xmm_scratch);
3466 __ bind(&done);
3467}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003468
Ben Murdochda12d292016-06-02 14:46:10 +01003469void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003470 const XMMRegister xmm_scratch = double_scratch0();
3471 Register output_reg = ToRegister(instr->result());
3472 XMMRegister input_reg = ToDoubleRegister(instr->value());
3473 XMMRegister input_temp = ToDoubleRegister(instr->temp());
3474 static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5
3475 static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5
3476
3477 Label done, round_to_zero, below_one_half;
3478 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3479 __ movq(kScratchRegister, one_half);
3480 __ Movq(xmm_scratch, kScratchRegister);
3481 __ Ucomisd(xmm_scratch, input_reg);
3482 __ j(above, &below_one_half, Label::kNear);
3483
3484 // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
3485 __ Addsd(xmm_scratch, input_reg);
3486 __ Cvttsd2si(output_reg, xmm_scratch);
3487 // Overflow is signalled with minint.
3488 __ cmpl(output_reg, Immediate(0x1));
3489 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3490 __ jmp(&done, dist);
3491
3492 __ bind(&below_one_half);
3493 __ movq(kScratchRegister, minus_one_half);
3494 __ Movq(xmm_scratch, kScratchRegister);
3495 __ Ucomisd(xmm_scratch, input_reg);
3496 __ j(below_equal, &round_to_zero, Label::kNear);
3497
3498 // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
3499 // compare and compensate.
3500 __ Movapd(input_temp, input_reg); // Do not alter input_reg.
3501 __ Subsd(input_temp, xmm_scratch);
3502 __ Cvttsd2si(output_reg, input_temp);
3503 // Catch minint due to overflow, and to prevent overflow when compensating.
3504 __ cmpl(output_reg, Immediate(0x1));
3505 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3506
3507 __ Cvtlsi2sd(xmm_scratch, output_reg);
3508 __ Ucomisd(xmm_scratch, input_temp);
3509 __ j(equal, &done, dist);
3510 __ subl(output_reg, Immediate(1));
3511 // No overflow because we already ruled out minint.
3512 __ jmp(&done, dist);
3513
3514 __ bind(&round_to_zero);
3515 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3516 // we can ignore the difference between a result of -0 and +0.
3517 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3518 __ Movq(output_reg, input_reg);
3519 __ testq(output_reg, output_reg);
3520 DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero);
3521 }
3522 __ Set(output_reg, 0);
3523 __ bind(&done);
3524}
3525
3526
3527void LCodeGen::DoMathFround(LMathFround* instr) {
3528 XMMRegister input_reg = ToDoubleRegister(instr->value());
3529 XMMRegister output_reg = ToDoubleRegister(instr->result());
3530 __ Cvtsd2ss(output_reg, input_reg);
3531 __ Cvtss2sd(output_reg, output_reg);
3532}
3533
3534
3535void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3536 XMMRegister output = ToDoubleRegister(instr->result());
3537 if (instr->value()->IsDoubleRegister()) {
3538 XMMRegister input = ToDoubleRegister(instr->value());
3539 __ Sqrtsd(output, input);
3540 } else {
3541 Operand input = ToOperand(instr->value());
3542 __ Sqrtsd(output, input);
3543 }
3544}
3545
3546
3547void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3548 XMMRegister xmm_scratch = double_scratch0();
3549 XMMRegister input_reg = ToDoubleRegister(instr->value());
3550 DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
3551
3552 // Note that according to ECMA-262 15.8.2.13:
3553 // Math.pow(-Infinity, 0.5) == Infinity
3554 // Math.sqrt(-Infinity) == NaN
3555 Label done, sqrt;
3556 // Check base for -Infinity. According to IEEE-754, double-precision
3557 // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
3558 __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
3559 __ Movq(xmm_scratch, kScratchRegister);
3560 __ Ucomisd(xmm_scratch, input_reg);
3561 // Comparing -Infinity with NaN results in "unordered", which sets the
3562 // zero flag as if both were equal. However, it also sets the carry flag.
3563 __ j(not_equal, &sqrt, Label::kNear);
3564 __ j(carry, &sqrt, Label::kNear);
3565 // If input is -Infinity, return Infinity.
3566 __ Xorpd(input_reg, input_reg);
3567 __ Subsd(input_reg, xmm_scratch);
3568 __ jmp(&done, Label::kNear);
3569
3570 // Square root.
3571 __ bind(&sqrt);
3572 __ Xorpd(xmm_scratch, xmm_scratch);
3573 __ Addsd(input_reg, xmm_scratch); // Convert -0 to +0.
3574 __ Sqrtsd(input_reg, input_reg);
3575 __ bind(&done);
3576}
3577
3578
3579void LCodeGen::DoPower(LPower* instr) {
3580 Representation exponent_type = instr->hydrogen()->right()->representation();
3581 // Having marked this as a call, we can use any registers.
3582 // Just make sure that the input/output registers are the expected ones.
3583
3584 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3585 DCHECK(!instr->right()->IsRegister() ||
3586 ToRegister(instr->right()).is(tagged_exponent));
3587 DCHECK(!instr->right()->IsDoubleRegister() ||
3588 ToDoubleRegister(instr->right()).is(xmm1));
3589 DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
3590 DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
3591
3592 if (exponent_type.IsSmi()) {
3593 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3594 __ CallStub(&stub);
3595 } else if (exponent_type.IsTagged()) {
3596 Label no_deopt;
3597 __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
3598 __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
3599 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3600 __ bind(&no_deopt);
3601 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3602 __ CallStub(&stub);
3603 } else if (exponent_type.IsInteger32()) {
3604 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3605 __ CallStub(&stub);
3606 } else {
3607 DCHECK(exponent_type.IsDouble());
3608 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3609 __ CallStub(&stub);
3610 }
3611}
3612
3613
3614void LCodeGen::DoMathExp(LMathExp* instr) {
3615 XMMRegister input = ToDoubleRegister(instr->value());
3616 XMMRegister result = ToDoubleRegister(instr->result());
3617 XMMRegister temp0 = double_scratch0();
3618 Register temp1 = ToRegister(instr->temp1());
3619 Register temp2 = ToRegister(instr->temp2());
3620
3621 MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
3622}
3623
3624
3625void LCodeGen::DoMathLog(LMathLog* instr) {
3626 DCHECK(instr->value()->Equals(instr->result()));
3627 XMMRegister input_reg = ToDoubleRegister(instr->value());
3628 XMMRegister xmm_scratch = double_scratch0();
3629 Label positive, done, zero;
3630 __ Xorpd(xmm_scratch, xmm_scratch);
3631 __ Ucomisd(input_reg, xmm_scratch);
3632 __ j(above, &positive, Label::kNear);
3633 __ j(not_carry, &zero, Label::kNear);
3634 __ Pcmpeqd(input_reg, input_reg);
3635 __ jmp(&done, Label::kNear);
3636 __ bind(&zero);
3637 ExternalReference ninf =
3638 ExternalReference::address_of_negative_infinity();
3639 Operand ninf_operand = masm()->ExternalOperand(ninf);
3640 __ Movsd(input_reg, ninf_operand);
3641 __ jmp(&done, Label::kNear);
3642 __ bind(&positive);
3643 __ fldln2();
3644 __ subp(rsp, Immediate(kDoubleSize));
3645 __ Movsd(Operand(rsp, 0), input_reg);
3646 __ fld_d(Operand(rsp, 0));
3647 __ fyl2x();
3648 __ fstp_d(Operand(rsp, 0));
3649 __ Movsd(input_reg, Operand(rsp, 0));
3650 __ addp(rsp, Immediate(kDoubleSize));
3651 __ bind(&done);
3652}
3653
3654
3655void LCodeGen::DoMathClz32(LMathClz32* instr) {
3656 Register input = ToRegister(instr->value());
3657 Register result = ToRegister(instr->result());
3658
3659 __ Lzcntl(result, input);
3660}
3661
Ben Murdochda12d292016-06-02 14:46:10 +01003662void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3663 Register scratch1, Register scratch2,
3664 Register scratch3) {
3665#if DEBUG
3666 if (actual.is_reg()) {
3667 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3668 } else {
3669 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3670 }
3671#endif
3672 if (FLAG_code_comments) {
3673 if (actual.is_reg()) {
3674 Comment(";;; PrepareForTailCall, actual: %s {", actual.reg().ToString());
3675 } else {
3676 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3677 }
3678 }
3679
3680 // Check if next frame is an arguments adaptor frame.
3681 Register caller_args_count_reg = scratch1;
3682 Label no_arguments_adaptor, formal_parameter_count_loaded;
3683 __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3684 __ Cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
3685 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3686 __ j(not_equal, &no_arguments_adaptor, Label::kNear);
3687
3688 // Drop current frame and load arguments count from arguments adaptor frame.
3689 __ movp(rbp, scratch2);
3690 __ SmiToInteger32(
3691 caller_args_count_reg,
3692 Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3693 __ jmp(&formal_parameter_count_loaded, Label::kNear);
3694
3695 __ bind(&no_arguments_adaptor);
3696 // Load caller's formal parameter count.
3697 __ movp(caller_args_count_reg,
3698 Immediate(info()->literal()->parameter_count()));
3699
3700 __ bind(&formal_parameter_count_loaded);
3701 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
3702 ReturnAddressState::kNotOnStack);
3703 Comment(";;; }");
3704}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003705
3706void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
Ben Murdochda12d292016-06-02 14:46:10 +01003707 HInvokeFunction* hinstr = instr->hydrogen();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003708 DCHECK(ToRegister(instr->context()).is(rsi));
3709 DCHECK(ToRegister(instr->function()).is(rdi));
3710 DCHECK(instr->HasPointerMap());
3711
Ben Murdochda12d292016-06-02 14:46:10 +01003712 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3713
3714 if (is_tail_call) {
3715 DCHECK(!info()->saves_caller_doubles());
3716 ParameterCount actual(instr->arity());
3717 // It is safe to use rbx, rcx and r8 as scratch registers here given that
3718 // 1) we are not going to return to caller function anyway,
3719 // 2) rbx (expected number of arguments) will be initialized below.
3720 PrepareForTailCall(actual, rbx, rcx, r8);
3721 }
3722
3723 Handle<JSFunction> known_function = hinstr->known_function();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003724 if (known_function.is_null()) {
3725 LPointerMap* pointers = instr->pointer_map();
3726 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
Ben Murdochda12d292016-06-02 14:46:10 +01003727 ParameterCount actual(instr->arity());
3728 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3729 __ InvokeFunction(rdi, no_reg, actual, flag, generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003730 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003731 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3732 instr->arity(), is_tail_call, instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003733 }
3734}
3735
3736
3737void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3738 DCHECK(ToRegister(instr->context()).is(rsi));
3739 DCHECK(ToRegister(instr->constructor()).is(rdi));
3740 DCHECK(ToRegister(instr->result()).is(rax));
3741
3742 __ Set(rax, instr->arity());
3743 if (instr->arity() == 1) {
3744 // We only need the allocation site for the case we have a length argument.
3745 // The case may bail out to the runtime, which will determine the correct
3746 // elements kind with the site.
3747 __ Move(rbx, instr->hydrogen()->site());
3748 } else {
3749 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
3750 }
3751
3752 ElementsKind kind = instr->hydrogen()->elements_kind();
3753 AllocationSiteOverrideMode override_mode =
3754 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3755 ? DISABLE_ALLOCATION_SITES
3756 : DONT_OVERRIDE;
3757
3758 if (instr->arity() == 0) {
3759 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3760 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3761 } else if (instr->arity() == 1) {
3762 Label done;
3763 if (IsFastPackedElementsKind(kind)) {
3764 Label packed_case;
3765 // We might need a change here
3766 // look at the first argument
3767 __ movp(rcx, Operand(rsp, 0));
3768 __ testp(rcx, rcx);
3769 __ j(zero, &packed_case, Label::kNear);
3770
3771 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3772 ArraySingleArgumentConstructorStub stub(isolate(),
3773 holey_kind,
3774 override_mode);
3775 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3776 __ jmp(&done, Label::kNear);
3777 __ bind(&packed_case);
3778 }
3779
3780 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3781 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3782 __ bind(&done);
3783 } else {
3784 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3785 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3786 }
3787}
3788
3789
3790void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3791 DCHECK(ToRegister(instr->context()).is(rsi));
3792 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3793}
3794
3795
3796void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3797 Register function = ToRegister(instr->function());
3798 Register code_object = ToRegister(instr->code_object());
3799 __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
3800 __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3801}
3802
3803
3804void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3805 Register result = ToRegister(instr->result());
3806 Register base = ToRegister(instr->base_object());
3807 if (instr->offset()->IsConstantOperand()) {
3808 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3809 __ leap(result, Operand(base, ToInteger32(offset)));
3810 } else {
3811 Register offset = ToRegister(instr->offset());
3812 __ leap(result, Operand(base, offset, times_1, 0));
3813 }
3814}
3815
3816
3817void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3818 HStoreNamedField* hinstr = instr->hydrogen();
3819 Representation representation = instr->representation();
3820
3821 HObjectAccess access = hinstr->access();
3822 int offset = access.offset();
3823
3824 if (access.IsExternalMemory()) {
3825 DCHECK(!hinstr->NeedsWriteBarrier());
3826 Register value = ToRegister(instr->value());
3827 if (instr->object()->IsConstantOperand()) {
3828 DCHECK(value.is(rax));
3829 LConstantOperand* object = LConstantOperand::cast(instr->object());
3830 __ store_rax(ToExternalReference(object));
3831 } else {
3832 Register object = ToRegister(instr->object());
3833 __ Store(MemOperand(object, offset), value, representation);
3834 }
3835 return;
3836 }
3837
3838 Register object = ToRegister(instr->object());
3839 __ AssertNotSmi(object);
3840
3841 DCHECK(!representation.IsSmi() ||
3842 !instr->value()->IsConstantOperand() ||
3843 IsInteger32Constant(LConstantOperand::cast(instr->value())));
3844 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3845 DCHECK(access.IsInobject());
3846 DCHECK(!hinstr->has_transition());
3847 DCHECK(!hinstr->NeedsWriteBarrier());
3848 XMMRegister value = ToDoubleRegister(instr->value());
3849 __ Movsd(FieldOperand(object, offset), value);
3850 return;
3851 }
3852
3853 if (hinstr->has_transition()) {
3854 Handle<Map> transition = hinstr->transition_map();
3855 AddDeprecationDependency(transition);
3856 if (!hinstr->NeedsWriteBarrierForMap()) {
3857 __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
3858 } else {
3859 Register temp = ToRegister(instr->temp());
3860 __ Move(kScratchRegister, transition);
3861 __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
3862 // Update the write barrier for the map field.
3863 __ RecordWriteForMap(object,
3864 kScratchRegister,
3865 temp,
3866 kSaveFPRegs);
3867 }
3868 }
3869
3870 // Do the store.
3871 Register write_register = object;
3872 if (!access.IsInobject()) {
3873 write_register = ToRegister(instr->temp());
3874 __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3875 }
3876
3877 if (representation.IsSmi() && SmiValuesAre32Bits() &&
3878 hinstr->value()->representation().IsInteger32()) {
3879 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3880 if (FLAG_debug_code) {
3881 Register scratch = kScratchRegister;
3882 __ Load(scratch, FieldOperand(write_register, offset), representation);
3883 __ AssertSmi(scratch);
3884 }
3885 // Store int value directly to upper half of the smi.
3886 STATIC_ASSERT(kSmiTag == 0);
3887 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
3888 offset += kPointerSize / 2;
3889 representation = Representation::Integer32();
3890 }
3891
3892 Operand operand = FieldOperand(write_register, offset);
3893
3894 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3895 DCHECK(access.IsInobject());
3896 XMMRegister value = ToDoubleRegister(instr->value());
3897 __ Movsd(operand, value);
3898
3899 } else if (instr->value()->IsRegister()) {
3900 Register value = ToRegister(instr->value());
3901 __ Store(operand, value, representation);
3902 } else {
3903 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3904 if (IsInteger32Constant(operand_value)) {
3905 DCHECK(!hinstr->NeedsWriteBarrier());
3906 int32_t value = ToInteger32(operand_value);
3907 if (representation.IsSmi()) {
3908 __ Move(operand, Smi::FromInt(value));
3909
3910 } else {
3911 __ movl(operand, Immediate(value));
3912 }
3913
3914 } else if (IsExternalConstant(operand_value)) {
3915 DCHECK(!hinstr->NeedsWriteBarrier());
3916 ExternalReference ptr = ToExternalReference(operand_value);
3917 __ Move(kScratchRegister, ptr);
3918 __ movp(operand, kScratchRegister);
3919 } else {
3920 Handle<Object> handle_value = ToHandle(operand_value);
3921 DCHECK(!hinstr->NeedsWriteBarrier());
3922 __ Move(operand, handle_value);
3923 }
3924 }
3925
3926 if (hinstr->NeedsWriteBarrier()) {
3927 Register value = ToRegister(instr->value());
3928 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3929 // Update the write barrier for the object for in-object properties.
3930 __ RecordWriteField(write_register,
3931 offset,
3932 value,
3933 temp,
3934 kSaveFPRegs,
3935 EMIT_REMEMBERED_SET,
3936 hinstr->SmiCheckForWriteBarrier(),
3937 hinstr->PointersToHereCheckForValue());
3938 }
3939}
3940
3941
3942void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3943 DCHECK(ToRegister(instr->context()).is(rsi));
3944 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
3945 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
3946
3947 if (instr->hydrogen()->HasVectorAndSlot()) {
3948 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
3949 }
3950
3951 __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name());
3952 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
3953 isolate(), instr->language_mode(),
3954 instr->hydrogen()->initialization_state()).code();
3955 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3956}
3957
3958
3959void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3960 Representation representation = instr->hydrogen()->length()->representation();
3961 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
3962 DCHECK(representation.IsSmiOrInteger32());
3963
3964 Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
3965 if (instr->length()->IsConstantOperand()) {
3966 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
3967 Register index = ToRegister(instr->index());
3968 if (representation.IsSmi()) {
3969 __ Cmp(index, Smi::FromInt(length));
3970 } else {
3971 __ cmpl(index, Immediate(length));
3972 }
3973 cc = CommuteCondition(cc);
3974 } else if (instr->index()->IsConstantOperand()) {
3975 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
3976 if (instr->length()->IsRegister()) {
3977 Register length = ToRegister(instr->length());
3978 if (representation.IsSmi()) {
3979 __ Cmp(length, Smi::FromInt(index));
3980 } else {
3981 __ cmpl(length, Immediate(index));
3982 }
3983 } else {
3984 Operand length = ToOperand(instr->length());
3985 if (representation.IsSmi()) {
3986 __ Cmp(length, Smi::FromInt(index));
3987 } else {
3988 __ cmpl(length, Immediate(index));
3989 }
3990 }
3991 } else {
3992 Register index = ToRegister(instr->index());
3993 if (instr->length()->IsRegister()) {
3994 Register length = ToRegister(instr->length());
3995 if (representation.IsSmi()) {
3996 __ cmpp(length, index);
3997 } else {
3998 __ cmpl(length, index);
3999 }
4000 } else {
4001 Operand length = ToOperand(instr->length());
4002 if (representation.IsSmi()) {
4003 __ cmpp(length, index);
4004 } else {
4005 __ cmpl(length, index);
4006 }
4007 }
4008 }
4009 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4010 Label done;
4011 __ j(NegateCondition(cc), &done, Label::kNear);
4012 __ int3();
4013 __ bind(&done);
4014 } else {
4015 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
4016 }
4017}
4018
4019
4020void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4021 ElementsKind elements_kind = instr->elements_kind();
4022 LOperand* key = instr->key();
4023 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
4024 Register key_reg = ToRegister(key);
4025 Representation key_representation =
4026 instr->hydrogen()->key()->representation();
4027 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
4028 __ SmiToInteger64(key_reg, key_reg);
4029 } else if (instr->hydrogen()->IsDehoisted()) {
4030 // Sign extend key because it could be a 32 bit negative value
4031 // and the dehoisted address computation happens in 64 bits
4032 __ movsxlq(key_reg, key_reg);
4033 }
4034 }
4035 Operand operand(BuildFastArrayOperand(
4036 instr->elements(),
4037 key,
4038 instr->hydrogen()->key()->representation(),
4039 elements_kind,
4040 instr->base_offset()));
4041
4042 if (elements_kind == FLOAT32_ELEMENTS) {
4043 XMMRegister value(ToDoubleRegister(instr->value()));
4044 __ Cvtsd2ss(value, value);
4045 __ Movss(operand, value);
4046 } else if (elements_kind == FLOAT64_ELEMENTS) {
4047 __ Movsd(operand, ToDoubleRegister(instr->value()));
4048 } else {
4049 Register value(ToRegister(instr->value()));
4050 switch (elements_kind) {
4051 case INT8_ELEMENTS:
4052 case UINT8_ELEMENTS:
4053 case UINT8_CLAMPED_ELEMENTS:
4054 __ movb(operand, value);
4055 break;
4056 case INT16_ELEMENTS:
4057 case UINT16_ELEMENTS:
4058 __ movw(operand, value);
4059 break;
4060 case INT32_ELEMENTS:
4061 case UINT32_ELEMENTS:
4062 __ movl(operand, value);
4063 break;
4064 case FLOAT32_ELEMENTS:
4065 case FLOAT64_ELEMENTS:
4066 case FAST_ELEMENTS:
4067 case FAST_SMI_ELEMENTS:
4068 case FAST_DOUBLE_ELEMENTS:
4069 case FAST_HOLEY_ELEMENTS:
4070 case FAST_HOLEY_SMI_ELEMENTS:
4071 case FAST_HOLEY_DOUBLE_ELEMENTS:
4072 case DICTIONARY_ELEMENTS:
4073 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4074 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01004075 case FAST_STRING_WRAPPER_ELEMENTS:
4076 case SLOW_STRING_WRAPPER_ELEMENTS:
4077 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004078 UNREACHABLE();
4079 break;
4080 }
4081 }
4082}
4083
4084
4085void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4086 XMMRegister value = ToDoubleRegister(instr->value());
4087 LOperand* key = instr->key();
4088 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4089 instr->hydrogen()->IsDehoisted()) {
4090 // Sign extend key because it could be a 32 bit negative value
4091 // and the dehoisted address computation happens in 64 bits
4092 __ movsxlq(ToRegister(key), ToRegister(key));
4093 }
4094 if (instr->NeedsCanonicalization()) {
4095 XMMRegister xmm_scratch = double_scratch0();
4096 // Turn potential sNaN value into qNaN.
4097 __ Xorpd(xmm_scratch, xmm_scratch);
4098 __ Subsd(value, xmm_scratch);
4099 }
4100
4101 Operand double_store_operand = BuildFastArrayOperand(
4102 instr->elements(),
4103 key,
4104 instr->hydrogen()->key()->representation(),
4105 FAST_DOUBLE_ELEMENTS,
4106 instr->base_offset());
4107
4108 __ Movsd(double_store_operand, value);
4109}
4110
4111
4112void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4113 HStoreKeyed* hinstr = instr->hydrogen();
4114 LOperand* key = instr->key();
4115 int offset = instr->base_offset();
4116 Representation representation = hinstr->value()->representation();
4117
4118 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4119 instr->hydrogen()->IsDehoisted()) {
4120 // Sign extend key because it could be a 32 bit negative value
4121 // and the dehoisted address computation happens in 64 bits
4122 __ movsxlq(ToRegister(key), ToRegister(key));
4123 }
4124 if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4125 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4126 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4127 if (FLAG_debug_code) {
4128 Register scratch = kScratchRegister;
4129 __ Load(scratch,
4130 BuildFastArrayOperand(instr->elements(),
4131 key,
4132 instr->hydrogen()->key()->representation(),
4133 FAST_ELEMENTS,
4134 offset),
4135 Representation::Smi());
4136 __ AssertSmi(scratch);
4137 }
4138 // Store int value directly to upper half of the smi.
4139 STATIC_ASSERT(kSmiTag == 0);
4140 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
4141 offset += kPointerSize / 2;
4142 }
4143
4144 Operand operand =
4145 BuildFastArrayOperand(instr->elements(),
4146 key,
4147 instr->hydrogen()->key()->representation(),
4148 FAST_ELEMENTS,
4149 offset);
4150 if (instr->value()->IsRegister()) {
4151 __ Store(operand, ToRegister(instr->value()), representation);
4152 } else {
4153 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4154 if (IsInteger32Constant(operand_value)) {
4155 int32_t value = ToInteger32(operand_value);
4156 if (representation.IsSmi()) {
4157 __ Move(operand, Smi::FromInt(value));
4158
4159 } else {
4160 __ movl(operand, Immediate(value));
4161 }
4162 } else {
4163 Handle<Object> handle_value = ToHandle(operand_value);
4164 __ Move(operand, handle_value);
4165 }
4166 }
4167
4168 if (hinstr->NeedsWriteBarrier()) {
4169 Register elements = ToRegister(instr->elements());
4170 DCHECK(instr->value()->IsRegister());
4171 Register value = ToRegister(instr->value());
4172 DCHECK(!key->IsConstantOperand());
4173 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4174 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4175 // Compute address of modified element and store it into key register.
4176 Register key_reg(ToRegister(key));
4177 __ leap(key_reg, operand);
4178 __ RecordWrite(elements,
4179 key_reg,
4180 value,
4181 kSaveFPRegs,
4182 EMIT_REMEMBERED_SET,
4183 check_needed,
4184 hinstr->PointersToHereCheckForValue());
4185 }
4186}
4187
4188
4189void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4190 if (instr->is_fixed_typed_array()) {
4191 DoStoreKeyedExternalArray(instr);
4192 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4193 DoStoreKeyedFixedDoubleArray(instr);
4194 } else {
4195 DoStoreKeyedFixedArray(instr);
4196 }
4197}
4198
4199
4200void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4201 DCHECK(ToRegister(instr->context()).is(rsi));
4202 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4203 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4204 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4205
4206 if (instr->hydrogen()->HasVectorAndSlot()) {
4207 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4208 }
4209
4210 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4211 isolate(), instr->language_mode(),
4212 instr->hydrogen()->initialization_state()).code();
4213 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4214}
4215
4216
4217void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4218 class DeferredMaybeGrowElements final : public LDeferredCode {
4219 public:
4220 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4221 : LDeferredCode(codegen), instr_(instr) {}
4222 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4223 LInstruction* instr() override { return instr_; }
4224
4225 private:
4226 LMaybeGrowElements* instr_;
4227 };
4228
4229 Register result = rax;
4230 DeferredMaybeGrowElements* deferred =
4231 new (zone()) DeferredMaybeGrowElements(this, instr);
4232 LOperand* key = instr->key();
4233 LOperand* current_capacity = instr->current_capacity();
4234
4235 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4236 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4237 DCHECK(key->IsConstantOperand() || key->IsRegister());
4238 DCHECK(current_capacity->IsConstantOperand() ||
4239 current_capacity->IsRegister());
4240
4241 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4242 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4243 int32_t constant_capacity =
4244 ToInteger32(LConstantOperand::cast(current_capacity));
4245 if (constant_key >= constant_capacity) {
4246 // Deferred case.
4247 __ jmp(deferred->entry());
4248 }
4249 } else if (key->IsConstantOperand()) {
4250 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4251 __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
4252 __ j(less_equal, deferred->entry());
4253 } else if (current_capacity->IsConstantOperand()) {
4254 int32_t constant_capacity =
4255 ToInteger32(LConstantOperand::cast(current_capacity));
4256 __ cmpl(ToRegister(key), Immediate(constant_capacity));
4257 __ j(greater_equal, deferred->entry());
4258 } else {
4259 __ cmpl(ToRegister(key), ToRegister(current_capacity));
4260 __ j(greater_equal, deferred->entry());
4261 }
4262
4263 if (instr->elements()->IsRegister()) {
4264 __ movp(result, ToRegister(instr->elements()));
4265 } else {
4266 __ movp(result, ToOperand(instr->elements()));
4267 }
4268
4269 __ bind(deferred->exit());
4270}
4271
4272
4273void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4274 // TODO(3095996): Get rid of this. For now, we need to make the
4275 // result register contain a valid pointer because it is already
4276 // contained in the register pointer map.
4277 Register result = rax;
4278 __ Move(result, Smi::FromInt(0));
4279
4280 // We have to call a stub.
4281 {
4282 PushSafepointRegistersScope scope(this);
4283 if (instr->object()->IsConstantOperand()) {
4284 LConstantOperand* constant_object =
4285 LConstantOperand::cast(instr->object());
4286 if (IsSmiConstant(constant_object)) {
4287 Smi* immediate = ToSmi(constant_object);
4288 __ Move(result, immediate);
4289 } else {
4290 Handle<Object> handle_value = ToHandle(constant_object);
4291 __ Move(result, handle_value);
4292 }
4293 } else if (instr->object()->IsRegister()) {
4294 __ Move(result, ToRegister(instr->object()));
4295 } else {
4296 __ movp(result, ToOperand(instr->object()));
4297 }
4298
4299 LOperand* key = instr->key();
4300 if (key->IsConstantOperand()) {
4301 __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
4302 } else {
4303 __ Move(rbx, ToRegister(key));
4304 __ Integer32ToSmi(rbx, rbx);
4305 }
4306
4307 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4308 instr->hydrogen()->kind());
4309 __ CallStub(&stub);
4310 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4311 __ StoreToSafepointRegisterSlot(result, result);
4312 }
4313
4314 // Deopt on smi, which means the elements array changed to dictionary mode.
4315 Condition is_smi = __ CheckSmi(result);
4316 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
4317}
4318
4319
4320void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4321 Register object_reg = ToRegister(instr->object());
4322
4323 Handle<Map> from_map = instr->original_map();
4324 Handle<Map> to_map = instr->transitioned_map();
4325 ElementsKind from_kind = instr->from_kind();
4326 ElementsKind to_kind = instr->to_kind();
4327
4328 Label not_applicable;
4329 __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4330 __ j(not_equal, &not_applicable);
4331 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4332 Register new_map_reg = ToRegister(instr->new_map_temp());
4333 __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
4334 __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
4335 // Write barrier.
4336 __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
4337 kDontSaveFPRegs);
4338 } else {
4339 DCHECK(object_reg.is(rax));
4340 DCHECK(ToRegister(instr->context()).is(rsi));
4341 PushSafepointRegistersScope scope(this);
4342 __ Move(rbx, to_map);
4343 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4344 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4345 __ CallStub(&stub);
4346 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4347 }
4348 __ bind(&not_applicable);
4349}
4350
4351
4352void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4353 Register object = ToRegister(instr->object());
4354 Register temp = ToRegister(instr->temp());
4355 Label no_memento_found;
4356 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4357 DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
4358 __ bind(&no_memento_found);
4359}
4360
4361
4362void LCodeGen::DoStringAdd(LStringAdd* instr) {
4363 DCHECK(ToRegister(instr->context()).is(rsi));
4364 DCHECK(ToRegister(instr->left()).is(rdx));
4365 DCHECK(ToRegister(instr->right()).is(rax));
4366 StringAddStub stub(isolate(),
4367 instr->hydrogen()->flags(),
4368 instr->hydrogen()->pretenure_flag());
4369 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4370}
4371
4372
4373void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4374 class DeferredStringCharCodeAt final : public LDeferredCode {
4375 public:
4376 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4377 : LDeferredCode(codegen), instr_(instr) { }
4378 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4379 LInstruction* instr() override { return instr_; }
4380
4381 private:
4382 LStringCharCodeAt* instr_;
4383 };
4384
4385 DeferredStringCharCodeAt* deferred =
4386 new(zone()) DeferredStringCharCodeAt(this, instr);
4387
4388 StringCharLoadGenerator::Generate(masm(),
4389 ToRegister(instr->string()),
4390 ToRegister(instr->index()),
4391 ToRegister(instr->result()),
4392 deferred->entry());
4393 __ bind(deferred->exit());
4394}
4395
4396
4397void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4398 Register string = ToRegister(instr->string());
4399 Register result = ToRegister(instr->result());
4400
4401 // TODO(3095996): Get rid of this. For now, we need to make the
4402 // result register contain a valid pointer because it is already
4403 // contained in the register pointer map.
4404 __ Set(result, 0);
4405
4406 PushSafepointRegistersScope scope(this);
4407 __ Push(string);
4408 // Push the index as a smi. This is safe because of the checks in
4409 // DoStringCharCodeAt above.
4410 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4411 if (instr->index()->IsConstantOperand()) {
4412 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4413 __ Push(Smi::FromInt(const_index));
4414 } else {
4415 Register index = ToRegister(instr->index());
4416 __ Integer32ToSmi(index, index);
4417 __ Push(index);
4418 }
4419 CallRuntimeFromDeferred(
4420 Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
4421 __ AssertSmi(rax);
4422 __ SmiToInteger32(rax, rax);
4423 __ StoreToSafepointRegisterSlot(result, rax);
4424}
4425
4426
4427void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4428 class DeferredStringCharFromCode final : public LDeferredCode {
4429 public:
4430 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4431 : LDeferredCode(codegen), instr_(instr) { }
4432 void Generate() override {
4433 codegen()->DoDeferredStringCharFromCode(instr_);
4434 }
4435 LInstruction* instr() override { return instr_; }
4436
4437 private:
4438 LStringCharFromCode* instr_;
4439 };
4440
4441 DeferredStringCharFromCode* deferred =
4442 new(zone()) DeferredStringCharFromCode(this, instr);
4443
4444 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4445 Register char_code = ToRegister(instr->char_code());
4446 Register result = ToRegister(instr->result());
4447 DCHECK(!char_code.is(result));
4448
4449 __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
4450 __ j(above, deferred->entry());
4451 __ movsxlq(char_code, char_code);
4452 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4453 __ movp(result, FieldOperand(result,
4454 char_code, times_pointer_size,
4455 FixedArray::kHeaderSize));
4456 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4457 __ j(equal, deferred->entry());
4458 __ bind(deferred->exit());
4459}
4460
4461
4462void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4463 Register char_code = ToRegister(instr->char_code());
4464 Register result = ToRegister(instr->result());
4465
4466 // TODO(3095996): Get rid of this. For now, we need to make the
4467 // result register contain a valid pointer because it is already
4468 // contained in the register pointer map.
4469 __ Set(result, 0);
4470
4471 PushSafepointRegistersScope scope(this);
4472 __ Integer32ToSmi(char_code, char_code);
4473 __ Push(char_code);
4474 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4475 instr->context());
4476 __ StoreToSafepointRegisterSlot(result, rax);
4477}
4478
4479
4480void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4481 LOperand* input = instr->value();
4482 DCHECK(input->IsRegister() || input->IsStackSlot());
4483 LOperand* output = instr->result();
4484 DCHECK(output->IsDoubleRegister());
4485 if (input->IsRegister()) {
4486 __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
4487 } else {
4488 __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
4489 }
4490}
4491
4492
4493void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4494 LOperand* input = instr->value();
4495 LOperand* output = instr->result();
4496
4497 __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
4498}
4499
4500
4501void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4502 class DeferredNumberTagI final : public LDeferredCode {
4503 public:
4504 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4505 : LDeferredCode(codegen), instr_(instr) { }
4506 void Generate() override {
4507 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4508 instr_->temp2(), SIGNED_INT32);
4509 }
4510 LInstruction* instr() override { return instr_; }
4511
4512 private:
4513 LNumberTagI* instr_;
4514 };
4515
4516 LOperand* input = instr->value();
4517 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4518 Register reg = ToRegister(input);
4519
4520 if (SmiValuesAre32Bits()) {
4521 __ Integer32ToSmi(reg, reg);
4522 } else {
4523 DCHECK(SmiValuesAre31Bits());
4524 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4525 __ Integer32ToSmi(reg, reg);
4526 __ j(overflow, deferred->entry());
4527 __ bind(deferred->exit());
4528 }
4529}
4530
4531
4532void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4533 class DeferredNumberTagU final : public LDeferredCode {
4534 public:
4535 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4536 : LDeferredCode(codegen), instr_(instr) { }
4537 void Generate() override {
4538 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4539 instr_->temp2(), UNSIGNED_INT32);
4540 }
4541 LInstruction* instr() override { return instr_; }
4542
4543 private:
4544 LNumberTagU* instr_;
4545 };
4546
4547 LOperand* input = instr->value();
4548 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4549 Register reg = ToRegister(input);
4550
4551 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4552 __ cmpl(reg, Immediate(Smi::kMaxValue));
4553 __ j(above, deferred->entry());
4554 __ Integer32ToSmi(reg, reg);
4555 __ bind(deferred->exit());
4556}
4557
4558
4559void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4560 LOperand* value,
4561 LOperand* temp1,
4562 LOperand* temp2,
4563 IntegerSignedness signedness) {
4564 Label done, slow;
4565 Register reg = ToRegister(value);
4566 Register tmp = ToRegister(temp1);
4567 XMMRegister temp_xmm = ToDoubleRegister(temp2);
4568
4569 // Load value into temp_xmm which will be preserved across potential call to
4570 // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
4571 // XMM registers on x64).
4572 if (signedness == SIGNED_INT32) {
4573 DCHECK(SmiValuesAre31Bits());
4574 // There was overflow, so bits 30 and 31 of the original integer
4575 // disagree. Try to allocate a heap number in new space and store
4576 // the value in there. If that fails, call the runtime system.
4577 __ SmiToInteger32(reg, reg);
4578 __ xorl(reg, Immediate(0x80000000));
4579 __ Cvtlsi2sd(temp_xmm, reg);
4580 } else {
4581 DCHECK(signedness == UNSIGNED_INT32);
4582 __ LoadUint32(temp_xmm, reg);
4583 }
4584
4585 if (FLAG_inline_new) {
4586 __ AllocateHeapNumber(reg, tmp, &slow);
4587 __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
4588 }
4589
4590 // Slow case: Call the runtime system to do the number allocation.
4591 __ bind(&slow);
4592 {
4593 // Put a valid pointer value in the stack slot where the result
4594 // register is stored, as this register is in the pointer map, but contains
4595 // an integer value.
4596 __ Set(reg, 0);
4597
4598 // Preserve the value of all registers.
4599 PushSafepointRegistersScope scope(this);
4600
4601 // NumberTagIU uses the context from the frame, rather than
4602 // the environment's HContext or HInlinedContext value.
4603 // They only call Runtime::kAllocateHeapNumber.
4604 // The corresponding HChange instructions are added in a phase that does
4605 // not have easy access to the local context.
4606 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4607 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4608 RecordSafepointWithRegisters(
4609 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4610 __ StoreToSafepointRegisterSlot(reg, rax);
4611 }
4612
4613 // Done. Put the value in temp_xmm into the value of the allocated heap
4614 // number.
4615 __ bind(&done);
4616 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
4617}
4618
4619
4620void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4621 class DeferredNumberTagD final : public LDeferredCode {
4622 public:
4623 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4624 : LDeferredCode(codegen), instr_(instr) { }
4625 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4626 LInstruction* instr() override { return instr_; }
4627
4628 private:
4629 LNumberTagD* instr_;
4630 };
4631
4632 XMMRegister input_reg = ToDoubleRegister(instr->value());
4633 Register reg = ToRegister(instr->result());
4634 Register tmp = ToRegister(instr->temp());
4635
4636 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4637 if (FLAG_inline_new) {
4638 __ AllocateHeapNumber(reg, tmp, deferred->entry());
4639 } else {
4640 __ jmp(deferred->entry());
4641 }
4642 __ bind(deferred->exit());
4643 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4644}
4645
4646
4647void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4648 // TODO(3095996): Get rid of this. For now, we need to make the
4649 // result register contain a valid pointer because it is already
4650 // contained in the register pointer map.
4651 Register reg = ToRegister(instr->result());
4652 __ Move(reg, Smi::FromInt(0));
4653
4654 {
4655 PushSafepointRegistersScope scope(this);
4656 // NumberTagD uses the context from the frame, rather than
4657 // the environment's HContext or HInlinedContext value.
4658 // They only call Runtime::kAllocateHeapNumber.
4659 // The corresponding HChange instructions are added in a phase that does
4660 // not have easy access to the local context.
4661 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4662 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4663 RecordSafepointWithRegisters(
4664 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4665 __ movp(kScratchRegister, rax);
4666 }
4667 __ movp(reg, kScratchRegister);
4668}
4669
4670
4671void LCodeGen::DoSmiTag(LSmiTag* instr) {
4672 HChange* hchange = instr->hydrogen();
4673 Register input = ToRegister(instr->value());
4674 Register output = ToRegister(instr->result());
4675 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4676 hchange->value()->CheckFlag(HValue::kUint32)) {
4677 Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
4678 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow);
4679 }
4680 __ Integer32ToSmi(output, input);
4681 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4682 !hchange->value()->CheckFlag(HValue::kUint32)) {
4683 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4684 }
4685}
4686
4687
4688void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4689 DCHECK(instr->value()->Equals(instr->result()));
4690 Register input = ToRegister(instr->value());
4691 if (instr->needs_check()) {
4692 Condition is_smi = __ CheckSmi(input);
4693 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi);
4694 } else {
4695 __ AssertSmi(input);
4696 }
4697 __ SmiToInteger32(input, input);
4698}
4699
4700
4701void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4702 XMMRegister result_reg, NumberUntagDMode mode) {
4703 bool can_convert_undefined_to_nan =
4704 instr->hydrogen()->can_convert_undefined_to_nan();
4705 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4706
4707 Label convert, load_smi, done;
4708
4709 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4710 // Smi check.
4711 __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4712
4713 // Heap number map check.
4714 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4715 Heap::kHeapNumberMapRootIndex);
4716
4717 // On x64 it is safe to load at heap number offset before evaluating the map
4718 // check, since all heap objects are at least two words long.
4719 __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
4720
4721 if (can_convert_undefined_to_nan) {
4722 __ j(not_equal, &convert, Label::kNear);
4723 } else {
4724 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4725 }
4726
4727 if (deoptimize_on_minus_zero) {
4728 XMMRegister xmm_scratch = double_scratch0();
4729 __ Xorpd(xmm_scratch, xmm_scratch);
4730 __ Ucomisd(xmm_scratch, result_reg);
4731 __ j(not_equal, &done, Label::kNear);
4732 __ Movmskpd(kScratchRegister, result_reg);
4733 __ testl(kScratchRegister, Immediate(1));
4734 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4735 }
4736 __ jmp(&done, Label::kNear);
4737
4738 if (can_convert_undefined_to_nan) {
4739 __ bind(&convert);
4740
4741 // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
4742 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4743 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
4744
4745 __ Pcmpeqd(result_reg, result_reg);
4746 __ jmp(&done, Label::kNear);
4747 }
4748 } else {
4749 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4750 }
4751
4752 // Smi to XMM conversion
4753 __ bind(&load_smi);
4754 __ SmiToInteger32(kScratchRegister, input_reg);
4755 __ Cvtlsi2sd(result_reg, kScratchRegister);
4756 __ bind(&done);
4757}
4758
4759
4760void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4761 Register input_reg = ToRegister(instr->value());
4762
4763 if (instr->truncating()) {
4764 Label no_heap_number, check_bools, check_false;
4765
4766 // Heap number map check.
4767 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4768 Heap::kHeapNumberMapRootIndex);
4769 __ j(not_equal, &no_heap_number, Label::kNear);
4770 __ TruncateHeapNumberToI(input_reg, input_reg);
4771 __ jmp(done);
4772
4773 __ bind(&no_heap_number);
4774 // Check for Oddballs. Undefined/False is converted to zero and True to one
4775 // for truncating conversions.
4776 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4777 __ j(not_equal, &check_bools, Label::kNear);
4778 __ Set(input_reg, 0);
4779 __ jmp(done);
4780
4781 __ bind(&check_bools);
4782 __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
4783 __ j(not_equal, &check_false, Label::kNear);
4784 __ Set(input_reg, 1);
4785 __ jmp(done);
4786
4787 __ bind(&check_false);
4788 __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
4789 DeoptimizeIf(not_equal, instr,
4790 Deoptimizer::kNotAHeapNumberUndefinedBoolean);
4791 __ Set(input_reg, 0);
4792 } else {
4793 XMMRegister scratch = ToDoubleRegister(instr->temp());
4794 DCHECK(!scratch.is(xmm0));
4795 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4796 Heap::kHeapNumberMapRootIndex);
4797 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4798 __ Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
4799 __ Cvttsd2si(input_reg, xmm0);
4800 __ Cvtlsi2sd(scratch, input_reg);
4801 __ Ucomisd(xmm0, scratch);
4802 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
4803 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
4804 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4805 __ testl(input_reg, input_reg);
4806 __ j(not_zero, done);
4807 __ Movmskpd(input_reg, xmm0);
4808 __ andl(input_reg, Immediate(1));
4809 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4810 }
4811 }
4812}
4813
4814
4815void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4816 class DeferredTaggedToI final : public LDeferredCode {
4817 public:
4818 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4819 : LDeferredCode(codegen), instr_(instr) { }
4820 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
4821 LInstruction* instr() override { return instr_; }
4822
4823 private:
4824 LTaggedToI* instr_;
4825 };
4826
4827 LOperand* input = instr->value();
4828 DCHECK(input->IsRegister());
4829 DCHECK(input->Equals(instr->result()));
4830 Register input_reg = ToRegister(input);
4831
4832 if (instr->hydrogen()->value()->representation().IsSmi()) {
4833 __ SmiToInteger32(input_reg, input_reg);
4834 } else {
4835 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4836 __ JumpIfNotSmi(input_reg, deferred->entry());
4837 __ SmiToInteger32(input_reg, input_reg);
4838 __ bind(deferred->exit());
4839 }
4840}
4841
4842
4843void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4844 LOperand* input = instr->value();
4845 DCHECK(input->IsRegister());
4846 LOperand* result = instr->result();
4847 DCHECK(result->IsDoubleRegister());
4848
4849 Register input_reg = ToRegister(input);
4850 XMMRegister result_reg = ToDoubleRegister(result);
4851
4852 HValue* value = instr->hydrogen()->value();
4853 NumberUntagDMode mode = value->representation().IsSmi()
4854 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4855
4856 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4857}
4858
4859
4860void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4861 LOperand* input = instr->value();
4862 DCHECK(input->IsDoubleRegister());
4863 LOperand* result = instr->result();
4864 DCHECK(result->IsRegister());
4865
4866 XMMRegister input_reg = ToDoubleRegister(input);
4867 Register result_reg = ToRegister(result);
4868
4869 if (instr->truncating()) {
4870 __ TruncateDoubleToI(result_reg, input_reg);
4871 } else {
4872 Label lost_precision, is_nan, minus_zero, done;
4873 XMMRegister xmm_scratch = double_scratch0();
4874 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4875 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4876 instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
4877 &is_nan, &minus_zero, dist);
4878 __ jmp(&done, dist);
4879 __ bind(&lost_precision);
4880 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4881 __ bind(&is_nan);
4882 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4883 __ bind(&minus_zero);
4884 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4885 __ bind(&done);
4886 }
4887}
4888
4889
4890void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4891 LOperand* input = instr->value();
4892 DCHECK(input->IsDoubleRegister());
4893 LOperand* result = instr->result();
4894 DCHECK(result->IsRegister());
4895
4896 XMMRegister input_reg = ToDoubleRegister(input);
4897 Register result_reg = ToRegister(result);
4898
4899 Label lost_precision, is_nan, minus_zero, done;
4900 XMMRegister xmm_scratch = double_scratch0();
4901 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4902 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4903 instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
4904 &minus_zero, dist);
4905 __ jmp(&done, dist);
4906 __ bind(&lost_precision);
4907 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4908 __ bind(&is_nan);
4909 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4910 __ bind(&minus_zero);
4911 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4912 __ bind(&done);
4913 __ Integer32ToSmi(result_reg, result_reg);
4914 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4915}
4916
4917
4918void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4919 LOperand* input = instr->value();
4920 Condition cc = masm()->CheckSmi(ToRegister(input));
4921 DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi);
4922}
4923
4924
4925void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4926 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4927 LOperand* input = instr->value();
4928 Condition cc = masm()->CheckSmi(ToRegister(input));
4929 DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
4930 }
4931}
4932
4933
4934void LCodeGen::DoCheckArrayBufferNotNeutered(
4935 LCheckArrayBufferNotNeutered* instr) {
4936 Register view = ToRegister(instr->view());
4937
4938 __ movp(kScratchRegister,
4939 FieldOperand(view, JSArrayBufferView::kBufferOffset));
4940 __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
4941 Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
4942 DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
4943}
4944
4945
4946void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4947 Register input = ToRegister(instr->value());
4948
4949 __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
4950
4951 if (instr->hydrogen()->is_interval_check()) {
4952 InstanceType first;
4953 InstanceType last;
4954 instr->hydrogen()->GetCheckInterval(&first, &last);
4955
4956 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4957 Immediate(static_cast<int8_t>(first)));
4958
4959 // If there is only one type in the interval check for equality.
4960 if (first == last) {
4961 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
4962 } else {
4963 DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
4964 // Omit check for the last type.
4965 if (last != LAST_TYPE) {
4966 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4967 Immediate(static_cast<int8_t>(last)));
4968 DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
4969 }
4970 }
4971 } else {
4972 uint8_t mask;
4973 uint8_t tag;
4974 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4975
4976 if (base::bits::IsPowerOfTwo32(mask)) {
4977 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4978 __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4979 Immediate(mask));
4980 DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
4981 Deoptimizer::kWrongInstanceType);
4982 } else {
4983 __ movzxbl(kScratchRegister,
4984 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
4985 __ andb(kScratchRegister, Immediate(mask));
4986 __ cmpb(kScratchRegister, Immediate(tag));
4987 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
4988 }
4989 }
4990}
4991
4992
4993void LCodeGen::DoCheckValue(LCheckValue* instr) {
4994 Register reg = ToRegister(instr->value());
4995 __ Cmp(reg, instr->hydrogen()->object().handle());
4996 DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
4997}
4998
4999
5000void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5001 {
5002 PushSafepointRegistersScope scope(this);
5003 __ Push(object);
5004 __ Set(rsi, 0);
5005 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5006 RecordSafepointWithRegisters(
5007 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
5008
5009 __ testp(rax, Immediate(kSmiTagMask));
5010 }
5011 DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
5012}
5013
5014
5015void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5016 class DeferredCheckMaps final : public LDeferredCode {
5017 public:
5018 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5019 : LDeferredCode(codegen), instr_(instr), object_(object) {
5020 SetExit(check_maps());
5021 }
5022 void Generate() override {
5023 codegen()->DoDeferredInstanceMigration(instr_, object_);
5024 }
5025 Label* check_maps() { return &check_maps_; }
5026 LInstruction* instr() override { return instr_; }
5027
5028 private:
5029 LCheckMaps* instr_;
5030 Label check_maps_;
5031 Register object_;
5032 };
5033
5034 if (instr->hydrogen()->IsStabilityCheck()) {
5035 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5036 for (int i = 0; i < maps->size(); ++i) {
5037 AddStabilityDependency(maps->at(i).handle());
5038 }
5039 return;
5040 }
5041
5042 LOperand* input = instr->value();
5043 DCHECK(input->IsRegister());
5044 Register reg = ToRegister(input);
5045
5046 DeferredCheckMaps* deferred = NULL;
5047 if (instr->hydrogen()->HasMigrationTarget()) {
5048 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5049 __ bind(deferred->check_maps());
5050 }
5051
5052 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5053 Label success;
5054 for (int i = 0; i < maps->size() - 1; i++) {
5055 Handle<Map> map = maps->at(i).handle();
5056 __ CompareMap(reg, map);
5057 __ j(equal, &success, Label::kNear);
5058 }
5059
5060 Handle<Map> map = maps->at(maps->size() - 1).handle();
5061 __ CompareMap(reg, map);
5062 if (instr->hydrogen()->HasMigrationTarget()) {
5063 __ j(not_equal, deferred->entry());
5064 } else {
5065 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5066 }
5067
5068 __ bind(&success);
5069}
5070
5071
5072void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5073 XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
5074 XMMRegister xmm_scratch = double_scratch0();
5075 Register result_reg = ToRegister(instr->result());
5076 __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
5077}
5078
5079
5080void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5081 DCHECK(instr->unclamped()->Equals(instr->result()));
5082 Register value_reg = ToRegister(instr->result());
5083 __ ClampUint8(value_reg);
5084}
5085
5086
5087void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5088 DCHECK(instr->unclamped()->Equals(instr->result()));
5089 Register input_reg = ToRegister(instr->unclamped());
5090 XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
5091 XMMRegister xmm_scratch = double_scratch0();
5092 Label is_smi, done, heap_number;
5093 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
5094 __ JumpIfSmi(input_reg, &is_smi, dist);
5095
5096 // Check for heap number
5097 __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5098 factory()->heap_number_map());
5099 __ j(equal, &heap_number, Label::kNear);
5100
5101 // Check for undefined. Undefined is converted to zero for clamping
5102 // conversions.
5103 __ Cmp(input_reg, factory()->undefined_value());
5104 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
5105 __ xorl(input_reg, input_reg);
5106 __ jmp(&done, Label::kNear);
5107
5108 // Heap number
5109 __ bind(&heap_number);
5110 __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
5111 __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
5112 __ jmp(&done, Label::kNear);
5113
5114 // smi
5115 __ bind(&is_smi);
5116 __ SmiToInteger32(input_reg, input_reg);
5117 __ ClampUint8(input_reg);
5118
5119 __ bind(&done);
5120}
5121
5122
5123void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5124 XMMRegister value_reg = ToDoubleRegister(instr->value());
5125 Register result_reg = ToRegister(instr->result());
5126 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5127 __ Movq(result_reg, value_reg);
5128 __ shrq(result_reg, Immediate(32));
5129 } else {
5130 __ Movd(result_reg, value_reg);
5131 }
5132}
5133
5134
5135void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5136 Register hi_reg = ToRegister(instr->hi());
5137 Register lo_reg = ToRegister(instr->lo());
5138 XMMRegister result_reg = ToDoubleRegister(instr->result());
5139 __ movl(kScratchRegister, hi_reg);
5140 __ shlq(kScratchRegister, Immediate(32));
5141 __ orq(kScratchRegister, lo_reg);
5142 __ Movq(result_reg, kScratchRegister);
5143}
5144
5145
5146void LCodeGen::DoAllocate(LAllocate* instr) {
5147 class DeferredAllocate final : public LDeferredCode {
5148 public:
5149 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5150 : LDeferredCode(codegen), instr_(instr) { }
5151 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5152 LInstruction* instr() override { return instr_; }
5153
5154 private:
5155 LAllocate* instr_;
5156 };
5157
5158 DeferredAllocate* deferred =
5159 new(zone()) DeferredAllocate(this, instr);
5160
5161 Register result = ToRegister(instr->result());
5162 Register temp = ToRegister(instr->temp());
5163
5164 // Allocate memory for the object.
5165 AllocationFlags flags = TAG_OBJECT;
5166 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5167 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5168 }
5169 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5170 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5171 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5172 }
5173
5174 if (instr->size()->IsConstantOperand()) {
5175 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5176 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5177 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5178 } else {
5179 Register size = ToRegister(instr->size());
5180 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5181 }
5182
5183 __ bind(deferred->exit());
5184
5185 if (instr->hydrogen()->MustPrefillWithFiller()) {
5186 if (instr->size()->IsConstantOperand()) {
5187 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5188 __ movl(temp, Immediate((size / kPointerSize) - 1));
5189 } else {
5190 temp = ToRegister(instr->size());
5191 __ sarp(temp, Immediate(kPointerSizeLog2));
5192 __ decl(temp);
5193 }
5194 Label loop;
5195 __ bind(&loop);
5196 __ Move(FieldOperand(result, temp, times_pointer_size, 0),
5197 isolate()->factory()->one_pointer_filler_map());
5198 __ decl(temp);
5199 __ j(not_zero, &loop);
5200 }
5201}
5202
5203
5204void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5205 Register result = ToRegister(instr->result());
5206
5207 // TODO(3095996): Get rid of this. For now, we need to make the
5208 // result register contain a valid pointer because it is already
5209 // contained in the register pointer map.
5210 __ Move(result, Smi::FromInt(0));
5211
5212 PushSafepointRegistersScope scope(this);
5213 if (instr->size()->IsRegister()) {
5214 Register size = ToRegister(instr->size());
5215 DCHECK(!size.is(result));
5216 __ Integer32ToSmi(size, size);
5217 __ Push(size);
5218 } else {
5219 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5220 __ Push(Smi::FromInt(size));
5221 }
5222
5223 int flags = 0;
5224 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5225 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5226 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5227 } else {
5228 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5229 }
5230 __ Push(Smi::FromInt(flags));
5231
5232 CallRuntimeFromDeferred(
5233 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5234 __ StoreToSafepointRegisterSlot(result, rax);
5235}
5236
5237
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005238void LCodeGen::DoTypeof(LTypeof* instr) {
5239 DCHECK(ToRegister(instr->context()).is(rsi));
5240 DCHECK(ToRegister(instr->value()).is(rbx));
5241 Label end, do_call;
5242 Register value_register = ToRegister(instr->value());
5243 __ JumpIfNotSmi(value_register, &do_call);
5244 __ Move(rax, isolate()->factory()->number_string());
5245 __ jmp(&end);
5246 __ bind(&do_call);
5247 TypeofStub stub(isolate());
5248 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5249 __ bind(&end);
5250}
5251
5252
5253void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
5254 DCHECK(!operand->IsDoubleRegister());
5255 if (operand->IsConstantOperand()) {
5256 __ Push(ToHandle(LConstantOperand::cast(operand)));
5257 } else if (operand->IsRegister()) {
5258 __ Push(ToRegister(operand));
5259 } else {
5260 __ Push(ToOperand(operand));
5261 }
5262}
5263
5264
5265void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5266 Register input = ToRegister(instr->value());
5267 Condition final_branch_condition = EmitTypeofIs(instr, input);
5268 if (final_branch_condition != no_condition) {
5269 EmitBranch(instr, final_branch_condition);
5270 }
5271}
5272
5273
5274Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5275 Label* true_label = instr->TrueLabel(chunk_);
5276 Label* false_label = instr->FalseLabel(chunk_);
5277 Handle<String> type_name = instr->type_literal();
5278 int left_block = instr->TrueDestination(chunk_);
5279 int right_block = instr->FalseDestination(chunk_);
5280 int next_block = GetNextEmittedBlock();
5281
5282 Label::Distance true_distance = left_block == next_block ? Label::kNear
5283 : Label::kFar;
5284 Label::Distance false_distance = right_block == next_block ? Label::kNear
5285 : Label::kFar;
5286 Condition final_branch_condition = no_condition;
5287 Factory* factory = isolate()->factory();
5288 if (String::Equals(type_name, factory->number_string())) {
5289 __ JumpIfSmi(input, true_label, true_distance);
5290 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
5291 Heap::kHeapNumberMapRootIndex);
5292
5293 final_branch_condition = equal;
5294
5295 } else if (String::Equals(type_name, factory->string_string())) {
5296 __ JumpIfSmi(input, false_label, false_distance);
5297 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5298 final_branch_condition = below;
5299
5300 } else if (String::Equals(type_name, factory->symbol_string())) {
5301 __ JumpIfSmi(input, false_label, false_distance);
5302 __ CmpObjectType(input, SYMBOL_TYPE, input);
5303 final_branch_condition = equal;
5304
5305 } else if (String::Equals(type_name, factory->boolean_string())) {
5306 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5307 __ j(equal, true_label, true_distance);
5308 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5309 final_branch_condition = equal;
5310
5311 } else if (String::Equals(type_name, factory->undefined_string())) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005312 __ CompareRoot(input, Heap::kNullValueRootIndex);
5313 __ j(equal, false_label, false_distance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005314 __ JumpIfSmi(input, false_label, false_distance);
5315 // Check for undetectable objects => true.
5316 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5317 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5318 Immediate(1 << Map::kIsUndetectable));
5319 final_branch_condition = not_zero;
5320
5321 } else if (String::Equals(type_name, factory->function_string())) {
5322 __ JumpIfSmi(input, false_label, false_distance);
5323 // Check for callable and not undetectable objects => true.
5324 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5325 __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
5326 __ andb(input,
5327 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5328 __ cmpb(input, Immediate(1 << Map::kIsCallable));
5329 final_branch_condition = equal;
5330
5331 } else if (String::Equals(type_name, factory->object_string())) {
5332 __ JumpIfSmi(input, false_label, false_distance);
5333 __ CompareRoot(input, Heap::kNullValueRootIndex);
5334 __ j(equal, true_label, true_distance);
5335 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5336 __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
5337 __ j(below, false_label, false_distance);
5338 // Check for callable or undetectable objects => false.
5339 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5340 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5341 final_branch_condition = zero;
5342
5343// clang-format off
5344#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5345 } else if (String::Equals(type_name, factory->type##_string())) { \
5346 __ JumpIfSmi(input, false_label, false_distance); \
5347 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), \
5348 Heap::k##Type##MapRootIndex); \
5349 final_branch_condition = equal;
5350 SIMD128_TYPES(SIMD128_TYPE)
5351#undef SIMD128_TYPE
5352 // clang-format on
5353
5354 } else {
5355 __ jmp(false_label, false_distance);
5356 }
5357
5358 return final_branch_condition;
5359}
5360
5361
5362void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5363 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5364 // Ensure that we have enough space after the previous lazy-bailout
5365 // instruction for patching the code here.
5366 int current_pc = masm()->pc_offset();
5367 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5368 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5369 __ Nop(padding_size);
5370 }
5371 }
5372 last_lazy_deopt_pc_ = masm()->pc_offset();
5373}
5374
5375
5376void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5377 last_lazy_deopt_pc_ = masm()->pc_offset();
5378 DCHECK(instr->HasEnvironment());
5379 LEnvironment* env = instr->environment();
5380 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5381 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5382}
5383
5384
5385void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5386 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5387 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5388 // needed return address), even though the implementation of LAZY and EAGER is
5389 // now identical. When LAZY is eventually completely folded into EAGER, remove
5390 // the special case below.
5391 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5392 type = Deoptimizer::LAZY;
5393 }
5394 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5395}
5396
5397
5398void LCodeGen::DoDummy(LDummy* instr) {
5399 // Nothing to see here, move on!
5400}
5401
5402
5403void LCodeGen::DoDummyUse(LDummyUse* instr) {
5404 // Nothing to see here, move on!
5405}
5406
5407
5408void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5409 PushSafepointRegistersScope scope(this);
5410 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
5411 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5412 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
5413 DCHECK(instr->HasEnvironment());
5414 LEnvironment* env = instr->environment();
5415 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5416}
5417
5418
5419void LCodeGen::DoStackCheck(LStackCheck* instr) {
5420 class DeferredStackCheck final : public LDeferredCode {
5421 public:
5422 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5423 : LDeferredCode(codegen), instr_(instr) { }
5424 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5425 LInstruction* instr() override { return instr_; }
5426
5427 private:
5428 LStackCheck* instr_;
5429 };
5430
5431 DCHECK(instr->HasEnvironment());
5432 LEnvironment* env = instr->environment();
5433 // There is no LLazyBailout instruction for stack-checks. We have to
5434 // prepare for lazy deoptimization explicitly here.
5435 if (instr->hydrogen()->is_function_entry()) {
5436 // Perform stack overflow check.
5437 Label done;
5438 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5439 __ j(above_equal, &done, Label::kNear);
5440
5441 DCHECK(instr->context()->IsRegister());
5442 DCHECK(ToRegister(instr->context()).is(rsi));
5443 CallCode(isolate()->builtins()->StackCheck(),
5444 RelocInfo::CODE_TARGET,
5445 instr);
5446 __ bind(&done);
5447 } else {
5448 DCHECK(instr->hydrogen()->is_backwards_branch());
5449 // Perform stack overflow check if this goto needs it before jumping.
5450 DeferredStackCheck* deferred_stack_check =
5451 new(zone()) DeferredStackCheck(this, instr);
5452 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5453 __ j(below, deferred_stack_check->entry());
5454 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5455 __ bind(instr->done_label());
5456 deferred_stack_check->SetExit(instr->done_label());
5457 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5458 // Don't record a deoptimization index for the safepoint here.
5459 // This will be done explicitly when emitting call and the safepoint in
5460 // the deferred code.
5461 }
5462}
5463
5464
5465void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5466 // This is a pseudo-instruction that ensures that the environment here is
5467 // properly registered for deoptimization and records the assembler's PC
5468 // offset.
5469 LEnvironment* environment = instr->environment();
5470
5471 // If the environment were already registered, we would have no way of
5472 // backpatching it with the spill slot operands.
5473 DCHECK(!environment->HasBeenRegistered());
5474 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5475
5476 GenerateOsrPrologue();
5477}
5478
5479
5480void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5481 DCHECK(ToRegister(instr->context()).is(rsi));
5482
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005483 Label use_cache, call_runtime;
Ben Murdoch097c5b22016-05-18 11:27:45 +01005484 __ CheckEnumCache(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005485
5486 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
5487 __ jmp(&use_cache, Label::kNear);
5488
5489 // Get the set of properties to enumerate.
5490 __ bind(&call_runtime);
5491 __ Push(rax);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005492 CallRuntime(Runtime::kForInEnumerate, instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005493 __ bind(&use_cache);
5494}
5495
5496
5497void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5498 Register map = ToRegister(instr->map());
5499 Register result = ToRegister(instr->result());
5500 Label load_cache, done;
5501 __ EnumLength(result, map);
5502 __ Cmp(result, Smi::FromInt(0));
5503 __ j(not_equal, &load_cache, Label::kNear);
5504 __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
5505 __ jmp(&done, Label::kNear);
5506 __ bind(&load_cache);
5507 __ LoadInstanceDescriptors(map, result);
5508 __ movp(result,
5509 FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5510 __ movp(result,
5511 FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5512 __ bind(&done);
5513 Condition cc = masm()->CheckSmi(result);
5514 DeoptimizeIf(cc, instr, Deoptimizer::kNoCache);
5515}
5516
5517
5518void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5519 Register object = ToRegister(instr->value());
5520 __ cmpp(ToRegister(instr->map()),
5521 FieldOperand(object, HeapObject::kMapOffset));
5522 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5523}
5524
5525
5526void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5527 Register object,
5528 Register index) {
5529 PushSafepointRegistersScope scope(this);
5530 __ Push(object);
5531 __ Push(index);
5532 __ xorp(rsi, rsi);
5533 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5534 RecordSafepointWithRegisters(
5535 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5536 __ StoreToSafepointRegisterSlot(object, rax);
5537}
5538
5539
5540void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5541 class DeferredLoadMutableDouble final : public LDeferredCode {
5542 public:
5543 DeferredLoadMutableDouble(LCodeGen* codegen,
5544 LLoadFieldByIndex* instr,
5545 Register object,
5546 Register index)
5547 : LDeferredCode(codegen),
5548 instr_(instr),
5549 object_(object),
5550 index_(index) {
5551 }
5552 void Generate() override {
5553 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5554 }
5555 LInstruction* instr() override { return instr_; }
5556
5557 private:
5558 LLoadFieldByIndex* instr_;
5559 Register object_;
5560 Register index_;
5561 };
5562
5563 Register object = ToRegister(instr->object());
5564 Register index = ToRegister(instr->index());
5565
5566 DeferredLoadMutableDouble* deferred;
5567 deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
5568
5569 Label out_of_object, done;
5570 __ Move(kScratchRegister, Smi::FromInt(1));
5571 __ testp(index, kScratchRegister);
5572 __ j(not_zero, deferred->entry());
5573
5574 __ sarp(index, Immediate(1));
5575
5576 __ SmiToInteger32(index, index);
5577 __ cmpl(index, Immediate(0));
5578 __ j(less, &out_of_object, Label::kNear);
5579 __ movp(object, FieldOperand(object,
5580 index,
5581 times_pointer_size,
5582 JSObject::kHeaderSize));
5583 __ jmp(&done, Label::kNear);
5584
5585 __ bind(&out_of_object);
5586 __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
5587 __ negl(index);
5588 // Index is now equal to out of object property index plus 1.
5589 __ movp(object, FieldOperand(object,
5590 index,
5591 times_pointer_size,
5592 FixedArray::kHeaderSize - kPointerSize));
5593 __ bind(deferred->exit());
5594 __ bind(&done);
5595}
5596
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005597#undef __
5598
5599} // namespace internal
5600} // namespace v8
5601
5602#endif // V8_TARGET_ARCH_X64