blob: 5b5dabe309bc0363a3aa28ff24701ed6267a8b67 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2007-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28/** \mainpage V8 API Reference Guide
29 *
30 * V8 is Google's open source JavaScript engine.
31 *
32 * This set of documents provides reference material generated from the
33 * V8 header file, include/v8.h.
34 *
35 * For other documentation see http://code.google.com/apis/v8/
36 */
37
38#ifndef V8_H_
39#define V8_H_
40
41#include <stdio.h>
42
43#ifdef _WIN32
44// When compiling on MinGW stdint.h is available.
45#ifdef __MINGW32__
46#include <stdint.h>
47#else // __MINGW32__
48typedef signed char int8_t;
49typedef unsigned char uint8_t;
50typedef short int16_t; // NOLINT
51typedef unsigned short uint16_t; // NOLINT
52typedef int int32_t;
53typedef unsigned int uint32_t;
54typedef __int64 int64_t;
55typedef unsigned __int64 uint64_t;
56// intptr_t and friends are defined in crtdefs.h through stdio.h.
57#endif // __MINGW32__
58
59// Setup for Windows DLL export/import. When building the V8 DLL the
60// BUILDING_V8_SHARED needs to be defined. When building a program which uses
61// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
62// static library or building a program which uses the V8 static library neither
63// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
64// The reason for having both V8EXPORT and V8EXPORT_INLINE is that classes which
65// have their code inside this header file need to have __declspec(dllexport)
66// when building the DLL but cannot have __declspec(dllimport) when building
67// a program which uses the DLL.
68#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
69#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
70 build configuration to ensure that at most one of these is set
71#endif
72
73#ifdef BUILDING_V8_SHARED
74#define V8EXPORT __declspec(dllexport)
75#define V8EXPORT_INLINE __declspec(dllexport)
76#elif USING_V8_SHARED
77#define V8EXPORT __declspec(dllimport)
78#define V8EXPORT_INLINE
79#else
80#define V8EXPORT
81#define V8EXPORT_INLINE
82#endif // BUILDING_V8_SHARED
83
84#else // _WIN32
85
86#include <stdint.h>
87
88// Setup for Linux shared library export. There is no need to distinguish
89// between building or using the V8 shared library, but we should not
90// export symbols when we are building a static library.
91#if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED)
92#define V8EXPORT __attribute__ ((visibility("default")))
93#define V8EXPORT_INLINE __attribute__ ((visibility("default")))
94#else // defined(__GNUC__) && (__GNUC__ >= 4)
95#define V8EXPORT
96#define V8EXPORT_INLINE
97#endif // defined(__GNUC__) && (__GNUC__ >= 4)
98
99#endif // _WIN32
100
101/**
102 * The v8 JavaScript engine.
103 */
104namespace v8 {
105
106class Context;
107class String;
108class Value;
109class Utils;
110class Number;
111class Object;
112class Array;
113class Int32;
114class Uint32;
115class External;
116class Primitive;
117class Boolean;
118class Integer;
119class Function;
120class Date;
121class ImplementationUtilities;
122class Signature;
123template <class T> class Handle;
124template <class T> class Local;
125template <class T> class Persistent;
126class FunctionTemplate;
127class ObjectTemplate;
128class Data;
Leon Clarkef7060e22010-06-03 12:02:55 +0100129class AccessorInfo;
Kristian Monsen25f61362010-05-21 11:50:48 +0100130class StackTrace;
131class StackFrame;
Steve Blocka7e24c12009-10-30 11:49:00 +0000132
133namespace internal {
134
Steve Blocka7e24c12009-10-30 11:49:00 +0000135class Arguments;
Steve Blockd0582a62009-12-15 09:54:21 +0000136class Object;
137class Top;
Steve Blocka7e24c12009-10-30 11:49:00 +0000138
139}
140
141
142// --- W e a k H a n d l e s
143
144
145/**
146 * A weak reference callback function.
147 *
148 * \param object the weak global object to be reclaimed by the garbage collector
149 * \param parameter the value passed in when making the weak global object
150 */
151typedef void (*WeakReferenceCallback)(Persistent<Value> object,
152 void* parameter);
153
154
155// --- H a n d l e s ---
156
157#define TYPE_CHECK(T, S) \
158 while (false) { \
159 *(static_cast<T**>(0)) = static_cast<S*>(0); \
160 }
161
162/**
163 * An object reference managed by the v8 garbage collector.
164 *
165 * All objects returned from v8 have to be tracked by the garbage
166 * collector so that it knows that the objects are still alive. Also,
167 * because the garbage collector may move objects, it is unsafe to
168 * point directly to an object. Instead, all objects are stored in
169 * handles which are known by the garbage collector and updated
170 * whenever an object moves. Handles should always be passed by value
171 * (except in cases like out-parameters) and they should never be
172 * allocated on the heap.
173 *
174 * There are two types of handles: local and persistent handles.
175 * Local handles are light-weight and transient and typically used in
176 * local operations. They are managed by HandleScopes. Persistent
177 * handles can be used when storing objects across several independent
178 * operations and have to be explicitly deallocated when they're no
179 * longer used.
180 *
181 * It is safe to extract the object stored in the handle by
182 * dereferencing the handle (for instance, to extract the Object* from
183 * an Handle<Object>); the value will still be governed by a handle
184 * behind the scenes and the same rules apply to these values as to
185 * their handles.
186 */
187template <class T> class V8EXPORT_INLINE Handle {
188 public:
189
190 /**
191 * Creates an empty handle.
192 */
193 inline Handle();
194
195 /**
196 * Creates a new handle for the specified value.
197 */
198 explicit Handle(T* val) : val_(val) { }
199
200 /**
201 * Creates a handle for the contents of the specified handle. This
202 * constructor allows you to pass handles as arguments by value and
203 * to assign between handles. However, if you try to assign between
204 * incompatible handles, for instance from a Handle<String> to a
205 * Handle<Number> it will cause a compiletime error. Assigning
206 * between compatible handles, for instance assigning a
207 * Handle<String> to a variable declared as Handle<Value>, is legal
208 * because String is a subclass of Value.
209 */
210 template <class S> inline Handle(Handle<S> that)
211 : val_(reinterpret_cast<T*>(*that)) {
212 /**
213 * This check fails when trying to convert between incompatible
214 * handles. For example, converting from a Handle<String> to a
215 * Handle<Number>.
216 */
217 TYPE_CHECK(T, S);
218 }
219
220 /**
221 * Returns true if the handle is empty.
222 */
223 bool IsEmpty() const { return val_ == 0; }
224
225 T* operator->() const { return val_; }
226
227 T* operator*() const { return val_; }
228
229 /**
230 * Sets the handle to be empty. IsEmpty() will then return true.
231 */
232 void Clear() { this->val_ = 0; }
233
234 /**
235 * Checks whether two handles are the same.
236 * Returns true if both are empty, or if the objects
237 * to which they refer are identical.
238 * The handles' references are not checked.
239 */
240 template <class S> bool operator==(Handle<S> that) const {
241 internal::Object** a = reinterpret_cast<internal::Object**>(**this);
242 internal::Object** b = reinterpret_cast<internal::Object**>(*that);
243 if (a == 0) return b == 0;
244 if (b == 0) return false;
245 return *a == *b;
246 }
247
248 /**
249 * Checks whether two handles are different.
250 * Returns true if only one of the handles is empty, or if
251 * the objects to which they refer are different.
252 * The handles' references are not checked.
253 */
254 template <class S> bool operator!=(Handle<S> that) const {
255 return !operator==(that);
256 }
257
258 template <class S> static inline Handle<T> Cast(Handle<S> that) {
259#ifdef V8_ENABLE_CHECKS
260 // If we're going to perform the type check then we have to check
261 // that the handle isn't empty before doing the checked cast.
262 if (that.IsEmpty()) return Handle<T>();
263#endif
264 return Handle<T>(T::Cast(*that));
265 }
266
Steve Block6ded16b2010-05-10 14:33:55 +0100267 template <class S> inline Handle<S> As() {
268 return Handle<S>::Cast(*this);
269 }
270
Steve Blocka7e24c12009-10-30 11:49:00 +0000271 private:
272 T* val_;
273};
274
275
276/**
277 * A light-weight stack-allocated object handle. All operations
278 * that return objects from within v8 return them in local handles. They
279 * are created within HandleScopes, and all local handles allocated within a
280 * handle scope are destroyed when the handle scope is destroyed. Hence it
281 * is not necessary to explicitly deallocate local handles.
282 */
283template <class T> class V8EXPORT_INLINE Local : public Handle<T> {
284 public:
285 inline Local();
286 template <class S> inline Local(Local<S> that)
287 : Handle<T>(reinterpret_cast<T*>(*that)) {
288 /**
289 * This check fails when trying to convert between incompatible
290 * handles. For example, converting from a Handle<String> to a
291 * Handle<Number>.
292 */
293 TYPE_CHECK(T, S);
294 }
295 template <class S> inline Local(S* that) : Handle<T>(that) { }
296 template <class S> static inline Local<T> Cast(Local<S> that) {
297#ifdef V8_ENABLE_CHECKS
298 // If we're going to perform the type check then we have to check
299 // that the handle isn't empty before doing the checked cast.
300 if (that.IsEmpty()) return Local<T>();
301#endif
302 return Local<T>(T::Cast(*that));
303 }
304
Steve Block6ded16b2010-05-10 14:33:55 +0100305 template <class S> inline Local<S> As() {
306 return Local<S>::Cast(*this);
307 }
308
Steve Blocka7e24c12009-10-30 11:49:00 +0000309 /** Create a local handle for the content of another handle.
310 * The referee is kept alive by the local handle even when
311 * the original handle is destroyed/disposed.
312 */
313 inline static Local<T> New(Handle<T> that);
314};
315
316
317/**
318 * An object reference that is independent of any handle scope. Where
319 * a Local handle only lives as long as the HandleScope in which it was
320 * allocated, a Persistent handle remains valid until it is explicitly
321 * disposed.
322 *
323 * A persistent handle contains a reference to a storage cell within
324 * the v8 engine which holds an object value and which is updated by
325 * the garbage collector whenever the object is moved. A new storage
326 * cell can be created using Persistent::New and existing handles can
327 * be disposed using Persistent::Dispose. Since persistent handles
328 * are passed by value you may have many persistent handle objects
329 * that point to the same storage cell. For instance, if you pass a
330 * persistent handle as an argument to a function you will not get two
331 * different storage cells but rather two references to the same
332 * storage cell.
333 */
334template <class T> class V8EXPORT_INLINE Persistent : public Handle<T> {
335 public:
336
337 /**
338 * Creates an empty persistent handle that doesn't point to any
339 * storage cell.
340 */
341 inline Persistent();
342
343 /**
344 * Creates a persistent handle for the same storage cell as the
345 * specified handle. This constructor allows you to pass persistent
346 * handles as arguments by value and to assign between persistent
347 * handles. However, attempting to assign between incompatible
348 * persistent handles, for instance from a Persistent<String> to a
349 * Persistent<Number> will cause a compiletime error. Assigning
350 * between compatible persistent handles, for instance assigning a
351 * Persistent<String> to a variable declared as Persistent<Value>,
352 * is allowed as String is a subclass of Value.
353 */
354 template <class S> inline Persistent(Persistent<S> that)
355 : Handle<T>(reinterpret_cast<T*>(*that)) {
356 /**
357 * This check fails when trying to convert between incompatible
358 * handles. For example, converting from a Handle<String> to a
359 * Handle<Number>.
360 */
361 TYPE_CHECK(T, S);
362 }
363
364 template <class S> inline Persistent(S* that) : Handle<T>(that) { }
365
366 /**
367 * "Casts" a plain handle which is known to be a persistent handle
368 * to a persistent handle.
369 */
370 template <class S> explicit inline Persistent(Handle<S> that)
371 : Handle<T>(*that) { }
372
373 template <class S> static inline Persistent<T> Cast(Persistent<S> that) {
374#ifdef V8_ENABLE_CHECKS
375 // If we're going to perform the type check then we have to check
376 // that the handle isn't empty before doing the checked cast.
377 if (that.IsEmpty()) return Persistent<T>();
378#endif
379 return Persistent<T>(T::Cast(*that));
380 }
381
Steve Block6ded16b2010-05-10 14:33:55 +0100382 template <class S> inline Persistent<S> As() {
383 return Persistent<S>::Cast(*this);
384 }
385
Steve Blocka7e24c12009-10-30 11:49:00 +0000386 /**
387 * Creates a new persistent handle for an existing local or
388 * persistent handle.
389 */
390 inline static Persistent<T> New(Handle<T> that);
391
392 /**
393 * Releases the storage cell referenced by this persistent handle.
394 * Does not remove the reference to the cell from any handles.
395 * This handle's reference, and any any other references to the storage
396 * cell remain and IsEmpty will still return false.
397 */
398 inline void Dispose();
399
400 /**
401 * Make the reference to this object weak. When only weak handles
402 * refer to the object, the garbage collector will perform a
403 * callback to the given V8::WeakReferenceCallback function, passing
404 * it the object reference and the given parameters.
405 */
406 inline void MakeWeak(void* parameters, WeakReferenceCallback callback);
407
408 /** Clears the weak reference to this object.*/
409 inline void ClearWeak();
410
411 /**
412 *Checks if the handle holds the only reference to an object.
413 */
414 inline bool IsNearDeath() const;
415
416 /**
417 * Returns true if the handle's reference is weak.
418 */
419 inline bool IsWeak() const;
420
421 private:
422 friend class ImplementationUtilities;
423 friend class ObjectTemplate;
424};
425
426
427 /**
428 * A stack-allocated class that governs a number of local handles.
429 * After a handle scope has been created, all local handles will be
430 * allocated within that handle scope until either the handle scope is
431 * deleted or another handle scope is created. If there is already a
432 * handle scope and a new one is created, all allocations will take
433 * place in the new handle scope until it is deleted. After that,
434 * new handles will again be allocated in the original handle scope.
435 *
436 * After the handle scope of a local handle has been deleted the
437 * garbage collector will no longer track the object stored in the
438 * handle and may deallocate it. The behavior of accessing a handle
439 * for which the handle scope has been deleted is undefined.
440 */
441class V8EXPORT HandleScope {
442 public:
443 HandleScope();
444
445 ~HandleScope();
446
447 /**
448 * Closes the handle scope and returns the value as a handle in the
449 * previous scope, which is the new current scope after the call.
450 */
451 template <class T> Local<T> Close(Handle<T> value);
452
453 /**
454 * Counts the number of allocated handles.
455 */
456 static int NumberOfHandles();
457
458 /**
459 * Creates a new handle with the given value.
460 */
461 static internal::Object** CreateHandle(internal::Object* value);
462
463 private:
464 // Make it impossible to create heap-allocated or illegal handle
465 // scopes by disallowing certain operations.
466 HandleScope(const HandleScope&);
467 void operator=(const HandleScope&);
468 void* operator new(size_t size);
469 void operator delete(void*, size_t);
470
Steve Blockd0582a62009-12-15 09:54:21 +0000471 // This Data class is accessible internally as HandleScopeData through a
472 // typedef in the ImplementationUtilities class.
Steve Blocka7e24c12009-10-30 11:49:00 +0000473 class V8EXPORT Data {
474 public:
475 int extensions;
476 internal::Object** next;
477 internal::Object** limit;
478 inline void Initialize() {
479 extensions = -1;
480 next = limit = NULL;
481 }
482 };
483
484 Data previous_;
485
486 // Allow for the active closing of HandleScopes which allows to pass a handle
487 // from the HandleScope being closed to the next top most HandleScope.
488 bool is_closed_;
489 internal::Object** RawClose(internal::Object** value);
490
491 friend class ImplementationUtilities;
492};
493
494
495// --- S p e c i a l o b j e c t s ---
496
497
498/**
499 * The superclass of values and API object templates.
500 */
501class V8EXPORT Data {
502 private:
503 Data();
504};
505
506
507/**
508 * Pre-compilation data that can be associated with a script. This
509 * data can be calculated for a script in advance of actually
510 * compiling it, and can be stored between compilations. When script
511 * data is given to the compile method compilation will be faster.
512 */
513class V8EXPORT ScriptData { // NOLINT
514 public:
515 virtual ~ScriptData() { }
Leon Clarkef7060e22010-06-03 12:02:55 +0100516 /**
517 * Pre-compiles the specified script (context-independent).
518 *
519 * \param input Pointer to UTF-8 script source code.
520 * \param length Length of UTF-8 script source code.
521 */
Steve Blocka7e24c12009-10-30 11:49:00 +0000522 static ScriptData* PreCompile(const char* input, int length);
Steve Blocka7e24c12009-10-30 11:49:00 +0000523
Leon Clarkef7060e22010-06-03 12:02:55 +0100524 /**
525 * Load previous pre-compilation data.
526 *
527 * \param data Pointer to data returned by a call to Data() of a previous
528 * ScriptData. Ownership is not transferred.
529 * \param length Length of data.
530 */
531 static ScriptData* New(const char* data, int length);
532
533 /**
534 * Returns the length of Data().
535 */
Steve Blocka7e24c12009-10-30 11:49:00 +0000536 virtual int Length() = 0;
Leon Clarkef7060e22010-06-03 12:02:55 +0100537
538 /**
539 * Returns a serialized representation of this ScriptData that can later be
540 * passed to New(). NOTE: Serialized data is platform-dependent.
541 */
542 virtual const char* Data() = 0;
543
544 /**
545 * Returns true if the source code could not be parsed.
546 */
Leon Clarkee46be812010-01-19 14:06:41 +0000547 virtual bool HasError() = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000548};
549
550
551/**
552 * The origin, within a file, of a script.
553 */
554class V8EXPORT ScriptOrigin {
555 public:
556 ScriptOrigin(Handle<Value> resource_name,
557 Handle<Integer> resource_line_offset = Handle<Integer>(),
558 Handle<Integer> resource_column_offset = Handle<Integer>())
559 : resource_name_(resource_name),
560 resource_line_offset_(resource_line_offset),
561 resource_column_offset_(resource_column_offset) { }
562 inline Handle<Value> ResourceName() const;
563 inline Handle<Integer> ResourceLineOffset() const;
564 inline Handle<Integer> ResourceColumnOffset() const;
565 private:
566 Handle<Value> resource_name_;
567 Handle<Integer> resource_line_offset_;
568 Handle<Integer> resource_column_offset_;
569};
570
571
572/**
573 * A compiled JavaScript script.
574 */
575class V8EXPORT Script {
576 public:
577
Steve Blocka7e24c12009-10-30 11:49:00 +0000578 /**
Andrei Popescu402d9372010-02-26 13:31:12 +0000579 * Compiles the specified script (context-independent).
Steve Blocka7e24c12009-10-30 11:49:00 +0000580 *
Andrei Popescu402d9372010-02-26 13:31:12 +0000581 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100582 * \param origin Script origin, owned by caller, no references are kept
Andrei Popescu402d9372010-02-26 13:31:12 +0000583 * when New() returns
584 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
585 * using pre_data speeds compilation if it's done multiple times.
586 * Owned by caller, no references are kept when New() returns.
587 * \param script_data Arbitrary data associated with script. Using
Steve Block6ded16b2010-05-10 14:33:55 +0100588 * this has same effect as calling SetData(), but allows data to be
Andrei Popescu402d9372010-02-26 13:31:12 +0000589 * available to compile event handlers.
590 * \return Compiled script object (context independent; when run it
591 * will use the currently entered context).
Steve Blocka7e24c12009-10-30 11:49:00 +0000592 */
Andrei Popescu402d9372010-02-26 13:31:12 +0000593 static Local<Script> New(Handle<String> source,
594 ScriptOrigin* origin = NULL,
595 ScriptData* pre_data = NULL,
596 Handle<String> script_data = Handle<String>());
Steve Blocka7e24c12009-10-30 11:49:00 +0000597
598 /**
599 * Compiles the specified script using the specified file name
600 * object (typically a string) as the script's origin.
601 *
Andrei Popescu402d9372010-02-26 13:31:12 +0000602 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100603 * \param file_name file name object (typically a string) to be used
Andrei Popescu402d9372010-02-26 13:31:12 +0000604 * as the script's origin.
605 * \return Compiled script object (context independent; when run it
606 * will use the currently entered context).
607 */
608 static Local<Script> New(Handle<String> source,
609 Handle<Value> file_name);
610
611 /**
612 * Compiles the specified script (bound to current context).
613 *
614 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100615 * \param origin Script origin, owned by caller, no references are kept
Andrei Popescu402d9372010-02-26 13:31:12 +0000616 * when Compile() returns
617 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
618 * using pre_data speeds compilation if it's done multiple times.
619 * Owned by caller, no references are kept when Compile() returns.
620 * \param script_data Arbitrary data associated with script. Using
621 * this has same effect as calling SetData(), but makes data available
622 * earlier (i.e. to compile event handlers).
623 * \return Compiled script object, bound to the context that was active
624 * when this function was called. When run it will always use this
625 * context.
Steve Blocka7e24c12009-10-30 11:49:00 +0000626 */
627 static Local<Script> Compile(Handle<String> source,
Andrei Popescu402d9372010-02-26 13:31:12 +0000628 ScriptOrigin* origin = NULL,
629 ScriptData* pre_data = NULL,
630 Handle<String> script_data = Handle<String>());
631
632 /**
633 * Compiles the specified script using the specified file name
634 * object (typically a string) as the script's origin.
635 *
636 * \param source Script source code.
637 * \param file_name File name to use as script's origin
638 * \param script_data Arbitrary data associated with script. Using
639 * this has same effect as calling SetData(), but makes data available
640 * earlier (i.e. to compile event handlers).
641 * \return Compiled script object, bound to the context that was active
642 * when this function was called. When run it will always use this
643 * context.
644 */
645 static Local<Script> Compile(Handle<String> source,
646 Handle<Value> file_name,
647 Handle<String> script_data = Handle<String>());
Steve Blocka7e24c12009-10-30 11:49:00 +0000648
649 /**
650 * Runs the script returning the resulting value. If the script is
651 * context independent (created using ::New) it will be run in the
652 * currently entered context. If it is context specific (created
653 * using ::Compile) it will be run in the context in which it was
654 * compiled.
655 */
656 Local<Value> Run();
657
658 /**
659 * Returns the script id value.
660 */
661 Local<Value> Id();
662
663 /**
664 * Associate an additional data object with the script. This is mainly used
665 * with the debugger as this data object is only available through the
666 * debugger API.
667 */
Steve Blockd0582a62009-12-15 09:54:21 +0000668 void SetData(Handle<String> data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000669};
670
671
672/**
673 * An error message.
674 */
675class V8EXPORT Message {
676 public:
677 Local<String> Get() const;
678 Local<String> GetSourceLine() const;
679
680 /**
681 * Returns the resource name for the script from where the function causing
682 * the error originates.
683 */
684 Handle<Value> GetScriptResourceName() const;
685
686 /**
687 * Returns the resource data for the script from where the function causing
688 * the error originates.
689 */
690 Handle<Value> GetScriptData() const;
691
692 /**
693 * Returns the number, 1-based, of the line where the error occurred.
694 */
695 int GetLineNumber() const;
696
697 /**
698 * Returns the index within the script of the first character where
699 * the error occurred.
700 */
701 int GetStartPosition() const;
702
703 /**
704 * Returns the index within the script of the last character where
705 * the error occurred.
706 */
707 int GetEndPosition() const;
708
709 /**
710 * Returns the index within the line of the first character where
711 * the error occurred.
712 */
713 int GetStartColumn() const;
714
715 /**
716 * Returns the index within the line of the last character where
717 * the error occurred.
718 */
719 int GetEndColumn() const;
720
721 // TODO(1245381): Print to a string instead of on a FILE.
722 static void PrintCurrentStackTrace(FILE* out);
Kristian Monsen25f61362010-05-21 11:50:48 +0100723
724 static const int kNoLineNumberInfo = 0;
725 static const int kNoColumnInfo = 0;
726};
727
728
729/**
730 * Representation of a JavaScript stack trace. The information collected is a
731 * snapshot of the execution stack and the information remains valid after
732 * execution continues.
733 */
734class V8EXPORT StackTrace {
735 public:
736 /**
737 * Flags that determine what information is placed captured for each
738 * StackFrame when grabbing the current stack trace.
739 */
740 enum StackTraceOptions {
741 kLineNumber = 1,
742 kColumnOffset = 1 << 1 | kLineNumber,
743 kScriptName = 1 << 2,
744 kFunctionName = 1 << 3,
745 kIsEval = 1 << 4,
746 kIsConstructor = 1 << 5,
747 kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
748 kDetailed = kOverview | kIsEval | kIsConstructor
749 };
750
751 /**
752 * Returns a StackFrame at a particular index.
753 */
754 Local<StackFrame> GetFrame(uint32_t index) const;
755
756 /**
757 * Returns the number of StackFrames.
758 */
759 int GetFrameCount() const;
760
761 /**
762 * Returns StackTrace as a v8::Array that contains StackFrame objects.
763 */
764 Local<Array> AsArray();
765
766 /**
767 * Grab a snapshot of the the current JavaScript execution stack.
768 *
769 * \param frame_limit The maximum number of stack frames we want to capture.
770 * \param options Enumerates the set of things we will capture for each
771 * StackFrame.
772 */
773 static Local<StackTrace> CurrentStackTrace(
774 int frame_limit,
775 StackTraceOptions options = kOverview);
776};
777
778
779/**
780 * A single JavaScript stack frame.
781 */
782class V8EXPORT StackFrame {
783 public:
784 /**
785 * Returns the number, 1-based, of the line for the associate function call.
786 * This method will return Message::kNoLineNumberInfo if it is unable to
787 * retrieve the line number, or if kLineNumber was not passed as an option
788 * when capturing the StackTrace.
789 */
790 int GetLineNumber() const;
791
792 /**
793 * Returns the 1-based column offset on the line for the associated function
794 * call.
795 * This method will return Message::kNoColumnInfo if it is unable to retrieve
796 * the column number, or if kColumnOffset was not passed as an option when
797 * capturing the StackTrace.
798 */
799 int GetColumn() const;
800
801 /**
802 * Returns the name of the resource that contains the script for the
803 * function for this StackFrame.
804 */
805 Local<String> GetScriptName() const;
806
807 /**
808 * Returns the name of the function associated with this stack frame.
809 */
810 Local<String> GetFunctionName() const;
811
812 /**
813 * Returns whether or not the associated function is compiled via a call to
814 * eval().
815 */
816 bool IsEval() const;
817
818 /**
819 * Returns whther or not the associated function is called as a
820 * constructor via "new".
821 */
822 bool IsConstructor() const;
Steve Blocka7e24c12009-10-30 11:49:00 +0000823};
824
825
826// --- V a l u e ---
827
828
829/**
830 * The superclass of all JavaScript values and objects.
831 */
832class V8EXPORT Value : public Data {
833 public:
834
835 /**
836 * Returns true if this value is the undefined value. See ECMA-262
837 * 4.3.10.
838 */
839 bool IsUndefined() const;
840
841 /**
842 * Returns true if this value is the null value. See ECMA-262
843 * 4.3.11.
844 */
845 bool IsNull() const;
846
847 /**
848 * Returns true if this value is true.
849 */
850 bool IsTrue() const;
851
852 /**
853 * Returns true if this value is false.
854 */
855 bool IsFalse() const;
856
857 /**
858 * Returns true if this value is an instance of the String type.
859 * See ECMA-262 8.4.
860 */
861 inline bool IsString() const;
862
863 /**
864 * Returns true if this value is a function.
865 */
866 bool IsFunction() const;
867
868 /**
869 * Returns true if this value is an array.
870 */
871 bool IsArray() const;
872
873 /**
874 * Returns true if this value is an object.
875 */
876 bool IsObject() const;
877
878 /**
879 * Returns true if this value is boolean.
880 */
881 bool IsBoolean() const;
882
883 /**
884 * Returns true if this value is a number.
885 */
886 bool IsNumber() const;
887
888 /**
889 * Returns true if this value is external.
890 */
891 bool IsExternal() const;
892
893 /**
894 * Returns true if this value is a 32-bit signed integer.
895 */
896 bool IsInt32() const;
897
898 /**
Steve Block6ded16b2010-05-10 14:33:55 +0100899 * Returns true if this value is a 32-bit unsigned integer.
900 */
901 bool IsUint32() const;
902
903 /**
Steve Blocka7e24c12009-10-30 11:49:00 +0000904 * Returns true if this value is a Date.
905 */
906 bool IsDate() const;
907
908 Local<Boolean> ToBoolean() const;
909 Local<Number> ToNumber() const;
910 Local<String> ToString() const;
911 Local<String> ToDetailString() const;
912 Local<Object> ToObject() const;
913 Local<Integer> ToInteger() const;
914 Local<Uint32> ToUint32() const;
915 Local<Int32> ToInt32() const;
916
917 /**
918 * Attempts to convert a string to an array index.
919 * Returns an empty handle if the conversion fails.
920 */
921 Local<Uint32> ToArrayIndex() const;
922
923 bool BooleanValue() const;
924 double NumberValue() const;
925 int64_t IntegerValue() const;
926 uint32_t Uint32Value() const;
927 int32_t Int32Value() const;
928
929 /** JS == */
930 bool Equals(Handle<Value> that) const;
931 bool StrictEquals(Handle<Value> that) const;
Steve Block3ce2e202009-11-05 08:53:23 +0000932
Steve Blocka7e24c12009-10-30 11:49:00 +0000933 private:
934 inline bool QuickIsString() const;
935 bool FullIsString() const;
936};
937
938
939/**
940 * The superclass of primitive values. See ECMA-262 4.3.2.
941 */
942class V8EXPORT Primitive : public Value { };
943
944
945/**
946 * A primitive boolean value (ECMA-262, 4.3.14). Either the true
947 * or false value.
948 */
949class V8EXPORT Boolean : public Primitive {
950 public:
951 bool Value() const;
952 static inline Handle<Boolean> New(bool value);
953};
954
955
956/**
957 * A JavaScript string value (ECMA-262, 4.3.17).
958 */
959class V8EXPORT String : public Primitive {
960 public:
961
962 /**
963 * Returns the number of characters in this string.
964 */
965 int Length() const;
966
967 /**
968 * Returns the number of bytes in the UTF-8 encoded
969 * representation of this string.
970 */
971 int Utf8Length() const;
972
973 /**
974 * Write the contents of the string to an external buffer.
975 * If no arguments are given, expects the buffer to be large
976 * enough to hold the entire string and NULL terminator. Copies
977 * the contents of the string and the NULL terminator into the
978 * buffer.
979 *
980 * Copies up to length characters into the output buffer.
981 * Only null-terminates if there is enough space in the buffer.
982 *
983 * \param buffer The buffer into which the string will be copied.
984 * \param start The starting position within the string at which
985 * copying begins.
986 * \param length The number of bytes to copy from the string.
Steve Block6ded16b2010-05-10 14:33:55 +0100987 * \param nchars_ref The number of characters written, can be NULL.
988 * \param hints Various hints that might affect performance of this or
989 * subsequent operations.
990 * \return The number of bytes copied to the buffer
Steve Blocka7e24c12009-10-30 11:49:00 +0000991 * excluding the NULL terminator.
992 */
Steve Block6ded16b2010-05-10 14:33:55 +0100993 enum WriteHints {
994 NO_HINTS = 0,
995 HINT_MANY_WRITES_EXPECTED = 1
996 };
997
998 int Write(uint16_t* buffer,
999 int start = 0,
1000 int length = -1,
1001 WriteHints hints = NO_HINTS) const; // UTF-16
1002 int WriteAscii(char* buffer,
1003 int start = 0,
1004 int length = -1,
1005 WriteHints hints = NO_HINTS) const; // ASCII
1006 int WriteUtf8(char* buffer,
1007 int length = -1,
1008 int* nchars_ref = NULL,
1009 WriteHints hints = NO_HINTS) const; // UTF-8
Steve Blocka7e24c12009-10-30 11:49:00 +00001010
1011 /**
1012 * A zero length string.
1013 */
1014 static v8::Local<v8::String> Empty();
1015
1016 /**
1017 * Returns true if the string is external
1018 */
1019 bool IsExternal() const;
1020
1021 /**
1022 * Returns true if the string is both external and ascii
1023 */
1024 bool IsExternalAscii() const;
Leon Clarkee46be812010-01-19 14:06:41 +00001025
1026 class V8EXPORT ExternalStringResourceBase {
1027 public:
1028 virtual ~ExternalStringResourceBase() {}
1029 protected:
1030 ExternalStringResourceBase() {}
1031 private:
1032 // Disallow copying and assigning.
1033 ExternalStringResourceBase(const ExternalStringResourceBase&);
1034 void operator=(const ExternalStringResourceBase&);
1035 };
1036
Steve Blocka7e24c12009-10-30 11:49:00 +00001037 /**
1038 * An ExternalStringResource is a wrapper around a two-byte string
1039 * buffer that resides outside V8's heap. Implement an
1040 * ExternalStringResource to manage the life cycle of the underlying
1041 * buffer. Note that the string data must be immutable.
1042 */
Leon Clarkee46be812010-01-19 14:06:41 +00001043 class V8EXPORT ExternalStringResource
1044 : public ExternalStringResourceBase {
Steve Blocka7e24c12009-10-30 11:49:00 +00001045 public:
1046 /**
1047 * Override the destructor to manage the life cycle of the underlying
1048 * buffer.
1049 */
1050 virtual ~ExternalStringResource() {}
1051 /** The string data from the underlying buffer.*/
1052 virtual const uint16_t* data() const = 0;
1053 /** The length of the string. That is, the number of two-byte characters.*/
1054 virtual size_t length() const = 0;
1055 protected:
1056 ExternalStringResource() {}
Steve Blocka7e24c12009-10-30 11:49:00 +00001057 };
1058
1059 /**
1060 * An ExternalAsciiStringResource is a wrapper around an ascii
1061 * string buffer that resides outside V8's heap. Implement an
1062 * ExternalAsciiStringResource to manage the life cycle of the
1063 * underlying buffer. Note that the string data must be immutable
1064 * and that the data must be strict 7-bit ASCII, not Latin1 or
1065 * UTF-8, which would require special treatment internally in the
1066 * engine and, in the case of UTF-8, do not allow efficient indexing.
1067 * Use String::New or convert to 16 bit data for non-ASCII.
1068 */
1069
Leon Clarkee46be812010-01-19 14:06:41 +00001070 class V8EXPORT ExternalAsciiStringResource
1071 : public ExternalStringResourceBase {
Steve Blocka7e24c12009-10-30 11:49:00 +00001072 public:
1073 /**
1074 * Override the destructor to manage the life cycle of the underlying
1075 * buffer.
1076 */
1077 virtual ~ExternalAsciiStringResource() {}
1078 /** The string data from the underlying buffer.*/
1079 virtual const char* data() const = 0;
1080 /** The number of ascii characters in the string.*/
1081 virtual size_t length() const = 0;
1082 protected:
1083 ExternalAsciiStringResource() {}
Steve Blocka7e24c12009-10-30 11:49:00 +00001084 };
1085
1086 /**
1087 * Get the ExternalStringResource for an external string. Returns
1088 * NULL if IsExternal() doesn't return true.
1089 */
1090 inline ExternalStringResource* GetExternalStringResource() const;
1091
1092 /**
1093 * Get the ExternalAsciiStringResource for an external ascii string.
1094 * Returns NULL if IsExternalAscii() doesn't return true.
1095 */
1096 ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1097
1098 static inline String* Cast(v8::Value* obj);
1099
1100 /**
1101 * Allocates a new string from either utf-8 encoded or ascii data.
1102 * The second parameter 'length' gives the buffer length.
1103 * If the data is utf-8 encoded, the caller must
1104 * be careful to supply the length parameter.
1105 * If it is not given, the function calls
1106 * 'strlen' to determine the buffer length, it might be
1107 * wrong if 'data' contains a null character.
1108 */
1109 static Local<String> New(const char* data, int length = -1);
1110
1111 /** Allocates a new string from utf16 data.*/
1112 static Local<String> New(const uint16_t* data, int length = -1);
1113
1114 /** Creates a symbol. Returns one if it exists already.*/
1115 static Local<String> NewSymbol(const char* data, int length = -1);
1116
1117 /**
Steve Block3ce2e202009-11-05 08:53:23 +00001118 * Creates a new string by concatenating the left and the right strings
1119 * passed in as parameters.
1120 */
1121 static Local<String> Concat(Handle<String> left, Handle<String>right);
1122
1123 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00001124 * Creates a new external string using the data defined in the given
1125 * resource. The resource is deleted when the external string is no
1126 * longer live on V8's heap. The caller of this function should not
1127 * delete or modify the resource. Neither should the underlying buffer be
1128 * deallocated or modified except through the destructor of the
1129 * external string resource.
1130 */
1131 static Local<String> NewExternal(ExternalStringResource* resource);
1132
1133 /**
1134 * Associate an external string resource with this string by transforming it
1135 * in place so that existing references to this string in the JavaScript heap
1136 * will use the external string resource. The external string resource's
1137 * character contents needs to be equivalent to this string.
1138 * Returns true if the string has been changed to be an external string.
1139 * The string is not modified if the operation fails.
1140 */
1141 bool MakeExternal(ExternalStringResource* resource);
1142
1143 /**
1144 * Creates a new external string using the ascii data defined in the given
1145 * resource. The resource is deleted when the external string is no
1146 * longer live on V8's heap. The caller of this function should not
1147 * delete or modify the resource. Neither should the underlying buffer be
1148 * deallocated or modified except through the destructor of the
1149 * external string resource.
1150 */
1151 static Local<String> NewExternal(ExternalAsciiStringResource* resource);
1152
1153 /**
1154 * Associate an external string resource with this string by transforming it
1155 * in place so that existing references to this string in the JavaScript heap
1156 * will use the external string resource. The external string resource's
1157 * character contents needs to be equivalent to this string.
1158 * Returns true if the string has been changed to be an external string.
1159 * The string is not modified if the operation fails.
1160 */
1161 bool MakeExternal(ExternalAsciiStringResource* resource);
1162
1163 /**
1164 * Returns true if this string can be made external.
1165 */
1166 bool CanMakeExternal();
1167
1168 /** Creates an undetectable string from the supplied ascii or utf-8 data.*/
1169 static Local<String> NewUndetectable(const char* data, int length = -1);
1170
1171 /** Creates an undetectable string from the supplied utf-16 data.*/
1172 static Local<String> NewUndetectable(const uint16_t* data, int length = -1);
1173
1174 /**
1175 * Converts an object to a utf8-encoded character array. Useful if
1176 * you want to print the object. If conversion to a string fails
1177 * (eg. due to an exception in the toString() method of the object)
1178 * then the length() method returns 0 and the * operator returns
1179 * NULL.
1180 */
1181 class V8EXPORT Utf8Value {
1182 public:
1183 explicit Utf8Value(Handle<v8::Value> obj);
1184 ~Utf8Value();
1185 char* operator*() { return str_; }
1186 const char* operator*() const { return str_; }
1187 int length() const { return length_; }
1188 private:
1189 char* str_;
1190 int length_;
1191
1192 // Disallow copying and assigning.
1193 Utf8Value(const Utf8Value&);
1194 void operator=(const Utf8Value&);
1195 };
1196
1197 /**
1198 * Converts an object to an ascii string.
1199 * Useful if you want to print the object.
1200 * If conversion to a string fails (eg. due to an exception in the toString()
1201 * method of the object) then the length() method returns 0 and the * operator
1202 * returns NULL.
1203 */
1204 class V8EXPORT AsciiValue {
1205 public:
1206 explicit AsciiValue(Handle<v8::Value> obj);
1207 ~AsciiValue();
1208 char* operator*() { return str_; }
1209 const char* operator*() const { return str_; }
1210 int length() const { return length_; }
1211 private:
1212 char* str_;
1213 int length_;
1214
1215 // Disallow copying and assigning.
1216 AsciiValue(const AsciiValue&);
1217 void operator=(const AsciiValue&);
1218 };
1219
1220 /**
1221 * Converts an object to a two-byte string.
1222 * If conversion to a string fails (eg. due to an exception in the toString()
1223 * method of the object) then the length() method returns 0 and the * operator
1224 * returns NULL.
1225 */
1226 class V8EXPORT Value {
1227 public:
1228 explicit Value(Handle<v8::Value> obj);
1229 ~Value();
1230 uint16_t* operator*() { return str_; }
1231 const uint16_t* operator*() const { return str_; }
1232 int length() const { return length_; }
1233 private:
1234 uint16_t* str_;
1235 int length_;
1236
1237 // Disallow copying and assigning.
1238 Value(const Value&);
1239 void operator=(const Value&);
1240 };
Steve Block3ce2e202009-11-05 08:53:23 +00001241
Steve Blocka7e24c12009-10-30 11:49:00 +00001242 private:
1243 void VerifyExternalStringResource(ExternalStringResource* val) const;
1244 static void CheckCast(v8::Value* obj);
1245};
1246
1247
1248/**
1249 * A JavaScript number value (ECMA-262, 4.3.20)
1250 */
1251class V8EXPORT Number : public Primitive {
1252 public:
1253 double Value() const;
1254 static Local<Number> New(double value);
1255 static inline Number* Cast(v8::Value* obj);
1256 private:
1257 Number();
1258 static void CheckCast(v8::Value* obj);
1259};
1260
1261
1262/**
1263 * A JavaScript value representing a signed integer.
1264 */
1265class V8EXPORT Integer : public Number {
1266 public:
1267 static Local<Integer> New(int32_t value);
Steve Block3ce2e202009-11-05 08:53:23 +00001268 static Local<Integer> NewFromUnsigned(uint32_t value);
Steve Blocka7e24c12009-10-30 11:49:00 +00001269 int64_t Value() const;
1270 static inline Integer* Cast(v8::Value* obj);
1271 private:
1272 Integer();
1273 static void CheckCast(v8::Value* obj);
1274};
1275
1276
1277/**
1278 * A JavaScript value representing a 32-bit signed integer.
1279 */
1280class V8EXPORT Int32 : public Integer {
1281 public:
1282 int32_t Value() const;
1283 private:
1284 Int32();
1285};
1286
1287
1288/**
1289 * A JavaScript value representing a 32-bit unsigned integer.
1290 */
1291class V8EXPORT Uint32 : public Integer {
1292 public:
1293 uint32_t Value() const;
1294 private:
1295 Uint32();
1296};
1297
1298
1299/**
1300 * An instance of the built-in Date constructor (ECMA-262, 15.9).
1301 */
1302class V8EXPORT Date : public Value {
1303 public:
1304 static Local<Value> New(double time);
1305
1306 /**
1307 * A specialization of Value::NumberValue that is more efficient
1308 * because we know the structure of this object.
1309 */
1310 double NumberValue() const;
1311
1312 static inline Date* Cast(v8::Value* obj);
1313 private:
1314 static void CheckCast(v8::Value* obj);
1315};
1316
1317
1318enum PropertyAttribute {
1319 None = 0,
1320 ReadOnly = 1 << 0,
1321 DontEnum = 1 << 1,
1322 DontDelete = 1 << 2
1323};
1324
Steve Block3ce2e202009-11-05 08:53:23 +00001325enum ExternalArrayType {
1326 kExternalByteArray = 1,
1327 kExternalUnsignedByteArray,
1328 kExternalShortArray,
1329 kExternalUnsignedShortArray,
1330 kExternalIntArray,
1331 kExternalUnsignedIntArray,
1332 kExternalFloatArray
1333};
1334
Steve Blocka7e24c12009-10-30 11:49:00 +00001335/**
Leon Clarkef7060e22010-06-03 12:02:55 +01001336 * Accessor[Getter|Setter] are used as callback functions when
1337 * setting|getting a particular property. See Object and ObjectTemplate's
1338 * method SetAccessor.
1339 */
1340typedef Handle<Value> (*AccessorGetter)(Local<String> property,
1341 const AccessorInfo& info);
1342
1343
1344typedef void (*AccessorSetter)(Local<String> property,
1345 Local<Value> value,
1346 const AccessorInfo& info);
1347
1348
1349/**
1350 * Access control specifications.
1351 *
1352 * Some accessors should be accessible across contexts. These
1353 * accessors have an explicit access control parameter which specifies
1354 * the kind of cross-context access that should be allowed.
1355 *
1356 * Additionally, for security, accessors can prohibit overwriting by
1357 * accessors defined in JavaScript. For objects that have such
1358 * accessors either locally or in their prototype chain it is not
1359 * possible to overwrite the accessor by using __defineGetter__ or
1360 * __defineSetter__ from JavaScript code.
1361 */
1362enum AccessControl {
1363 DEFAULT = 0,
1364 ALL_CAN_READ = 1,
1365 ALL_CAN_WRITE = 1 << 1,
1366 PROHIBITS_OVERWRITING = 1 << 2
1367};
1368
1369
1370/**
Steve Blocka7e24c12009-10-30 11:49:00 +00001371 * A JavaScript object (ECMA-262, 4.3.3)
1372 */
1373class V8EXPORT Object : public Value {
1374 public:
1375 bool Set(Handle<Value> key,
1376 Handle<Value> value,
1377 PropertyAttribute attribs = None);
1378
Steve Block6ded16b2010-05-10 14:33:55 +01001379 bool Set(uint32_t index,
1380 Handle<Value> value);
1381
Steve Blocka7e24c12009-10-30 11:49:00 +00001382 // Sets a local property on this object bypassing interceptors and
1383 // overriding accessors or read-only properties.
1384 //
1385 // Note that if the object has an interceptor the property will be set
1386 // locally, but since the interceptor takes precedence the local property
1387 // will only be returned if the interceptor doesn't return a value.
1388 //
1389 // Note also that this only works for named properties.
1390 bool ForceSet(Handle<Value> key,
1391 Handle<Value> value,
1392 PropertyAttribute attribs = None);
1393
1394 Local<Value> Get(Handle<Value> key);
1395
Steve Block6ded16b2010-05-10 14:33:55 +01001396 Local<Value> Get(uint32_t index);
1397
Steve Blocka7e24c12009-10-30 11:49:00 +00001398 // TODO(1245389): Replace the type-specific versions of these
1399 // functions with generic ones that accept a Handle<Value> key.
1400 bool Has(Handle<String> key);
1401
1402 bool Delete(Handle<String> key);
1403
1404 // Delete a property on this object bypassing interceptors and
1405 // ignoring dont-delete attributes.
1406 bool ForceDelete(Handle<Value> key);
1407
1408 bool Has(uint32_t index);
1409
1410 bool Delete(uint32_t index);
1411
Leon Clarkef7060e22010-06-03 12:02:55 +01001412 bool SetAccessor(Handle<String> name,
1413 AccessorGetter getter,
1414 AccessorSetter setter = 0,
1415 Handle<Value> data = Handle<Value>(),
1416 AccessControl settings = DEFAULT,
1417 PropertyAttribute attribute = None);
1418
Steve Blocka7e24c12009-10-30 11:49:00 +00001419 /**
1420 * Returns an array containing the names of the enumerable properties
1421 * of this object, including properties from prototype objects. The
1422 * array returned by this method contains the same values as would
1423 * be enumerated by a for-in statement over this object.
1424 */
1425 Local<Array> GetPropertyNames();
1426
1427 /**
1428 * Get the prototype object. This does not skip objects marked to
1429 * be skipped by __proto__ and it does not consult the security
1430 * handler.
1431 */
1432 Local<Value> GetPrototype();
1433
1434 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00001435 * Set the prototype object. This does not skip objects marked to
1436 * be skipped by __proto__ and it does not consult the security
1437 * handler.
1438 */
1439 bool SetPrototype(Handle<Value> prototype);
1440
1441 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00001442 * Finds an instance of the given function template in the prototype
1443 * chain.
1444 */
1445 Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
1446
1447 /**
1448 * Call builtin Object.prototype.toString on this object.
1449 * This is different from Value::ToString() that may call
1450 * user-defined toString function. This one does not.
1451 */
1452 Local<String> ObjectProtoToString();
1453
1454 /** Gets the number of internal fields for this Object. */
1455 int InternalFieldCount();
1456 /** Gets the value in an internal field. */
1457 inline Local<Value> GetInternalField(int index);
1458 /** Sets the value in an internal field. */
1459 void SetInternalField(int index, Handle<Value> value);
1460
1461 /** Gets a native pointer from an internal field. */
1462 inline void* GetPointerFromInternalField(int index);
Steve Block3ce2e202009-11-05 08:53:23 +00001463
Steve Blocka7e24c12009-10-30 11:49:00 +00001464 /** Sets a native pointer in an internal field. */
1465 void SetPointerInInternalField(int index, void* value);
1466
1467 // Testers for local properties.
1468 bool HasRealNamedProperty(Handle<String> key);
1469 bool HasRealIndexedProperty(uint32_t index);
1470 bool HasRealNamedCallbackProperty(Handle<String> key);
1471
1472 /**
1473 * If result.IsEmpty() no real property was located in the prototype chain.
1474 * This means interceptors in the prototype chain are not called.
1475 */
1476 Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
1477
1478 /**
1479 * If result.IsEmpty() no real property was located on the object or
1480 * in the prototype chain.
1481 * This means interceptors in the prototype chain are not called.
1482 */
1483 Local<Value> GetRealNamedProperty(Handle<String> key);
1484
1485 /** Tests for a named lookup interceptor.*/
1486 bool HasNamedLookupInterceptor();
1487
1488 /** Tests for an index lookup interceptor.*/
1489 bool HasIndexedLookupInterceptor();
1490
1491 /**
1492 * Turns on access check on the object if the object is an instance of
1493 * a template that has access check callbacks. If an object has no
1494 * access check info, the object cannot be accessed by anyone.
1495 */
1496 void TurnOnAccessCheck();
1497
1498 /**
1499 * Returns the identity hash for this object. The current implemenation uses
1500 * a hidden property on the object to store the identity hash.
1501 *
1502 * The return value will never be 0. Also, it is not guaranteed to be
1503 * unique.
1504 */
1505 int GetIdentityHash();
1506
1507 /**
1508 * Access hidden properties on JavaScript objects. These properties are
1509 * hidden from the executing JavaScript and only accessible through the V8
1510 * C++ API. Hidden properties introduced by V8 internally (for example the
1511 * identity hash) are prefixed with "v8::".
1512 */
1513 bool SetHiddenValue(Handle<String> key, Handle<Value> value);
1514 Local<Value> GetHiddenValue(Handle<String> key);
1515 bool DeleteHiddenValue(Handle<String> key);
Steve Block3ce2e202009-11-05 08:53:23 +00001516
Steve Blocka7e24c12009-10-30 11:49:00 +00001517 /**
1518 * Returns true if this is an instance of an api function (one
1519 * created from a function created from a function template) and has
1520 * been modified since it was created. Note that this method is
1521 * conservative and may return true for objects that haven't actually
1522 * been modified.
1523 */
1524 bool IsDirty();
1525
1526 /**
1527 * Clone this object with a fast but shallow copy. Values will point
1528 * to the same values as the original object.
1529 */
1530 Local<Object> Clone();
1531
1532 /**
1533 * Set the backing store of the indexed properties to be managed by the
1534 * embedding layer. Access to the indexed properties will follow the rules
1535 * spelled out in CanvasPixelArray.
1536 * Note: The embedding program still owns the data and needs to ensure that
1537 * the backing store is preserved while V8 has a reference.
1538 */
1539 void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
1540
Steve Block3ce2e202009-11-05 08:53:23 +00001541 /**
1542 * Set the backing store of the indexed properties to be managed by the
1543 * embedding layer. Access to the indexed properties will follow the rules
1544 * spelled out for the CanvasArray subtypes in the WebGL specification.
1545 * Note: The embedding program still owns the data and needs to ensure that
1546 * the backing store is preserved while V8 has a reference.
1547 */
1548 void SetIndexedPropertiesToExternalArrayData(void* data,
1549 ExternalArrayType array_type,
1550 int number_of_elements);
1551
Steve Blocka7e24c12009-10-30 11:49:00 +00001552 static Local<Object> New();
1553 static inline Object* Cast(Value* obj);
1554 private:
1555 Object();
1556 static void CheckCast(Value* obj);
1557 Local<Value> CheckedGetInternalField(int index);
Steve Block3ce2e202009-11-05 08:53:23 +00001558 void* SlowGetPointerFromInternalField(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001559
1560 /**
1561 * If quick access to the internal field is possible this method
Steve Block3ce2e202009-11-05 08:53:23 +00001562 * returns the value. Otherwise an empty handle is returned.
Steve Blocka7e24c12009-10-30 11:49:00 +00001563 */
1564 inline Local<Value> UncheckedGetInternalField(int index);
1565};
1566
1567
1568/**
1569 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
1570 */
1571class V8EXPORT Array : public Object {
1572 public:
1573 uint32_t Length() const;
1574
1575 /**
1576 * Clones an element at index |index|. Returns an empty
1577 * handle if cloning fails (for any reason).
1578 */
1579 Local<Object> CloneElementAt(uint32_t index);
1580
1581 static Local<Array> New(int length = 0);
1582 static inline Array* Cast(Value* obj);
1583 private:
1584 Array();
1585 static void CheckCast(Value* obj);
1586};
1587
1588
1589/**
1590 * A JavaScript function object (ECMA-262, 15.3).
1591 */
1592class V8EXPORT Function : public Object {
1593 public:
1594 Local<Object> NewInstance() const;
1595 Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
1596 Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]);
1597 void SetName(Handle<String> name);
1598 Handle<Value> GetName() const;
Andrei Popescu402d9372010-02-26 13:31:12 +00001599
1600 /**
1601 * Returns zero based line number of function body and
1602 * kLineOffsetNotFound if no information available.
1603 */
1604 int GetScriptLineNumber() const;
1605 ScriptOrigin GetScriptOrigin() const;
Steve Blocka7e24c12009-10-30 11:49:00 +00001606 static inline Function* Cast(Value* obj);
Andrei Popescu402d9372010-02-26 13:31:12 +00001607 static const int kLineOffsetNotFound;
Steve Blocka7e24c12009-10-30 11:49:00 +00001608 private:
1609 Function();
1610 static void CheckCast(Value* obj);
1611};
1612
1613
1614/**
1615 * A JavaScript value that wraps a C++ void*. This type of value is
1616 * mainly used to associate C++ data structures with JavaScript
1617 * objects.
1618 *
1619 * The Wrap function V8 will return the most optimal Value object wrapping the
1620 * C++ void*. The type of the value is not guaranteed to be an External object
1621 * and no assumptions about its type should be made. To access the wrapped
1622 * value Unwrap should be used, all other operations on that object will lead
1623 * to unpredictable results.
1624 */
1625class V8EXPORT External : public Value {
1626 public:
1627 static Local<Value> Wrap(void* data);
1628 static inline void* Unwrap(Handle<Value> obj);
1629
1630 static Local<External> New(void* value);
1631 static inline External* Cast(Value* obj);
1632 void* Value() const;
1633 private:
1634 External();
1635 static void CheckCast(v8::Value* obj);
1636 static inline void* QuickUnwrap(Handle<v8::Value> obj);
1637 static void* FullUnwrap(Handle<v8::Value> obj);
1638};
1639
1640
1641// --- T e m p l a t e s ---
1642
1643
1644/**
1645 * The superclass of object and function templates.
1646 */
1647class V8EXPORT Template : public Data {
1648 public:
1649 /** Adds a property to each instance created by this template.*/
1650 void Set(Handle<String> name, Handle<Data> value,
1651 PropertyAttribute attributes = None);
1652 inline void Set(const char* name, Handle<Data> value);
1653 private:
1654 Template();
1655
1656 friend class ObjectTemplate;
1657 friend class FunctionTemplate;
1658};
1659
1660
1661/**
1662 * The argument information given to function call callbacks. This
1663 * class provides access to information about the context of the call,
1664 * including the receiver, the number and values of arguments, and
1665 * the holder of the function.
1666 */
1667class V8EXPORT Arguments {
1668 public:
1669 inline int Length() const;
1670 inline Local<Value> operator[](int i) const;
1671 inline Local<Function> Callee() const;
1672 inline Local<Object> This() const;
1673 inline Local<Object> Holder() const;
1674 inline bool IsConstructCall() const;
1675 inline Local<Value> Data() const;
1676 private:
1677 Arguments();
1678 friend class ImplementationUtilities;
1679 inline Arguments(Local<Value> data,
1680 Local<Object> holder,
1681 Local<Function> callee,
1682 bool is_construct_call,
1683 void** values, int length);
1684 Local<Value> data_;
1685 Local<Object> holder_;
1686 Local<Function> callee_;
1687 bool is_construct_call_;
1688 void** values_;
1689 int length_;
1690};
1691
1692
1693/**
1694 * The information passed to an accessor callback about the context
1695 * of the property access.
1696 */
1697class V8EXPORT AccessorInfo {
1698 public:
1699 inline AccessorInfo(internal::Object** args)
1700 : args_(args) { }
1701 inline Local<Value> Data() const;
1702 inline Local<Object> This() const;
1703 inline Local<Object> Holder() const;
1704 private:
1705 internal::Object** args_;
1706};
1707
1708
1709typedef Handle<Value> (*InvocationCallback)(const Arguments& args);
1710
1711typedef int (*LookupCallback)(Local<Object> self, Local<String> name);
1712
1713/**
Steve Blocka7e24c12009-10-30 11:49:00 +00001714 * NamedProperty[Getter|Setter] are used as interceptors on object.
1715 * See ObjectTemplate::SetNamedPropertyHandler.
1716 */
1717typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property,
1718 const AccessorInfo& info);
1719
1720
1721/**
1722 * Returns the value if the setter intercepts the request.
1723 * Otherwise, returns an empty handle.
1724 */
1725typedef Handle<Value> (*NamedPropertySetter)(Local<String> property,
1726 Local<Value> value,
1727 const AccessorInfo& info);
1728
1729
1730/**
1731 * Returns a non-empty handle if the interceptor intercepts the request.
1732 * The result is true if the property exists and false otherwise.
1733 */
1734typedef Handle<Boolean> (*NamedPropertyQuery)(Local<String> property,
1735 const AccessorInfo& info);
1736
1737
1738/**
1739 * Returns a non-empty handle if the deleter intercepts the request.
1740 * The return value is true if the property could be deleted and false
1741 * otherwise.
1742 */
1743typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property,
1744 const AccessorInfo& info);
1745
1746/**
1747 * Returns an array containing the names of the properties the named
1748 * property getter intercepts.
1749 */
1750typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info);
1751
1752
1753/**
1754 * Returns the value of the property if the getter intercepts the
1755 * request. Otherwise, returns an empty handle.
1756 */
1757typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index,
1758 const AccessorInfo& info);
1759
1760
1761/**
1762 * Returns the value if the setter intercepts the request.
1763 * Otherwise, returns an empty handle.
1764 */
1765typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index,
1766 Local<Value> value,
1767 const AccessorInfo& info);
1768
1769
1770/**
1771 * Returns a non-empty handle if the interceptor intercepts the request.
1772 * The result is true if the property exists and false otherwise.
1773 */
1774typedef Handle<Boolean> (*IndexedPropertyQuery)(uint32_t index,
1775 const AccessorInfo& info);
1776
1777/**
1778 * Returns a non-empty handle if the deleter intercepts the request.
1779 * The return value is true if the property could be deleted and false
1780 * otherwise.
1781 */
1782typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index,
1783 const AccessorInfo& info);
1784
1785/**
1786 * Returns an array containing the indices of the properties the
1787 * indexed property getter intercepts.
1788 */
1789typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info);
1790
1791
1792/**
Steve Blocka7e24c12009-10-30 11:49:00 +00001793 * Access type specification.
1794 */
1795enum AccessType {
1796 ACCESS_GET,
1797 ACCESS_SET,
1798 ACCESS_HAS,
1799 ACCESS_DELETE,
1800 ACCESS_KEYS
1801};
1802
1803
1804/**
1805 * Returns true if cross-context access should be allowed to the named
1806 * property with the given key on the host object.
1807 */
1808typedef bool (*NamedSecurityCallback)(Local<Object> host,
1809 Local<Value> key,
1810 AccessType type,
1811 Local<Value> data);
1812
1813
1814/**
1815 * Returns true if cross-context access should be allowed to the indexed
1816 * property with the given index on the host object.
1817 */
1818typedef bool (*IndexedSecurityCallback)(Local<Object> host,
1819 uint32_t index,
1820 AccessType type,
1821 Local<Value> data);
1822
1823
1824/**
1825 * A FunctionTemplate is used to create functions at runtime. There
1826 * can only be one function created from a FunctionTemplate in a
1827 * context. The lifetime of the created function is equal to the
1828 * lifetime of the context. So in case the embedder needs to create
1829 * temporary functions that can be collected using Scripts is
1830 * preferred.
1831 *
1832 * A FunctionTemplate can have properties, these properties are added to the
1833 * function object when it is created.
1834 *
1835 * A FunctionTemplate has a corresponding instance template which is
1836 * used to create object instances when the function is used as a
1837 * constructor. Properties added to the instance template are added to
1838 * each object instance.
1839 *
1840 * A FunctionTemplate can have a prototype template. The prototype template
1841 * is used to create the prototype object of the function.
1842 *
1843 * The following example shows how to use a FunctionTemplate:
1844 *
1845 * \code
1846 * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
1847 * t->Set("func_property", v8::Number::New(1));
1848 *
1849 * v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
1850 * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
1851 * proto_t->Set("proto_const", v8::Number::New(2));
1852 *
1853 * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
1854 * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
1855 * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
1856 * instance_t->Set("instance_property", Number::New(3));
1857 *
1858 * v8::Local<v8::Function> function = t->GetFunction();
1859 * v8::Local<v8::Object> instance = function->NewInstance();
1860 * \endcode
1861 *
1862 * Let's use "function" as the JS variable name of the function object
1863 * and "instance" for the instance object created above. The function
1864 * and the instance will have the following properties:
1865 *
1866 * \code
1867 * func_property in function == true;
1868 * function.func_property == 1;
1869 *
1870 * function.prototype.proto_method() invokes 'InvokeCallback'
1871 * function.prototype.proto_const == 2;
1872 *
1873 * instance instanceof function == true;
1874 * instance.instance_accessor calls 'InstanceAccessorCallback'
1875 * instance.instance_property == 3;
1876 * \endcode
1877 *
1878 * A FunctionTemplate can inherit from another one by calling the
1879 * FunctionTemplate::Inherit method. The following graph illustrates
1880 * the semantics of inheritance:
1881 *
1882 * \code
1883 * FunctionTemplate Parent -> Parent() . prototype -> { }
1884 * ^ ^
1885 * | Inherit(Parent) | .__proto__
1886 * | |
1887 * FunctionTemplate Child -> Child() . prototype -> { }
1888 * \endcode
1889 *
1890 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
1891 * object of the Child() function has __proto__ pointing to the
1892 * Parent() function's prototype object. An instance of the Child
1893 * function has all properties on Parent's instance templates.
1894 *
1895 * Let Parent be the FunctionTemplate initialized in the previous
1896 * section and create a Child FunctionTemplate by:
1897 *
1898 * \code
1899 * Local<FunctionTemplate> parent = t;
1900 * Local<FunctionTemplate> child = FunctionTemplate::New();
1901 * child->Inherit(parent);
1902 *
1903 * Local<Function> child_function = child->GetFunction();
1904 * Local<Object> child_instance = child_function->NewInstance();
1905 * \endcode
1906 *
1907 * The Child function and Child instance will have the following
1908 * properties:
1909 *
1910 * \code
1911 * child_func.prototype.__proto__ == function.prototype;
1912 * child_instance.instance_accessor calls 'InstanceAccessorCallback'
1913 * child_instance.instance_property == 3;
1914 * \endcode
1915 */
1916class V8EXPORT FunctionTemplate : public Template {
1917 public:
1918 /** Creates a function template.*/
1919 static Local<FunctionTemplate> New(
1920 InvocationCallback callback = 0,
1921 Handle<Value> data = Handle<Value>(),
1922 Handle<Signature> signature = Handle<Signature>());
1923 /** Returns the unique function instance in the current execution context.*/
1924 Local<Function> GetFunction();
1925
1926 /**
1927 * Set the call-handler callback for a FunctionTemplate. This
1928 * callback is called whenever the function created from this
1929 * FunctionTemplate is called.
1930 */
1931 void SetCallHandler(InvocationCallback callback,
1932 Handle<Value> data = Handle<Value>());
1933
1934 /** Get the InstanceTemplate. */
1935 Local<ObjectTemplate> InstanceTemplate();
1936
1937 /** Causes the function template to inherit from a parent function template.*/
1938 void Inherit(Handle<FunctionTemplate> parent);
1939
1940 /**
1941 * A PrototypeTemplate is the template used to create the prototype object
1942 * of the function created by this template.
1943 */
1944 Local<ObjectTemplate> PrototypeTemplate();
1945
1946
1947 /**
1948 * Set the class name of the FunctionTemplate. This is used for
1949 * printing objects created with the function created from the
1950 * FunctionTemplate as its constructor.
1951 */
1952 void SetClassName(Handle<String> name);
1953
1954 /**
1955 * Determines whether the __proto__ accessor ignores instances of
1956 * the function template. If instances of the function template are
1957 * ignored, __proto__ skips all instances and instead returns the
1958 * next object in the prototype chain.
1959 *
1960 * Call with a value of true to make the __proto__ accessor ignore
1961 * instances of the function template. Call with a value of false
1962 * to make the __proto__ accessor not ignore instances of the
1963 * function template. By default, instances of a function template
1964 * are not ignored.
1965 */
1966 void SetHiddenPrototype(bool value);
1967
1968 /**
1969 * Returns true if the given object is an instance of this function
1970 * template.
1971 */
1972 bool HasInstance(Handle<Value> object);
1973
1974 private:
1975 FunctionTemplate();
1976 void AddInstancePropertyAccessor(Handle<String> name,
1977 AccessorGetter getter,
1978 AccessorSetter setter,
1979 Handle<Value> data,
1980 AccessControl settings,
1981 PropertyAttribute attributes);
1982 void SetNamedInstancePropertyHandler(NamedPropertyGetter getter,
1983 NamedPropertySetter setter,
1984 NamedPropertyQuery query,
1985 NamedPropertyDeleter remover,
1986 NamedPropertyEnumerator enumerator,
1987 Handle<Value> data);
1988 void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter,
1989 IndexedPropertySetter setter,
1990 IndexedPropertyQuery query,
1991 IndexedPropertyDeleter remover,
1992 IndexedPropertyEnumerator enumerator,
1993 Handle<Value> data);
1994 void SetInstanceCallAsFunctionHandler(InvocationCallback callback,
1995 Handle<Value> data);
1996
1997 friend class Context;
1998 friend class ObjectTemplate;
1999};
2000
2001
2002/**
2003 * An ObjectTemplate is used to create objects at runtime.
2004 *
2005 * Properties added to an ObjectTemplate are added to each object
2006 * created from the ObjectTemplate.
2007 */
2008class V8EXPORT ObjectTemplate : public Template {
2009 public:
2010 /** Creates an ObjectTemplate. */
2011 static Local<ObjectTemplate> New();
2012
2013 /** Creates a new instance of this template.*/
2014 Local<Object> NewInstance();
2015
2016 /**
2017 * Sets an accessor on the object template.
2018 *
2019 * Whenever the property with the given name is accessed on objects
2020 * created from this ObjectTemplate the getter and setter callbacks
2021 * are called instead of getting and setting the property directly
2022 * on the JavaScript object.
2023 *
2024 * \param name The name of the property for which an accessor is added.
2025 * \param getter The callback to invoke when getting the property.
2026 * \param setter The callback to invoke when setting the property.
2027 * \param data A piece of data that will be passed to the getter and setter
2028 * callbacks whenever they are invoked.
2029 * \param settings Access control settings for the accessor. This is a bit
2030 * field consisting of one of more of
2031 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
2032 * The default is to not allow cross-context access.
2033 * ALL_CAN_READ means that all cross-context reads are allowed.
2034 * ALL_CAN_WRITE means that all cross-context writes are allowed.
2035 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
2036 * cross-context access.
2037 * \param attribute The attributes of the property for which an accessor
2038 * is added.
2039 */
2040 void SetAccessor(Handle<String> name,
2041 AccessorGetter getter,
2042 AccessorSetter setter = 0,
2043 Handle<Value> data = Handle<Value>(),
2044 AccessControl settings = DEFAULT,
2045 PropertyAttribute attribute = None);
2046
2047 /**
2048 * Sets a named property handler on the object template.
2049 *
2050 * Whenever a named property is accessed on objects created from
2051 * this object template, the provided callback is invoked instead of
2052 * accessing the property directly on the JavaScript object.
2053 *
2054 * \param getter The callback to invoke when getting a property.
2055 * \param setter The callback to invoke when setting a property.
2056 * \param query The callback to invoke to check is an object has a property.
2057 * \param deleter The callback to invoke when deleting a property.
2058 * \param enumerator The callback to invoke to enumerate all the named
2059 * properties of an object.
2060 * \param data A piece of data that will be passed to the callbacks
2061 * whenever they are invoked.
2062 */
2063 void SetNamedPropertyHandler(NamedPropertyGetter getter,
2064 NamedPropertySetter setter = 0,
2065 NamedPropertyQuery query = 0,
2066 NamedPropertyDeleter deleter = 0,
2067 NamedPropertyEnumerator enumerator = 0,
2068 Handle<Value> data = Handle<Value>());
2069
2070 /**
2071 * Sets an indexed property handler on the object template.
2072 *
2073 * Whenever an indexed property is accessed on objects created from
2074 * this object template, the provided callback is invoked instead of
2075 * accessing the property directly on the JavaScript object.
2076 *
2077 * \param getter The callback to invoke when getting a property.
2078 * \param setter The callback to invoke when setting a property.
2079 * \param query The callback to invoke to check is an object has a property.
2080 * \param deleter The callback to invoke when deleting a property.
2081 * \param enumerator The callback to invoke to enumerate all the indexed
2082 * properties of an object.
2083 * \param data A piece of data that will be passed to the callbacks
2084 * whenever they are invoked.
2085 */
2086 void SetIndexedPropertyHandler(IndexedPropertyGetter getter,
2087 IndexedPropertySetter setter = 0,
2088 IndexedPropertyQuery query = 0,
2089 IndexedPropertyDeleter deleter = 0,
2090 IndexedPropertyEnumerator enumerator = 0,
2091 Handle<Value> data = Handle<Value>());
2092 /**
2093 * Sets the callback to be used when calling instances created from
2094 * this template as a function. If no callback is set, instances
2095 * behave like normal JavaScript objects that cannot be called as a
2096 * function.
2097 */
2098 void SetCallAsFunctionHandler(InvocationCallback callback,
2099 Handle<Value> data = Handle<Value>());
2100
2101 /**
2102 * Mark object instances of the template as undetectable.
2103 *
2104 * In many ways, undetectable objects behave as though they are not
2105 * there. They behave like 'undefined' in conditionals and when
2106 * printed. However, properties can be accessed and called as on
2107 * normal objects.
2108 */
2109 void MarkAsUndetectable();
2110
2111 /**
2112 * Sets access check callbacks on the object template.
2113 *
2114 * When accessing properties on instances of this object template,
2115 * the access check callback will be called to determine whether or
2116 * not to allow cross-context access to the properties.
2117 * The last parameter specifies whether access checks are turned
2118 * on by default on instances. If access checks are off by default,
2119 * they can be turned on on individual instances by calling
2120 * Object::TurnOnAccessCheck().
2121 */
2122 void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
2123 IndexedSecurityCallback indexed_handler,
2124 Handle<Value> data = Handle<Value>(),
2125 bool turned_on_by_default = true);
2126
2127 /**
2128 * Gets the number of internal fields for objects generated from
2129 * this template.
2130 */
2131 int InternalFieldCount();
2132
2133 /**
2134 * Sets the number of internal fields for objects generated from
2135 * this template.
2136 */
2137 void SetInternalFieldCount(int value);
2138
2139 private:
2140 ObjectTemplate();
2141 static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor);
2142 friend class FunctionTemplate;
2143};
2144
2145
2146/**
2147 * A Signature specifies which receivers and arguments a function can
2148 * legally be called with.
2149 */
2150class V8EXPORT Signature : public Data {
2151 public:
2152 static Local<Signature> New(Handle<FunctionTemplate> receiver =
2153 Handle<FunctionTemplate>(),
2154 int argc = 0,
2155 Handle<FunctionTemplate> argv[] = 0);
2156 private:
2157 Signature();
2158};
2159
2160
2161/**
2162 * A utility for determining the type of objects based on the template
2163 * they were constructed from.
2164 */
2165class V8EXPORT TypeSwitch : public Data {
2166 public:
2167 static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
2168 static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
2169 int match(Handle<Value> value);
2170 private:
2171 TypeSwitch();
2172};
2173
2174
2175// --- E x t e n s i o n s ---
2176
2177
2178/**
2179 * Ignore
2180 */
2181class V8EXPORT Extension { // NOLINT
2182 public:
2183 Extension(const char* name,
2184 const char* source = 0,
2185 int dep_count = 0,
2186 const char** deps = 0);
2187 virtual ~Extension() { }
2188 virtual v8::Handle<v8::FunctionTemplate>
2189 GetNativeFunction(v8::Handle<v8::String> name) {
2190 return v8::Handle<v8::FunctionTemplate>();
2191 }
2192
2193 const char* name() { return name_; }
2194 const char* source() { return source_; }
2195 int dependency_count() { return dep_count_; }
2196 const char** dependencies() { return deps_; }
2197 void set_auto_enable(bool value) { auto_enable_ = value; }
2198 bool auto_enable() { return auto_enable_; }
2199
2200 private:
2201 const char* name_;
2202 const char* source_;
2203 int dep_count_;
2204 const char** deps_;
2205 bool auto_enable_;
2206
2207 // Disallow copying and assigning.
2208 Extension(const Extension&);
2209 void operator=(const Extension&);
2210};
2211
2212
2213void V8EXPORT RegisterExtension(Extension* extension);
2214
2215
2216/**
2217 * Ignore
2218 */
2219class V8EXPORT DeclareExtension {
2220 public:
2221 inline DeclareExtension(Extension* extension) {
2222 RegisterExtension(extension);
2223 }
2224};
2225
2226
2227// --- S t a t i c s ---
2228
2229
2230Handle<Primitive> V8EXPORT Undefined();
2231Handle<Primitive> V8EXPORT Null();
2232Handle<Boolean> V8EXPORT True();
2233Handle<Boolean> V8EXPORT False();
2234
2235
2236/**
2237 * A set of constraints that specifies the limits of the runtime's memory use.
2238 * You must set the heap size before initializing the VM - the size cannot be
2239 * adjusted after the VM is initialized.
2240 *
2241 * If you are using threads then you should hold the V8::Locker lock while
2242 * setting the stack limit and you must set a non-default stack limit separately
2243 * for each thread.
2244 */
2245class V8EXPORT ResourceConstraints {
2246 public:
2247 ResourceConstraints();
2248 int max_young_space_size() const { return max_young_space_size_; }
2249 void set_max_young_space_size(int value) { max_young_space_size_ = value; }
2250 int max_old_space_size() const { return max_old_space_size_; }
2251 void set_max_old_space_size(int value) { max_old_space_size_ = value; }
2252 uint32_t* stack_limit() const { return stack_limit_; }
2253 // Sets an address beyond which the VM's stack may not grow.
2254 void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
2255 private:
2256 int max_young_space_size_;
2257 int max_old_space_size_;
2258 uint32_t* stack_limit_;
2259};
2260
2261
Kristian Monsen25f61362010-05-21 11:50:48 +01002262bool V8EXPORT SetResourceConstraints(ResourceConstraints* constraints);
Steve Blocka7e24c12009-10-30 11:49:00 +00002263
2264
2265// --- E x c e p t i o n s ---
2266
2267
2268typedef void (*FatalErrorCallback)(const char* location, const char* message);
2269
2270
2271typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data);
2272
2273
2274/**
2275 * Schedules an exception to be thrown when returning to JavaScript. When an
2276 * exception has been scheduled it is illegal to invoke any JavaScript
2277 * operation; the caller must return immediately and only after the exception
2278 * has been handled does it become legal to invoke JavaScript operations.
2279 */
2280Handle<Value> V8EXPORT ThrowException(Handle<Value> exception);
2281
2282/**
2283 * Create new error objects by calling the corresponding error object
2284 * constructor with the message.
2285 */
2286class V8EXPORT Exception {
2287 public:
2288 static Local<Value> RangeError(Handle<String> message);
2289 static Local<Value> ReferenceError(Handle<String> message);
2290 static Local<Value> SyntaxError(Handle<String> message);
2291 static Local<Value> TypeError(Handle<String> message);
2292 static Local<Value> Error(Handle<String> message);
2293};
2294
2295
2296// --- C o u n t e r s C a l l b a c k s ---
2297
2298typedef int* (*CounterLookupCallback)(const char* name);
2299
2300typedef void* (*CreateHistogramCallback)(const char* name,
2301 int min,
2302 int max,
2303 size_t buckets);
2304
2305typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
2306
2307// --- F a i l e d A c c e s s C h e c k C a l l b a c k ---
2308typedef void (*FailedAccessCheckCallback)(Local<Object> target,
2309 AccessType type,
2310 Local<Value> data);
2311
2312// --- G a r b a g e C o l l e c t i o n C a l l b a c k s
2313
2314/**
Steve Block6ded16b2010-05-10 14:33:55 +01002315 * Applications can register callback functions which will be called
2316 * before and after a garbage collection. Allocations are not
2317 * allowed in the callback functions, you therefore cannot manipulate
Steve Blocka7e24c12009-10-30 11:49:00 +00002318 * objects (set or delete properties for example) since it is possible
2319 * such operations will result in the allocation of objects.
2320 */
Steve Block6ded16b2010-05-10 14:33:55 +01002321enum GCType {
2322 kGCTypeScavenge = 1 << 0,
2323 kGCTypeMarkSweepCompact = 1 << 1,
2324 kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
2325};
2326
2327enum GCCallbackFlags {
2328 kNoGCCallbackFlags = 0,
2329 kGCCallbackFlagCompacted = 1 << 0
2330};
2331
2332typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
2333typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
2334
Steve Blocka7e24c12009-10-30 11:49:00 +00002335typedef void (*GCCallback)();
2336
2337
2338// --- C o n t e x t G e n e r a t o r ---
2339
2340/**
2341 * Applications must provide a callback function which is called to generate
2342 * a context if a context was not deserialized from the snapshot.
2343 */
2344typedef Persistent<Context> (*ContextGenerator)();
2345
2346
2347/**
2348 * Profiler modules.
2349 *
2350 * In V8, profiler consists of several modules: CPU profiler, and different
2351 * kinds of heap profiling. Each can be turned on / off independently.
2352 * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx,
2353 * modules are enabled only temporarily for making a snapshot of the heap.
2354 */
2355enum ProfilerModules {
2356 PROFILER_MODULE_NONE = 0,
2357 PROFILER_MODULE_CPU = 1,
2358 PROFILER_MODULE_HEAP_STATS = 1 << 1,
2359 PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2,
2360 PROFILER_MODULE_HEAP_SNAPSHOT = 1 << 16
2361};
2362
2363
2364/**
Steve Block3ce2e202009-11-05 08:53:23 +00002365 * Collection of V8 heap information.
2366 *
2367 * Instances of this class can be passed to v8::V8::HeapStatistics to
2368 * get heap statistics from V8.
2369 */
2370class V8EXPORT HeapStatistics {
2371 public:
2372 HeapStatistics();
2373 size_t total_heap_size() { return total_heap_size_; }
2374 size_t used_heap_size() { return used_heap_size_; }
2375
2376 private:
2377 void set_total_heap_size(size_t size) { total_heap_size_ = size; }
2378 void set_used_heap_size(size_t size) { used_heap_size_ = size; }
2379
2380 size_t total_heap_size_;
2381 size_t used_heap_size_;
2382
2383 friend class V8;
2384};
2385
2386
2387/**
Steve Blocka7e24c12009-10-30 11:49:00 +00002388 * Container class for static utility functions.
2389 */
2390class V8EXPORT V8 {
2391 public:
2392 /** Set the callback to invoke in case of fatal errors. */
2393 static void SetFatalErrorHandler(FatalErrorCallback that);
2394
2395 /**
2396 * Ignore out-of-memory exceptions.
2397 *
2398 * V8 running out of memory is treated as a fatal error by default.
2399 * This means that the fatal error handler is called and that V8 is
2400 * terminated.
2401 *
2402 * IgnoreOutOfMemoryException can be used to not treat a
2403 * out-of-memory situation as a fatal error. This way, the contexts
2404 * that did not cause the out of memory problem might be able to
2405 * continue execution.
2406 */
2407 static void IgnoreOutOfMemoryException();
2408
2409 /**
2410 * Check if V8 is dead and therefore unusable. This is the case after
2411 * fatal errors such as out-of-memory situations.
2412 */
2413 static bool IsDead();
2414
2415 /**
2416 * Adds a message listener.
2417 *
2418 * The same message listener can be added more than once and it that
2419 * case it will be called more than once for each message.
2420 */
2421 static bool AddMessageListener(MessageCallback that,
2422 Handle<Value> data = Handle<Value>());
2423
2424 /**
2425 * Remove all message listeners from the specified callback function.
2426 */
2427 static void RemoveMessageListeners(MessageCallback that);
2428
2429 /**
2430 * Sets V8 flags from a string.
2431 */
2432 static void SetFlagsFromString(const char* str, int length);
2433
2434 /**
2435 * Sets V8 flags from the command line.
2436 */
2437 static void SetFlagsFromCommandLine(int* argc,
2438 char** argv,
2439 bool remove_flags);
2440
2441 /** Get the version string. */
2442 static const char* GetVersion();
2443
2444 /**
2445 * Enables the host application to provide a mechanism for recording
2446 * statistics counters.
2447 */
2448 static void SetCounterFunction(CounterLookupCallback);
2449
2450 /**
2451 * Enables the host application to provide a mechanism for recording
2452 * histograms. The CreateHistogram function returns a
2453 * histogram which will later be passed to the AddHistogramSample
2454 * function.
2455 */
2456 static void SetCreateHistogramFunction(CreateHistogramCallback);
2457 static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
2458
2459 /**
2460 * Enables the computation of a sliding window of states. The sliding
2461 * window information is recorded in statistics counters.
2462 */
2463 static void EnableSlidingStateWindow();
2464
2465 /** Callback function for reporting failed access checks.*/
2466 static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
2467
2468 /**
2469 * Enables the host application to receive a notification before a
Steve Block6ded16b2010-05-10 14:33:55 +01002470 * garbage collection. Allocations are not allowed in the
2471 * callback function, you therefore cannot manipulate objects (set
2472 * or delete properties for example) since it is possible such
2473 * operations will result in the allocation of objects. It is possible
2474 * to specify the GCType filter for your callback. But it is not possible to
2475 * register the same callback function two times with different
2476 * GCType filters.
2477 */
2478 static void AddGCPrologueCallback(
2479 GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
2480
2481 /**
2482 * This function removes callback which was installed by
2483 * AddGCPrologueCallback function.
2484 */
2485 static void RemoveGCPrologueCallback(GCPrologueCallback callback);
2486
2487 /**
2488 * The function is deprecated. Please use AddGCPrologueCallback instead.
2489 * Enables the host application to receive a notification before a
2490 * garbage collection. Allocations are not allowed in the
Steve Blocka7e24c12009-10-30 11:49:00 +00002491 * callback function, you therefore cannot manipulate objects (set
2492 * or delete properties for example) since it is possible such
2493 * operations will result in the allocation of objects.
2494 */
2495 static void SetGlobalGCPrologueCallback(GCCallback);
2496
2497 /**
2498 * Enables the host application to receive a notification after a
Steve Block6ded16b2010-05-10 14:33:55 +01002499 * garbage collection. Allocations are not allowed in the
2500 * callback function, you therefore cannot manipulate objects (set
2501 * or delete properties for example) since it is possible such
2502 * operations will result in the allocation of objects. It is possible
2503 * to specify the GCType filter for your callback. But it is not possible to
2504 * register the same callback function two times with different
2505 * GCType filters.
2506 */
2507 static void AddGCEpilogueCallback(
2508 GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
2509
2510 /**
2511 * This function removes callback which was installed by
2512 * AddGCEpilogueCallback function.
2513 */
2514 static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
2515
2516 /**
2517 * The function is deprecated. Please use AddGCEpilogueCallback instead.
2518 * Enables the host application to receive a notification after a
Steve Blocka7e24c12009-10-30 11:49:00 +00002519 * major garbage collection. Allocations are not allowed in the
2520 * callback function, you therefore cannot manipulate objects (set
2521 * or delete properties for example) since it is possible such
2522 * operations will result in the allocation of objects.
2523 */
2524 static void SetGlobalGCEpilogueCallback(GCCallback);
2525
2526 /**
2527 * Allows the host application to group objects together. If one
2528 * object in the group is alive, all objects in the group are alive.
2529 * After each garbage collection, object groups are removed. It is
2530 * intended to be used in the before-garbage-collection callback
2531 * function, for instance to simulate DOM tree connections among JS
2532 * wrapper objects.
2533 */
2534 static void AddObjectGroup(Persistent<Value>* objects, size_t length);
2535
2536 /**
2537 * Initializes from snapshot if possible. Otherwise, attempts to
2538 * initialize from scratch. This function is called implicitly if
2539 * you use the API without calling it first.
2540 */
2541 static bool Initialize();
2542
2543 /**
2544 * Adjusts the amount of registered external memory. Used to give
2545 * V8 an indication of the amount of externally allocated memory
2546 * that is kept alive by JavaScript objects. V8 uses this to decide
2547 * when to perform global garbage collections. Registering
2548 * externally allocated memory will trigger global garbage
2549 * collections more often than otherwise in an attempt to garbage
2550 * collect the JavaScript objects keeping the externally allocated
2551 * memory alive.
2552 *
2553 * \param change_in_bytes the change in externally allocated memory
2554 * that is kept alive by JavaScript objects.
2555 * \returns the adjusted value.
2556 */
2557 static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
2558
2559 /**
2560 * Suspends recording of tick samples in the profiler.
2561 * When the V8 profiling mode is enabled (usually via command line
2562 * switches) this function suspends recording of tick samples.
2563 * Profiling ticks are discarded until ResumeProfiler() is called.
2564 *
2565 * See also the --prof and --prof_auto command line switches to
2566 * enable V8 profiling.
2567 */
2568 static void PauseProfiler();
2569
2570 /**
2571 * Resumes recording of tick samples in the profiler.
2572 * See also PauseProfiler().
2573 */
2574 static void ResumeProfiler();
2575
2576 /**
2577 * Return whether profiler is currently paused.
2578 */
2579 static bool IsProfilerPaused();
2580
2581 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00002582 * Resumes specified profiler modules. Can be called several times to
2583 * mark the opening of a profiler events block with the given tag.
2584 *
Steve Blocka7e24c12009-10-30 11:49:00 +00002585 * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)".
2586 * See ProfilerModules enum.
2587 *
2588 * \param flags Flags specifying profiler modules.
Andrei Popescu402d9372010-02-26 13:31:12 +00002589 * \param tag Profile tag.
Steve Blocka7e24c12009-10-30 11:49:00 +00002590 */
Andrei Popescu402d9372010-02-26 13:31:12 +00002591 static void ResumeProfilerEx(int flags, int tag = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00002592
2593 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00002594 * Pauses specified profiler modules. Each call to "PauseProfilerEx" closes
2595 * a block of profiler events opened by a call to "ResumeProfilerEx" with the
2596 * same tag value. There is no need for blocks to be properly nested.
2597 * The profiler is paused when the last opened block is closed.
2598 *
Steve Blocka7e24c12009-10-30 11:49:00 +00002599 * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)".
2600 * See ProfilerModules enum.
2601 *
2602 * \param flags Flags specifying profiler modules.
Andrei Popescu402d9372010-02-26 13:31:12 +00002603 * \param tag Profile tag.
Steve Blocka7e24c12009-10-30 11:49:00 +00002604 */
Andrei Popescu402d9372010-02-26 13:31:12 +00002605 static void PauseProfilerEx(int flags, int tag = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00002606
2607 /**
2608 * Returns active (resumed) profiler modules.
2609 * See ProfilerModules enum.
2610 *
2611 * \returns active profiler modules.
2612 */
2613 static int GetActiveProfilerModules();
2614
2615 /**
2616 * If logging is performed into a memory buffer (via --logfile=*), allows to
2617 * retrieve previously written messages. This can be used for retrieving
2618 * profiler log data in the application. This function is thread-safe.
2619 *
2620 * Caller provides a destination buffer that must exist during GetLogLines
2621 * call. Only whole log lines are copied into the buffer.
2622 *
2623 * \param from_pos specified a point in a buffer to read from, 0 is the
2624 * beginning of a buffer. It is assumed that caller updates its current
2625 * position using returned size value from the previous call.
2626 * \param dest_buf destination buffer for log data.
2627 * \param max_size size of the destination buffer.
2628 * \returns actual size of log data copied into buffer.
2629 */
2630 static int GetLogLines(int from_pos, char* dest_buf, int max_size);
2631
2632 /**
Steve Block6ded16b2010-05-10 14:33:55 +01002633 * The minimum allowed size for a log lines buffer. If the size of
2634 * the buffer given will not be enough to hold a line of the maximum
2635 * length, an attempt to find a log line end in GetLogLines will
2636 * fail, and an empty result will be returned.
2637 */
2638 static const int kMinimumSizeForLogLinesBuffer = 2048;
2639
2640 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002641 * Retrieve the V8 thread id of the calling thread.
2642 *
2643 * The thread id for a thread should only be retrieved after the V8
2644 * lock has been acquired with a Locker object with that thread.
2645 */
2646 static int GetCurrentThreadId();
2647
2648 /**
2649 * Forcefully terminate execution of a JavaScript thread. This can
2650 * be used to terminate long-running scripts.
2651 *
2652 * TerminateExecution should only be called when then V8 lock has
2653 * been acquired with a Locker object. Therefore, in order to be
2654 * able to terminate long-running threads, preemption must be
2655 * enabled to allow the user of TerminateExecution to acquire the
2656 * lock.
2657 *
2658 * The termination is achieved by throwing an exception that is
2659 * uncatchable by JavaScript exception handlers. Termination
2660 * exceptions act as if they were caught by a C++ TryCatch exception
2661 * handlers. If forceful termination is used, any C++ TryCatch
2662 * exception handler that catches an exception should check if that
2663 * exception is a termination exception and immediately return if
2664 * that is the case. Returning immediately in that case will
2665 * continue the propagation of the termination exception if needed.
2666 *
2667 * The thread id passed to TerminateExecution must have been
2668 * obtained by calling GetCurrentThreadId on the thread in question.
2669 *
2670 * \param thread_id The thread id of the thread to terminate.
2671 */
2672 static void TerminateExecution(int thread_id);
2673
2674 /**
2675 * Forcefully terminate the current thread of JavaScript execution.
2676 *
2677 * This method can be used by any thread even if that thread has not
2678 * acquired the V8 lock with a Locker object.
2679 */
2680 static void TerminateExecution();
2681
2682 /**
Steve Block6ded16b2010-05-10 14:33:55 +01002683 * Is V8 terminating JavaScript execution.
2684 *
2685 * Returns true if JavaScript execution is currently terminating
2686 * because of a call to TerminateExecution. In that case there are
2687 * still JavaScript frames on the stack and the termination
2688 * exception is still active.
2689 */
2690 static bool IsExecutionTerminating();
2691
2692 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002693 * Releases any resources used by v8 and stops any utility threads
2694 * that may be running. Note that disposing v8 is permanent, it
2695 * cannot be reinitialized.
2696 *
2697 * It should generally not be necessary to dispose v8 before exiting
2698 * a process, this should happen automatically. It is only necessary
2699 * to use if the process needs the resources taken up by v8.
2700 */
2701 static bool Dispose();
2702
Steve Block3ce2e202009-11-05 08:53:23 +00002703 /**
2704 * Get statistics about the heap memory usage.
2705 */
2706 static void GetHeapStatistics(HeapStatistics* heap_statistics);
Steve Blocka7e24c12009-10-30 11:49:00 +00002707
2708 /**
2709 * Optional notification that the embedder is idle.
2710 * V8 uses the notification to reduce memory footprint.
2711 * This call can be used repeatedly if the embedder remains idle.
Steve Blocka7e24c12009-10-30 11:49:00 +00002712 * Returns true if the embedder should stop calling IdleNotification
2713 * until real work has been done. This indicates that V8 has done
2714 * as much cleanup as it will be able to do.
2715 */
Steve Block3ce2e202009-11-05 08:53:23 +00002716 static bool IdleNotification();
Steve Blocka7e24c12009-10-30 11:49:00 +00002717
2718 /**
2719 * Optional notification that the system is running low on memory.
2720 * V8 uses these notifications to attempt to free memory.
2721 */
2722 static void LowMemoryNotification();
2723
Steve Block6ded16b2010-05-10 14:33:55 +01002724 /**
2725 * Optional notification that a context has been disposed. V8 uses
2726 * these notifications to guide the GC heuristic. Returns the number
2727 * of context disposals - including this one - since the last time
2728 * V8 had a chance to clean up.
2729 */
2730 static int ContextDisposedNotification();
2731
Steve Blocka7e24c12009-10-30 11:49:00 +00002732 private:
2733 V8();
2734
2735 static internal::Object** GlobalizeReference(internal::Object** handle);
2736 static void DisposeGlobal(internal::Object** global_handle);
2737 static void MakeWeak(internal::Object** global_handle,
2738 void* data,
2739 WeakReferenceCallback);
2740 static void ClearWeak(internal::Object** global_handle);
2741 static bool IsGlobalNearDeath(internal::Object** global_handle);
2742 static bool IsGlobalWeak(internal::Object** global_handle);
2743
2744 template <class T> friend class Handle;
2745 template <class T> friend class Local;
2746 template <class T> friend class Persistent;
2747 friend class Context;
2748};
2749
2750
2751/**
2752 * An external exception handler.
2753 */
2754class V8EXPORT TryCatch {
2755 public:
2756
2757 /**
2758 * Creates a new try/catch block and registers it with v8.
2759 */
2760 TryCatch();
2761
2762 /**
2763 * Unregisters and deletes this try/catch block.
2764 */
2765 ~TryCatch();
2766
2767 /**
2768 * Returns true if an exception has been caught by this try/catch block.
2769 */
2770 bool HasCaught() const;
2771
2772 /**
2773 * For certain types of exceptions, it makes no sense to continue
2774 * execution.
2775 *
2776 * Currently, the only type of exception that can be caught by a
2777 * TryCatch handler and for which it does not make sense to continue
2778 * is termination exception. Such exceptions are thrown when the
2779 * TerminateExecution methods are called to terminate a long-running
2780 * script.
2781 *
2782 * If CanContinue returns false, the correct action is to perform
2783 * any C++ cleanup needed and then return.
2784 */
2785 bool CanContinue() const;
2786
2787 /**
Steve Blockd0582a62009-12-15 09:54:21 +00002788 * Throws the exception caught by this TryCatch in a way that avoids
2789 * it being caught again by this same TryCatch. As with ThrowException
2790 * it is illegal to execute any JavaScript operations after calling
2791 * ReThrow; the caller must return immediately to where the exception
2792 * is caught.
2793 */
2794 Handle<Value> ReThrow();
2795
2796 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002797 * Returns the exception caught by this try/catch block. If no exception has
2798 * been caught an empty handle is returned.
2799 *
2800 * The returned handle is valid until this TryCatch block has been destroyed.
2801 */
2802 Local<Value> Exception() const;
2803
2804 /**
2805 * Returns the .stack property of the thrown object. If no .stack
2806 * property is present an empty handle is returned.
2807 */
2808 Local<Value> StackTrace() const;
2809
2810 /**
2811 * Returns the message associated with this exception. If there is
2812 * no message associated an empty handle is returned.
2813 *
2814 * The returned handle is valid until this TryCatch block has been
2815 * destroyed.
2816 */
2817 Local<v8::Message> Message() const;
2818
2819 /**
2820 * Clears any exceptions that may have been caught by this try/catch block.
2821 * After this method has been called, HasCaught() will return false.
2822 *
2823 * It is not necessary to clear a try/catch block before using it again; if
2824 * another exception is thrown the previously caught exception will just be
2825 * overwritten. However, it is often a good idea since it makes it easier
2826 * to determine which operation threw a given exception.
2827 */
2828 void Reset();
2829
2830 /**
2831 * Set verbosity of the external exception handler.
2832 *
2833 * By default, exceptions that are caught by an external exception
2834 * handler are not reported. Call SetVerbose with true on an
2835 * external exception handler to have exceptions caught by the
2836 * handler reported as if they were not caught.
2837 */
2838 void SetVerbose(bool value);
2839
2840 /**
2841 * Set whether or not this TryCatch should capture a Message object
2842 * which holds source information about where the exception
2843 * occurred. True by default.
2844 */
2845 void SetCaptureMessage(bool value);
2846
Steve Blockd0582a62009-12-15 09:54:21 +00002847 private:
2848 void* next_;
Steve Blocka7e24c12009-10-30 11:49:00 +00002849 void* exception_;
2850 void* message_;
Steve Blockd0582a62009-12-15 09:54:21 +00002851 bool is_verbose_ : 1;
2852 bool can_continue_ : 1;
2853 bool capture_message_ : 1;
2854 bool rethrow_ : 1;
2855
2856 friend class v8::internal::Top;
Steve Blocka7e24c12009-10-30 11:49:00 +00002857};
2858
2859
2860// --- C o n t e x t ---
2861
2862
2863/**
2864 * Ignore
2865 */
2866class V8EXPORT ExtensionConfiguration {
2867 public:
2868 ExtensionConfiguration(int name_count, const char* names[])
2869 : name_count_(name_count), names_(names) { }
2870 private:
2871 friend class ImplementationUtilities;
2872 int name_count_;
2873 const char** names_;
2874};
2875
2876
2877/**
2878 * A sandboxed execution context with its own set of built-in objects
2879 * and functions.
2880 */
2881class V8EXPORT Context {
2882 public:
2883 /** Returns the global object of the context. */
2884 Local<Object> Global();
2885
2886 /**
2887 * Detaches the global object from its context before
2888 * the global object can be reused to create a new context.
2889 */
2890 void DetachGlobal();
2891
Andrei Popescu74b3c142010-03-29 12:03:09 +01002892 /**
2893 * Reattaches a global object to a context. This can be used to
2894 * restore the connection between a global object and a context
2895 * after DetachGlobal has been called.
2896 *
2897 * \param global_object The global object to reattach to the
2898 * context. For this to work, the global object must be the global
2899 * object that was associated with this context before a call to
2900 * DetachGlobal.
2901 */
2902 void ReattachGlobal(Handle<Object> global_object);
2903
Leon Clarkef7060e22010-06-03 12:02:55 +01002904 /** Creates a new context.
2905 *
2906 * Returns a persistent handle to the newly allocated context. This
2907 * persistent handle has to be disposed when the context is no
2908 * longer used so the context can be garbage collected.
2909 */
Steve Blocka7e24c12009-10-30 11:49:00 +00002910 static Persistent<Context> New(
Andrei Popescu31002712010-02-23 13:46:05 +00002911 ExtensionConfiguration* extensions = NULL,
Steve Blocka7e24c12009-10-30 11:49:00 +00002912 Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
2913 Handle<Value> global_object = Handle<Value>());
2914
2915 /** Returns the last entered context. */
2916 static Local<Context> GetEntered();
2917
2918 /** Returns the context that is on the top of the stack. */
2919 static Local<Context> GetCurrent();
2920
2921 /**
2922 * Returns the context of the calling JavaScript code. That is the
2923 * context of the top-most JavaScript frame. If there are no
2924 * JavaScript frames an empty handle is returned.
2925 */
2926 static Local<Context> GetCalling();
2927
2928 /**
2929 * Sets the security token for the context. To access an object in
2930 * another context, the security tokens must match.
2931 */
2932 void SetSecurityToken(Handle<Value> token);
2933
2934 /** Restores the security token to the default value. */
2935 void UseDefaultSecurityToken();
2936
2937 /** Returns the security token of this context.*/
2938 Handle<Value> GetSecurityToken();
2939
2940 /**
2941 * Enter this context. After entering a context, all code compiled
2942 * and run is compiled and run in this context. If another context
2943 * is already entered, this old context is saved so it can be
2944 * restored when the new context is exited.
2945 */
2946 void Enter();
2947
2948 /**
2949 * Exit this context. Exiting the current context restores the
2950 * context that was in place when entering the current context.
2951 */
2952 void Exit();
2953
2954 /** Returns true if the context has experienced an out of memory situation. */
2955 bool HasOutOfMemoryException();
2956
2957 /** Returns true if V8 has a current context. */
2958 static bool InContext();
2959
2960 /**
2961 * Associate an additional data object with the context. This is mainly used
2962 * with the debugger to provide additional information on the context through
2963 * the debugger API.
2964 */
Steve Blockd0582a62009-12-15 09:54:21 +00002965 void SetData(Handle<String> data);
Steve Blocka7e24c12009-10-30 11:49:00 +00002966 Local<Value> GetData();
2967
2968 /**
2969 * Stack-allocated class which sets the execution context for all
2970 * operations executed within a local scope.
2971 */
2972 class V8EXPORT Scope {
2973 public:
2974 inline Scope(Handle<Context> context) : context_(context) {
2975 context_->Enter();
2976 }
2977 inline ~Scope() { context_->Exit(); }
2978 private:
2979 Handle<Context> context_;
2980 };
2981
2982 private:
2983 friend class Value;
2984 friend class Script;
2985 friend class Object;
2986 friend class Function;
2987};
2988
2989
2990/**
2991 * Multiple threads in V8 are allowed, but only one thread at a time
2992 * is allowed to use V8. The definition of 'using V8' includes
2993 * accessing handles or holding onto object pointers obtained from V8
2994 * handles. It is up to the user of V8 to ensure (perhaps with
2995 * locking) that this constraint is not violated.
2996 *
2997 * If you wish to start using V8 in a thread you can do this by constructing
2998 * a v8::Locker object. After the code using V8 has completed for the
2999 * current thread you can call the destructor. This can be combined
3000 * with C++ scope-based construction as follows:
3001 *
3002 * \code
3003 * ...
3004 * {
3005 * v8::Locker locker;
3006 * ...
3007 * // Code using V8 goes here.
3008 * ...
3009 * } // Destructor called here
3010 * \endcode
3011 *
3012 * If you wish to stop using V8 in a thread A you can do this by either
3013 * by destroying the v8::Locker object as above or by constructing a
3014 * v8::Unlocker object:
3015 *
3016 * \code
3017 * {
3018 * v8::Unlocker unlocker;
3019 * ...
3020 * // Code not using V8 goes here while V8 can run in another thread.
3021 * ...
3022 * } // Destructor called here.
3023 * \endcode
3024 *
3025 * The Unlocker object is intended for use in a long-running callback
3026 * from V8, where you want to release the V8 lock for other threads to
3027 * use.
3028 *
3029 * The v8::Locker is a recursive lock. That is, you can lock more than
3030 * once in a given thread. This can be useful if you have code that can
3031 * be called either from code that holds the lock or from code that does
3032 * not. The Unlocker is not recursive so you can not have several
3033 * Unlockers on the stack at once, and you can not use an Unlocker in a
3034 * thread that is not inside a Locker's scope.
3035 *
3036 * An unlocker will unlock several lockers if it has to and reinstate
3037 * the correct depth of locking on its destruction. eg.:
3038 *
3039 * \code
3040 * // V8 not locked.
3041 * {
3042 * v8::Locker locker;
3043 * // V8 locked.
3044 * {
3045 * v8::Locker another_locker;
3046 * // V8 still locked (2 levels).
3047 * {
3048 * v8::Unlocker unlocker;
3049 * // V8 not locked.
3050 * }
3051 * // V8 locked again (2 levels).
3052 * }
3053 * // V8 still locked (1 level).
3054 * }
3055 * // V8 Now no longer locked.
3056 * \endcode
3057 */
3058class V8EXPORT Unlocker {
3059 public:
3060 Unlocker();
3061 ~Unlocker();
3062};
3063
3064
3065class V8EXPORT Locker {
3066 public:
3067 Locker();
3068 ~Locker();
3069
3070 /**
3071 * Start preemption.
3072 *
3073 * When preemption is started, a timer is fired every n milli seconds
3074 * that will switch between multiple threads that are in contention
3075 * for the V8 lock.
3076 */
3077 static void StartPreemption(int every_n_ms);
3078
3079 /**
3080 * Stop preemption.
3081 */
3082 static void StopPreemption();
3083
3084 /**
3085 * Returns whether or not the locker is locked by the current thread.
3086 */
3087 static bool IsLocked();
3088
3089 /**
3090 * Returns whether v8::Locker is being used by this V8 instance.
3091 */
3092 static bool IsActive() { return active_; }
3093
3094 private:
3095 bool has_lock_;
3096 bool top_level_;
3097
3098 static bool active_;
3099
3100 // Disallow copying and assigning.
3101 Locker(const Locker&);
3102 void operator=(const Locker&);
3103};
3104
3105
3106
3107// --- I m p l e m e n t a t i o n ---
3108
3109
3110namespace internal {
3111
3112
3113// Tag information for HeapObject.
3114const int kHeapObjectTag = 1;
3115const int kHeapObjectTagSize = 2;
3116const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
3117
Steve Blocka7e24c12009-10-30 11:49:00 +00003118// Tag information for Smi.
3119const int kSmiTag = 0;
3120const int kSmiTagSize = 1;
3121const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
3122
Steve Block3ce2e202009-11-05 08:53:23 +00003123template <size_t ptr_size> struct SmiConstants;
3124
3125// Smi constants for 32-bit systems.
3126template <> struct SmiConstants<4> {
3127 static const int kSmiShiftSize = 0;
3128 static const int kSmiValueSize = 31;
3129 static inline int SmiToInt(internal::Object* value) {
3130 int shift_bits = kSmiTagSize + kSmiShiftSize;
3131 // Throw away top 32 bits and shift down (requires >> to be sign extending).
3132 return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
3133 }
3134};
3135
3136// Smi constants for 64-bit systems.
3137template <> struct SmiConstants<8> {
3138 static const int kSmiShiftSize = 31;
3139 static const int kSmiValueSize = 32;
3140 static inline int SmiToInt(internal::Object* value) {
3141 int shift_bits = kSmiTagSize + kSmiShiftSize;
3142 // Shift down and throw away top 32 bits.
3143 return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
3144 }
3145};
3146
3147const int kSmiShiftSize = SmiConstants<sizeof(void*)>::kSmiShiftSize;
3148const int kSmiValueSize = SmiConstants<sizeof(void*)>::kSmiValueSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003149
Steve Blockd0582a62009-12-15 09:54:21 +00003150template <size_t ptr_size> struct InternalConstants;
3151
3152// Internal constants for 32-bit systems.
3153template <> struct InternalConstants<4> {
3154 static const int kStringResourceOffset = 3 * sizeof(void*);
3155};
3156
3157// Internal constants for 64-bit systems.
3158template <> struct InternalConstants<8> {
Steve Block6ded16b2010-05-10 14:33:55 +01003159 static const int kStringResourceOffset = 3 * sizeof(void*);
Steve Blockd0582a62009-12-15 09:54:21 +00003160};
3161
Steve Blocka7e24c12009-10-30 11:49:00 +00003162/**
3163 * This class exports constants and functionality from within v8 that
3164 * is necessary to implement inline functions in the v8 api. Don't
3165 * depend on functions and constants defined here.
3166 */
3167class Internals {
3168 public:
3169
3170 // These values match non-compiler-dependent values defined within
3171 // the implementation of v8.
3172 static const int kHeapObjectMapOffset = 0;
3173 static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int);
Steve Blockd0582a62009-12-15 09:54:21 +00003174 static const int kStringResourceOffset =
3175 InternalConstants<sizeof(void*)>::kStringResourceOffset;
3176
Steve Blocka7e24c12009-10-30 11:49:00 +00003177 static const int kProxyProxyOffset = sizeof(void*);
3178 static const int kJSObjectHeaderSize = 3 * sizeof(void*);
3179 static const int kFullStringRepresentationMask = 0x07;
3180 static const int kExternalTwoByteRepresentationTag = 0x03;
Steve Blocka7e24c12009-10-30 11:49:00 +00003181
3182 // These constants are compiler dependent so their values must be
3183 // defined within the implementation.
3184 V8EXPORT static int kJSObjectType;
3185 V8EXPORT static int kFirstNonstringType;
3186 V8EXPORT static int kProxyType;
3187
3188 static inline bool HasHeapObjectTag(internal::Object* value) {
3189 return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
3190 kHeapObjectTag);
3191 }
3192
3193 static inline bool HasSmiTag(internal::Object* value) {
3194 return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag);
3195 }
3196
3197 static inline int SmiValue(internal::Object* value) {
Steve Block3ce2e202009-11-05 08:53:23 +00003198 return SmiConstants<sizeof(void*)>::SmiToInt(value);
3199 }
3200
3201 static inline int GetInstanceType(internal::Object* obj) {
3202 typedef internal::Object O;
3203 O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
3204 return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
3205 }
3206
3207 static inline void* GetExternalPointer(internal::Object* obj) {
3208 if (HasSmiTag(obj)) {
3209 return obj;
3210 } else if (GetInstanceType(obj) == kProxyType) {
3211 return ReadField<void*>(obj, kProxyProxyOffset);
3212 } else {
3213 return NULL;
3214 }
Steve Blocka7e24c12009-10-30 11:49:00 +00003215 }
3216
3217 static inline bool IsExternalTwoByteString(int instance_type) {
3218 int representation = (instance_type & kFullStringRepresentationMask);
3219 return representation == kExternalTwoByteRepresentationTag;
3220 }
3221
3222 template <typename T>
3223 static inline T ReadField(Object* ptr, int offset) {
3224 uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
3225 return *reinterpret_cast<T*>(addr);
3226 }
3227
3228};
3229
3230}
3231
3232
3233template <class T>
3234Handle<T>::Handle() : val_(0) { }
3235
3236
3237template <class T>
3238Local<T>::Local() : Handle<T>() { }
3239
3240
3241template <class T>
3242Local<T> Local<T>::New(Handle<T> that) {
3243 if (that.IsEmpty()) return Local<T>();
3244 internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3245 return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p)));
3246}
3247
3248
3249template <class T>
3250Persistent<T> Persistent<T>::New(Handle<T> that) {
3251 if (that.IsEmpty()) return Persistent<T>();
3252 internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3253 return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p)));
3254}
3255
3256
3257template <class T>
3258bool Persistent<T>::IsNearDeath() const {
3259 if (this->IsEmpty()) return false;
3260 return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this));
3261}
3262
3263
3264template <class T>
3265bool Persistent<T>::IsWeak() const {
3266 if (this->IsEmpty()) return false;
3267 return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this));
3268}
3269
3270
3271template <class T>
3272void Persistent<T>::Dispose() {
3273 if (this->IsEmpty()) return;
3274 V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this));
3275}
3276
3277
3278template <class T>
3279Persistent<T>::Persistent() : Handle<T>() { }
3280
3281template <class T>
3282void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) {
3283 V8::MakeWeak(reinterpret_cast<internal::Object**>(**this),
3284 parameters,
3285 callback);
3286}
3287
3288template <class T>
3289void Persistent<T>::ClearWeak() {
3290 V8::ClearWeak(reinterpret_cast<internal::Object**>(**this));
3291}
3292
3293Local<Value> Arguments::operator[](int i) const {
3294 if (i < 0 || length_ <= i) return Local<Value>(*Undefined());
3295 return Local<Value>(reinterpret_cast<Value*>(values_ - i));
3296}
3297
3298
3299Local<Function> Arguments::Callee() const {
3300 return callee_;
3301}
3302
3303
3304Local<Object> Arguments::This() const {
3305 return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
3306}
3307
3308
3309Local<Object> Arguments::Holder() const {
3310 return holder_;
3311}
3312
3313
3314Local<Value> Arguments::Data() const {
3315 return data_;
3316}
3317
3318
3319bool Arguments::IsConstructCall() const {
3320 return is_construct_call_;
3321}
3322
3323
3324int Arguments::Length() const {
3325 return length_;
3326}
3327
3328
3329template <class T>
3330Local<T> HandleScope::Close(Handle<T> value) {
3331 internal::Object** before = reinterpret_cast<internal::Object**>(*value);
3332 internal::Object** after = RawClose(before);
3333 return Local<T>(reinterpret_cast<T*>(after));
3334}
3335
3336Handle<Value> ScriptOrigin::ResourceName() const {
3337 return resource_name_;
3338}
3339
3340
3341Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
3342 return resource_line_offset_;
3343}
3344
3345
3346Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
3347 return resource_column_offset_;
3348}
3349
3350
3351Handle<Boolean> Boolean::New(bool value) {
3352 return value ? True() : False();
3353}
3354
3355
3356void Template::Set(const char* name, v8::Handle<Data> value) {
3357 Set(v8::String::New(name), value);
3358}
3359
3360
3361Local<Value> Object::GetInternalField(int index) {
3362#ifndef V8_ENABLE_CHECKS
3363 Local<Value> quick_result = UncheckedGetInternalField(index);
3364 if (!quick_result.IsEmpty()) return quick_result;
3365#endif
3366 return CheckedGetInternalField(index);
3367}
3368
3369
3370Local<Value> Object::UncheckedGetInternalField(int index) {
3371 typedef internal::Object O;
3372 typedef internal::Internals I;
3373 O* obj = *reinterpret_cast<O**>(this);
Steve Block3ce2e202009-11-05 08:53:23 +00003374 if (I::GetInstanceType(obj) == I::kJSObjectType) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003375 // If the object is a plain JSObject, which is the common case,
3376 // we know where to find the internal fields and can return the
3377 // value directly.
3378 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3379 O* value = I::ReadField<O*>(obj, offset);
3380 O** result = HandleScope::CreateHandle(value);
3381 return Local<Value>(reinterpret_cast<Value*>(result));
3382 } else {
3383 return Local<Value>();
3384 }
3385}
3386
3387
3388void* External::Unwrap(Handle<v8::Value> obj) {
3389#ifdef V8_ENABLE_CHECKS
3390 return FullUnwrap(obj);
3391#else
3392 return QuickUnwrap(obj);
3393#endif
3394}
3395
3396
3397void* External::QuickUnwrap(Handle<v8::Value> wrapper) {
3398 typedef internal::Object O;
Steve Blocka7e24c12009-10-30 11:49:00 +00003399 O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper));
Steve Block3ce2e202009-11-05 08:53:23 +00003400 return internal::Internals::GetExternalPointer(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00003401}
3402
3403
3404void* Object::GetPointerFromInternalField(int index) {
Steve Block3ce2e202009-11-05 08:53:23 +00003405 typedef internal::Object O;
3406 typedef internal::Internals I;
3407
3408 O* obj = *reinterpret_cast<O**>(this);
3409
3410 if (I::GetInstanceType(obj) == I::kJSObjectType) {
3411 // If the object is a plain JSObject, which is the common case,
3412 // we know where to find the internal fields and can return the
3413 // value directly.
3414 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3415 O* value = I::ReadField<O*>(obj, offset);
3416 return I::GetExternalPointer(value);
3417 }
3418
3419 return SlowGetPointerFromInternalField(index);
Steve Blocka7e24c12009-10-30 11:49:00 +00003420}
3421
3422
3423String* String::Cast(v8::Value* value) {
3424#ifdef V8_ENABLE_CHECKS
3425 CheckCast(value);
3426#endif
3427 return static_cast<String*>(value);
3428}
3429
3430
3431String::ExternalStringResource* String::GetExternalStringResource() const {
3432 typedef internal::Object O;
3433 typedef internal::Internals I;
3434 O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
Steve Blocka7e24c12009-10-30 11:49:00 +00003435 String::ExternalStringResource* result;
Steve Block3ce2e202009-11-05 08:53:23 +00003436 if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003437 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
3438 result = reinterpret_cast<String::ExternalStringResource*>(value);
3439 } else {
3440 result = NULL;
3441 }
3442#ifdef V8_ENABLE_CHECKS
3443 VerifyExternalStringResource(result);
3444#endif
3445 return result;
3446}
3447
3448
3449bool Value::IsString() const {
3450#ifdef V8_ENABLE_CHECKS
3451 return FullIsString();
3452#else
3453 return QuickIsString();
3454#endif
3455}
3456
3457bool Value::QuickIsString() const {
3458 typedef internal::Object O;
3459 typedef internal::Internals I;
3460 O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
3461 if (!I::HasHeapObjectTag(obj)) return false;
Steve Block3ce2e202009-11-05 08:53:23 +00003462 return (I::GetInstanceType(obj) < I::kFirstNonstringType);
Steve Blocka7e24c12009-10-30 11:49:00 +00003463}
3464
3465
3466Number* Number::Cast(v8::Value* value) {
3467#ifdef V8_ENABLE_CHECKS
3468 CheckCast(value);
3469#endif
3470 return static_cast<Number*>(value);
3471}
3472
3473
3474Integer* Integer::Cast(v8::Value* value) {
3475#ifdef V8_ENABLE_CHECKS
3476 CheckCast(value);
3477#endif
3478 return static_cast<Integer*>(value);
3479}
3480
3481
3482Date* Date::Cast(v8::Value* value) {
3483#ifdef V8_ENABLE_CHECKS
3484 CheckCast(value);
3485#endif
3486 return static_cast<Date*>(value);
3487}
3488
3489
3490Object* Object::Cast(v8::Value* value) {
3491#ifdef V8_ENABLE_CHECKS
3492 CheckCast(value);
3493#endif
3494 return static_cast<Object*>(value);
3495}
3496
3497
3498Array* Array::Cast(v8::Value* value) {
3499#ifdef V8_ENABLE_CHECKS
3500 CheckCast(value);
3501#endif
3502 return static_cast<Array*>(value);
3503}
3504
3505
3506Function* Function::Cast(v8::Value* value) {
3507#ifdef V8_ENABLE_CHECKS
3508 CheckCast(value);
3509#endif
3510 return static_cast<Function*>(value);
3511}
3512
3513
3514External* External::Cast(v8::Value* value) {
3515#ifdef V8_ENABLE_CHECKS
3516 CheckCast(value);
3517#endif
3518 return static_cast<External*>(value);
3519}
3520
3521
3522Local<Value> AccessorInfo::Data() const {
Steve Block6ded16b2010-05-10 14:33:55 +01003523 return Local<Value>(reinterpret_cast<Value*>(&args_[-2]));
Steve Blocka7e24c12009-10-30 11:49:00 +00003524}
3525
3526
3527Local<Object> AccessorInfo::This() const {
3528 return Local<Object>(reinterpret_cast<Object*>(&args_[0]));
3529}
3530
3531
3532Local<Object> AccessorInfo::Holder() const {
3533 return Local<Object>(reinterpret_cast<Object*>(&args_[-1]));
3534}
3535
3536
3537/**
3538 * \example shell.cc
3539 * A simple shell that takes a list of expressions on the
3540 * command-line and executes them.
3541 */
3542
3543
3544/**
3545 * \example process.cc
3546 */
3547
3548
3549} // namespace v8
3550
3551
3552#undef V8EXPORT
3553#undef V8EXPORT_INLINE
3554#undef TYPE_CHECK
3555
3556
3557#endif // V8_H_