blob: e9d3f467735d4f65eeb64b27ec7903e3e86c22af [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/crankshaft/arm/lithium-codegen-arm.h"
6
7#include "src/base/bits.h"
8#include "src/code-factory.h"
9#include "src/code-stubs.h"
10#include "src/crankshaft/arm/lithium-gap-resolver-arm.h"
11#include "src/crankshaft/hydrogen-osr.h"
12#include "src/ic/ic.h"
13#include "src/ic/stub-cache.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000014
15namespace v8 {
16namespace internal {
17
18
19class SafepointGenerator final : public CallWrapper {
20 public:
21 SafepointGenerator(LCodeGen* codegen,
22 LPointerMap* pointers,
23 Safepoint::DeoptMode mode)
24 : codegen_(codegen),
25 pointers_(pointers),
26 deopt_mode_(mode) { }
27 virtual ~SafepointGenerator() {}
28
29 void BeforeCall(int call_size) const override {}
30
31 void AfterCall() const override {
32 codegen_->RecordSafepoint(pointers_, deopt_mode_);
33 }
34
35 private:
36 LCodeGen* codegen_;
37 LPointerMap* pointers_;
38 Safepoint::DeoptMode deopt_mode_;
39};
40
41
42#define __ masm()->
43
44bool LCodeGen::GenerateCode() {
45 LPhase phase("Z_Code generation", chunk());
46 DCHECK(is_unused());
47 status_ = GENERATING;
48
49 // Open a frame scope to indicate that there is a frame on the stack. The
50 // NONE indicates that the scope shouldn't actually generate code to set up
51 // the frame (that is done in GeneratePrologue).
52 FrameScope frame_scope(masm_, StackFrame::NONE);
53
54 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
55 GenerateJumpTable() && GenerateSafepointTable();
56}
57
58
59void LCodeGen::FinishCode(Handle<Code> code) {
60 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +010061 code->set_stack_slots(GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000062 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
63 PopulateDeoptimizationData(code);
64}
65
66
67void LCodeGen::SaveCallerDoubles() {
68 DCHECK(info()->saves_caller_doubles());
69 DCHECK(NeedsEagerFrame());
70 Comment(";;; Save clobbered callee double registers");
71 int count = 0;
72 BitVector* doubles = chunk()->allocated_double_registers();
73 BitVector::Iterator save_iterator(doubles);
74 while (!save_iterator.Done()) {
75 __ vstr(DoubleRegister::from_code(save_iterator.Current()),
76 MemOperand(sp, count * kDoubleSize));
77 save_iterator.Advance();
78 count++;
79 }
80}
81
82
83void LCodeGen::RestoreCallerDoubles() {
84 DCHECK(info()->saves_caller_doubles());
85 DCHECK(NeedsEagerFrame());
86 Comment(";;; Restore clobbered callee double registers");
87 BitVector* doubles = chunk()->allocated_double_registers();
88 BitVector::Iterator save_iterator(doubles);
89 int count = 0;
90 while (!save_iterator.Done()) {
91 __ vldr(DoubleRegister::from_code(save_iterator.Current()),
92 MemOperand(sp, count * kDoubleSize));
93 save_iterator.Advance();
94 count++;
95 }
96}
97
98
99bool LCodeGen::GeneratePrologue() {
100 DCHECK(is_generating());
101
102 if (info()->IsOptimizing()) {
103 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
104
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000105 // r1: Callee's JS function.
106 // cp: Callee's context.
107 // pp: Callee's constant pool pointer (if enabled)
108 // fp: Caller's frame pointer.
109 // lr: Caller's pc.
110 }
111
112 info()->set_prologue_offset(masm_->pc_offset());
113 if (NeedsEagerFrame()) {
114 if (info()->IsStub()) {
Ben Murdochda12d292016-06-02 14:46:10 +0100115 __ StubPrologue(StackFrame::STUB);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000116 } else {
117 __ Prologue(info()->GeneratePreagedPrologue());
118 }
119 frame_is_built_ = true;
120 }
121
122 // Reserve space for the stack slots needed by the code.
123 int slots = GetStackSlotCount();
124 if (slots > 0) {
125 if (FLAG_debug_code) {
126 __ sub(sp, sp, Operand(slots * kPointerSize));
127 __ push(r0);
128 __ push(r1);
129 __ add(r0, sp, Operand(slots * kPointerSize));
130 __ mov(r1, Operand(kSlotsZapValue));
131 Label loop;
132 __ bind(&loop);
133 __ sub(r0, r0, Operand(kPointerSize));
134 __ str(r1, MemOperand(r0, 2 * kPointerSize));
135 __ cmp(r0, sp);
136 __ b(ne, &loop);
137 __ pop(r1);
138 __ pop(r0);
139 } else {
140 __ sub(sp, sp, Operand(slots * kPointerSize));
141 }
142 }
143
144 if (info()->saves_caller_doubles()) {
145 SaveCallerDoubles();
146 }
147 return !is_aborted();
148}
149
150
151void LCodeGen::DoPrologue(LPrologue* instr) {
152 Comment(";;; Prologue begin");
153
154 // Possibly allocate a local context.
155 if (info()->scope()->num_heap_slots() > 0) {
156 Comment(";;; Allocate local context");
157 bool need_write_barrier = true;
158 // Argument to NewContext is the function, which is in r1.
159 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
160 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
161 if (info()->scope()->is_script_scope()) {
162 __ push(r1);
163 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
164 __ CallRuntime(Runtime::kNewScriptContext);
165 deopt_mode = Safepoint::kLazyDeopt;
166 } else if (slots <= FastNewContextStub::kMaximumSlots) {
167 FastNewContextStub stub(isolate(), slots);
168 __ CallStub(&stub);
169 // Result of FastNewContextStub is always in new space.
170 need_write_barrier = false;
171 } else {
172 __ push(r1);
173 __ CallRuntime(Runtime::kNewFunctionContext);
174 }
175 RecordSafepoint(deopt_mode);
176
177 // Context is returned in both r0 and cp. It replaces the context
178 // passed to us. It's saved in the stack and kept live in cp.
179 __ mov(cp, r0);
180 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
181 // Copy any necessary parameters into the context.
182 int num_parameters = scope()->num_parameters();
183 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
184 for (int i = first_parameter; i < num_parameters; i++) {
185 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
186 if (var->IsContextSlot()) {
187 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
188 (num_parameters - 1 - i) * kPointerSize;
189 // Load parameter from stack.
190 __ ldr(r0, MemOperand(fp, parameter_offset));
191 // Store it in the context.
192 MemOperand target = ContextMemOperand(cp, var->index());
193 __ str(r0, target);
194 // Update the write barrier. This clobbers r3 and r0.
195 if (need_write_barrier) {
196 __ RecordWriteContextSlot(
197 cp,
198 target.offset(),
199 r0,
200 r3,
201 GetLinkRegisterState(),
202 kSaveFPRegs);
203 } else if (FLAG_debug_code) {
204 Label done;
205 __ JumpIfInNewSpace(cp, r0, &done);
206 __ Abort(kExpectedNewSpaceObject);
207 __ bind(&done);
208 }
209 }
210 }
211 Comment(";;; End allocate local context");
212 }
213
214 Comment(";;; Prologue end");
215}
216
217
218void LCodeGen::GenerateOsrPrologue() {
219 // Generate the OSR entry prologue at the first unknown OSR value, or if there
220 // are none, at the OSR entrypoint instruction.
221 if (osr_pc_offset_ >= 0) return;
222
223 osr_pc_offset_ = masm()->pc_offset();
224
225 // Adjust the frame size, subsuming the unoptimized frame into the
226 // optimized frame.
227 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
228 DCHECK(slots >= 0);
229 __ sub(sp, sp, Operand(slots * kPointerSize));
230}
231
232
233void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
234 if (instr->IsCall()) {
235 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
236 }
237 if (!instr->IsLazyBailout() && !instr->IsGap()) {
238 safepoints_.BumpLastLazySafepointIndex();
239 }
240}
241
242
243bool LCodeGen::GenerateDeferredCode() {
244 DCHECK(is_generating());
245 if (deferred_.length() > 0) {
246 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
247 LDeferredCode* code = deferred_[i];
248
249 HValue* value =
250 instructions_->at(code->instruction_index())->hydrogen_value();
251 RecordAndWritePosition(
252 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
253
254 Comment(";;; <@%d,#%d> "
255 "-------------------- Deferred %s --------------------",
256 code->instruction_index(),
257 code->instr()->hydrogen_value()->id(),
258 code->instr()->Mnemonic());
259 __ bind(code->entry());
260 if (NeedsDeferredFrame()) {
261 Comment(";;; Build frame");
262 DCHECK(!frame_is_built_);
263 DCHECK(info()->IsStub());
264 frame_is_built_ = true;
Ben Murdochda12d292016-06-02 14:46:10 +0100265 __ Move(scratch0(), Smi::FromInt(StackFrame::STUB));
266 __ PushCommonFrame(scratch0());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000267 Comment(";;; Deferred code");
268 }
269 code->Generate();
270 if (NeedsDeferredFrame()) {
271 Comment(";;; Destroy frame");
272 DCHECK(frame_is_built_);
Ben Murdochda12d292016-06-02 14:46:10 +0100273 __ PopCommonFrame(scratch0());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000274 frame_is_built_ = false;
275 }
276 __ jmp(code->exit());
277 }
278 }
279
280 // Force constant pool emission at the end of the deferred code to make
281 // sure that no constant pools are emitted after.
282 masm()->CheckConstPool(true, false);
283
284 return !is_aborted();
285}
286
287
288bool LCodeGen::GenerateJumpTable() {
289 // Check that the jump table is accessible from everywhere in the function
290 // code, i.e. that offsets to the table can be encoded in the 24bit signed
291 // immediate of a branch instruction.
292 // To simplify we consider the code size from the first instruction to the
293 // end of the jump table. We also don't consider the pc load delta.
294 // Each entry in the jump table generates one instruction and inlines one
295 // 32bit data after it.
296 if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
297 jump_table_.length() * 7)) {
298 Abort(kGeneratedCodeIsTooLarge);
299 }
300
301 if (jump_table_.length() > 0) {
302 Label needs_frame, call_deopt_entry;
303
304 Comment(";;; -------------------- Jump table --------------------");
305 Address base = jump_table_[0].address;
306
307 Register entry_offset = scratch0();
308
309 int length = jump_table_.length();
310 for (int i = 0; i < length; i++) {
311 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
312 __ bind(&table_entry->label);
313
314 DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
315 Address entry = table_entry->address;
316 DeoptComment(table_entry->deopt_info);
317
318 // Second-level deopt table entries are contiguous and small, so instead
319 // of loading the full, absolute address of each one, load an immediate
320 // offset which will be added to the base address later.
321 __ mov(entry_offset, Operand(entry - base));
322
323 if (table_entry->needs_frame) {
324 DCHECK(!info()->saves_caller_doubles());
325 Comment(";;; call deopt with frame");
Ben Murdochda12d292016-06-02 14:46:10 +0100326 __ PushCommonFrame();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000327 __ bl(&needs_frame);
328 } else {
329 __ bl(&call_deopt_entry);
330 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000331 masm()->CheckConstPool(false, false);
332 }
333
334 if (needs_frame.is_linked()) {
335 __ bind(&needs_frame);
336 // This variant of deopt can only be used with stubs. Since we don't
337 // have a function pointer to install in the stack frame that we're
338 // building, install a special marker there instead.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000339 __ mov(ip, Operand(Smi::FromInt(StackFrame::STUB)));
340 __ push(ip);
Ben Murdochda12d292016-06-02 14:46:10 +0100341 DCHECK(info()->IsStub());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000342 }
343
344 Comment(";;; call deopt");
345 __ bind(&call_deopt_entry);
346
347 if (info()->saves_caller_doubles()) {
348 DCHECK(info()->IsStub());
349 RestoreCallerDoubles();
350 }
351
352 // Add the base address to the offset previously loaded in entry_offset.
353 __ add(entry_offset, entry_offset,
354 Operand(ExternalReference::ForDeoptEntry(base)));
355 __ bx(entry_offset);
356 }
357
358 // Force constant pool emission at the end of the deopt jump table to make
359 // sure that no constant pools are emitted after.
360 masm()->CheckConstPool(true, false);
361
362 // The deoptimization jump table is the last part of the instruction
363 // sequence. Mark the generated code as done unless we bailed out.
364 if (!is_aborted()) status_ = DONE;
365 return !is_aborted();
366}
367
368
369bool LCodeGen::GenerateSafepointTable() {
370 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +0100371 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000372 return !is_aborted();
373}
374
375
376Register LCodeGen::ToRegister(int code) const {
377 return Register::from_code(code);
378}
379
380
381DwVfpRegister LCodeGen::ToDoubleRegister(int code) const {
382 return DwVfpRegister::from_code(code);
383}
384
385
386Register LCodeGen::ToRegister(LOperand* op) const {
387 DCHECK(op->IsRegister());
388 return ToRegister(op->index());
389}
390
391
392Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
393 if (op->IsRegister()) {
394 return ToRegister(op->index());
395 } else if (op->IsConstantOperand()) {
396 LConstantOperand* const_op = LConstantOperand::cast(op);
397 HConstant* constant = chunk_->LookupConstant(const_op);
398 Handle<Object> literal = constant->handle(isolate());
399 Representation r = chunk_->LookupLiteralRepresentation(const_op);
400 if (r.IsInteger32()) {
401 AllowDeferredHandleDereference get_number;
402 DCHECK(literal->IsNumber());
403 __ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
404 } else if (r.IsDouble()) {
405 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
406 } else {
407 DCHECK(r.IsSmiOrTagged());
408 __ Move(scratch, literal);
409 }
410 return scratch;
411 } else if (op->IsStackSlot()) {
412 __ ldr(scratch, ToMemOperand(op));
413 return scratch;
414 }
415 UNREACHABLE();
416 return scratch;
417}
418
419
420DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
421 DCHECK(op->IsDoubleRegister());
422 return ToDoubleRegister(op->index());
423}
424
425
426DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
427 SwVfpRegister flt_scratch,
428 DwVfpRegister dbl_scratch) {
429 if (op->IsDoubleRegister()) {
430 return ToDoubleRegister(op->index());
431 } else if (op->IsConstantOperand()) {
432 LConstantOperand* const_op = LConstantOperand::cast(op);
433 HConstant* constant = chunk_->LookupConstant(const_op);
434 Handle<Object> literal = constant->handle(isolate());
435 Representation r = chunk_->LookupLiteralRepresentation(const_op);
436 if (r.IsInteger32()) {
437 DCHECK(literal->IsNumber());
438 __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
439 __ vmov(flt_scratch, ip);
440 __ vcvt_f64_s32(dbl_scratch, flt_scratch);
441 return dbl_scratch;
442 } else if (r.IsDouble()) {
443 Abort(kUnsupportedDoubleImmediate);
444 } else if (r.IsTagged()) {
445 Abort(kUnsupportedTaggedImmediate);
446 }
447 } else if (op->IsStackSlot()) {
448 // TODO(regis): Why is vldr not taking a MemOperand?
449 // __ vldr(dbl_scratch, ToMemOperand(op));
450 MemOperand mem_op = ToMemOperand(op);
451 __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
452 return dbl_scratch;
453 }
454 UNREACHABLE();
455 return dbl_scratch;
456}
457
458
459Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
460 HConstant* constant = chunk_->LookupConstant(op);
461 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
462 return constant->handle(isolate());
463}
464
465
466bool LCodeGen::IsInteger32(LConstantOperand* op) const {
467 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
468}
469
470
471bool LCodeGen::IsSmi(LConstantOperand* op) const {
472 return chunk_->LookupLiteralRepresentation(op).IsSmi();
473}
474
475
476int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
477 return ToRepresentation(op, Representation::Integer32());
478}
479
480
481int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
482 const Representation& r) const {
483 HConstant* constant = chunk_->LookupConstant(op);
484 int32_t value = constant->Integer32Value();
485 if (r.IsInteger32()) return value;
486 DCHECK(r.IsSmiOrTagged());
487 return reinterpret_cast<int32_t>(Smi::FromInt(value));
488}
489
490
491Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
492 HConstant* constant = chunk_->LookupConstant(op);
493 return Smi::FromInt(constant->Integer32Value());
494}
495
496
497double LCodeGen::ToDouble(LConstantOperand* op) const {
498 HConstant* constant = chunk_->LookupConstant(op);
499 DCHECK(constant->HasDoubleValue());
500 return constant->DoubleValue();
501}
502
503
504Operand LCodeGen::ToOperand(LOperand* op) {
505 if (op->IsConstantOperand()) {
506 LConstantOperand* const_op = LConstantOperand::cast(op);
507 HConstant* constant = chunk()->LookupConstant(const_op);
508 Representation r = chunk_->LookupLiteralRepresentation(const_op);
509 if (r.IsSmi()) {
510 DCHECK(constant->HasSmiValue());
511 return Operand(Smi::FromInt(constant->Integer32Value()));
512 } else if (r.IsInteger32()) {
513 DCHECK(constant->HasInteger32Value());
514 return Operand(constant->Integer32Value());
515 } else if (r.IsDouble()) {
516 Abort(kToOperandUnsupportedDoubleImmediate);
517 }
518 DCHECK(r.IsTagged());
519 return Operand(constant->handle(isolate()));
520 } else if (op->IsRegister()) {
521 return Operand(ToRegister(op));
522 } else if (op->IsDoubleRegister()) {
523 Abort(kToOperandIsDoubleRegisterUnimplemented);
524 return Operand::Zero();
525 }
526 // Stack slots not implemented, use ToMemOperand instead.
527 UNREACHABLE();
528 return Operand::Zero();
529}
530
531
532static int ArgumentsOffsetWithoutFrame(int index) {
533 DCHECK(index < 0);
534 return -(index + 1) * kPointerSize;
535}
536
537
538MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
539 DCHECK(!op->IsRegister());
540 DCHECK(!op->IsDoubleRegister());
541 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
542 if (NeedsEagerFrame()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100543 return MemOperand(fp, FrameSlotToFPOffset(op->index()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000544 } else {
545 // Retrieve parameter without eager stack-frame relative to the
546 // stack-pointer.
547 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
548 }
549}
550
551
552MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
553 DCHECK(op->IsDoubleStackSlot());
554 if (NeedsEagerFrame()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100555 return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000556 } else {
557 // Retrieve parameter without eager stack-frame relative to the
558 // stack-pointer.
559 return MemOperand(
560 sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
561 }
562}
563
564
565void LCodeGen::WriteTranslation(LEnvironment* environment,
566 Translation* translation) {
567 if (environment == NULL) return;
568
569 // The translation includes one command per value in the environment.
570 int translation_size = environment->translation_size();
571
572 WriteTranslation(environment->outer(), translation);
573 WriteTranslationFrame(environment, translation);
574
575 int object_index = 0;
576 int dematerialized_index = 0;
577 for (int i = 0; i < translation_size; ++i) {
578 LOperand* value = environment->values()->at(i);
579 AddToTranslation(
580 environment, translation, value, environment->HasTaggedValueAt(i),
581 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
582 }
583}
584
585
586void LCodeGen::AddToTranslation(LEnvironment* environment,
587 Translation* translation,
588 LOperand* op,
589 bool is_tagged,
590 bool is_uint32,
591 int* object_index_pointer,
592 int* dematerialized_index_pointer) {
593 if (op == LEnvironment::materialization_marker()) {
594 int object_index = (*object_index_pointer)++;
595 if (environment->ObjectIsDuplicateAt(object_index)) {
596 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
597 translation->DuplicateObject(dupe_of);
598 return;
599 }
600 int object_length = environment->ObjectLengthAt(object_index);
601 if (environment->ObjectIsArgumentsAt(object_index)) {
602 translation->BeginArgumentsObject(object_length);
603 } else {
604 translation->BeginCapturedObject(object_length);
605 }
606 int dematerialized_index = *dematerialized_index_pointer;
607 int env_offset = environment->translation_size() + dematerialized_index;
608 *dematerialized_index_pointer += object_length;
609 for (int i = 0; i < object_length; ++i) {
610 LOperand* value = environment->values()->at(env_offset + i);
611 AddToTranslation(environment,
612 translation,
613 value,
614 environment->HasTaggedValueAt(env_offset + i),
615 environment->HasUint32ValueAt(env_offset + i),
616 object_index_pointer,
617 dematerialized_index_pointer);
618 }
619 return;
620 }
621
622 if (op->IsStackSlot()) {
623 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000624 if (is_tagged) {
625 translation->StoreStackSlot(index);
626 } else if (is_uint32) {
627 translation->StoreUint32StackSlot(index);
628 } else {
629 translation->StoreInt32StackSlot(index);
630 }
631 } else if (op->IsDoubleStackSlot()) {
632 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000633 translation->StoreDoubleStackSlot(index);
634 } else if (op->IsRegister()) {
635 Register reg = ToRegister(op);
636 if (is_tagged) {
637 translation->StoreRegister(reg);
638 } else if (is_uint32) {
639 translation->StoreUint32Register(reg);
640 } else {
641 translation->StoreInt32Register(reg);
642 }
643 } else if (op->IsDoubleRegister()) {
644 DoubleRegister reg = ToDoubleRegister(op);
645 translation->StoreDoubleRegister(reg);
646 } else if (op->IsConstantOperand()) {
647 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
648 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
649 translation->StoreLiteral(src_index);
650 } else {
651 UNREACHABLE();
652 }
653}
654
655
656int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) {
657 int size = masm()->CallSize(code, mode);
658 if (code->kind() == Code::BINARY_OP_IC ||
659 code->kind() == Code::COMPARE_IC) {
660 size += Assembler::kInstrSize; // extra nop() added in CallCodeGeneric.
661 }
662 return size;
663}
664
665
666void LCodeGen::CallCode(Handle<Code> code,
667 RelocInfo::Mode mode,
668 LInstruction* instr,
669 TargetAddressStorageMode storage_mode) {
670 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
671}
672
673
674void LCodeGen::CallCodeGeneric(Handle<Code> code,
675 RelocInfo::Mode mode,
676 LInstruction* instr,
677 SafepointMode safepoint_mode,
678 TargetAddressStorageMode storage_mode) {
679 DCHECK(instr != NULL);
680 // Block literal pool emission to ensure nop indicating no inlined smi code
681 // is in the correct position.
682 Assembler::BlockConstPoolScope block_const_pool(masm());
683 __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
684 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
685
686 // Signal that we don't inline smi code before these stubs in the
687 // optimizing code generator.
688 if (code->kind() == Code::BINARY_OP_IC ||
689 code->kind() == Code::COMPARE_IC) {
690 __ nop();
691 }
692}
693
694
695void LCodeGen::CallRuntime(const Runtime::Function* function,
696 int num_arguments,
697 LInstruction* instr,
698 SaveFPRegsMode save_doubles) {
699 DCHECK(instr != NULL);
700
701 __ CallRuntime(function, num_arguments, save_doubles);
702
703 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
704}
705
706
707void LCodeGen::LoadContextFromDeferred(LOperand* context) {
708 if (context->IsRegister()) {
709 __ Move(cp, ToRegister(context));
710 } else if (context->IsStackSlot()) {
711 __ ldr(cp, ToMemOperand(context));
712 } else if (context->IsConstantOperand()) {
713 HConstant* constant =
714 chunk_->LookupConstant(LConstantOperand::cast(context));
715 __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
716 } else {
717 UNREACHABLE();
718 }
719}
720
721
722void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
723 int argc,
724 LInstruction* instr,
725 LOperand* context) {
726 LoadContextFromDeferred(context);
727 __ CallRuntimeSaveDoubles(id);
728 RecordSafepointWithRegisters(
729 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
730}
731
732
733void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
734 Safepoint::DeoptMode mode) {
735 environment->set_has_been_used();
736 if (!environment->HasBeenRegistered()) {
737 // Physical stack frame layout:
738 // -x ............. -4 0 ..................................... y
739 // [incoming arguments] [spill slots] [pushed outgoing arguments]
740
741 // Layout of the environment:
742 // 0 ..................................................... size-1
743 // [parameters] [locals] [expression stack including arguments]
744
745 // Layout of the translation:
746 // 0 ........................................................ size - 1 + 4
747 // [expression stack including arguments] [locals] [4 words] [parameters]
748 // |>------------ translation_size ------------<|
749
750 int frame_count = 0;
751 int jsframe_count = 0;
752 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
753 ++frame_count;
754 if (e->frame_type() == JS_FUNCTION) {
755 ++jsframe_count;
756 }
757 }
758 Translation translation(&translations_, frame_count, jsframe_count, zone());
759 WriteTranslation(environment, &translation);
760 int deoptimization_index = deoptimizations_.length();
761 int pc_offset = masm()->pc_offset();
762 environment->Register(deoptimization_index,
763 translation.index(),
764 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
765 deoptimizations_.Add(environment, zone());
766 }
767}
768
769
770void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
771 Deoptimizer::DeoptReason deopt_reason,
772 Deoptimizer::BailoutType bailout_type) {
773 LEnvironment* environment = instr->environment();
774 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
775 DCHECK(environment->HasBeenRegistered());
776 int id = environment->deoptimization_index();
777 Address entry =
778 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
779 if (entry == NULL) {
780 Abort(kBailoutWasNotPrepared);
781 return;
782 }
783
784 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
785 Register scratch = scratch0();
786 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
787
788 // Store the condition on the stack if necessary
789 if (condition != al) {
790 __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
791 __ mov(scratch, Operand(1), LeaveCC, condition);
792 __ push(scratch);
793 }
794
795 __ push(r1);
796 __ mov(scratch, Operand(count));
797 __ ldr(r1, MemOperand(scratch));
798 __ sub(r1, r1, Operand(1), SetCC);
799 __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
800 __ str(r1, MemOperand(scratch));
801 __ pop(r1);
802
803 if (condition != al) {
804 // Clean up the stack before the deoptimizer call
805 __ pop(scratch);
806 }
807
808 __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
809
810 // 'Restore' the condition in a slightly hacky way. (It would be better
811 // to use 'msr' and 'mrs' instructions here, but they are not supported by
812 // our ARM simulator).
813 if (condition != al) {
814 condition = ne;
815 __ cmp(scratch, Operand::Zero());
816 }
817 }
818
819 if (info()->ShouldTrapOnDeopt()) {
820 __ stop("trap_on_deopt", condition);
821 }
822
Ben Murdochc5610432016-08-08 18:44:38 +0100823 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000824
825 DCHECK(info()->IsStub() || frame_is_built_);
826 // Go through jump table if we need to handle condition, build frame, or
827 // restore caller doubles.
828 if (condition == al && frame_is_built_ &&
829 !info()->saves_caller_doubles()) {
830 DeoptComment(deopt_info);
831 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000832 } else {
833 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
834 !frame_is_built_);
835 // We often have several deopts to the same entry, reuse the last
836 // jump entry if this is the case.
Ben Murdoch61f157c2016-09-16 13:49:30 +0100837 if (FLAG_trace_deopt || isolate()->is_profiling() ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000838 jump_table_.is_empty() ||
839 !table_entry.IsEquivalentTo(jump_table_.last())) {
840 jump_table_.Add(table_entry, zone());
841 }
842 __ b(condition, &jump_table_.last().label);
843 }
844}
845
846
847void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
848 Deoptimizer::DeoptReason deopt_reason) {
849 Deoptimizer::BailoutType bailout_type = info()->IsStub()
850 ? Deoptimizer::LAZY
851 : Deoptimizer::EAGER;
852 DeoptimizeIf(condition, instr, deopt_reason, bailout_type);
853}
854
855
856void LCodeGen::RecordSafepointWithLazyDeopt(
857 LInstruction* instr, SafepointMode safepoint_mode) {
858 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
859 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
860 } else {
861 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
862 RecordSafepointWithRegisters(
863 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
864 }
865}
866
867
868void LCodeGen::RecordSafepoint(
869 LPointerMap* pointers,
870 Safepoint::Kind kind,
871 int arguments,
872 Safepoint::DeoptMode deopt_mode) {
873 DCHECK(expected_safepoint_kind_ == kind);
874
875 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
876 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
877 kind, arguments, deopt_mode);
878 for (int i = 0; i < operands->length(); i++) {
879 LOperand* pointer = operands->at(i);
880 if (pointer->IsStackSlot()) {
881 safepoint.DefinePointerSlot(pointer->index(), zone());
882 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
883 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
884 }
885 }
886}
887
888
889void LCodeGen::RecordSafepoint(LPointerMap* pointers,
890 Safepoint::DeoptMode deopt_mode) {
891 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
892}
893
894
895void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
896 LPointerMap empty_pointers(zone());
897 RecordSafepoint(&empty_pointers, deopt_mode);
898}
899
900
901void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
902 int arguments,
903 Safepoint::DeoptMode deopt_mode) {
904 RecordSafepoint(
905 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
906}
907
908
909void LCodeGen::RecordAndWritePosition(int position) {
910 if (position == RelocInfo::kNoPosition) return;
911 masm()->positions_recorder()->RecordPosition(position);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000912}
913
914
915static const char* LabelType(LLabel* label) {
916 if (label->is_loop_header()) return " (loop header)";
917 if (label->is_osr_entry()) return " (OSR entry)";
918 return "";
919}
920
921
922void LCodeGen::DoLabel(LLabel* label) {
923 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
924 current_instruction_,
925 label->hydrogen_value()->id(),
926 label->block_id(),
927 LabelType(label));
928 __ bind(label->label());
929 current_block_ = label->block_id();
930 DoGap(label);
931}
932
933
934void LCodeGen::DoParallelMove(LParallelMove* move) {
935 resolver_.Resolve(move);
936}
937
938
939void LCodeGen::DoGap(LGap* gap) {
940 for (int i = LGap::FIRST_INNER_POSITION;
941 i <= LGap::LAST_INNER_POSITION;
942 i++) {
943 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
944 LParallelMove* move = gap->GetParallelMove(inner_pos);
945 if (move != NULL) DoParallelMove(move);
946 }
947}
948
949
950void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
951 DoGap(instr);
952}
953
954
955void LCodeGen::DoParameter(LParameter* instr) {
956 // Nothing to do.
957}
958
959
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000960void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
961 GenerateOsrPrologue();
962}
963
964
965void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
966 Register dividend = ToRegister(instr->dividend());
967 int32_t divisor = instr->divisor();
968 DCHECK(dividend.is(ToRegister(instr->result())));
969
970 // Theoretically, a variation of the branch-free code for integer division by
971 // a power of 2 (calculating the remainder via an additional multiplication
972 // (which gets simplified to an 'and') and subtraction) should be faster, and
973 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
974 // indicate that positive dividends are heavily favored, so the branching
975 // version performs better.
976 HMod* hmod = instr->hydrogen();
977 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
978 Label dividend_is_not_negative, done;
979 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
980 __ cmp(dividend, Operand::Zero());
981 __ b(pl, &dividend_is_not_negative);
982 // Note that this is correct even for kMinInt operands.
983 __ rsb(dividend, dividend, Operand::Zero());
984 __ and_(dividend, dividend, Operand(mask));
985 __ rsb(dividend, dividend, Operand::Zero(), SetCC);
986 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
987 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
988 }
989 __ b(&done);
990 }
991
992 __ bind(&dividend_is_not_negative);
993 __ and_(dividend, dividend, Operand(mask));
994 __ bind(&done);
995}
996
997
998void LCodeGen::DoModByConstI(LModByConstI* instr) {
999 Register dividend = ToRegister(instr->dividend());
1000 int32_t divisor = instr->divisor();
1001 Register result = ToRegister(instr->result());
1002 DCHECK(!dividend.is(result));
1003
1004 if (divisor == 0) {
1005 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1006 return;
1007 }
1008
1009 __ TruncatingDiv(result, dividend, Abs(divisor));
1010 __ mov(ip, Operand(Abs(divisor)));
1011 __ smull(result, ip, result, ip);
1012 __ sub(result, dividend, result, SetCC);
1013
1014 // Check for negative zero.
1015 HMod* hmod = instr->hydrogen();
1016 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1017 Label remainder_not_zero;
1018 __ b(ne, &remainder_not_zero);
1019 __ cmp(dividend, Operand::Zero());
1020 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1021 __ bind(&remainder_not_zero);
1022 }
1023}
1024
1025
1026void LCodeGen::DoModI(LModI* instr) {
1027 HMod* hmod = instr->hydrogen();
1028 if (CpuFeatures::IsSupported(SUDIV)) {
1029 CpuFeatureScope scope(masm(), SUDIV);
1030
1031 Register left_reg = ToRegister(instr->left());
1032 Register right_reg = ToRegister(instr->right());
1033 Register result_reg = ToRegister(instr->result());
1034
1035 Label done;
1036 // Check for x % 0, sdiv might signal an exception. We have to deopt in this
1037 // case because we can't return a NaN.
1038 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1039 __ cmp(right_reg, Operand::Zero());
1040 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1041 }
1042
1043 // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
1044 // want. We have to deopt if we care about -0, because we can't return that.
1045 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1046 Label no_overflow_possible;
1047 __ cmp(left_reg, Operand(kMinInt));
1048 __ b(ne, &no_overflow_possible);
1049 __ cmp(right_reg, Operand(-1));
1050 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1051 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1052 } else {
1053 __ b(ne, &no_overflow_possible);
1054 __ mov(result_reg, Operand::Zero());
1055 __ jmp(&done);
1056 }
1057 __ bind(&no_overflow_possible);
1058 }
1059
1060 // For 'r3 = r1 % r2' we can have the following ARM code:
1061 // sdiv r3, r1, r2
1062 // mls r3, r3, r2, r1
1063
1064 __ sdiv(result_reg, left_reg, right_reg);
1065 __ Mls(result_reg, result_reg, right_reg, left_reg);
1066
1067 // If we care about -0, test if the dividend is <0 and the result is 0.
1068 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1069 __ cmp(result_reg, Operand::Zero());
1070 __ b(ne, &done);
1071 __ cmp(left_reg, Operand::Zero());
1072 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1073 }
1074 __ bind(&done);
1075
1076 } else {
1077 // General case, without any SDIV support.
1078 Register left_reg = ToRegister(instr->left());
1079 Register right_reg = ToRegister(instr->right());
1080 Register result_reg = ToRegister(instr->result());
1081 Register scratch = scratch0();
1082 DCHECK(!scratch.is(left_reg));
1083 DCHECK(!scratch.is(right_reg));
1084 DCHECK(!scratch.is(result_reg));
1085 DwVfpRegister dividend = ToDoubleRegister(instr->temp());
1086 DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
1087 DCHECK(!divisor.is(dividend));
1088 LowDwVfpRegister quotient = double_scratch0();
1089 DCHECK(!quotient.is(dividend));
1090 DCHECK(!quotient.is(divisor));
1091
1092 Label done;
1093 // Check for x % 0, we have to deopt in this case because we can't return a
1094 // NaN.
1095 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1096 __ cmp(right_reg, Operand::Zero());
1097 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1098 }
1099
1100 __ Move(result_reg, left_reg);
1101 // Load the arguments in VFP registers. The divisor value is preloaded
1102 // before. Be careful that 'right_reg' is only live on entry.
1103 // TODO(svenpanne) The last comments seems to be wrong nowadays.
1104 __ vmov(double_scratch0().low(), left_reg);
1105 __ vcvt_f64_s32(dividend, double_scratch0().low());
1106 __ vmov(double_scratch0().low(), right_reg);
1107 __ vcvt_f64_s32(divisor, double_scratch0().low());
1108
1109 // We do not care about the sign of the divisor. Note that we still handle
1110 // the kMinInt % -1 case correctly, though.
1111 __ vabs(divisor, divisor);
1112 // Compute the quotient and round it to a 32bit integer.
1113 __ vdiv(quotient, dividend, divisor);
1114 __ vcvt_s32_f64(quotient.low(), quotient);
1115 __ vcvt_f64_s32(quotient, quotient.low());
1116
1117 // Compute the remainder in result.
1118 __ vmul(double_scratch0(), divisor, quotient);
1119 __ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
1120 __ vmov(scratch, double_scratch0().low());
1121 __ sub(result_reg, left_reg, scratch, SetCC);
1122
1123 // If we care about -0, test if the dividend is <0 and the result is 0.
1124 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1125 __ b(ne, &done);
1126 __ cmp(left_reg, Operand::Zero());
1127 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
1128 }
1129 __ bind(&done);
1130 }
1131}
1132
1133
1134void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1135 Register dividend = ToRegister(instr->dividend());
1136 int32_t divisor = instr->divisor();
1137 Register result = ToRegister(instr->result());
1138 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1139 DCHECK(!result.is(dividend));
1140
1141 // Check for (0 / -x) that will produce negative zero.
1142 HDiv* hdiv = instr->hydrogen();
1143 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1144 __ cmp(dividend, Operand::Zero());
1145 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1146 }
1147 // Check for (kMinInt / -1).
1148 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1149 __ cmp(dividend, Operand(kMinInt));
1150 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1151 }
1152 // Deoptimize if remainder will not be 0.
1153 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1154 divisor != 1 && divisor != -1) {
1155 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1156 __ tst(dividend, Operand(mask));
1157 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1158 }
1159
1160 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1161 __ rsb(result, dividend, Operand(0));
1162 return;
1163 }
1164 int32_t shift = WhichPowerOf2Abs(divisor);
1165 if (shift == 0) {
1166 __ mov(result, dividend);
1167 } else if (shift == 1) {
1168 __ add(result, dividend, Operand(dividend, LSR, 31));
1169 } else {
1170 __ mov(result, Operand(dividend, ASR, 31));
1171 __ add(result, dividend, Operand(result, LSR, 32 - shift));
1172 }
1173 if (shift > 0) __ mov(result, Operand(result, ASR, shift));
1174 if (divisor < 0) __ rsb(result, result, Operand(0));
1175}
1176
1177
1178void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1179 Register dividend = ToRegister(instr->dividend());
1180 int32_t divisor = instr->divisor();
1181 Register result = ToRegister(instr->result());
1182 DCHECK(!dividend.is(result));
1183
1184 if (divisor == 0) {
1185 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1186 return;
1187 }
1188
1189 // Check for (0 / -x) that will produce negative zero.
1190 HDiv* hdiv = instr->hydrogen();
1191 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1192 __ cmp(dividend, Operand::Zero());
1193 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1194 }
1195
1196 __ TruncatingDiv(result, dividend, Abs(divisor));
1197 if (divisor < 0) __ rsb(result, result, Operand::Zero());
1198
1199 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1200 __ mov(ip, Operand(divisor));
1201 __ smull(scratch0(), ip, result, ip);
1202 __ sub(scratch0(), scratch0(), dividend, SetCC);
1203 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1204 }
1205}
1206
1207
1208// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1209void LCodeGen::DoDivI(LDivI* instr) {
1210 HBinaryOperation* hdiv = instr->hydrogen();
1211 Register dividend = ToRegister(instr->dividend());
1212 Register divisor = ToRegister(instr->divisor());
1213 Register result = ToRegister(instr->result());
1214
1215 // Check for x / 0.
1216 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1217 __ cmp(divisor, Operand::Zero());
1218 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1219 }
1220
1221 // Check for (0 / -x) that will produce negative zero.
1222 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1223 Label positive;
1224 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1225 // Do the test only if it hadn't be done above.
1226 __ cmp(divisor, Operand::Zero());
1227 }
1228 __ b(pl, &positive);
1229 __ cmp(dividend, Operand::Zero());
1230 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1231 __ bind(&positive);
1232 }
1233
1234 // Check for (kMinInt / -1).
1235 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1236 (!CpuFeatures::IsSupported(SUDIV) ||
1237 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1238 // We don't need to check for overflow when truncating with sdiv
1239 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1240 __ cmp(dividend, Operand(kMinInt));
1241 __ cmp(divisor, Operand(-1), eq);
1242 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1243 }
1244
1245 if (CpuFeatures::IsSupported(SUDIV)) {
1246 CpuFeatureScope scope(masm(), SUDIV);
1247 __ sdiv(result, dividend, divisor);
1248 } else {
1249 DoubleRegister vleft = ToDoubleRegister(instr->temp());
1250 DoubleRegister vright = double_scratch0();
1251 __ vmov(double_scratch0().low(), dividend);
1252 __ vcvt_f64_s32(vleft, double_scratch0().low());
1253 __ vmov(double_scratch0().low(), divisor);
1254 __ vcvt_f64_s32(vright, double_scratch0().low());
1255 __ vdiv(vleft, vleft, vright); // vleft now contains the result.
1256 __ vcvt_s32_f64(double_scratch0().low(), vleft);
1257 __ vmov(result, double_scratch0().low());
1258 }
1259
1260 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1261 // Compute remainder and deopt if it's not zero.
1262 Register remainder = scratch0();
1263 __ Mls(remainder, result, divisor, dividend);
1264 __ cmp(remainder, Operand::Zero());
1265 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1266 }
1267}
1268
1269
1270void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1271 DwVfpRegister addend = ToDoubleRegister(instr->addend());
1272 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1273 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1274
1275 // This is computed in-place.
1276 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1277
1278 __ vmla(addend, multiplier, multiplicand);
1279}
1280
1281
1282void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1283 DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
1284 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1285 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1286
1287 // This is computed in-place.
1288 DCHECK(minuend.is(ToDoubleRegister(instr->result())));
1289
1290 __ vmls(minuend, multiplier, multiplicand);
1291}
1292
1293
1294void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1295 Register dividend = ToRegister(instr->dividend());
1296 Register result = ToRegister(instr->result());
1297 int32_t divisor = instr->divisor();
1298
1299 // If the divisor is 1, return the dividend.
1300 if (divisor == 1) {
1301 __ Move(result, dividend);
1302 return;
1303 }
1304
1305 // If the divisor is positive, things are easy: There can be no deopts and we
1306 // can simply do an arithmetic right shift.
1307 int32_t shift = WhichPowerOf2Abs(divisor);
1308 if (divisor > 1) {
1309 __ mov(result, Operand(dividend, ASR, shift));
1310 return;
1311 }
1312
1313 // If the divisor is negative, we have to negate and handle edge cases.
1314 __ rsb(result, dividend, Operand::Zero(), SetCC);
1315 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1316 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1317 }
1318
1319 // Dividing by -1 is basically negation, unless we overflow.
1320 if (divisor == -1) {
1321 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1322 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1323 }
1324 return;
1325 }
1326
1327 // If the negation could not overflow, simply shifting is OK.
1328 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1329 __ mov(result, Operand(result, ASR, shift));
1330 return;
1331 }
1332
1333 __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs);
1334 __ mov(result, Operand(result, ASR, shift), LeaveCC, vc);
1335}
1336
1337
1338void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1339 Register dividend = ToRegister(instr->dividend());
1340 int32_t divisor = instr->divisor();
1341 Register result = ToRegister(instr->result());
1342 DCHECK(!dividend.is(result));
1343
1344 if (divisor == 0) {
1345 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1346 return;
1347 }
1348
1349 // Check for (0 / -x) that will produce negative zero.
1350 HMathFloorOfDiv* hdiv = instr->hydrogen();
1351 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1352 __ cmp(dividend, Operand::Zero());
1353 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1354 }
1355
1356 // Easy case: We need no dynamic check for the dividend and the flooring
1357 // division is the same as the truncating division.
1358 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1359 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1360 __ TruncatingDiv(result, dividend, Abs(divisor));
1361 if (divisor < 0) __ rsb(result, result, Operand::Zero());
1362 return;
1363 }
1364
1365 // In the general case we may need to adjust before and after the truncating
1366 // division to get a flooring division.
1367 Register temp = ToRegister(instr->temp());
1368 DCHECK(!temp.is(dividend) && !temp.is(result));
1369 Label needs_adjustment, done;
1370 __ cmp(dividend, Operand::Zero());
1371 __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1372 __ TruncatingDiv(result, dividend, Abs(divisor));
1373 if (divisor < 0) __ rsb(result, result, Operand::Zero());
1374 __ jmp(&done);
1375 __ bind(&needs_adjustment);
1376 __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1377 __ TruncatingDiv(result, temp, Abs(divisor));
1378 if (divisor < 0) __ rsb(result, result, Operand::Zero());
1379 __ sub(result, result, Operand(1));
1380 __ bind(&done);
1381}
1382
1383
1384// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1385void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1386 HBinaryOperation* hdiv = instr->hydrogen();
1387 Register left = ToRegister(instr->dividend());
1388 Register right = ToRegister(instr->divisor());
1389 Register result = ToRegister(instr->result());
1390
1391 // Check for x / 0.
1392 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1393 __ cmp(right, Operand::Zero());
1394 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1395 }
1396
1397 // Check for (0 / -x) that will produce negative zero.
1398 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1399 Label positive;
1400 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1401 // Do the test only if it hadn't be done above.
1402 __ cmp(right, Operand::Zero());
1403 }
1404 __ b(pl, &positive);
1405 __ cmp(left, Operand::Zero());
1406 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1407 __ bind(&positive);
1408 }
1409
1410 // Check for (kMinInt / -1).
1411 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1412 (!CpuFeatures::IsSupported(SUDIV) ||
1413 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1414 // We don't need to check for overflow when truncating with sdiv
1415 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1416 __ cmp(left, Operand(kMinInt));
1417 __ cmp(right, Operand(-1), eq);
1418 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1419 }
1420
1421 if (CpuFeatures::IsSupported(SUDIV)) {
1422 CpuFeatureScope scope(masm(), SUDIV);
1423 __ sdiv(result, left, right);
1424 } else {
1425 DoubleRegister vleft = ToDoubleRegister(instr->temp());
1426 DoubleRegister vright = double_scratch0();
1427 __ vmov(double_scratch0().low(), left);
1428 __ vcvt_f64_s32(vleft, double_scratch0().low());
1429 __ vmov(double_scratch0().low(), right);
1430 __ vcvt_f64_s32(vright, double_scratch0().low());
1431 __ vdiv(vleft, vleft, vright); // vleft now contains the result.
1432 __ vcvt_s32_f64(double_scratch0().low(), vleft);
1433 __ vmov(result, double_scratch0().low());
1434 }
1435
1436 Label done;
1437 Register remainder = scratch0();
1438 __ Mls(remainder, result, right, left);
1439 __ cmp(remainder, Operand::Zero());
1440 __ b(eq, &done);
1441 __ eor(remainder, remainder, Operand(right));
1442 __ add(result, result, Operand(remainder, ASR, 31));
1443 __ bind(&done);
1444}
1445
1446
1447void LCodeGen::DoMulI(LMulI* instr) {
1448 Register result = ToRegister(instr->result());
1449 // Note that result may alias left.
1450 Register left = ToRegister(instr->left());
1451 LOperand* right_op = instr->right();
1452
1453 bool bailout_on_minus_zero =
1454 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1455 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1456
1457 if (right_op->IsConstantOperand()) {
1458 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1459
1460 if (bailout_on_minus_zero && (constant < 0)) {
1461 // The case of a null constant will be handled separately.
1462 // If constant is negative and left is null, the result should be -0.
1463 __ cmp(left, Operand::Zero());
1464 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1465 }
1466
1467 switch (constant) {
1468 case -1:
1469 if (overflow) {
1470 __ rsb(result, left, Operand::Zero(), SetCC);
1471 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1472 } else {
1473 __ rsb(result, left, Operand::Zero());
1474 }
1475 break;
1476 case 0:
1477 if (bailout_on_minus_zero) {
1478 // If left is strictly negative and the constant is null, the
1479 // result is -0. Deoptimize if required, otherwise return 0.
1480 __ cmp(left, Operand::Zero());
1481 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
1482 }
1483 __ mov(result, Operand::Zero());
1484 break;
1485 case 1:
1486 __ Move(result, left);
1487 break;
1488 default:
1489 // Multiplying by powers of two and powers of two plus or minus
1490 // one can be done faster with shifted operands.
1491 // For other constants we emit standard code.
1492 int32_t mask = constant >> 31;
1493 uint32_t constant_abs = (constant + mask) ^ mask;
1494
1495 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1496 int32_t shift = WhichPowerOf2(constant_abs);
1497 __ mov(result, Operand(left, LSL, shift));
1498 // Correct the sign of the result is the constant is negative.
1499 if (constant < 0) __ rsb(result, result, Operand::Zero());
1500 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1501 int32_t shift = WhichPowerOf2(constant_abs - 1);
1502 __ add(result, left, Operand(left, LSL, shift));
1503 // Correct the sign of the result is the constant is negative.
1504 if (constant < 0) __ rsb(result, result, Operand::Zero());
1505 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1506 int32_t shift = WhichPowerOf2(constant_abs + 1);
1507 __ rsb(result, left, Operand(left, LSL, shift));
1508 // Correct the sign of the result is the constant is negative.
1509 if (constant < 0) __ rsb(result, result, Operand::Zero());
1510 } else {
1511 // Generate standard code.
1512 __ mov(ip, Operand(constant));
1513 __ mul(result, left, ip);
1514 }
1515 }
1516
1517 } else {
1518 DCHECK(right_op->IsRegister());
1519 Register right = ToRegister(right_op);
1520
1521 if (overflow) {
1522 Register scratch = scratch0();
1523 // scratch:result = left * right.
1524 if (instr->hydrogen()->representation().IsSmi()) {
1525 __ SmiUntag(result, left);
1526 __ smull(result, scratch, result, right);
1527 } else {
1528 __ smull(result, scratch, left, right);
1529 }
1530 __ cmp(scratch, Operand(result, ASR, 31));
1531 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1532 } else {
1533 if (instr->hydrogen()->representation().IsSmi()) {
1534 __ SmiUntag(result, left);
1535 __ mul(result, result, right);
1536 } else {
1537 __ mul(result, left, right);
1538 }
1539 }
1540
1541 if (bailout_on_minus_zero) {
1542 Label done;
1543 __ teq(left, Operand(right));
1544 __ b(pl, &done);
1545 // Bail out if the result is minus zero.
1546 __ cmp(result, Operand::Zero());
1547 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1548 __ bind(&done);
1549 }
1550 }
1551}
1552
1553
1554void LCodeGen::DoBitI(LBitI* instr) {
1555 LOperand* left_op = instr->left();
1556 LOperand* right_op = instr->right();
1557 DCHECK(left_op->IsRegister());
1558 Register left = ToRegister(left_op);
1559 Register result = ToRegister(instr->result());
1560 Operand right(no_reg);
1561
1562 if (right_op->IsStackSlot()) {
1563 right = Operand(EmitLoadRegister(right_op, ip));
1564 } else {
1565 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1566 right = ToOperand(right_op);
1567 }
1568
1569 switch (instr->op()) {
1570 case Token::BIT_AND:
1571 __ and_(result, left, right);
1572 break;
1573 case Token::BIT_OR:
1574 __ orr(result, left, right);
1575 break;
1576 case Token::BIT_XOR:
1577 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1578 __ mvn(result, Operand(left));
1579 } else {
1580 __ eor(result, left, right);
1581 }
1582 break;
1583 default:
1584 UNREACHABLE();
1585 break;
1586 }
1587}
1588
1589
1590void LCodeGen::DoShiftI(LShiftI* instr) {
1591 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1592 // result may alias either of them.
1593 LOperand* right_op = instr->right();
1594 Register left = ToRegister(instr->left());
1595 Register result = ToRegister(instr->result());
1596 Register scratch = scratch0();
1597 if (right_op->IsRegister()) {
1598 // Mask the right_op operand.
1599 __ and_(scratch, ToRegister(right_op), Operand(0x1F));
1600 switch (instr->op()) {
1601 case Token::ROR:
1602 __ mov(result, Operand(left, ROR, scratch));
1603 break;
1604 case Token::SAR:
1605 __ mov(result, Operand(left, ASR, scratch));
1606 break;
1607 case Token::SHR:
1608 if (instr->can_deopt()) {
1609 __ mov(result, Operand(left, LSR, scratch), SetCC);
1610 DeoptimizeIf(mi, instr, Deoptimizer::kNegativeValue);
1611 } else {
1612 __ mov(result, Operand(left, LSR, scratch));
1613 }
1614 break;
1615 case Token::SHL:
1616 __ mov(result, Operand(left, LSL, scratch));
1617 break;
1618 default:
1619 UNREACHABLE();
1620 break;
1621 }
1622 } else {
1623 // Mask the right_op operand.
1624 int value = ToInteger32(LConstantOperand::cast(right_op));
1625 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1626 switch (instr->op()) {
1627 case Token::ROR:
1628 if (shift_count != 0) {
1629 __ mov(result, Operand(left, ROR, shift_count));
1630 } else {
1631 __ Move(result, left);
1632 }
1633 break;
1634 case Token::SAR:
1635 if (shift_count != 0) {
1636 __ mov(result, Operand(left, ASR, shift_count));
1637 } else {
1638 __ Move(result, left);
1639 }
1640 break;
1641 case Token::SHR:
1642 if (shift_count != 0) {
1643 __ mov(result, Operand(left, LSR, shift_count));
1644 } else {
1645 if (instr->can_deopt()) {
1646 __ tst(left, Operand(0x80000000));
1647 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
1648 }
1649 __ Move(result, left);
1650 }
1651 break;
1652 case Token::SHL:
1653 if (shift_count != 0) {
1654 if (instr->hydrogen_value()->representation().IsSmi() &&
1655 instr->can_deopt()) {
1656 if (shift_count != 1) {
1657 __ mov(result, Operand(left, LSL, shift_count - 1));
1658 __ SmiTag(result, result, SetCC);
1659 } else {
1660 __ SmiTag(result, left, SetCC);
1661 }
1662 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1663 } else {
1664 __ mov(result, Operand(left, LSL, shift_count));
1665 }
1666 } else {
1667 __ Move(result, left);
1668 }
1669 break;
1670 default:
1671 UNREACHABLE();
1672 break;
1673 }
1674 }
1675}
1676
1677
1678void LCodeGen::DoSubI(LSubI* instr) {
1679 LOperand* left = instr->left();
1680 LOperand* right = instr->right();
1681 LOperand* result = instr->result();
1682 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1683 SBit set_cond = can_overflow ? SetCC : LeaveCC;
1684
1685 if (right->IsStackSlot()) {
1686 Register right_reg = EmitLoadRegister(right, ip);
1687 __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1688 } else {
1689 DCHECK(right->IsRegister() || right->IsConstantOperand());
1690 __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1691 }
1692
1693 if (can_overflow) {
1694 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1695 }
1696}
1697
1698
1699void LCodeGen::DoRSubI(LRSubI* instr) {
1700 LOperand* left = instr->left();
1701 LOperand* right = instr->right();
1702 LOperand* result = instr->result();
1703 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1704 SBit set_cond = can_overflow ? SetCC : LeaveCC;
1705
1706 if (right->IsStackSlot()) {
1707 Register right_reg = EmitLoadRegister(right, ip);
1708 __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1709 } else {
1710 DCHECK(right->IsRegister() || right->IsConstantOperand());
1711 __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1712 }
1713
1714 if (can_overflow) {
1715 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1716 }
1717}
1718
1719
1720void LCodeGen::DoConstantI(LConstantI* instr) {
1721 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1722}
1723
1724
1725void LCodeGen::DoConstantS(LConstantS* instr) {
1726 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1727}
1728
1729
1730void LCodeGen::DoConstantD(LConstantD* instr) {
1731 DCHECK(instr->result()->IsDoubleRegister());
1732 DwVfpRegister result = ToDoubleRegister(instr->result());
1733#if V8_HOST_ARCH_IA32
1734 // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator
1735 // builds.
1736 uint64_t bits = instr->bits();
1737 if ((bits & V8_UINT64_C(0x7FF8000000000000)) ==
1738 V8_UINT64_C(0x7FF0000000000000)) {
1739 uint32_t lo = static_cast<uint32_t>(bits);
1740 uint32_t hi = static_cast<uint32_t>(bits >> 32);
1741 __ mov(ip, Operand(lo));
1742 __ mov(scratch0(), Operand(hi));
1743 __ vmov(result, ip, scratch0());
1744 return;
1745 }
1746#endif
1747 double v = instr->value();
1748 __ Vmov(result, v, scratch0());
1749}
1750
1751
1752void LCodeGen::DoConstantE(LConstantE* instr) {
1753 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1754}
1755
1756
1757void LCodeGen::DoConstantT(LConstantT* instr) {
1758 Handle<Object> object = instr->value(isolate());
1759 AllowDeferredHandleDereference smi_check;
1760 __ Move(ToRegister(instr->result()), object);
1761}
1762
1763
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001764MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1765 LOperand* index,
1766 String::Encoding encoding) {
1767 if (index->IsConstantOperand()) {
1768 int offset = ToInteger32(LConstantOperand::cast(index));
1769 if (encoding == String::TWO_BYTE_ENCODING) {
1770 offset *= kUC16Size;
1771 }
1772 STATIC_ASSERT(kCharSize == 1);
1773 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1774 }
1775 Register scratch = scratch0();
1776 DCHECK(!scratch.is(string));
1777 DCHECK(!scratch.is(ToRegister(index)));
1778 if (encoding == String::ONE_BYTE_ENCODING) {
1779 __ add(scratch, string, Operand(ToRegister(index)));
1780 } else {
1781 STATIC_ASSERT(kUC16Size == 2);
1782 __ add(scratch, string, Operand(ToRegister(index), LSL, 1));
1783 }
1784 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1785}
1786
1787
1788void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1789 String::Encoding encoding = instr->hydrogen()->encoding();
1790 Register string = ToRegister(instr->string());
1791 Register result = ToRegister(instr->result());
1792
1793 if (FLAG_debug_code) {
1794 Register scratch = scratch0();
1795 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1796 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1797
1798 __ and_(scratch, scratch,
1799 Operand(kStringRepresentationMask | kStringEncodingMask));
1800 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1801 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1802 __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1803 ? one_byte_seq_type : two_byte_seq_type));
1804 __ Check(eq, kUnexpectedStringType);
1805 }
1806
1807 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1808 if (encoding == String::ONE_BYTE_ENCODING) {
1809 __ ldrb(result, operand);
1810 } else {
1811 __ ldrh(result, operand);
1812 }
1813}
1814
1815
1816void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1817 String::Encoding encoding = instr->hydrogen()->encoding();
1818 Register string = ToRegister(instr->string());
1819 Register value = ToRegister(instr->value());
1820
1821 if (FLAG_debug_code) {
1822 Register index = ToRegister(instr->index());
1823 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1824 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1825 int encoding_mask =
1826 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1827 ? one_byte_seq_type : two_byte_seq_type;
1828 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1829 }
1830
1831 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1832 if (encoding == String::ONE_BYTE_ENCODING) {
1833 __ strb(value, operand);
1834 } else {
1835 __ strh(value, operand);
1836 }
1837}
1838
1839
1840void LCodeGen::DoAddI(LAddI* instr) {
1841 LOperand* left = instr->left();
1842 LOperand* right = instr->right();
1843 LOperand* result = instr->result();
1844 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1845 SBit set_cond = can_overflow ? SetCC : LeaveCC;
1846
1847 if (right->IsStackSlot()) {
1848 Register right_reg = EmitLoadRegister(right, ip);
1849 __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1850 } else {
1851 DCHECK(right->IsRegister() || right->IsConstantOperand());
1852 __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1853 }
1854
1855 if (can_overflow) {
1856 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1857 }
1858}
1859
1860
1861void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1862 LOperand* left = instr->left();
1863 LOperand* right = instr->right();
1864 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1865 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1866 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1867 Register left_reg = ToRegister(left);
1868 Operand right_op = (right->IsRegister() || right->IsConstantOperand())
1869 ? ToOperand(right)
1870 : Operand(EmitLoadRegister(right, ip));
1871 Register result_reg = ToRegister(instr->result());
1872 __ cmp(left_reg, right_op);
1873 __ Move(result_reg, left_reg, condition);
1874 __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
1875 } else {
1876 DCHECK(instr->hydrogen()->representation().IsDouble());
1877 DwVfpRegister left_reg = ToDoubleRegister(left);
1878 DwVfpRegister right_reg = ToDoubleRegister(right);
1879 DwVfpRegister result_reg = ToDoubleRegister(instr->result());
1880 Label result_is_nan, return_left, return_right, check_zero, done;
1881 __ VFPCompareAndSetFlags(left_reg, right_reg);
1882 if (operation == HMathMinMax::kMathMin) {
1883 __ b(mi, &return_left);
1884 __ b(gt, &return_right);
1885 } else {
1886 __ b(mi, &return_right);
1887 __ b(gt, &return_left);
1888 }
1889 __ b(vs, &result_is_nan);
1890 // Left equals right => check for -0.
1891 __ VFPCompareAndSetFlags(left_reg, 0.0);
1892 if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
1893 __ b(ne, &done); // left == right != 0.
1894 } else {
1895 __ b(ne, &return_left); // left == right != 0.
1896 }
1897 // At this point, both left and right are either 0 or -0.
1898 if (operation == HMathMinMax::kMathMin) {
1899 // We could use a single 'vorr' instruction here if we had NEON support.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001900 // The algorithm is: -((-L) + (-R)), which in case of L and R being
1901 // different registers is most efficiently expressed as -((-L) - R).
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001902 __ vneg(left_reg, left_reg);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001903 if (left_reg.is(right_reg)) {
1904 __ vadd(result_reg, left_reg, right_reg);
1905 } else {
1906 __ vsub(result_reg, left_reg, right_reg);
1907 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001908 __ vneg(result_reg, result_reg);
1909 } else {
1910 // Since we operate on +0 and/or -0, vadd and vand have the same effect;
1911 // the decision for vadd is easy because vand is a NEON instruction.
1912 __ vadd(result_reg, left_reg, right_reg);
1913 }
1914 __ b(&done);
1915
1916 __ bind(&result_is_nan);
1917 __ vadd(result_reg, left_reg, right_reg);
1918 __ b(&done);
1919
1920 __ bind(&return_right);
1921 __ Move(result_reg, right_reg);
1922 if (!left_reg.is(result_reg)) {
1923 __ b(&done);
1924 }
1925
1926 __ bind(&return_left);
1927 __ Move(result_reg, left_reg);
1928
1929 __ bind(&done);
1930 }
1931}
1932
1933
1934void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1935 DwVfpRegister left = ToDoubleRegister(instr->left());
1936 DwVfpRegister right = ToDoubleRegister(instr->right());
1937 DwVfpRegister result = ToDoubleRegister(instr->result());
1938 switch (instr->op()) {
1939 case Token::ADD:
1940 __ vadd(result, left, right);
1941 break;
1942 case Token::SUB:
1943 __ vsub(result, left, right);
1944 break;
1945 case Token::MUL:
1946 __ vmul(result, left, right);
1947 break;
1948 case Token::DIV:
1949 __ vdiv(result, left, right);
1950 break;
1951 case Token::MOD: {
1952 __ PrepareCallCFunction(0, 2, scratch0());
1953 __ MovToFloatParameters(left, right);
1954 __ CallCFunction(
1955 ExternalReference::mod_two_doubles_operation(isolate()),
1956 0, 2);
1957 // Move the result in the double result register.
1958 __ MovFromFloatResult(result);
1959 break;
1960 }
1961 default:
1962 UNREACHABLE();
1963 break;
1964 }
1965}
1966
1967
1968void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1969 DCHECK(ToRegister(instr->context()).is(cp));
1970 DCHECK(ToRegister(instr->left()).is(r1));
1971 DCHECK(ToRegister(instr->right()).is(r0));
1972 DCHECK(ToRegister(instr->result()).is(r0));
1973
Ben Murdoch097c5b22016-05-18 11:27:45 +01001974 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001975 // Block literal pool emission to ensure nop indicating no inlined smi code
1976 // is in the correct position.
1977 Assembler::BlockConstPoolScope block_const_pool(masm());
1978 CallCode(code, RelocInfo::CODE_TARGET, instr);
1979}
1980
1981
1982template<class InstrType>
1983void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1984 int left_block = instr->TrueDestination(chunk_);
1985 int right_block = instr->FalseDestination(chunk_);
1986
1987 int next_block = GetNextEmittedBlock();
1988
1989 if (right_block == left_block || condition == al) {
1990 EmitGoto(left_block);
1991 } else if (left_block == next_block) {
1992 __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
1993 } else if (right_block == next_block) {
1994 __ b(condition, chunk_->GetAssemblyLabel(left_block));
1995 } else {
1996 __ b(condition, chunk_->GetAssemblyLabel(left_block));
1997 __ b(chunk_->GetAssemblyLabel(right_block));
1998 }
1999}
2000
2001
2002template <class InstrType>
2003void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition) {
2004 int true_block = instr->TrueDestination(chunk_);
2005 __ b(condition, chunk_->GetAssemblyLabel(true_block));
2006}
2007
2008
2009template <class InstrType>
2010void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
2011 int false_block = instr->FalseDestination(chunk_);
2012 __ b(condition, chunk_->GetAssemblyLabel(false_block));
2013}
2014
2015
2016void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2017 __ stop("LBreak");
2018}
2019
2020
2021void LCodeGen::DoBranch(LBranch* instr) {
2022 Representation r = instr->hydrogen()->value()->representation();
2023 if (r.IsInteger32() || r.IsSmi()) {
2024 DCHECK(!info()->IsStub());
2025 Register reg = ToRegister(instr->value());
2026 __ cmp(reg, Operand::Zero());
2027 EmitBranch(instr, ne);
2028 } else if (r.IsDouble()) {
2029 DCHECK(!info()->IsStub());
2030 DwVfpRegister reg = ToDoubleRegister(instr->value());
2031 // Test the double value. Zero and NaN are false.
2032 __ VFPCompareAndSetFlags(reg, 0.0);
2033 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false)
2034 EmitBranch(instr, ne);
2035 } else {
2036 DCHECK(r.IsTagged());
2037 Register reg = ToRegister(instr->value());
2038 HType type = instr->hydrogen()->value()->type();
2039 if (type.IsBoolean()) {
2040 DCHECK(!info()->IsStub());
2041 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2042 EmitBranch(instr, eq);
2043 } else if (type.IsSmi()) {
2044 DCHECK(!info()->IsStub());
2045 __ cmp(reg, Operand::Zero());
2046 EmitBranch(instr, ne);
2047 } else if (type.IsJSArray()) {
2048 DCHECK(!info()->IsStub());
2049 EmitBranch(instr, al);
2050 } else if (type.IsHeapNumber()) {
2051 DCHECK(!info()->IsStub());
2052 DwVfpRegister dbl_scratch = double_scratch0();
2053 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2054 // Test the double value. Zero and NaN are false.
2055 __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2056 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN)
2057 EmitBranch(instr, ne);
2058 } else if (type.IsString()) {
2059 DCHECK(!info()->IsStub());
2060 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2061 __ cmp(ip, Operand::Zero());
2062 EmitBranch(instr, ne);
2063 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01002064 ToBooleanICStub::Types expected =
2065 instr->hydrogen()->expected_input_types();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002066 // Avoid deopts in the case where we've never executed this path before.
Ben Murdochda12d292016-06-02 14:46:10 +01002067 if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002068
Ben Murdochda12d292016-06-02 14:46:10 +01002069 if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002070 // undefined -> false.
2071 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2072 __ b(eq, instr->FalseLabel(chunk_));
2073 }
Ben Murdochda12d292016-06-02 14:46:10 +01002074 if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002075 // Boolean -> its value.
2076 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2077 __ b(eq, instr->TrueLabel(chunk_));
2078 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2079 __ b(eq, instr->FalseLabel(chunk_));
2080 }
Ben Murdochda12d292016-06-02 14:46:10 +01002081 if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002082 // 'null' -> false.
2083 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2084 __ b(eq, instr->FalseLabel(chunk_));
2085 }
2086
Ben Murdochda12d292016-06-02 14:46:10 +01002087 if (expected.Contains(ToBooleanICStub::SMI)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002088 // Smis: 0 -> false, all other -> true.
2089 __ cmp(reg, Operand::Zero());
2090 __ b(eq, instr->FalseLabel(chunk_));
2091 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2092 } else if (expected.NeedsMap()) {
2093 // If we need a map later and have a Smi -> deopt.
2094 __ SmiTst(reg);
2095 DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
2096 }
2097
2098 const Register map = scratch0();
2099 if (expected.NeedsMap()) {
2100 __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2101
2102 if (expected.CanBeUndetectable()) {
2103 // Undetectable -> false.
2104 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
2105 __ tst(ip, Operand(1 << Map::kIsUndetectable));
2106 __ b(ne, instr->FalseLabel(chunk_));
2107 }
2108 }
2109
Ben Murdochda12d292016-06-02 14:46:10 +01002110 if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002111 // spec object -> true.
2112 __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2113 __ b(ge, instr->TrueLabel(chunk_));
2114 }
2115
Ben Murdochda12d292016-06-02 14:46:10 +01002116 if (expected.Contains(ToBooleanICStub::STRING)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002117 // String value -> false iff empty.
2118 Label not_string;
2119 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2120 __ b(ge, &not_string);
2121 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2122 __ cmp(ip, Operand::Zero());
2123 __ b(ne, instr->TrueLabel(chunk_));
2124 __ b(instr->FalseLabel(chunk_));
2125 __ bind(&not_string);
2126 }
2127
Ben Murdochda12d292016-06-02 14:46:10 +01002128 if (expected.Contains(ToBooleanICStub::SYMBOL)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002129 // Symbol value -> true.
2130 __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2131 __ b(eq, instr->TrueLabel(chunk_));
2132 }
2133
Ben Murdochda12d292016-06-02 14:46:10 +01002134 if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002135 // SIMD value -> true.
2136 __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
2137 __ b(eq, instr->TrueLabel(chunk_));
2138 }
2139
Ben Murdochda12d292016-06-02 14:46:10 +01002140 if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002141 // heap number -> false iff +0, -0, or NaN.
2142 DwVfpRegister dbl_scratch = double_scratch0();
2143 Label not_heap_number;
2144 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2145 __ b(ne, &not_heap_number);
2146 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2147 __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2148 __ cmp(r0, r0, vs); // NaN -> false.
2149 __ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false.
2150 __ b(instr->TrueLabel(chunk_));
2151 __ bind(&not_heap_number);
2152 }
2153
2154 if (!expected.IsGeneric()) {
2155 // We've seen something for the first time -> deopt.
2156 // This can only happen if we are not generic already.
2157 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
2158 }
2159 }
2160 }
2161}
2162
2163
2164void LCodeGen::EmitGoto(int block) {
2165 if (!IsNextEmittedBlock(block)) {
2166 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2167 }
2168}
2169
2170
2171void LCodeGen::DoGoto(LGoto* instr) {
2172 EmitGoto(instr->block_id());
2173}
2174
2175
2176Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2177 Condition cond = kNoCondition;
2178 switch (op) {
2179 case Token::EQ:
2180 case Token::EQ_STRICT:
2181 cond = eq;
2182 break;
2183 case Token::NE:
2184 case Token::NE_STRICT:
2185 cond = ne;
2186 break;
2187 case Token::LT:
2188 cond = is_unsigned ? lo : lt;
2189 break;
2190 case Token::GT:
2191 cond = is_unsigned ? hi : gt;
2192 break;
2193 case Token::LTE:
2194 cond = is_unsigned ? ls : le;
2195 break;
2196 case Token::GTE:
2197 cond = is_unsigned ? hs : ge;
2198 break;
2199 case Token::IN:
2200 case Token::INSTANCEOF:
2201 default:
2202 UNREACHABLE();
2203 }
2204 return cond;
2205}
2206
2207
2208void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2209 LOperand* left = instr->left();
2210 LOperand* right = instr->right();
2211 bool is_unsigned =
2212 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2213 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2214 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2215
2216 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2217 // We can statically evaluate the comparison.
2218 double left_val = ToDouble(LConstantOperand::cast(left));
2219 double right_val = ToDouble(LConstantOperand::cast(right));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002220 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2221 ? instr->TrueDestination(chunk_)
2222 : instr->FalseDestination(chunk_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002223 EmitGoto(next_block);
2224 } else {
2225 if (instr->is_double()) {
2226 // Compare left and right operands as doubles and load the
2227 // resulting flags into the normal status register.
2228 __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
2229 // If a NaN is involved, i.e. the result is unordered (V set),
2230 // jump to false block label.
2231 __ b(vs, instr->FalseLabel(chunk_));
2232 } else {
2233 if (right->IsConstantOperand()) {
2234 int32_t value = ToInteger32(LConstantOperand::cast(right));
2235 if (instr->hydrogen_value()->representation().IsSmi()) {
2236 __ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
2237 } else {
2238 __ cmp(ToRegister(left), Operand(value));
2239 }
2240 } else if (left->IsConstantOperand()) {
2241 int32_t value = ToInteger32(LConstantOperand::cast(left));
2242 if (instr->hydrogen_value()->representation().IsSmi()) {
2243 __ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
2244 } else {
2245 __ cmp(ToRegister(right), Operand(value));
2246 }
2247 // We commuted the operands, so commute the condition.
2248 cond = CommuteCondition(cond);
2249 } else {
2250 __ cmp(ToRegister(left), ToRegister(right));
2251 }
2252 }
2253 EmitBranch(instr, cond);
2254 }
2255}
2256
2257
2258void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2259 Register left = ToRegister(instr->left());
2260 Register right = ToRegister(instr->right());
2261
2262 __ cmp(left, Operand(right));
2263 EmitBranch(instr, eq);
2264}
2265
2266
2267void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2268 if (instr->hydrogen()->representation().IsTagged()) {
2269 Register input_reg = ToRegister(instr->object());
2270 __ mov(ip, Operand(factory()->the_hole_value()));
2271 __ cmp(input_reg, ip);
2272 EmitBranch(instr, eq);
2273 return;
2274 }
2275
2276 DwVfpRegister input_reg = ToDoubleRegister(instr->object());
2277 __ VFPCompareAndSetFlags(input_reg, input_reg);
2278 EmitFalseBranch(instr, vc);
2279
2280 Register scratch = scratch0();
2281 __ VmovHigh(scratch, input_reg);
2282 __ cmp(scratch, Operand(kHoleNanUpper32));
2283 EmitBranch(instr, eq);
2284}
2285
2286
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002287Condition LCodeGen::EmitIsString(Register input,
2288 Register temp1,
2289 Label* is_not_string,
2290 SmiCheck check_needed = INLINE_SMI_CHECK) {
2291 if (check_needed == INLINE_SMI_CHECK) {
2292 __ JumpIfSmi(input, is_not_string);
2293 }
2294 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2295
2296 return lt;
2297}
2298
2299
2300void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2301 Register reg = ToRegister(instr->value());
2302 Register temp1 = ToRegister(instr->temp());
2303
2304 SmiCheck check_needed =
2305 instr->hydrogen()->value()->type().IsHeapObject()
2306 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2307 Condition true_cond =
2308 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2309
2310 EmitBranch(instr, true_cond);
2311}
2312
2313
2314void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2315 Register input_reg = EmitLoadRegister(instr->value(), ip);
2316 __ SmiTst(input_reg);
2317 EmitBranch(instr, eq);
2318}
2319
2320
2321void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2322 Register input = ToRegister(instr->value());
2323 Register temp = ToRegister(instr->temp());
2324
2325 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2326 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2327 }
2328 __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2329 __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2330 __ tst(temp, Operand(1 << Map::kIsUndetectable));
2331 EmitBranch(instr, ne);
2332}
2333
2334
2335static Condition ComputeCompareCondition(Token::Value op) {
2336 switch (op) {
2337 case Token::EQ_STRICT:
2338 case Token::EQ:
2339 return eq;
2340 case Token::LT:
2341 return lt;
2342 case Token::GT:
2343 return gt;
2344 case Token::LTE:
2345 return le;
2346 case Token::GTE:
2347 return ge;
2348 default:
2349 UNREACHABLE();
2350 return kNoCondition;
2351 }
2352}
2353
2354
2355void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2356 DCHECK(ToRegister(instr->context()).is(cp));
2357 DCHECK(ToRegister(instr->left()).is(r1));
2358 DCHECK(ToRegister(instr->right()).is(r0));
2359
Ben Murdochda12d292016-06-02 14:46:10 +01002360 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002361 CallCode(code, RelocInfo::CODE_TARGET, instr);
Ben Murdochda12d292016-06-02 14:46:10 +01002362 __ CompareRoot(r0, Heap::kTrueValueRootIndex);
2363 EmitBranch(instr, eq);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002364}
2365
2366
2367static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2368 InstanceType from = instr->from();
2369 InstanceType to = instr->to();
2370 if (from == FIRST_TYPE) return to;
2371 DCHECK(from == to || to == LAST_TYPE);
2372 return from;
2373}
2374
2375
2376static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2377 InstanceType from = instr->from();
2378 InstanceType to = instr->to();
2379 if (from == to) return eq;
2380 if (to == LAST_TYPE) return hs;
2381 if (from == FIRST_TYPE) return ls;
2382 UNREACHABLE();
2383 return eq;
2384}
2385
2386
2387void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2388 Register scratch = scratch0();
2389 Register input = ToRegister(instr->value());
2390
2391 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2392 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2393 }
2394
2395 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2396 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2397}
2398
2399
2400void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2401 Register input = ToRegister(instr->value());
2402 Register result = ToRegister(instr->result());
2403
2404 __ AssertString(input);
2405
2406 __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
2407 __ IndexFromHash(result, result);
2408}
2409
2410
2411void LCodeGen::DoHasCachedArrayIndexAndBranch(
2412 LHasCachedArrayIndexAndBranch* instr) {
2413 Register input = ToRegister(instr->value());
2414 Register scratch = scratch0();
2415
2416 __ ldr(scratch,
2417 FieldMemOperand(input, String::kHashFieldOffset));
2418 __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
2419 EmitBranch(instr, eq);
2420}
2421
2422
2423// Branches to a label or falls through with the answer in flags. Trashes
2424// the temp registers, but not the input.
2425void LCodeGen::EmitClassOfTest(Label* is_true,
2426 Label* is_false,
2427 Handle<String>class_name,
2428 Register input,
2429 Register temp,
2430 Register temp2) {
2431 DCHECK(!input.is(temp));
2432 DCHECK(!input.is(temp2));
2433 DCHECK(!temp.is(temp2));
2434
2435 __ JumpIfSmi(input, is_false);
2436
Ben Murdochda12d292016-06-02 14:46:10 +01002437 __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
2438 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002439 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
Ben Murdochda12d292016-06-02 14:46:10 +01002440 __ b(hs, is_true);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002441 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01002442 __ b(hs, is_false);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002443 }
2444
2445 // Check if the constructor in the map is a function.
2446 Register instance_type = ip;
2447 __ GetMapConstructor(temp, temp, temp2, instance_type);
2448
2449 // Objects with a non-function constructor have class 'Object'.
2450 __ cmp(instance_type, Operand(JS_FUNCTION_TYPE));
2451 if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2452 __ b(ne, is_true);
2453 } else {
2454 __ b(ne, is_false);
2455 }
2456
2457 // temp now contains the constructor function. Grab the
2458 // instance class name from there.
2459 __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2460 __ ldr(temp, FieldMemOperand(temp,
2461 SharedFunctionInfo::kInstanceClassNameOffset));
2462 // The class name we are testing against is internalized since it's a literal.
2463 // The name in the constructor is internalized because of the way the context
2464 // is booted. This routine isn't expected to work for random API-created
2465 // classes and it doesn't have to because you can't access it with natives
2466 // syntax. Since both sides are internalized it is sufficient to use an
2467 // identity comparison.
2468 __ cmp(temp, Operand(class_name));
2469 // End with the answer in flags.
2470}
2471
2472
2473void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2474 Register input = ToRegister(instr->value());
2475 Register temp = scratch0();
2476 Register temp2 = ToRegister(instr->temp());
2477 Handle<String> class_name = instr->hydrogen()->class_name();
2478
2479 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2480 class_name, input, temp, temp2);
2481
2482 EmitBranch(instr, eq);
2483}
2484
2485
2486void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2487 Register reg = ToRegister(instr->value());
2488 Register temp = ToRegister(instr->temp());
2489
2490 __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2491 __ cmp(temp, Operand(instr->map()));
2492 EmitBranch(instr, eq);
2493}
2494
2495
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002496void LCodeGen::DoHasInPrototypeChainAndBranch(
2497 LHasInPrototypeChainAndBranch* instr) {
2498 Register const object = ToRegister(instr->object());
2499 Register const object_map = scratch0();
2500 Register const object_instance_type = ip;
2501 Register const object_prototype = object_map;
2502 Register const prototype = ToRegister(instr->prototype());
2503
2504 // The {object} must be a spec object. It's sufficient to know that {object}
2505 // is not a smi, since all other non-spec objects have {null} prototypes and
2506 // will be ruled out below.
2507 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2508 __ SmiTst(object);
2509 EmitFalseBranch(instr, eq);
2510 }
2511
2512 // Loop through the {object}s prototype chain looking for the {prototype}.
2513 __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2514 Label loop;
2515 __ bind(&loop);
2516
2517 // Deoptimize if the object needs to be access checked.
2518 __ ldrb(object_instance_type,
2519 FieldMemOperand(object_map, Map::kBitFieldOffset));
2520 __ tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2521 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
2522 // Deoptimize for proxies.
2523 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2524 DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2525
2526 __ ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002527 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2528 EmitFalseBranch(instr, eq);
Ben Murdoch61f157c2016-09-16 13:49:30 +01002529 __ cmp(object_prototype, prototype);
2530 EmitTrueBranch(instr, eq);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002531 __ ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2532 __ b(&loop);
2533}
2534
2535
2536void LCodeGen::DoCmpT(LCmpT* instr) {
2537 DCHECK(ToRegister(instr->context()).is(cp));
2538 Token::Value op = instr->op();
2539
Ben Murdoch097c5b22016-05-18 11:27:45 +01002540 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002541 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2542 // This instruction also signals no smi code inlined.
2543 __ cmp(r0, Operand::Zero());
2544
2545 Condition condition = ComputeCompareCondition(op);
2546 __ LoadRoot(ToRegister(instr->result()),
2547 Heap::kTrueValueRootIndex,
2548 condition);
2549 __ LoadRoot(ToRegister(instr->result()),
2550 Heap::kFalseValueRootIndex,
2551 NegateCondition(condition));
2552}
2553
2554
2555void LCodeGen::DoReturn(LReturn* instr) {
2556 if (FLAG_trace && info()->IsOptimizing()) {
2557 // Push the return value on the stack as the parameter.
2558 // Runtime::TraceExit returns its parameter in r0. We're leaving the code
2559 // managed by the register allocator and tearing down the frame, it's
2560 // safe to write to the context register.
2561 __ push(r0);
2562 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2563 __ CallRuntime(Runtime::kTraceExit);
2564 }
2565 if (info()->saves_caller_doubles()) {
2566 RestoreCallerDoubles();
2567 }
2568 if (NeedsEagerFrame()) {
2569 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2570 }
2571 { ConstantPoolUnavailableScope constant_pool_unavailable(masm());
2572 if (instr->has_constant_parameter_count()) {
2573 int parameter_count = ToInteger32(instr->constant_parameter_count());
2574 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2575 if (sp_delta != 0) {
2576 __ add(sp, sp, Operand(sp_delta));
2577 }
2578 } else {
2579 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2580 Register reg = ToRegister(instr->parameter_count());
2581 // The argument count parameter is a smi
2582 __ SmiUntag(reg);
2583 __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2));
2584 }
2585
2586 __ Jump(lr);
2587 }
2588}
2589
2590
2591template <class T>
2592void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2593 Register vector_register = ToRegister(instr->temp_vector());
2594 Register slot_register = LoadDescriptor::SlotRegister();
2595 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2596 DCHECK(slot_register.is(r0));
2597
2598 AllowDeferredHandleDereference vector_structure_check;
2599 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2600 __ Move(vector_register, vector);
2601 // No need to allocate this register.
2602 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2603 int index = vector->GetIndex(slot);
2604 __ mov(slot_register, Operand(Smi::FromInt(index)));
2605}
2606
2607
2608template <class T>
2609void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2610 Register vector_register = ToRegister(instr->temp_vector());
2611 Register slot_register = ToRegister(instr->temp_slot());
2612
2613 AllowDeferredHandleDereference vector_structure_check;
2614 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2615 __ Move(vector_register, vector);
2616 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2617 int index = vector->GetIndex(slot);
2618 __ mov(slot_register, Operand(Smi::FromInt(index)));
2619}
2620
2621
2622void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2623 DCHECK(ToRegister(instr->context()).is(cp));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002624 DCHECK(ToRegister(instr->result()).is(r0));
2625
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002626 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
Ben Murdoch61f157c2016-09-16 13:49:30 +01002627 Handle<Code> ic =
2628 CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
2629 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002630 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2631}
2632
2633
2634void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2635 Register context = ToRegister(instr->context());
2636 Register result = ToRegister(instr->result());
2637 __ ldr(result, ContextMemOperand(context, instr->slot_index()));
2638 if (instr->hydrogen()->RequiresHoleCheck()) {
2639 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2640 __ cmp(result, ip);
2641 if (instr->hydrogen()->DeoptimizesOnHole()) {
2642 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2643 } else {
2644 __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
2645 }
2646 }
2647}
2648
2649
2650void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2651 Register context = ToRegister(instr->context());
2652 Register value = ToRegister(instr->value());
2653 Register scratch = scratch0();
2654 MemOperand target = ContextMemOperand(context, instr->slot_index());
2655
2656 Label skip_assignment;
2657
2658 if (instr->hydrogen()->RequiresHoleCheck()) {
2659 __ ldr(scratch, target);
2660 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2661 __ cmp(scratch, ip);
2662 if (instr->hydrogen()->DeoptimizesOnHole()) {
2663 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2664 } else {
2665 __ b(ne, &skip_assignment);
2666 }
2667 }
2668
2669 __ str(value, target);
2670 if (instr->hydrogen()->NeedsWriteBarrier()) {
2671 SmiCheck check_needed =
2672 instr->hydrogen()->value()->type().IsHeapObject()
2673 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2674 __ RecordWriteContextSlot(context,
2675 target.offset(),
2676 value,
2677 scratch,
2678 GetLinkRegisterState(),
2679 kSaveFPRegs,
2680 EMIT_REMEMBERED_SET,
2681 check_needed);
2682 }
2683
2684 __ bind(&skip_assignment);
2685}
2686
2687
2688void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2689 HObjectAccess access = instr->hydrogen()->access();
2690 int offset = access.offset();
2691 Register object = ToRegister(instr->object());
2692
2693 if (access.IsExternalMemory()) {
2694 Register result = ToRegister(instr->result());
2695 MemOperand operand = MemOperand(object, offset);
2696 __ Load(result, operand, access.representation());
2697 return;
2698 }
2699
2700 if (instr->hydrogen()->representation().IsDouble()) {
2701 DwVfpRegister result = ToDoubleRegister(instr->result());
2702 __ vldr(result, FieldMemOperand(object, offset));
2703 return;
2704 }
2705
2706 Register result = ToRegister(instr->result());
2707 if (!access.IsInobject()) {
2708 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2709 object = result;
2710 }
2711 MemOperand operand = FieldMemOperand(object, offset);
2712 __ Load(result, operand, access.representation());
2713}
2714
2715
2716void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2717 DCHECK(ToRegister(instr->context()).is(cp));
2718 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2719 DCHECK(ToRegister(instr->result()).is(r0));
2720
2721 // Name is always in r2.
2722 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
2723 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
Ben Murdoch61f157c2016-09-16 13:49:30 +01002724 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002725 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
2726}
2727
2728
2729void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2730 Register scratch = scratch0();
2731 Register function = ToRegister(instr->function());
2732 Register result = ToRegister(instr->result());
2733
2734 // Get the prototype or initial map from the function.
2735 __ ldr(result,
2736 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2737
2738 // Check that the function has a prototype or an initial map.
2739 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2740 __ cmp(result, ip);
2741 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2742
2743 // If the function does not have an initial map, we're done.
2744 Label done;
2745 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2746 __ b(ne, &done);
2747
2748 // Get the prototype from the initial map.
2749 __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
2750
2751 // All done.
2752 __ bind(&done);
2753}
2754
2755
2756void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2757 Register result = ToRegister(instr->result());
2758 __ LoadRoot(result, instr->index());
2759}
2760
2761
2762void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2763 Register arguments = ToRegister(instr->arguments());
2764 Register result = ToRegister(instr->result());
2765 // There are two words between the frame pointer and the last argument.
2766 // Subtracting from length accounts for one of them add one more.
2767 if (instr->length()->IsConstantOperand()) {
2768 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2769 if (instr->index()->IsConstantOperand()) {
2770 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2771 int index = (const_length - const_index) + 1;
2772 __ ldr(result, MemOperand(arguments, index * kPointerSize));
2773 } else {
2774 Register index = ToRegister(instr->index());
2775 __ rsb(result, index, Operand(const_length + 1));
2776 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2777 }
2778 } else if (instr->index()->IsConstantOperand()) {
2779 Register length = ToRegister(instr->length());
2780 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2781 int loc = const_index - 1;
2782 if (loc != 0) {
2783 __ sub(result, length, Operand(loc));
2784 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2785 } else {
2786 __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
2787 }
2788 } else {
2789 Register length = ToRegister(instr->length());
2790 Register index = ToRegister(instr->index());
2791 __ sub(result, length, index);
2792 __ add(result, result, Operand(1));
2793 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2794 }
2795}
2796
2797
2798void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2799 Register external_pointer = ToRegister(instr->elements());
2800 Register key = no_reg;
2801 ElementsKind elements_kind = instr->elements_kind();
2802 bool key_is_constant = instr->key()->IsConstantOperand();
2803 int constant_key = 0;
2804 if (key_is_constant) {
2805 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2806 if (constant_key & 0xF0000000) {
2807 Abort(kArrayIndexConstantValueTooBig);
2808 }
2809 } else {
2810 key = ToRegister(instr->key());
2811 }
2812 int element_size_shift = ElementsKindToShiftSize(elements_kind);
2813 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2814 ? (element_size_shift - kSmiTagSize) : element_size_shift;
2815 int base_offset = instr->base_offset();
2816
2817 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2818 DwVfpRegister result = ToDoubleRegister(instr->result());
2819 Operand operand = key_is_constant
2820 ? Operand(constant_key << element_size_shift)
2821 : Operand(key, LSL, shift_size);
2822 __ add(scratch0(), external_pointer, operand);
2823 if (elements_kind == FLOAT32_ELEMENTS) {
2824 __ vldr(double_scratch0().low(), scratch0(), base_offset);
2825 __ vcvt_f64_f32(result, double_scratch0().low());
2826 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2827 __ vldr(result, scratch0(), base_offset);
2828 }
2829 } else {
2830 Register result = ToRegister(instr->result());
2831 MemOperand mem_operand = PrepareKeyedOperand(
2832 key, external_pointer, key_is_constant, constant_key,
2833 element_size_shift, shift_size, base_offset);
2834 switch (elements_kind) {
2835 case INT8_ELEMENTS:
2836 __ ldrsb(result, mem_operand);
2837 break;
2838 case UINT8_ELEMENTS:
2839 case UINT8_CLAMPED_ELEMENTS:
2840 __ ldrb(result, mem_operand);
2841 break;
2842 case INT16_ELEMENTS:
2843 __ ldrsh(result, mem_operand);
2844 break;
2845 case UINT16_ELEMENTS:
2846 __ ldrh(result, mem_operand);
2847 break;
2848 case INT32_ELEMENTS:
2849 __ ldr(result, mem_operand);
2850 break;
2851 case UINT32_ELEMENTS:
2852 __ ldr(result, mem_operand);
2853 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2854 __ cmp(result, Operand(0x80000000));
2855 DeoptimizeIf(cs, instr, Deoptimizer::kNegativeValue);
2856 }
2857 break;
2858 case FLOAT32_ELEMENTS:
2859 case FLOAT64_ELEMENTS:
2860 case FAST_HOLEY_DOUBLE_ELEMENTS:
2861 case FAST_HOLEY_ELEMENTS:
2862 case FAST_HOLEY_SMI_ELEMENTS:
2863 case FAST_DOUBLE_ELEMENTS:
2864 case FAST_ELEMENTS:
2865 case FAST_SMI_ELEMENTS:
2866 case DICTIONARY_ELEMENTS:
2867 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2868 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01002869 case FAST_STRING_WRAPPER_ELEMENTS:
2870 case SLOW_STRING_WRAPPER_ELEMENTS:
2871 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002872 UNREACHABLE();
2873 break;
2874 }
2875 }
2876}
2877
2878
2879void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2880 Register elements = ToRegister(instr->elements());
2881 bool key_is_constant = instr->key()->IsConstantOperand();
2882 Register key = no_reg;
2883 DwVfpRegister result = ToDoubleRegister(instr->result());
2884 Register scratch = scratch0();
2885
2886 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2887
2888 int base_offset = instr->base_offset();
2889 if (key_is_constant) {
2890 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2891 if (constant_key & 0xF0000000) {
2892 Abort(kArrayIndexConstantValueTooBig);
2893 }
2894 base_offset += constant_key * kDoubleSize;
2895 }
2896 __ add(scratch, elements, Operand(base_offset));
2897
2898 if (!key_is_constant) {
2899 key = ToRegister(instr->key());
2900 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2901 ? (element_size_shift - kSmiTagSize) : element_size_shift;
2902 __ add(scratch, scratch, Operand(key, LSL, shift_size));
2903 }
2904
2905 __ vldr(result, scratch, 0);
2906
2907 if (instr->hydrogen()->RequiresHoleCheck()) {
2908 __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
2909 __ cmp(scratch, Operand(kHoleNanUpper32));
2910 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2911 }
2912}
2913
2914
2915void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2916 Register elements = ToRegister(instr->elements());
2917 Register result = ToRegister(instr->result());
2918 Register scratch = scratch0();
2919 Register store_base = scratch;
2920 int offset = instr->base_offset();
2921
2922 if (instr->key()->IsConstantOperand()) {
2923 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2924 offset += ToInteger32(const_operand) * kPointerSize;
2925 store_base = elements;
2926 } else {
2927 Register key = ToRegister(instr->key());
2928 // Even though the HLoadKeyed instruction forces the input
2929 // representation for the key to be an integer, the input gets replaced
2930 // during bound check elimination with the index argument to the bounds
2931 // check, which can be tagged, so that case must be handled here, too.
2932 if (instr->hydrogen()->key()->representation().IsSmi()) {
2933 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
2934 } else {
2935 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
2936 }
2937 }
2938 __ ldr(result, MemOperand(store_base, offset));
2939
2940 // Check for the hole value.
2941 if (instr->hydrogen()->RequiresHoleCheck()) {
2942 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2943 __ SmiTst(result);
2944 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi);
2945 } else {
2946 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2947 __ cmp(result, scratch);
2948 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2949 }
2950 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2951 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2952 Label done;
2953 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2954 __ cmp(result, scratch);
2955 __ b(ne, &done);
2956 if (info()->IsStub()) {
2957 // A stub can safely convert the hole to undefined only if the array
2958 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
2959 // it needs to bail out.
2960 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2961 __ ldr(result, FieldMemOperand(result, Cell::kValueOffset));
2962 __ cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
2963 DeoptimizeIf(ne, instr, Deoptimizer::kHole);
2964 }
2965 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2966 __ bind(&done);
2967 }
2968}
2969
2970
2971void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2972 if (instr->is_fixed_typed_array()) {
2973 DoLoadKeyedExternalArray(instr);
2974 } else if (instr->hydrogen()->representation().IsDouble()) {
2975 DoLoadKeyedFixedDoubleArray(instr);
2976 } else {
2977 DoLoadKeyedFixedArray(instr);
2978 }
2979}
2980
2981
2982MemOperand LCodeGen::PrepareKeyedOperand(Register key,
2983 Register base,
2984 bool key_is_constant,
2985 int constant_key,
2986 int element_size,
2987 int shift_size,
2988 int base_offset) {
2989 if (key_is_constant) {
2990 return MemOperand(base, (constant_key << element_size) + base_offset);
2991 }
2992
2993 if (base_offset == 0) {
2994 if (shift_size >= 0) {
2995 return MemOperand(base, key, LSL, shift_size);
2996 } else {
2997 DCHECK_EQ(-1, shift_size);
2998 return MemOperand(base, key, LSR, 1);
2999 }
3000 }
3001
3002 if (shift_size >= 0) {
3003 __ add(scratch0(), base, Operand(key, LSL, shift_size));
3004 return MemOperand(scratch0(), base_offset);
3005 } else {
3006 DCHECK_EQ(-1, shift_size);
3007 __ add(scratch0(), base, Operand(key, ASR, 1));
3008 return MemOperand(scratch0(), base_offset);
3009 }
3010}
3011
3012
3013void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3014 DCHECK(ToRegister(instr->context()).is(cp));
3015 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3016 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3017
Ben Murdoch61f157c2016-09-16 13:49:30 +01003018 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003019
Ben Murdoch61f157c2016-09-16 13:49:30 +01003020 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003021 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
3022}
3023
3024
3025void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3026 Register scratch = scratch0();
3027 Register result = ToRegister(instr->result());
3028
3029 if (instr->hydrogen()->from_inlined()) {
3030 __ sub(result, sp, Operand(2 * kPointerSize));
Ben Murdochda12d292016-06-02 14:46:10 +01003031 } else if (instr->hydrogen()->arguments_adaptor()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003032 // Check if the calling frame is an arguments adaptor frame.
3033 Label done, adapted;
3034 __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01003035 __ ldr(result, MemOperand(scratch,
3036 CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003037 __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3038
3039 // Result is the frame pointer for the frame if not adapted and for the real
3040 // frame below the adaptor frame if adapted.
3041 __ mov(result, fp, LeaveCC, ne);
3042 __ mov(result, scratch, LeaveCC, eq);
Ben Murdochda12d292016-06-02 14:46:10 +01003043 } else {
3044 __ mov(result, fp);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003045 }
3046}
3047
3048
3049void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3050 Register elem = ToRegister(instr->elements());
3051 Register result = ToRegister(instr->result());
3052
3053 Label done;
3054
3055 // If no arguments adaptor frame the number of arguments is fixed.
3056 __ cmp(fp, elem);
3057 __ mov(result, Operand(scope()->num_parameters()));
3058 __ b(eq, &done);
3059
3060 // Arguments adaptor frame present. Get argument length from there.
3061 __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3062 __ ldr(result,
3063 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3064 __ SmiUntag(result);
3065
3066 // Argument length is in result register.
3067 __ bind(&done);
3068}
3069
3070
3071void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3072 Register receiver = ToRegister(instr->receiver());
3073 Register function = ToRegister(instr->function());
3074 Register result = ToRegister(instr->result());
3075 Register scratch = scratch0();
3076
3077 // If the receiver is null or undefined, we have to pass the global
3078 // object as a receiver to normal functions. Values have to be
3079 // passed unchanged to builtins and strict-mode functions.
3080 Label global_object, result_in_receiver;
3081
3082 if (!instr->hydrogen()->known_function()) {
3083 // Do not transform the receiver to object for strict mode
3084 // functions.
3085 __ ldr(scratch,
3086 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3087 __ ldr(scratch,
3088 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3089 int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
3090 __ tst(scratch, Operand(mask));
3091 __ b(ne, &result_in_receiver);
3092
3093 // Do not transform the receiver to object for builtins.
3094 __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
3095 __ b(ne, &result_in_receiver);
3096 }
3097
3098 // Normal function. Replace undefined or null with global receiver.
3099 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3100 __ cmp(receiver, scratch);
3101 __ b(eq, &global_object);
3102 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3103 __ cmp(receiver, scratch);
3104 __ b(eq, &global_object);
3105
3106 // Deoptimize if the receiver is not a JS object.
3107 __ SmiTst(receiver);
3108 DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
3109 __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3110 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
3111
3112 __ b(&result_in_receiver);
3113 __ bind(&global_object);
3114 __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
3115 __ ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3116 __ ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3117
3118 if (result.is(receiver)) {
3119 __ bind(&result_in_receiver);
3120 } else {
3121 Label result_ok;
3122 __ b(&result_ok);
3123 __ bind(&result_in_receiver);
3124 __ mov(result, receiver);
3125 __ bind(&result_ok);
3126 }
3127}
3128
3129
3130void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3131 Register receiver = ToRegister(instr->receiver());
3132 Register function = ToRegister(instr->function());
3133 Register length = ToRegister(instr->length());
3134 Register elements = ToRegister(instr->elements());
3135 Register scratch = scratch0();
3136 DCHECK(receiver.is(r0)); // Used for parameter count.
3137 DCHECK(function.is(r1)); // Required by InvokeFunction.
3138 DCHECK(ToRegister(instr->result()).is(r0));
3139
3140 // Copy the arguments to this function possibly from the
3141 // adaptor frame below it.
3142 const uint32_t kArgumentsLimit = 1 * KB;
3143 __ cmp(length, Operand(kArgumentsLimit));
3144 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
3145
3146 // Push the receiver and use the register to keep the original
3147 // number of arguments.
3148 __ push(receiver);
3149 __ mov(receiver, length);
3150 // The arguments are at a one pointer size offset from elements.
3151 __ add(elements, elements, Operand(1 * kPointerSize));
3152
3153 // Loop through the arguments pushing them onto the execution
3154 // stack.
3155 Label invoke, loop;
3156 // length is a small non-negative integer, due to the test above.
3157 __ cmp(length, Operand::Zero());
3158 __ b(eq, &invoke);
3159 __ bind(&loop);
3160 __ ldr(scratch, MemOperand(elements, length, LSL, 2));
3161 __ push(scratch);
3162 __ sub(length, length, Operand(1), SetCC);
3163 __ b(ne, &loop);
3164
3165 __ bind(&invoke);
Ben Murdochda12d292016-06-02 14:46:10 +01003166
3167 InvokeFlag flag = CALL_FUNCTION;
3168 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3169 DCHECK(!info()->saves_caller_doubles());
3170 // TODO(ishell): drop current frame before pushing arguments to the stack.
3171 flag = JUMP_FUNCTION;
3172 ParameterCount actual(r0);
3173 // It is safe to use r3, r4 and r5 as scratch registers here given that
3174 // 1) we are not going to return to caller function anyway,
3175 // 2) r3 (new.target) will be initialized below.
3176 PrepareForTailCall(actual, r3, r4, r5);
3177 }
3178
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003179 DCHECK(instr->HasPointerMap());
3180 LPointerMap* pointers = instr->pointer_map();
Ben Murdochda12d292016-06-02 14:46:10 +01003181 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003182 // The number of arguments is stored in receiver which is r0, as expected
3183 // by InvokeFunction.
3184 ParameterCount actual(receiver);
Ben Murdochda12d292016-06-02 14:46:10 +01003185 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003186}
3187
3188
3189void LCodeGen::DoPushArgument(LPushArgument* instr) {
3190 LOperand* argument = instr->value();
3191 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3192 Abort(kDoPushArgumentNotImplementedForDoubleType);
3193 } else {
3194 Register argument_reg = EmitLoadRegister(argument, ip);
3195 __ push(argument_reg);
3196 }
3197}
3198
3199
3200void LCodeGen::DoDrop(LDrop* instr) {
3201 __ Drop(instr->count());
3202}
3203
3204
3205void LCodeGen::DoThisFunction(LThisFunction* instr) {
3206 Register result = ToRegister(instr->result());
3207 __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3208}
3209
3210
3211void LCodeGen::DoContext(LContext* instr) {
3212 // If there is a non-return use, the context must be moved to a register.
3213 Register result = ToRegister(instr->result());
3214 if (info()->IsOptimizing()) {
3215 __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3216 } else {
3217 // If there is no frame, the context must be in cp.
3218 DCHECK(result.is(cp));
3219 }
3220}
3221
3222
3223void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3224 DCHECK(ToRegister(instr->context()).is(cp));
3225 __ Move(scratch0(), instr->hydrogen()->pairs());
3226 __ push(scratch0());
3227 __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3228 __ push(scratch0());
3229 CallRuntime(Runtime::kDeclareGlobals, instr);
3230}
3231
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003232void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3233 int formal_parameter_count, int arity,
Ben Murdochda12d292016-06-02 14:46:10 +01003234 bool is_tail_call, LInstruction* instr) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003235 bool dont_adapt_arguments =
3236 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3237 bool can_invoke_directly =
3238 dont_adapt_arguments || formal_parameter_count == arity;
3239
3240 Register function_reg = r1;
3241
3242 LPointerMap* pointers = instr->pointer_map();
3243
3244 if (can_invoke_directly) {
3245 // Change context.
3246 __ ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3247
3248 // Always initialize new target and number of actual arguments.
3249 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
3250 __ mov(r0, Operand(arity));
3251
Ben Murdochda12d292016-06-02 14:46:10 +01003252 bool is_self_call = function.is_identical_to(info()->closure());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003253
Ben Murdochda12d292016-06-02 14:46:10 +01003254 // Invoke function.
3255 if (is_self_call) {
3256 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3257 if (is_tail_call) {
3258 __ Jump(self, RelocInfo::CODE_TARGET);
3259 } else {
3260 __ Call(self, RelocInfo::CODE_TARGET);
3261 }
3262 } else {
3263 __ ldr(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3264 if (is_tail_call) {
3265 __ Jump(ip);
3266 } else {
3267 __ Call(ip);
3268 }
3269 }
3270
3271 if (!is_tail_call) {
3272 // Set up deoptimization.
3273 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3274 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003275 } else {
3276 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
Ben Murdochda12d292016-06-02 14:46:10 +01003277 ParameterCount actual(arity);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003278 ParameterCount expected(formal_parameter_count);
Ben Murdochda12d292016-06-02 14:46:10 +01003279 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3280 __ InvokeFunction(function_reg, expected, actual, flag, generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003281 }
3282}
3283
3284
3285void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3286 DCHECK(instr->context() != NULL);
3287 DCHECK(ToRegister(instr->context()).is(cp));
3288 Register input = ToRegister(instr->value());
3289 Register result = ToRegister(instr->result());
3290 Register scratch = scratch0();
3291
3292 // Deoptimize if not a heap number.
3293 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3294 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3295 __ cmp(scratch, Operand(ip));
3296 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3297
3298 Label done;
3299 Register exponent = scratch0();
3300 scratch = no_reg;
3301 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3302 // Check the sign of the argument. If the argument is positive, just
3303 // return it.
3304 __ tst(exponent, Operand(HeapNumber::kSignMask));
3305 // Move the input to the result if necessary.
3306 __ Move(result, input);
3307 __ b(eq, &done);
3308
3309 // Input is negative. Reverse its sign.
3310 // Preserve the value of all registers.
3311 {
3312 PushSafepointRegistersScope scope(this);
3313
3314 // Registers were saved at the safepoint, so we can use
3315 // many scratch registers.
3316 Register tmp1 = input.is(r1) ? r0 : r1;
3317 Register tmp2 = input.is(r2) ? r0 : r2;
3318 Register tmp3 = input.is(r3) ? r0 : r3;
3319 Register tmp4 = input.is(r4) ? r0 : r4;
3320
3321 // exponent: floating point exponent value.
3322
3323 Label allocated, slow;
3324 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3325 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3326 __ b(&allocated);
3327
3328 // Slow case: Call the runtime system to do the number allocation.
3329 __ bind(&slow);
3330
3331 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3332 instr->context());
3333 // Set the pointer to the new heap number in tmp.
3334 if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
3335 // Restore input_reg after call to runtime.
3336 __ LoadFromSafepointRegisterSlot(input, input);
3337 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3338
3339 __ bind(&allocated);
3340 // exponent: floating point exponent value.
3341 // tmp1: allocated heap number.
3342 __ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
3343 __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3344 __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3345 __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3346
3347 __ StoreToSafepointRegisterSlot(tmp1, result);
3348 }
3349
3350 __ bind(&done);
3351}
3352
3353
3354void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3355 Register input = ToRegister(instr->value());
3356 Register result = ToRegister(instr->result());
3357 __ cmp(input, Operand::Zero());
3358 __ Move(result, input, pl);
3359 // We can make rsb conditional because the previous cmp instruction
3360 // will clear the V (overflow) flag and rsb won't set this flag
3361 // if input is positive.
3362 __ rsb(result, input, Operand::Zero(), SetCC, mi);
3363 // Deoptimize on overflow.
3364 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3365}
3366
3367
3368void LCodeGen::DoMathAbs(LMathAbs* instr) {
3369 // Class for deferred case.
3370 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3371 public:
3372 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3373 : LDeferredCode(codegen), instr_(instr) { }
3374 void Generate() override {
3375 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3376 }
3377 LInstruction* instr() override { return instr_; }
3378
3379 private:
3380 LMathAbs* instr_;
3381 };
3382
3383 Representation r = instr->hydrogen()->value()->representation();
3384 if (r.IsDouble()) {
3385 DwVfpRegister input = ToDoubleRegister(instr->value());
3386 DwVfpRegister result = ToDoubleRegister(instr->result());
3387 __ vabs(result, input);
3388 } else if (r.IsSmiOrInteger32()) {
3389 EmitIntegerMathAbs(instr);
3390 } else {
3391 // Representation is tagged.
3392 DeferredMathAbsTaggedHeapNumber* deferred =
3393 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3394 Register input = ToRegister(instr->value());
3395 // Smi check.
3396 __ JumpIfNotSmi(input, deferred->entry());
3397 // If smi, handle it directly.
3398 EmitIntegerMathAbs(instr);
3399 __ bind(deferred->exit());
3400 }
3401}
3402
3403
3404void LCodeGen::DoMathFloor(LMathFloor* instr) {
3405 DwVfpRegister input = ToDoubleRegister(instr->value());
3406 Register result = ToRegister(instr->result());
3407 Register input_high = scratch0();
3408 Label done, exact;
3409
3410 __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact);
3411 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3412
3413 __ bind(&exact);
3414 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3415 // Test for -0.
3416 __ cmp(result, Operand::Zero());
3417 __ b(ne, &done);
3418 __ cmp(input_high, Operand::Zero());
3419 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
3420 }
3421 __ bind(&done);
3422}
3423
3424
3425void LCodeGen::DoMathRound(LMathRound* instr) {
3426 DwVfpRegister input = ToDoubleRegister(instr->value());
3427 Register result = ToRegister(instr->result());
3428 DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp());
3429 DwVfpRegister input_plus_dot_five = double_scratch1;
3430 Register input_high = scratch0();
3431 DwVfpRegister dot_five = double_scratch0();
3432 Label convert, done;
3433
3434 __ Vmov(dot_five, 0.5, scratch0());
3435 __ vabs(double_scratch1, input);
3436 __ VFPCompareAndSetFlags(double_scratch1, dot_five);
3437 // If input is in [-0.5, -0], the result is -0.
3438 // If input is in [+0, +0.5[, the result is +0.
3439 // If the input is +0.5, the result is 1.
3440 __ b(hi, &convert); // Out of [-0.5, +0.5].
3441 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3442 __ VmovHigh(input_high, input);
3443 __ cmp(input_high, Operand::Zero());
3444 // [-0.5, -0].
3445 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
3446 }
3447 __ VFPCompareAndSetFlags(input, dot_five);
3448 __ mov(result, Operand(1), LeaveCC, eq); // +0.5.
3449 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3450 // flag kBailoutOnMinusZero.
3451 __ mov(result, Operand::Zero(), LeaveCC, ne);
3452 __ b(&done);
3453
3454 __ bind(&convert);
3455 __ vadd(input_plus_dot_five, input, dot_five);
3456 // Reuse dot_five (double_scratch0) as we no longer need this value.
3457 __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(),
3458 &done, &done);
3459 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3460 __ bind(&done);
3461}
3462
3463
3464void LCodeGen::DoMathFround(LMathFround* instr) {
3465 DwVfpRegister input_reg = ToDoubleRegister(instr->value());
3466 DwVfpRegister output_reg = ToDoubleRegister(instr->result());
3467 LowDwVfpRegister scratch = double_scratch0();
3468 __ vcvt_f32_f64(scratch.low(), input_reg);
3469 __ vcvt_f64_f32(output_reg, scratch.low());
3470}
3471
3472
3473void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3474 DwVfpRegister input = ToDoubleRegister(instr->value());
3475 DwVfpRegister result = ToDoubleRegister(instr->result());
3476 __ vsqrt(result, input);
3477}
3478
3479
3480void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3481 DwVfpRegister input = ToDoubleRegister(instr->value());
3482 DwVfpRegister result = ToDoubleRegister(instr->result());
3483 DwVfpRegister temp = double_scratch0();
3484
3485 // Note that according to ECMA-262 15.8.2.13:
3486 // Math.pow(-Infinity, 0.5) == Infinity
3487 // Math.sqrt(-Infinity) == NaN
3488 Label done;
3489 __ vmov(temp, -V8_INFINITY, scratch0());
3490 __ VFPCompareAndSetFlags(input, temp);
3491 __ vneg(result, temp, eq);
3492 __ b(&done, eq);
3493
3494 // Add +0 to convert -0 to +0.
3495 __ vadd(result, input, kDoubleRegZero);
3496 __ vsqrt(result, result);
3497 __ bind(&done);
3498}
3499
3500
3501void LCodeGen::DoPower(LPower* instr) {
3502 Representation exponent_type = instr->hydrogen()->right()->representation();
3503 // Having marked this as a call, we can use any registers.
3504 // Just make sure that the input/output registers are the expected ones.
3505 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3506 DCHECK(!instr->right()->IsDoubleRegister() ||
3507 ToDoubleRegister(instr->right()).is(d1));
3508 DCHECK(!instr->right()->IsRegister() ||
3509 ToRegister(instr->right()).is(tagged_exponent));
3510 DCHECK(ToDoubleRegister(instr->left()).is(d0));
3511 DCHECK(ToDoubleRegister(instr->result()).is(d2));
3512
3513 if (exponent_type.IsSmi()) {
3514 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3515 __ CallStub(&stub);
3516 } else if (exponent_type.IsTagged()) {
3517 Label no_deopt;
3518 __ JumpIfSmi(tagged_exponent, &no_deopt);
3519 DCHECK(!r6.is(tagged_exponent));
3520 __ ldr(r6, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3521 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3522 __ cmp(r6, Operand(ip));
3523 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3524 __ bind(&no_deopt);
3525 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3526 __ CallStub(&stub);
3527 } else if (exponent_type.IsInteger32()) {
3528 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3529 __ CallStub(&stub);
3530 } else {
3531 DCHECK(exponent_type.IsDouble());
3532 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3533 __ CallStub(&stub);
3534 }
3535}
3536
Ben Murdoch61f157c2016-09-16 13:49:30 +01003537void LCodeGen::DoMathCos(LMathCos* instr) {
3538 __ PrepareCallCFunction(0, 1, scratch0());
3539 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3540 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3541 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3542}
3543
3544void LCodeGen::DoMathSin(LMathSin* instr) {
3545 __ PrepareCallCFunction(0, 1, scratch0());
3546 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3547 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3548 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3549}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003550
3551void LCodeGen::DoMathExp(LMathExp* instr) {
Ben Murdoch61f157c2016-09-16 13:49:30 +01003552 __ PrepareCallCFunction(0, 1, scratch0());
3553 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3554 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3555 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003556}
3557
3558
3559void LCodeGen::DoMathLog(LMathLog* instr) {
3560 __ PrepareCallCFunction(0, 1, scratch0());
3561 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
Ben Murdoch61f157c2016-09-16 13:49:30 +01003562 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003563 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3564}
3565
3566
3567void LCodeGen::DoMathClz32(LMathClz32* instr) {
3568 Register input = ToRegister(instr->value());
3569 Register result = ToRegister(instr->result());
3570 __ clz(result, input);
3571}
3572
Ben Murdochda12d292016-06-02 14:46:10 +01003573void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3574 Register scratch1, Register scratch2,
3575 Register scratch3) {
3576#if DEBUG
3577 if (actual.is_reg()) {
3578 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3579 } else {
3580 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3581 }
3582#endif
3583 if (FLAG_code_comments) {
3584 if (actual.is_reg()) {
Ben Murdoch61f157c2016-09-16 13:49:30 +01003585 Comment(";;; PrepareForTailCall, actual: %s {",
3586 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3587 actual.reg().code()));
Ben Murdochda12d292016-06-02 14:46:10 +01003588 } else {
3589 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3590 }
3591 }
3592
3593 // Check if next frame is an arguments adaptor frame.
3594 Register caller_args_count_reg = scratch1;
3595 Label no_arguments_adaptor, formal_parameter_count_loaded;
3596 __ ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3597 __ ldr(scratch3,
3598 MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3599 __ cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3600 __ b(ne, &no_arguments_adaptor);
3601
3602 // Drop current frame and load arguments count from arguments adaptor frame.
3603 __ mov(fp, scratch2);
3604 __ ldr(caller_args_count_reg,
3605 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3606 __ SmiUntag(caller_args_count_reg);
3607 __ b(&formal_parameter_count_loaded);
3608
3609 __ bind(&no_arguments_adaptor);
3610 // Load caller's formal parameter count
3611 __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3612
3613 __ bind(&formal_parameter_count_loaded);
3614 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3615
3616 Comment(";;; }");
3617}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003618
3619void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
Ben Murdochda12d292016-06-02 14:46:10 +01003620 HInvokeFunction* hinstr = instr->hydrogen();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003621 DCHECK(ToRegister(instr->context()).is(cp));
3622 DCHECK(ToRegister(instr->function()).is(r1));
3623 DCHECK(instr->HasPointerMap());
3624
Ben Murdochda12d292016-06-02 14:46:10 +01003625 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3626
3627 if (is_tail_call) {
3628 DCHECK(!info()->saves_caller_doubles());
3629 ParameterCount actual(instr->arity());
3630 // It is safe to use r3, r4 and r5 as scratch registers here given that
3631 // 1) we are not going to return to caller function anyway,
3632 // 2) r3 (new.target) will be initialized below.
3633 PrepareForTailCall(actual, r3, r4, r5);
3634 }
3635
3636 Handle<JSFunction> known_function = hinstr->known_function();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003637 if (known_function.is_null()) {
3638 LPointerMap* pointers = instr->pointer_map();
3639 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
Ben Murdochda12d292016-06-02 14:46:10 +01003640 ParameterCount actual(instr->arity());
3641 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3642 __ InvokeFunction(r1, no_reg, actual, flag, generator);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003643 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003644 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3645 instr->arity(), is_tail_call, instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003646 }
3647}
3648
3649
3650void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3651 DCHECK(ToRegister(instr->result()).is(r0));
3652
3653 if (instr->hydrogen()->IsTailCall()) {
3654 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3655
3656 if (instr->target()->IsConstantOperand()) {
3657 LConstantOperand* target = LConstantOperand::cast(instr->target());
3658 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3659 __ Jump(code, RelocInfo::CODE_TARGET);
3660 } else {
3661 DCHECK(instr->target()->IsRegister());
3662 Register target = ToRegister(instr->target());
3663 // Make sure we don't emit any additional entries in the constant pool
3664 // before the call to ensure that the CallCodeSize() calculated the
3665 // correct
3666 // number of instructions for the constant pool load.
3667 {
3668 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3669 __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3670 }
3671 __ Jump(target);
3672 }
3673 } else {
3674 LPointerMap* pointers = instr->pointer_map();
3675 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3676
3677 if (instr->target()->IsConstantOperand()) {
3678 LConstantOperand* target = LConstantOperand::cast(instr->target());
3679 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3680 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3681 PlatformInterfaceDescriptor* call_descriptor =
3682 instr->descriptor().platform_specific_descriptor();
3683 if (call_descriptor != NULL) {
3684 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al,
3685 call_descriptor->storage_mode());
3686 } else {
3687 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al);
3688 }
3689 } else {
3690 DCHECK(instr->target()->IsRegister());
3691 Register target = ToRegister(instr->target());
3692 generator.BeforeCall(__ CallSize(target));
3693 // Make sure we don't emit any additional entries in the constant pool
3694 // before the call to ensure that the CallCodeSize() calculated the
3695 // correct
3696 // number of instructions for the constant pool load.
3697 {
3698 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3699 __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3700 }
3701 __ Call(target);
3702 }
3703 generator.AfterCall();
3704 }
3705}
3706
3707
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003708void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3709 DCHECK(ToRegister(instr->context()).is(cp));
3710 DCHECK(ToRegister(instr->constructor()).is(r1));
3711 DCHECK(ToRegister(instr->result()).is(r0));
3712
3713 __ mov(r0, Operand(instr->arity()));
Ben Murdoch61f157c2016-09-16 13:49:30 +01003714 __ Move(r2, instr->hydrogen()->site());
3715
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003716 ElementsKind kind = instr->hydrogen()->elements_kind();
3717 AllocationSiteOverrideMode override_mode =
3718 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3719 ? DISABLE_ALLOCATION_SITES
3720 : DONT_OVERRIDE;
3721
3722 if (instr->arity() == 0) {
3723 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3724 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3725 } else if (instr->arity() == 1) {
3726 Label done;
3727 if (IsFastPackedElementsKind(kind)) {
3728 Label packed_case;
3729 // We might need a change here
3730 // look at the first argument
3731 __ ldr(r5, MemOperand(sp, 0));
3732 __ cmp(r5, Operand::Zero());
3733 __ b(eq, &packed_case);
3734
3735 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3736 ArraySingleArgumentConstructorStub stub(isolate(),
3737 holey_kind,
3738 override_mode);
3739 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3740 __ jmp(&done);
3741 __ bind(&packed_case);
3742 }
3743
3744 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3745 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3746 __ bind(&done);
3747 } else {
Ben Murdoch61f157c2016-09-16 13:49:30 +01003748 ArrayNArgumentsConstructorStub stub(isolate());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003749 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3750 }
3751}
3752
3753
3754void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3755 CallRuntime(instr->function(), instr->arity(), instr);
3756}
3757
3758
3759void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3760 Register function = ToRegister(instr->function());
3761 Register code_object = ToRegister(instr->code_object());
3762 __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag));
3763 __ str(code_object,
3764 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3765}
3766
3767
3768void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3769 Register result = ToRegister(instr->result());
3770 Register base = ToRegister(instr->base_object());
3771 if (instr->offset()->IsConstantOperand()) {
3772 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3773 __ add(result, base, Operand(ToInteger32(offset)));
3774 } else {
3775 Register offset = ToRegister(instr->offset());
3776 __ add(result, base, offset);
3777 }
3778}
3779
3780
3781void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3782 Representation representation = instr->representation();
3783
3784 Register object = ToRegister(instr->object());
3785 Register scratch = scratch0();
3786 HObjectAccess access = instr->hydrogen()->access();
3787 int offset = access.offset();
3788
3789 if (access.IsExternalMemory()) {
3790 Register value = ToRegister(instr->value());
3791 MemOperand operand = MemOperand(object, offset);
3792 __ Store(value, operand, representation);
3793 return;
3794 }
3795
3796 __ AssertNotSmi(object);
3797
3798 DCHECK(!representation.IsSmi() ||
3799 !instr->value()->IsConstantOperand() ||
3800 IsSmi(LConstantOperand::cast(instr->value())));
3801 if (representation.IsDouble()) {
3802 DCHECK(access.IsInobject());
3803 DCHECK(!instr->hydrogen()->has_transition());
3804 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3805 DwVfpRegister value = ToDoubleRegister(instr->value());
3806 __ vstr(value, FieldMemOperand(object, offset));
3807 return;
3808 }
3809
3810 if (instr->hydrogen()->has_transition()) {
3811 Handle<Map> transition = instr->hydrogen()->transition_map();
3812 AddDeprecationDependency(transition);
3813 __ mov(scratch, Operand(transition));
3814 __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3815 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3816 Register temp = ToRegister(instr->temp());
3817 // Update the write barrier for the map field.
3818 __ RecordWriteForMap(object,
3819 scratch,
3820 temp,
3821 GetLinkRegisterState(),
3822 kSaveFPRegs);
3823 }
3824 }
3825
3826 // Do the store.
3827 Register value = ToRegister(instr->value());
3828 if (access.IsInobject()) {
3829 MemOperand operand = FieldMemOperand(object, offset);
3830 __ Store(value, operand, representation);
3831 if (instr->hydrogen()->NeedsWriteBarrier()) {
3832 // Update the write barrier for the object for in-object properties.
3833 __ RecordWriteField(object,
3834 offset,
3835 value,
3836 scratch,
3837 GetLinkRegisterState(),
3838 kSaveFPRegs,
3839 EMIT_REMEMBERED_SET,
3840 instr->hydrogen()->SmiCheckForWriteBarrier(),
3841 instr->hydrogen()->PointersToHereCheckForValue());
3842 }
3843 } else {
3844 __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3845 MemOperand operand = FieldMemOperand(scratch, offset);
3846 __ Store(value, operand, representation);
3847 if (instr->hydrogen()->NeedsWriteBarrier()) {
3848 // Update the write barrier for the properties array.
3849 // object is used as a scratch register.
3850 __ RecordWriteField(scratch,
3851 offset,
3852 value,
3853 object,
3854 GetLinkRegisterState(),
3855 kSaveFPRegs,
3856 EMIT_REMEMBERED_SET,
3857 instr->hydrogen()->SmiCheckForWriteBarrier(),
3858 instr->hydrogen()->PointersToHereCheckForValue());
3859 }
3860 }
3861}
3862
3863
3864void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3865 DCHECK(ToRegister(instr->context()).is(cp));
3866 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
3867 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
3868
Ben Murdoch61f157c2016-09-16 13:49:30 +01003869 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003870
3871 __ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
Ben Murdoch61f157c2016-09-16 13:49:30 +01003872 Handle<Code> ic =
3873 CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
3874 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003875 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
3876}
3877
3878
3879void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3880 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3881 if (instr->index()->IsConstantOperand()) {
3882 Operand index = ToOperand(instr->index());
3883 Register length = ToRegister(instr->length());
3884 __ cmp(length, index);
3885 cc = CommuteCondition(cc);
3886 } else {
3887 Register index = ToRegister(instr->index());
3888 Operand length = ToOperand(instr->length());
3889 __ cmp(index, length);
3890 }
3891 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3892 Label done;
3893 __ b(NegateCondition(cc), &done);
3894 __ stop("eliminated bounds check failed");
3895 __ bind(&done);
3896 } else {
3897 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
3898 }
3899}
3900
3901
3902void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3903 Register external_pointer = ToRegister(instr->elements());
3904 Register key = no_reg;
3905 ElementsKind elements_kind = instr->elements_kind();
3906 bool key_is_constant = instr->key()->IsConstantOperand();
3907 int constant_key = 0;
3908 if (key_is_constant) {
3909 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3910 if (constant_key & 0xF0000000) {
3911 Abort(kArrayIndexConstantValueTooBig);
3912 }
3913 } else {
3914 key = ToRegister(instr->key());
3915 }
3916 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3917 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3918 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3919 int base_offset = instr->base_offset();
3920
3921 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3922 Register address = scratch0();
3923 DwVfpRegister value(ToDoubleRegister(instr->value()));
3924 if (key_is_constant) {
3925 if (constant_key != 0) {
3926 __ add(address, external_pointer,
3927 Operand(constant_key << element_size_shift));
3928 } else {
3929 address = external_pointer;
3930 }
3931 } else {
3932 __ add(address, external_pointer, Operand(key, LSL, shift_size));
3933 }
3934 if (elements_kind == FLOAT32_ELEMENTS) {
3935 __ vcvt_f32_f64(double_scratch0().low(), value);
3936 __ vstr(double_scratch0().low(), address, base_offset);
3937 } else { // Storing doubles, not floats.
3938 __ vstr(value, address, base_offset);
3939 }
3940 } else {
3941 Register value(ToRegister(instr->value()));
3942 MemOperand mem_operand = PrepareKeyedOperand(
3943 key, external_pointer, key_is_constant, constant_key,
3944 element_size_shift, shift_size,
3945 base_offset);
3946 switch (elements_kind) {
3947 case UINT8_ELEMENTS:
3948 case UINT8_CLAMPED_ELEMENTS:
3949 case INT8_ELEMENTS:
3950 __ strb(value, mem_operand);
3951 break;
3952 case INT16_ELEMENTS:
3953 case UINT16_ELEMENTS:
3954 __ strh(value, mem_operand);
3955 break;
3956 case INT32_ELEMENTS:
3957 case UINT32_ELEMENTS:
3958 __ str(value, mem_operand);
3959 break;
3960 case FLOAT32_ELEMENTS:
3961 case FLOAT64_ELEMENTS:
3962 case FAST_DOUBLE_ELEMENTS:
3963 case FAST_ELEMENTS:
3964 case FAST_SMI_ELEMENTS:
3965 case FAST_HOLEY_DOUBLE_ELEMENTS:
3966 case FAST_HOLEY_ELEMENTS:
3967 case FAST_HOLEY_SMI_ELEMENTS:
3968 case DICTIONARY_ELEMENTS:
3969 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3970 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01003971 case FAST_STRING_WRAPPER_ELEMENTS:
3972 case SLOW_STRING_WRAPPER_ELEMENTS:
3973 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003974 UNREACHABLE();
3975 break;
3976 }
3977 }
3978}
3979
3980
3981void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3982 DwVfpRegister value = ToDoubleRegister(instr->value());
3983 Register elements = ToRegister(instr->elements());
3984 Register scratch = scratch0();
3985 DwVfpRegister double_scratch = double_scratch0();
3986 bool key_is_constant = instr->key()->IsConstantOperand();
3987 int base_offset = instr->base_offset();
3988
3989 // Calculate the effective address of the slot in the array to store the
3990 // double value.
3991 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3992 if (key_is_constant) {
3993 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3994 if (constant_key & 0xF0000000) {
3995 Abort(kArrayIndexConstantValueTooBig);
3996 }
3997 __ add(scratch, elements,
3998 Operand((constant_key << element_size_shift) + base_offset));
3999 } else {
4000 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4001 ? (element_size_shift - kSmiTagSize) : element_size_shift;
4002 __ add(scratch, elements, Operand(base_offset));
4003 __ add(scratch, scratch,
4004 Operand(ToRegister(instr->key()), LSL, shift_size));
4005 }
4006
4007 if (instr->NeedsCanonicalization()) {
4008 // Force a canonical NaN.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004009 __ VFPCanonicalizeNaN(double_scratch, value);
4010 __ vstr(double_scratch, scratch, 0);
4011 } else {
4012 __ vstr(value, scratch, 0);
4013 }
4014}
4015
4016
4017void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4018 Register value = ToRegister(instr->value());
4019 Register elements = ToRegister(instr->elements());
4020 Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
4021 : no_reg;
4022 Register scratch = scratch0();
4023 Register store_base = scratch;
4024 int offset = instr->base_offset();
4025
4026 // Do the store.
4027 if (instr->key()->IsConstantOperand()) {
4028 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4029 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4030 offset += ToInteger32(const_operand) * kPointerSize;
4031 store_base = elements;
4032 } else {
4033 // Even though the HLoadKeyed instruction forces the input
4034 // representation for the key to be an integer, the input gets replaced
4035 // during bound check elimination with the index argument to the bounds
4036 // check, which can be tagged, so that case must be handled here, too.
4037 if (instr->hydrogen()->key()->representation().IsSmi()) {
4038 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
4039 } else {
4040 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
4041 }
4042 }
4043 __ str(value, MemOperand(store_base, offset));
4044
4045 if (instr->hydrogen()->NeedsWriteBarrier()) {
4046 SmiCheck check_needed =
4047 instr->hydrogen()->value()->type().IsHeapObject()
4048 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4049 // Compute address of modified element and store it into key register.
4050 __ add(key, store_base, Operand(offset));
4051 __ RecordWrite(elements,
4052 key,
4053 value,
4054 GetLinkRegisterState(),
4055 kSaveFPRegs,
4056 EMIT_REMEMBERED_SET,
4057 check_needed,
4058 instr->hydrogen()->PointersToHereCheckForValue());
4059 }
4060}
4061
4062
4063void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4064 // By cases: external, fast double
4065 if (instr->is_fixed_typed_array()) {
4066 DoStoreKeyedExternalArray(instr);
4067 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4068 DoStoreKeyedFixedDoubleArray(instr);
4069 } else {
4070 DoStoreKeyedFixedArray(instr);
4071 }
4072}
4073
4074
4075void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4076 DCHECK(ToRegister(instr->context()).is(cp));
4077 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4078 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4079 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4080
Ben Murdoch61f157c2016-09-16 13:49:30 +01004081 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004082
4083 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
Ben Murdoch61f157c2016-09-16 13:49:30 +01004084 isolate(), instr->language_mode())
4085 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004086 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
4087}
4088
4089
4090void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4091 class DeferredMaybeGrowElements final : public LDeferredCode {
4092 public:
4093 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4094 : LDeferredCode(codegen), instr_(instr) {}
4095 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4096 LInstruction* instr() override { return instr_; }
4097
4098 private:
4099 LMaybeGrowElements* instr_;
4100 };
4101
4102 Register result = r0;
4103 DeferredMaybeGrowElements* deferred =
4104 new (zone()) DeferredMaybeGrowElements(this, instr);
4105 LOperand* key = instr->key();
4106 LOperand* current_capacity = instr->current_capacity();
4107
4108 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4109 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4110 DCHECK(key->IsConstantOperand() || key->IsRegister());
4111 DCHECK(current_capacity->IsConstantOperand() ||
4112 current_capacity->IsRegister());
4113
4114 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4115 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4116 int32_t constant_capacity =
4117 ToInteger32(LConstantOperand::cast(current_capacity));
4118 if (constant_key >= constant_capacity) {
4119 // Deferred case.
4120 __ jmp(deferred->entry());
4121 }
4122 } else if (key->IsConstantOperand()) {
4123 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4124 __ cmp(ToRegister(current_capacity), Operand(constant_key));
4125 __ b(le, deferred->entry());
4126 } else if (current_capacity->IsConstantOperand()) {
4127 int32_t constant_capacity =
4128 ToInteger32(LConstantOperand::cast(current_capacity));
4129 __ cmp(ToRegister(key), Operand(constant_capacity));
4130 __ b(ge, deferred->entry());
4131 } else {
4132 __ cmp(ToRegister(key), ToRegister(current_capacity));
4133 __ b(ge, deferred->entry());
4134 }
4135
4136 if (instr->elements()->IsRegister()) {
4137 __ Move(result, ToRegister(instr->elements()));
4138 } else {
4139 __ ldr(result, ToMemOperand(instr->elements()));
4140 }
4141
4142 __ bind(deferred->exit());
4143}
4144
4145
4146void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4147 // TODO(3095996): Get rid of this. For now, we need to make the
4148 // result register contain a valid pointer because it is already
4149 // contained in the register pointer map.
4150 Register result = r0;
4151 __ mov(result, Operand::Zero());
4152
4153 // We have to call a stub.
4154 {
4155 PushSafepointRegistersScope scope(this);
4156 if (instr->object()->IsRegister()) {
4157 __ Move(result, ToRegister(instr->object()));
4158 } else {
4159 __ ldr(result, ToMemOperand(instr->object()));
4160 }
4161
4162 LOperand* key = instr->key();
4163 if (key->IsConstantOperand()) {
Ben Murdochc5610432016-08-08 18:44:38 +01004164 LConstantOperand* constant_key = LConstantOperand::cast(key);
4165 int32_t int_key = ToInteger32(constant_key);
4166 if (Smi::IsValid(int_key)) {
4167 __ mov(r3, Operand(Smi::FromInt(int_key)));
4168 } else {
4169 // We should never get here at runtime because there is a smi check on
4170 // the key before this point.
4171 __ stop("expected smi");
4172 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004173 } else {
4174 __ Move(r3, ToRegister(key));
4175 __ SmiTag(r3);
4176 }
4177
4178 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4179 instr->hydrogen()->kind());
4180 __ CallStub(&stub);
4181 RecordSafepointWithLazyDeopt(
4182 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4183 __ StoreToSafepointRegisterSlot(result, result);
4184 }
4185
4186 // Deopt on smi, which means the elements array changed to dictionary mode.
4187 __ SmiTst(result);
4188 DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
4189}
4190
4191
4192void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4193 Register object_reg = ToRegister(instr->object());
4194 Register scratch = scratch0();
4195
4196 Handle<Map> from_map = instr->original_map();
4197 Handle<Map> to_map = instr->transitioned_map();
4198 ElementsKind from_kind = instr->from_kind();
4199 ElementsKind to_kind = instr->to_kind();
4200
4201 Label not_applicable;
4202 __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4203 __ cmp(scratch, Operand(from_map));
4204 __ b(ne, &not_applicable);
4205
4206 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4207 Register new_map_reg = ToRegister(instr->new_map_temp());
4208 __ mov(new_map_reg, Operand(to_map));
4209 __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4210 // Write barrier.
4211 __ RecordWriteForMap(object_reg,
4212 new_map_reg,
4213 scratch,
4214 GetLinkRegisterState(),
4215 kDontSaveFPRegs);
4216 } else {
4217 DCHECK(ToRegister(instr->context()).is(cp));
4218 DCHECK(object_reg.is(r0));
4219 PushSafepointRegistersScope scope(this);
4220 __ Move(r1, to_map);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004221 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004222 __ CallStub(&stub);
4223 RecordSafepointWithRegisters(
4224 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4225 }
4226 __ bind(&not_applicable);
4227}
4228
4229
4230void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4231 Register object = ToRegister(instr->object());
4232 Register temp = ToRegister(instr->temp());
4233 Label no_memento_found;
4234 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4235 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
4236 __ bind(&no_memento_found);
4237}
4238
4239
4240void LCodeGen::DoStringAdd(LStringAdd* instr) {
4241 DCHECK(ToRegister(instr->context()).is(cp));
4242 DCHECK(ToRegister(instr->left()).is(r1));
4243 DCHECK(ToRegister(instr->right()).is(r0));
4244 StringAddStub stub(isolate(),
4245 instr->hydrogen()->flags(),
4246 instr->hydrogen()->pretenure_flag());
4247 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4248}
4249
4250
4251void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4252 class DeferredStringCharCodeAt final : public LDeferredCode {
4253 public:
4254 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4255 : LDeferredCode(codegen), instr_(instr) { }
4256 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4257 LInstruction* instr() override { return instr_; }
4258
4259 private:
4260 LStringCharCodeAt* instr_;
4261 };
4262
4263 DeferredStringCharCodeAt* deferred =
4264 new(zone()) DeferredStringCharCodeAt(this, instr);
4265
4266 StringCharLoadGenerator::Generate(masm(),
4267 ToRegister(instr->string()),
4268 ToRegister(instr->index()),
4269 ToRegister(instr->result()),
4270 deferred->entry());
4271 __ bind(deferred->exit());
4272}
4273
4274
4275void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4276 Register string = ToRegister(instr->string());
4277 Register result = ToRegister(instr->result());
4278 Register scratch = scratch0();
4279
4280 // TODO(3095996): Get rid of this. For now, we need to make the
4281 // result register contain a valid pointer because it is already
4282 // contained in the register pointer map.
4283 __ mov(result, Operand::Zero());
4284
4285 PushSafepointRegistersScope scope(this);
4286 __ push(string);
4287 // Push the index as a smi. This is safe because of the checks in
4288 // DoStringCharCodeAt above.
4289 if (instr->index()->IsConstantOperand()) {
4290 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4291 __ mov(scratch, Operand(Smi::FromInt(const_index)));
4292 __ push(scratch);
4293 } else {
4294 Register index = ToRegister(instr->index());
4295 __ SmiTag(index);
4296 __ push(index);
4297 }
4298 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4299 instr->context());
4300 __ AssertSmi(r0);
4301 __ SmiUntag(r0);
4302 __ StoreToSafepointRegisterSlot(r0, result);
4303}
4304
4305
4306void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4307 class DeferredStringCharFromCode final : public LDeferredCode {
4308 public:
4309 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4310 : LDeferredCode(codegen), instr_(instr) { }
4311 void Generate() override {
4312 codegen()->DoDeferredStringCharFromCode(instr_);
4313 }
4314 LInstruction* instr() override { return instr_; }
4315
4316 private:
4317 LStringCharFromCode* instr_;
4318 };
4319
4320 DeferredStringCharFromCode* deferred =
4321 new(zone()) DeferredStringCharFromCode(this, instr);
4322
4323 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4324 Register char_code = ToRegister(instr->char_code());
4325 Register result = ToRegister(instr->result());
4326 DCHECK(!char_code.is(result));
4327
4328 __ cmp(char_code, Operand(String::kMaxOneByteCharCode));
4329 __ b(hi, deferred->entry());
4330 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4331 __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
4332 __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4333 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4334 __ cmp(result, ip);
4335 __ b(eq, deferred->entry());
4336 __ bind(deferred->exit());
4337}
4338
4339
4340void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4341 Register char_code = ToRegister(instr->char_code());
4342 Register result = ToRegister(instr->result());
4343
4344 // TODO(3095996): Get rid of this. For now, we need to make the
4345 // result register contain a valid pointer because it is already
4346 // contained in the register pointer map.
4347 __ mov(result, Operand::Zero());
4348
4349 PushSafepointRegistersScope scope(this);
4350 __ SmiTag(char_code);
4351 __ push(char_code);
4352 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4353 instr->context());
4354 __ StoreToSafepointRegisterSlot(r0, result);
4355}
4356
4357
4358void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4359 LOperand* input = instr->value();
4360 DCHECK(input->IsRegister() || input->IsStackSlot());
4361 LOperand* output = instr->result();
4362 DCHECK(output->IsDoubleRegister());
4363 SwVfpRegister single_scratch = double_scratch0().low();
4364 if (input->IsStackSlot()) {
4365 Register scratch = scratch0();
4366 __ ldr(scratch, ToMemOperand(input));
4367 __ vmov(single_scratch, scratch);
4368 } else {
4369 __ vmov(single_scratch, ToRegister(input));
4370 }
4371 __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
4372}
4373
4374
4375void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4376 LOperand* input = instr->value();
4377 LOperand* output = instr->result();
4378
4379 SwVfpRegister flt_scratch = double_scratch0().low();
4380 __ vmov(flt_scratch, ToRegister(input));
4381 __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
4382}
4383
4384
4385void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4386 class DeferredNumberTagI final : public LDeferredCode {
4387 public:
4388 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4389 : LDeferredCode(codegen), instr_(instr) { }
4390 void Generate() override {
4391 codegen()->DoDeferredNumberTagIU(instr_,
4392 instr_->value(),
4393 instr_->temp1(),
4394 instr_->temp2(),
4395 SIGNED_INT32);
4396 }
4397 LInstruction* instr() override { return instr_; }
4398
4399 private:
4400 LNumberTagI* instr_;
4401 };
4402
4403 Register src = ToRegister(instr->value());
4404 Register dst = ToRegister(instr->result());
4405
4406 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4407 __ SmiTag(dst, src, SetCC);
4408 __ b(vs, deferred->entry());
4409 __ bind(deferred->exit());
4410}
4411
4412
4413void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4414 class DeferredNumberTagU final : public LDeferredCode {
4415 public:
4416 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4417 : LDeferredCode(codegen), instr_(instr) { }
4418 void Generate() override {
4419 codegen()->DoDeferredNumberTagIU(instr_,
4420 instr_->value(),
4421 instr_->temp1(),
4422 instr_->temp2(),
4423 UNSIGNED_INT32);
4424 }
4425 LInstruction* instr() override { return instr_; }
4426
4427 private:
4428 LNumberTagU* instr_;
4429 };
4430
4431 Register input = ToRegister(instr->value());
4432 Register result = ToRegister(instr->result());
4433
4434 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4435 __ cmp(input, Operand(Smi::kMaxValue));
4436 __ b(hi, deferred->entry());
4437 __ SmiTag(result, input);
4438 __ bind(deferred->exit());
4439}
4440
4441
4442void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4443 LOperand* value,
4444 LOperand* temp1,
4445 LOperand* temp2,
4446 IntegerSignedness signedness) {
4447 Label done, slow;
4448 Register src = ToRegister(value);
4449 Register dst = ToRegister(instr->result());
4450 Register tmp1 = scratch0();
4451 Register tmp2 = ToRegister(temp1);
4452 Register tmp3 = ToRegister(temp2);
4453 LowDwVfpRegister dbl_scratch = double_scratch0();
4454
4455 if (signedness == SIGNED_INT32) {
4456 // There was overflow, so bits 30 and 31 of the original integer
4457 // disagree. Try to allocate a heap number in new space and store
4458 // the value in there. If that fails, call the runtime system.
4459 if (dst.is(src)) {
4460 __ SmiUntag(src, dst);
4461 __ eor(src, src, Operand(0x80000000));
4462 }
4463 __ vmov(dbl_scratch.low(), src);
4464 __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
4465 } else {
4466 __ vmov(dbl_scratch.low(), src);
4467 __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
4468 }
4469
4470 if (FLAG_inline_new) {
4471 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +01004472 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004473 __ b(&done);
4474 }
4475
4476 // Slow case: Call the runtime system to do the number allocation.
4477 __ bind(&slow);
4478 {
4479 // TODO(3095996): Put a valid pointer value in the stack slot where the
4480 // result register is stored, as this register is in the pointer map, but
4481 // contains an integer value.
4482 __ mov(dst, Operand::Zero());
4483
4484 // Preserve the value of all registers.
4485 PushSafepointRegistersScope scope(this);
4486
4487 // NumberTagI and NumberTagD use the context from the frame, rather than
4488 // the environment's HContext or HInlinedContext value.
4489 // They only call Runtime::kAllocateHeapNumber.
4490 // The corresponding HChange instructions are added in a phase that does
4491 // not have easy access to the local context.
4492 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4493 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4494 RecordSafepointWithRegisters(
4495 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004496 __ StoreToSafepointRegisterSlot(r0, dst);
4497 }
4498
4499 // Done. Put the value in dbl_scratch into the value of the allocated heap
4500 // number.
4501 __ bind(&done);
Ben Murdochc5610432016-08-08 18:44:38 +01004502 __ vstr(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004503}
4504
4505
4506void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4507 class DeferredNumberTagD final : public LDeferredCode {
4508 public:
4509 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4510 : LDeferredCode(codegen), instr_(instr) { }
4511 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4512 LInstruction* instr() override { return instr_; }
4513
4514 private:
4515 LNumberTagD* instr_;
4516 };
4517
4518 DwVfpRegister input_reg = ToDoubleRegister(instr->value());
4519 Register scratch = scratch0();
4520 Register reg = ToRegister(instr->result());
4521 Register temp1 = ToRegister(instr->temp());
4522 Register temp2 = ToRegister(instr->temp2());
4523
4524 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4525 if (FLAG_inline_new) {
4526 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +01004527 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004528 } else {
4529 __ jmp(deferred->entry());
4530 }
4531 __ bind(deferred->exit());
Ben Murdochc5610432016-08-08 18:44:38 +01004532 __ vstr(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004533}
4534
4535
4536void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4537 // TODO(3095996): Get rid of this. For now, we need to make the
4538 // result register contain a valid pointer because it is already
4539 // contained in the register pointer map.
4540 Register reg = ToRegister(instr->result());
4541 __ mov(reg, Operand::Zero());
4542
4543 PushSafepointRegistersScope scope(this);
4544 // NumberTagI and NumberTagD use the context from the frame, rather than
4545 // the environment's HContext or HInlinedContext value.
4546 // They only call Runtime::kAllocateHeapNumber.
4547 // The corresponding HChange instructions are added in a phase that does
4548 // not have easy access to the local context.
4549 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4550 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4551 RecordSafepointWithRegisters(
4552 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004553 __ StoreToSafepointRegisterSlot(r0, reg);
4554}
4555
4556
4557void LCodeGen::DoSmiTag(LSmiTag* instr) {
4558 HChange* hchange = instr->hydrogen();
4559 Register input = ToRegister(instr->value());
4560 Register output = ToRegister(instr->result());
4561 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4562 hchange->value()->CheckFlag(HValue::kUint32)) {
4563 __ tst(input, Operand(0xc0000000));
4564 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4565 }
4566 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4567 !hchange->value()->CheckFlag(HValue::kUint32)) {
4568 __ SmiTag(output, input, SetCC);
4569 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4570 } else {
4571 __ SmiTag(output, input);
4572 }
4573}
4574
4575
4576void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4577 Register input = ToRegister(instr->value());
4578 Register result = ToRegister(instr->result());
4579 if (instr->needs_check()) {
4580 STATIC_ASSERT(kHeapObjectTag == 1);
4581 // If the input is a HeapObject, SmiUntag will set the carry flag.
4582 __ SmiUntag(result, input, SetCC);
4583 DeoptimizeIf(cs, instr, Deoptimizer::kNotASmi);
4584 } else {
4585 __ SmiUntag(result, input);
4586 }
4587}
4588
4589
4590void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4591 DwVfpRegister result_reg,
4592 NumberUntagDMode mode) {
4593 bool can_convert_undefined_to_nan =
4594 instr->hydrogen()->can_convert_undefined_to_nan();
4595 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4596
4597 Register scratch = scratch0();
4598 SwVfpRegister flt_scratch = double_scratch0().low();
4599 DCHECK(!result_reg.is(double_scratch0()));
4600 Label convert, load_smi, done;
4601 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4602 // Smi check.
4603 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4604 // Heap number map check.
4605 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4606 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4607 __ cmp(scratch, Operand(ip));
4608 if (can_convert_undefined_to_nan) {
4609 __ b(ne, &convert);
4610 } else {
4611 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
4612 }
4613 // load heap number
4614 __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag);
4615 if (deoptimize_on_minus_zero) {
4616 __ VmovLow(scratch, result_reg);
4617 __ cmp(scratch, Operand::Zero());
4618 __ b(ne, &done);
4619 __ VmovHigh(scratch, result_reg);
4620 __ cmp(scratch, Operand(HeapNumber::kSignMask));
4621 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
4622 }
4623 __ jmp(&done);
4624 if (can_convert_undefined_to_nan) {
4625 __ bind(&convert);
4626 // Convert undefined (and hole) to NaN.
4627 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4628 __ cmp(input_reg, Operand(ip));
4629 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
4630 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4631 __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag);
4632 __ jmp(&done);
4633 }
4634 } else {
4635 __ SmiUntag(scratch, input_reg);
4636 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4637 }
4638 // Smi to double register conversion
4639 __ bind(&load_smi);
4640 // scratch: untagged value of input_reg
4641 __ vmov(flt_scratch, scratch);
4642 __ vcvt_f64_s32(result_reg, flt_scratch);
4643 __ bind(&done);
4644}
4645
4646
4647void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4648 Register input_reg = ToRegister(instr->value());
4649 Register scratch1 = scratch0();
4650 Register scratch2 = ToRegister(instr->temp());
4651 LowDwVfpRegister double_scratch = double_scratch0();
4652 DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4653
4654 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4655 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4656
4657 Label done;
4658
4659 // The input was optimistically untagged; revert it.
4660 // The carry flag is set when we reach this deferred code as we just executed
4661 // SmiUntag(heap_object, SetCC)
4662 STATIC_ASSERT(kHeapObjectTag == 1);
4663 __ adc(scratch2, input_reg, Operand(input_reg));
4664
4665 // Heap number map check.
4666 __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4667 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4668 __ cmp(scratch1, Operand(ip));
4669
4670 if (instr->truncating()) {
4671 // Performs a truncating conversion of a floating point number as used by
4672 // the JS bitwise operations.
4673 Label no_heap_number, check_bools, check_false;
4674 __ b(ne, &no_heap_number);
4675 __ TruncateHeapNumberToI(input_reg, scratch2);
4676 __ b(&done);
4677
4678 // Check for Oddballs. Undefined/False is converted to zero and True to one
4679 // for truncating conversions.
4680 __ bind(&no_heap_number);
4681 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4682 __ cmp(scratch2, Operand(ip));
4683 __ b(ne, &check_bools);
4684 __ mov(input_reg, Operand::Zero());
4685 __ b(&done);
4686
4687 __ bind(&check_bools);
4688 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4689 __ cmp(scratch2, Operand(ip));
4690 __ b(ne, &check_false);
4691 __ mov(input_reg, Operand(1));
4692 __ b(&done);
4693
4694 __ bind(&check_false);
4695 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
4696 __ cmp(scratch2, Operand(ip));
4697 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
4698 __ mov(input_reg, Operand::Zero());
4699 } else {
4700 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
4701
4702 __ sub(ip, scratch2, Operand(kHeapObjectTag));
4703 __ vldr(double_scratch2, ip, HeapNumber::kValueOffset);
4704 __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch);
4705 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4706
4707 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4708 __ cmp(input_reg, Operand::Zero());
4709 __ b(ne, &done);
4710 __ VmovHigh(scratch1, double_scratch2);
4711 __ tst(scratch1, Operand(HeapNumber::kSignMask));
4712 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
4713 }
4714 }
4715 __ bind(&done);
4716}
4717
4718
4719void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4720 class DeferredTaggedToI final : public LDeferredCode {
4721 public:
4722 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4723 : LDeferredCode(codegen), instr_(instr) { }
4724 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4725 LInstruction* instr() override { return instr_; }
4726
4727 private:
4728 LTaggedToI* instr_;
4729 };
4730
4731 LOperand* input = instr->value();
4732 DCHECK(input->IsRegister());
4733 DCHECK(input->Equals(instr->result()));
4734
4735 Register input_reg = ToRegister(input);
4736
4737 if (instr->hydrogen()->value()->representation().IsSmi()) {
4738 __ SmiUntag(input_reg);
4739 } else {
4740 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4741
4742 // Optimistically untag the input.
4743 // If the input is a HeapObject, SmiUntag will set the carry flag.
4744 __ SmiUntag(input_reg, SetCC);
4745 // Branch to deferred code if the input was tagged.
4746 // The deferred code will take care of restoring the tag.
4747 __ b(cs, deferred->entry());
4748 __ bind(deferred->exit());
4749 }
4750}
4751
4752
4753void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4754 LOperand* input = instr->value();
4755 DCHECK(input->IsRegister());
4756 LOperand* result = instr->result();
4757 DCHECK(result->IsDoubleRegister());
4758
4759 Register input_reg = ToRegister(input);
4760 DwVfpRegister result_reg = ToDoubleRegister(result);
4761
4762 HValue* value = instr->hydrogen()->value();
4763 NumberUntagDMode mode = value->representation().IsSmi()
4764 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4765
4766 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4767}
4768
4769
4770void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4771 Register result_reg = ToRegister(instr->result());
4772 Register scratch1 = scratch0();
4773 DwVfpRegister double_input = ToDoubleRegister(instr->value());
4774 LowDwVfpRegister double_scratch = double_scratch0();
4775
4776 if (instr->truncating()) {
4777 __ TruncateDoubleToI(result_reg, double_input);
4778 } else {
4779 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4780 // Deoptimize if the input wasn't a int32 (inside a double).
4781 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4782 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4783 Label done;
4784 __ cmp(result_reg, Operand::Zero());
4785 __ b(ne, &done);
4786 __ VmovHigh(scratch1, double_input);
4787 __ tst(scratch1, Operand(HeapNumber::kSignMask));
4788 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
4789 __ bind(&done);
4790 }
4791 }
4792}
4793
4794
4795void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4796 Register result_reg = ToRegister(instr->result());
4797 Register scratch1 = scratch0();
4798 DwVfpRegister double_input = ToDoubleRegister(instr->value());
4799 LowDwVfpRegister double_scratch = double_scratch0();
4800
4801 if (instr->truncating()) {
4802 __ TruncateDoubleToI(result_reg, double_input);
4803 } else {
4804 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4805 // Deoptimize if the input wasn't a int32 (inside a double).
4806 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
4807 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4808 Label done;
4809 __ cmp(result_reg, Operand::Zero());
4810 __ b(ne, &done);
4811 __ VmovHigh(scratch1, double_input);
4812 __ tst(scratch1, Operand(HeapNumber::kSignMask));
4813 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero);
4814 __ bind(&done);
4815 }
4816 }
4817 __ SmiTag(result_reg, SetCC);
4818 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4819}
4820
4821
4822void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4823 LOperand* input = instr->value();
4824 __ SmiTst(ToRegister(input));
4825 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi);
4826}
4827
4828
4829void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4830 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4831 LOperand* input = instr->value();
4832 __ SmiTst(ToRegister(input));
4833 DeoptimizeIf(eq, instr, Deoptimizer::kSmi);
4834 }
4835}
4836
4837
4838void LCodeGen::DoCheckArrayBufferNotNeutered(
4839 LCheckArrayBufferNotNeutered* instr) {
4840 Register view = ToRegister(instr->view());
4841 Register scratch = scratch0();
4842
4843 __ ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4844 __ ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4845 __ tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
4846 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
4847}
4848
4849
4850void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4851 Register input = ToRegister(instr->value());
4852 Register scratch = scratch0();
4853
4854 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4855 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4856
4857 if (instr->hydrogen()->is_interval_check()) {
4858 InstanceType first;
4859 InstanceType last;
4860 instr->hydrogen()->GetCheckInterval(&first, &last);
4861
4862 __ cmp(scratch, Operand(first));
4863
4864 // If there is only one type in the interval check for equality.
4865 if (first == last) {
4866 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
4867 } else {
4868 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
4869 // Omit check for the last type.
4870 if (last != LAST_TYPE) {
4871 __ cmp(scratch, Operand(last));
4872 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
4873 }
4874 }
4875 } else {
4876 uint8_t mask;
4877 uint8_t tag;
4878 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4879
4880 if (base::bits::IsPowerOfTwo32(mask)) {
4881 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4882 __ tst(scratch, Operand(mask));
4883 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType);
4884 } else {
4885 __ and_(scratch, scratch, Operand(mask));
4886 __ cmp(scratch, Operand(tag));
4887 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
4888 }
4889 }
4890}
4891
4892
4893void LCodeGen::DoCheckValue(LCheckValue* instr) {
4894 Register reg = ToRegister(instr->value());
4895 Handle<HeapObject> object = instr->hydrogen()->object().handle();
4896 AllowDeferredHandleDereference smi_check;
4897 if (isolate()->heap()->InNewSpace(*object)) {
4898 Register reg = ToRegister(instr->value());
4899 Handle<Cell> cell = isolate()->factory()->NewCell(object);
4900 __ mov(ip, Operand(cell));
4901 __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset));
4902 __ cmp(reg, ip);
4903 } else {
4904 __ cmp(reg, Operand(object));
4905 }
4906 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
4907}
4908
4909
4910void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4911 {
4912 PushSafepointRegistersScope scope(this);
4913 __ push(object);
4914 __ mov(cp, Operand::Zero());
4915 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4916 RecordSafepointWithRegisters(
4917 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4918 __ StoreToSafepointRegisterSlot(r0, scratch0());
4919 }
4920 __ tst(scratch0(), Operand(kSmiTagMask));
4921 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed);
4922}
4923
4924
4925void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4926 class DeferredCheckMaps final : public LDeferredCode {
4927 public:
4928 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4929 : LDeferredCode(codegen), instr_(instr), object_(object) {
4930 SetExit(check_maps());
4931 }
4932 void Generate() override {
4933 codegen()->DoDeferredInstanceMigration(instr_, object_);
4934 }
4935 Label* check_maps() { return &check_maps_; }
4936 LInstruction* instr() override { return instr_; }
4937
4938 private:
4939 LCheckMaps* instr_;
4940 Label check_maps_;
4941 Register object_;
4942 };
4943
4944 if (instr->hydrogen()->IsStabilityCheck()) {
4945 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4946 for (int i = 0; i < maps->size(); ++i) {
4947 AddStabilityDependency(maps->at(i).handle());
4948 }
4949 return;
4950 }
4951
4952 Register map_reg = scratch0();
4953
4954 LOperand* input = instr->value();
4955 DCHECK(input->IsRegister());
4956 Register reg = ToRegister(input);
4957
4958 __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
4959
4960 DeferredCheckMaps* deferred = NULL;
4961 if (instr->hydrogen()->HasMigrationTarget()) {
4962 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
4963 __ bind(deferred->check_maps());
4964 }
4965
4966 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4967 Label success;
4968 for (int i = 0; i < maps->size() - 1; i++) {
4969 Handle<Map> map = maps->at(i).handle();
4970 __ CompareMap(map_reg, map, &success);
4971 __ b(eq, &success);
4972 }
4973
4974 Handle<Map> map = maps->at(maps->size() - 1).handle();
4975 __ CompareMap(map_reg, map, &success);
4976 if (instr->hydrogen()->HasMigrationTarget()) {
4977 __ b(ne, deferred->entry());
4978 } else {
4979 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
4980 }
4981
4982 __ bind(&success);
4983}
4984
4985
4986void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4987 DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped());
4988 Register result_reg = ToRegister(instr->result());
4989 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
4990}
4991
4992
4993void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4994 Register unclamped_reg = ToRegister(instr->unclamped());
4995 Register result_reg = ToRegister(instr->result());
4996 __ ClampUint8(result_reg, unclamped_reg);
4997}
4998
4999
5000void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5001 Register scratch = scratch0();
5002 Register input_reg = ToRegister(instr->unclamped());
5003 Register result_reg = ToRegister(instr->result());
5004 DwVfpRegister temp_reg = ToDoubleRegister(instr->temp());
5005 Label is_smi, done, heap_number;
5006
5007 // Both smi and heap number cases are handled.
5008 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
5009
5010 // Check for heap number
5011 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5012 __ cmp(scratch, Operand(factory()->heap_number_map()));
5013 __ b(eq, &heap_number);
5014
5015 // Check for undefined. Undefined is converted to zero for clamping
5016 // conversions.
5017 __ cmp(input_reg, Operand(factory()->undefined_value()));
5018 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
5019 __ mov(result_reg, Operand::Zero());
5020 __ jmp(&done);
5021
5022 // Heap number
5023 __ bind(&heap_number);
5024 __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5025 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
5026 __ jmp(&done);
5027
5028 // smi
5029 __ bind(&is_smi);
5030 __ ClampUint8(result_reg, result_reg);
5031
5032 __ bind(&done);
5033}
5034
5035
5036void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5037 DwVfpRegister value_reg = ToDoubleRegister(instr->value());
5038 Register result_reg = ToRegister(instr->result());
5039 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5040 __ VmovHigh(result_reg, value_reg);
5041 } else {
5042 __ VmovLow(result_reg, value_reg);
5043 }
5044}
5045
5046
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005047void LCodeGen::DoAllocate(LAllocate* instr) {
5048 class DeferredAllocate final : public LDeferredCode {
5049 public:
5050 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5051 : LDeferredCode(codegen), instr_(instr) { }
5052 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5053 LInstruction* instr() override { return instr_; }
5054
5055 private:
5056 LAllocate* instr_;
5057 };
5058
5059 DeferredAllocate* deferred =
5060 new(zone()) DeferredAllocate(this, instr);
5061
5062 Register result = ToRegister(instr->result());
5063 Register scratch = ToRegister(instr->temp1());
5064 Register scratch2 = ToRegister(instr->temp2());
5065
5066 // Allocate memory for the object.
Ben Murdochc5610432016-08-08 18:44:38 +01005067 AllocationFlags flags = NO_ALLOCATION_FLAGS;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005068 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5069 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5070 }
5071 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5072 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5073 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5074 }
5075
Ben Murdochc5610432016-08-08 18:44:38 +01005076 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5077 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
5078 }
5079 DCHECK(!instr->hydrogen()->IsAllocationFolded());
5080
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005081 if (instr->size()->IsConstantOperand()) {
5082 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5083 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5084 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5085 } else {
5086 Register size = ToRegister(instr->size());
5087 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5088 }
5089
5090 __ bind(deferred->exit());
5091
5092 if (instr->hydrogen()->MustPrefillWithFiller()) {
5093 STATIC_ASSERT(kHeapObjectTag == 1);
5094 if (instr->size()->IsConstantOperand()) {
5095 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5096 __ mov(scratch, Operand(size - kHeapObjectTag));
5097 } else {
5098 __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5099 }
5100 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5101 Label loop;
5102 __ bind(&loop);
5103 __ sub(scratch, scratch, Operand(kPointerSize), SetCC);
5104 __ str(scratch2, MemOperand(result, scratch));
5105 __ b(ge, &loop);
5106 }
5107}
5108
5109
5110void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5111 Register result = ToRegister(instr->result());
5112
5113 // TODO(3095996): Get rid of this. For now, we need to make the
5114 // result register contain a valid pointer because it is already
5115 // contained in the register pointer map.
5116 __ mov(result, Operand(Smi::FromInt(0)));
5117
5118 PushSafepointRegistersScope scope(this);
5119 if (instr->size()->IsRegister()) {
5120 Register size = ToRegister(instr->size());
5121 DCHECK(!size.is(result));
5122 __ SmiTag(size);
5123 __ push(size);
5124 } else {
5125 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5126 if (size >= 0 && size <= Smi::kMaxValue) {
5127 __ Push(Smi::FromInt(size));
5128 } else {
5129 // We should never get here at runtime => abort
5130 __ stop("invalid allocation size");
5131 return;
5132 }
5133 }
5134
5135 int flags = AllocateDoubleAlignFlag::encode(
5136 instr->hydrogen()->MustAllocateDoubleAligned());
5137 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5138 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5139 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5140 } else {
5141 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5142 }
5143 __ Push(Smi::FromInt(flags));
5144
5145 CallRuntimeFromDeferred(
5146 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5147 __ StoreToSafepointRegisterSlot(r0, result);
Ben Murdochc5610432016-08-08 18:44:38 +01005148
5149 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5150 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5151 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5152 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5153 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5154 }
5155 // If the allocation folding dominator allocate triggered a GC, allocation
5156 // happend in the runtime. We have to reset the top pointer to virtually
5157 // undo the allocation.
5158 ExternalReference allocation_top =
5159 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5160 Register top_address = scratch0();
5161 __ sub(r0, r0, Operand(kHeapObjectTag));
5162 __ mov(top_address, Operand(allocation_top));
5163 __ str(r0, MemOperand(top_address));
5164 __ add(r0, r0, Operand(kHeapObjectTag));
5165 }
5166}
5167
5168void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5169 DCHECK(instr->hydrogen()->IsAllocationFolded());
5170 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5171 Register result = ToRegister(instr->result());
5172 Register scratch1 = ToRegister(instr->temp1());
5173 Register scratch2 = ToRegister(instr->temp2());
5174
5175 AllocationFlags flags = ALLOCATION_FOLDED;
5176 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5177 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5178 }
5179 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5180 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5181 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5182 }
5183 if (instr->size()->IsConstantOperand()) {
5184 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5185 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5186 __ FastAllocate(size, result, scratch1, scratch2, flags);
5187 } else {
5188 Register size = ToRegister(instr->size());
5189 __ FastAllocate(size, result, scratch1, scratch2, flags);
5190 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005191}
5192
5193
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005194void LCodeGen::DoTypeof(LTypeof* instr) {
5195 DCHECK(ToRegister(instr->value()).is(r3));
5196 DCHECK(ToRegister(instr->result()).is(r0));
5197 Label end, do_call;
5198 Register value_register = ToRegister(instr->value());
5199 __ JumpIfNotSmi(value_register, &do_call);
5200 __ mov(r0, Operand(isolate()->factory()->number_string()));
5201 __ jmp(&end);
5202 __ bind(&do_call);
5203 TypeofStub stub(isolate());
5204 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5205 __ bind(&end);
5206}
5207
5208
5209void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5210 Register input = ToRegister(instr->value());
5211
5212 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5213 instr->FalseLabel(chunk_),
5214 input,
5215 instr->type_literal());
5216 if (final_branch_condition != kNoCondition) {
5217 EmitBranch(instr, final_branch_condition);
5218 }
5219}
5220
5221
5222Condition LCodeGen::EmitTypeofIs(Label* true_label,
5223 Label* false_label,
5224 Register input,
5225 Handle<String> type_name) {
5226 Condition final_branch_condition = kNoCondition;
5227 Register scratch = scratch0();
5228 Factory* factory = isolate()->factory();
5229 if (String::Equals(type_name, factory->number_string())) {
5230 __ JumpIfSmi(input, true_label);
5231 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5232 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5233 final_branch_condition = eq;
5234
5235 } else if (String::Equals(type_name, factory->string_string())) {
5236 __ JumpIfSmi(input, false_label);
5237 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5238 final_branch_condition = lt;
5239
5240 } else if (String::Equals(type_name, factory->symbol_string())) {
5241 __ JumpIfSmi(input, false_label);
5242 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5243 final_branch_condition = eq;
5244
5245 } else if (String::Equals(type_name, factory->boolean_string())) {
5246 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5247 __ b(eq, true_label);
5248 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5249 final_branch_condition = eq;
5250
5251 } else if (String::Equals(type_name, factory->undefined_string())) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005252 __ CompareRoot(input, Heap::kNullValueRootIndex);
5253 __ b(eq, false_label);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005254 __ JumpIfSmi(input, false_label);
5255 // Check for undetectable objects => true.
5256 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5257 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5258 __ tst(scratch, Operand(1 << Map::kIsUndetectable));
5259 final_branch_condition = ne;
5260
5261 } else if (String::Equals(type_name, factory->function_string())) {
5262 __ JumpIfSmi(input, false_label);
5263 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5264 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5265 __ and_(scratch, scratch,
5266 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5267 __ cmp(scratch, Operand(1 << Map::kIsCallable));
5268 final_branch_condition = eq;
5269
5270 } else if (String::Equals(type_name, factory->object_string())) {
5271 __ JumpIfSmi(input, false_label);
5272 __ CompareRoot(input, Heap::kNullValueRootIndex);
5273 __ b(eq, true_label);
5274 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5275 __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5276 __ b(lt, false_label);
5277 // Check for callable or undetectable objects => false.
5278 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5279 __ tst(scratch,
5280 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5281 final_branch_condition = eq;
5282
5283// clang-format off
5284#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5285 } else if (String::Equals(type_name, factory->type##_string())) { \
5286 __ JumpIfSmi(input, false_label); \
5287 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
5288 __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \
5289 final_branch_condition = eq;
5290 SIMD128_TYPES(SIMD128_TYPE)
5291#undef SIMD128_TYPE
5292 // clang-format on
5293
5294 } else {
5295 __ b(false_label);
5296 }
5297
5298 return final_branch_condition;
5299}
5300
5301
5302void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5303 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5304 // Ensure that we have enough space after the previous lazy-bailout
5305 // instruction for patching the code here.
5306 int current_pc = masm()->pc_offset();
5307 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5308 // Block literal pool emission for duration of padding.
5309 Assembler::BlockConstPoolScope block_const_pool(masm());
5310 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5311 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5312 while (padding_size > 0) {
5313 __ nop();
5314 padding_size -= Assembler::kInstrSize;
5315 }
5316 }
5317 }
5318 last_lazy_deopt_pc_ = masm()->pc_offset();
5319}
5320
5321
5322void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5323 last_lazy_deopt_pc_ = masm()->pc_offset();
5324 DCHECK(instr->HasEnvironment());
5325 LEnvironment* env = instr->environment();
5326 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5327 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5328}
5329
5330
5331void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5332 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5333 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5334 // needed return address), even though the implementation of LAZY and EAGER is
5335 // now identical. When LAZY is eventually completely folded into EAGER, remove
5336 // the special case below.
5337 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5338 type = Deoptimizer::LAZY;
5339 }
5340
5341 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5342}
5343
5344
5345void LCodeGen::DoDummy(LDummy* instr) {
5346 // Nothing to see here, move on!
5347}
5348
5349
5350void LCodeGen::DoDummyUse(LDummyUse* instr) {
5351 // Nothing to see here, move on!
5352}
5353
5354
5355void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5356 PushSafepointRegistersScope scope(this);
5357 LoadContextFromDeferred(instr->context());
5358 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5359 RecordSafepointWithLazyDeopt(
5360 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5361 DCHECK(instr->HasEnvironment());
5362 LEnvironment* env = instr->environment();
5363 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5364}
5365
5366
5367void LCodeGen::DoStackCheck(LStackCheck* instr) {
5368 class DeferredStackCheck final : public LDeferredCode {
5369 public:
5370 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5371 : LDeferredCode(codegen), instr_(instr) { }
5372 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5373 LInstruction* instr() override { return instr_; }
5374
5375 private:
5376 LStackCheck* instr_;
5377 };
5378
5379 DCHECK(instr->HasEnvironment());
5380 LEnvironment* env = instr->environment();
5381 // There is no LLazyBailout instruction for stack-checks. We have to
5382 // prepare for lazy deoptimization explicitly here.
5383 if (instr->hydrogen()->is_function_entry()) {
5384 // Perform stack overflow check.
5385 Label done;
5386 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5387 __ cmp(sp, Operand(ip));
5388 __ b(hs, &done);
5389 Handle<Code> stack_check = isolate()->builtins()->StackCheck();
5390 PredictableCodeSizeScope predictable(masm());
5391 predictable.ExpectSize(CallCodeSize(stack_check, RelocInfo::CODE_TARGET));
5392 DCHECK(instr->context()->IsRegister());
5393 DCHECK(ToRegister(instr->context()).is(cp));
5394 CallCode(stack_check, RelocInfo::CODE_TARGET, instr);
5395 __ bind(&done);
5396 } else {
5397 DCHECK(instr->hydrogen()->is_backwards_branch());
5398 // Perform stack overflow check if this goto needs it before jumping.
5399 DeferredStackCheck* deferred_stack_check =
5400 new(zone()) DeferredStackCheck(this, instr);
5401 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5402 __ cmp(sp, Operand(ip));
5403 __ b(lo, deferred_stack_check->entry());
5404 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5405 __ bind(instr->done_label());
5406 deferred_stack_check->SetExit(instr->done_label());
5407 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5408 // Don't record a deoptimization index for the safepoint here.
5409 // This will be done explicitly when emitting call and the safepoint in
5410 // the deferred code.
5411 }
5412}
5413
5414
5415void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5416 // This is a pseudo-instruction that ensures that the environment here is
5417 // properly registered for deoptimization and records the assembler's PC
5418 // offset.
5419 LEnvironment* environment = instr->environment();
5420
5421 // If the environment were already registered, we would have no way of
5422 // backpatching it with the spill slot operands.
5423 DCHECK(!environment->HasBeenRegistered());
5424 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5425
5426 GenerateOsrPrologue();
5427}
5428
5429
5430void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005431 Label use_cache, call_runtime;
Ben Murdoch097c5b22016-05-18 11:27:45 +01005432 __ CheckEnumCache(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005433
5434 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
5435 __ b(&use_cache);
5436
5437 // Get the set of properties to enumerate.
5438 __ bind(&call_runtime);
5439 __ push(r0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005440 CallRuntime(Runtime::kForInEnumerate, instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005441 __ bind(&use_cache);
5442}
5443
5444
5445void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5446 Register map = ToRegister(instr->map());
5447 Register result = ToRegister(instr->result());
5448 Label load_cache, done;
5449 __ EnumLength(result, map);
5450 __ cmp(result, Operand(Smi::FromInt(0)));
5451 __ b(ne, &load_cache);
5452 __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5453 __ jmp(&done);
5454
5455 __ bind(&load_cache);
5456 __ LoadInstanceDescriptors(map, result);
5457 __ ldr(result,
5458 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5459 __ ldr(result,
5460 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5461 __ cmp(result, Operand::Zero());
5462 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
5463
5464 __ bind(&done);
5465}
5466
5467
5468void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5469 Register object = ToRegister(instr->value());
5470 Register map = ToRegister(instr->map());
5471 __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5472 __ cmp(map, scratch0());
5473 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5474}
5475
5476
5477void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5478 Register result,
5479 Register object,
5480 Register index) {
5481 PushSafepointRegistersScope scope(this);
5482 __ Push(object);
5483 __ Push(index);
5484 __ mov(cp, Operand::Zero());
5485 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5486 RecordSafepointWithRegisters(
5487 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5488 __ StoreToSafepointRegisterSlot(r0, result);
5489}
5490
5491
5492void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5493 class DeferredLoadMutableDouble final : public LDeferredCode {
5494 public:
5495 DeferredLoadMutableDouble(LCodeGen* codegen,
5496 LLoadFieldByIndex* instr,
5497 Register result,
5498 Register object,
5499 Register index)
5500 : LDeferredCode(codegen),
5501 instr_(instr),
5502 result_(result),
5503 object_(object),
5504 index_(index) {
5505 }
5506 void Generate() override {
5507 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5508 }
5509 LInstruction* instr() override { return instr_; }
5510
5511 private:
5512 LLoadFieldByIndex* instr_;
5513 Register result_;
5514 Register object_;
5515 Register index_;
5516 };
5517
5518 Register object = ToRegister(instr->object());
5519 Register index = ToRegister(instr->index());
5520 Register result = ToRegister(instr->result());
5521 Register scratch = scratch0();
5522
5523 DeferredLoadMutableDouble* deferred;
5524 deferred = new(zone()) DeferredLoadMutableDouble(
5525 this, instr, result, object, index);
5526
5527 Label out_of_object, done;
5528
5529 __ tst(index, Operand(Smi::FromInt(1)));
5530 __ b(ne, deferred->entry());
5531 __ mov(index, Operand(index, ASR, 1));
5532
5533 __ cmp(index, Operand::Zero());
5534 __ b(lt, &out_of_object);
5535
5536 __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index));
5537 __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5538
5539 __ b(&done);
5540
5541 __ bind(&out_of_object);
5542 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5543 // Index is equal to negated out of object property index plus 1.
5544 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
5545 __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index));
5546 __ ldr(result, FieldMemOperand(scratch,
5547 FixedArray::kHeaderSize - kPointerSize));
5548 __ bind(deferred->exit());
5549 __ bind(&done);
5550}
5551
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005552#undef __
5553
5554} // namespace internal
5555} // namespace v8