blob: a7418dde53fe0bbd61cf5a09f3ce52624b7fb088 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_PPC
6
7#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
8
9#include "src/base/bits.h"
10#include "src/code-stubs.h"
11#include "src/log.h"
12#include "src/macro-assembler.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000013#include "src/regexp/regexp-macro-assembler.h"
14#include "src/regexp/regexp-stack.h"
15#include "src/unicode.h"
16
17namespace v8 {
18namespace internal {
19
20#ifndef V8_INTERPRETED_REGEXP
21/*
22 * This assembler uses the following register assignment convention
23 * - r25: Temporarily stores the index of capture start after a matching pass
24 * for a global regexp.
25 * - r26: Pointer to current code object (Code*) including heap object tag.
26 * - r27: Current position in input, as negative offset from end of string.
27 * Please notice that this is the byte offset, not the character offset!
28 * - r28: Currently loaded character. Must be loaded using
29 * LoadCurrentCharacter before using any of the dispatch methods.
30 * - r29: Points to tip of backtrack stack
31 * - r30: End of input (points to byte after last character in input).
32 * - r31: Frame pointer. Used to access arguments, local variables and
33 * RegExp registers.
34 * - r12: IP register, used by assembler. Very volatile.
35 * - r1/sp : Points to tip of C stack.
36 *
37 * The remaining registers are free for computations.
38 * Each call to a public method should retain this convention.
39 *
40 * The stack will have the following structure:
41 * - fp[44] Isolate* isolate (address of the current isolate)
42 * - fp[40] secondary link/return address used by native call.
43 * - fp[36] lr save area (currently unused)
44 * - fp[32] backchain (currently unused)
45 * --- sp when called ---
46 * - fp[28] return address (lr).
47 * - fp[24] old frame pointer (r31).
48 * - fp[0..20] backup of registers r25..r30
49 * --- frame pointer ----
50 * - fp[-4] direct_call (if 1, direct call from JavaScript code,
51 * if 0, call through the runtime system).
52 * - fp[-8] stack_area_base (high end of the memory area to use as
53 * backtracking stack).
54 * - fp[-12] capture array size (may fit multiple sets of matches)
55 * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
56 * - fp[-20] end of input (address of end of string).
57 * - fp[-24] start of input (address of first character in string).
58 * - fp[-28] start index (character index of start).
59 * - fp[-32] void* input_string (location of a handle containing the string).
60 * - fp[-36] success counter (only for global regexps to count matches).
61 * - fp[-40] Offset of location before start of input (effectively character
62 * string start - 1). Used to initialize capture registers to a
63 * non-position.
64 * - fp[-44] At start (if 1, we are starting at the start of the
65 * string, otherwise 0)
66 * - fp[-48] register 0 (Only positions must be stored in the first
67 * - register 1 num_saved_registers_ registers)
68 * - ...
69 * - register num_registers-1
70 * --- sp ---
71 *
72 * The first num_saved_registers_ registers are initialized to point to
73 * "character -1" in the string (i.e., char_size() bytes before the first
74 * character of the string). The remaining registers start out as garbage.
75 *
76 * The data up to the return address must be placed there by the calling
77 * code and the remaining arguments are passed in registers, e.g. by calling the
78 * code entry as cast to a function with the signature:
79 * int (*match)(String* input_string,
80 * int start_index,
81 * Address start,
82 * Address end,
83 * int* capture_output_array,
84 * byte* stack_area_base,
85 * Address secondary_return_address, // Only used by native call.
86 * bool direct_call = false)
87 * The call is performed by NativeRegExpMacroAssembler::Execute()
88 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
89 * in ppc/simulator-ppc.h.
90 * When calling as a non-direct call (i.e., from C++ code), the return address
91 * area is overwritten with the LR register by the RegExp code. When doing a
92 * direct call from generated code, the return address is placed there by
93 * the calling code, as in a normal exit frame.
94 */
95
96#define __ ACCESS_MASM(masm_)
97
98RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
99 Mode mode,
100 int registers_to_save)
101 : NativeRegExpMacroAssembler(isolate, zone),
102 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
103 CodeObjectRequired::kYes)),
104 mode_(mode),
105 num_registers_(registers_to_save),
106 num_saved_registers_(registers_to_save),
107 entry_label_(),
108 start_label_(),
109 success_label_(),
110 backtrack_label_(),
111 exit_label_(),
112 internal_failure_label_() {
113 DCHECK_EQ(0, registers_to_save % 2);
114
115// Called from C
116 __ function_descriptor();
117
118 __ b(&entry_label_); // We'll write the entry code later.
119 // If the code gets too big or corrupted, an internal exception will be
120 // raised, and we will exit right away.
121 __ bind(&internal_failure_label_);
122 __ li(r3, Operand(FAILURE));
123 __ Ret();
124 __ bind(&start_label_); // And then continue from here.
125}
126
127
128RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
129 delete masm_;
130 // Unuse labels in case we throw away the assembler without calling GetCode.
131 entry_label_.Unuse();
132 start_label_.Unuse();
133 success_label_.Unuse();
134 backtrack_label_.Unuse();
135 exit_label_.Unuse();
136 check_preempt_label_.Unuse();
137 stack_overflow_label_.Unuse();
138 internal_failure_label_.Unuse();
139}
140
141
142int RegExpMacroAssemblerPPC::stack_limit_slack() {
143 return RegExpStack::kStackLimitSlack;
144}
145
146
147void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
148 if (by != 0) {
149 __ addi(current_input_offset(), current_input_offset(),
150 Operand(by * char_size()));
151 }
152}
153
154
155void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
156 DCHECK(reg >= 0);
157 DCHECK(reg < num_registers_);
158 if (by != 0) {
159 __ LoadP(r3, register_location(reg), r0);
160 __ mov(r0, Operand(by));
161 __ add(r3, r3, r0);
162 __ StoreP(r3, register_location(reg), r0);
163 }
164}
165
166
167void RegExpMacroAssemblerPPC::Backtrack() {
168 CheckPreemption();
169 // Pop Code* offset from backtrack stack, add Code* and jump to location.
170 Pop(r3);
171 __ add(r3, r3, code_pointer());
172 __ Jump(r3);
173}
174
175
176void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
177
178
179void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
180 __ Cmpli(current_character(), Operand(c), r0);
181 BranchOrBacktrack(eq, on_equal);
182}
183
184
185void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
186 __ Cmpli(current_character(), Operand(limit), r0);
187 BranchOrBacktrack(gt, on_greater);
188}
189
190
191void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
192 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
193 __ addi(r3, current_input_offset(), Operand(-char_size()));
194 __ cmp(r3, r4);
195 BranchOrBacktrack(eq, on_at_start);
196}
197
198
199void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
200 Label* on_not_at_start) {
201 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
202 __ addi(r3, current_input_offset(),
203 Operand(-char_size() + cp_offset * char_size()));
204 __ cmp(r3, r4);
205 BranchOrBacktrack(ne, on_not_at_start);
206}
207
208
209void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
210 __ Cmpli(current_character(), Operand(limit), r0);
211 BranchOrBacktrack(lt, on_less);
212}
213
214
215void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
216 Label backtrack_non_equal;
217 __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
218 __ cmp(current_input_offset(), r3);
219 __ bne(&backtrack_non_equal);
220 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
221 Operand(kPointerSize));
222
223 __ bind(&backtrack_non_equal);
224 BranchOrBacktrack(eq, on_equal);
225}
226
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000227void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
Ben Murdoch097c5b22016-05-18 11:27:45 +0100228 int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000229 Label fallthrough;
230 __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
231 __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
232 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
233
234 // At this point, the capture registers are either both set or both cleared.
235 // If the capture length is zero, then the capture is either empty or cleared.
236 // Fall through in both cases.
237 __ beq(&fallthrough, cr0);
238
239 // Check that there are enough characters left in the input.
240 if (read_backward) {
241 __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
242 __ add(r6, r6, r4);
243 __ cmp(current_input_offset(), r6);
244 BranchOrBacktrack(le, on_no_match);
245 } else {
246 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
247 BranchOrBacktrack(gt, on_no_match, cr0);
248 }
249
250 if (mode_ == LATIN1) {
251 Label success;
252 Label fail;
253 Label loop_check;
254
255 // r3 - offset of start of capture
256 // r4 - length of capture
257 __ add(r3, r3, end_of_input_address());
258 __ add(r5, end_of_input_address(), current_input_offset());
259 if (read_backward) {
260 __ sub(r5, r5, r4); // Offset by length when matching backwards.
261 }
262 __ add(r4, r3, r4);
263
264 // r3 - Address of start of capture.
265 // r4 - Address of end of capture
266 // r5 - Address of current input position.
267
268 Label loop;
269 __ bind(&loop);
270 __ lbz(r6, MemOperand(r3));
271 __ addi(r3, r3, Operand(char_size()));
272 __ lbz(r25, MemOperand(r5));
273 __ addi(r5, r5, Operand(char_size()));
274 __ cmp(r25, r6);
275 __ beq(&loop_check);
276
277 // Mismatch, try case-insensitive match (converting letters to lower-case).
278 __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
279 __ ori(r25, r25, Operand(0x20)); // Also convert input character.
280 __ cmp(r25, r6);
281 __ bne(&fail);
282 __ subi(r6, r6, Operand('a'));
283 __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
284 __ ble(&loop_check); // In range 'a'-'z'.
285 // Latin-1: Check for values in range [224,254] but not 247.
286 __ subi(r6, r6, Operand(224 - 'a'));
287 __ cmpli(r6, Operand(254 - 224));
288 __ bgt(&fail); // Weren't Latin-1 letters.
289 __ cmpi(r6, Operand(247 - 224)); // Check for 247.
290 __ beq(&fail);
291
292 __ bind(&loop_check);
293 __ cmp(r3, r4);
294 __ blt(&loop);
295 __ b(&success);
296
297 __ bind(&fail);
298 BranchOrBacktrack(al, on_no_match);
299
300 __ bind(&success);
301 // Compute new value of character position after the matched part.
302 __ sub(current_input_offset(), r5, end_of_input_address());
303 if (read_backward) {
304 __ LoadP(r3, register_location(start_reg)); // Index of start of capture
305 __ LoadP(r4,
306 register_location(start_reg + 1)); // Index of end of capture
307 __ add(current_input_offset(), current_input_offset(), r3);
308 __ sub(current_input_offset(), current_input_offset(), r4);
309 }
310 } else {
311 DCHECK(mode_ == UC16);
312 int argument_count = 4;
313 __ PrepareCallCFunction(argument_count, r5);
314
315 // r3 - offset of start of capture
316 // r4 - length of capture
317
318 // Put arguments into arguments registers.
319 // Parameters are
320 // r3: Address byte_offset1 - Address captured substring's start.
321 // r4: Address byte_offset2 - Address of current character position.
322 // r5: size_t byte_length - length of capture in bytes(!)
Ben Murdoch097c5b22016-05-18 11:27:45 +0100323 // r6: Isolate* isolate or 0 if unicode flag.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000324
325 // Address of start of capture.
326 __ add(r3, r3, end_of_input_address());
327 // Length of capture.
328 __ mr(r5, r4);
329 // Save length in callee-save register for use on return.
330 __ mr(r25, r4);
331 // Address of current input position.
332 __ add(r4, current_input_offset(), end_of_input_address());
333 if (read_backward) {
334 __ sub(r4, r4, r25);
335 }
336 // Isolate.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100337#ifdef V8_I18N_SUPPORT
338 if (unicode) {
339 __ li(r6, Operand::Zero());
340 } else // NOLINT
341#endif // V8_I18N_SUPPORT
342 {
343 __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
344 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000345
346 {
347 AllowExternalCallThatCantCauseGC scope(masm_);
348 ExternalReference function =
349 ExternalReference::re_case_insensitive_compare_uc16(isolate());
350 __ CallCFunction(function, argument_count);
351 }
352
353 // Check if function returned non-zero for success or zero for failure.
354 __ cmpi(r3, Operand::Zero());
355 BranchOrBacktrack(eq, on_no_match);
356
357 // On success, advance position by length of capture.
358 if (read_backward) {
359 __ sub(current_input_offset(), current_input_offset(), r25);
360 } else {
361 __ add(current_input_offset(), current_input_offset(), r25);
362 }
363 }
364
365 __ bind(&fallthrough);
366}
367
368
369void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
370 bool read_backward,
371 Label* on_no_match) {
372 Label fallthrough;
373 Label success;
374
375 // Find length of back-referenced capture.
376 __ LoadP(r3, register_location(start_reg), r0);
377 __ LoadP(r4, register_location(start_reg + 1), r0);
378 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
379
380 // At this point, the capture registers are either both set or both cleared.
381 // If the capture length is zero, then the capture is either empty or cleared.
382 // Fall through in both cases.
383 __ beq(&fallthrough, cr0);
384
385 // Check that there are enough characters left in the input.
386 if (read_backward) {
387 __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
388 __ add(r6, r6, r4);
389 __ cmp(current_input_offset(), r6);
390 BranchOrBacktrack(lt, on_no_match);
391 } else {
392 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
393 BranchOrBacktrack(gt, on_no_match, cr0);
394 }
395
396 // r3 - offset of start of capture
397 // r4 - length of capture
398 __ add(r3, r3, end_of_input_address());
399 __ add(r5, end_of_input_address(), current_input_offset());
400 if (read_backward) {
401 __ sub(r5, r5, r4); // Offset by length when matching backwards.
402 }
403 __ add(r4, r4, r3);
404
405 Label loop;
406 __ bind(&loop);
407 if (mode_ == LATIN1) {
408 __ lbz(r6, MemOperand(r3));
409 __ addi(r3, r3, Operand(char_size()));
410 __ lbz(r25, MemOperand(r5));
411 __ addi(r5, r5, Operand(char_size()));
412 } else {
413 DCHECK(mode_ == UC16);
414 __ lhz(r6, MemOperand(r3));
415 __ addi(r3, r3, Operand(char_size()));
416 __ lhz(r25, MemOperand(r5));
417 __ addi(r5, r5, Operand(char_size()));
418 }
419 __ cmp(r6, r25);
420 BranchOrBacktrack(ne, on_no_match);
421 __ cmp(r3, r4);
422 __ blt(&loop);
423
424 // Move current character position to position after match.
425 __ sub(current_input_offset(), r5, end_of_input_address());
426 if (read_backward) {
427 __ LoadP(r3, register_location(start_reg)); // Index of start of capture
428 __ LoadP(r4, register_location(start_reg + 1)); // Index of end of capture
429 __ add(current_input_offset(), current_input_offset(), r3);
430 __ sub(current_input_offset(), current_input_offset(), r4);
431 }
432
433 __ bind(&fallthrough);
434}
435
436
437void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
438 Label* on_not_equal) {
439 __ Cmpli(current_character(), Operand(c), r0);
440 BranchOrBacktrack(ne, on_not_equal);
441}
442
443
444void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
445 Label* on_equal) {
446 __ mov(r0, Operand(mask));
447 if (c == 0) {
448 __ and_(r3, current_character(), r0, SetRC);
449 } else {
450 __ and_(r3, current_character(), r0);
451 __ Cmpli(r3, Operand(c), r0, cr0);
452 }
453 BranchOrBacktrack(eq, on_equal, cr0);
454}
455
456
457void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
458 unsigned mask,
459 Label* on_not_equal) {
460 __ mov(r0, Operand(mask));
461 if (c == 0) {
462 __ and_(r3, current_character(), r0, SetRC);
463 } else {
464 __ and_(r3, current_character(), r0);
465 __ Cmpli(r3, Operand(c), r0, cr0);
466 }
467 BranchOrBacktrack(ne, on_not_equal, cr0);
468}
469
470
471void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
472 uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
473 DCHECK(minus < String::kMaxUtf16CodeUnit);
474 __ subi(r3, current_character(), Operand(minus));
475 __ mov(r0, Operand(mask));
476 __ and_(r3, r3, r0);
477 __ Cmpli(r3, Operand(c), r0);
478 BranchOrBacktrack(ne, on_not_equal);
479}
480
481
482void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
483 Label* on_in_range) {
484 __ mov(r0, Operand(from));
485 __ sub(r3, current_character(), r0);
486 __ Cmpli(r3, Operand(to - from), r0);
487 BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
488}
489
490
491void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
492 Label* on_not_in_range) {
493 __ mov(r0, Operand(from));
494 __ sub(r3, current_character(), r0);
495 __ Cmpli(r3, Operand(to - from), r0);
496 BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
497}
498
499
500void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
501 Label* on_bit_set) {
502 __ mov(r3, Operand(table));
503 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
504 __ andi(r4, current_character(), Operand(kTableSize - 1));
505 __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
506 } else {
507 __ addi(r4, current_character(),
508 Operand(ByteArray::kHeaderSize - kHeapObjectTag));
509 }
510 __ lbzx(r3, MemOperand(r3, r4));
511 __ cmpi(r3, Operand::Zero());
512 BranchOrBacktrack(ne, on_bit_set);
513}
514
515
516bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
517 Label* on_no_match) {
518 // Range checks (c in min..max) are generally implemented by an unsigned
519 // (c - min) <= (max - min) check
520 switch (type) {
521 case 's':
522 // Match space-characters
523 if (mode_ == LATIN1) {
524 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
525 Label success;
526 __ cmpi(current_character(), Operand(' '));
527 __ beq(&success);
528 // Check range 0x09..0x0d
529 __ subi(r3, current_character(), Operand('\t'));
530 __ cmpli(r3, Operand('\r' - '\t'));
531 __ ble(&success);
532 // \u00a0 (NBSP).
533 __ cmpi(r3, Operand(0x00a0 - '\t'));
534 BranchOrBacktrack(ne, on_no_match);
535 __ bind(&success);
536 return true;
537 }
538 return false;
539 case 'S':
540 // The emitted code for generic character classes is good enough.
541 return false;
542 case 'd':
543 // Match ASCII digits ('0'..'9')
544 __ subi(r3, current_character(), Operand('0'));
545 __ cmpli(r3, Operand('9' - '0'));
546 BranchOrBacktrack(gt, on_no_match);
547 return true;
548 case 'D':
549 // Match non ASCII-digits
550 __ subi(r3, current_character(), Operand('0'));
551 __ cmpli(r3, Operand('9' - '0'));
552 BranchOrBacktrack(le, on_no_match);
553 return true;
554 case '.': {
555 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
556 __ xori(r3, current_character(), Operand(0x01));
557 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
558 __ subi(r3, r3, Operand(0x0b));
559 __ cmpli(r3, Operand(0x0c - 0x0b));
560 BranchOrBacktrack(le, on_no_match);
561 if (mode_ == UC16) {
562 // Compare original value to 0x2028 and 0x2029, using the already
563 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
564 // 0x201d (0x2028 - 0x0b) or 0x201e.
565 __ subi(r3, r3, Operand(0x2028 - 0x0b));
566 __ cmpli(r3, Operand(1));
567 BranchOrBacktrack(le, on_no_match);
568 }
569 return true;
570 }
571 case 'n': {
572 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
573 __ xori(r3, current_character(), Operand(0x01));
574 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
575 __ subi(r3, r3, Operand(0x0b));
576 __ cmpli(r3, Operand(0x0c - 0x0b));
577 if (mode_ == LATIN1) {
578 BranchOrBacktrack(gt, on_no_match);
579 } else {
580 Label done;
581 __ ble(&done);
582 // Compare original value to 0x2028 and 0x2029, using the already
583 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
584 // 0x201d (0x2028 - 0x0b) or 0x201e.
585 __ subi(r3, r3, Operand(0x2028 - 0x0b));
586 __ cmpli(r3, Operand(1));
587 BranchOrBacktrack(gt, on_no_match);
588 __ bind(&done);
589 }
590 return true;
591 }
592 case 'w': {
593 if (mode_ != LATIN1) {
594 // Table is 256 entries, so all Latin1 characters can be tested.
595 __ cmpi(current_character(), Operand('z'));
596 BranchOrBacktrack(gt, on_no_match);
597 }
598 ExternalReference map = ExternalReference::re_word_character_map();
599 __ mov(r3, Operand(map));
600 __ lbzx(r3, MemOperand(r3, current_character()));
601 __ cmpli(r3, Operand::Zero());
602 BranchOrBacktrack(eq, on_no_match);
603 return true;
604 }
605 case 'W': {
606 Label done;
607 if (mode_ != LATIN1) {
608 // Table is 256 entries, so all Latin1 characters can be tested.
609 __ cmpli(current_character(), Operand('z'));
610 __ bgt(&done);
611 }
612 ExternalReference map = ExternalReference::re_word_character_map();
613 __ mov(r3, Operand(map));
614 __ lbzx(r3, MemOperand(r3, current_character()));
615 __ cmpli(r3, Operand::Zero());
616 BranchOrBacktrack(ne, on_no_match);
617 if (mode_ != LATIN1) {
618 __ bind(&done);
619 }
620 return true;
621 }
622 case '*':
623 // Match any character.
624 return true;
625 // No custom implementation (yet): s(UC16), S(UC16).
626 default:
627 return false;
628 }
629}
630
631
632void RegExpMacroAssemblerPPC::Fail() {
633 __ li(r3, Operand(FAILURE));
634 __ b(&exit_label_);
635}
636
637
638Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
639 Label return_r3;
640
641 if (masm_->has_exception()) {
642 // If the code gets corrupted due to long regular expressions and lack of
643 // space on trampolines, an internal exception flag is set. If this case
644 // is detected, we will jump into exit sequence right away.
645 __ bind_to(&entry_label_, internal_failure_label_.pos());
646 } else {
647 // Finalize code - write the entry point code now we know how many
648 // registers we need.
649
650 // Entry code:
651 __ bind(&entry_label_);
652
653 // Tell the system that we have a stack frame. Because the type
654 // is MANUAL, no is generated.
655 FrameScope scope(masm_, StackFrame::MANUAL);
656
657 // Ensure register assigments are consistent with callee save mask
658 DCHECK(r25.bit() & kRegExpCalleeSaved);
659 DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
660 DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
661 DCHECK(current_character().bit() & kRegExpCalleeSaved);
662 DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
663 DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
664 DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
665
666 // Actually emit code to start a new stack frame.
667 // Push arguments
668 // Save callee-save registers.
669 // Start new stack frame.
670 // Store link register in existing stack-cell.
671 // Order here should correspond to order of offset constants in header file.
672 RegList registers_to_retain = kRegExpCalleeSaved;
673 RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
674 r7.bit() | r8.bit() | r9.bit() | r10.bit();
675 __ mflr(r0);
676 __ push(r0);
677 __ MultiPush(argument_registers | registers_to_retain);
678 // Set frame pointer in space for it if this is not a direct call
679 // from generated code.
680 __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
681 __ li(r3, Operand::Zero());
682 __ push(r3); // Make room for success counter and initialize it to 0.
683 __ push(r3); // Make room for "string start - 1" constant.
684 // Check if we have space on the stack for registers.
685 Label stack_limit_hit;
686 Label stack_ok;
687
688 ExternalReference stack_limit =
689 ExternalReference::address_of_stack_limit(isolate());
690 __ mov(r3, Operand(stack_limit));
691 __ LoadP(r3, MemOperand(r3));
692 __ sub(r3, sp, r3, LeaveOE, SetRC);
693 // Handle it if the stack pointer is already below the stack limit.
694 __ ble(&stack_limit_hit, cr0);
695 // Check if there is room for the variable number of registers above
696 // the stack limit.
697 __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
698 __ bge(&stack_ok);
699 // Exit with OutOfMemory exception. There is not enough space on the stack
700 // for our working registers.
701 __ li(r3, Operand(EXCEPTION));
702 __ b(&return_r3);
703
704 __ bind(&stack_limit_hit);
705 CallCheckStackGuardState(r3);
706 __ cmpi(r3, Operand::Zero());
707 // If returned value is non-zero, we exit with the returned value as result.
708 __ bne(&return_r3);
709
710 __ bind(&stack_ok);
711
712 // Allocate space on stack for registers.
713 __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
714 // Load string end.
715 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
716 // Load input start.
717 __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
718 // Find negative length (offset of start relative to end).
719 __ sub(current_input_offset(), r3, end_of_input_address());
720 // Set r3 to address of char before start of the input string
721 // (effectively string position -1).
722 __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
723 __ subi(r3, current_input_offset(), Operand(char_size()));
724 if (mode_ == UC16) {
725 __ ShiftLeftImm(r0, r4, Operand(1));
726 __ sub(r3, r3, r0);
727 } else {
728 __ sub(r3, r3, r4);
729 }
730 // Store this value in a local variable, for use when clearing
731 // position registers.
732 __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
733
734 // Initialize code pointer register
735 __ mov(code_pointer(), Operand(masm_->CodeObject()));
736
737 Label load_char_start_regexp, start_regexp;
738 // Load newline if index is at start, previous character otherwise.
739 __ cmpi(r4, Operand::Zero());
740 __ bne(&load_char_start_regexp);
741 __ li(current_character(), Operand('\n'));
742 __ b(&start_regexp);
743
744 // Global regexp restarts matching here.
745 __ bind(&load_char_start_regexp);
746 // Load previous char as initial value of current character register.
747 LoadCurrentCharacterUnchecked(-1, 1);
748 __ bind(&start_regexp);
749
750 // Initialize on-stack registers.
751 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
752 // Fill saved registers with initial value = start offset - 1
753 if (num_saved_registers_ > 8) {
754 // One slot beyond address of register 0.
755 __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
756 __ li(r5, Operand(num_saved_registers_));
757 __ mtctr(r5);
758 Label init_loop;
759 __ bind(&init_loop);
760 __ StorePU(r3, MemOperand(r4, -kPointerSize));
761 __ bdnz(&init_loop);
762 } else {
763 for (int i = 0; i < num_saved_registers_; i++) {
764 __ StoreP(r3, register_location(i), r0);
765 }
766 }
767 }
768
769 // Initialize backtrack stack pointer.
770 __ LoadP(backtrack_stackpointer(),
771 MemOperand(frame_pointer(), kStackHighEnd));
772
773 __ b(&start_label_);
774
775 // Exit code:
776 if (success_label_.is_linked()) {
777 // Save captures when successful.
778 __ bind(&success_label_);
779 if (num_saved_registers_ > 0) {
780 // copy captures to output
781 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
782 __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
783 __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
784 __ sub(r4, end_of_input_address(), r4);
785 // r4 is length of input in bytes.
786 if (mode_ == UC16) {
787 __ ShiftRightImm(r4, r4, Operand(1));
788 }
789 // r4 is length of input in characters.
790 __ add(r4, r4, r5);
791 // r4 is length of string in characters.
792
793 DCHECK_EQ(0, num_saved_registers_ % 2);
794 // Always an even number of capture registers. This allows us to
795 // unroll the loop once to add an operation between a load of a register
796 // and the following use of that register.
797 for (int i = 0; i < num_saved_registers_; i += 2) {
798 __ LoadP(r5, register_location(i), r0);
799 __ LoadP(r6, register_location(i + 1), r0);
800 if (i == 0 && global_with_zero_length_check()) {
801 // Keep capture start in r25 for the zero-length check later.
802 __ mr(r25, r5);
803 }
804 if (mode_ == UC16) {
805 __ ShiftRightArithImm(r5, r5, 1);
806 __ add(r5, r4, r5);
807 __ ShiftRightArithImm(r6, r6, 1);
808 __ add(r6, r4, r6);
809 } else {
810 __ add(r5, r4, r5);
811 __ add(r6, r4, r6);
812 }
813 __ stw(r5, MemOperand(r3));
814 __ addi(r3, r3, Operand(kIntSize));
815 __ stw(r6, MemOperand(r3));
816 __ addi(r3, r3, Operand(kIntSize));
817 }
818 }
819
820 if (global()) {
821 // Restart matching if the regular expression is flagged as global.
822 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
823 __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
824 __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
825 // Increment success counter.
826 __ addi(r3, r3, Operand(1));
827 __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
828 // Capture results have been stored, so the number of remaining global
829 // output registers is reduced by the number of stored captures.
830 __ subi(r4, r4, Operand(num_saved_registers_));
831 // Check whether we have enough room for another set of capture results.
832 __ cmpi(r4, Operand(num_saved_registers_));
833 __ blt(&return_r3);
834
835 __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
836 // Advance the location for output.
837 __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
838 __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
839
840 // Prepare r3 to initialize registers with its value in the next run.
841 __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
842
843 if (global_with_zero_length_check()) {
844 // Special case for zero-length matches.
845 // r25: capture start index
846 __ cmp(current_input_offset(), r25);
847 // Not a zero-length match, restart.
848 __ bne(&load_char_start_regexp);
849 // Offset from the end is zero if we already reached the end.
850 __ cmpi(current_input_offset(), Operand::Zero());
851 __ beq(&exit_label_);
852 // Advance current position after a zero-length match.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100853 Label advance;
854 __ bind(&advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000855 __ addi(current_input_offset(), current_input_offset(),
856 Operand((mode_ == UC16) ? 2 : 1));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100857 if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000858 }
859
860 __ b(&load_char_start_regexp);
861 } else {
862 __ li(r3, Operand(SUCCESS));
863 }
864 }
865
866 // Exit and return r3
867 __ bind(&exit_label_);
868 if (global()) {
869 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
870 }
871
872 __ bind(&return_r3);
873 // Skip sp past regexp registers and local variables..
874 __ mr(sp, frame_pointer());
875 // Restore registers r25..r31 and return (restoring lr to pc).
876 __ MultiPop(registers_to_retain);
877 __ pop(r0);
878 __ mtlr(r0);
879 __ blr();
880
881 // Backtrack code (branch target for conditional backtracks).
882 if (backtrack_label_.is_linked()) {
883 __ bind(&backtrack_label_);
884 Backtrack();
885 }
886
887 Label exit_with_exception;
888
889 // Preempt-code
890 if (check_preempt_label_.is_linked()) {
891 SafeCallTarget(&check_preempt_label_);
892
893 CallCheckStackGuardState(r3);
894 __ cmpi(r3, Operand::Zero());
895 // If returning non-zero, we should end execution with the given
896 // result as return value.
897 __ bne(&return_r3);
898
899 // String might have moved: Reload end of string from frame.
900 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
901 SafeReturn();
902 }
903
904 // Backtrack stack overflow code.
905 if (stack_overflow_label_.is_linked()) {
906 SafeCallTarget(&stack_overflow_label_);
907 // Reached if the backtrack-stack limit has been hit.
908 Label grow_failed;
909
910 // Call GrowStack(backtrack_stackpointer(), &stack_base)
911 static const int num_arguments = 3;
912 __ PrepareCallCFunction(num_arguments, r3);
913 __ mr(r3, backtrack_stackpointer());
914 __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
915 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
916 ExternalReference grow_stack =
917 ExternalReference::re_grow_stack(isolate());
918 __ CallCFunction(grow_stack, num_arguments);
919 // If return NULL, we have failed to grow the stack, and
920 // must exit with a stack-overflow exception.
921 __ cmpi(r3, Operand::Zero());
922 __ beq(&exit_with_exception);
923 // Otherwise use return value as new stack pointer.
924 __ mr(backtrack_stackpointer(), r3);
925 // Restore saved registers and continue.
926 SafeReturn();
927 }
928
929 if (exit_with_exception.is_linked()) {
930 // If any of the code above needed to exit with an exception.
931 __ bind(&exit_with_exception);
932 // Exit with Result EXCEPTION(-1) to signal thrown exception.
933 __ li(r3, Operand(EXCEPTION));
934 __ b(&return_r3);
935 }
936 }
937
938 CodeDesc code_desc;
939 masm_->GetCode(&code_desc);
940 Handle<Code> code = isolate()->factory()->NewCode(
941 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
Ben Murdochda12d292016-06-02 14:46:10 +0100942 PROFILE(masm_->isolate(),
943 RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000944 return Handle<HeapObject>::cast(code);
945}
946
947
948void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
949
950
951void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
952 Label* if_ge) {
953 __ LoadP(r3, register_location(reg), r0);
954 __ Cmpi(r3, Operand(comparand), r0);
955 BranchOrBacktrack(ge, if_ge);
956}
957
958
959void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
960 Label* if_lt) {
961 __ LoadP(r3, register_location(reg), r0);
962 __ Cmpi(r3, Operand(comparand), r0);
963 BranchOrBacktrack(lt, if_lt);
964}
965
966
967void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
968 __ LoadP(r3, register_location(reg), r0);
969 __ cmp(r3, current_input_offset());
970 BranchOrBacktrack(eq, if_eq);
971}
972
973
974RegExpMacroAssembler::IrregexpImplementation
975RegExpMacroAssemblerPPC::Implementation() {
976 return kPPCImplementation;
977}
978
979
980void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
981 Label* on_end_of_input,
982 bool check_bounds,
983 int characters) {
984 DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
985 if (check_bounds) {
986 if (cp_offset >= 0) {
987 CheckPosition(cp_offset + characters - 1, on_end_of_input);
988 } else {
989 CheckPosition(cp_offset, on_end_of_input);
990 }
991 }
992 LoadCurrentCharacterUnchecked(cp_offset, characters);
993}
994
995
996void RegExpMacroAssemblerPPC::PopCurrentPosition() {
997 Pop(current_input_offset());
998}
999
1000
1001void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
1002 Pop(r3);
1003 __ StoreP(r3, register_location(register_index), r0);
1004}
1005
1006
1007void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
1008 __ mov_label_offset(r3, label);
1009 Push(r3);
1010 CheckStackLimit();
1011}
1012
1013
1014void RegExpMacroAssemblerPPC::PushCurrentPosition() {
1015 Push(current_input_offset());
1016}
1017
1018
1019void RegExpMacroAssemblerPPC::PushRegister(int register_index,
1020 StackCheckFlag check_stack_limit) {
1021 __ LoadP(r3, register_location(register_index), r0);
1022 Push(r3);
1023 if (check_stack_limit) CheckStackLimit();
1024}
1025
1026
1027void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
1028 __ LoadP(current_input_offset(), register_location(reg), r0);
1029}
1030
1031
1032void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
1033 __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1034 __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1035 __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
1036}
1037
1038
1039void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1040 Label after_position;
1041 __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1042 __ bge(&after_position);
1043 __ mov(current_input_offset(), Operand(-by * char_size()));
1044 // On RegExp code entry (where this operation is used), the character before
1045 // the current position is expected to be already loaded.
1046 // We have advanced the position, so it's safe to read backwards.
1047 LoadCurrentCharacterUnchecked(-1, 1);
1048 __ bind(&after_position);
1049}
1050
1051
1052void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1053 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1054 __ mov(r3, Operand(to));
1055 __ StoreP(r3, register_location(register_index), r0);
1056}
1057
1058
1059bool RegExpMacroAssemblerPPC::Succeed() {
1060 __ b(&success_label_);
1061 return global();
1062}
1063
1064
1065void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1066 int cp_offset) {
1067 if (cp_offset == 0) {
1068 __ StoreP(current_input_offset(), register_location(reg), r0);
1069 } else {
1070 __ mov(r0, Operand(cp_offset * char_size()));
1071 __ add(r3, current_input_offset(), r0);
1072 __ StoreP(r3, register_location(reg), r0);
1073 }
1074}
1075
1076
1077void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1078 DCHECK(reg_from <= reg_to);
1079 __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1080 for (int reg = reg_from; reg <= reg_to; reg++) {
1081 __ StoreP(r3, register_location(reg), r0);
1082 }
1083}
1084
1085
1086void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1087 __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1088 __ sub(r3, backtrack_stackpointer(), r4);
1089 __ StoreP(r3, register_location(reg), r0);
1090}
1091
1092
1093// Private methods:
1094
1095void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1096 int frame_alignment = masm_->ActivationFrameAlignment();
1097 int stack_space = kNumRequiredStackFrameSlots;
1098 int stack_passed_arguments = 1; // space for return address pointer
1099
1100 // The following stack manipulation logic is similar to
1101 // PrepareCallCFunction. However, we need an extra slot on the
1102 // stack to house the return address parameter.
1103 if (frame_alignment > kPointerSize) {
1104 // Make stack end at alignment and make room for stack arguments
1105 // -- preserving original value of sp.
1106 __ mr(scratch, sp);
1107 __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1108 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
1109 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1110 __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
1111 } else {
1112 // Make room for stack arguments
1113 stack_space += stack_passed_arguments;
1114 }
1115
1116 // Allocate frame with required slots to make ABI work.
1117 __ li(r0, Operand::Zero());
1118 __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
1119
1120 // RegExp code frame pointer.
1121 __ mr(r5, frame_pointer());
1122 // Code* of self.
1123 __ mov(r4, Operand(masm_->CodeObject()));
1124 // r3 will point to the return address, placed by DirectCEntry.
1125 __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
1126
1127 ExternalReference stack_guard_check =
1128 ExternalReference::re_check_stack_guard_state(isolate());
1129 __ mov(ip, Operand(stack_guard_check));
1130 DirectCEntryStub stub(isolate());
1131 stub.GenerateCall(masm_, ip);
1132
1133 // Restore the stack pointer
1134 stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1135 if (frame_alignment > kPointerSize) {
1136 __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
1137 } else {
1138 __ addi(sp, sp, Operand(stack_space * kPointerSize));
1139 }
1140
1141 __ mov(code_pointer(), Operand(masm_->CodeObject()));
1142}
1143
1144
1145// Helper function for reading a value out of a stack frame.
1146template <typename T>
1147static T& frame_entry(Address re_frame, int frame_offset) {
1148 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1149}
1150
1151
1152template <typename T>
1153static T* frame_entry_address(Address re_frame, int frame_offset) {
1154 return reinterpret_cast<T*>(re_frame + frame_offset);
1155}
1156
1157
1158int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1159 Code* re_code,
1160 Address re_frame) {
1161 return NativeRegExpMacroAssembler::CheckStackGuardState(
1162 frame_entry<Isolate*>(re_frame, kIsolate),
1163 frame_entry<intptr_t>(re_frame, kStartIndex),
1164 frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1165 re_code, frame_entry_address<String*>(re_frame, kInputString),
1166 frame_entry_address<const byte*>(re_frame, kInputStart),
1167 frame_entry_address<const byte*>(re_frame, kInputEnd));
1168}
1169
1170
1171MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1172 DCHECK(register_index < (1 << 30));
1173 if (num_registers_ <= register_index) {
1174 num_registers_ = register_index + 1;
1175 }
1176 return MemOperand(frame_pointer(),
1177 kRegisterZero - register_index * kPointerSize);
1178}
1179
1180
1181void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1182 Label* on_outside_input) {
1183 if (cp_offset >= 0) {
1184 __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1185 BranchOrBacktrack(ge, on_outside_input);
1186 } else {
1187 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
1188 __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
1189 __ cmp(r3, r4);
1190 BranchOrBacktrack(le, on_outside_input);
1191 }
1192}
1193
1194
1195void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
1196 CRegister cr) {
1197 if (condition == al) { // Unconditional.
1198 if (to == NULL) {
1199 Backtrack();
1200 return;
1201 }
1202 __ b(to);
1203 return;
1204 }
1205 if (to == NULL) {
1206 __ b(condition, &backtrack_label_, cr);
1207 return;
1208 }
1209 __ b(condition, to, cr);
1210}
1211
1212
1213void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1214 CRegister cr) {
1215 __ b(cond, to, cr, SetLK);
1216}
1217
1218
1219void RegExpMacroAssemblerPPC::SafeReturn() {
1220 __ pop(r0);
1221 __ mov(ip, Operand(masm_->CodeObject()));
1222 __ add(r0, r0, ip);
1223 __ mtlr(r0);
1224 __ blr();
1225}
1226
1227
1228void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1229 __ bind(name);
1230 __ mflr(r0);
1231 __ mov(ip, Operand(masm_->CodeObject()));
1232 __ sub(r0, r0, ip);
1233 __ push(r0);
1234}
1235
1236
1237void RegExpMacroAssemblerPPC::Push(Register source) {
1238 DCHECK(!source.is(backtrack_stackpointer()));
1239 __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
1240}
1241
1242
1243void RegExpMacroAssemblerPPC::Pop(Register target) {
1244 DCHECK(!target.is(backtrack_stackpointer()));
1245 __ LoadP(target, MemOperand(backtrack_stackpointer()));
1246 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1247 Operand(kPointerSize));
1248}
1249
1250
1251void RegExpMacroAssemblerPPC::CheckPreemption() {
1252 // Check for preemption.
1253 ExternalReference stack_limit =
1254 ExternalReference::address_of_stack_limit(isolate());
1255 __ mov(r3, Operand(stack_limit));
1256 __ LoadP(r3, MemOperand(r3));
1257 __ cmpl(sp, r3);
1258 SafeCall(&check_preempt_label_, le);
1259}
1260
1261
1262void RegExpMacroAssemblerPPC::CheckStackLimit() {
1263 ExternalReference stack_limit =
1264 ExternalReference::address_of_regexp_stack_limit(isolate());
1265 __ mov(r3, Operand(stack_limit));
1266 __ LoadP(r3, MemOperand(r3));
1267 __ cmpl(backtrack_stackpointer(), r3);
1268 SafeCall(&stack_overflow_label_, le);
1269}
1270
1271
1272bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
1273 return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1274}
1275
1276
1277void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1278 int characters) {
1279 Register offset = current_input_offset();
1280 if (cp_offset != 0) {
1281 // r25 is not being used to store the capture start index at this point.
1282 __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1283 offset = r25;
1284 }
1285 // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1286 // and the operating system running on the target allow it.
1287 // We assume we don't want to do unaligned loads on PPC, so this function
1288 // must only be used to load a single character at a time.
1289
1290 DCHECK(characters == 1);
1291 __ add(current_character(), end_of_input_address(), offset);
1292 if (mode_ == LATIN1) {
1293 __ lbz(current_character(), MemOperand(current_character()));
1294 } else {
1295 DCHECK(mode_ == UC16);
1296 __ lhz(current_character(), MemOperand(current_character()));
1297 }
1298}
1299
1300
1301#undef __
1302
1303#endif // V8_INTERPRETED_REGEXP
1304} // namespace internal
1305} // namespace v8
1306
1307#endif // V8_TARGET_ARCH_PPC