blob: 1585845efb33f047662aa359149cdfd51e721235 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stdarg.h>
6#include <stdlib.h>
7#include <cmath>
8
Emily Bernierd0a1eb72015-03-24 16:35:39 -04009#if V8_TARGET_ARCH_PPC
10
11#include "src/assembler.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000012#include "src/base/bits.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040013#include "src/codegen.h"
14#include "src/disasm.h"
15#include "src/ppc/constants-ppc.h"
16#include "src/ppc/frames-ppc.h"
17#include "src/ppc/simulator-ppc.h"
Ben Murdoch097c5b22016-05-18 11:27:45 +010018#include "src/runtime/runtime-utils.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040019
20#if defined(USE_SIMULATOR)
21
22// Only build the simulator if not compiling for real PPC hardware.
23namespace v8 {
24namespace internal {
25
Ben Murdoch61f157c2016-09-16 13:49:30 +010026const auto GetRegConfig = RegisterConfiguration::Crankshaft;
27
Emily Bernierd0a1eb72015-03-24 16:35:39 -040028// This macro provides a platform independent use of sscanf. The reason for
29// SScanF not being implemented in a platform independent way through
30// ::v8::internal::OS in the same way as SNPrintF is that the
31// Windows C Run-Time Library does not provide vsscanf.
32#define SScanF sscanf // NOLINT
33
34// The PPCDebugger class is used by the simulator while debugging simulated
35// PowerPC code.
36class PPCDebugger {
37 public:
38 explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
39 ~PPCDebugger();
40
41 void Stop(Instruction* instr);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040042 void Debug();
43
44 private:
45 static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
46 static const Instr kNopInstr = (ORI); // ori, 0,0,0
47
48 Simulator* sim_;
49
50 intptr_t GetRegisterValue(int regnum);
51 double GetRegisterPairDoubleValue(int regnum);
52 double GetFPDoubleRegisterValue(int regnum);
53 bool GetValue(const char* desc, intptr_t* value);
54 bool GetFPDoubleValue(const char* desc, double* value);
55
56 // Set or delete a breakpoint. Returns true if successful.
57 bool SetBreakpoint(Instruction* break_pc);
58 bool DeleteBreakpoint(Instruction* break_pc);
59
60 // Undo and redo all breakpoints. This is needed to bracket disassembly and
61 // execution to skip past breakpoints when run from the debugger.
62 void UndoBreakpoints();
63 void RedoBreakpoints();
64};
65
66
67PPCDebugger::~PPCDebugger() {}
68
69
70#ifdef GENERATED_CODE_COVERAGE
71static FILE* coverage_log = NULL;
72
73
74static void InitializeCoverage() {
75 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
76 if (file_name != NULL) {
77 coverage_log = fopen(file_name, "aw+");
78 }
79}
80
81
82void PPCDebugger::Stop(Instruction* instr) {
83 // Get the stop code.
84 uint32_t code = instr->SvcValue() & kStopCodeMask;
85 // Retrieve the encoded address, which comes just after this stop.
86 char** msg_address =
87 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
88 char* msg = *msg_address;
89 DCHECK(msg != NULL);
90
91 // Update this stop description.
92 if (isWatchedStop(code) && !watched_stops_[code].desc) {
93 watched_stops_[code].desc = msg;
94 }
95
96 if (strlen(msg) > 0) {
97 if (coverage_log != NULL) {
98 fprintf(coverage_log, "%s\n", msg);
99 fflush(coverage_log);
100 }
101 // Overwrite the instruction and address with nops.
102 instr->SetInstructionBits(kNopInstr);
103 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
104 }
105 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
106}
107
108#else // ndef GENERATED_CODE_COVERAGE
109
110static void InitializeCoverage() {}
111
112
113void PPCDebugger::Stop(Instruction* instr) {
114 // Get the stop code.
115 // use of kStopCodeMask not right on PowerPC
116 uint32_t code = instr->SvcValue() & kStopCodeMask;
117 // Retrieve the encoded address, which comes just after this stop.
118 char* msg =
119 *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
120 // Update this stop description.
121 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
122 sim_->watched_stops_[code].desc = msg;
123 }
124 // Print the stop message and code if it is not the default code.
125 if (code != kMaxStopCode) {
126 PrintF("Simulator hit stop %u: %s\n", code, msg);
127 } else {
128 PrintF("Simulator hit %s\n", msg);
129 }
130 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
131 Debug();
132}
133#endif
134
135
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400136intptr_t PPCDebugger::GetRegisterValue(int regnum) {
137 return sim_->get_register(regnum);
138}
139
140
141double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
142 return sim_->get_double_from_register_pair(regnum);
143}
144
145
146double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
147 return sim_->get_double_from_d_register(regnum);
148}
149
150
151bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
152 int regnum = Registers::Number(desc);
153 if (regnum != kNoRegister) {
154 *value = GetRegisterValue(regnum);
155 return true;
156 } else {
157 if (strncmp(desc, "0x", 2) == 0) {
158 return SScanF(desc + 2, "%" V8PRIxPTR,
159 reinterpret_cast<uintptr_t*>(value)) == 1;
160 } else {
161 return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
162 1;
163 }
164 }
165 return false;
166}
167
168
169bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000170 int regnum = DoubleRegisters::Number(desc);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400171 if (regnum != kNoRegister) {
172 *value = sim_->get_double_from_d_register(regnum);
173 return true;
174 }
175 return false;
176}
177
178
179bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
180 // Check if a breakpoint can be set. If not return without any side-effects.
181 if (sim_->break_pc_ != NULL) {
182 return false;
183 }
184
185 // Set the breakpoint.
186 sim_->break_pc_ = break_pc;
187 sim_->break_instr_ = break_pc->InstructionBits();
188 // Not setting the breakpoint instruction in the code itself. It will be set
189 // when the debugger shell continues.
190 return true;
191}
192
193
194bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
195 if (sim_->break_pc_ != NULL) {
196 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
197 }
198
199 sim_->break_pc_ = NULL;
200 sim_->break_instr_ = 0;
201 return true;
202}
203
204
205void PPCDebugger::UndoBreakpoints() {
206 if (sim_->break_pc_ != NULL) {
207 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
208 }
209}
210
211
212void PPCDebugger::RedoBreakpoints() {
213 if (sim_->break_pc_ != NULL) {
214 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
215 }
216}
217
218
219void PPCDebugger::Debug() {
220 intptr_t last_pc = -1;
221 bool done = false;
222
223#define COMMAND_SIZE 63
224#define ARG_SIZE 255
225
226#define STR(a) #a
227#define XSTR(a) STR(a)
228
229 char cmd[COMMAND_SIZE + 1];
230 char arg1[ARG_SIZE + 1];
231 char arg2[ARG_SIZE + 1];
232 char* argv[3] = {cmd, arg1, arg2};
233
234 // make sure to have a proper terminating character if reaching the limit
235 cmd[COMMAND_SIZE] = 0;
236 arg1[ARG_SIZE] = 0;
237 arg2[ARG_SIZE] = 0;
238
239 // Undo all set breakpoints while running in the debugger shell. This will
240 // make them invisible to all commands.
241 UndoBreakpoints();
242 // Disable tracing while simulating
243 bool trace = ::v8::internal::FLAG_trace_sim;
244 ::v8::internal::FLAG_trace_sim = false;
245
246 while (!done && !sim_->has_bad_pc()) {
247 if (last_pc != sim_->get_pc()) {
248 disasm::NameConverter converter;
249 disasm::Disassembler dasm(converter);
250 // use a reasonably large buffer
251 v8::internal::EmbeddedVector<char, 256> buffer;
252 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
253 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
254 last_pc = sim_->get_pc();
255 }
256 char* line = ReadLine("sim> ");
257 if (line == NULL) {
258 break;
259 } else {
260 char* last_input = sim_->last_debugger_input();
261 if (strcmp(line, "\n") == 0 && last_input != NULL) {
262 line = last_input;
263 } else {
264 // Ownership is transferred to sim_;
265 sim_->set_last_debugger_input(line);
266 }
267 // Use sscanf to parse the individual parts of the command line. At the
268 // moment no command expects more than two parameters.
269 int argc = SScanF(line,
270 "%" XSTR(COMMAND_SIZE) "s "
271 "%" XSTR(ARG_SIZE) "s "
272 "%" XSTR(ARG_SIZE) "s",
273 cmd, arg1, arg2);
274 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
275 intptr_t value;
276
277 // If at a breakpoint, proceed past it.
278 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
279 ->InstructionBits() == 0x7d821008) {
280 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
281 } else {
282 sim_->ExecuteInstruction(
283 reinterpret_cast<Instruction*>(sim_->get_pc()));
284 }
285
286 if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
287 for (int i = 1; i < value; i++) {
288 disasm::NameConverter converter;
289 disasm::Disassembler dasm(converter);
290 // use a reasonably large buffer
291 v8::internal::EmbeddedVector<char, 256> buffer;
292 dasm.InstructionDecode(buffer,
293 reinterpret_cast<byte*>(sim_->get_pc()));
294 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
295 buffer.start());
296 sim_->ExecuteInstruction(
297 reinterpret_cast<Instruction*>(sim_->get_pc()));
298 }
299 }
300 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
301 // If at a breakpoint, proceed past it.
302 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
303 ->InstructionBits() == 0x7d821008) {
304 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
305 } else {
306 // Execute the one instruction we broke at with breakpoints disabled.
307 sim_->ExecuteInstruction(
308 reinterpret_cast<Instruction*>(sim_->get_pc()));
309 }
310 // Leave the debugger shell.
311 done = true;
312 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
313 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
314 intptr_t value;
315 double dvalue;
316 if (strcmp(arg1, "all") == 0) {
317 for (int i = 0; i < kNumRegisters; i++) {
318 value = GetRegisterValue(i);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000319 PrintF(" %3s: %08" V8PRIxPTR,
Ben Murdoch61f157c2016-09-16 13:49:30 +0100320 GetRegConfig()->GetGeneralRegisterName(i), value);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400321 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
322 (i % 2) == 0) {
323 dvalue = GetRegisterPairDoubleValue(i);
324 PrintF(" (%f)\n", dvalue);
325 } else if (i != 0 && !((i + 1) & 3)) {
326 PrintF("\n");
327 }
328 }
329 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
330 " "
331 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
332 sim_->special_reg_pc_, sim_->special_reg_lr_,
333 sim_->special_reg_ctr_, sim_->special_reg_xer_,
334 sim_->condition_reg_);
335 } else if (strcmp(arg1, "alld") == 0) {
336 for (int i = 0; i < kNumRegisters; i++) {
337 value = GetRegisterValue(i);
338 PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
Ben Murdoch61f157c2016-09-16 13:49:30 +0100339 GetRegConfig()->GetGeneralRegisterName(i), value, value);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400340 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
341 (i % 2) == 0) {
342 dvalue = GetRegisterPairDoubleValue(i);
343 PrintF(" (%f)\n", dvalue);
344 } else if (!((i + 1) % 2)) {
345 PrintF("\n");
346 }
347 }
348 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
349 " "
350 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
351 sim_->special_reg_pc_, sim_->special_reg_lr_,
352 sim_->special_reg_ctr_, sim_->special_reg_xer_,
353 sim_->condition_reg_);
354 } else if (strcmp(arg1, "allf") == 0) {
355 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
356 dvalue = GetFPDoubleRegisterValue(i);
357 uint64_t as_words = bit_cast<uint64_t>(dvalue);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000358 PrintF("%3s: %f 0x%08x %08x\n",
Ben Murdoch61f157c2016-09-16 13:49:30 +0100359 GetRegConfig()->GetDoubleRegisterName(i), dvalue,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400360 static_cast<uint32_t>(as_words >> 32),
361 static_cast<uint32_t>(as_words & 0xffffffff));
362 }
363 } else if (arg1[0] == 'r' &&
364 (arg1[1] >= '0' && arg1[1] <= '9' &&
365 (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
366 arg1[3] == '\0')))) {
367 int regnum = strtoul(&arg1[1], 0, 10);
368 if (regnum != kNoRegister) {
369 value = GetRegisterValue(regnum);
370 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
371 value);
372 } else {
373 PrintF("%s unrecognized\n", arg1);
374 }
375 } else {
376 if (GetValue(arg1, &value)) {
377 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
378 value);
379 } else if (GetFPDoubleValue(arg1, &dvalue)) {
380 uint64_t as_words = bit_cast<uint64_t>(dvalue);
381 PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
382 static_cast<uint32_t>(as_words >> 32),
383 static_cast<uint32_t>(as_words & 0xffffffff));
384 } else {
385 PrintF("%s unrecognized\n", arg1);
386 }
387 }
388 } else {
389 PrintF("print <register>\n");
390 }
391 } else if ((strcmp(cmd, "po") == 0) ||
392 (strcmp(cmd, "printobject") == 0)) {
393 if (argc == 2) {
394 intptr_t value;
395 OFStream os(stdout);
396 if (GetValue(arg1, &value)) {
397 Object* obj = reinterpret_cast<Object*>(value);
398 os << arg1 << ": \n";
399#ifdef DEBUG
400 obj->Print(os);
401 os << "\n";
402#else
403 os << Brief(obj) << "\n";
404#endif
405 } else {
406 os << arg1 << " unrecognized\n";
407 }
408 } else {
409 PrintF("printobject <value>\n");
410 }
411 } else if (strcmp(cmd, "setpc") == 0) {
412 intptr_t value;
413
414 if (!GetValue(arg1, &value)) {
415 PrintF("%s unrecognized\n", arg1);
416 continue;
417 }
418 sim_->set_pc(value);
419 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
420 intptr_t* cur = NULL;
421 intptr_t* end = NULL;
422 int next_arg = 1;
423
424 if (strcmp(cmd, "stack") == 0) {
425 cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
426 } else { // "mem"
427 intptr_t value;
428 if (!GetValue(arg1, &value)) {
429 PrintF("%s unrecognized\n", arg1);
430 continue;
431 }
432 cur = reinterpret_cast<intptr_t*>(value);
433 next_arg++;
434 }
435
436 intptr_t words; // likely inaccurate variable name for 64bit
437 if (argc == next_arg) {
438 words = 10;
439 } else {
440 if (!GetValue(argv[next_arg], &words)) {
441 words = 10;
442 }
443 }
444 end = cur + words;
445
446 while (cur < end) {
447 PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
448 reinterpret_cast<intptr_t>(cur), *cur, *cur);
449 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
450 intptr_t value = *cur;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000451 Heap* current_heap = sim_->isolate_->heap();
Ben Murdoch097c5b22016-05-18 11:27:45 +0100452 if (((value & 1) == 0) ||
453 current_heap->ContainsSlow(obj->address())) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400454 PrintF(" (");
455 if ((value & 1) == 0) {
456 PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
457 } else {
458 obj->ShortPrint();
459 }
460 PrintF(")");
461 }
462 PrintF("\n");
463 cur++;
464 }
465 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
466 disasm::NameConverter converter;
467 disasm::Disassembler dasm(converter);
468 // use a reasonably large buffer
469 v8::internal::EmbeddedVector<char, 256> buffer;
470
471 byte* prev = NULL;
472 byte* cur = NULL;
473 byte* end = NULL;
474
475 if (argc == 1) {
476 cur = reinterpret_cast<byte*>(sim_->get_pc());
477 end = cur + (10 * Instruction::kInstrSize);
478 } else if (argc == 2) {
479 int regnum = Registers::Number(arg1);
480 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
481 // The argument is an address or a register name.
482 intptr_t value;
483 if (GetValue(arg1, &value)) {
484 cur = reinterpret_cast<byte*>(value);
485 // Disassemble 10 instructions at <arg1>.
486 end = cur + (10 * Instruction::kInstrSize);
487 }
488 } else {
489 // The argument is the number of instructions.
490 intptr_t value;
491 if (GetValue(arg1, &value)) {
492 cur = reinterpret_cast<byte*>(sim_->get_pc());
493 // Disassemble <arg1> instructions.
494 end = cur + (value * Instruction::kInstrSize);
495 }
496 }
497 } else {
498 intptr_t value1;
499 intptr_t value2;
500 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
501 cur = reinterpret_cast<byte*>(value1);
502 end = cur + (value2 * Instruction::kInstrSize);
503 }
504 }
505
506 while (cur < end) {
507 prev = cur;
508 cur += dasm.InstructionDecode(buffer, cur);
509 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
510 buffer.start());
511 }
512 } else if (strcmp(cmd, "gdb") == 0) {
513 PrintF("relinquishing control to gdb\n");
514 v8::base::OS::DebugBreak();
515 PrintF("regaining control from gdb\n");
516 } else if (strcmp(cmd, "break") == 0) {
517 if (argc == 2) {
518 intptr_t value;
519 if (GetValue(arg1, &value)) {
520 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
521 PrintF("setting breakpoint failed\n");
522 }
523 } else {
524 PrintF("%s unrecognized\n", arg1);
525 }
526 } else {
527 PrintF("break <address>\n");
528 }
529 } else if (strcmp(cmd, "del") == 0) {
530 if (!DeleteBreakpoint(NULL)) {
531 PrintF("deleting breakpoint failed\n");
532 }
533 } else if (strcmp(cmd, "cr") == 0) {
534 PrintF("Condition reg: %08x\n", sim_->condition_reg_);
535 } else if (strcmp(cmd, "lr") == 0) {
536 PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
537 } else if (strcmp(cmd, "ctr") == 0) {
538 PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
539 } else if (strcmp(cmd, "xer") == 0) {
540 PrintF("XER: %08x\n", sim_->special_reg_xer_);
541 } else if (strcmp(cmd, "fpscr") == 0) {
542 PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
543 } else if (strcmp(cmd, "stop") == 0) {
544 intptr_t value;
545 intptr_t stop_pc =
546 sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
547 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
548 Instruction* msg_address =
549 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
550 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
551 // Remove the current stop.
552 if (sim_->isStopInstruction(stop_instr)) {
553 stop_instr->SetInstructionBits(kNopInstr);
554 msg_address->SetInstructionBits(kNopInstr);
555 } else {
556 PrintF("Not at debugger stop.\n");
557 }
558 } else if (argc == 3) {
559 // Print information about all/the specified breakpoint(s).
560 if (strcmp(arg1, "info") == 0) {
561 if (strcmp(arg2, "all") == 0) {
562 PrintF("Stop information:\n");
563 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
564 sim_->PrintStopInfo(i);
565 }
566 } else if (GetValue(arg2, &value)) {
567 sim_->PrintStopInfo(value);
568 } else {
569 PrintF("Unrecognized argument.\n");
570 }
571 } else if (strcmp(arg1, "enable") == 0) {
572 // Enable all/the specified breakpoint(s).
573 if (strcmp(arg2, "all") == 0) {
574 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
575 sim_->EnableStop(i);
576 }
577 } else if (GetValue(arg2, &value)) {
578 sim_->EnableStop(value);
579 } else {
580 PrintF("Unrecognized argument.\n");
581 }
582 } else if (strcmp(arg1, "disable") == 0) {
583 // Disable all/the specified breakpoint(s).
584 if (strcmp(arg2, "all") == 0) {
585 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
586 sim_->DisableStop(i);
587 }
588 } else if (GetValue(arg2, &value)) {
589 sim_->DisableStop(value);
590 } else {
591 PrintF("Unrecognized argument.\n");
592 }
593 }
594 } else {
595 PrintF("Wrong usage. Use help command for more information.\n");
596 }
597 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
598 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
599 PrintF("Trace of executed instructions is %s\n",
600 ::v8::internal::FLAG_trace_sim ? "on" : "off");
601 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
602 PrintF("cont\n");
603 PrintF(" continue execution (alias 'c')\n");
604 PrintF("stepi [num instructions]\n");
605 PrintF(" step one/num instruction(s) (alias 'si')\n");
606 PrintF("print <register>\n");
607 PrintF(" print register content (alias 'p')\n");
608 PrintF(" use register name 'all' to display all integer registers\n");
609 PrintF(
610 " use register name 'alld' to display integer registers "
611 "with decimal values\n");
612 PrintF(" use register name 'rN' to display register number 'N'\n");
613 PrintF(" add argument 'fp' to print register pair double values\n");
614 PrintF(
615 " use register name 'allf' to display floating-point "
616 "registers\n");
617 PrintF("printobject <register>\n");
618 PrintF(" print an object from a register (alias 'po')\n");
619 PrintF("cr\n");
620 PrintF(" print condition register\n");
621 PrintF("lr\n");
622 PrintF(" print link register\n");
623 PrintF("ctr\n");
624 PrintF(" print ctr register\n");
625 PrintF("xer\n");
626 PrintF(" print XER\n");
627 PrintF("fpscr\n");
628 PrintF(" print FPSCR\n");
629 PrintF("stack [<num words>]\n");
630 PrintF(" dump stack content, default dump 10 words)\n");
631 PrintF("mem <address> [<num words>]\n");
632 PrintF(" dump memory content, default dump 10 words)\n");
633 PrintF("disasm [<instructions>]\n");
634 PrintF("disasm [<address/register>]\n");
635 PrintF("disasm [[<address/register>] <instructions>]\n");
636 PrintF(" disassemble code, default is 10 instructions\n");
637 PrintF(" from pc (alias 'di')\n");
638 PrintF("gdb\n");
639 PrintF(" enter gdb\n");
640 PrintF("break <address>\n");
641 PrintF(" set a break point on the address\n");
642 PrintF("del\n");
643 PrintF(" delete the breakpoint\n");
644 PrintF("trace (alias 't')\n");
645 PrintF(" toogle the tracing of all executed statements\n");
646 PrintF("stop feature:\n");
647 PrintF(" Description:\n");
648 PrintF(" Stops are debug instructions inserted by\n");
649 PrintF(" the Assembler::stop() function.\n");
650 PrintF(" When hitting a stop, the Simulator will\n");
651 PrintF(" stop and and give control to the PPCDebugger.\n");
652 PrintF(" The first %d stop codes are watched:\n",
653 Simulator::kNumOfWatchedStops);
654 PrintF(" - They can be enabled / disabled: the Simulator\n");
655 PrintF(" will / won't stop when hitting them.\n");
656 PrintF(" - The Simulator keeps track of how many times they \n");
657 PrintF(" are met. (See the info command.) Going over a\n");
658 PrintF(" disabled stop still increases its counter. \n");
659 PrintF(" Commands:\n");
660 PrintF(" stop info all/<code> : print infos about number <code>\n");
661 PrintF(" or all stop(s).\n");
662 PrintF(" stop enable/disable all/<code> : enables / disables\n");
663 PrintF(" all or number <code> stop(s)\n");
664 PrintF(" stop unstop\n");
665 PrintF(" ignore the stop instruction at the current location\n");
666 PrintF(" from now on\n");
667 } else {
668 PrintF("Unknown command: %s\n", cmd);
669 }
670 }
671 }
672
673 // Add all the breakpoints back to stop execution and enter the debugger
674 // shell when hit.
675 RedoBreakpoints();
676 // Restore tracing
677 ::v8::internal::FLAG_trace_sim = trace;
678
679#undef COMMAND_SIZE
680#undef ARG_SIZE
681
682#undef STR
683#undef XSTR
684}
685
686
687static bool ICacheMatch(void* one, void* two) {
688 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
689 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
690 return one == two;
691}
692
693
694static uint32_t ICacheHash(void* key) {
695 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
696}
697
698
699static bool AllOnOnePage(uintptr_t start, int size) {
700 intptr_t start_page = (start & ~CachePage::kPageMask);
701 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
702 return start_page == end_page;
703}
704
705
706void Simulator::set_last_debugger_input(char* input) {
707 DeleteArray(last_debugger_input_);
708 last_debugger_input_ = input;
709}
710
711
Ben Murdoch61f157c2016-09-16 13:49:30 +0100712void Simulator::FlushICache(base::HashMap* i_cache, void* start_addr,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400713 size_t size) {
714 intptr_t start = reinterpret_cast<intptr_t>(start_addr);
715 int intra_line = (start & CachePage::kLineMask);
716 start -= intra_line;
717 size += intra_line;
718 size = ((size - 1) | CachePage::kLineMask) + 1;
719 int offset = (start & CachePage::kPageMask);
720 while (!AllOnOnePage(start, size - 1)) {
721 int bytes_to_flush = CachePage::kPageSize - offset;
722 FlushOnePage(i_cache, start, bytes_to_flush);
723 start += bytes_to_flush;
724 size -= bytes_to_flush;
725 DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
726 offset = 0;
727 }
728 if (size != 0) {
729 FlushOnePage(i_cache, start, size);
730 }
731}
732
733
Ben Murdoch61f157c2016-09-16 13:49:30 +0100734CachePage* Simulator::GetCachePage(base::HashMap* i_cache, void* page) {
735 base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400736 if (entry->value == NULL) {
737 CachePage* new_page = new CachePage();
738 entry->value = new_page;
739 }
740 return reinterpret_cast<CachePage*>(entry->value);
741}
742
743
744// Flush from start up to and not including start + size.
Ben Murdoch61f157c2016-09-16 13:49:30 +0100745void Simulator::FlushOnePage(base::HashMap* i_cache, intptr_t start, int size) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400746 DCHECK(size <= CachePage::kPageSize);
747 DCHECK(AllOnOnePage(start, size - 1));
748 DCHECK((start & CachePage::kLineMask) == 0);
749 DCHECK((size & CachePage::kLineMask) == 0);
750 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
751 int offset = (start & CachePage::kPageMask);
752 CachePage* cache_page = GetCachePage(i_cache, page);
753 char* valid_bytemap = cache_page->ValidityByte(offset);
754 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
755}
756
Ben Murdoch61f157c2016-09-16 13:49:30 +0100757void Simulator::CheckICache(base::HashMap* i_cache, Instruction* instr) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400758 intptr_t address = reinterpret_cast<intptr_t>(instr);
759 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
760 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
761 int offset = (address & CachePage::kPageMask);
762 CachePage* cache_page = GetCachePage(i_cache, page);
763 char* cache_valid_byte = cache_page->ValidityByte(offset);
764 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
765 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
766 if (cache_hit) {
767 // Check that the data in memory matches the contents of the I-cache.
768 CHECK_EQ(0,
769 memcmp(reinterpret_cast<void*>(instr),
770 cache_page->CachedData(offset), Instruction::kInstrSize));
771 } else {
772 // Cache miss. Load memory into the cache.
773 memcpy(cached_line, line, CachePage::kLineLength);
774 *cache_valid_byte = CachePage::LINE_VALID;
775 }
776}
777
778
779void Simulator::Initialize(Isolate* isolate) {
780 if (isolate->simulator_initialized()) return;
781 isolate->set_simulator_initialized(true);
782 ::v8::internal::ExternalReference::set_redirector(isolate,
783 &RedirectExternalReference);
784}
785
786
787Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
788 i_cache_ = isolate_->simulator_i_cache();
789 if (i_cache_ == NULL) {
Ben Murdoch61f157c2016-09-16 13:49:30 +0100790 i_cache_ = new base::HashMap(&ICacheMatch);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400791 isolate_->set_simulator_i_cache(i_cache_);
792 }
793 Initialize(isolate);
794// Set up simulator support first. Some of this information is needed to
795// setup the architecture state.
796#if V8_TARGET_ARCH_PPC64
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000797 size_t stack_size = FLAG_sim_stack_size * KB;
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400798#else
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000799 size_t stack_size = MB; // allocate 1MB for stack
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400800#endif
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000801 stack_size += 2 * stack_protection_size_;
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400802 stack_ = reinterpret_cast<char*>(malloc(stack_size));
803 pc_modified_ = false;
804 icount_ = 0;
805 break_pc_ = NULL;
806 break_instr_ = 0;
807
808 // Set up architecture state.
809 // All registers are initialized to zero to start with.
810 for (int i = 0; i < kNumGPRs; i++) {
811 registers_[i] = 0;
812 }
813 condition_reg_ = 0;
814 fp_condition_reg_ = 0;
815 special_reg_pc_ = 0;
816 special_reg_lr_ = 0;
817 special_reg_ctr_ = 0;
818
819 // Initializing FP registers.
820 for (int i = 0; i < kNumFPRs; i++) {
821 fp_registers_[i] = 0.0;
822 }
823
824 // The sp is initialized to point to the bottom (high address) of the
825 // allocated stack area. To be safe in potential stack underflows we leave
826 // some buffer below.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000827 registers_[sp] =
828 reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400829 InitializeCoverage();
830
831 last_debugger_input_ = NULL;
832}
833
834
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000835Simulator::~Simulator() { free(stack_); }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400836
837
838// When the generated code calls an external reference we need to catch that in
839// the simulator. The external reference will be a function compiled for the
840// host architecture. We need to call that function instead of trying to
841// execute it with the simulator. We do that by redirecting the external
842// reference to a svc (Supervisor Call) instruction that is handled by
843// the simulator. We write the original destination of the jump just at a known
844// offset from the svc instruction so the simulator knows what to call.
845class Redirection {
846 public:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000847 Redirection(Isolate* isolate, void* external_function,
848 ExternalReference::Type type)
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400849 : external_function_(external_function),
850 swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
851 type_(type),
852 next_(NULL) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400853 next_ = isolate->simulator_redirection();
854 Simulator::current(isolate)->FlushICache(
855 isolate->simulator_i_cache(),
856 reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
857 isolate->set_simulator_redirection(this);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100858 if (ABI_USES_FUNCTION_DESCRIPTORS) {
859 function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
860 function_descriptor_[1] = 0;
861 function_descriptor_[2] = 0;
862 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400863 }
864
Ben Murdoch097c5b22016-05-18 11:27:45 +0100865 void* address() {
866 if (ABI_USES_FUNCTION_DESCRIPTORS) {
867 return reinterpret_cast<void*>(function_descriptor_);
868 } else {
869 return reinterpret_cast<void*>(&swi_instruction_);
870 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400871 }
872
873 void* external_function() { return external_function_; }
874 ExternalReference::Type type() { return type_; }
875
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000876 static Redirection* Get(Isolate* isolate, void* external_function,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400877 ExternalReference::Type type) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400878 Redirection* current = isolate->simulator_redirection();
879 for (; current != NULL; current = current->next_) {
880 if (current->external_function_ == external_function) {
881 DCHECK_EQ(current->type(), type);
882 return current;
883 }
884 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000885 return new Redirection(isolate, external_function, type);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400886 }
887
888 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
889 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
890 char* addr_of_redirection =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000891 addr_of_swi - offsetof(Redirection, swi_instruction_);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400892 return reinterpret_cast<Redirection*>(addr_of_redirection);
893 }
894
Ben Murdoch097c5b22016-05-18 11:27:45 +0100895 static Redirection* FromAddress(void* address) {
896 int delta = ABI_USES_FUNCTION_DESCRIPTORS
897 ? offsetof(Redirection, function_descriptor_)
898 : offsetof(Redirection, swi_instruction_);
899 char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
900 return reinterpret_cast<Redirection*>(addr_of_redirection);
901 }
902
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400903 static void* ReverseRedirection(intptr_t reg) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100904 Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400905 return redirection->external_function();
906 }
907
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000908 static void DeleteChain(Redirection* redirection) {
909 while (redirection != nullptr) {
910 Redirection* next = redirection->next_;
911 delete redirection;
912 redirection = next;
913 }
914 }
915
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400916 private:
917 void* external_function_;
918 uint32_t swi_instruction_;
919 ExternalReference::Type type_;
920 Redirection* next_;
Ben Murdoch097c5b22016-05-18 11:27:45 +0100921 intptr_t function_descriptor_[3];
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400922};
923
924
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000925// static
Ben Murdoch61f157c2016-09-16 13:49:30 +0100926void Simulator::TearDown(base::HashMap* i_cache, Redirection* first) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000927 Redirection::DeleteChain(first);
928 if (i_cache != nullptr) {
Ben Murdoch61f157c2016-09-16 13:49:30 +0100929 for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000930 entry = i_cache->Next(entry)) {
931 delete static_cast<CachePage*>(entry->value);
932 }
933 delete i_cache;
934 }
935}
936
937
938void* Simulator::RedirectExternalReference(Isolate* isolate,
939 void* external_function,
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400940 ExternalReference::Type type) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000941 Redirection* redirection = Redirection::Get(isolate, external_function, type);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100942 return redirection->address();
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400943}
944
945
946// Get the active Simulator for the current thread.
947Simulator* Simulator::current(Isolate* isolate) {
948 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
949 isolate->FindOrAllocatePerThreadDataForThisThread();
950 DCHECK(isolate_data != NULL);
951
952 Simulator* sim = isolate_data->simulator();
953 if (sim == NULL) {
954 // TODO(146): delete the simulator object when a thread/isolate goes away.
955 sim = new Simulator(isolate);
956 isolate_data->set_simulator(sim);
957 }
958 return sim;
959}
960
961
962// Sets the register in the architecture state.
963void Simulator::set_register(int reg, intptr_t value) {
964 DCHECK((reg >= 0) && (reg < kNumGPRs));
965 registers_[reg] = value;
966}
967
968
969// Get the register from the architecture state.
970intptr_t Simulator::get_register(int reg) const {
971 DCHECK((reg >= 0) && (reg < kNumGPRs));
972 // Stupid code added to avoid bug in GCC.
973 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
974 if (reg >= kNumGPRs) return 0;
975 // End stupid code.
976 return registers_[reg];
977}
978
979
980double Simulator::get_double_from_register_pair(int reg) {
981 DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
982
983 double dm_val = 0.0;
984#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
985 // Read the bits from the unsigned integer register_[] array
986 // into the double precision floating point value and return it.
987 char buffer[sizeof(fp_registers_[0])];
988 memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
989 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
990#endif
991 return (dm_val);
992}
993
994
995// Raw access to the PC register.
996void Simulator::set_pc(intptr_t value) {
997 pc_modified_ = true;
998 special_reg_pc_ = value;
999}
1000
1001
1002bool Simulator::has_bad_pc() const {
1003 return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
1004}
1005
1006
1007// Raw access to the PC register without the special adjustment when reading.
1008intptr_t Simulator::get_pc() const { return special_reg_pc_; }
1009
1010
1011// Runtime FP routines take:
1012// - two double arguments
1013// - one double argument and zero or one integer arguments.
1014// All are consructed here from d1, d2 and r3.
1015void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
1016 *x = get_double_from_d_register(1);
1017 *y = get_double_from_d_register(2);
1018 *z = get_register(3);
1019}
1020
1021
1022// The return value is in d1.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001023void Simulator::SetFpResult(const double& result) {
1024 set_d_register_from_double(1, result);
1025}
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001026
1027
1028void Simulator::TrashCallerSaveRegisters() {
1029// We don't trash the registers with the return value.
1030#if 0 // A good idea to trash volatile registers, needs to be done
1031 registers_[2] = 0x50Bad4U;
1032 registers_[3] = 0x50Bad4U;
1033 registers_[12] = 0x50Bad4U;
1034#endif
1035}
1036
1037
1038uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
1039 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1040 return *ptr;
1041}
1042
1043
1044int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
1045 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1046 return *ptr;
1047}
1048
1049
1050void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1051 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1052 *ptr = value;
1053 return;
1054}
1055
1056
1057void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1058 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1059 *ptr = value;
1060 return;
1061}
1062
1063
1064uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1065 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1066 return *ptr;
1067}
1068
1069
1070int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1071 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1072 return *ptr;
1073}
1074
1075
1076void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1077 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1078 *ptr = value;
1079 return;
1080}
1081
1082
1083void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1084 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1085 *ptr = value;
1086 return;
1087}
1088
1089
1090uint8_t Simulator::ReadBU(intptr_t addr) {
1091 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1092 return *ptr;
1093}
1094
1095
1096int8_t Simulator::ReadB(intptr_t addr) {
1097 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1098 return *ptr;
1099}
1100
1101
1102void Simulator::WriteB(intptr_t addr, uint8_t value) {
1103 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1104 *ptr = value;
1105}
1106
1107
1108void Simulator::WriteB(intptr_t addr, int8_t value) {
1109 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1110 *ptr = value;
1111}
1112
1113
1114intptr_t* Simulator::ReadDW(intptr_t addr) {
1115 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1116 return ptr;
1117}
1118
1119
1120void Simulator::WriteDW(intptr_t addr, int64_t value) {
1121 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1122 *ptr = value;
1123 return;
1124}
1125
1126
1127// Returns the limit of the stack area to enable checking for stack overflows.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001128uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1129 // The simulator uses a separate JS stack. If we have exhausted the C stack,
1130 // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1131 if (GetCurrentStackPosition() < c_limit) {
1132 return reinterpret_cast<uintptr_t>(get_sp());
1133 }
1134
1135 // Otherwise the limit is the JS stack. Leave a safety margin to prevent
1136 // overrunning the stack when pushing values.
1137 return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001138}
1139
1140
1141// Unsupported instructions use Format to print an error and stop execution.
1142void Simulator::Format(Instruction* instr, const char* format) {
1143 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1144 reinterpret_cast<intptr_t>(instr), format);
1145 UNIMPLEMENTED();
1146}
1147
1148
1149// Calculate C flag value for additions.
1150bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1151 uint32_t uleft = static_cast<uint32_t>(left);
1152 uint32_t uright = static_cast<uint32_t>(right);
1153 uint32_t urest = 0xffffffffU - uleft;
1154
1155 return (uright > urest) ||
1156 (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1157}
1158
1159
1160// Calculate C flag value for subtractions.
1161bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1162 uint32_t uleft = static_cast<uint32_t>(left);
1163 uint32_t uright = static_cast<uint32_t>(right);
1164
1165 return (uright > uleft);
1166}
1167
1168
1169// Calculate V flag value for additions and subtractions.
1170bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1171 bool addition) {
1172 bool overflow;
1173 if (addition) {
1174 // operands have the same sign
1175 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1176 // and operands and result have different sign
1177 &&
1178 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1179 } else {
1180 // operands have different signs
1181 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1182 // and first operand and result have different signs
1183 &&
1184 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1185 }
1186 return overflow;
1187}
1188
1189
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001190#if V8_TARGET_ARCH_PPC64
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001191static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01001192 *x = reinterpret_cast<intptr_t>(pair->x);
1193 *y = reinterpret_cast<intptr_t>(pair->y);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001194}
1195#else
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001196static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1197#if V8_TARGET_BIG_ENDIAN
1198 *x = static_cast<int32_t>(*pair >> 32);
1199 *y = static_cast<int32_t>(*pair);
1200#else
1201 *x = static_cast<int32_t>(*pair);
1202 *y = static_cast<int32_t>(*pair >> 32);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001203#endif
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001204}
1205#endif
1206
Ben Murdoch097c5b22016-05-18 11:27:45 +01001207// Calls into the V8 runtime.
1208typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1209 intptr_t arg2, intptr_t arg3,
1210 intptr_t arg4, intptr_t arg5);
1211typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
1212 intptr_t arg2, intptr_t arg3,
1213 intptr_t arg4, intptr_t arg5);
1214typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
1215 intptr_t arg2, intptr_t arg3,
1216 intptr_t arg4,
1217 intptr_t arg5);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001218
1219// These prototypes handle the four types of FP calls.
1220typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1221typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1222typedef double (*SimulatorRuntimeFPCall)(double darg0);
1223typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1224
1225// This signature supports direct call in to API function native callback
1226// (refer to InvocationCallback in v8.h).
1227typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1228typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1229
1230// This signature supports direct call to accessor getter callback.
1231typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1232typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1233 intptr_t arg1, void* arg2);
1234
1235// Software interrupt instructions are used by the simulator to call into the
1236// C-based V8 runtime.
1237void Simulator::SoftwareInterrupt(Instruction* instr) {
1238 int svc = instr->SvcValue();
1239 switch (svc) {
1240 case kCallRtRedirected: {
1241 // Check if stack is aligned. Error if not aligned is reported below to
1242 // include information on the function called.
1243 bool stack_aligned =
1244 (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1245 0;
1246 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1247 const int kArgCount = 6;
1248 int arg0_regnum = 3;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001249 intptr_t result_buffer = 0;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001250 bool uses_result_buffer =
1251 redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
1252 (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
1253 !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
1254 if (uses_result_buffer) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001255 result_buffer = get_register(r3);
1256 arg0_regnum++;
1257 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001258 intptr_t arg[kArgCount];
1259 for (int i = 0; i < kArgCount; i++) {
1260 arg[i] = get_register(arg0_regnum + i);
1261 }
1262 bool fp_call =
1263 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1264 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1265 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1266 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1267 // This is dodgy but it works because the C entry stubs are never moved.
1268 // See comment in codegen-arm.cc and bug 1242173.
1269 intptr_t saved_lr = special_reg_lr_;
1270 intptr_t external =
1271 reinterpret_cast<intptr_t>(redirection->external_function());
1272 if (fp_call) {
1273 double dval0, dval1; // one or two double parameters
1274 intptr_t ival; // zero or one integer parameters
1275 int iresult = 0; // integer return value
1276 double dresult = 0; // double return value
1277 GetFpArgs(&dval0, &dval1, &ival);
1278 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1279 SimulatorRuntimeCall generic_target =
1280 reinterpret_cast<SimulatorRuntimeCall>(external);
1281 switch (redirection->type()) {
1282 case ExternalReference::BUILTIN_FP_FP_CALL:
1283 case ExternalReference::BUILTIN_COMPARE_CALL:
1284 PrintF("Call to host function at %p with args %f, %f",
Ben Murdoch61f157c2016-09-16 13:49:30 +01001285 static_cast<void*>(FUNCTION_ADDR(generic_target)),
1286 dval0, dval1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001287 break;
1288 case ExternalReference::BUILTIN_FP_CALL:
1289 PrintF("Call to host function at %p with arg %f",
Ben Murdoch61f157c2016-09-16 13:49:30 +01001290 static_cast<void*>(FUNCTION_ADDR(generic_target)),
1291 dval0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001292 break;
1293 case ExternalReference::BUILTIN_FP_INT_CALL:
1294 PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
Ben Murdoch61f157c2016-09-16 13:49:30 +01001295 static_cast<void*>(FUNCTION_ADDR(generic_target)),
1296 dval0, ival);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001297 break;
1298 default:
1299 UNREACHABLE();
1300 break;
1301 }
1302 if (!stack_aligned) {
1303 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1304 get_register(sp));
1305 }
1306 PrintF("\n");
1307 }
1308 CHECK(stack_aligned);
1309 switch (redirection->type()) {
1310 case ExternalReference::BUILTIN_COMPARE_CALL: {
1311 SimulatorRuntimeCompareCall target =
1312 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1313 iresult = target(dval0, dval1);
1314 set_register(r3, iresult);
1315 break;
1316 }
1317 case ExternalReference::BUILTIN_FP_FP_CALL: {
1318 SimulatorRuntimeFPFPCall target =
1319 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1320 dresult = target(dval0, dval1);
1321 SetFpResult(dresult);
1322 break;
1323 }
1324 case ExternalReference::BUILTIN_FP_CALL: {
1325 SimulatorRuntimeFPCall target =
1326 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1327 dresult = target(dval0);
1328 SetFpResult(dresult);
1329 break;
1330 }
1331 case ExternalReference::BUILTIN_FP_INT_CALL: {
1332 SimulatorRuntimeFPIntCall target =
1333 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1334 dresult = target(dval0, ival);
1335 SetFpResult(dresult);
1336 break;
1337 }
1338 default:
1339 UNREACHABLE();
1340 break;
1341 }
1342 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1343 switch (redirection->type()) {
1344 case ExternalReference::BUILTIN_COMPARE_CALL:
1345 PrintF("Returned %08x\n", iresult);
1346 break;
1347 case ExternalReference::BUILTIN_FP_FP_CALL:
1348 case ExternalReference::BUILTIN_FP_CALL:
1349 case ExternalReference::BUILTIN_FP_INT_CALL:
1350 PrintF("Returned %f\n", dresult);
1351 break;
1352 default:
1353 UNREACHABLE();
1354 break;
1355 }
1356 }
1357 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1358 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1359 // explanation of register usage.
1360 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1361 PrintF("Call to host function at %p args %08" V8PRIxPTR,
1362 reinterpret_cast<void*>(external), arg[0]);
1363 if (!stack_aligned) {
1364 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1365 get_register(sp));
1366 }
1367 PrintF("\n");
1368 }
1369 CHECK(stack_aligned);
1370 SimulatorRuntimeDirectApiCall target =
1371 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1372 target(arg[0]);
1373 } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1374 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1375 // explanation of register usage.
1376 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1377 PrintF("Call to host function at %p args %08" V8PRIxPTR
1378 " %08" V8PRIxPTR,
1379 reinterpret_cast<void*>(external), arg[0], arg[1]);
1380 if (!stack_aligned) {
1381 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1382 get_register(sp));
1383 }
1384 PrintF("\n");
1385 }
1386 CHECK(stack_aligned);
1387 SimulatorRuntimeProfilingApiCall target =
1388 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1389 target(arg[0], Redirection::ReverseRedirection(arg[1]));
1390 } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1391 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1392 // explanation of register usage.
1393 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1394 PrintF("Call to host function at %p args %08" V8PRIxPTR
1395 " %08" V8PRIxPTR,
1396 reinterpret_cast<void*>(external), arg[0], arg[1]);
1397 if (!stack_aligned) {
1398 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1399 get_register(sp));
1400 }
1401 PrintF("\n");
1402 }
1403 CHECK(stack_aligned);
1404 SimulatorRuntimeDirectGetterCall target =
1405 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001406 if (!ABI_PASSES_HANDLES_IN_REGS) {
1407 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1408 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001409 target(arg[0], arg[1]);
1410 } else if (redirection->type() ==
1411 ExternalReference::PROFILING_GETTER_CALL) {
1412 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1413 PrintF("Call to host function at %p args %08" V8PRIxPTR
1414 " %08" V8PRIxPTR " %08" V8PRIxPTR,
1415 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1416 if (!stack_aligned) {
1417 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1418 get_register(sp));
1419 }
1420 PrintF("\n");
1421 }
1422 CHECK(stack_aligned);
1423 SimulatorRuntimeProfilingGetterCall target =
1424 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001425 if (!ABI_PASSES_HANDLES_IN_REGS) {
1426 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1427 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001428 target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1429 } else {
1430 // builtin call.
1431 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1432 SimulatorRuntimeCall target =
1433 reinterpret_cast<SimulatorRuntimeCall>(external);
1434 PrintF(
1435 "Call to host function at %p,\n"
1436 "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1437 ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
Ben Murdoch61f157c2016-09-16 13:49:30 +01001438 static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
1439 arg[2], arg[3], arg[4], arg[5]);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001440 if (!stack_aligned) {
1441 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1442 get_register(sp));
1443 }
1444 PrintF("\n");
1445 }
1446 CHECK(stack_aligned);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001447 if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
1448 SimulatorRuntimeTripleCall target =
1449 reinterpret_cast<SimulatorRuntimeTripleCall>(external);
1450 ObjectTriple result =
1451 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1452 if (::v8::internal::FLAG_trace_sim) {
1453 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1454 "}\n",
1455 reinterpret_cast<intptr_t>(result.x),
1456 reinterpret_cast<intptr_t>(result.y),
1457 reinterpret_cast<intptr_t>(result.z));
1458 }
1459 memcpy(reinterpret_cast<void*>(result_buffer), &result,
1460 sizeof(ObjectTriple));
1461 set_register(r3, result_buffer);
1462 } else {
1463 if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
1464 SimulatorRuntimePairCall target =
1465 reinterpret_cast<SimulatorRuntimePairCall>(external);
1466 ObjectPair result =
1467 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1468 intptr_t x;
1469 intptr_t y;
1470 decodeObjectPair(&result, &x, &y);
1471 if (::v8::internal::FLAG_trace_sim) {
1472 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1473 }
1474 if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
1475 set_register(r3, x);
1476 set_register(r4, y);
1477 } else {
1478 memcpy(reinterpret_cast<void*>(result_buffer), &result,
1479 sizeof(ObjectPair));
1480 set_register(r3, result_buffer);
1481 }
1482 } else {
1483 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1484 SimulatorRuntimeCall target =
1485 reinterpret_cast<SimulatorRuntimeCall>(external);
1486 intptr_t result =
1487 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1488 if (::v8::internal::FLAG_trace_sim) {
1489 PrintF("Returned %08" V8PRIxPTR "\n", result);
1490 }
1491 set_register(r3, result);
1492 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001493 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001494 }
1495 set_pc(saved_lr);
1496 break;
1497 }
1498 case kBreakpoint: {
1499 PPCDebugger dbg(this);
1500 dbg.Debug();
1501 break;
1502 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001503 // stop uses all codes greater than 1 << 23.
1504 default: {
1505 if (svc >= (1 << 23)) {
1506 uint32_t code = svc & kStopCodeMask;
1507 if (isWatchedStop(code)) {
1508 IncreaseStopCounter(code);
1509 }
1510 // Stop if it is enabled, otherwise go on jumping over the stop
1511 // and the message address.
1512 if (isEnabledStop(code)) {
1513 PPCDebugger dbg(this);
1514 dbg.Stop(instr);
1515 } else {
1516 set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1517 }
1518 } else {
1519 // This is not a valid svc code.
1520 UNREACHABLE();
1521 break;
1522 }
1523 }
1524 }
1525}
1526
1527
1528// Stop helper functions.
1529bool Simulator::isStopInstruction(Instruction* instr) {
1530 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1531}
1532
1533
1534bool Simulator::isWatchedStop(uint32_t code) {
1535 DCHECK(code <= kMaxStopCode);
1536 return code < kNumOfWatchedStops;
1537}
1538
1539
1540bool Simulator::isEnabledStop(uint32_t code) {
1541 DCHECK(code <= kMaxStopCode);
1542 // Unwatched stops are always enabled.
1543 return !isWatchedStop(code) ||
1544 !(watched_stops_[code].count & kStopDisabledBit);
1545}
1546
1547
1548void Simulator::EnableStop(uint32_t code) {
1549 DCHECK(isWatchedStop(code));
1550 if (!isEnabledStop(code)) {
1551 watched_stops_[code].count &= ~kStopDisabledBit;
1552 }
1553}
1554
1555
1556void Simulator::DisableStop(uint32_t code) {
1557 DCHECK(isWatchedStop(code));
1558 if (isEnabledStop(code)) {
1559 watched_stops_[code].count |= kStopDisabledBit;
1560 }
1561}
1562
1563
1564void Simulator::IncreaseStopCounter(uint32_t code) {
1565 DCHECK(code <= kMaxStopCode);
1566 DCHECK(isWatchedStop(code));
1567 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1568 PrintF(
1569 "Stop counter for code %i has overflowed.\n"
1570 "Enabling this code and reseting the counter to 0.\n",
1571 code);
1572 watched_stops_[code].count = 0;
1573 EnableStop(code);
1574 } else {
1575 watched_stops_[code].count++;
1576 }
1577}
1578
1579
1580// Print a stop status.
1581void Simulator::PrintStopInfo(uint32_t code) {
1582 DCHECK(code <= kMaxStopCode);
1583 if (!isWatchedStop(code)) {
1584 PrintF("Stop not watched.");
1585 } else {
1586 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1587 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1588 // Don't print the state of unused breakpoints.
1589 if (count != 0) {
1590 if (watched_stops_[code].desc) {
1591 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1592 state, count, watched_stops_[code].desc);
1593 } else {
1594 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1595 count);
1596 }
1597 }
1598 }
1599}
1600
1601
1602void Simulator::SetCR0(intptr_t result, bool setSO) {
1603 int bf = 0;
1604 if (result < 0) {
1605 bf |= 0x80000000;
1606 }
1607 if (result > 0) {
1608 bf |= 0x40000000;
1609 }
1610 if (result == 0) {
1611 bf |= 0x20000000;
1612 }
1613 if (setSO) {
1614 bf |= 0x10000000;
1615 }
1616 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1617}
1618
1619
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001620void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001621 int bo = instr->Bits(25, 21) << 21;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001622 int condition_bit = instr->Bits(20, 16);
1623 int condition_mask = 0x80000000 >> condition_bit;
1624 switch (bo) {
1625 case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
1626 case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
1627 UNIMPLEMENTED();
1628 case BF: { // Branch if condition false
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001629 if (condition_reg_ & condition_mask) return;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001630 break;
1631 }
1632 case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
1633 case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
1634 UNIMPLEMENTED();
1635 case BT: { // Branch if condition true
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001636 if (!(condition_reg_ & condition_mask)) return;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001637 break;
1638 }
1639 case DCBNZ: // Decrement CTR; branch if CTR != 0
1640 case DCBEZ: // Decrement CTR; branch if CTR == 0
1641 special_reg_ctr_ -= 1;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001642 if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001643 break;
1644 case BA: { // Branch always
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001645 break;
1646 }
1647 default:
1648 UNIMPLEMENTED(); // Invalid encoding
1649 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001650
1651 intptr_t old_pc = get_pc();
1652
1653 switch (type) {
1654 case BC_OFFSET: {
1655 int offset = (instr->Bits(15, 2) << 18) >> 16;
1656 set_pc(old_pc + offset);
1657 break;
1658 }
1659 case BC_LINK_REG:
1660 set_pc(special_reg_lr_);
1661 break;
1662 case BC_CTR_REG:
1663 set_pc(special_reg_ctr_);
1664 break;
1665 }
1666
1667 if (instr->Bit(0) == 1) { // LK flag set
1668 special_reg_lr_ = old_pc + 4;
1669 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001670}
1671
1672
1673// Handle execution based on instruction types.
1674void Simulator::ExecuteExt1(Instruction* instr) {
1675 switch (instr->Bits(10, 1) << 1) {
1676 case MCRF:
1677 UNIMPLEMENTED(); // Not used by V8.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001678 case BCLRX:
1679 ExecuteBranchConditional(instr, BC_LINK_REG);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001680 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001681 case BCCTRX:
1682 ExecuteBranchConditional(instr, BC_CTR_REG);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001683 break;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001684 case CRNOR:
1685 case RFI:
1686 case CRANDC:
1687 UNIMPLEMENTED();
1688 case ISYNC: {
1689 // todo - simulate isync
1690 break;
1691 }
1692 case CRXOR: {
1693 int bt = instr->Bits(25, 21);
1694 int ba = instr->Bits(20, 16);
1695 int bb = instr->Bits(15, 11);
1696 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1697 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1698 int bt_val = ba_val ^ bb_val;
1699 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1700 condition_reg_ &= ~(0x80000000 >> bt);
1701 condition_reg_ |= bt_val;
1702 break;
1703 }
1704 case CREQV: {
1705 int bt = instr->Bits(25, 21);
1706 int ba = instr->Bits(20, 16);
1707 int bb = instr->Bits(15, 11);
1708 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1709 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1710 int bt_val = 1 - (ba_val ^ bb_val);
1711 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1712 condition_reg_ &= ~(0x80000000 >> bt);
1713 condition_reg_ |= bt_val;
1714 break;
1715 }
1716 case CRNAND:
1717 case CRAND:
1718 case CRORC:
1719 case CROR:
1720 default: {
1721 UNIMPLEMENTED(); // Not used by V8.
1722 }
1723 }
1724}
1725
1726
1727bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1728 bool found = true;
1729
1730 int opcode = instr->Bits(10, 1) << 1;
1731 switch (opcode) {
1732 case SRWX: {
1733 int rs = instr->RSValue();
1734 int ra = instr->RAValue();
1735 int rb = instr->RBValue();
1736 uint32_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01001737 uintptr_t rb_val = get_register(rb) & 0x3f;
1738 intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001739 set_register(ra, result);
1740 if (instr->Bit(0)) { // RC bit set
1741 SetCR0(result);
1742 }
1743 break;
1744 }
1745#if V8_TARGET_ARCH_PPC64
1746 case SRDX: {
1747 int rs = instr->RSValue();
1748 int ra = instr->RAValue();
1749 int rb = instr->RBValue();
1750 uintptr_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01001751 uintptr_t rb_val = get_register(rb) & 0x7f;
1752 intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001753 set_register(ra, result);
1754 if (instr->Bit(0)) { // RC bit set
1755 SetCR0(result);
1756 }
1757 break;
1758 }
1759#endif
1760 case SRAW: {
1761 int rs = instr->RSValue();
1762 int ra = instr->RAValue();
1763 int rb = instr->RBValue();
1764 int32_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01001765 intptr_t rb_val = get_register(rb) & 0x3f;
1766 intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001767 set_register(ra, result);
1768 if (instr->Bit(0)) { // RC bit set
1769 SetCR0(result);
1770 }
1771 break;
1772 }
1773#if V8_TARGET_ARCH_PPC64
1774 case SRAD: {
1775 int rs = instr->RSValue();
1776 int ra = instr->RAValue();
1777 int rb = instr->RBValue();
1778 intptr_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01001779 intptr_t rb_val = get_register(rb) & 0x7f;
1780 intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001781 set_register(ra, result);
1782 if (instr->Bit(0)) { // RC bit set
1783 SetCR0(result);
1784 }
1785 break;
1786 }
1787#endif
1788 case SRAWIX: {
1789 int ra = instr->RAValue();
1790 int rs = instr->RSValue();
1791 int sh = instr->Bits(15, 11);
1792 int32_t rs_val = get_register(rs);
1793 intptr_t result = rs_val >> sh;
1794 set_register(ra, result);
1795 if (instr->Bit(0)) { // RC bit set
1796 SetCR0(result);
1797 }
1798 break;
1799 }
1800#if V8_TARGET_ARCH_PPC64
1801 case EXTSW: {
1802 const int shift = kBitsPerPointer - 32;
1803 int ra = instr->RAValue();
1804 int rs = instr->RSValue();
1805 intptr_t rs_val = get_register(rs);
1806 intptr_t ra_val = (rs_val << shift) >> shift;
1807 set_register(ra, ra_val);
1808 if (instr->Bit(0)) { // RC bit set
1809 SetCR0(ra_val);
1810 }
1811 break;
1812 }
1813#endif
1814 case EXTSH: {
1815 const int shift = kBitsPerPointer - 16;
1816 int ra = instr->RAValue();
1817 int rs = instr->RSValue();
1818 intptr_t rs_val = get_register(rs);
1819 intptr_t ra_val = (rs_val << shift) >> shift;
1820 set_register(ra, ra_val);
1821 if (instr->Bit(0)) { // RC bit set
1822 SetCR0(ra_val);
1823 }
1824 break;
1825 }
1826 case EXTSB: {
1827 const int shift = kBitsPerPointer - 8;
1828 int ra = instr->RAValue();
1829 int rs = instr->RSValue();
1830 intptr_t rs_val = get_register(rs);
1831 intptr_t ra_val = (rs_val << shift) >> shift;
1832 set_register(ra, ra_val);
1833 if (instr->Bit(0)) { // RC bit set
1834 SetCR0(ra_val);
1835 }
1836 break;
1837 }
1838 case LFSUX:
1839 case LFSX: {
1840 int frt = instr->RTValue();
1841 int ra = instr->RAValue();
1842 int rb = instr->RBValue();
1843 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1844 intptr_t rb_val = get_register(rb);
1845 int32_t val = ReadW(ra_val + rb_val, instr);
1846 float* fptr = reinterpret_cast<float*>(&val);
1847 set_d_register_from_double(frt, static_cast<double>(*fptr));
1848 if (opcode == LFSUX) {
1849 DCHECK(ra != 0);
1850 set_register(ra, ra_val + rb_val);
1851 }
1852 break;
1853 }
1854 case LFDUX:
1855 case LFDX: {
1856 int frt = instr->RTValue();
1857 int ra = instr->RAValue();
1858 int rb = instr->RBValue();
1859 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1860 intptr_t rb_val = get_register(rb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001861 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
1862 set_d_register(frt, *dptr);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001863 if (opcode == LFDUX) {
1864 DCHECK(ra != 0);
1865 set_register(ra, ra_val + rb_val);
1866 }
1867 break;
1868 }
1869 case STFSUX: {
1870 case STFSX:
1871 int frs = instr->RSValue();
1872 int ra = instr->RAValue();
1873 int rb = instr->RBValue();
1874 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1875 intptr_t rb_val = get_register(rb);
1876 float frs_val = static_cast<float>(get_double_from_d_register(frs));
1877 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1878 WriteW(ra_val + rb_val, *p, instr);
1879 if (opcode == STFSUX) {
1880 DCHECK(ra != 0);
1881 set_register(ra, ra_val + rb_val);
1882 }
1883 break;
1884 }
1885 case STFDUX: {
1886 case STFDX:
1887 int frs = instr->RSValue();
1888 int ra = instr->RAValue();
1889 int rb = instr->RBValue();
1890 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1891 intptr_t rb_val = get_register(rb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001892 int64_t frs_val = get_d_register(frs);
1893 WriteDW(ra_val + rb_val, frs_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001894 if (opcode == STFDUX) {
1895 DCHECK(ra != 0);
1896 set_register(ra, ra_val + rb_val);
1897 }
1898 break;
1899 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001900 case POPCNTW: {
1901 int rs = instr->RSValue();
1902 int ra = instr->RAValue();
1903 uintptr_t rs_val = get_register(rs);
1904 uintptr_t count = 0;
1905 int n = 0;
1906 uintptr_t bit = 0x80000000;
1907 for (; n < 32; n++) {
1908 if (bit & rs_val) count++;
1909 bit >>= 1;
1910 }
1911 set_register(ra, count);
1912 break;
1913 }
1914#if V8_TARGET_ARCH_PPC64
1915 case POPCNTD: {
1916 int rs = instr->RSValue();
1917 int ra = instr->RAValue();
1918 uintptr_t rs_val = get_register(rs);
1919 uintptr_t count = 0;
1920 int n = 0;
1921 uintptr_t bit = 0x8000000000000000UL;
1922 for (; n < 64; n++) {
1923 if (bit & rs_val) count++;
1924 bit >>= 1;
1925 }
1926 set_register(ra, count);
1927 break;
1928 }
1929#endif
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001930 case SYNC: {
1931 // todo - simulate sync
1932 break;
1933 }
1934 case ICBI: {
1935 // todo - simulate icbi
1936 break;
1937 }
1938 default: {
1939 found = false;
1940 break;
1941 }
1942 }
1943
1944 if (found) return found;
1945
1946 found = true;
1947 opcode = instr->Bits(10, 2) << 2;
1948 switch (opcode) {
1949 case SRADIX: {
1950 int ra = instr->RAValue();
1951 int rs = instr->RSValue();
1952 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1953 intptr_t rs_val = get_register(rs);
1954 intptr_t result = rs_val >> sh;
1955 set_register(ra, result);
1956 if (instr->Bit(0)) { // RC bit set
1957 SetCR0(result);
1958 }
1959 break;
1960 }
1961 default: {
1962 found = false;
1963 break;
1964 }
1965 }
1966
1967 return found;
1968}
1969
1970
1971bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1972 bool found = true;
1973
1974 int opcode = instr->Bits(9, 1) << 1;
1975 switch (opcode) {
1976 case TW: {
1977 // used for call redirection in simulation mode
1978 SoftwareInterrupt(instr);
1979 break;
1980 }
1981 case CMP: {
1982 int ra = instr->RAValue();
1983 int rb = instr->RBValue();
1984 int cr = instr->Bits(25, 23);
1985 uint32_t bf = 0;
1986#if V8_TARGET_ARCH_PPC64
1987 int L = instr->Bit(21);
1988 if (L) {
1989#endif
1990 intptr_t ra_val = get_register(ra);
1991 intptr_t rb_val = get_register(rb);
1992 if (ra_val < rb_val) {
1993 bf |= 0x80000000;
1994 }
1995 if (ra_val > rb_val) {
1996 bf |= 0x40000000;
1997 }
1998 if (ra_val == rb_val) {
1999 bf |= 0x20000000;
2000 }
2001#if V8_TARGET_ARCH_PPC64
2002 } else {
2003 int32_t ra_val = get_register(ra);
2004 int32_t rb_val = get_register(rb);
2005 if (ra_val < rb_val) {
2006 bf |= 0x80000000;
2007 }
2008 if (ra_val > rb_val) {
2009 bf |= 0x40000000;
2010 }
2011 if (ra_val == rb_val) {
2012 bf |= 0x20000000;
2013 }
2014 }
2015#endif
2016 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2017 uint32_t condition = bf >> (cr * 4);
2018 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2019 break;
2020 }
2021 case SUBFCX: {
2022 int rt = instr->RTValue();
2023 int ra = instr->RAValue();
2024 int rb = instr->RBValue();
2025 // int oe = instr->Bit(10);
2026 uintptr_t ra_val = get_register(ra);
2027 uintptr_t rb_val = get_register(rb);
2028 uintptr_t alu_out = ~ra_val + rb_val + 1;
Ben Murdochda12d292016-06-02 14:46:10 +01002029 // Set carry
2030 if (ra_val <= rb_val) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002031 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
Ben Murdochda12d292016-06-02 14:46:10 +01002032 } else {
2033 special_reg_xer_ &= ~0xF0000000;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002034 }
Ben Murdochda12d292016-06-02 14:46:10 +01002035 set_register(rt, alu_out);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002036 if (instr->Bit(0)) { // RC bit set
2037 SetCR0(alu_out);
2038 }
2039 // todo - handle OE bit
2040 break;
2041 }
Ben Murdochda12d292016-06-02 14:46:10 +01002042 case SUBFEX: {
2043 int rt = instr->RTValue();
2044 int ra = instr->RAValue();
2045 int rb = instr->RBValue();
2046 // int oe = instr->Bit(10);
2047 uintptr_t ra_val = get_register(ra);
2048 uintptr_t rb_val = get_register(rb);
2049 uintptr_t alu_out = ~ra_val + rb_val;
2050 if (special_reg_xer_ & 0x20000000) {
2051 alu_out += 1;
2052 }
2053 set_register(rt, alu_out);
2054 if (instr->Bit(0)) { // RC bit set
2055 SetCR0(static_cast<intptr_t>(alu_out));
2056 }
2057 // todo - handle OE bit
2058 break;
2059 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002060 case ADDCX: {
2061 int rt = instr->RTValue();
2062 int ra = instr->RAValue();
2063 int rb = instr->RBValue();
2064 // int oe = instr->Bit(10);
2065 uintptr_t ra_val = get_register(ra);
2066 uintptr_t rb_val = get_register(rb);
2067 uintptr_t alu_out = ra_val + rb_val;
Ben Murdochda12d292016-06-02 14:46:10 +01002068 // Set carry
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002069 if (~ra_val < rb_val) {
2070 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2071 } else {
2072 special_reg_xer_ &= ~0xF0000000;
2073 }
2074 set_register(rt, alu_out);
2075 if (instr->Bit(0)) { // RC bit set
2076 SetCR0(static_cast<intptr_t>(alu_out));
2077 }
2078 // todo - handle OE bit
2079 break;
2080 }
Ben Murdochda12d292016-06-02 14:46:10 +01002081 case ADDEX: {
2082 int rt = instr->RTValue();
2083 int ra = instr->RAValue();
2084 int rb = instr->RBValue();
2085 // int oe = instr->Bit(10);
2086 uintptr_t ra_val = get_register(ra);
2087 uintptr_t rb_val = get_register(rb);
2088 uintptr_t alu_out = ra_val + rb_val;
2089 if (special_reg_xer_ & 0x20000000) {
2090 alu_out += 1;
2091 }
2092 set_register(rt, alu_out);
2093 if (instr->Bit(0)) { // RC bit set
2094 SetCR0(static_cast<intptr_t>(alu_out));
2095 }
2096 // todo - handle OE bit
2097 break;
2098 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002099 case MULHWX: {
2100 int rt = instr->RTValue();
2101 int ra = instr->RAValue();
2102 int rb = instr->RBValue();
2103 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2104 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2105 int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2106 alu_out >>= 32;
2107 set_register(rt, alu_out);
2108 if (instr->Bit(0)) { // RC bit set
2109 SetCR0(static_cast<intptr_t>(alu_out));
2110 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002111 break;
2112 }
2113 case MULHWUX: {
2114 int rt = instr->RTValue();
2115 int ra = instr->RAValue();
2116 int rb = instr->RBValue();
2117 uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2118 uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2119 uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
2120 alu_out >>= 32;
2121 set_register(rt, alu_out);
2122 if (instr->Bit(0)) { // RC bit set
2123 SetCR0(static_cast<intptr_t>(alu_out));
2124 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002125 break;
2126 }
2127 case NEGX: {
2128 int rt = instr->RTValue();
2129 int ra = instr->RAValue();
2130 intptr_t ra_val = get_register(ra);
2131 intptr_t alu_out = 1 + ~ra_val;
2132#if V8_TARGET_ARCH_PPC64
2133 intptr_t one = 1; // work-around gcc
2134 intptr_t kOverflowVal = (one << 63);
2135#else
2136 intptr_t kOverflowVal = kMinInt;
2137#endif
2138 set_register(rt, alu_out);
2139 if (instr->Bit(10)) { // OE bit set
2140 if (ra_val == kOverflowVal) {
2141 special_reg_xer_ |= 0xC0000000; // set SO,OV
2142 } else {
2143 special_reg_xer_ &= ~0x40000000; // clear OV
2144 }
2145 }
2146 if (instr->Bit(0)) { // RC bit set
2147 bool setSO = (special_reg_xer_ & 0x80000000);
2148 SetCR0(alu_out, setSO);
2149 }
2150 break;
2151 }
2152 case SLWX: {
2153 int rs = instr->RSValue();
2154 int ra = instr->RAValue();
2155 int rb = instr->RBValue();
2156 uint32_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01002157 uintptr_t rb_val = get_register(rb) & 0x3f;
2158 uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002159 set_register(ra, result);
2160 if (instr->Bit(0)) { // RC bit set
2161 SetCR0(result);
2162 }
2163 break;
2164 }
2165#if V8_TARGET_ARCH_PPC64
2166 case SLDX: {
2167 int rs = instr->RSValue();
2168 int ra = instr->RAValue();
2169 int rb = instr->RBValue();
2170 uintptr_t rs_val = get_register(rs);
Ben Murdochda12d292016-06-02 14:46:10 +01002171 uintptr_t rb_val = get_register(rb) & 0x7f;
2172 uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002173 set_register(ra, result);
2174 if (instr->Bit(0)) { // RC bit set
2175 SetCR0(result);
2176 }
2177 break;
2178 }
2179 case MFVSRD: {
2180 DCHECK(!instr->Bit(0));
2181 int frt = instr->RTValue();
2182 int ra = instr->RAValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002183 int64_t frt_val = get_d_register(frt);
2184 set_register(ra, frt_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002185 break;
2186 }
2187 case MFVSRWZ: {
2188 DCHECK(!instr->Bit(0));
2189 int frt = instr->RTValue();
2190 int ra = instr->RAValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002191 int64_t frt_val = get_d_register(frt);
2192 set_register(ra, static_cast<uint32_t>(frt_val));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002193 break;
2194 }
2195 case MTVSRD: {
2196 DCHECK(!instr->Bit(0));
2197 int frt = instr->RTValue();
2198 int ra = instr->RAValue();
2199 int64_t ra_val = get_register(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002200 set_d_register(frt, ra_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002201 break;
2202 }
2203 case MTVSRWA: {
2204 DCHECK(!instr->Bit(0));
2205 int frt = instr->RTValue();
2206 int ra = instr->RAValue();
2207 int64_t ra_val = static_cast<int32_t>(get_register(ra));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002208 set_d_register(frt, ra_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002209 break;
2210 }
2211 case MTVSRWZ: {
2212 DCHECK(!instr->Bit(0));
2213 int frt = instr->RTValue();
2214 int ra = instr->RAValue();
2215 uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002216 set_d_register(frt, ra_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002217 break;
2218 }
2219#endif
2220 default: {
2221 found = false;
2222 break;
2223 }
2224 }
2225
2226 return found;
2227}
2228
2229
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002230bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2231 bool found = true;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002232 int opcode = instr->Bits(9, 1) << 1;
2233 switch (opcode) {
2234 case CNTLZWX: {
2235 int rs = instr->RSValue();
2236 int ra = instr->RAValue();
2237 uintptr_t rs_val = get_register(rs);
2238 uintptr_t count = 0;
2239 int n = 0;
2240 uintptr_t bit = 0x80000000;
2241 for (; n < 32; n++) {
2242 if (bit & rs_val) break;
2243 count++;
2244 bit >>= 1;
2245 }
2246 set_register(ra, count);
2247 if (instr->Bit(0)) { // RC Bit set
2248 int bf = 0;
2249 if (count > 0) {
2250 bf |= 0x40000000;
2251 }
2252 if (count == 0) {
2253 bf |= 0x20000000;
2254 }
2255 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2256 }
2257 break;
2258 }
2259#if V8_TARGET_ARCH_PPC64
2260 case CNTLZDX: {
2261 int rs = instr->RSValue();
2262 int ra = instr->RAValue();
2263 uintptr_t rs_val = get_register(rs);
2264 uintptr_t count = 0;
2265 int n = 0;
2266 uintptr_t bit = 0x8000000000000000UL;
2267 for (; n < 64; n++) {
2268 if (bit & rs_val) break;
2269 count++;
2270 bit >>= 1;
2271 }
2272 set_register(ra, count);
2273 if (instr->Bit(0)) { // RC Bit set
2274 int bf = 0;
2275 if (count > 0) {
2276 bf |= 0x40000000;
2277 }
2278 if (count == 0) {
2279 bf |= 0x20000000;
2280 }
2281 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2282 }
2283 break;
2284 }
2285#endif
2286 case ANDX: {
2287 int rs = instr->RSValue();
2288 int ra = instr->RAValue();
2289 int rb = instr->RBValue();
2290 intptr_t rs_val = get_register(rs);
2291 intptr_t rb_val = get_register(rb);
2292 intptr_t alu_out = rs_val & rb_val;
2293 set_register(ra, alu_out);
2294 if (instr->Bit(0)) { // RC Bit set
2295 SetCR0(alu_out);
2296 }
2297 break;
2298 }
2299 case ANDCX: {
2300 int rs = instr->RSValue();
2301 int ra = instr->RAValue();
2302 int rb = instr->RBValue();
2303 intptr_t rs_val = get_register(rs);
2304 intptr_t rb_val = get_register(rb);
2305 intptr_t alu_out = rs_val & ~rb_val;
2306 set_register(ra, alu_out);
2307 if (instr->Bit(0)) { // RC Bit set
2308 SetCR0(alu_out);
2309 }
2310 break;
2311 }
2312 case CMPL: {
2313 int ra = instr->RAValue();
2314 int rb = instr->RBValue();
2315 int cr = instr->Bits(25, 23);
2316 uint32_t bf = 0;
2317#if V8_TARGET_ARCH_PPC64
2318 int L = instr->Bit(21);
2319 if (L) {
2320#endif
2321 uintptr_t ra_val = get_register(ra);
2322 uintptr_t rb_val = get_register(rb);
2323 if (ra_val < rb_val) {
2324 bf |= 0x80000000;
2325 }
2326 if (ra_val > rb_val) {
2327 bf |= 0x40000000;
2328 }
2329 if (ra_val == rb_val) {
2330 bf |= 0x20000000;
2331 }
2332#if V8_TARGET_ARCH_PPC64
2333 } else {
2334 uint32_t ra_val = get_register(ra);
2335 uint32_t rb_val = get_register(rb);
2336 if (ra_val < rb_val) {
2337 bf |= 0x80000000;
2338 }
2339 if (ra_val > rb_val) {
2340 bf |= 0x40000000;
2341 }
2342 if (ra_val == rb_val) {
2343 bf |= 0x20000000;
2344 }
2345 }
2346#endif
2347 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2348 uint32_t condition = bf >> (cr * 4);
2349 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2350 break;
2351 }
2352 case SUBFX: {
2353 int rt = instr->RTValue();
2354 int ra = instr->RAValue();
2355 int rb = instr->RBValue();
2356 // int oe = instr->Bit(10);
2357 intptr_t ra_val = get_register(ra);
2358 intptr_t rb_val = get_register(rb);
2359 intptr_t alu_out = rb_val - ra_val;
2360 // todo - figure out underflow
2361 set_register(rt, alu_out);
2362 if (instr->Bit(0)) { // RC Bit set
2363 SetCR0(alu_out);
2364 }
2365 // todo - handle OE bit
2366 break;
2367 }
2368 case ADDZEX: {
2369 int rt = instr->RTValue();
2370 int ra = instr->RAValue();
2371 intptr_t ra_val = get_register(ra);
2372 if (special_reg_xer_ & 0x20000000) {
2373 ra_val += 1;
2374 }
2375 set_register(rt, ra_val);
2376 if (instr->Bit(0)) { // RC bit set
2377 SetCR0(ra_val);
2378 }
2379 // todo - handle OE bit
2380 break;
2381 }
2382 case NORX: {
2383 int rs = instr->RSValue();
2384 int ra = instr->RAValue();
2385 int rb = instr->RBValue();
2386 intptr_t rs_val = get_register(rs);
2387 intptr_t rb_val = get_register(rb);
2388 intptr_t alu_out = ~(rs_val | rb_val);
2389 set_register(ra, alu_out);
2390 if (instr->Bit(0)) { // RC bit set
2391 SetCR0(alu_out);
2392 }
2393 break;
2394 }
2395 case MULLW: {
2396 int rt = instr->RTValue();
2397 int ra = instr->RAValue();
2398 int rb = instr->RBValue();
2399 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2400 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2401 int32_t alu_out = ra_val * rb_val;
2402 set_register(rt, alu_out);
2403 if (instr->Bit(0)) { // RC bit set
2404 SetCR0(alu_out);
2405 }
2406 // todo - handle OE bit
2407 break;
2408 }
2409#if V8_TARGET_ARCH_PPC64
2410 case MULLD: {
2411 int rt = instr->RTValue();
2412 int ra = instr->RAValue();
2413 int rb = instr->RBValue();
2414 int64_t ra_val = get_register(ra);
2415 int64_t rb_val = get_register(rb);
2416 int64_t alu_out = ra_val * rb_val;
2417 set_register(rt, alu_out);
2418 if (instr->Bit(0)) { // RC bit set
2419 SetCR0(alu_out);
2420 }
2421 // todo - handle OE bit
2422 break;
2423 }
2424#endif
2425 case DIVW: {
2426 int rt = instr->RTValue();
2427 int ra = instr->RAValue();
2428 int rb = instr->RBValue();
2429 int32_t ra_val = get_register(ra);
2430 int32_t rb_val = get_register(rb);
2431 bool overflow = (ra_val == kMinInt && rb_val == -1);
2432 // result is undefined if divisor is zero or if operation
2433 // is 0x80000000 / -1.
2434 int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2435 set_register(rt, alu_out);
2436 if (instr->Bit(10)) { // OE bit set
2437 if (overflow) {
2438 special_reg_xer_ |= 0xC0000000; // set SO,OV
2439 } else {
2440 special_reg_xer_ &= ~0x40000000; // clear OV
2441 }
2442 }
2443 if (instr->Bit(0)) { // RC bit set
2444 bool setSO = (special_reg_xer_ & 0x80000000);
2445 SetCR0(alu_out, setSO);
2446 }
2447 break;
2448 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002449 case DIVWU: {
2450 int rt = instr->RTValue();
2451 int ra = instr->RAValue();
2452 int rb = instr->RBValue();
2453 uint32_t ra_val = get_register(ra);
2454 uint32_t rb_val = get_register(rb);
2455 bool overflow = (rb_val == 0);
2456 // result is undefined if divisor is zero
2457 uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
2458 set_register(rt, alu_out);
2459 if (instr->Bit(10)) { // OE bit set
2460 if (overflow) {
2461 special_reg_xer_ |= 0xC0000000; // set SO,OV
2462 } else {
2463 special_reg_xer_ &= ~0x40000000; // clear OV
2464 }
2465 }
2466 if (instr->Bit(0)) { // RC bit set
2467 bool setSO = (special_reg_xer_ & 0x80000000);
2468 SetCR0(alu_out, setSO);
2469 }
2470 break;
2471 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002472#if V8_TARGET_ARCH_PPC64
2473 case DIVD: {
2474 int rt = instr->RTValue();
2475 int ra = instr->RAValue();
2476 int rb = instr->RBValue();
2477 int64_t ra_val = get_register(ra);
2478 int64_t rb_val = get_register(rb);
2479 int64_t one = 1; // work-around gcc
2480 int64_t kMinLongLong = (one << 63);
2481 // result is undefined if divisor is zero or if operation
2482 // is 0x80000000_00000000 / -1.
2483 int64_t alu_out =
2484 (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2485 ? -1
2486 : ra_val / rb_val;
2487 set_register(rt, alu_out);
2488 if (instr->Bit(0)) { // RC bit set
2489 SetCR0(alu_out);
2490 }
2491 // todo - handle OE bit
2492 break;
2493 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002494 case DIVDU: {
2495 int rt = instr->RTValue();
2496 int ra = instr->RAValue();
2497 int rb = instr->RBValue();
2498 uint64_t ra_val = get_register(ra);
2499 uint64_t rb_val = get_register(rb);
2500 // result is undefined if divisor is zero
2501 uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
2502 set_register(rt, alu_out);
2503 if (instr->Bit(0)) { // RC bit set
2504 SetCR0(alu_out);
2505 }
2506 // todo - handle OE bit
2507 break;
2508 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002509#endif
2510 case ADDX: {
2511 int rt = instr->RTValue();
2512 int ra = instr->RAValue();
2513 int rb = instr->RBValue();
2514 // int oe = instr->Bit(10);
2515 intptr_t ra_val = get_register(ra);
2516 intptr_t rb_val = get_register(rb);
2517 intptr_t alu_out = ra_val + rb_val;
2518 set_register(rt, alu_out);
2519 if (instr->Bit(0)) { // RC bit set
2520 SetCR0(alu_out);
2521 }
2522 // todo - handle OE bit
2523 break;
2524 }
2525 case XORX: {
2526 int rs = instr->RSValue();
2527 int ra = instr->RAValue();
2528 int rb = instr->RBValue();
2529 intptr_t rs_val = get_register(rs);
2530 intptr_t rb_val = get_register(rb);
2531 intptr_t alu_out = rs_val ^ rb_val;
2532 set_register(ra, alu_out);
2533 if (instr->Bit(0)) { // RC bit set
2534 SetCR0(alu_out);
2535 }
2536 break;
2537 }
2538 case ORX: {
2539 int rs = instr->RSValue();
2540 int ra = instr->RAValue();
2541 int rb = instr->RBValue();
2542 intptr_t rs_val = get_register(rs);
2543 intptr_t rb_val = get_register(rb);
2544 intptr_t alu_out = rs_val | rb_val;
2545 set_register(ra, alu_out);
2546 if (instr->Bit(0)) { // RC bit set
2547 SetCR0(alu_out);
2548 }
2549 break;
2550 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002551 case ORC: {
2552 int rs = instr->RSValue();
2553 int ra = instr->RAValue();
2554 int rb = instr->RBValue();
2555 intptr_t rs_val = get_register(rs);
2556 intptr_t rb_val = get_register(rb);
2557 intptr_t alu_out = rs_val | ~rb_val;
2558 set_register(ra, alu_out);
2559 if (instr->Bit(0)) { // RC bit set
2560 SetCR0(alu_out);
2561 }
2562 break;
2563 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002564 case MFSPR: {
2565 int rt = instr->RTValue();
2566 int spr = instr->Bits(20, 11);
2567 if (spr != 256) {
2568 UNIMPLEMENTED(); // Only LRLR supported
2569 }
2570 set_register(rt, special_reg_lr_);
2571 break;
2572 }
2573 case MTSPR: {
2574 int rt = instr->RTValue();
2575 intptr_t rt_val = get_register(rt);
2576 int spr = instr->Bits(20, 11);
2577 if (spr == 256) {
2578 special_reg_lr_ = rt_val;
2579 } else if (spr == 288) {
2580 special_reg_ctr_ = rt_val;
2581 } else if (spr == 32) {
2582 special_reg_xer_ = rt_val;
2583 } else {
2584 UNIMPLEMENTED(); // Only LR supported
2585 }
2586 break;
2587 }
2588 case MFCR: {
2589 int rt = instr->RTValue();
2590 set_register(rt, condition_reg_);
2591 break;
2592 }
2593 case STWUX:
2594 case STWX: {
2595 int rs = instr->RSValue();
2596 int ra = instr->RAValue();
2597 int rb = instr->RBValue();
2598 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2599 int32_t rs_val = get_register(rs);
2600 intptr_t rb_val = get_register(rb);
2601 WriteW(ra_val + rb_val, rs_val, instr);
2602 if (opcode == STWUX) {
2603 DCHECK(ra != 0);
2604 set_register(ra, ra_val + rb_val);
2605 }
2606 break;
2607 }
2608 case STBUX:
2609 case STBX: {
2610 int rs = instr->RSValue();
2611 int ra = instr->RAValue();
2612 int rb = instr->RBValue();
2613 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2614 int8_t rs_val = get_register(rs);
2615 intptr_t rb_val = get_register(rb);
2616 WriteB(ra_val + rb_val, rs_val);
2617 if (opcode == STBUX) {
2618 DCHECK(ra != 0);
2619 set_register(ra, ra_val + rb_val);
2620 }
2621 break;
2622 }
2623 case STHUX:
2624 case STHX: {
2625 int rs = instr->RSValue();
2626 int ra = instr->RAValue();
2627 int rb = instr->RBValue();
2628 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2629 int16_t rs_val = get_register(rs);
2630 intptr_t rb_val = get_register(rb);
2631 WriteH(ra_val + rb_val, rs_val, instr);
2632 if (opcode == STHUX) {
2633 DCHECK(ra != 0);
2634 set_register(ra, ra_val + rb_val);
2635 }
2636 break;
2637 }
2638 case LWZX:
2639 case LWZUX: {
2640 int rt = instr->RTValue();
2641 int ra = instr->RAValue();
2642 int rb = instr->RBValue();
2643 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2644 intptr_t rb_val = get_register(rb);
2645 set_register(rt, ReadWU(ra_val + rb_val, instr));
2646 if (opcode == LWZUX) {
2647 DCHECK(ra != 0 && ra != rt);
2648 set_register(ra, ra_val + rb_val);
2649 }
2650 break;
2651 }
2652#if V8_TARGET_ARCH_PPC64
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002653 case LWAX: {
2654 int rt = instr->RTValue();
2655 int ra = instr->RAValue();
2656 int rb = instr->RBValue();
2657 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2658 intptr_t rb_val = get_register(rb);
2659 set_register(rt, ReadW(ra_val + rb_val, instr));
2660 break;
2661 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002662 case LDX:
2663 case LDUX: {
2664 int rt = instr->RTValue();
2665 int ra = instr->RAValue();
2666 int rb = instr->RBValue();
2667 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2668 intptr_t rb_val = get_register(rb);
2669 intptr_t* result = ReadDW(ra_val + rb_val);
2670 set_register(rt, *result);
2671 if (opcode == LDUX) {
2672 DCHECK(ra != 0 && ra != rt);
2673 set_register(ra, ra_val + rb_val);
2674 }
2675 break;
2676 }
2677 case STDX:
2678 case STDUX: {
2679 int rs = instr->RSValue();
2680 int ra = instr->RAValue();
2681 int rb = instr->RBValue();
2682 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2683 intptr_t rs_val = get_register(rs);
2684 intptr_t rb_val = get_register(rb);
2685 WriteDW(ra_val + rb_val, rs_val);
2686 if (opcode == STDUX) {
2687 DCHECK(ra != 0);
2688 set_register(ra, ra_val + rb_val);
2689 }
2690 break;
2691 }
2692#endif
2693 case LBZX:
2694 case LBZUX: {
2695 int rt = instr->RTValue();
2696 int ra = instr->RAValue();
2697 int rb = instr->RBValue();
2698 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2699 intptr_t rb_val = get_register(rb);
2700 set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2701 if (opcode == LBZUX) {
2702 DCHECK(ra != 0 && ra != rt);
2703 set_register(ra, ra_val + rb_val);
2704 }
2705 break;
2706 }
2707 case LHZX:
2708 case LHZUX: {
2709 int rt = instr->RTValue();
2710 int ra = instr->RAValue();
2711 int rb = instr->RBValue();
2712 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2713 intptr_t rb_val = get_register(rb);
2714 set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2715 if (opcode == LHZUX) {
2716 DCHECK(ra != 0 && ra != rt);
2717 set_register(ra, ra_val + rb_val);
2718 }
2719 break;
2720 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002721 case LHAX:
2722 case LHAUX: {
2723 int rt = instr->RTValue();
2724 int ra = instr->RAValue();
2725 int rb = instr->RBValue();
2726 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2727 intptr_t rb_val = get_register(rb);
2728 set_register(rt, ReadH(ra_val + rb_val, instr));
2729 if (opcode == LHAUX) {
2730 DCHECK(ra != 0 && ra != rt);
2731 set_register(ra, ra_val + rb_val);
2732 }
2733 break;
2734 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002735 case DCBF: {
2736 // todo - simulate dcbf
2737 break;
2738 }
2739 default: {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002740 found = false;
2741 break;
2742 }
2743 }
2744
2745 return found;
2746}
2747
2748
2749void Simulator::ExecuteExt2_5bit(Instruction* instr) {
2750 int opcode = instr->Bits(5, 1) << 1;
2751 switch (opcode) {
2752 case ISEL: {
2753 int rt = instr->RTValue();
2754 int ra = instr->RAValue();
2755 int rb = instr->RBValue();
2756 int condition_bit = instr->RCValue();
2757 int condition_mask = 0x80000000 >> condition_bit;
2758 intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
2759 intptr_t rb_val = get_register(rb);
2760 intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
2761 set_register(rt, value);
2762 break;
2763 }
2764 default: {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002765 PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2766 UNIMPLEMENTED(); // Not used by V8.
2767 }
2768 }
2769}
2770
2771
2772void Simulator::ExecuteExt2(Instruction* instr) {
2773 // Check first the 10-1 bit versions
2774 if (ExecuteExt2_10bit(instr)) return;
2775 // Now look at the lesser encodings
2776 if (ExecuteExt2_9bit_part1(instr)) return;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002777 if (ExecuteExt2_9bit_part2(instr)) return;
2778 ExecuteExt2_5bit(instr);
2779}
2780
2781
2782void Simulator::ExecuteExt3(Instruction* instr) {
2783 int opcode = instr->Bits(10, 1) << 1;
2784 switch (opcode) {
2785 case FCFID: {
2786 // fcfids
2787 int frt = instr->RTValue();
2788 int frb = instr->RBValue();
2789 int64_t frb_val = get_d_register(frb);
2790 double frt_val = static_cast<float>(frb_val);
2791 set_d_register_from_double(frt, frt_val);
2792 return;
2793 }
2794 case FCFIDU: {
2795 // fcfidus
2796 int frt = instr->RTValue();
2797 int frb = instr->RBValue();
2798 uint64_t frb_val = get_d_register(frb);
2799 double frt_val = static_cast<float>(frb_val);
2800 set_d_register_from_double(frt, frt_val);
2801 return;
2802 }
2803 }
2804 UNIMPLEMENTED(); // Not used by V8.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002805}
2806
2807
2808void Simulator::ExecuteExt4(Instruction* instr) {
2809 switch (instr->Bits(5, 1) << 1) {
2810 case FDIV: {
2811 int frt = instr->RTValue();
2812 int fra = instr->RAValue();
2813 int frb = instr->RBValue();
2814 double fra_val = get_double_from_d_register(fra);
2815 double frb_val = get_double_from_d_register(frb);
2816 double frt_val = fra_val / frb_val;
2817 set_d_register_from_double(frt, frt_val);
2818 return;
2819 }
2820 case FSUB: {
2821 int frt = instr->RTValue();
2822 int fra = instr->RAValue();
2823 int frb = instr->RBValue();
2824 double fra_val = get_double_from_d_register(fra);
2825 double frb_val = get_double_from_d_register(frb);
2826 double frt_val = fra_val - frb_val;
2827 set_d_register_from_double(frt, frt_val);
2828 return;
2829 }
2830 case FADD: {
2831 int frt = instr->RTValue();
2832 int fra = instr->RAValue();
2833 int frb = instr->RBValue();
2834 double fra_val = get_double_from_d_register(fra);
2835 double frb_val = get_double_from_d_register(frb);
2836 double frt_val = fra_val + frb_val;
2837 set_d_register_from_double(frt, frt_val);
2838 return;
2839 }
2840 case FSQRT: {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002841 lazily_initialize_fast_sqrt(isolate_);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002842 int frt = instr->RTValue();
2843 int frb = instr->RBValue();
2844 double frb_val = get_double_from_d_register(frb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002845 double frt_val = fast_sqrt(frb_val, isolate_);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002846 set_d_register_from_double(frt, frt_val);
2847 return;
2848 }
2849 case FSEL: {
2850 int frt = instr->RTValue();
2851 int fra = instr->RAValue();
2852 int frb = instr->RBValue();
2853 int frc = instr->RCValue();
2854 double fra_val = get_double_from_d_register(fra);
2855 double frb_val = get_double_from_d_register(frb);
2856 double frc_val = get_double_from_d_register(frc);
2857 double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2858 set_d_register_from_double(frt, frt_val);
2859 return;
2860 }
2861 case FMUL: {
2862 int frt = instr->RTValue();
2863 int fra = instr->RAValue();
2864 int frc = instr->RCValue();
2865 double fra_val = get_double_from_d_register(fra);
2866 double frc_val = get_double_from_d_register(frc);
2867 double frt_val = fra_val * frc_val;
2868 set_d_register_from_double(frt, frt_val);
2869 return;
2870 }
2871 case FMSUB: {
2872 int frt = instr->RTValue();
2873 int fra = instr->RAValue();
2874 int frb = instr->RBValue();
2875 int frc = instr->RCValue();
2876 double fra_val = get_double_from_d_register(fra);
2877 double frb_val = get_double_from_d_register(frb);
2878 double frc_val = get_double_from_d_register(frc);
2879 double frt_val = (fra_val * frc_val) - frb_val;
2880 set_d_register_from_double(frt, frt_val);
2881 return;
2882 }
2883 case FMADD: {
2884 int frt = instr->RTValue();
2885 int fra = instr->RAValue();
2886 int frb = instr->RBValue();
2887 int frc = instr->RCValue();
2888 double fra_val = get_double_from_d_register(fra);
2889 double frb_val = get_double_from_d_register(frb);
2890 double frc_val = get_double_from_d_register(frc);
2891 double frt_val = (fra_val * frc_val) + frb_val;
2892 set_d_register_from_double(frt, frt_val);
2893 return;
2894 }
2895 }
2896 int opcode = instr->Bits(10, 1) << 1;
2897 switch (opcode) {
2898 case FCMPU: {
2899 int fra = instr->RAValue();
2900 int frb = instr->RBValue();
2901 double fra_val = get_double_from_d_register(fra);
2902 double frb_val = get_double_from_d_register(frb);
2903 int cr = instr->Bits(25, 23);
2904 int bf = 0;
2905 if (fra_val < frb_val) {
2906 bf |= 0x80000000;
2907 }
2908 if (fra_val > frb_val) {
2909 bf |= 0x40000000;
2910 }
2911 if (fra_val == frb_val) {
2912 bf |= 0x20000000;
2913 }
2914 if (std::isunordered(fra_val, frb_val)) {
2915 bf |= 0x10000000;
2916 }
2917 int condition_mask = 0xF0000000 >> (cr * 4);
2918 int condition = bf >> (cr * 4);
2919 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2920 return;
2921 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002922 case FRIN: {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002923 int frt = instr->RTValue();
2924 int frb = instr->RBValue();
2925 double frb_val = get_double_from_d_register(frb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002926 double frt_val = std::round(frb_val);
2927 set_d_register_from_double(frt, frt_val);
2928 if (instr->Bit(0)) { // RC bit set
2929 // UNIMPLEMENTED();
2930 }
2931 return;
2932 }
2933 case FRIZ: {
2934 int frt = instr->RTValue();
2935 int frb = instr->RBValue();
2936 double frb_val = get_double_from_d_register(frb);
2937 double frt_val = std::trunc(frb_val);
2938 set_d_register_from_double(frt, frt_val);
2939 if (instr->Bit(0)) { // RC bit set
2940 // UNIMPLEMENTED();
2941 }
2942 return;
2943 }
2944 case FRIP: {
2945 int frt = instr->RTValue();
2946 int frb = instr->RBValue();
2947 double frb_val = get_double_from_d_register(frb);
2948 double frt_val = std::ceil(frb_val);
2949 set_d_register_from_double(frt, frt_val);
2950 if (instr->Bit(0)) { // RC bit set
2951 // UNIMPLEMENTED();
2952 }
2953 return;
2954 }
2955 case FRIM: {
2956 int frt = instr->RTValue();
2957 int frb = instr->RBValue();
2958 double frb_val = get_double_from_d_register(frb);
2959 double frt_val = std::floor(frb_val);
2960 set_d_register_from_double(frt, frt_val);
2961 if (instr->Bit(0)) { // RC bit set
2962 // UNIMPLEMENTED();
2963 }
2964 return;
2965 }
2966 case FRSP: {
2967 int frt = instr->RTValue();
2968 int frb = instr->RBValue();
2969 // frsp round 8-byte double-precision value to
2970 // single-precision value
2971 double frb_val = get_double_from_d_register(frb);
2972 double frt_val = static_cast<float>(frb_val);
2973 set_d_register_from_double(frt, frt_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002974 if (instr->Bit(0)) { // RC bit set
2975 // UNIMPLEMENTED();
2976 }
2977 return;
2978 }
2979 case FCFID: {
2980 int frt = instr->RTValue();
2981 int frb = instr->RBValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002982 int64_t frb_val = get_d_register(frb);
2983 double frt_val = static_cast<double>(frb_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002984 set_d_register_from_double(frt, frt_val);
2985 return;
2986 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002987 case FCFIDU: {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002988 int frt = instr->RTValue();
2989 int frb = instr->RBValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002990 uint64_t frb_val = get_d_register(frb);
2991 double frt_val = static_cast<double>(frb_val);
2992 set_d_register_from_double(frt, frt_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002993 return;
2994 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002995 case FCTID:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002996 case FCTIDZ: {
2997 int frt = instr->RTValue();
2998 int frb = instr->RBValue();
2999 double frb_val = get_double_from_d_register(frb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003000 int mode = (opcode == FCTIDZ) ? kRoundToZero
3001 : (fp_condition_reg_ & kFPRoundingModeMask);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003002 int64_t frt_val;
3003 int64_t one = 1; // work-around gcc
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003004 int64_t kMinVal = (one << 63);
3005 int64_t kMaxVal = kMinVal - 1;
3006 bool invalid_convert = false;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003007
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003008 if (std::isnan(frb_val)) {
3009 frt_val = kMinVal;
3010 invalid_convert = true;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003011 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003012 switch (mode) {
3013 case kRoundToZero:
3014 frb_val = std::trunc(frb_val);
3015 break;
3016 case kRoundToPlusInf:
3017 frb_val = std::ceil(frb_val);
3018 break;
3019 case kRoundToMinusInf:
3020 frb_val = std::floor(frb_val);
3021 break;
3022 default:
3023 UNIMPLEMENTED(); // Not used by V8.
3024 break;
3025 }
3026 if (frb_val < static_cast<double>(kMinVal)) {
3027 frt_val = kMinVal;
3028 invalid_convert = true;
3029 } else if (frb_val >= static_cast<double>(kMaxVal)) {
3030 frt_val = kMaxVal;
3031 invalid_convert = true;
3032 } else {
3033 frt_val = (int64_t)frb_val;
3034 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003035 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003036 set_d_register(frt, frt_val);
3037 if (invalid_convert) SetFPSCR(VXCVI);
3038 return;
3039 }
3040 case FCTIDU:
3041 case FCTIDUZ: {
3042 int frt = instr->RTValue();
3043 int frb = instr->RBValue();
3044 double frb_val = get_double_from_d_register(frb);
3045 int mode = (opcode == FCTIDUZ)
3046 ? kRoundToZero
3047 : (fp_condition_reg_ & kFPRoundingModeMask);
3048 uint64_t frt_val;
3049 uint64_t kMinVal = 0;
3050 uint64_t kMaxVal = kMinVal - 1;
3051 bool invalid_convert = false;
3052
3053 if (std::isnan(frb_val)) {
3054 frt_val = kMinVal;
3055 invalid_convert = true;
3056 } else {
3057 switch (mode) {
3058 case kRoundToZero:
3059 frb_val = std::trunc(frb_val);
3060 break;
3061 case kRoundToPlusInf:
3062 frb_val = std::ceil(frb_val);
3063 break;
3064 case kRoundToMinusInf:
3065 frb_val = std::floor(frb_val);
3066 break;
3067 default:
3068 UNIMPLEMENTED(); // Not used by V8.
3069 break;
3070 }
3071 if (frb_val < static_cast<double>(kMinVal)) {
3072 frt_val = kMinVal;
3073 invalid_convert = true;
3074 } else if (frb_val >= static_cast<double>(kMaxVal)) {
3075 frt_val = kMaxVal;
3076 invalid_convert = true;
3077 } else {
3078 frt_val = (uint64_t)frb_val;
3079 }
3080 }
3081 set_d_register(frt, frt_val);
3082 if (invalid_convert) SetFPSCR(VXCVI);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003083 return;
3084 }
3085 case FCTIW:
3086 case FCTIWZ: {
3087 int frt = instr->RTValue();
3088 int frb = instr->RBValue();
3089 double frb_val = get_double_from_d_register(frb);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003090 int mode = (opcode == FCTIWZ) ? kRoundToZero
3091 : (fp_condition_reg_ & kFPRoundingModeMask);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003092 int64_t frt_val;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003093 int64_t kMinVal = kMinInt;
3094 int64_t kMaxVal = kMaxInt;
3095
3096 if (std::isnan(frb_val)) {
3097 frt_val = kMinVal;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003098 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003099 switch (mode) {
3100 case kRoundToZero:
3101 frb_val = std::trunc(frb_val);
3102 break;
3103 case kRoundToPlusInf:
3104 frb_val = std::ceil(frb_val);
3105 break;
3106 case kRoundToMinusInf:
3107 frb_val = std::floor(frb_val);
3108 break;
3109 case kRoundToNearest: {
3110 double orig = frb_val;
3111 frb_val = lround(frb_val);
3112 // Round to even if exactly halfway. (lround rounds up)
3113 if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
3114 frb_val += ((frb_val > 0) ? -1.0 : 1.0);
3115 }
3116 break;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003117 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003118 default:
3119 UNIMPLEMENTED(); // Not used by V8.
3120 break;
3121 }
3122 if (frb_val < kMinVal) {
3123 frt_val = kMinVal;
3124 } else if (frb_val > kMaxVal) {
3125 frt_val = kMaxVal;
3126 } else {
3127 frt_val = (int64_t)frb_val;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003128 }
3129 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003130 set_d_register(frt, frt_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003131 return;
3132 }
3133 case FNEG: {
3134 int frt = instr->RTValue();
3135 int frb = instr->RBValue();
3136 double frb_val = get_double_from_d_register(frb);
3137 double frt_val = -frb_val;
3138 set_d_register_from_double(frt, frt_val);
3139 return;
3140 }
3141 case FMR: {
3142 int frt = instr->RTValue();
3143 int frb = instr->RBValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003144 int64_t frb_val = get_d_register(frb);
3145 set_d_register(frt, frb_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003146 return;
3147 }
3148 case MTFSFI: {
3149 int bf = instr->Bits(25, 23);
3150 int imm = instr->Bits(15, 12);
3151 int fp_condition_mask = 0xF0000000 >> (bf * 4);
3152 fp_condition_reg_ &= ~fp_condition_mask;
3153 fp_condition_reg_ |= (imm << (28 - (bf * 4)));
3154 if (instr->Bit(0)) { // RC bit set
3155 condition_reg_ &= 0xF0FFFFFF;
3156 condition_reg_ |= (imm << 23);
3157 }
3158 return;
3159 }
3160 case MTFSF: {
3161 int frb = instr->RBValue();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003162 int64_t frb_dval = get_d_register(frb);
3163 int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003164 int l = instr->Bits(25, 25);
3165 if (l == 1) {
3166 fp_condition_reg_ = frb_ival;
3167 } else {
3168 UNIMPLEMENTED();
3169 }
3170 if (instr->Bit(0)) { // RC bit set
3171 UNIMPLEMENTED();
3172 // int w = instr->Bits(16, 16);
3173 // int flm = instr->Bits(24, 17);
3174 }
3175 return;
3176 }
3177 case MFFS: {
3178 int frt = instr->RTValue();
3179 int64_t lval = static_cast<int64_t>(fp_condition_reg_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003180 set_d_register(frt, lval);
3181 return;
3182 }
3183 case MCRFS: {
3184 int bf = instr->Bits(25, 23);
3185 int bfa = instr->Bits(20, 18);
3186 int cr_shift = (7 - bf) * CRWIDTH;
3187 int fp_shift = (7 - bfa) * CRWIDTH;
3188 int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
3189 condition_reg_ &= ~(0x0f << cr_shift);
3190 condition_reg_ |= (field_val << cr_shift);
3191 // Clear copied exception bits
3192 switch (bfa) {
3193 case 5:
3194 ClearFPSCR(VXSOFT);
3195 ClearFPSCR(VXSQRT);
3196 ClearFPSCR(VXCVI);
3197 break;
3198 default:
3199 UNIMPLEMENTED();
3200 break;
3201 }
3202 return;
3203 }
3204 case MTFSB0: {
3205 int bt = instr->Bits(25, 21);
3206 ClearFPSCR(bt);
3207 if (instr->Bit(0)) { // RC bit set
3208 UNIMPLEMENTED();
3209 }
3210 return;
3211 }
3212 case MTFSB1: {
3213 int bt = instr->Bits(25, 21);
3214 SetFPSCR(bt);
3215 if (instr->Bit(0)) { // RC bit set
3216 UNIMPLEMENTED();
3217 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003218 return;
3219 }
3220 case FABS: {
3221 int frt = instr->RTValue();
3222 int frb = instr->RBValue();
3223 double frb_val = get_double_from_d_register(frb);
3224 double frt_val = std::fabs(frb_val);
3225 set_d_register_from_double(frt, frt_val);
3226 return;
3227 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003228 }
3229 UNIMPLEMENTED(); // Not used by V8.
3230}
3231
3232#if V8_TARGET_ARCH_PPC64
3233void Simulator::ExecuteExt5(Instruction* instr) {
3234 switch (instr->Bits(4, 2) << 2) {
3235 case RLDICL: {
3236 int ra = instr->RAValue();
3237 int rs = instr->RSValue();
3238 uintptr_t rs_val = get_register(rs);
3239 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3240 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3241 DCHECK(sh >= 0 && sh <= 63);
3242 DCHECK(mb >= 0 && mb <= 63);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003243 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003244 uintptr_t mask = 0xffffffffffffffff >> mb;
3245 result &= mask;
3246 set_register(ra, result);
3247 if (instr->Bit(0)) { // RC bit set
3248 SetCR0(result);
3249 }
3250 return;
3251 }
3252 case RLDICR: {
3253 int ra = instr->RAValue();
3254 int rs = instr->RSValue();
3255 uintptr_t rs_val = get_register(rs);
3256 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3257 int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3258 DCHECK(sh >= 0 && sh <= 63);
3259 DCHECK(me >= 0 && me <= 63);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003260 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003261 uintptr_t mask = 0xffffffffffffffff << (63 - me);
3262 result &= mask;
3263 set_register(ra, result);
3264 if (instr->Bit(0)) { // RC bit set
3265 SetCR0(result);
3266 }
3267 return;
3268 }
3269 case RLDIC: {
3270 int ra = instr->RAValue();
3271 int rs = instr->RSValue();
3272 uintptr_t rs_val = get_register(rs);
3273 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3274 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3275 DCHECK(sh >= 0 && sh <= 63);
3276 DCHECK(mb >= 0 && mb <= 63);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003277 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003278 uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
3279 result &= mask;
3280 set_register(ra, result);
3281 if (instr->Bit(0)) { // RC bit set
3282 SetCR0(result);
3283 }
3284 return;
3285 }
3286 case RLDIMI: {
3287 int ra = instr->RAValue();
3288 int rs = instr->RSValue();
3289 uintptr_t rs_val = get_register(rs);
3290 intptr_t ra_val = get_register(ra);
3291 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3292 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3293 int me = 63 - sh;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003294 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003295 uintptr_t mask = 0;
3296 if (mb < me + 1) {
3297 uintptr_t bit = 0x8000000000000000 >> mb;
3298 for (; mb <= me; mb++) {
3299 mask |= bit;
3300 bit >>= 1;
3301 }
3302 } else if (mb == me + 1) {
3303 mask = 0xffffffffffffffff;
3304 } else { // mb > me+1
3305 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
3306 mask = 0xffffffffffffffff;
3307 for (; me < mb; me++) {
3308 mask ^= bit;
3309 bit >>= 1;
3310 }
3311 }
3312 result &= mask;
3313 ra_val &= ~mask;
3314 result |= ra_val;
3315 set_register(ra, result);
3316 if (instr->Bit(0)) { // RC bit set
3317 SetCR0(result);
3318 }
3319 return;
3320 }
3321 }
3322 switch (instr->Bits(4, 1) << 1) {
3323 case RLDCL: {
3324 int ra = instr->RAValue();
3325 int rs = instr->RSValue();
3326 int rb = instr->RBValue();
3327 uintptr_t rs_val = get_register(rs);
3328 uintptr_t rb_val = get_register(rb);
3329 int sh = (rb_val & 0x3f);
3330 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3331 DCHECK(sh >= 0 && sh <= 63);
3332 DCHECK(mb >= 0 && mb <= 63);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003333 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003334 uintptr_t mask = 0xffffffffffffffff >> mb;
3335 result &= mask;
3336 set_register(ra, result);
3337 if (instr->Bit(0)) { // RC bit set
3338 SetCR0(result);
3339 }
3340 return;
3341 }
3342 }
3343 UNIMPLEMENTED(); // Not used by V8.
3344}
3345#endif
3346
3347
3348void Simulator::ExecuteGeneric(Instruction* instr) {
3349 int opcode = instr->OpcodeValue() << 26;
3350 switch (opcode) {
3351 case SUBFIC: {
3352 int rt = instr->RTValue();
3353 int ra = instr->RAValue();
3354 intptr_t ra_val = get_register(ra);
3355 int32_t im_val = instr->Bits(15, 0);
3356 im_val = SIGN_EXT_IMM16(im_val);
3357 intptr_t alu_out = im_val - ra_val;
3358 set_register(rt, alu_out);
3359 // todo - handle RC bit
3360 break;
3361 }
3362 case CMPLI: {
3363 int ra = instr->RAValue();
3364 uint32_t im_val = instr->Bits(15, 0);
3365 int cr = instr->Bits(25, 23);
3366 uint32_t bf = 0;
3367#if V8_TARGET_ARCH_PPC64
3368 int L = instr->Bit(21);
3369 if (L) {
3370#endif
3371 uintptr_t ra_val = get_register(ra);
3372 if (ra_val < im_val) {
3373 bf |= 0x80000000;
3374 }
3375 if (ra_val > im_val) {
3376 bf |= 0x40000000;
3377 }
3378 if (ra_val == im_val) {
3379 bf |= 0x20000000;
3380 }
3381#if V8_TARGET_ARCH_PPC64
3382 } else {
3383 uint32_t ra_val = get_register(ra);
3384 if (ra_val < im_val) {
3385 bf |= 0x80000000;
3386 }
3387 if (ra_val > im_val) {
3388 bf |= 0x40000000;
3389 }
3390 if (ra_val == im_val) {
3391 bf |= 0x20000000;
3392 }
3393 }
3394#endif
3395 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3396 uint32_t condition = bf >> (cr * 4);
3397 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3398 break;
3399 }
3400 case CMPI: {
3401 int ra = instr->RAValue();
3402 int32_t im_val = instr->Bits(15, 0);
3403 im_val = SIGN_EXT_IMM16(im_val);
3404 int cr = instr->Bits(25, 23);
3405 uint32_t bf = 0;
3406#if V8_TARGET_ARCH_PPC64
3407 int L = instr->Bit(21);
3408 if (L) {
3409#endif
3410 intptr_t ra_val = get_register(ra);
3411 if (ra_val < im_val) {
3412 bf |= 0x80000000;
3413 }
3414 if (ra_val > im_val) {
3415 bf |= 0x40000000;
3416 }
3417 if (ra_val == im_val) {
3418 bf |= 0x20000000;
3419 }
3420#if V8_TARGET_ARCH_PPC64
3421 } else {
3422 int32_t ra_val = get_register(ra);
3423 if (ra_val < im_val) {
3424 bf |= 0x80000000;
3425 }
3426 if (ra_val > im_val) {
3427 bf |= 0x40000000;
3428 }
3429 if (ra_val == im_val) {
3430 bf |= 0x20000000;
3431 }
3432 }
3433#endif
3434 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3435 uint32_t condition = bf >> (cr * 4);
3436 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3437 break;
3438 }
3439 case ADDIC: {
3440 int rt = instr->RTValue();
3441 int ra = instr->RAValue();
3442 uintptr_t ra_val = get_register(ra);
3443 uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3444 uintptr_t alu_out = ra_val + im_val;
3445 // Check overflow
3446 if (~ra_val < im_val) {
3447 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3448 } else {
3449 special_reg_xer_ &= ~0xF0000000;
3450 }
3451 set_register(rt, alu_out);
3452 break;
3453 }
3454 case ADDI: {
3455 int rt = instr->RTValue();
3456 int ra = instr->RAValue();
3457 int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3458 intptr_t alu_out;
3459 if (ra == 0) {
3460 alu_out = im_val;
3461 } else {
3462 intptr_t ra_val = get_register(ra);
3463 alu_out = ra_val + im_val;
3464 }
3465 set_register(rt, alu_out);
3466 // todo - handle RC bit
3467 break;
3468 }
3469 case ADDIS: {
3470 int rt = instr->RTValue();
3471 int ra = instr->RAValue();
3472 int32_t im_val = (instr->Bits(15, 0) << 16);
3473 intptr_t alu_out;
3474 if (ra == 0) { // treat r0 as zero
3475 alu_out = im_val;
3476 } else {
3477 intptr_t ra_val = get_register(ra);
3478 alu_out = ra_val + im_val;
3479 }
3480 set_register(rt, alu_out);
3481 break;
3482 }
3483 case BCX: {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003484 ExecuteBranchConditional(instr, BC_OFFSET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003485 break;
3486 }
3487 case BX: {
3488 int offset = (instr->Bits(25, 2) << 8) >> 6;
3489 if (instr->Bit(0) == 1) { // LK flag set
3490 special_reg_lr_ = get_pc() + 4;
3491 }
3492 set_pc(get_pc() + offset);
3493 // todo - AA flag
3494 break;
3495 }
3496 case EXT1: {
3497 ExecuteExt1(instr);
3498 break;
3499 }
3500 case RLWIMIX: {
3501 int ra = instr->RAValue();
3502 int rs = instr->RSValue();
3503 uint32_t rs_val = get_register(rs);
3504 int32_t ra_val = get_register(ra);
3505 int sh = instr->Bits(15, 11);
3506 int mb = instr->Bits(10, 6);
3507 int me = instr->Bits(5, 1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003508 uint32_t result = base::bits::RotateLeft32(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003509 int mask = 0;
3510 if (mb < me + 1) {
3511 int bit = 0x80000000 >> mb;
3512 for (; mb <= me; mb++) {
3513 mask |= bit;
3514 bit >>= 1;
3515 }
3516 } else if (mb == me + 1) {
3517 mask = 0xffffffff;
3518 } else { // mb > me+1
3519 int bit = 0x80000000 >> (me + 1); // needs to be tested
3520 mask = 0xffffffff;
3521 for (; me < mb; me++) {
3522 mask ^= bit;
3523 bit >>= 1;
3524 }
3525 }
3526 result &= mask;
3527 ra_val &= ~mask;
3528 result |= ra_val;
3529 set_register(ra, result);
3530 if (instr->Bit(0)) { // RC bit set
3531 SetCR0(result);
3532 }
3533 break;
3534 }
3535 case RLWINMX:
3536 case RLWNMX: {
3537 int ra = instr->RAValue();
3538 int rs = instr->RSValue();
3539 uint32_t rs_val = get_register(rs);
3540 int sh = 0;
3541 if (opcode == RLWINMX) {
3542 sh = instr->Bits(15, 11);
3543 } else {
3544 int rb = instr->RBValue();
3545 uint32_t rb_val = get_register(rb);
3546 sh = (rb_val & 0x1f);
3547 }
3548 int mb = instr->Bits(10, 6);
3549 int me = instr->Bits(5, 1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003550 uint32_t result = base::bits::RotateLeft32(rs_val, sh);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003551 int mask = 0;
3552 if (mb < me + 1) {
3553 int bit = 0x80000000 >> mb;
3554 for (; mb <= me; mb++) {
3555 mask |= bit;
3556 bit >>= 1;
3557 }
3558 } else if (mb == me + 1) {
3559 mask = 0xffffffff;
3560 } else { // mb > me+1
3561 int bit = 0x80000000 >> (me + 1); // needs to be tested
3562 mask = 0xffffffff;
3563 for (; me < mb; me++) {
3564 mask ^= bit;
3565 bit >>= 1;
3566 }
3567 }
3568 result &= mask;
3569 set_register(ra, result);
3570 if (instr->Bit(0)) { // RC bit set
3571 SetCR0(result);
3572 }
3573 break;
3574 }
3575 case ORI: {
3576 int rs = instr->RSValue();
3577 int ra = instr->RAValue();
3578 intptr_t rs_val = get_register(rs);
3579 uint32_t im_val = instr->Bits(15, 0);
3580 intptr_t alu_out = rs_val | im_val;
3581 set_register(ra, alu_out);
3582 break;
3583 }
3584 case ORIS: {
3585 int rs = instr->RSValue();
3586 int ra = instr->RAValue();
3587 intptr_t rs_val = get_register(rs);
3588 uint32_t im_val = instr->Bits(15, 0);
3589 intptr_t alu_out = rs_val | (im_val << 16);
3590 set_register(ra, alu_out);
3591 break;
3592 }
3593 case XORI: {
3594 int rs = instr->RSValue();
3595 int ra = instr->RAValue();
3596 intptr_t rs_val = get_register(rs);
3597 uint32_t im_val = instr->Bits(15, 0);
3598 intptr_t alu_out = rs_val ^ im_val;
3599 set_register(ra, alu_out);
3600 // todo - set condition based SO bit
3601 break;
3602 }
3603 case XORIS: {
3604 int rs = instr->RSValue();
3605 int ra = instr->RAValue();
3606 intptr_t rs_val = get_register(rs);
3607 uint32_t im_val = instr->Bits(15, 0);
3608 intptr_t alu_out = rs_val ^ (im_val << 16);
3609 set_register(ra, alu_out);
3610 break;
3611 }
3612 case ANDIx: {
3613 int rs = instr->RSValue();
3614 int ra = instr->RAValue();
3615 intptr_t rs_val = get_register(rs);
3616 uint32_t im_val = instr->Bits(15, 0);
3617 intptr_t alu_out = rs_val & im_val;
3618 set_register(ra, alu_out);
3619 SetCR0(alu_out);
3620 break;
3621 }
3622 case ANDISx: {
3623 int rs = instr->RSValue();
3624 int ra = instr->RAValue();
3625 intptr_t rs_val = get_register(rs);
3626 uint32_t im_val = instr->Bits(15, 0);
3627 intptr_t alu_out = rs_val & (im_val << 16);
3628 set_register(ra, alu_out);
3629 SetCR0(alu_out);
3630 break;
3631 }
3632 case EXT2: {
3633 ExecuteExt2(instr);
3634 break;
3635 }
3636
3637 case LWZU:
3638 case LWZ: {
3639 int ra = instr->RAValue();
3640 int rt = instr->RTValue();
3641 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3642 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3643 set_register(rt, ReadWU(ra_val + offset, instr));
3644 if (opcode == LWZU) {
3645 DCHECK(ra != 0);
3646 set_register(ra, ra_val + offset);
3647 }
3648 break;
3649 }
3650
3651 case LBZU:
3652 case LBZ: {
3653 int ra = instr->RAValue();
3654 int rt = instr->RTValue();
3655 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3656 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3657 set_register(rt, ReadB(ra_val + offset) & 0xFF);
3658 if (opcode == LBZU) {
3659 DCHECK(ra != 0);
3660 set_register(ra, ra_val + offset);
3661 }
3662 break;
3663 }
3664
3665 case STWU:
3666 case STW: {
3667 int ra = instr->RAValue();
3668 int rs = instr->RSValue();
3669 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3670 int32_t rs_val = get_register(rs);
3671 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3672 WriteW(ra_val + offset, rs_val, instr);
3673 if (opcode == STWU) {
3674 DCHECK(ra != 0);
3675 set_register(ra, ra_val + offset);
3676 }
3677 // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3678 break;
3679 }
3680
3681 case STBU:
3682 case STB: {
3683 int ra = instr->RAValue();
3684 int rs = instr->RSValue();
3685 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3686 int8_t rs_val = get_register(rs);
3687 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3688 WriteB(ra_val + offset, rs_val);
3689 if (opcode == STBU) {
3690 DCHECK(ra != 0);
3691 set_register(ra, ra_val + offset);
3692 }
3693 break;
3694 }
3695
3696 case LHZU:
3697 case LHZ: {
3698 int ra = instr->RAValue();
3699 int rt = instr->RTValue();
3700 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3701 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3702 uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3703 set_register(rt, result);
3704 if (opcode == LHZU) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003705 set_register(ra, ra_val + offset);
3706 }
3707 break;
3708 }
3709
3710 case LHA:
3711 case LHAU: {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003712 int ra = instr->RAValue();
3713 int rt = instr->RTValue();
3714 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3715 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3716 intptr_t result = ReadH(ra_val + offset, instr);
3717 set_register(rt, result);
3718 if (opcode == LHAU) {
3719 set_register(ra, ra_val + offset);
3720 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003721 break;
3722 }
3723
3724 case STHU:
3725 case STH: {
3726 int ra = instr->RAValue();
3727 int rs = instr->RSValue();
3728 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3729 int16_t rs_val = get_register(rs);
3730 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3731 WriteH(ra_val + offset, rs_val, instr);
3732 if (opcode == STHU) {
3733 DCHECK(ra != 0);
3734 set_register(ra, ra_val + offset);
3735 }
3736 break;
3737 }
3738
3739 case LMW:
3740 case STMW: {
3741 UNIMPLEMENTED();
3742 break;
3743 }
3744
3745 case LFSU:
3746 case LFS: {
3747 int frt = instr->RTValue();
3748 int ra = instr->RAValue();
3749 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3750 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3751 int32_t val = ReadW(ra_val + offset, instr);
3752 float* fptr = reinterpret_cast<float*>(&val);
3753 set_d_register_from_double(frt, static_cast<double>(*fptr));
3754 if (opcode == LFSU) {
3755 DCHECK(ra != 0);
3756 set_register(ra, ra_val + offset);
3757 }
3758 break;
3759 }
3760
3761 case LFDU:
3762 case LFD: {
3763 int frt = instr->RTValue();
3764 int ra = instr->RAValue();
3765 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3766 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003767 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
3768 set_d_register(frt, *dptr);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003769 if (opcode == LFDU) {
3770 DCHECK(ra != 0);
3771 set_register(ra, ra_val + offset);
3772 }
3773 break;
3774 }
3775
3776 case STFSU: {
3777 case STFS:
3778 int frs = instr->RSValue();
3779 int ra = instr->RAValue();
3780 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3781 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3782 float frs_val = static_cast<float>(get_double_from_d_register(frs));
3783 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
3784 WriteW(ra_val + offset, *p, instr);
3785 if (opcode == STFSU) {
3786 DCHECK(ra != 0);
3787 set_register(ra, ra_val + offset);
3788 }
3789 break;
3790 }
3791
3792 case STFDU:
3793 case STFD: {
3794 int frs = instr->RSValue();
3795 int ra = instr->RAValue();
3796 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3797 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003798 int64_t frs_val = get_d_register(frs);
3799 WriteDW(ra_val + offset, frs_val);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003800 if (opcode == STFDU) {
3801 DCHECK(ra != 0);
3802 set_register(ra, ra_val + offset);
3803 }
3804 break;
3805 }
3806
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003807 case EXT3: {
3808 ExecuteExt3(instr);
3809 break;
3810 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003811 case EXT4: {
3812 ExecuteExt4(instr);
3813 break;
3814 }
3815
3816#if V8_TARGET_ARCH_PPC64
3817 case EXT5: {
3818 ExecuteExt5(instr);
3819 break;
3820 }
3821 case LD: {
3822 int ra = instr->RAValue();
3823 int rt = instr->RTValue();
3824 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3825 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3826 switch (instr->Bits(1, 0)) {
3827 case 0: { // ld
3828 intptr_t* result = ReadDW(ra_val + offset);
3829 set_register(rt, *result);
3830 break;
3831 }
3832 case 1: { // ldu
3833 intptr_t* result = ReadDW(ra_val + offset);
3834 set_register(rt, *result);
3835 DCHECK(ra != 0);
3836 set_register(ra, ra_val + offset);
3837 break;
3838 }
3839 case 2: { // lwa
3840 intptr_t result = ReadW(ra_val + offset, instr);
3841 set_register(rt, result);
3842 break;
3843 }
3844 }
3845 break;
3846 }
3847
3848 case STD: {
3849 int ra = instr->RAValue();
3850 int rs = instr->RSValue();
3851 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3852 int64_t rs_val = get_register(rs);
3853 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3854 WriteDW(ra_val + offset, rs_val);
3855 if (instr->Bit(0) == 1) { // This is the STDU form
3856 DCHECK(ra != 0);
3857 set_register(ra, ra_val + offset);
3858 }
3859 break;
3860 }
3861#endif
3862
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003863 default: {
3864 UNIMPLEMENTED();
3865 break;
3866 }
3867 }
3868} // NOLINT
3869
3870
3871void Simulator::Trace(Instruction* instr) {
3872 disasm::NameConverter converter;
3873 disasm::Disassembler dasm(converter);
3874 // use a reasonably large buffer
3875 v8::internal::EmbeddedVector<char, 256> buffer;
3876 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3877 PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
3878 reinterpret_cast<intptr_t>(instr), buffer.start());
3879}
3880
3881
3882// Executes the current instruction.
3883void Simulator::ExecuteInstruction(Instruction* instr) {
3884 if (v8::internal::FLAG_check_icache) {
3885 CheckICache(isolate_->simulator_i_cache(), instr);
3886 }
3887 pc_modified_ = false;
3888 if (::v8::internal::FLAG_trace_sim) {
3889 Trace(instr);
3890 }
3891 int opcode = instr->OpcodeValue() << 26;
3892 if (opcode == TWI) {
3893 SoftwareInterrupt(instr);
3894 } else {
3895 ExecuteGeneric(instr);
3896 }
3897 if (!pc_modified_) {
3898 set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3899 }
3900}
3901
3902
3903void Simulator::Execute() {
3904 // Get the PC to simulate. Cannot use the accessor here as we need the
3905 // raw PC value and not the one used as input to arithmetic instructions.
3906 intptr_t program_counter = get_pc();
3907
3908 if (::v8::internal::FLAG_stop_sim_at == 0) {
3909 // Fast version of the dispatch loop without checking whether the simulator
3910 // should be stopping at a particular executed instruction.
3911 while (program_counter != end_sim_pc) {
3912 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3913 icount_++;
3914 ExecuteInstruction(instr);
3915 program_counter = get_pc();
3916 }
3917 } else {
3918 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3919 // we reach the particular instuction count.
3920 while (program_counter != end_sim_pc) {
3921 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3922 icount_++;
3923 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3924 PPCDebugger dbg(this);
3925 dbg.Debug();
3926 } else {
3927 ExecuteInstruction(instr);
3928 }
3929 program_counter = get_pc();
3930 }
3931 }
3932}
3933
3934
3935void Simulator::CallInternal(byte* entry) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003936 // Adjust JS-based stack limit to C-based stack limit.
3937 isolate_->stack_guard()->AdjustStackLimitForSimulator();
3938
Ben Murdoch097c5b22016-05-18 11:27:45 +01003939 // Prepare to execute the code at entry
3940 if (ABI_USES_FUNCTION_DESCRIPTORS) {
3941 // entry is the function descriptor
3942 set_pc(*(reinterpret_cast<intptr_t*>(entry)));
3943 } else {
3944 // entry is the instruction address
3945 set_pc(reinterpret_cast<intptr_t>(entry));
3946 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003947
Ben Murdoch097c5b22016-05-18 11:27:45 +01003948 if (ABI_CALL_VIA_IP) {
3949 // Put target address in ip (for JS prologue).
3950 set_register(r12, get_pc());
3951 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003952
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003953 // Put down marker for end of simulation. The simulator will stop simulation
3954 // when the PC reaches this value. By saving the "end simulation" value into
3955 // the LR the simulation stops when returning to this call point.
3956 special_reg_lr_ = end_sim_pc;
3957
3958 // Remember the values of non-volatile registers.
3959 intptr_t r2_val = get_register(r2);
3960 intptr_t r13_val = get_register(r13);
3961 intptr_t r14_val = get_register(r14);
3962 intptr_t r15_val = get_register(r15);
3963 intptr_t r16_val = get_register(r16);
3964 intptr_t r17_val = get_register(r17);
3965 intptr_t r18_val = get_register(r18);
3966 intptr_t r19_val = get_register(r19);
3967 intptr_t r20_val = get_register(r20);
3968 intptr_t r21_val = get_register(r21);
3969 intptr_t r22_val = get_register(r22);
3970 intptr_t r23_val = get_register(r23);
3971 intptr_t r24_val = get_register(r24);
3972 intptr_t r25_val = get_register(r25);
3973 intptr_t r26_val = get_register(r26);
3974 intptr_t r27_val = get_register(r27);
3975 intptr_t r28_val = get_register(r28);
3976 intptr_t r29_val = get_register(r29);
3977 intptr_t r30_val = get_register(r30);
3978 intptr_t r31_val = get_register(fp);
3979
3980 // Set up the non-volatile registers with a known value. To be able to check
3981 // that they are preserved properly across JS execution.
3982 intptr_t callee_saved_value = icount_;
3983 set_register(r2, callee_saved_value);
3984 set_register(r13, callee_saved_value);
3985 set_register(r14, callee_saved_value);
3986 set_register(r15, callee_saved_value);
3987 set_register(r16, callee_saved_value);
3988 set_register(r17, callee_saved_value);
3989 set_register(r18, callee_saved_value);
3990 set_register(r19, callee_saved_value);
3991 set_register(r20, callee_saved_value);
3992 set_register(r21, callee_saved_value);
3993 set_register(r22, callee_saved_value);
3994 set_register(r23, callee_saved_value);
3995 set_register(r24, callee_saved_value);
3996 set_register(r25, callee_saved_value);
3997 set_register(r26, callee_saved_value);
3998 set_register(r27, callee_saved_value);
3999 set_register(r28, callee_saved_value);
4000 set_register(r29, callee_saved_value);
4001 set_register(r30, callee_saved_value);
4002 set_register(fp, callee_saved_value);
4003
4004 // Start the simulation
4005 Execute();
4006
4007 // Check that the non-volatile registers have been preserved.
Ben Murdoch097c5b22016-05-18 11:27:45 +01004008 if (ABI_TOC_REGISTER != 2) {
4009 CHECK_EQ(callee_saved_value, get_register(r2));
4010 }
4011 if (ABI_TOC_REGISTER != 13) {
4012 CHECK_EQ(callee_saved_value, get_register(r13));
4013 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004014 CHECK_EQ(callee_saved_value, get_register(r14));
4015 CHECK_EQ(callee_saved_value, get_register(r15));
4016 CHECK_EQ(callee_saved_value, get_register(r16));
4017 CHECK_EQ(callee_saved_value, get_register(r17));
4018 CHECK_EQ(callee_saved_value, get_register(r18));
4019 CHECK_EQ(callee_saved_value, get_register(r19));
4020 CHECK_EQ(callee_saved_value, get_register(r20));
4021 CHECK_EQ(callee_saved_value, get_register(r21));
4022 CHECK_EQ(callee_saved_value, get_register(r22));
4023 CHECK_EQ(callee_saved_value, get_register(r23));
4024 CHECK_EQ(callee_saved_value, get_register(r24));
4025 CHECK_EQ(callee_saved_value, get_register(r25));
4026 CHECK_EQ(callee_saved_value, get_register(r26));
4027 CHECK_EQ(callee_saved_value, get_register(r27));
4028 CHECK_EQ(callee_saved_value, get_register(r28));
4029 CHECK_EQ(callee_saved_value, get_register(r29));
4030 CHECK_EQ(callee_saved_value, get_register(r30));
4031 CHECK_EQ(callee_saved_value, get_register(fp));
4032
4033 // Restore non-volatile registers with the original value.
4034 set_register(r2, r2_val);
4035 set_register(r13, r13_val);
4036 set_register(r14, r14_val);
4037 set_register(r15, r15_val);
4038 set_register(r16, r16_val);
4039 set_register(r17, r17_val);
4040 set_register(r18, r18_val);
4041 set_register(r19, r19_val);
4042 set_register(r20, r20_val);
4043 set_register(r21, r21_val);
4044 set_register(r22, r22_val);
4045 set_register(r23, r23_val);
4046 set_register(r24, r24_val);
4047 set_register(r25, r25_val);
4048 set_register(r26, r26_val);
4049 set_register(r27, r27_val);
4050 set_register(r28, r28_val);
4051 set_register(r29, r29_val);
4052 set_register(r30, r30_val);
4053 set_register(fp, r31_val);
4054}
4055
4056
4057intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
4058 va_list parameters;
4059 va_start(parameters, argument_count);
4060 // Set up arguments
4061
4062 // First eight arguments passed in registers r3-r10.
4063 int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
4064 int stack_arg_count = argument_count - reg_arg_count;
4065 for (int i = 0; i < reg_arg_count; i++) {
4066 set_register(i + 3, va_arg(parameters, intptr_t));
4067 }
4068
4069 // Remaining arguments passed on stack.
4070 intptr_t original_stack = get_register(sp);
4071 // Compute position of stack on entry to generated code.
4072 intptr_t entry_stack =
4073 (original_stack -
4074 (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
4075 if (base::OS::ActivationFrameAlignment() != 0) {
4076 entry_stack &= -base::OS::ActivationFrameAlignment();
4077 }
4078 // Store remaining arguments on stack, from low to high memory.
4079 // +2 is a hack for the LR slot + old SP on PPC
4080 intptr_t* stack_argument =
4081 reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
4082 for (int i = 0; i < stack_arg_count; i++) {
4083 stack_argument[i] = va_arg(parameters, intptr_t);
4084 }
4085 va_end(parameters);
4086 set_register(sp, entry_stack);
4087
4088 CallInternal(entry);
4089
4090 // Pop stack passed arguments.
4091 CHECK_EQ(entry_stack, get_register(sp));
4092 set_register(sp, original_stack);
4093
4094 intptr_t result = get_register(r3);
4095 return result;
4096}
4097
4098
4099void Simulator::CallFP(byte* entry, double d0, double d1) {
4100 set_d_register_from_double(1, d0);
4101 set_d_register_from_double(2, d1);
4102 CallInternal(entry);
4103}
4104
4105
4106int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
4107 CallFP(entry, d0, d1);
4108 int32_t result = get_register(r3);
4109 return result;
4110}
4111
4112
4113double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
4114 CallFP(entry, d0, d1);
4115 return get_double_from_d_register(1);
4116}
4117
4118
4119uintptr_t Simulator::PushAddress(uintptr_t address) {
4120 uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
4121 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4122 *stack_slot = address;
4123 set_register(sp, new_sp);
4124 return new_sp;
4125}
4126
4127
4128uintptr_t Simulator::PopAddress() {
4129 uintptr_t current_sp = get_register(sp);
4130 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4131 uintptr_t address = *stack_slot;
4132 set_register(sp, current_sp + sizeof(uintptr_t));
4133 return address;
4134}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004135} // namespace internal
4136} // namespace v8
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004137
4138#endif // USE_SIMULATOR
4139#endif // V8_TARGET_ARCH_PPC