blob: afd4804b6bc200ebbac6db7c0689c24ad1d7adc3 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- The JITter: translate x86 code to ucode. ---*/
/*--- vg_to_ucode.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, an extensible x86 protected-mode
emulator for monitoring program execution on x86-Unixes.
Copyright (C) 2000-2004 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "core.h"
/*------------------------------------------------------------*/
/*--- Debugging output ---*/
/*------------------------------------------------------------*/
#define DIP(format, args...) \
if (VG_(print_codegen)) \
VG_(printf)(format, ## args)
#define DIS(buf, format, args...) \
if (VG_(print_codegen)) \
VG_(sprintf)(buf, format, ## args)
/*------------------------------------------------------------*/
/*--- CPU feature set stuff ---*/
/*--- This is a little out of place here, but it will do ---*/
/*--- for now. ---*/
/*------------------------------------------------------------*/
#define VG_CPU_VENDOR_GENERIC 0
#define VG_CPU_VENDOR_INTEL 1
#define VG_CPU_VENDOR_AMD 2
/* Standard macro to see if a specific flag is changeable */
static inline Bool flag_is_changeable(UInt flag)
{
UInt f1, f2;
asm("pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
static Bool has_cpuid(void)
{
return flag_is_changeable(EFlagID);
}
// Returns the CPU features, and also the vendorid. Only ever calls CPUID
// once, and caches the necessary info in static variables for later reuse.
static UInt* get_cpu_features(Int* cpu_vendorid_ptr)
{
Char vendorstr[13];
Int i, cpuid_level;
static Bool done_before = False;
static Int cpu_vendorid = VG_CPU_VENDOR_GENERIC;
static UInt cpu_features[VG_N_FEATURE_WORDS];
static const struct {
const Char *vendorstr;
Int vendorid;
} cpu_vendors[] = {
{ "GenuineIntel", VG_CPU_VENDOR_INTEL },
{ "AuthenticAMD", VG_CPU_VENDOR_AMD },
};
// If we haven't already worked this stuff out...
if (!done_before && has_cpuid()) {
cpu_features[VG_INT_FEAT] |= (1 << (VG_X86_FEAT_CPUID%32));
// Get vendor string, eg. "GenuineIntel". Note characteristically
// stupid word order chosen by Intel.
VG_(cpuid)(0, &cpuid_level, (UInt *)&vendorstr[0],
(UInt *)&vendorstr[8],
(UInt *)&vendorstr[4]);
vendorstr[12] = '\0';
// Determine vendor ID
for (i = 0; i < sizeof(cpu_vendors)/sizeof(*cpu_vendors); i++)
if (VG_(memcmp)(vendorstr, cpu_vendors[i].vendorstr, 12) == 0) {
cpu_vendorid = cpu_vendors[i].vendorid;
break;
}
// Determine CPU features
if (cpuid_level >= 1)
VG_(cpuid)(1, NULL, NULL, &cpu_features[VG_EXT_FEAT],
&cpu_features[VG_X86_FEAT]);
if (VG_CPU_VENDOR_AMD == cpu_vendorid) {
/* get AMD-specific flags */
VG_(cpuid)(0x80000001, NULL, NULL, NULL, &cpu_features[VG_AMD_FEAT]);
}
}
if (NULL != cpu_vendorid_ptr) *cpu_vendorid_ptr = cpu_vendorid;
return cpu_features;
}
Bool VG_(cpu_has_feature)(UInt feature)
{
UInt word = feature / 32;
UInt bit = feature % 32;
UInt* cpu_features;
vg_assert(word >= 0 && word < VG_N_FEATURE_WORDS);
cpu_features = get_cpu_features(NULL);
return !!( cpu_features[word] & (1 << bit) );
}
/* The set of features we're willing to support for the client
This includes supported instruction set extensions, plus any
extensions which don't have any user-mode visible effect (but the
client may find interesting).
*/
#define VG_X86_SUPPORTED_FEATURES \
((1 << VG_X86_FEAT_FPU) | \
(1 << VG_X86_FEAT_VME) | \
(1 << VG_X86_FEAT_DE) | \
(1 << VG_X86_FEAT_PSE) | \
(1 << VG_X86_FEAT_TSC) | \
(0 << VG_X86_FEAT_MSR) | \
(1 << VG_X86_FEAT_PAE) | \
(1 << VG_X86_FEAT_MCE) | \
(1 << VG_X86_FEAT_CX8) | \
(1 << VG_X86_FEAT_APIC) | \
(0 << VG_X86_FEAT_SEP) | \
(1 << VG_X86_FEAT_MTRR) | \
(1 << VG_X86_FEAT_PGE) | \
(1 << VG_X86_FEAT_MCA) | \
(1 << VG_X86_FEAT_CMOV) | \
(1 << VG_X86_FEAT_PAT) | \
(1 << VG_X86_FEAT_PSE36) | \
(0 << VG_X86_FEAT_CLFSH) | \
(1 << VG_X86_FEAT_DS) | \
(1 << VG_X86_FEAT_ACPI) | \
(1 << VG_X86_FEAT_MMX) | \
(1 << VG_X86_FEAT_FXSR) | \
(1 << VG_X86_FEAT_SSE) | \
(1 << VG_X86_FEAT_SSE2) | \
(1 << VG_X86_FEAT_SS) | \
(1 << VG_X86_FEAT_HT) | \
(1 << VG_X86_FEAT_TM) | \
(0 << VG_X86_FEAT_IA64) | \
(1 << VG_X86_FEAT_PBE))
#define VG_AMD_SUPPORTED_FEATURES \
((0 << (VG_AMD_FEAT_SYSCALL % 32)) | \
(0 << (VG_AMD_FEAT_NXP % 32)) | \
(1 << (VG_AMD_FEAT_MMXEXT % 32)) | \
(0 << (VG_AMD_FEAT_FFXSR % 32)) | \
(0 << (VG_AMD_FEAT_LONGMODE % 32)) | \
(0 << (VG_AMD_FEAT_3DNOWEXT % 32)) | \
(0 << (VG_AMD_FEAT_3DNOW % 32)) | \
/* Common bits between standard features and AMD features */ \
(1 << VG_X86_FEAT_FPU) | \
(1 << VG_X86_FEAT_VME) | \
(1 << VG_X86_FEAT_DE) | \
(1 << VG_X86_FEAT_PSE) | \
(1 << VG_X86_FEAT_TSC) | \
(0 << VG_X86_FEAT_MSR) | \
(1 << VG_X86_FEAT_PAE) | \
(1 << VG_X86_FEAT_MCE) | \
(1 << VG_X86_FEAT_CX8) | \
(1 << VG_X86_FEAT_APIC) | \
(1 << VG_X86_FEAT_MTRR) | \
(1 << VG_X86_FEAT_PGE) | \
(1 << VG_X86_FEAT_MCA) | \
(1 << VG_X86_FEAT_CMOV) | \
(1 << VG_X86_FEAT_PAT) | \
(1 << VG_X86_FEAT_PSE36) | \
(1 << VG_X86_FEAT_MMX) | \
(1 << VG_X86_FEAT_FXSR))
/*
For simulating the cpuid instruction, we will
issue a "real" cpuid instruction and then mask out
the bits of the features we do not support currently (3dnow mostly).
We also claim to not support most CPUID operations.
Dirk Mueller <mueller@kde.org>
http://www.sandpile.org/ia32/cpuid.htm
references:
pre-MMX pentium:
<werner> cpuid words (0): 0x1 0x756e6547 0x6c65746e 0x49656e69
<werner> cpuid words (1): 0x52b 0x0 0x0 0x1bf
Updated to be more extensible about future vendor extensions and
vendor-specific parts of CPUID.
*/
void VG_(helperc_CPUID)(UInt op, UInt *eax_ret, UInt *ebx_ret,
UInt *ecx_ret, UInt *edx_ret)
{
UInt eax, ebx, ecx, edx;
Int cpu_vendorid;
// This function should not be called unless the CPU has CPUID.
vg_assert( VG_(cpu_has_feature)(VG_X86_FEAT_CPUID) );
// Get vendor ID.
get_cpu_features( &cpu_vendorid );
VG_(cpuid)(op, &eax, &ebx, &ecx, &edx);
/* Common mangling */
switch(op) {
case 1:
edx &= VG_X86_SUPPORTED_FEATURES;
break;
case 0xd8000000: {
/* Implement some private information at 0xd8000000 */
static const Char valgrind_vendor[] = "ValgrindVCPU";
eax = 0xd8000000; /* max request */
ebx = *(UInt *)&valgrind_vendor[0];
ecx = *(UInt *)&valgrind_vendor[8];
edx = *(UInt *)&valgrind_vendor[4];
}
break;
}
/* Vendor-specific mangling of the results */
switch (cpu_vendorid) {
case VG_CPU_VENDOR_INTEL:
switch(op) {
case 1:
ecx = 0; /* mask out all extended features for now */
break;
case 0x80000001:
ebx = ecx = edx = 0;
break;
}
break;
case VG_CPU_VENDOR_AMD:
switch(op) {
case 0x80000001:
edx &= VG_AMD_SUPPORTED_FEATURES;
break;
}
break;
}
*eax_ret = eax;
*ebx_ret = ebx;
*ecx_ret = ecx;
*edx_ret = edx;
}
/*------------------------------------------------------------*/
/*--- Here so it can be inlined everywhere. ---*/
/*------------------------------------------------------------*/
/* Allocate a new temp reg number. */
__inline__ Int VG_(get_new_temp) ( UCodeBlock* cb )
{
Int t = cb->nextTemp;
cb->nextTemp += 2;
return t;
}
Int VG_(get_new_shadow) ( UCodeBlock* cb )
{
Int t = cb->nextTemp;
cb->nextTemp += 2;
return SHADOW(t);
}
/*------------------------------------------------------------*/
/*--- Helper bits and pieces for deconstructing the ---*/
/*--- x86 insn stream. ---*/
/*------------------------------------------------------------*/
static Char* nameGrp1 ( Int opc_aux )
{
static Char* grp1_names[8]
= { "add", "or", "adc", "sbb", "and", "sub", "xor", "cmp" };
if (opc_aux < 0 || opc_aux > 7) VG_(core_panic)("nameGrp1");
return grp1_names[opc_aux];
}
static Char* nameGrp2 ( Int opc_aux )
{
static Char* grp2_names[8]
= { "rol", "ror", "rcl", "rcr", "shl", "shr", "shl", "sar" };
if (opc_aux < 0 || opc_aux > 7) VG_(core_panic)("nameGrp2");
return grp2_names[opc_aux];
}
static Char* nameGrp4 ( Int opc_aux )
{
static Char* grp4_names[8]
= { "inc", "dec", "???", "???", "???", "???", "???", "???" };
if (opc_aux < 0 || opc_aux > 1) VG_(core_panic)("nameGrp4");
return grp4_names[opc_aux];
}
static Char* nameGrp5 ( Int opc_aux )
{
static Char* grp5_names[8]
= { "inc", "dec", "call*", "call*", "jmp*", "jmp*", "push", "???" };
if (opc_aux < 0 || opc_aux > 6) VG_(core_panic)("nameGrp5");
return grp5_names[opc_aux];
}
static Char* nameGrp8 ( Int opc_aux )
{
static Char* grp8_names[8]
= { "???", "???", "???", "???", "bt", "bts", "btr", "btc" };
if (opc_aux < 4 || opc_aux > 7) VG_(core_panic)("nameGrp8");
return grp8_names[opc_aux];
}
const Char* VG_(name_of_int_reg) ( Int size, Int reg )
{
static Char* ireg32_names[8]
= { "%eax", "%ecx", "%edx", "%ebx",
"%esp", "%ebp", "%esi", "%edi" };
static Char* ireg16_names[8]
= { "%ax", "%cx", "%dx", "%bx", "%sp", "%bp", "%si", "%di" };
static Char* ireg8_names[8]
= { "%al", "%cl", "%dl", "%bl",
"%ah{sp}", "%ch{bp}", "%dh{si}", "%bh{di}" };
if (reg < 0 || reg > 7) goto bad;
switch (size) {
case 4: return ireg32_names[reg];
case 2: return ireg16_names[reg];
case 1: return ireg8_names[reg];
}
bad:
VG_(core_panic)("name_of_int_reg");
return NULL; /*notreached*/
}
const Char* VG_(name_of_seg_reg) ( Int sreg )
{
switch (sreg) {
case R_ES: return "%es";
case R_CS: return "%cs";
case R_SS: return "%ss";
case R_DS: return "%ds";
case R_FS: return "%fs";
case R_GS: return "%gs";
default: VG_(core_panic)("nameOfSegReg");
}
}
const Char* VG_(name_of_mmx_reg) ( Int mmxreg )
{
static const Char* mmx_names[8]
= { "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7" };
if (mmxreg < 0 || mmxreg > 7) VG_(core_panic)("name_of_mmx_reg");
return mmx_names[mmxreg];
}
const Char* VG_(name_of_xmm_reg) ( Int xmmreg )
{
static const Char* xmm_names[8]
= { "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7" };
if (xmmreg < 0 || xmmreg > 7) VG_(core_panic)("name_of_xmm_reg");
return xmm_names[xmmreg];
}
const Char* VG_(name_of_mmx_gran) ( UChar gran )
{
switch (gran) {
case 0: return "b";
case 1: return "w";
case 2: return "d";
case 3: return "q";
default: VG_(core_panic)("name_of_mmx_gran");
}
}
const Char VG_(name_of_int_size) ( Int size )
{
switch (size) {
case 4: return 'l';
case 2: return 'w';
case 1: return 'b';
default: VG_(core_panic)("name_of_int_size");
}
}
__inline__ UInt VG_(extend_s_8to32) ( UInt x )
{
return (UInt)((((Int)x) << 24) >> 24);
}
__inline__ static UInt extend_s_16to32 ( UInt x )
{
return (UInt)((((Int)x) << 16) >> 16);
}
/* Get a byte value out of the insn stream and sign-extend to 32
bits. */
__inline__ static UInt getSDisp8 ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
return VG_(extend_s_8to32)( (UInt) (eip[0]) );
}
__inline__ static UInt getSDisp16 ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
UInt d = *eip++;
d |= ((*eip++) << 8);
return extend_s_16to32(d);
}
/* Get a 32-bit value out of the insn stream. */
__inline__ static UInt getUDisp32 ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
UInt v = eip[3]; v <<= 8;
v |= eip[2]; v <<= 8;
v |= eip[1]; v <<= 8;
v |= eip[0];
return v;
}
__inline__ static UInt getUDisp16 ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
UInt v = eip[1]; v <<= 8;
v |= eip[0];
return v;
}
__inline__ static UChar getUChar ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
return eip[0];
}
__inline__ static UInt LOW24 ( UInt x )
{
return x & 0x00FFFFFF;
}
__inline__ static UInt HI8 ( UInt x )
{
return x >> 24;
}
__inline__ static UInt getUDisp ( Int size, Addr eip )
{
switch (size) {
case 4: return getUDisp32(eip);
case 2: return getUDisp16(eip);
case 1: return getUChar(eip);
default: VG_(core_panic)("getUDisp");
}
return 0; /*notreached*/
}
__inline__ static UInt getSDisp ( Int size, Addr eip )
{
switch (size) {
case 4: return getUDisp32(eip);
case 2: return getSDisp16(eip);
case 1: return getSDisp8(eip);
default: VG_(core_panic)("getUDisp");
}
return 0; /*notreached*/
}
/*------------------------------------------------------------*/
/*--- Flag-related helpers. ---*/
/*------------------------------------------------------------*/
static void setFlagsFromUOpcode ( UCodeBlock* cb, Int uopc )
{
switch (uopc) {
case XOR: case OR: case AND:
uFlagsRWU(cb, FlagsEmpty, FlagsOSZCP, FlagA); break;
case ADC: case SBB:
uFlagsRWU(cb, FlagC, FlagsOSZACP, FlagsEmpty); break;
case MUL: case UMUL:
uFlagsRWU(cb, FlagsEmpty, FlagsOC, FlagsSZAP); break;
case ADD: case SUB: case NEG:
uFlagsRWU(cb, FlagsEmpty, FlagsOSZACP, FlagsEmpty); break;
case INC: case DEC:
uFlagsRWU(cb, FlagsEmpty, FlagsOSZAP, FlagsEmpty); break;
case SHR: case SAR: case SHL:
uFlagsRWU(cb, FlagsEmpty, FlagsOSZCP, FlagA); break;
case ROL: case ROR:
uFlagsRWU(cb, FlagsEmpty, FlagsOC, FlagsEmpty); break;
case RCR: case RCL:
uFlagsRWU(cb, FlagC, FlagsOC, FlagsEmpty); break;
case NOT:
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty); break;
default:
VG_(printf)("unhandled case is %s\n",
VG_(name_UOpcode)(True, uopc));
VG_(core_panic)("setFlagsFromUOpcode: unhandled case");
}
}
/*------------------------------------------------------------*/
/*--- JMP helpers ---*/
/*------------------------------------------------------------*/
static __inline__
void jmp_lit( UCodeBlock* cb, Addr d32 )
{
uInstr1 (cb, JMP, 0, Literal, 0);
uLiteral(cb, d32);
uCond (cb, CondAlways);
}
static __inline__
void jmp_treg( UCodeBlock* cb, Int t )
{
uInstr1 (cb, JMP, 0, TempReg, t);
uCond (cb, CondAlways);
}
static __inline__
void jcc_lit( UCodeBlock* cb, Addr d32, Condcode cond )
{
uInstr1 (cb, JMP, 0, Literal, 0);
uLiteral (cb, d32);
uCond (cb, cond);
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
}
/*------------------------------------------------------------*/
/*--- Disassembling addressing modes ---*/
/*------------------------------------------------------------*/
static
UChar* sorbTxt ( UChar sorb )
{
switch (sorb) {
case 0: return ""; /* no override */
case 0x3E: return "%ds";
case 0x26: return "%es:";
case 0x64: return "%fs:";
case 0x65: return "%gs:";
default: VG_(core_panic)("sorbTxt");
}
}
/* Tmp is a TempReg holding a virtual address. Convert it to a linear
address by adding any required segment override as indicated by
sorb. */
static
void handleSegOverride ( UCodeBlock* cb, UChar sorb, Int tmp )
{
Int sreg, tsreg;
if (sorb == 0)
/* the common case - no override */
return;
switch (sorb) {
case 0x3E: sreg = R_DS; break;
case 0x26: sreg = R_ES; break;
case 0x64: sreg = R_FS; break;
case 0x65: sreg = R_GS; break;
default: VG_(core_panic)("handleSegOverride");
}
tsreg = newTemp(cb);
/* sreg -> tsreg */
uInstr2(cb, GETSEG, 2, ArchRegS, sreg, TempReg, tsreg );
/* tmp += segment_base(ldt[tsreg]); also do limit check */
uInstr2(cb, USESEG, 0, TempReg, tsreg, TempReg, tmp );
}
/* Generate ucode to calculate an address indicated by a ModRM and
following SIB bytes, getting the value in a new temporary. The
temporary, and the number of bytes in the address mode, are
returned, as a pair (length << 24) | temp. Note that this fn should
not be called if the R/M part of the address denotes a register
instead of memory. If VG_(print_codegen) is true, text of the addressing
mode is placed therein. */
static
UInt disAMode ( UCodeBlock* cb, UChar sorb, Addr eip0, UChar* buf )
{
UChar* eip = (UChar*)eip0;
UChar mod_reg_rm = *eip++;
Int tmp = newTemp(cb);
/* squeeze out the reg field from mod_reg_rm, since a 256-entry
jump table seems a bit excessive.
*/
mod_reg_rm &= 0xC7; /* is now XX000YYY */
mod_reg_rm |= (mod_reg_rm >> 3); /* is now XX0XXYYY */
mod_reg_rm &= 0x1F; /* is now 000XXYYY */
switch (mod_reg_rm) {
/* (%eax) .. (%edi), not including (%esp) or (%ebp).
--> GET %reg, t
*/
case 0x00: case 0x01: case 0x02: case 0x03:
/* ! 04 */ /* ! 05 */ case 0x06: case 0x07:
{ UChar rm = mod_reg_rm;
uInstr2(cb, GET, 4, ArchReg, rm, TempReg, tmp);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s(%s)", sorbTxt(sorb), nameIReg(4,rm));
return (1<<24 | tmp);
}
/* d8(%eax) ... d8(%edi), not including d8(%esp)
--> GET %reg, t ; ADDL d8, t
*/
case 0x08: case 0x09: case 0x0A: case 0x0B:
/* ! 0C */ case 0x0D: case 0x0E: case 0x0F:
{ UChar rm = mod_reg_rm & 7;
Int tmq = newTemp(cb);
UInt d = getSDisp8((Addr)eip); eip++;
uInstr2(cb, GET, 4, ArchReg, rm, TempReg, tmq);
uInstr2(cb, LEA1, 4, TempReg, tmq, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s%d(%s)", sorbTxt(sorb), d, nameIReg(4,rm));
return (2<<24 | tmp);
}
/* d32(%eax) ... d32(%edi), not including d32(%esp)
--> GET %reg, t ; ADDL d8, t
*/
case 0x10: case 0x11: case 0x12: case 0x13:
/* ! 14 */ case 0x15: case 0x16: case 0x17:
{ UChar rm = mod_reg_rm & 7;
Int tmq = newTemp(cb);
UInt d = getUDisp32((Addr)eip); eip += 4;
uInstr2(cb, GET, 4, ArchReg, rm, TempReg, tmq);
uInstr2(cb, LEA1, 4, TempReg, tmq, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s0x%x(%s)", sorbTxt(sorb), d, nameIReg(4,rm));
return (5<<24 | tmp);
}
/* a register, %eax .. %edi. This shouldn't happen. */
case 0x18: case 0x19: case 0x1A: case 0x1B:
case 0x1C: case 0x1D: case 0x1E: case 0x1F:
VG_(core_panic)("disAMode: not an addr!");
/* a 32-bit literal address
--> MOV d32, tmp
*/
case 0x05:
{ UInt d = getUDisp32((Addr)eip); eip += 4;
uInstr2(cb, MOV, 4, Literal, 0, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s(0x%x)", sorbTxt(sorb), d);
return (5<<24 | tmp);
}
case 0x04: {
/* SIB, with no displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
-- when mod is zero and base indicates EBP, base is instead
a 32-bit literal.
It's all madness, I tell you. Extract %index, %base and
scale from the SIB byte. The value denoted is then:
| %index == %ESP && %base == %EBP
= d32 following SIB byte
| %index == %ESP && %base != %EBP
= %base
| %index != %ESP && %base == %EBP
= d32 following SIB byte + (%index << scale)
| %index != %ESP && %base != %ESP
= %base + (%index << scale)
What happens to the souls of CPU architects who dream up such
horrendous schemes, do you suppose?
*/
UChar sib = *eip++;
UChar scale = (sib >> 6) & 3;
UChar index_r = (sib >> 3) & 7;
UChar base_r = sib & 7;
if (index_r != R_ESP && base_r != R_EBP) {
Int index_tmp = newTemp(cb);
Int base_tmp = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, index_r, TempReg, index_tmp);
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, base_tmp);
uInstr3(cb, LEA2, 4, TempReg, base_tmp, TempReg, index_tmp,
TempReg, tmp);
uLiteral(cb, 0);
LAST_UINSTR(cb).extra4b = 1 << scale;
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s(%s,%s,%d)", sorbTxt(sorb),
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
return (2<<24 | tmp);
}
if (index_r != R_ESP && base_r == R_EBP) {
Int index_tmp = newTemp(cb);
UInt d = getUDisp32((Addr)eip); eip += 4;
uInstr2(cb, GET, 4, ArchReg, index_r, TempReg, index_tmp);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, tmp);
uLiteral(cb, 0);
uInstr3(cb, LEA2, 4, TempReg, tmp, TempReg, index_tmp,
TempReg, tmp);
uLiteral(cb, d);
LAST_UINSTR(cb).extra4b = 1 << scale;
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s0x%x(,%s,%d)", sorbTxt(sorb), d,
nameIReg(4,index_r), 1<<scale);
return (6<<24 | tmp);
}
if (index_r == R_ESP && base_r != R_EBP) {
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, tmp);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s(%s,,)", sorbTxt(sorb), nameIReg(4,base_r));
return (2<<24 | tmp);
}
if (index_r == R_ESP && base_r == R_EBP) {
UInt d = getUDisp32((Addr)eip); eip += 4;
uInstr2(cb, MOV, 4, Literal, 0, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s0x%x()", sorbTxt(sorb), d);
return (6<<24 | tmp);
}
vg_assert(0);
}
/* SIB, with 8-bit displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
Denoted value is:
| %index == %ESP
= d8 + %base
| %index != %ESP
= d8 + %base + (%index << scale)
*/
case 0x0C: {
UChar sib = *eip++;
UChar scale = (sib >> 6) & 3;
UChar index_r = (sib >> 3) & 7;
UChar base_r = sib & 7;
UInt d = getSDisp8((Addr)eip); eip++;
if (index_r == R_ESP) {
Int tmq = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, tmq);
uInstr2(cb, LEA1, 4, TempReg, tmq, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s%d(%s,,)", sorbTxt(sorb), d, nameIReg(4,base_r));
return (3<<24 | tmp);
} else {
Int index_tmp = newTemp(cb);
Int base_tmp = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, index_r, TempReg, index_tmp);
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, base_tmp);
uInstr3(cb, LEA2, 4, TempReg, base_tmp, TempReg, index_tmp,
TempReg, tmp);
uLiteral(cb, d);
LAST_UINSTR(cb).extra4b = 1 << scale;
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), d,
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
return (3<<24 | tmp);
}
vg_assert(0);
}
/* SIB, with 32-bit displacement. Special cases:
-- %esp cannot act as an index value.
If index_r indicates %esp, zero is used for the index.
Denoted value is:
| %index == %ESP
= d32 + %base
| %index != %ESP
= d32 + %base + (%index << scale)
*/
case 0x14: {
UChar sib = *eip++;
UChar scale = (sib >> 6) & 3;
UChar index_r = (sib >> 3) & 7;
UChar base_r = sib & 7;
UInt d = getUDisp32((Addr)eip); eip += 4;
if (index_r == R_ESP) {
Int tmq = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, tmq);
uInstr2(cb, LEA1, 4, TempReg, tmq, TempReg, tmp);
uLiteral(cb, d);
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s%d(%s,,)", sorbTxt(sorb), d, nameIReg(4,base_r));
return (6<<24 | tmp);
} else {
Int index_tmp = newTemp(cb);
Int base_tmp = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, index_r, TempReg, index_tmp);
uInstr2(cb, GET, 4, ArchReg, base_r, TempReg, base_tmp);
uInstr3(cb, LEA2, 4, TempReg, base_tmp, TempReg, index_tmp,
TempReg, tmp);
uLiteral(cb, d);
LAST_UINSTR(cb).extra4b = 1 << scale;
handleSegOverride(cb, sorb, tmp);
DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), d,
nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale);
return (6<<24 | tmp);
}
vg_assert(0);
}
default:
VG_(core_panic)("disAMode");
return 0; /*notreached*/
}
}
/* Figure out the number of (insn-stream) bytes constituting the amode
beginning at eip0. Is useful for getting hold of literals beyond
the end of the amode before it has been disassembled. */
static UInt lengthAMode ( Addr eip0 )
{
UChar* eip = (UChar*)eip0;
UChar mod_reg_rm = *eip++;
/* squeeze out the reg field from mod_reg_rm, since a 256-entry
jump table seems a bit excessive.
*/
mod_reg_rm &= 0xC7; /* is now XX000YYY */
mod_reg_rm |= (mod_reg_rm >> 3); /* is now XX0XXYYY */
mod_reg_rm &= 0x1F; /* is now 000XXYYY */
switch (mod_reg_rm) {
/* (%eax) .. (%edi), not including (%esp) or (%ebp). */
case 0x00: case 0x01: case 0x02: case 0x03:
/* ! 04 */ /* ! 05 */ case 0x06: case 0x07:
return 1;
/* d8(%eax) ... d8(%edi), not including d8(%esp). */
case 0x08: case 0x09: case 0x0A: case 0x0B:
/* ! 0C */ case 0x0D: case 0x0E: case 0x0F:
return 2;
/* d32(%eax) ... d32(%edi), not including d32(%esp). */
case 0x10: case 0x11: case 0x12: case 0x13:
/* ! 14 */ case 0x15: case 0x16: case 0x17:
return 5;
/* a register, %eax .. %edi. (Not an addr, but still handled.) */
case 0x18: case 0x19: case 0x1A: case 0x1B:
case 0x1C: case 0x1D: case 0x1E: case 0x1F:
return 1;
/* a 32-bit literal address. */
case 0x05: return 5;
/* SIB, no displacement. */
case 0x04: {
UChar sib = *eip++;
UChar base_r = sib & 7;
if (base_r == R_EBP) return 6; else return 2;
}
/* SIB, with 8-bit displacement. */
case 0x0C: return 3;
/* SIB, with 32-bit displacement. */
case 0x14: return 6;
default:
VG_(core_panic)("amode_from_RM");
return 0; /*notreached*/
}
}
/* Extract the reg field from a modRM byte. */
static __inline__ Int gregOfRM ( UChar mod_reg_rm )
{
return (Int)( (mod_reg_rm >> 3) & 7 );
}
/* Figure out whether the mod and rm parts of a modRM byte refer to a
register or memory. If so, the byte will have the form 11XXXYYY,
where YYY is the register number. */
static __inline__ Bool epartIsReg ( UChar mod_reg_rm )
{
return (0xC0 == (mod_reg_rm & 0xC0));
}
/* ... and extract the register number ... */
static __inline__ Int eregOfRM ( UChar mod_reg_rm )
{
return (Int)(mod_reg_rm & 0x7);
}
/*------------------------------------------------------------*/
/*--- Disassembling common idioms ---*/
/*------------------------------------------------------------*/
static
void codegen_XOR_reg_with_itself ( UCodeBlock* cb, Int size,
Int ge_reg, Int tmp )
{
DIP("xor%c %s, %s\n", nameISize(size),
nameIReg(size,ge_reg), nameIReg(size,ge_reg) );
uInstr2(cb, MOV, size, Literal, 0, TempReg, tmp);
uLiteral(cb, 0);
uInstr2(cb, XOR, size, TempReg, tmp, TempReg, tmp);
setFlagsFromUOpcode(cb, XOR);
uInstr2(cb, PUT, size, TempReg, tmp, ArchReg, ge_reg);
}
/* Handle binary integer instructions of the form
op E, G meaning
op reg-or-mem, reg
Is passed the a ptr to the modRM byte, the actual operation, and the
data size. Returns the address advanced completely over this
instruction.
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %G, tmp
OP %E, tmp
PUT tmp, %G
If E is mem and OP is not reversible,
--> (getAddr E) -> tmpa
LD (tmpa), tmpa
GET %G, tmp2
OP tmpa, tmp2
PUT tmp2, %G
If E is mem and OP is reversible
--> (getAddr E) -> tmpa
LD (tmpa), tmpa
OP %G, tmpa
PUT tmpa, %G
*/
static
Addr dis_op2_E_G ( UCodeBlock* cb,
UChar sorb,
Opcode opc,
Bool keep,
Int size,
Addr eip0,
Char* t_x86opc )
{
Bool reversible;
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmp = newTemp(cb);
/* Specially handle XOR reg,reg, because that doesn't really
depend on reg, and doing the obvious thing potentially
generates a spurious value check failure due to the bogus
dependency. */
if (opc == XOR && gregOfRM(rm) == eregOfRM(rm)) {
codegen_XOR_reg_with_itself ( cb, size, gregOfRM(rm), tmp );
return 1+eip0;
}
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmp);
if (opc == AND || opc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, tao);
uInstr2(cb, opc, size, TempReg, tao, TempReg, tmp);
setFlagsFromUOpcode(cb, opc);
} else {
uInstr2(cb, opc, size, ArchReg, eregOfRM(rm), TempReg, tmp);
setFlagsFromUOpcode(cb, opc);
}
if (keep)
uInstr2(cb, PUT, size, TempReg, tmp, ArchReg, gregOfRM(rm));
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
reversible
= (opc == ADD || opc == OR || opc == AND || opc == XOR || opc == ADC)
? True : False;
if (reversible) {
UInt pair = disAMode ( cb, sorb, eip0, dis_buf);
Int tmpa = LOW24(pair);
uInstr2(cb, LOAD, size, TempReg, tmpa, TempReg, tmpa);
if (opc == AND || opc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tao);
uInstr2(cb, opc, size, TempReg, tao, TempReg, tmpa);
setFlagsFromUOpcode(cb, opc);
} else {
uInstr2(cb, opc, size, ArchReg, gregOfRM(rm), TempReg, tmpa);
setFlagsFromUOpcode(cb, opc);
}
if (keep)
uInstr2(cb, PUT, size, TempReg, tmpa, ArchReg, gregOfRM(rm));
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
dis_buf,nameIReg(size,gregOfRM(rm)));
return HI8(pair)+eip0;
} else {
UInt pair = disAMode ( cb, sorb, eip0, dis_buf);
Int tmpa = LOW24(pair);
Int tmp2 = newTemp(cb);
uInstr2(cb, LOAD, size, TempReg, tmpa, TempReg, tmpa);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmp2);
uInstr2(cb, opc, size, TempReg, tmpa, TempReg, tmp2);
setFlagsFromUOpcode(cb, opc);
if (keep)
uInstr2(cb, PUT, size, TempReg, tmp2, ArchReg, gregOfRM(rm));
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
dis_buf,nameIReg(size,gregOfRM(rm)));
return HI8(pair)+eip0;
}
}
/* Handle binary integer instructions of the form
op G, E meaning
op reg, reg-or-mem
Is passed the a ptr to the modRM byte, the actual operation, and the
data size. Returns the address advanced completely over this
instruction.
G(src) is reg.
E(dst) is reg-or-mem
If E is reg, --> GET %E, tmp
OP %G, tmp
PUT tmp, %E
If E is mem, --> (getAddr E) -> tmpa
LD (tmpa), tmpv
OP %G, tmpv
ST tmpv, (tmpa)
*/
static
Addr dis_op2_G_E ( UCodeBlock* cb,
UChar sorb,
Opcode opc,
Bool keep,
Int size,
Addr eip0,
Char* t_x86opc )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmp = newTemp(cb);
/* Specially handle XOR reg,reg, because that doesn't really
depend on reg, and doing the obvious thing potentially
generates a spurious value check failure due to the bogus
dependency. */
if (opc == XOR && gregOfRM(rm) == eregOfRM(rm)) {
codegen_XOR_reg_with_itself ( cb, size, gregOfRM(rm), tmp );
return 1+eip0;
}
/* gcc sometimes generates "sbbl %reg,%reg" to convert the carry
flag into 0 or -1 in reg. This has no actual dependency on
reg, but memcheck can't see that, and so will yelp if reg
contains garbage. A simple fix is to put zero into reg
before we start, zapping any undefinedness it might otherwise
contain.
*/
if (opc == SBB && gregOfRM(rm) == eregOfRM(rm)) {
Int tzero = newTemp(cb);
uInstr2(cb, MOV, size, Literal, 0, TempReg, tzero);
uLiteral(cb, 0);
uInstr2(cb, PUT, size, TempReg, tzero, ArchReg, eregOfRM(rm));
}
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, tmp);
if (opc == AND || opc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tao);
uInstr2(cb, opc, size, TempReg, tao, TempReg, tmp);
setFlagsFromUOpcode(cb, opc);
} else {
uInstr2(cb, opc, size, ArchReg, gregOfRM(rm), TempReg, tmp);
setFlagsFromUOpcode(cb, opc);
}
if (keep)
uInstr2(cb, PUT, size, TempReg, tmp, ArchReg, eregOfRM(rm));
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf);
Int tmpa = LOW24(pair);
Int tmpv = newTemp(cb);
uInstr2(cb, LOAD, size, TempReg, tmpa, TempReg, tmpv);
if (opc == AND || opc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tao);
uInstr2(cb, opc, size, TempReg, tao, TempReg, tmpv);
setFlagsFromUOpcode(cb, opc);
} else {
uInstr2(cb, opc, size, ArchReg, gregOfRM(rm), TempReg, tmpv);
setFlagsFromUOpcode(cb, opc);
}
if (keep) {
uInstr2(cb, STORE, size, TempReg, tmpv, TempReg, tmpa);
}
DIP("%s%c %s,%s\n", t_x86opc, nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
return HI8(pair)+eip0;
}
}
/* Handle move instructions of the form
mov E, G meaning
mov reg-or-mem, reg
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %E, tmpv
PUT tmpv, %G
If E is mem --> (getAddr E) -> tmpa
LD (tmpa), tmpb
PUT tmpb, %G
*/
static
Addr dis_mov_E_G ( UCodeBlock* cb,
UChar sorb,
Int size,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmpv = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, tmpv);
uInstr2(cb, PUT, size, TempReg, tmpv, ArchReg, gregOfRM(rm));
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf);
Int tmpa = LOW24(pair);
Int tmpb = newTemp(cb);
uInstr2(cb, LOAD, size, TempReg, tmpa, TempReg, tmpb);
uInstr2(cb, PUT, size, TempReg, tmpb, ArchReg, gregOfRM(rm));
DIP("mov%c %s,%s\n", nameISize(size),
dis_buf,nameIReg(size,gregOfRM(rm)));
return HI8(pair)+eip0;
}
}
/* Handle move instructions of the form
mov G, E meaning
mov reg, reg-or-mem
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
G(src) is reg.
E(dst) is reg-or-mem
If E is reg, --> GET %G, tmp
PUT tmp, %E
If E is mem, --> (getAddr E) -> tmpa
GET %G, tmpv
ST tmpv, (tmpa)
*/
static
Addr dis_mov_G_E ( UCodeBlock* cb,
UChar sorb,
Int size,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmpv = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmpv);
uInstr2(cb, PUT, size, TempReg, tmpv, ArchReg, eregOfRM(rm));
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf);
Int tmpa = LOW24(pair);
Int tmpv = newTemp(cb);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmpv);
uInstr2(cb, STORE, size, TempReg, tmpv, TempReg, tmpa);
DIP("mov%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
return HI8(pair)+eip0;
}
}
/* op $immediate, AL/AX/EAX. */
static
Addr dis_op_imm_A ( UCodeBlock* cb,
Int size,
Opcode opc,
Bool keep,
Addr eip,
Char* t_x86opc )
{
Int tmp = newTemp(cb);
UInt lit = getUDisp(size,eip);
uInstr2(cb, GET, size, ArchReg, R_EAX, TempReg, tmp);
if (opc == AND || opc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, MOV, size, Literal, 0, TempReg, tao);
uLiteral(cb, lit);
uInstr2(cb, opc, size, TempReg, tao, TempReg, tmp);
setFlagsFromUOpcode(cb, opc);
} else {
uInstr2(cb, opc, size, Literal, 0, TempReg, tmp);
uLiteral(cb, lit);
setFlagsFromUOpcode(cb, opc);
}
if (keep)
uInstr2(cb, PUT, size, TempReg, tmp, ArchReg, R_EAX);
DIP("%s%c $0x%x, %s\n", t_x86opc, nameISize(size),
lit, nameIReg(size,R_EAX));
return eip+size;
}
/* Sign- and Zero-extending moves. */
static
Addr dis_movx_E_G ( UCodeBlock* cb,
UChar sorb,
Addr eip, Int szs, Int szd, Bool sign_extend )
{
UChar dis_buf[50];
UChar rm = getUChar(eip);
if (epartIsReg(rm)) {
Int tmpv = newTemp(cb);
uInstr2(cb, GET, szs, ArchReg, eregOfRM(rm), TempReg, tmpv);
uInstr1(cb, WIDEN, szd, TempReg, tmpv);
uWiden(cb, szs, sign_extend);
uInstr2(cb, PUT, szd, TempReg, tmpv, ArchReg, gregOfRM(rm));
DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z',
nameISize(szs), nameISize(szd),
nameIReg(szs,eregOfRM(rm)),
nameIReg(szd,gregOfRM(rm)));
return 1+eip;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip, dis_buf);
Int tmpa = LOW24(pair);
uInstr2(cb, LOAD, szs, TempReg, tmpa, TempReg, tmpa);
uInstr1(cb, WIDEN, szd, TempReg, tmpa);
uWiden(cb, szs, sign_extend);
uInstr2(cb, PUT, szd, TempReg, tmpa, ArchReg, gregOfRM(rm));
DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z',
nameISize(szs), nameISize(szd),
dis_buf, nameIReg(szd,gregOfRM(rm)));
return HI8(pair)+eip;
}
}
/* Generate code to divide ArchRegs EDX:EAX / DX:AX / AX by the 32 /
16 / 8 bit quantity in the given TempReg. */
static
void codegen_div ( UCodeBlock* cb, Int sz, Int t, Bool signed_divide )
{
Int helper;
Int ta = newTemp(cb);
Int td = newTemp(cb);
switch (sz) {
case 4: helper = (signed_divide ? VGOFF_(helper_idiv_64_32)
: VGOFF_(helper_div_64_32));
break;
case 2: helper = (signed_divide ? VGOFF_(helper_idiv_32_16)
: VGOFF_(helper_div_32_16));
break;
case 1: helper = (signed_divide ? VGOFF_(helper_idiv_16_8)
: VGOFF_(helper_div_16_8));
break;
default: VG_(core_panic)("codegen_div");
}
uInstr0(cb, CALLM_S, 0);
if (sz == 4 || sz == 2) {
uInstr1(cb, PUSH, sz, TempReg, t);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, ta);
uInstr1(cb, PUSH, sz, TempReg, ta);
uInstr2(cb, GET, sz, ArchReg, R_EDX, TempReg, td);
uInstr1(cb, PUSH, sz, TempReg, td);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsOSZACP);
uInstr1(cb, POP, sz, TempReg, t);
uInstr2(cb, PUT, sz, TempReg, t, ArchReg, R_EDX);
uInstr1(cb, POP, sz, TempReg, t);
uInstr2(cb, PUT, sz, TempReg, t, ArchReg, R_EAX);
uInstr1(cb, CLEAR, 0, Lit16, 4);
} else {
uInstr1(cb, PUSH, 1, TempReg, t);
uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, ta);
uInstr1(cb, PUSH, 2, TempReg, ta);
uInstr2(cb, MOV, 1, Literal, 0, TempReg, td);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 1, TempReg, td);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsOSZACP);
uInstr1(cb, POP, 1, TempReg, t);
uInstr2(cb, PUT, 1, TempReg, t, ArchReg, R_AL);
uInstr1(cb, POP, 1, TempReg, t);
uInstr2(cb, PUT, 1, TempReg, t, ArchReg, R_AH);
uInstr1(cb, CLEAR, 0, Lit16, 4);
}
uInstr0(cb, CALLM_E, 0);
}
static
Addr dis_Grp1 ( UCodeBlock* cb,
UChar sorb,
Addr eip, UChar modrm,
Int am_sz, Int d_sz, Int sz, UInt d32 )
{
Int t1, t2, uopc;
UInt pair;
UChar dis_buf[50];
if (epartIsReg(modrm)) {
vg_assert(am_sz == 1);
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: uopc = ADD; break; case 1: uopc = OR; break;
case 2: uopc = ADC; break; case 3: uopc = SBB; break;
case 4: uopc = AND; break; case 5: uopc = SUB; break;
case 6: uopc = XOR; break; case 7: uopc = SUB; break;
default: VG_(core_panic)("dis_Grp1(Reg): unhandled case");
}
if (uopc == AND || uopc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, tao);
uLiteral(cb, d32);
uInstr2(cb, uopc, sz, TempReg, tao, TempReg, t1);
setFlagsFromUOpcode(cb, uopc);
} else {
uInstr2(cb, uopc, sz, Literal, 0, TempReg, t1);
uLiteral(cb, d32);
setFlagsFromUOpcode(cb, uopc);
}
if (gregOfRM(modrm) < 7)
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
eip += (am_sz + d_sz);
DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz), d32,
nameIReg(sz,eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf);
t1 = LOW24(pair);
t2 = newTemp(cb);
eip += HI8(pair);
eip += d_sz;
uInstr2(cb, LOAD, sz, TempReg, t1, TempReg, t2);
switch (gregOfRM(modrm)) {
case 0: uopc = ADD; break; case 1: uopc = OR; break;
case 2: uopc = ADC; break; case 3: uopc = SBB; break;
case 4: uopc = AND; break; case 5: uopc = SUB; break;
case 6: uopc = XOR; break; case 7: uopc = SUB; break;
default: VG_(core_panic)("dis_Grp1(Mem): unhandled case");
}
if (uopc == AND || uopc == OR) {
Int tao = newTemp(cb);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, tao);
uLiteral(cb, d32);
uInstr2(cb, uopc, sz, TempReg, tao, TempReg, t2);
setFlagsFromUOpcode(cb, uopc);
} else {
uInstr2(cb, uopc, sz, Literal, 0, TempReg, t2);
uLiteral(cb, d32);
setFlagsFromUOpcode(cb, uopc);
}
if (gregOfRM(modrm) < 7) {
uInstr2(cb, STORE, sz, TempReg, t2, TempReg, t1);
}
DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz),
d32, dis_buf);
}
return eip;
}
/* Group 2 extended opcodes. */
static
Addr dis_Grp2 ( UCodeBlock* cb,
UChar sorb,
Addr eip, UChar modrm,
Int am_sz, Int d_sz, Int sz,
Tag orig_src_tag, UInt orig_src_val )
{
/* orig_src_tag and orig_src_val denote either ArchReg(%CL) or a
Literal. And eip on entry points at the modrm byte. */
Int t1, t2, uopc;
UInt pair;
UChar dis_buf[50];
UInt src_val;
Tag src_tag;
/* Get the amount to be shifted by into src_tag/src_val. */
if (orig_src_tag == ArchReg) {
src_val = newTemp(cb);
src_tag = TempReg;
uInstr2(cb, GET, 1, orig_src_tag, orig_src_val, TempReg, src_val);
} else {
src_val = orig_src_val;
src_tag = Literal;
}
if (epartIsReg(modrm)) {
vg_assert(am_sz == 1);
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: uopc = ROL; break; case 1: uopc = ROR; break;
case 2: uopc = RCL; break; case 3: uopc = RCR; break;
case 4: uopc = SHL; break; case 5: uopc = SHR; break;
case 7: uopc = SAR; break;
default: VG_(core_panic)("dis_Grp2(Reg): unhandled case");
}
if (src_tag == Literal) {
uInstr2(cb, uopc, sz, Literal, 0, TempReg, t1);
uLiteral(cb, src_val);
} else {
uInstr2(cb, uopc, sz, src_tag, src_val, TempReg, t1);
}
setFlagsFromUOpcode(cb, uopc);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
eip += (am_sz + d_sz);
if (VG_(print_codegen)) {
if (orig_src_tag == Literal)
VG_(printf)("%s%c $0x%x, %s\n",
nameGrp2(gregOfRM(modrm)), nameISize(sz),
orig_src_val, nameIReg(sz,eregOfRM(modrm)));
else
VG_(printf)("%s%c %s, %s\n",
nameGrp2(gregOfRM(modrm)), nameISize(sz),
nameIReg(1,orig_src_val),
nameIReg(sz,eregOfRM(modrm)));
}
} else {
pair = disAMode ( cb, sorb, eip, dis_buf);
t1 = LOW24(pair);
t2 = newTemp(cb);
eip += HI8(pair);
eip += d_sz;
uInstr2(cb, LOAD, sz, TempReg, t1, TempReg, t2);
switch (gregOfRM(modrm)) {
case 0: uopc = ROL; break; case 1: uopc = ROR; break;
case 2: uopc = RCL; break; case 3: uopc = RCR; break;
case 4: uopc = SHL; break; case 5: uopc = SHR; break;
case 7: uopc = SAR; break;
default: VG_(core_panic)("dis_Grp2(Reg): unhandled case");
}
if (src_tag == Literal) {
uInstr2(cb, uopc, sz, Literal, 0, TempReg, t2);
uLiteral(cb, src_val);
} else {
uInstr2(cb, uopc, sz, src_tag, src_val, TempReg, t2);
}
setFlagsFromUOpcode(cb, uopc);
uInstr2(cb, STORE, sz, TempReg, t2, TempReg, t1);
if (VG_(print_codegen)) {
if (orig_src_tag == Literal)
VG_(printf)("%s%c $0x%x, %s\n",
nameGrp2(gregOfRM(modrm)), nameISize(sz),
orig_src_val, dis_buf);
else
VG_(printf)("%s%c %s, %s\n",
nameGrp2(gregOfRM(modrm)), nameISize(sz),
nameIReg(1,orig_src_val),
dis_buf);
}
}
return eip;
}
/* Group 8 extended opcodes (but BT/BTS/BTC/BTR only). */
static
Addr dis_Grp8_BT ( UCodeBlock* cb,
UChar sorb,
Addr eip, UChar modrm,
Int am_sz, Int sz, UInt src_val )
{
# define MODIFY_t2_AND_SET_CARRY_FLAG \
/* t2 is the value to be op'd on. Copy to t_fetched, then \
modify t2, if non-BT. */ \
uInstr2(cb, MOV, 4, TempReg, t2, TempReg, t_fetched); \
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t_mask); \
uLiteral(cb, v_mask); \
switch (gregOfRM(modrm)) { \
case 4: /* BT */ break; \
case 5: /* BTS */ \
uInstr2(cb, OR, sz, TempReg, t_mask, TempReg, t2); break; \
case 6: /* BTR */ \
uInstr2(cb, AND, sz, TempReg, t_mask, TempReg, t2); break; \
case 7: /* BTC */ \
uInstr2(cb, XOR, sz, TempReg, t_mask, TempReg, t2); break; \
} \
/* Copy relevant bit from t_fetched into carry flag. */ \
uInstr2(cb, SHR, sz, Literal, 0, TempReg, t_fetched); \
uLiteral(cb, src_val); \
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t_mask); \
uLiteral(cb, 1); \
uInstr2(cb, AND, sz, TempReg, t_mask, TempReg, t_fetched); \
uInstr1(cb, NEG, sz, TempReg, t_fetched); \
setFlagsFromUOpcode(cb, NEG);
/* src_val denotes a d8.
And eip on entry points at the modrm byte. */
Int t1, t2, t_fetched, t_mask;
UInt pair;
Char dis_buf[50];
UInt v_mask;
/* There is no 1-byte form of this instruction, AFAICS. */
vg_assert(sz == 2 || sz == 4);
/* Limit src_val -- the bit offset -- to something within a word.
The Intel docs say that literal offsets larger than a word are
masked in this way. */
switch (sz) {
case 2: src_val &= 15; break;
case 4: src_val &= 31; break;
default: VG_(core_panic)("dis_Grp8_BT: invalid size");
}
/* Invent a mask suitable for the operation. */
switch (gregOfRM(modrm)) {
case 4: /* BT */ v_mask = 0; break;
case 5: /* BTS */ v_mask = 1 << src_val; break;
case 6: /* BTR */ v_mask = ~(1 << src_val); break;
case 7: /* BTC */ v_mask = 1 << src_val; break;
/* If this needs to be extended, probably simplest to make a
new function to handle the other cases (0 .. 3). The
Intel docs do however not indicate any use for 0 .. 3, so
we don't expect this to happen. */
default: VG_(core_panic)("dis_Grp8_BT");
}
/* Probably excessively paranoid. */
if (sz == 2)
v_mask &= 0x0000FFFF;
t1 = INVALID_TEMPREG;
t_fetched = newTemp(cb);
t_mask = newTemp(cb);
if (epartIsReg(modrm)) {
vg_assert(am_sz == 1);
t2 = newTemp(cb);
/* Fetch the value to be tested and modified. */
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t2);
/* Do it! */
MODIFY_t2_AND_SET_CARRY_FLAG;
/* Dump the result back, if non-BT. */
if (gregOfRM(modrm) != 4 /* BT */)
uInstr2(cb, PUT, sz, TempReg, t2, ArchReg, eregOfRM(modrm));
eip += (am_sz + 1);
DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz),
src_val, nameIReg(sz,eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf);
t1 = LOW24(pair);
t2 = newTemp(cb);
eip += HI8(pair);
eip += 1;
/* Fetch the value to be tested and modified. */
uInstr2(cb, LOAD, sz, TempReg, t1, TempReg, t2);
/* Do it! */
MODIFY_t2_AND_SET_CARRY_FLAG;
/* Dump the result back, if non-BT. */
if (gregOfRM(modrm) != 4 /* BT */) {
uInstr2(cb, STORE, sz, TempReg, t2, TempReg, t1);
}
DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz),
src_val, dis_buf);
}
return eip;
# undef MODIFY_t2_AND_SET_CARRY_FLAG
}
/* Generate ucode to multiply the value in EAX/AX/AL by the register
specified by the ereg of modrm, and park the result in
EDX:EAX/DX:AX/AX. */
static void codegen_mul_A_D_Reg ( UCodeBlock* cb, Int sz,
UChar modrm, Bool signed_multiply )
{
Int helper = signed_multiply
?
(sz==1 ? VGOFF_(helper_imul_8_16)
: (sz==2 ? VGOFF_(helper_imul_16_32)
: VGOFF_(helper_imul_32_64)))
:
(sz==1 ? VGOFF_(helper_mul_8_16)
: (sz==2 ? VGOFF_(helper_mul_16_32)
: VGOFF_(helper_mul_32_64)));
Int t1 = newTemp(cb);
Int ta = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr1(cb, PUSH, sz, TempReg, t1);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, ta);
uInstr1(cb, PUSH, sz, TempReg, ta);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsOC, FlagsSZAP);
if (sz > 1) {
uInstr1(cb, POP, sz, TempReg, t1);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EDX);
uInstr1(cb, POP, sz, TempReg, t1);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EAX);
} else {
uInstr1(cb, CLEAR, 0, Lit16, 4);
uInstr1(cb, POP, 2, TempReg, t1);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
}
uInstr0(cb, CALLM_E, 0);
DIP("%s%c %s\n", signed_multiply ? "imul" : "mul",
nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
}
/* Generate ucode to multiply the value in EAX/AX/AL by the value in
TempReg temp, and park the result in EDX:EAX/DX:AX/AX. */
static void codegen_mul_A_D_Temp ( UCodeBlock* cb, Int sz,
Int temp, Bool signed_multiply,
UChar* dis_buf )
{
Int helper = signed_multiply
?
(sz==1 ? VGOFF_(helper_imul_8_16)
: (sz==2 ? VGOFF_(helper_imul_16_32)
: VGOFF_(helper_imul_32_64)))
:
(sz==1 ? VGOFF_(helper_mul_8_16)
: (sz==2 ? VGOFF_(helper_mul_16_32)
: VGOFF_(helper_mul_32_64)));
Int t1 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, sz, TempReg, temp);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, t1);
uInstr1(cb, PUSH, sz, TempReg, t1);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsOC, FlagsSZAP);
if (sz > 1) {
uInstr1(cb, POP, sz, TempReg, t1);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EDX);
uInstr1(cb, POP, sz, TempReg, t1);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EAX);
} else {
uInstr1(cb, CLEAR, 0, Lit16, 4);
uInstr1(cb, POP, 2, TempReg, t1);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
}
uInstr0(cb, CALLM_E, 0);
DIP("%s%c %s\n", signed_multiply ? "imul" : "mul",
nameISize(sz), dis_buf);
}
/* Group 3 extended opcodes. */
static
Addr dis_Grp3 ( UCodeBlock* cb,
UChar sorb,
Int sz, Addr eip )
{
Int t1, t2;
UInt pair, d32;
UChar modrm;
UChar dis_buf[50];
t1 = t2 = INVALID_TEMPREG;
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
t1 = newTemp(cb);
switch (gregOfRM(modrm)) {
case 0: { /* TEST */
Int tao = newTemp(cb);
eip++; d32 = getUDisp(sz, eip); eip += sz;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, tao);
uLiteral(cb, d32);
uInstr2(cb, AND, sz, TempReg, tao, TempReg, t1);
setFlagsFromUOpcode(cb, AND);
DIP("test%c $0x%x, %s\n",
nameISize(sz), d32, nameIReg(sz, eregOfRM(modrm)));
break;
}
case 2: /* NOT */
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr1(cb, NOT, sz, TempReg, t1);
setFlagsFromUOpcode(cb, NOT);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("not%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 3: /* NEG */
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr1(cb, NEG, sz, TempReg, t1);
setFlagsFromUOpcode(cb, NEG);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("neg%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 4: /* MUL */
eip++;
codegen_mul_A_D_Reg ( cb, sz, modrm, False );
break;
case 5: /* IMUL */
eip++;
codegen_mul_A_D_Reg ( cb, sz, modrm, True );
break;
case 6: /* DIV */
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
codegen_div ( cb, sz, t1, False );
DIP("div%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
case 7: /* IDIV */
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
codegen_div ( cb, sz, t1, True );
DIP("idiv%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
break;
default:
VG_(printf)(
"unhandled Grp3(R) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp3");
}
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t2 = LOW24(pair);
t1 = newTemp(cb);
eip += HI8(pair);
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: { /* TEST */
Int tao = newTemp(cb);
d32 = getUDisp(sz, eip); eip += sz;
uInstr2(cb, MOV, sz, Literal, 0, TempReg, tao);
uLiteral(cb, d32);
uInstr2(cb, AND, sz, TempReg, tao, TempReg, t1);
setFlagsFromUOpcode(cb, AND);
DIP("test%c $0x%x, %s\n", nameISize(sz), d32, dis_buf);
break;
}
case 2: /* NOT */
uInstr1(cb, NOT, sz, TempReg, t1);
setFlagsFromUOpcode(cb, NOT);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("not%c %s\n", nameISize(sz), dis_buf);
break;
case 3: /* NEG */
uInstr1(cb, NEG, sz, TempReg, t1);
setFlagsFromUOpcode(cb, NEG);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("neg%c %s\n", nameISize(sz), dis_buf);
break;
case 4: /* MUL */
codegen_mul_A_D_Temp ( cb, sz, t1, False,
dis_buf );
break;
case 5: /* IMUL */
codegen_mul_A_D_Temp ( cb, sz, t1, True, dis_buf );
break;
case 6: /* DIV */
codegen_div ( cb, sz, t1, False );
DIP("div%c %s\n", nameISize(sz), dis_buf);
break;
case 7: /* IDIV */
codegen_div ( cb, sz, t1, True );
DIP("idiv%c %s\n", nameISize(sz), dis_buf);
break;
default:
VG_(printf)(
"unhandled Grp3(M) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp3");
}
}
return eip;
}
/* Group 4 extended opcodes. */
static
Addr dis_Grp4 ( UCodeBlock* cb,
UChar sorb,
Addr eip )
{
Int t1, t2;
UInt pair;
UChar modrm;
UChar dis_buf[50];
t1 = t2 = INVALID_TEMPREG;
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
t1 = newTemp(cb);
uInstr2(cb, GET, 1, ArchReg, eregOfRM(modrm), TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: /* INC */
uInstr1(cb, INC, 1, TempReg, t1);
setFlagsFromUOpcode(cb, INC);
uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, eregOfRM(modrm));
break;
case 1: /* DEC */
uInstr1(cb, DEC, 1, TempReg, t1);
setFlagsFromUOpcode(cb, DEC);
uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, eregOfRM(modrm));
break;
default:
VG_(printf)(
"unhandled Grp4(R) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp4");
}
eip++;
DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)),
nameIReg(1, eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t2 = LOW24(pair);
t1 = newTemp(cb);
uInstr2(cb, LOAD, 1, TempReg, t2, TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: /* INC */
uInstr1(cb, INC, 1, TempReg, t1);
setFlagsFromUOpcode(cb, INC);
uInstr2(cb, STORE, 1, TempReg, t1, TempReg, t2);
break;
case 1: /* DEC */
uInstr1(cb, DEC, 1, TempReg, t1);
setFlagsFromUOpcode(cb, DEC);
uInstr2(cb, STORE, 1, TempReg, t1, TempReg, t2);
break;
default:
VG_(printf)(
"unhandled Grp4(M) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp4");
}
eip += HI8(pair);
DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)), dis_buf);
}
return eip;
}
/* Group 5 extended opcodes. */
static
Addr dis_Grp5 ( UCodeBlock* cb,
UChar sorb,
Int sz, Addr eip, Bool* isEnd )
{
Int t1, t2, t3, t4;
UInt pair;
UChar modrm;
UChar dis_buf[50];
t1 = t2 = t3 = t4 = INVALID_TEMPREG;
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: /* INC */
uInstr1(cb, INC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, INC);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
break;
case 1: /* DEC */
uInstr1(cb, DEC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, DEC);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
break;
case 2: /* call Ev */
t3 = newTemp(cb); t4 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t3);
uLiteral(cb, 4);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ESP);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t4);
uLiteral(cb, eip+1);
uInstr2(cb, STORE, 4, TempReg, t4, TempReg, t3);
jmp_treg(cb, t1);
LAST_UINSTR(cb).jmpkind = JmpCall;
*isEnd = True;
break;
case 4: /* jmp Ev */
jmp_treg(cb, t1);
*isEnd = True;
break;
default:
VG_(printf)(
"unhandled Grp5(R) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp5");
}
eip++;
DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)),
nameISize(sz), nameIReg(sz, eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t2 = LOW24(pair);
t1 = newTemp(cb);
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
switch (gregOfRM(modrm)) {
case 0: /* INC */
uInstr1(cb, INC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, INC);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
break;
case 1: /* DEC */
uInstr1(cb, DEC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, DEC);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
break;
case 2: /* call Ev */
t3 = newTemp(cb); t4 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t3);
uLiteral(cb, 4);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ESP);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t4);
uLiteral(cb, eip+HI8(pair));
uInstr2(cb, STORE, 4, TempReg, t4, TempReg, t3);
jmp_treg(cb, t1);
LAST_UINSTR(cb).jmpkind = JmpCall;
*isEnd = True;
break;
case 4: /* JMP Ev */
jmp_treg(cb, t1);
*isEnd = True;
break;
case 6: /* PUSH Ev */
t3 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t3);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ESP);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t3);
break;
default:
VG_(printf)(
"unhandled Grp5(M) case %d\n", (UInt)gregOfRM(modrm));
VG_(core_panic)("Grp5");
}
eip += HI8(pair);
DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)),
nameISize(sz), dis_buf);
}
return eip;
}
/*------------------------------------------------------------*/
/*--- Disassembling string ops (including REP prefixes) ---*/
/*------------------------------------------------------------*/
/* Code shared by all the string ops */
static
void dis_string_op_increment(UCodeBlock* cb, Int sz, Int t_inc)
{
uInstr0 (cb, CALLM_S, 0);
uInstr2 (cb, MOV, 4, Literal, 0, TempReg, t_inc);
uLiteral(cb, 0);
uInstr1 (cb, PUSH, 4, TempReg, t_inc);
uInstr1 (cb, CALLM, 0, Lit16, VGOFF_(helper_get_dirflag));
uFlagsRWU(cb, FlagD, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t_inc);
uInstr0(cb, CALLM_E, 0);
if (sz == 4 || sz == 2) {
uInstr2(cb, SHL, 4, Literal, 0, TempReg, t_inc);
uLiteral(cb, sz/2);
}
}
static
void dis_string_op( UCodeBlock* cb, void (*dis_OP)( UCodeBlock*, Int, Int ),
Int sz, Char* name, UChar sorb )
{
Int t_inc = newTemp(cb);
vg_assert(sorb == 0);
dis_string_op_increment(cb, sz, t_inc);
dis_OP( cb, sz, t_inc );
DIP("%s%c\n", name, nameISize(sz));
}
static
void dis_MOVS ( UCodeBlock* cb, Int sz, Int t_inc )
{
Int tv = newTemp(cb); /* value being copied */
Int td = newTemp(cb); /* EDI */
Int ts = newTemp(cb); /* ESI */
uInstr2(cb, GET, 4, ArchReg, R_EDI, TempReg, td);
uInstr2(cb, GET, 4, ArchReg, R_ESI, TempReg, ts);
uInstr2(cb, LOAD, sz, TempReg, ts, TempReg, tv);
uInstr2(cb, STORE,sz, TempReg, tv, TempReg, td);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, td);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, ts);
uInstr2(cb, PUT, 4, TempReg, td, ArchReg, R_EDI);
uInstr2(cb, PUT, 4, TempReg, ts, ArchReg, R_ESI);
}
static
void dis_LODS ( UCodeBlock* cb, Int sz, Int t_inc )
{
Int ta = newTemp(cb); /* EAX */
Int ts = newTemp(cb); /* ESI */
uInstr2(cb, GET, 4, ArchReg, R_ESI, TempReg, ts);
uInstr2(cb, LOAD, sz, TempReg, ts, TempReg, ta);
uInstr2(cb, PUT, sz, TempReg, ta, ArchReg, R_EAX);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, ts);
uInstr2(cb, PUT, 4, TempReg, ts, ArchReg, R_ESI);
}
static
void dis_STOS ( UCodeBlock* cb, Int sz, Int t_inc )
{
Int ta = newTemp(cb); /* EAX */
Int td = newTemp(cb); /* EDI */
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, ta);
uInstr2(cb, GET, 4, ArchReg, R_EDI, TempReg, td);
uInstr2(cb, STORE, sz, TempReg, ta, TempReg, td);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, td);
uInstr2(cb, PUT, 4, TempReg, td, ArchReg, R_EDI);
}
static
void dis_CMPS ( UCodeBlock* cb, Int sz, Int t_inc )
{
Int tdv = newTemp(cb); /* (EDI) */
Int tsv = newTemp(cb); /* (ESI) */
Int td = newTemp(cb); /* EDI */
Int ts = newTemp(cb); /* ESI */
uInstr2(cb, GET, 4, ArchReg, R_EDI, TempReg, td);
uInstr2(cb, GET, 4, ArchReg, R_ESI, TempReg, ts);
uInstr2(cb, LOAD, sz, TempReg, td, TempReg, tdv);
uInstr2(cb, LOAD, sz, TempReg, ts, TempReg, tsv);
uInstr2(cb, SUB, sz, TempReg, tdv, TempReg, tsv);
setFlagsFromUOpcode(cb, SUB);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, td);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, ts);
uInstr2(cb, PUT, 4, TempReg, td, ArchReg, R_EDI);
uInstr2(cb, PUT, 4, TempReg, ts, ArchReg, R_ESI);
}
static
void dis_SCAS ( UCodeBlock* cb, Int sz, Int t_inc )
{
Int ta = newTemp(cb); /* EAX */
Int td = newTemp(cb); /* EDI */
Int tdv = newTemp(cb); /* (EDI) */
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, ta);
uInstr2(cb, GET, 4, ArchReg, R_EDI, TempReg, td);
uInstr2(cb, LOAD, sz, TempReg, td, TempReg, tdv);
/* next uinstr kills ta, but that's ok -- don't need it again */
uInstr2(cb, SUB, sz, TempReg, tdv, TempReg, ta);
setFlagsFromUOpcode(cb, SUB);
uInstr2(cb, ADD, 4, TempReg, t_inc, TempReg, td);
uInstr2(cb, PUT, 4, TempReg, td, ArchReg, R_EDI);
}
/* Wrap the appropriate string op inside a REP/REPE/REPNE.
We assume the insn is the last one in the basic block, and so emit a jump
to the next insn, rather than just falling through. */
static
void dis_REP_op ( UCodeBlock* cb, Int cond,
void (*dis_OP)(UCodeBlock*, Int, Int),
Int sz, Addr eip, Addr eip_next, Char* name )
{
Int t_inc = newTemp(cb);
Int tc = newTemp(cb); /* ECX */
dis_string_op_increment(cb, sz, t_inc);
uInstr2 (cb, GET, 4, ArchReg, R_ECX, TempReg, tc);
uInstr2 (cb, JIFZ, 4, TempReg, tc, Literal, 0);
uLiteral(cb, eip_next);
uInstr1 (cb, DEC, 4, TempReg, tc);
uInstr2 (cb, PUT, 4, TempReg, tc, ArchReg, R_ECX);
dis_OP (cb, sz, t_inc);
if (cond == CondAlways) {
jmp_lit(cb, eip);
} else {
jcc_lit(cb, eip, cond);
jmp_lit(cb, eip_next);
}
DIP("%s%c\n", name, nameISize(sz));
}
/*------------------------------------------------------------*/
/*--- Arithmetic, etc. ---*/
/*------------------------------------------------------------*/
/* (I)MUL E, G. Supplied eip points to the modR/M byte. */
static
Addr dis_mul_E_G ( UCodeBlock* cb,
UChar sorb,
Int size,
Addr eip0,
Bool signed_multiply )
{
Int ta, tg, te;
UChar dis_buf[50];
UChar rm = getUChar(eip0);
ta = INVALID_TEMPREG;
te = newTemp(cb);
tg = newTemp(cb);
if (epartIsReg(rm)) {
vg_assert(signed_multiply);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tg);
uInstr2(cb, MUL, size, ArchReg, eregOfRM(rm), TempReg, tg);
setFlagsFromUOpcode(cb, MUL);
uInstr2(cb, PUT, size, TempReg, tg, ArchReg, gregOfRM(rm));
DIP("%smul%c %s, %s\n", signed_multiply ? "i" : "",
nameISize(size),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+eip0;
} else {
UInt pair;
vg_assert(signed_multiply);
pair = disAMode ( cb, sorb, eip0, dis_buf );
ta = LOW24(pair);
uInstr2(cb, LOAD, size, TempReg, ta, TempReg, te);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tg);
uInstr2(cb, MUL, size, TempReg, te, TempReg, tg);
setFlagsFromUOpcode(cb, MUL);
uInstr2(cb, PUT, size, TempReg, tg, ArchReg, gregOfRM(rm));
DIP("%smul%c %s, %s\n", signed_multiply ? "i" : "",
nameISize(size),
dis_buf, nameIReg(size,gregOfRM(rm)));
return HI8(pair)+eip0;
}
}
/* IMUL I * E -> G. Supplied eip points to the modR/M byte. */
static
Addr dis_imul_I_E_G ( UCodeBlock* cb,
UChar sorb,
Int size,
Addr eip,
Int litsize )
{
Int ta, te, tl, d32;
Char dis_buf[50];
UChar rm = getUChar(eip);
ta = INVALID_TEMPREG;
te = newTemp(cb);
tl = newTemp(cb);
if (epartIsReg(rm)) {
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, te);
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
ta = LOW24(pair);
uInstr2(cb, LOAD, size, TempReg, ta, TempReg, te);
eip += HI8(pair);
}
d32 = getSDisp(litsize,eip);
eip += litsize;
uInstr2(cb, MOV, size, Literal, 0, TempReg, tl);
uLiteral(cb, d32);
uInstr2(cb, MUL, size, TempReg, tl, TempReg, te);
setFlagsFromUOpcode(cb, MUL);
uInstr2(cb, PUT, size, TempReg, te, ArchReg, gregOfRM(rm));
DIP("imul %d, %s, %s\n", d32,
( epartIsReg(rm) ? nameIReg(size,eregOfRM(rm)) : dis_buf ),
nameIReg(size,gregOfRM(rm)) );
return eip;
}
/* Handle FPU insns which read/write memory. On entry, eip points to
the second byte of the insn (the one following D8 .. DF). */
static
Addr dis_fpu_mem ( UCodeBlock* cb,
UChar sorb,
Int size, Bool is_write,
Addr eip, UChar first_byte )
{
Int ta;
UInt pair;
UChar dis_buf[50];
UChar second_byte = getUChar(eip);
vg_assert(second_byte < 0xC0);
second_byte &= 0x38;
pair = disAMode ( cb, sorb, eip, dis_buf );
ta = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, is_write ? FPU_W : FPU_R, size,
Lit16,
(((UShort)first_byte) << 8) | ((UShort)second_byte),
TempReg, ta);
if (is_write) {
DIP("fpu_w_%d 0x%x:0x%x, %s\n",
size, (UInt)first_byte, (UInt)second_byte, dis_buf );
} else {
DIP("fpu_r_%d %s, 0x%x:0x%x\n",
size, dis_buf, (UInt)first_byte, (UInt)second_byte );
}
return eip;
}
/* Handle FPU insns which don't reference memory. On entry, eip points to
the second byte of the insn (the one following D8 .. DF). */
static
Addr dis_fpu_no_mem ( UCodeBlock* cb, Addr eip, UChar first_byte )
{
Bool sets_ZCP = False;
Bool uses_ZCP = False;
UChar second_byte = getUChar(eip); eip++;
vg_assert(second_byte >= 0xC0);
/* Does the insn write any integer condition codes (%EIP) ? */
if (first_byte == 0xDB && second_byte >= 0xF0 && second_byte <= 0xF7) {
/* FCOMI */
sets_ZCP = True;
} else
if (first_byte == 0xDF && second_byte >= 0xF0 && second_byte <= 0xF7) {
/* FCOMIP */
sets_ZCP = True;
} else
if (first_byte == 0xDB && second_byte >= 0xE8 && second_byte <= 0xEF) {
/* FUCOMI */
sets_ZCP = True;
} else
if (first_byte == 0xDF && second_byte >= 0xE8 && second_byte <= 0xEF) {
/* FUCOMIP */
sets_ZCP = True;
}
/* Dually, does the insn read any integer condition codes (%EIP) ? */
if (first_byte == 0xDA && second_byte >= 0xC0 && second_byte <= 0xDF) {
/* FCMOVB %st(n), %st(0)
FCMOVE %st(n), %st(0)
FCMOVBE %st(n), %st(0)
FCMOVU %st(n), %st(0)
*/
uses_ZCP = True;
} else
if (first_byte == 0xDB && second_byte >= 0xC0 && second_byte <= 0xDF) {
/* FCMOVNB %st(n), %st(0)
FCMOVNE %st(n), %st(0)
FCMOVNBE %st(n), %st(0)
FCMOVNU %st(n), %st(0)
*/
uses_ZCP = True;
}
uInstr1(cb, FPU, 0,
Lit16,
(((UShort)first_byte) << 8) | ((UShort)second_byte)
);
if (uses_ZCP) {
/* VG_(printf)("!!! --- FPU insn which reads %EFLAGS\n"); */
uFlagsRWU(cb, FlagsZCP, FlagsEmpty, FlagsEmpty);
vg_assert(!sets_ZCP);
}
if (sets_ZCP) {
/* VG_(printf)("!!! --- FPU insn which writes %EFLAGS\n"); */
uFlagsRWU(cb, FlagsEmpty, FlagsZCP, FlagsEmpty);
vg_assert(!uses_ZCP);
}
DIP("fpu 0x%x:0x%x%s%s\n", (UInt)first_byte, (UInt)second_byte,
uses_ZCP ? " -rZCP" : "",
sets_ZCP ? " -wZCP" : "" );
return eip;
}
/* Top-level handler for all FPU insns. On entry, eip points to the
second byte of the insn. */
static
Addr dis_fpu ( UCodeBlock* cb,
UChar sorb,
UChar first_byte, Addr eip )
{
const Bool rd = False;
const Bool wr = True;
UChar second_byte = getUChar(eip);
/* Handle FSTSW %ax specially. */
if (first_byte == 0xDF && second_byte == 0xE0) {
Int t1 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t1);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_fstsw_AX) );
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 2, TempReg, t1);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
uInstr0(cb, CALLM_E, 0);
DIP("fstsw %%ax\n");
eip++;
return eip;
}
/* Handle all non-memory FPU ops simply. */
if (second_byte >= 0xC0)
return dis_fpu_no_mem ( cb, eip, first_byte );
/* The insn references memory; need to determine
whether it reads or writes, and at what size. */
switch (first_byte) {
case 0xD8:
switch ((second_byte >> 3) & 7) {
case 0: /* FADDs */
case 1: /* FMULs */
case 2: /* FCOMs */
case 3: /* FCOMPs */
case 4: /* FSUBs */
case 5: /* FSUBRs */
case 6: /* FDIVs */
case 7: /* FDIVRs */
return dis_fpu_mem(cb, sorb, 4, rd, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xD9:
switch ((second_byte >> 3) & 7) {
case 0: /* FLDs */
return dis_fpu_mem(cb, sorb, 4, rd, eip, first_byte);
case 2: /* FSTs */
case 3: /* FSTPs */
return dis_fpu_mem(cb, sorb, 4, wr, eip, first_byte);
case 4: /* FLDENV */
return dis_fpu_mem(cb, sorb, 28, rd, eip, first_byte);
case 5: /* FLDCW */
return dis_fpu_mem(cb, sorb, 2, rd, eip, first_byte);
case 6: /* FNSTENV */
return dis_fpu_mem(cb, sorb, 28, wr, eip, first_byte);
case 7: /* FSTCW */
/* HACK! FSTCW actually writes 2 bytes, not 4. glibc
gets lots of moaning in __floor() if we do the right
thing here. */
/* Later ... hack disabled .. we do do the Right Thing. */
return dis_fpu_mem(cb, sorb, /*4*/ 2, wr, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDA:
switch ((second_byte >> 3) & 7) {
case 0: /* FIADD dword-integer */
case 1: /* FIMUL dword-integer */
case 2: /* FICOM dword-integer */
case 3: /* FICOMP dword-integer */
case 4: /* FISUB dword-integer */
case 5: /* FISUBR dword-integer */
case 6: /* FIDIV dword-integer */
case 7: /* FIDIVR dword-integer */
return dis_fpu_mem(cb, sorb, 4, rd, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDB:
switch ((second_byte >> 3) & 7) {
case 0: /* FILD dword-integer */
return dis_fpu_mem(cb, sorb, 4, rd, eip, first_byte);
case 2: /* FIST dword-integer */
return dis_fpu_mem(cb, sorb, 4, wr, eip, first_byte);
case 3: /* FISTPl */
return dis_fpu_mem(cb, sorb, 4, wr, eip, first_byte);
case 5: /* FLD extended-real */
return dis_fpu_mem(cb, sorb, 10, rd, eip, first_byte);
case 7: /* FSTP extended-real */
return dis_fpu_mem(cb, sorb, 10, wr, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDC:
switch ((second_byte >> 3) & 7) {
case 0: /* FADD double-real */
case 1: /* FMUL double-real */
case 2: /* FCOM double-real */
case 3: /* FCOMP double-real */
case 4: /* FSUB double-real */
case 5: /* FSUBR double-real */
case 6: /* FDIV double-real */
case 7: /* FDIVR double-real */
return dis_fpu_mem(cb, sorb, 8, rd, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDD:
switch ((second_byte >> 3) & 7) {
case 0: /* FLD double-real */
return dis_fpu_mem(cb, sorb, 8, rd, eip, first_byte);
case 2: /* FST double-real */
case 3: /* FSTP double-real */
return dis_fpu_mem(cb, sorb, 8, wr, eip, first_byte);
case 4: /* FRSTOR */
return dis_fpu_mem(cb, sorb, 108, rd, eip, first_byte);
case 6: /* FSAVE */
return dis_fpu_mem(cb, sorb, 108, wr, eip, first_byte);
case 7: /* FSTSW */
return dis_fpu_mem(cb, sorb, 2, wr, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDE:
switch ((second_byte >> 3) & 7) {
case 0: /* FIADD word-integer */
case 1: /* FIMUL word-integer */
case 2: /* FICOM word-integer */
case 3: /* FICOMP word-integer */
case 4: /* FISUB word-integer */
case 5: /* FISUBR word-integer */
case 6: /* FIDIV word-integer */
case 7: /* FIDIVR word-integer */
return dis_fpu_mem(cb, sorb, 2, rd, eip, first_byte);
default:
goto unhandled;
}
break;
case 0xDF:
switch ((second_byte >> 3) & 7) {
case 0: /* FILD word-integer */
return dis_fpu_mem(cb, sorb, 2, rd, eip, first_byte);
case 2: /* FIST word-integer */
return dis_fpu_mem(cb, sorb, 2, wr, eip, first_byte);
case 3: /* FISTP word-integer */
return dis_fpu_mem(cb, sorb, 2, wr, eip, first_byte);
case 4: /* FBLD extended-real */
return dis_fpu_mem(cb, sorb, 10, rd, eip, first_byte);
case 5: /* FILD qword-integer */
return dis_fpu_mem(cb, sorb, 8, rd, eip, first_byte);
case 6: /* FBSTP extended-real */
return dis_fpu_mem(cb, sorb, 10, wr, eip, first_byte);
case 7: /* FISTP qword-integer */
return dis_fpu_mem(cb, sorb, 8, wr, eip, first_byte);
default:
goto unhandled;
}
break;
default: goto unhandled;
}
unhandled:
VG_(printf)("dis_fpu: unhandled memory case 0x%2x:0x%2x(%d)\n",
(UInt)first_byte, (UInt)second_byte,
(UInt)((second_byte >> 3) & 7) );
VG_(core_panic)("dis_fpu: unhandled opcodes");
}
/* Double length left shifts. Apparently only required in v-size (no
b- variant). */
static
Addr dis_SHLRD_Gv_Ev ( UCodeBlock* cb,
UChar sorb,
Addr eip, UChar modrm,
Int sz,
Tag amt_tag, UInt amt_val,
Bool left_shift )
{
/* amt_tag and amt_val denote either ArchReg(%CL) or a Literal.
And eip on entry points at the modrm byte. */
Int t, t1, t2, ta, helper;
UInt pair;
UChar dis_buf[50];
vg_assert(sz == 2 || sz == 4);
helper = left_shift
? (sz==4 ? VGOFF_(helper_shldl)
: VGOFF_(helper_shldw))
: (sz==4 ? VGOFF_(helper_shrdl)
: VGOFF_(helper_shrdw));
/* Get the amount to be shifted by onto the stack. */
t = newTemp(cb);
t1 = newTemp(cb);
t2 = newTemp(cb);
if (amt_tag == ArchReg) {
vg_assert(amt_val == R_CL);
uInstr2(cb, GET, 1, ArchReg, amt_val, TempReg, t);
} else {
uInstr2(cb, MOV, 1, Literal, 0, TempReg, t);
uLiteral(cb, amt_val);
}
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 1, TempReg, t);
/* The E-part is the destination; this is shifted. The G-part
supplies bits to be shifted into the E-part, but is not
changed. */
uInstr2(cb, GET, sz, ArchReg, gregOfRM(modrm), TempReg, t1);
uInstr1(cb, PUSH, sz, TempReg, t1);
if (epartIsReg(modrm)) {
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t2);
uInstr1(cb, PUSH, sz, TempReg, t2);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsOSZACP, FlagsEmpty);
uInstr1(cb, POP, sz, TempReg, t);
uInstr2(cb, PUT, sz, TempReg, t, ArchReg, eregOfRM(modrm));
DIP("sh%cd%c %%cl, %s, %s\n",
( left_shift ? 'l' : 'r' ), nameISize(sz),
nameIReg(sz, gregOfRM(modrm)), nameIReg(sz, eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
ta = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, LOAD, sz, TempReg, ta, TempReg, t2);
uInstr1(cb, PUSH, sz, TempReg, t2);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagsOSZACP, FlagsEmpty);
uInstr1(cb, POP, sz, TempReg, t);
uInstr2(cb, STORE, sz, TempReg, t, TempReg, ta);
DIP("sh%cd%c %%cl, %s, %s\n", ( left_shift ? 'l' : 'r' ),
nameISize(sz), nameIReg(sz, gregOfRM(modrm)), dis_buf);
}
if (amt_tag == Literal) eip++;
uInstr1(cb, CLEAR, 0, Lit16, 8);
uInstr0(cb, CALLM_E, 0);
return eip;
}
/* Handle BT/BTS/BTR/BTC Gv, Ev. Apparently b-size is not
required. */
typedef enum { BtOpNone, BtOpSet, BtOpReset, BtOpComp } BtOp;
static Char* nameBtOp ( BtOp op )
{
switch (op) {
case BtOpNone: return "";
case BtOpSet: return "s";
case BtOpReset: return "r";
case BtOpComp: return "c";
default: VG_(core_panic)("nameBtOp");
}
}
static
Addr dis_bt_G_E ( UCodeBlock* cb,
UChar sorb,
Int sz, Addr eip, BtOp op )
{
UInt pair;
Char dis_buf[50];
UChar modrm;
Int t_addr, t_bitno, t_mask, t_fetched, t_esp, temp, lit;
vg_assert(sz == 2 || sz == 4);
t_addr = t_bitno = t_mask
= t_fetched = t_esp = temp = INVALID_TEMPREG;
t_fetched = newTemp(cb);
t_bitno = newTemp(cb);
temp = newTemp(cb);
lit = newTemp(cb);
modrm = getUChar(eip);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(modrm), TempReg, t_bitno);
if (sz == 2) {
uInstr1(cb, WIDEN, 4, TempReg, t_bitno);
uWiden(cb, 2, False);
}
if (epartIsReg(modrm)) {
eip++;
/* Get it onto the client's stack. */
t_esp = newTemp(cb);
t_addr = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t_esp);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t_esp);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t_esp, ArchReg, R_ESP);
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, temp);
uInstr2(cb, STORE, sz, TempReg, temp, TempReg, t_esp);
/* Make t_addr point at it. */
uInstr2(cb, MOV, 4, TempReg, t_esp, TempReg, t_addr);
/* Mask out upper bits of the shift amount, since we're doing a
reg. */
uInstr2(cb, MOV, 4, Literal, 0, TempReg, lit);
uLiteral(cb, sz == 4 ? 31 : 15);
uInstr2(cb, AND, 4, TempReg, lit, TempReg, t_bitno);
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t_addr = LOW24(pair);
eip += HI8(pair);
}
/* At this point: t_addr points to the address being operated on. If
it was a reg, we will have pushed it onto the client's stack.
t_bitno is the bit number, suitable masked in the case of a reg. */
/* Now the main sequence. */
uInstr2(cb, MOV, 4, TempReg, t_bitno, TempReg, temp);
uInstr2(cb, SAR, 4, Literal, 0, TempReg, temp);
uLiteral(cb, 3);
uInstr2(cb, ADD, 4, TempReg, temp, TempReg, t_addr);
/* t_addr now holds effective address */
uInstr2(cb, MOV, 4, Literal, 0, TempReg, lit);
uLiteral(cb, 7);
uInstr2(cb, AND, 4, TempReg, lit, TempReg, t_bitno);
/* t_bitno contains offset of bit within byte */
if (op != BtOpNone) {
t_mask = newTemp(cb);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_mask);
uLiteral(cb, 1);
uInstr2(cb, SHL, 4, TempReg, t_bitno, TempReg, t_mask);
}
/* t_mask is now a suitable byte mask */
uInstr2(cb, LOAD, 1, TempReg, t_addr, TempReg, t_fetched);
if (op != BtOpNone) {
uInstr2(cb, MOV, 4, TempReg, t_fetched, TempReg, temp);
switch (op) {
case BtOpSet:
uInstr2(cb, OR, 4, TempReg, t_mask, TempReg, temp);
break;
case BtOpComp:
uInstr2(cb, XOR, 4, TempReg, t_mask, TempReg, temp);
break;
case BtOpReset:
uInstr1(cb, NOT, 4, TempReg, t_mask);
uInstr2(cb, AND, 4, TempReg, t_mask, TempReg, temp);
break;
default:
VG_(core_panic)("dis_bt_G_E");
}
uInstr2(cb, STORE, 1, TempReg, temp, TempReg, t_addr);
}
/* Side effect done; now get selected bit into Carry flag */
uInstr2(cb, SHR, 4, TempReg, t_bitno, TempReg, t_fetched);
/* at bit 0 of fetched */
uInstr2(cb, MOV, 4, Literal, 0, TempReg, lit);
uLiteral(cb, 1);
uInstr2(cb, AND, 4, TempReg, lit, TempReg, t_fetched);
/* t_fetched is now 1 or 0 */
/* NEG is a handy way to convert zero/nonzero into the carry
flag. */
uInstr1(cb, NEG, 4, TempReg, t_fetched);
setFlagsFromUOpcode(cb, NEG);
/* t_fetched is now in carry flag */
/* Move reg operand from stack back to reg */
if (epartIsReg(modrm)) {
/* t_esp still points at it. */
uInstr2(cb, LOAD, sz, TempReg, t_esp, TempReg, temp);
uInstr2(cb, PUT, sz, TempReg, temp, ArchReg, eregOfRM(modrm));
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t_esp);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t_esp, ArchReg, R_ESP);
}
DIP("bt%s%c %s, %s\n",
nameBtOp(op), nameISize(sz), nameIReg(sz, gregOfRM(modrm)),
( epartIsReg(modrm) ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ) );
return eip;
}
/* Handle BSF/BSR. Only v-size seems necessary. */
static
Addr dis_bs_E_G ( UCodeBlock* cb,
UChar sorb,
Int sz, Addr eip, Bool fwds )
{
Int t, t1, ta, helper;
UInt pair;
Char dis_buf[50];
UChar modrm;
Bool isReg;
vg_assert(sz == 2 || sz == 4);
if (fwds)
helper = sz == 2 ? VGOFF_(helper_bsfw) : VGOFF_(helper_bsfl);
else
helper = sz == 2 ? VGOFF_(helper_bsrw) : VGOFF_(helper_bsrl);
modrm = getUChar(eip);
t1 = newTemp(cb);
t = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(modrm), TempReg, t1);
uInstr1(cb, PUSH, sz, TempReg, t1);
isReg = epartIsReg(modrm);
if (isReg) {
eip++;
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t);
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
ta = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, LOAD, sz, TempReg, ta, TempReg, t);
}
DIP("bs%c%c %s, %s\n",
fwds ? 'f' : 'r', nameISize(sz),
( isReg ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ),
nameIReg(sz, gregOfRM(modrm)));
uInstr1(cb, PUSH, sz, TempReg, t);
uInstr1(cb, CALLM, 0, Lit16, helper);
uFlagsRWU(cb, FlagsEmpty, FlagZ, FlagsOSACP);
uInstr1(cb, POP, sz, TempReg, t);
uInstr1(cb, POP, sz, TempReg, t);
uInstr2(cb, PUT, sz, TempReg, t, ArchReg, gregOfRM(modrm));
uInstr0(cb, CALLM_E, 0);
return eip;
}
static
void codegen_xchg_eAX_Reg ( UCodeBlock* cb, Int sz, Int reg )
{
Int t1, t2;
vg_assert(sz == 2 || sz == 4);
t1 = newTemp(cb);
t2 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, t1);
uInstr2(cb, GET, sz, ArchReg, reg, TempReg, t2);
uInstr2(cb, PUT, sz, TempReg, t2, ArchReg, R_EAX);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, reg);
DIP("xchg%c %s, %s\n",
nameISize(sz), nameIReg(sz, R_EAX), nameIReg(sz, reg));
}
static
void codegen_SAHF ( UCodeBlock* cb )
{
Int t = newTemp(cb);
Int t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t);
/* Mask out parts of t not corresponding to %AH. This stops the
instrumenter complaining if they are undefined. Otherwise, the
instrumenter would check all 32 bits of t at the PUSH, which
could be the cause of incorrect warnings. Discovered by Daniel
Veillard <veillard@redhat.com>.
*/
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, 0x0000FF00);
uInstr2(cb, AND, 4, TempReg, t2, TempReg, t);
/* We deliberately don't set the condition codes here, since this
AND is purely internal to Valgrind and nothing to do with the
client's state. */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 4, TempReg, t);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_SAHF));
uFlagsRWU(cb, FlagsEmpty, FlagsSZACP, FlagsEmpty);
uInstr1(cb, CLEAR, 0, Lit16, 4);
uInstr0(cb, CALLM_E, 0);
}
static
void codegen_LAHF ( UCodeBlock* cb )
{
Int t = newTemp(cb);
/* Pushed arg is ignored, it just provides somewhere to put the
return value. */
uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 4, TempReg, t);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_LAHF));
uFlagsRWU(cb, FlagsSZACP, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t);
uInstr0(cb, CALLM_E, 0);
/* At this point, the %ah sub-register in %eax has been updated,
the rest is the same, so do a PUT of the whole thing. */
uInstr2(cb, PUT, 4, TempReg, t, ArchReg, R_EAX);
}
static
Addr dis_cmpxchg_G_E ( UCodeBlock* cb,
UChar sorb,
Int size,
Addr eip0 )
{
Int ta, junk, dest, src, acc;
UChar dis_buf[50];
UChar rm;
rm = getUChar(eip0);
acc = newTemp(cb);
src = newTemp(cb);
dest = newTemp(cb);
junk = newTemp(cb);
/* Only needed to get gcc's dataflow analyser off my back. */
ta = INVALID_TEMPREG;
if (epartIsReg(rm)) {
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, dest);
eip0++;
DIP("cmpxchg%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)),
nameIReg(size,eregOfRM(rm)) );
} else {
UInt pair = disAMode ( cb, sorb, eip0, dis_buf );
ta = LOW24(pair);
uInstr2(cb, LOAD, size, TempReg, ta, TempReg, dest);
eip0 += HI8(pair);
DIP("cmpxchg%c %s,%s\n", nameISize(size),
nameIReg(size,gregOfRM(rm)), dis_buf);
}
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, src);
uInstr2(cb, GET, size, ArchReg, R_EAX, TempReg, acc);
uInstr2(cb, MOV, 4, TempReg, acc, TempReg, junk);
uInstr2(cb, SUB, size, TempReg, dest, TempReg, junk);
setFlagsFromUOpcode(cb, SUB);
uInstr2(cb, CMOV, 4, TempReg, src, TempReg, dest);
uCond(cb, CondZ);
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, CMOV, 4, TempReg, dest, TempReg, acc);
uCond(cb, CondNZ);
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, PUT, size, TempReg, acc, ArchReg, R_EAX);
if (epartIsReg(rm)) {
uInstr2(cb, PUT, size, TempReg, dest, ArchReg, eregOfRM(rm));
} else {
uInstr2(cb, STORE, size, TempReg, dest, TempReg, ta);
}
return eip0;
}
static
Addr dis_cmpxchg8b ( UCodeBlock* cb,
UChar sorb,
Addr eip0 )
{
Int tal, tah, junkl, junkh, destl, desth, srcl, srch, accl, acch;
UChar dis_buf[50];
UChar rm;
UInt pair;
rm = getUChar(eip0);
accl = newTemp(cb);
acch = newTemp(cb);
srcl = newTemp(cb);
srch = newTemp(cb);
destl = newTemp(cb);
desth = newTemp(cb);
junkl = newTemp(cb);
junkh = newTemp(cb);
vg_assert(!epartIsReg(rm));
pair = disAMode ( cb, sorb, eip0, dis_buf );
tal = LOW24(pair);
tah = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, tal, TempReg, tah);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, tah);
uLiteral(cb, 4);
eip0 += HI8(pair);
DIP("cmpxchg8b %s\n", dis_buf);
uInstr0(cb, CALLM_S, 0);
uInstr2(cb, LOAD, 4, TempReg, tah, TempReg, desth);
uInstr1(cb, PUSH, 4, TempReg, desth);
uInstr2(cb, LOAD, 4, TempReg, tal, TempReg, destl);
uInstr1(cb, PUSH, 4, TempReg, destl);
uInstr2(cb, GET, 4, ArchReg, R_ECX, TempReg, srch);
uInstr1(cb, PUSH, 4, TempReg, srch);
uInstr2(cb, GET, 4, ArchReg, R_EBX, TempReg, srcl);
uInstr1(cb, PUSH, 4, TempReg, srcl);
uInstr2(cb, GET, 4, ArchReg, R_EDX, TempReg, acch);
uInstr1(cb, PUSH, 4, TempReg, acch);
uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, accl);
uInstr1(cb, PUSH, 4, TempReg, accl);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_cmpxchg8b));
uFlagsRWU(cb, FlagsEmpty, FlagZ, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, accl);
uInstr2(cb, PUT, 4, TempReg, accl, ArchReg, R_EAX);
uInstr1(cb, POP, 4, TempReg, acch);
uInstr2(cb, PUT, 4, TempReg, acch, ArchReg, R_EDX);
uInstr1(cb, POP, 4, TempReg, srcl);
uInstr2(cb, PUT, 4, TempReg, srcl, ArchReg, R_EBX);
uInstr1(cb, POP, 4, TempReg, srch);
uInstr2(cb, PUT, 4, TempReg, srch, ArchReg, R_ECX);
uInstr1(cb, POP, 4, TempReg, destl);
uInstr2(cb, STORE, 4, TempReg, destl, TempReg, tal);
uInstr1(cb, POP, 4, TempReg, desth);
uInstr2(cb, STORE, 4, TempReg, desth, TempReg, tah);
uInstr0(cb, CALLM_E, 0);
return eip0;
}
/* Handle conditional move instructions of the form
cmovcc E(reg-or-mem), G(reg)
E(src) is reg-or-mem
G(dst) is reg.
If E is reg, --> GET %E, tmps
GET %G, tmpd
CMOVcc tmps, tmpd
PUT tmpd, %G
If E is mem --> (getAddr E) -> tmpa
LD (tmpa), tmps
GET %G, tmpd
CMOVcc tmps, tmpd
PUT tmpd, %G
*/
static
Addr dis_cmov_E_G ( UCodeBlock* cb,
UChar sorb,
Int size,
Condcode cond,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
Int tmps = newTemp(cb);
Int tmpd = newTemp(cb);
if (epartIsReg(rm)) {
uInstr2(cb, GET, size, ArchReg, eregOfRM(rm), TempReg, tmps);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmpd);
uInstr2(cb, CMOV, 4, TempReg, tmps, TempReg, tmpd);
uCond(cb, cond);
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, PUT, size, TempReg, tmpd, ArchReg, gregOfRM(rm));
DIP("cmov%c%s %s,%s\n", nameISize(size),
VG_(name_UCondcode)(cond),
nameIReg(size,eregOfRM(rm)),
nameIReg(size,gregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf );
Int tmpa = LOW24(pair);
uInstr2(cb, LOAD, size, TempReg, tmpa, TempReg, tmps);
uInstr2(cb, GET, size, ArchReg, gregOfRM(rm), TempReg, tmpd);
uInstr2(cb, CMOV, 4, TempReg, tmps, TempReg, tmpd);
uCond(cb, cond);
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, PUT, size, TempReg, tmpd, ArchReg, gregOfRM(rm));
DIP("cmov%c%s %s,%s\n", nameISize(size),
VG_(name_UCondcode)(cond),
dis_buf,
nameIReg(size,gregOfRM(rm)));
return HI8(pair)+eip0;
}
}
static
Addr dis_xadd_G_E ( UCodeBlock* cb,
UChar sorb,
Int sz,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
Int tmpd = newTemp(cb);
Int tmpt = newTemp(cb);
if (epartIsReg(rm)) {
uInstr2(cb, GET, sz, ArchReg, eregOfRM(rm), TempReg, tmpd);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(rm), TempReg, tmpt);
uInstr2(cb, ADD, sz, TempReg, tmpd, TempReg, tmpt);
setFlagsFromUOpcode(cb, ADD);
uInstr2(cb, PUT, sz, TempReg, tmpd, ArchReg, gregOfRM(rm));
uInstr2(cb, PUT, sz, TempReg, tmpt, ArchReg, eregOfRM(rm));
DIP("xadd%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(rm)), nameIReg(sz,eregOfRM(rm)));
return 1+eip0;
} else {
UInt pair = disAMode ( cb, sorb, eip0, dis_buf );
Int tmpa = LOW24(pair);
uInstr2(cb, LOAD, sz, TempReg, tmpa, TempReg, tmpd);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(rm), TempReg, tmpt);
uInstr2(cb, ADD, sz, TempReg, tmpd, TempReg, tmpt);
setFlagsFromUOpcode(cb, ADD);
uInstr2(cb, STORE, sz, TempReg, tmpt, TempReg, tmpa);
uInstr2(cb, PUT, sz, TempReg, tmpd, ArchReg, gregOfRM(rm));
DIP("xadd%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(rm)), dis_buf);
return HI8(pair)+eip0;
}
}
/* Moves of Ew into a segment register.
mov Ew, Sw meaning
mov reg-or-mem, reg
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
Ew(src) is reg-or-mem
Sw(dst) is seg reg.
If E is reg, --> GETw %Ew, tmpv
PUTSEG tmpv, %Sw
If E is mem --> (getAddr E) -> tmpa
LDw (tmpa), tmpb
PUTSEG tmpb, %Sw
*/
static
Addr dis_mov_Ew_Sw ( UCodeBlock* cb,
UChar sorb,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmpv = newTemp(cb);
uInstr2(cb, GET, 2, ArchReg, eregOfRM(rm), TempReg, tmpv);
uInstr2(cb, PUTSEG, 2, TempReg, tmpv, ArchRegS, gregOfRM(rm));
DIP("movw %s,%s\n", nameIReg(2,eregOfRM(rm)), nameSReg(gregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf );
Int tmpa = LOW24(pair);
Int tmpb = newTemp(cb);
uInstr2(cb, LOAD, 2, TempReg, tmpa, TempReg, tmpb);
uInstr2(cb, PUTSEG, 2, TempReg, tmpb, ArchRegS, gregOfRM(rm));
DIP("movw %s,%s\n", dis_buf,nameSReg(gregOfRM(rm)));
return HI8(pair)+eip0;
}
}
/* Moves of a segment register to Ew.
mov Sw, Ew meaning
mov reg, reg-or-mem
Is passed the a ptr to the modRM byte, and the data size. Returns
the address advanced completely over this instruction.
Sw(src) is seg reg.
Ew(dst) is reg-or-mem
If E is reg, --> GETSEG %Sw, tmp
PUTW tmp, %Ew
If E is mem, --> (getAddr E) -> tmpa
GETSEG %Sw, tmpv
STW tmpv, (tmpa)
*/
static
Addr dis_mov_Sw_Ew ( UCodeBlock* cb,
UChar sorb,
Addr eip0 )
{
UChar rm = getUChar(eip0);
UChar dis_buf[50];
if (epartIsReg(rm)) {
Int tmpv = newTemp(cb);
uInstr2(cb, GETSEG, 2, ArchRegS, gregOfRM(rm), TempReg, tmpv);
uInstr2(cb, PUT, 2, TempReg, tmpv, ArchReg, eregOfRM(rm));
DIP("movw %s,%s\n", nameSReg(gregOfRM(rm)), nameIReg(2,eregOfRM(rm)));
return 1+eip0;
}
/* E refers to memory */
{
UInt pair = disAMode ( cb, sorb, eip0, dis_buf );
Int tmpa = LOW24(pair);
Int tmpv = newTemp(cb);
uInstr2(cb, GETSEG, 2, ArchRegS, gregOfRM(rm), TempReg, tmpv);
uInstr2(cb, STORE, 2, TempReg, tmpv, TempReg, tmpa);
DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), dis_buf);
return HI8(pair)+eip0;
}
}
/* Simple MMX operations, either
op (src)mmxreg, (dst)mmxreg
or
op (src)address, (dst)mmxreg
opc is the byte following the 0x0F prefix.
*/
static
Addr dis_MMXop_regmem_to_reg ( UCodeBlock* cb,
UChar sorb,
Addr eip,
UChar opc,
Char* name,
Bool show_granularity )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
Bool isReg = epartIsReg(modrm);
if (isReg) {
eip++;
uInstr1(cb, MMX2, 0,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm) );
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, MMX2_MemRd, 8,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, tmpa);
}
DIP("%s%s %s, %s\n",
name, show_granularity ? nameMMXGran(opc & 3) : (Char*)"",
( isReg ? nameMMXReg(eregOfRM(modrm)) : dis_buf ),
nameMMXReg(gregOfRM(modrm)) );
return eip;
}
/* Simple MMX operations, either
op (src)mmxreg, (dst)mmxreg
or
op (src)address, (dst)mmxreg
opc is the byte following the 0x0F prefix.
*/
static
Addr dis_MMXop_regmem_to_reg_Imm8 ( UCodeBlock* cb,
UChar sorb,
Addr eip,
UChar opc,
Char* name,
Bool show_granularity )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
UChar imm8;
Bool isReg = epartIsReg(modrm);
if (isReg) {
eip++;
imm8 = getUChar(eip);
eip++;
uInstr2(cb, MMX3, 0,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
Lit16,
((UShort)imm8));
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
imm8 = getUChar(eip);
eip++;
uInstr3(cb, MMX2a1_MemRd, 8,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
Lit16,
((UShort)imm8),
TempReg, tmpa);
}
DIP("%s%s %s, %s, $%d\n",
name, show_granularity ? nameMMXGran(opc & 3) : (Char*)"",
( isReg ? nameMMXReg(eregOfRM(modrm)) : dis_buf ),
nameMMXReg(gregOfRM(modrm)), (Int)imm8 );
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
3 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE3_reg_or_mem ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2,
UChar opc3 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
Bool isReg = epartIsReg(modrm);
if (isReg) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE4, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (((UShort)opc3) << 8) | (UShort)modrm );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE3a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (((UShort)(opc3)) << 8) | ((UShort)modrm),
TempReg, tmpa);
}
DIP("%s %s, %s\n",
name,
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)) );
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
2 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE2_reg_or_mem ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
Bool isReg = epartIsReg(modrm);
if (isReg) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (UShort)modrm );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE2a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (UShort)modrm,
TempReg, tmpa);
}
DIP("%s %s, %s\n",
name,
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)) );
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
2 opcode bytes and an 8-bit immediate after the amode.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE2_reg_or_mem_Imm8 ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
UChar imm8;
Bool isReg = epartIsReg(modrm);
if (isReg) {
/* Completely internal SSE insn. */
eip++;
imm8 = getUChar(eip);
uInstr2(cb, SSE4, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (((UShort)modrm) << 8) | (UShort)imm8 );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
imm8 = getUChar(eip);
eip++;
uInstr3(cb, SSE2a1_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (((UShort)(modrm)) << 8) | ((UShort)imm8),
TempReg, tmpa);
}
DIP("%s %s, %s, $%d\n",
name, ( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)), (Int)imm8 );
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
3 opcode bytes and an 8-bit immediate after the amode.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE3_reg_or_mem_Imm8 ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2,
UChar opc3 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
UChar imm8;
Bool isReg = epartIsReg(modrm);
if (isReg) {
/* Completely internal SSE insn. */
eip++;
imm8 = getUChar(eip);
uInstr3(cb, SSE5, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (((UShort)opc3) << 8) | (UShort)modrm,
Lit16, (UShort)imm8 );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
imm8 = getUChar(eip);
eip++;
uInstr3(cb, SSE3a1_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (((UShort)(opc3)) << 8) | ((UShort)modrm),
TempReg, tmpa);
uLiteral(cb, imm8);
}
DIP("%s %s, %s, $%d\n",
name, ( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)), (Int)imm8 );
return eip;
}
/* Disassemble an SSE insn which is either a simple reg-reg move or a
move between registers and memory. Supplied eip points to the
first address mode byte.
*/
static
Addr dis_SSE3_load_store_or_mov ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Bool is_store,
Char* name,
UChar insn0,
UChar insn1,
UChar insn2 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
Bool isReg = epartIsReg(modrm);
UInt pair;
Int t1;
if (isReg) {
/* Completely internal; we can issue SSE4. */
eip++;
uInstr2(cb, SSE4, 0, /* ignore sz for internal ops */
Lit16, (((UShort)insn0) << 8) | (UShort)insn1,
Lit16, (((UShort)insn2) << 8) | (UShort)modrm );
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t1 = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, is_store ? SSE3a_MemWr : SSE3a_MemRd, sz,
Lit16, (((UShort)insn0) << 8) | (UShort)insn1,
Lit16, (((UShort)insn2) << 8) | (UShort)modrm,
TempReg, t1 );
}
if (is_store) {
DIP("%s %s, %s\n",
name,
nameXMMReg(gregOfRM(modrm)),
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ) );
} else {
DIP("%s %s, %s\n",
name,
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)) );
}
return eip;
}
/* Disassemble an SSE insn which is either a simple reg-reg move or a
move between registers and memory. Supplied eip points to the
first address mode byte. */
static
Addr dis_SSE2_load_store_or_mov ( UCodeBlock* cb,
UChar sorb,
Addr eip,
Int sz,
Bool is_store,
Char* name,
UChar insn0,
UChar insn1 )
{
Char dis_buf[50];
UChar modrm = getUChar(eip);
Bool isReg = epartIsReg(modrm);
UInt pair;
Int t1;
if (isReg) {
/* Completely internal; we can issue SSE3. */
eip++;
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)insn0) << 8) | (UShort)insn1,
Lit16, (UShort)modrm );
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t1 = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, is_store ? SSE2a_MemWr : SSE2a_MemRd, sz,
Lit16, (((UShort)insn0) << 8) | (UShort)insn1,
Lit16, (UShort)modrm,
TempReg, t1 );
}
if (is_store) {
DIP("%s %s, %s\n",
name,
nameXMMReg(gregOfRM(modrm)),
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ) );
} else {
DIP("%s %s, %s\n",
name,
( isReg ? nameXMMReg(eregOfRM(modrm)) : dis_buf ),
nameXMMReg(gregOfRM(modrm)) );
}
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)mmxreg
or
op (src)address, (dst)mmxreg
2 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE2_to_MMX ( UCodeBlock *cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2 )
{
UChar dis_buf[50];
UChar modrm = getUChar(eip);
if (epartIsReg(modrm)) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (UShort)modrm );
DIP("%s %s, %s\n",
name, nameXMMReg(eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)) );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE2a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, ((UShort)modrm),
TempReg, tmpa);
DIP("%s %s, %s\n", name, dis_buf, nameMMXReg(gregOfRM(modrm)));
}
return eip;
}
/* Simple SSE operations, either
op (src)mmxreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
2 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE2_from_MMX ( UCodeBlock *cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2 )
{
UChar dis_buf[50];
UChar modrm = getUChar(eip);
if (epartIsReg(modrm)) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (UShort)modrm );
DIP("%s %s, %s\n",
name, nameMMXReg(eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm)) );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE2a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, ((UShort)modrm),
TempReg, tmpa);
DIP("%s %s, %s\n", name, dis_buf, nameXMMReg(gregOfRM(modrm)));
}
return eip;
}
/* Simple SSE operations, either
op (src)xmmreg, (dst)mmxreg
or
op (src)address, (dst)mmxreg
3 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE3_to_MMX ( UCodeBlock *cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2,
UChar opc3 )
{
UChar dis_buf[50];
UChar modrm = getUChar(eip);
if (epartIsReg(modrm)) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE4, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (((UShort)opc3) << 8) | (UShort)modrm );
DIP("%s %s, %s\n",
name, nameXMMReg(eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)) );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE3a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (((UShort)(opc3)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("%s %s, %s\n", name, dis_buf, nameMMXReg(gregOfRM(modrm)));
}
return eip;
}
/* Simple SSE operations, either
op (src)mmxreg, (dst)xmmreg
or
op (src)address, (dst)xmmreg
3 opcode bytes.
Supplied eip points to the first address mode byte.
*/
static
Addr dis_SSE3_from_MMX ( UCodeBlock *cb,
UChar sorb,
Addr eip,
Int sz,
Char* name,
UChar opc1,
UChar opc2,
UChar opc3 )
{
UChar dis_buf[50];
UChar modrm = getUChar(eip);
if (epartIsReg(modrm)) {
/* Completely internal SSE insn. */
uInstr2(cb, SSE4, 0, /* ignore sz for internal ops */
Lit16, (((UShort)opc1) << 8) | (UShort)opc2,
Lit16, (((UShort)opc3) << 8) | (UShort)modrm );
DIP("%s %s, %s\n",
name, nameMMXReg(eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm)) );
eip++;
} else {
UInt pair = disAMode ( cb, sorb, eip, dis_buf );
Int tmpa = LOW24(pair);
eip += HI8(pair);
uInstr3(cb, SSE3a_MemRd, sz,
Lit16, (((UShort)(opc1)) << 8) | ((UShort)opc2),
Lit16, (((UShort)(opc3)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("%s %s, %s\n", name, dis_buf, nameXMMReg(gregOfRM(modrm)));
}
return eip;
}
static
void dis_push_segreg ( UCodeBlock* cb, UInt sreg, Int sz )
{
Int t1 = newTemp(cb), t2 = newTemp(cb);
vg_assert(sz == 2 || sz == 4);
uInstr2(cb, GETSEG, 2, ArchRegS, sreg, TempReg, t1);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, STORE, 2, TempReg, t1, TempReg, t2);
DIP("push %s\n", VG_(name_of_seg_reg)(sreg));
}
static
void dis_pop_segreg ( UCodeBlock* cb, UInt sreg, Int sz )
{
Int t1 = newTemp(cb), t2 = newTemp(cb);
vg_assert(sz == 2 || sz == 4);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, LOAD, 2, TempReg, t2, TempReg, t1);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, PUTSEG, 2, TempReg, t1, ArchRegS, sreg);
DIP("pop %s\n", VG_(name_of_seg_reg)(sreg));
}
static
void dis_ret ( UCodeBlock* cb, UInt d32 )
{
Int t1 = newTemp(cb), t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t1);
uInstr2(cb, LOAD, 4, TempReg, t1, TempReg, t2);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t1);
uLiteral(cb, 4+d32);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
jmp_treg(cb, t2);
LAST_UINSTR(cb).jmpkind = JmpRet;
}
/*------------------------------------------------------------*/
/*--- Disassembling entire basic blocks ---*/
/*------------------------------------------------------------*/
/* Disassemble a single instruction into ucode, returning the updated
eip, and setting *isEnd to True if this is the last insn in a basic
block. Also do debug printing if necessary. */
static Addr disInstr ( UCodeBlock* cb, Addr eip, Bool* isEnd )
{
UChar opc, modrm, abyte;
UInt d32, pair;
Int t1, t2, t3, t4;
UChar dis_buf[50];
Int am_sz, d_sz;
static Char loc_buf[M_VG_ERRTXT];
/* Holds eip at the start of the insn, so that we can print
consistent error messages for unimplemented insns. */
UChar* eip_start = (UChar*)eip;
/* sz denotes the nominal data-op size of the insn; we change it to
2 if an 0x66 prefix is seen */
Int sz = 4;
/* sorb holds the segment-override-prefix byte, if any. Zero if no
prefix has been seen, else one of {0x26, 0x3E, 0x64, 0x65}
indicating the prefix. */
UChar sorb = 0;
Int first_uinstr = cb->used;
*isEnd = False;
t1 = t2 = t3 = t4 = INVALID_TEMPREG;
DIP("\t0x%x: ", eip);
/* Spot the client-request magic sequence. */
{
UChar* myeip = (UChar*)eip;
/* Spot this:
C1C01D roll $29, %eax
C1C003 roll $3, %eax
C1C81B rorl $27, %eax
C1C805 rorl $5, %eax
C1C00D roll $13, %eax
C1C013 roll $19, %eax
*/
if (myeip[ 0] == 0xC1 && myeip[ 1] == 0xC0 && myeip[ 2] == 0x1D &&
myeip[ 3] == 0xC1 && myeip[ 4] == 0xC0 && myeip[ 5] == 0x03 &&
myeip[ 6] == 0xC1 && myeip[ 7] == 0xC8 && myeip[ 8] == 0x1B &&
myeip[ 9] == 0xC1 && myeip[10] == 0xC8 && myeip[11] == 0x05 &&
myeip[12] == 0xC1 && myeip[13] == 0xC0 && myeip[14] == 0x0D &&
myeip[15] == 0xC1 && myeip[16] == 0xC0 && myeip[17] == 0x13
) {
eip += 18;
jmp_lit(cb, eip);
LAST_UINSTR(cb).jmpkind = JmpClientReq;
*isEnd = True;
DIP("%%edx = client_request ( %%eax )\n");
return eip;
}
}
/* Skip a LOCK prefix. */
if (getUChar(eip) == 0xF0) {
/* VG_(printf)("LOCK LOCK LOCK LOCK LOCK \n"); */
uInstr0(cb, LOCK, 0);
eip++;
}
/* Detect operand-size overrides. */
if (getUChar(eip) == 0x66) { sz = 2; eip++; };
/* segment override prefixes come after the operand-size override,
it seems */
switch (getUChar(eip)) {
case 0x3E: /* %DS: */
case 0x26: /* %ES: */
case 0x64: /* %FS: */
case 0x65: /* %GS: */
sorb = getUChar(eip); eip++;
break;
case 0x2E: /* %CS: */
/* 2E prefix on a conditional branch instruction is a
branch-prediction hint, which can safely be ignored. */
{
UChar op1 = getUChar(eip+1);
UChar op2 = getUChar(eip+2);
if ((op1 >= 0x70 && op1 <= 0x7F)
|| (op1 == 0xE3)
|| (op1 == 0x0F && op2 >= 0x80 && op2 <= 0x8F)) {
sorb = getUChar(eip); eip++;
break;
}
}
VG_(unimplemented)("x86 segment override (SEG=CS) prefix");
/*NOTREACHED*/
break;
case 0x36: /* %SS: */
VG_(unimplemented)("x86 segment override (SEG=SS) prefix");
/*NOTREACHED*/
break;
default:
break;
}
/* ---------------------------------------------------- */
/* --- The SSE/SSE2 decoder. --- */
/* ---------------------------------------------------- */
/* If it looks like this CPU might support SSE, try decoding SSE
insns. */
if (VG_(have_ssestate)) {
UChar* insn = (UChar*)eip;
/* FXSAVE/FXRSTOR m32 -- load/store the FPU/MMX/SSE state. */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& (!epartIsReg(insn[2]))
&& (gregOfRM(insn[2]) == 1 || gregOfRM(insn[2]) == 0) ) {
Bool store = gregOfRM(insn[2]) == 0;
vg_assert(sz == 4);
pair = disAMode ( cb, sorb, eip+2, dis_buf );
t1 = LOW24(pair);
eip += 2+HI8(pair);
uInstr3(cb, store ? SSE2a_MemWr : SSE2a_MemRd, 512,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (UShort)insn[2],
TempReg, t1 );
DIP("fx%s %s\n", store ? "save" : "rstor", dis_buf );
goto decode_success;
}
/* STMXCSR/LDMXCSR m32 -- load/store the MXCSR register. */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& (!epartIsReg(insn[2]))
&& (gregOfRM(insn[2]) == 3 || gregOfRM(insn[2]) == 2) ) {
Bool store = gregOfRM(insn[2]) == 3;
vg_assert(sz == 4);
pair = disAMode ( cb, sorb, eip+2, dis_buf );
t1 = LOW24(pair);
eip += 2+HI8(pair);
uInstr3(cb, store ? SSE2a_MemWr : SSE2a_MemRd, 4,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (UShort)insn[2],
TempReg, t1 );
DIP("%smxcsr %s\n", store ? "st" : "ld", dis_buf );
goto decode_success;
}
/* LFENCE/MFENCE -- flush pending operations to memory */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& (epartIsReg(insn[2]))
&& (gregOfRM(insn[2]) >= 5 && gregOfRM(insn[2]) <= 6))
{
vg_assert(sz == 4);
eip += 3;
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)0x0F) << 8) | (UShort)0xAE,
Lit16, (UShort)insn[2] );
DIP("%sfence\n", gregOfRM(insn[2]) == 5 ? "l" : "m");
goto decode_success;
}
/* CLFLUSH -- flush cache line */
if (insn[0] == 0x0F && insn[1] == 0xAE
&& (!epartIsReg(insn[2]))
&& (gregOfRM(insn[2]) == 7))
{
vg_assert(sz == 4);
pair = disAMode ( cb, sorb, eip+2, dis_buf );
t1 = LOW24(pair);
eip += 2+HI8(pair);
uInstr3(cb, SSE2a_MemRd, 0, /* ignore sz for internal ops */
Lit16, (((UShort)0x0F) << 8) | (UShort)0xAE,
Lit16, (UShort)insn[2],
TempReg, t1 );
DIP("clflush %s\n", dis_buf);
goto decode_success;
}
/* CVTPI2PS (0x0F,0x2A) -- mm/m64, xmm */
/* CVTPI2PD (0x66,0x0F,0x2A) -- mm/m64, xmm */
if (insn[0] == 0x0F && insn[1] == 0x2A) {
if (sz == 4) {
eip = dis_SSE2_from_MMX
( cb, sorb, eip+2, 8, "cvtpi2ps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_from_MMX
( cb, sorb, eip+2, 8, "cvtpi2pd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* CVTTPS2PI (0x0F,0x2C) -- xmm/m64, mm */
/* CVTPS2PI (0x0F,0x2D) -- xmm/m64, mm */
/* CVTTPD2PI (0x66,0x0F,0x2C) -- xmm/m128, mm */
/* CVTPD2PI (0x66,0x0F,0x2D) -- xmm/m128, mm */
if (insn[0] == 0x0F
&& (insn[1] == 0x2C || insn[1] == 0x2D)) {
if (sz == 4) {
eip = dis_SSE2_to_MMX
( cb, sorb, eip+2, 8, "cvt{t}ps2pi",
insn[0], insn[1] );
} else {
eip = dis_SSE3_to_MMX
( cb, sorb, eip+2, 16, "cvt{t}pd2pi",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* CVTTSD2SI (0xF2,0x0F,0x2C) -- convert a double-precision float
value in memory or xmm reg to int and put it in an ireg.
Truncate. */
/* CVTTSS2SI (0xF3,0x0F,0x2C) -- convert a single-precision float
value in memory or xmm reg to int and put it in an ireg.
Truncate. */
/* CVTSD2SI (0xF2,0x0F,0x2D) -- convert a double-precision float
value in memory or xmm reg to int and put it in an ireg. Round
as per MXCSR. */
/* CVTSS2SI (0xF3,0x0F,0x2D) -- convert a single-precision float
value in memory or xmm reg to int and put it in an ireg. Round
as per MXCSR. */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F
&& (insn[2] == 0x2C || insn[2] == 0x2D)) {
vg_assert(sz == 4);
modrm = insn[3];
if (epartIsReg(modrm)) {
/* We're moving a value in an xmm reg to an ireg. */
eip += 4;
t1 = newTemp(cb);
/* sz is 4 for all 4 insns. */
vg_assert(epartIsReg(modrm));
uInstr3(cb, SSE3g_RegWr, 4,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (((UShort)insn[2]) << 8) | (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("cvt{t}s{s,d}2si %s, %s\n",
nameXMMReg(eregOfRM(modrm)), nameIReg(4,gregOfRM(modrm)) );
} else {
/* So, we're reading memory and writing an ireg. This calls
for the ultra-horrible SSE3ag_MemRd_RegWr uinstr. We
can't do it in a roundabout route because it does some
kind of conversion on the way, which we need to have
happen too. So our only choice is to re-emit a suitably
rehashed version of the instruction. */
/* Destination ireg is GREG. Address goes as EREG as
usual. */
t1 = newTemp(cb); /* t1 holds value on its way to ireg */
pair = disAMode ( cb, sorb, eip+3, dis_buf );
t2 = LOW24(pair); /* t2 holds addr */
eip += 3+HI8(pair);
uInstr2(cb, SSE3ag_MemRd_RegWr, insn[0]==0xF2 ? 8 : 4,
TempReg, t2, /* address */
TempReg, t1 /* dest */);
uLiteral(cb , (((UInt)insn[0]) << 24)
| (((UInt)insn[1]) << 16)
| (((UInt)insn[2]) << 8)
| ((UInt)modrm) );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("cvt{t}s{s,d}2si %s, %s\n",
dis_buf, nameIReg(4,gregOfRM(modrm)) );
}
goto decode_success;
}
/* CVTSI2SS -- convert int reg, or int value in memory, to low 4
bytes of XMM reg. */
/* CVTSI2SD -- convert int reg, or int value in memory, to low 8
bytes of XMM reg. */
if ((insn[0] == 0xF3 /*CVTSI2SS*/ || insn[0] == 0xF2 /* CVTSI2SD*/)
&& insn[1] == 0x0F && insn[2] == 0x2A) {
Char* s_or_d = insn[0]==0xF3 ? "s" : "d";
vg_assert(sz == 4);
modrm = insn[3];
t1 = newTemp(cb);
if (epartIsReg(modrm)) {
uInstr2(cb, GET, 4, ArchReg, eregOfRM(modrm), TempReg, t1);
vg_assert(epartIsReg(modrm));
uInstr3(cb, SSE3e_RegRd, 4,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (((UShort)insn[2]) << 8) | (UShort)modrm,
TempReg, t1 );
eip += 4;
DIP("cvtsi2s%s %s, %s\n", s_or_d,
nameIReg(4,eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip+3, dis_buf );
t2 = LOW24(pair);
eip += 3+HI8(pair);
uInstr3(cb, SSE3a_MemRd, 4,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (((UShort)insn[2]) << 8) | (UShort)modrm,
TempReg, t2 );
DIP("cvtsi2s%s %s, %s\n",
s_or_d, dis_buf, nameXMMReg(gregOfRM(modrm)));
}
goto decode_success;
}
/* CVTPS2PD -- convert two packed floats to two packed doubles. */
/* 0x66: CVTPD2PS -- convert two packed doubles to two packed floats. */
if (insn[0] == 0x0F && insn[1] == 0x5A) {
vg_assert(sz == 2 || sz == 4);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 8, "cvtps2pd",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "cvtpd2ps",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* CVTSS2SD -- convert one single float to double. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5A) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 4, "cvtss2sd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CVTSD2SS -- convert one single double. to float. */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5A) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 8, "cvtsd2ss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CVTDQ2PS -- convert four ints to four packed floats. */
/* 0x66: CVTPS2DQ -- convert four packed floats to four ints. */
if (insn[0] == 0x0F && insn[1] == 0x5B) {
vg_assert(sz == 2 || sz == 4);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "cvtdq2ps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "cvtps2dq",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* CVTPD2DQ -- convert two packed doubles to two ints. */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xE6) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 8, "cvtpd2dq",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* CVTTPD2DQ -- convert two packed doubles to two ints with truncation. */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xE6) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 8, "cvttpd2dq",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CVTDQ2PD -- convert two ints to two packed doubles. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xE6) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 8, "cvtdq2pd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CVTTPS2DQ -- convert four packed floats to four ints with truncation. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5B) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 16, "cvttps2dq",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CMPSS -- compare scalar floats. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xC2) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+3, 8, "cmpss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* CMPSD -- compare scalar doubles. */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xC2) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+3, 8, "cmpsd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* sz==4: CMPPS -- compare packed floats */
/* sz==2: CMPPD -- compare packed doubles */
if (insn[0] == 0x0F && insn[1] == 0xC2) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem_Imm8 ( cb, sorb, eip+2, 16, "cmpps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+2, 16, "cmppd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* PSHUFD */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0x70) {
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+2, 16,
"pshufd",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* PSHUFLW */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x70) {
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+3, 16,
"pshuflw",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* PSHUFHW */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x70) {
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+3, 16,
"pshufhw",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* SHUFPD */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC6) {
eip = dis_SSE3_reg_or_mem_Imm8 ( cb, sorb, eip+2, 16, "shufpd",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* SHUFPS */
if (insn[0] == 0x0F && insn[1] == 0xC6) {
vg_assert(sz == 4);
eip = dis_SSE2_reg_or_mem_Imm8 ( cb, sorb, eip+2, 16, "shufps",
insn[0], insn[1] );
goto decode_success;
}
/* 0xF2: MULSD */
/* 0xF3: MULSS -- multiply low 4 bytes of XMM reg. */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x59) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "mulss" : "mulsd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MULPS */
/* 0x66: MULPD */
if (insn[0] == 0x0F && insn[1] == 0x59) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "mulps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "mulpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* 0xF2: DIVSD */
/* 0xF3: DIVSS -- divide low 4 bytes of XMM reg. */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x5E) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "divsd" : "divss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* DIVPS */
/* 0x66: DIVPD */
if (insn[0] == 0x0F && insn[1] == 0x5E) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "divps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "divpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* 0xF2: SUBSD */
/* 0xF3: SUBSS */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x5C) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "subsd" : "subss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* SUBPS */
/* 0x66: SUBPD */
if (insn[0] == 0x0F && insn[1] == 0x5C) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "subps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "subpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* 0xF2: ADDSD */
/* 0xF3: ADDSS */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x58) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "addsd" : "addss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* ADDPS */
/* 0x66: ADDPD */
if (insn[0] == 0x0F && insn[1] == 0x58) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "addps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "addpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* 0xF2: MINSD */
/* 0xF3: MINSS */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x5D) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "minsd" : "minss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MINPS */
/* 0x66: MINPD */
if (insn[0] == 0x0F && insn[1] == 0x5D) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "minps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "minpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* 0xF3: MAXSD */
/* 0xF3: MAXSS */
if ((insn[0] == 0xF2 || insn[0] == 0xF3)
&& insn[1] == 0x0F && insn[2] == 0x5F) {
Bool sz8 = insn[0] == 0xF2;
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, sz8 ? 8 : 4,
sz8 ? "maxsd" : "maxss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MAXPS */
/* 0x66: MAXPD */
if (insn[0] == 0x0F && insn[1] == 0x5F) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "maxps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "maxpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* RCPPS -- reciprocal of packed floats */
if (insn[0] == 0x0F && insn[1] == 0x53) {
vg_assert(sz == 4);
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "rcpps",
insn[0], insn[1] );
goto decode_success;
}
/* XORPS */
/* 0x66: XORPD (src)xmmreg-or-mem, (dst)xmmreg */
if (insn[0] == 0x0F && insn[1] == 0x57) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "xorps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "xorpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* ANDPS */
/* 0x66: ANDPD (src)xmmreg-or-mem, (dst)xmmreg */
if (insn[0] == 0x0F && insn[1] == 0x54) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "andps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "andpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* ORPS */
/* 0x66: ORPD (src)xmmreg-or-mem, (dst)xmmreg */
if (insn[0] == 0x0F && insn[1] == 0x56) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "orps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "orpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* PXOR (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xEF) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pxor",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* PAND (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xDB) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pand",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* PANDN (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xDF) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pandn",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* POR (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xEB) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "por",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xDA: PMINUB(src)xmmreg-or-mem, (dst)xmmreg */
/* 0xEA: PMINSW(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xDA || insn[1] == 0xEA)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pmin{ub,sw}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xDE: PMAXUB(src)xmmreg-or-mem, (dst)xmmreg */
/* 0xEE: PMAXSW(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xDE || insn[1] == 0xEE)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pmax{ub,sw}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xE0: PAVGB(src)xmmreg-or-mem, (dst)xmmreg */
/* 0xE3: PAVGW(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xE0 || insn[1] == 0xE3)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pavg{b,w}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xF6: PSADBW(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xF6) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psadbw",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x60: PUNPCKLBW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x61: PUNPCKLWD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x62: PUNPCKLDQ (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x6C: PUNPCKQLQDQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x60 || insn[1] == 0x61
|| insn[1] == 0x62 || insn[1] == 0x6C)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16,
"punpckl{bw,wd,dq,qdq}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x68: PUNPCKHBW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x69: PUNPCKHWD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x6A: PUNPCKHDQ (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x6D: PUNPCKHQDQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x68 || insn[1] == 0x69
|| insn[1] == 0x6A || insn[1] == 0x6D)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16,
"punpckh{bw,wd,dq,qdq}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x14: UNPCKLPD (src)xmmreg-or-mem, (dst)xmmreg. Reads a+0
.. a+7, so we can say size 8 */
/* 0x15: UNPCKHPD (src)xmmreg-or-mem, (dst)xmmreg. Reads a+8
.. a+15, but we have no way to express this, so better say size
16. Sigh. */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x14 || insn[1] == 0x15)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2,
insn[1]==0x14 ? 8 : 16,
"unpck{l,h}pd",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x14: UNPCKLPS (src)xmmreg-or-mem, (dst)xmmreg Reads a+0
.. a+7, so we can say size 8 */
/* 0x15: UNPCKHPS (src)xmmreg-or-mem, (dst)xmmreg Reads a+8
.. a+15, but we have no way to express this, so better say size
16. Sigh. */
if (sz == 4
&& insn[0] == 0x0F
&& (insn[1] == 0x14 || insn[1] == 0x15)) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2,
insn[1]==0x14 ? 8 : 16,
"unpck{l,h}ps",
insn[0], insn[1] );
goto decode_success;
}
/* 0xFC: PADDB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xFD: PADDW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xFE: PADDD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xD4: PADDQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xFC || insn[1] == 0xFD
|| insn[1] == 0xFE || insn[1] == 0xD4)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "padd{b,w,d,q}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xEC: PADDSB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xED: PADDSW (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xEC || insn[1] == 0xED)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "padds{b,w}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xDC: PADDUSB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xDD: PADDUSW (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xDC || insn[1] == 0xDD)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "paddus{b,w}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xF8: PSUBB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xF9: PSUBW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xFA: PSUBD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xFB: PSUBQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xF8 || insn[1] == 0xF9
|| insn[1] == 0xFA || insn[1] == 0xFB)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psub{b,w,d,q}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xE8: PSUBSB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xE9: PSUBSW (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xE8 || insn[1] == 0xE9)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psubs{b,w}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xD8: PSUBUSB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xD9: PSUBUSW (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xD8 || insn[1] == 0xD9)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psubus{b,w}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xE4: PMULHUW(src)xmmreg-or-mem, (dst)xmmreg */
/* 0xE5: PMULHW(src)xmmreg-or-mem, (dst)xmmreg */
/* 0xD5: PMULLW(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xE4 || insn[1] == 0xE5 || insn[1] == 0xD5)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pmul{hu,h,l}w",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xD5: PMULUDQ(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0xF4) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pmuludq",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xF5: PMADDWD(src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& insn[1] == 0xF5) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pmaddwd",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x74: PCMPEQB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x75: PCMPEQW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x76: PCMPEQD (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x74 || insn[1] == 0x75 || insn[1] == 0x76)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pcmpeq{b,w,d}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x64: PCMPGTB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x65: PCMPGTW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x66: PCMPGTD (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x64 || insn[1] == 0x65 || insn[1] == 0x66)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "pcmpgt{b,w,d}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x63: PACKSSWB (src)xmmreg-or-mem, (dst)xmmreg */
/* 0x6B: PACKSSDW (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x63 || insn[1] == 0x6B)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "packss{wb,dw}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0x67: PACKUSWB (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& insn[1] == 0x67) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "packuswb",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xF1: PSLLW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xF2: PSLLD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xF3: PSLLQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xF1 || insn[1] == 0xF2 || insn[1] == 0xF3)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psll{b,w,d}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xD1: PSRLW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xD2: PSRLD (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xD3: PSRLQ (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xD1 || insn[1] == 0xD2 || insn[1] == 0xD3)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psrl{b,w,d}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* 0xE1: PSRAW (src)xmmreg-or-mem, (dst)xmmreg */
/* 0xE2: PSRAD (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0xE1 || insn[1] == 0xE2)) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "psra{w,d}",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* (U)COMISD (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 2
&& insn[0] == 0x0F
&& ( insn[1] == 0x2E || insn[1] == 0x2F ) ) {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 8, "{u}comisd",
0x66, insn[0], insn[1] );
vg_assert(LAST_UINSTR(cb).opcode == SSE3a_MemRd
|| LAST_UINSTR(cb).opcode == SSE4);
uFlagsRWU(cb, FlagsEmpty, FlagsOSZACP, FlagsEmpty);
goto decode_success;
}
/* (U)COMISS (src)xmmreg-or-mem, (dst)xmmreg */
if (sz == 4
&& insn[0] == 0x0F
&& ( insn[1] == 0x2E || insn[ 1 ] == 0x2F )) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 4, "{u}comiss",
insn[0], insn[1] );
vg_assert(LAST_UINSTR(cb).opcode == SSE2a_MemRd
|| LAST_UINSTR(cb).opcode == SSE3);
uFlagsRWU(cb, FlagsEmpty, FlagsOSZACP, FlagsEmpty);
goto decode_success;
}
/* MOVSD -- move 8 bytes of XMM reg to/from XMM reg or mem. */
if (insn[0] == 0xF2
&& insn[1] == 0x0F
&& (insn[2] == 0x11 || insn[2] == 0x10)) {
vg_assert(sz == 4);
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+3, 8, insn[2]==0x11, "movsd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVQ -- move 8 bytes of XMM reg to XMM reg or mem. How
does this differ from MOVSD ?? */
if (sz == 2
&& insn[0] == 0x0F
&& insn[1] == 0xD6) {
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+2, 8, True /*store*/, "movq",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* MOVQ -- move 8 bytes of XMM reg or mem to XMM reg. How
does this differ from MOVSD ?? */
if (insn[0] == 0xF3
&& insn[1] == 0x0F
&& insn[2] == 0x7E) {
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+3, 8, False /*load*/, "movq",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVDQ2Q -- move low 4 bytes of XMM reg to MMX reg. */
if (insn[0] == 0xF2
&& insn[1] == 0x0F
&& insn[2] == 0xD6) {
eip = dis_SSE3_to_MMX
( cb, sorb, eip+3, 8, "movdq2q",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVQ2DQ -- move MMX reg to low 4 bytes of XMM reg. */
if (insn[0] == 0xF3
&& insn[1] == 0x0F
&& insn[2] == 0xD6) {
eip = dis_SSE3_from_MMX
( cb, sorb, eip+3, 8, "movq2dq",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVSS -- move 4 bytes of XMM reg to/from XMM reg or mem. */
if (insn[0] == 0xF3
&& insn[1] == 0x0F
&& (insn[2] == 0x11 || insn[2] == 0x10)) {
vg_assert(sz == 4);
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+3, 4, insn[2]==0x11, "movss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* I don't understand how MOVAPD differs from MOVAPS. */
/* MOVAPD (28,29) -- aligned load/store of xmm reg, or xmm-xmm reg
move */
if (sz == 2
&& insn[0] == 0x0F && insn[1] == 0x28) {
UChar* name = "movapd";
//(insn[1] == 0x10 || insn[1] == 0x11)
// ? "movups" : "movaps";
Bool store = False; //insn[1] == 0x29 || insn[1] == 0x11;
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+2, 16, store, name,
0x66, insn[0], insn[1] );
goto decode_success;
}
/* sz==4: MOVAPS (28,29) -- aligned load/store of xmm reg, or
xmm-xmm reg move */
/* sz==4: MOVUPS (10,11) -- unaligned load/store of xmm reg, or
xmm-xmm reg move */
/* sz==2: MOVAPD (28,29) -- aligned load/store of xmm reg, or
xmm-xmm reg move */
/* sz==2: MOVUPD (10,11) -- unaligned load/store of xmm reg, or
xmm-xmm reg move */
if (insn[0] == 0x0F && (insn[1] == 0x28
|| insn[1] == 0x29
|| insn[1] == 0x10
|| insn[1] == 0x11)) {
UChar* name = (insn[1] == 0x10 || insn[1] == 0x11)
? "movups" : "movaps";
Bool store = insn[1] == 0x29 || insn[1] == 0x11;
vg_assert(sz == 2 || sz == 4);
if (sz == 4) {
eip = dis_SSE2_load_store_or_mov
( cb, sorb, eip+2, 16, store, name,
insn[0], insn[1] );
} else {
eip = dis_SSE3_load_store_or_mov
( cb, sorb, eip+2, 16, store, name,
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* MOVDQA -- aligned 16-byte load/store. */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x6F || insn[1] == 0x7F)) {
Bool is_store = insn[1]==0x7F;
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 16, is_store, "movdqa",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* MOVDQU -- unaligned 16-byte load/store. */
if (insn[0] == 0xF3
&& insn[1] == 0x0F
&& (insn[2] == 0x6F || insn[2] == 0x7F)) {
Bool is_store = insn[2]==0x7F;
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+3, 16, is_store, "movdqu",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVNTDQ -- 16-byte store with temporal hint (which we
ignore). */
if (sz == 2
&& insn[0] == 0x0F
&& insn[1] == 0xE7) {
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 16, True /* is_store */, "movntdq",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* MOVNTPS -- 16-byte store with temporal hint (which we
ignore). */
if (insn[0] == 0x0F
&& insn[1] == 0x2B) {
eip = dis_SSE2_load_store_or_mov
(cb, sorb, eip+2, 16, True /* is_store */, "movntps",
insn[0], insn[1] );
goto decode_success;
}
/* MOVNTPD -- 16-byte store with temporal hint (which we
ignore). */
if (sz == 2
&& insn[0] == 0x0F
&& insn[1] == 0x2B) {
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 16, True /* is_store */, "movntpd",
0x66, insn[0], insn[1] );
goto decode_success;
}
/* MOVD -- 4-byte move between xmmregs and (ireg or memory). */
if (sz == 2
&& insn[0] == 0x0F
&& (insn[1] == 0x6E || insn[1] == 0x7E)) {
Bool is_store = insn[1]==0x7E;
modrm = insn[2];
if (epartIsReg(modrm) && is_store) {
t1 = newTemp(cb);
uInstr3(cb, SSE3e_RegWr, 4,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("movd %s, %s\n",
nameXMMReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm)));
eip += 3;
} else
if (epartIsReg(modrm) && !is_store) {
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr3(cb, SSE3e_RegRd, 4,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
DIP("movd %s, %s\n",
nameIReg(4,eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm)));
eip += 3;
} else {
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 4, is_store, "movd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* PEXTRW from SSE register; writes ireg */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC5) {
t1 = newTemp(cb);
modrm = insn[2];
vg_assert(epartIsReg(modrm));
vg_assert((modrm & 0xC0) == 0xC0);
uInstr3(cb, SSE3g1_RegWr, 4,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
uLiteral(cb, insn[3]);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("pextrw %s, %d, %s\n",
nameXMMReg(eregOfRM(modrm)), (Int)insn[3],
nameIReg(4, gregOfRM(modrm)));
eip += 4;
goto decode_success;
}
/* PINSRW to SSE register; reads mem or ireg */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC4) {
t1 = newTemp(cb);
modrm = insn[2];
if (epartIsReg(modrm)) {
uInstr2(cb, GET, 2, ArchReg, eregOfRM(modrm), TempReg, t1);
vg_assert(epartIsReg(modrm));
uInstr3(cb, SSE3e1_RegRd, 2,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
uLiteral(cb, insn[3]);
DIP("pinsrw %s, %d, %s\n",
nameIReg(2, eregOfRM(modrm)), (Int)insn[3],
nameXMMReg(gregOfRM(modrm)));
eip += 4;
} else {
VG_(core_panic)("PINSRW mem");
}
goto decode_success;
}
/* SQRTSD: square root of scalar double. */
if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x51) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 8,
"sqrtsd",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* SQRTSS: square root of scalar float. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x51) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 4,
"sqrtss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* RSQRTSS: square root reciprocal of scalar float. */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x52) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 4,
"sqrtss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* 0xF3: RCPSS -- reciprocal of scalar float */
if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x53) {
vg_assert(sz == 4);
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+3, 4,
"rcpss",
insn[0], insn[1], insn[2] );
goto decode_success;
}
/* MOVMSKPD -- extract 2 sign bits from a xmm reg and copy them to
an ireg. Top 30 bits of ireg are set to zero. */
/* MOVMSKPS -- extract 4 sign bits from a xmm reg and copy them to
an ireg. Top 28 bits of ireg are set to zero. */
if (insn[0] == 0x0F && insn[1] == 0x50) {
vg_assert(sz == 4 || sz == 2);
modrm = insn[2];
/* Intel docs don't say anything about a memory source being
allowed here. */
vg_assert(epartIsReg(modrm));
t1 = newTemp(cb);
if (sz == 4) {
uInstr3(cb, SSE2g_RegWr, 4,
Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1],
Lit16, (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
} else {
uInstr3(cb, SSE3g_RegWr, 4,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
}
DIP("movmskp%c %s, %s\n", sz == 4 ? 's' : 'd',
nameXMMReg(eregOfRM(modrm)), nameIReg(4,gregOfRM(modrm)));
eip += 3;
goto decode_success;
}
/* ANDNPS */
/* 0x66: ANDNPD (src)xmmreg-or-mem, (dst)xmmreg */
if (insn[0] == 0x0F && insn[1] == 0x55) {
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "andnps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16, "andnpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* MOVHLPS -- move two packed floats from high quadword to low quadword */
/* MOVLPS -- load/store two packed floats to/from low quadword. */
/* MOVLPD -- load/store packed double to/from low quadword. */
if (insn[0] == 0x0F
&& (insn[1] == 0x12 || insn[1] == 0x13)) {
Bool is_store = insn[1]==0x13;
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
if (epartIsReg(insn[2])) {
vg_assert(insn[1]==0x12);
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "movhlps",
insn[0], insn[1] );
} else {
eip = dis_SSE2_load_store_or_mov
(cb, sorb, eip+2, 8, is_store, "movlps",
insn[0], insn[1] );
}
} else {
vg_assert(!epartIsReg(insn[2]));
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 8, is_store, "movlpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* MOVLHPS -- move two packed floats from low quadword to high quadword */
/* MOVHPS -- load/store two packed floats to/from high quadword. */
/* MOVHPD -- load/store packed double to/from high quadword. */
if (insn[0] == 0x0F
&& (insn[1] == 0x16 || insn[1] == 0x17)) {
Bool is_store = insn[1]==0x17;
vg_assert(sz == 4 || sz == 2);
if (sz == 4) {
if (epartIsReg(insn[2])) {
vg_assert(insn[1]==0x16);
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16, "movlhps",
insn[0], insn[1] );
} else {
eip = dis_SSE2_load_store_or_mov
(cb, sorb, eip+2, 8, is_store, "movhps",
insn[0], insn[1] );
}
} else {
vg_assert(!epartIsReg(insn[2]));
eip = dis_SSE3_load_store_or_mov
(cb, sorb, eip+2, 8, is_store, "movhpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* PMOVMSKB -- extract 16 sign bits from a xmm reg and copy them to
an ireg. Top 16 bits of ireg are set to zero. */
if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD7) {
modrm = insn[2];
/* Intel docs don't say anything about a memory source being
allowed here. */
vg_assert(epartIsReg(modrm));
t1 = newTemp(cb);
uInstr3(cb, SSE3g_RegWr, 4,
Lit16, (((UShort)0x66) << 8) | (UShort)insn[0],
Lit16, (((UShort)insn[1]) << 8) | (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("pmovmskb %s, %s\n",
nameXMMReg(eregOfRM(modrm)), nameIReg(4,gregOfRM(modrm)));
eip += 3;
goto decode_success;
}
/* sz==4: SQRTPS: square root of packed float. */
/* sz==2: SQRTPD: square root of packed double. */
if (insn[0] == 0x0F && insn[1] == 0x51) {
vg_assert(sz == 2 || sz == 4);
if (sz == 4) {
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16,
"sqrtps",
insn[0], insn[1] );
} else {
eip = dis_SSE3_reg_or_mem ( cb, sorb, eip+2, 16,
"sqrtpd",
0x66, insn[0], insn[1] );
}
goto decode_success;
}
/* RSQRTPS: square root reciprocal of packed float. */
if (insn[0] == 0x0F && insn[1] == 0x52) {
vg_assert(sz == 4);
eip = dis_SSE2_reg_or_mem ( cb, sorb, eip+2, 16,
"rsqrtps",
insn[0], insn[1] );
goto decode_success;
}
/* Fall through into the non-SSE decoder. */
} /* if (VG_(have_ssestate)) */
/* ---------------------------------------------------- */
/* --- end of the SSE/SSE2 decoder. --- */
/* ---------------------------------------------------- */
/* Get the primary opcode. */
opc = getUChar(eip); eip++;
/* We get here if the current insn isn't SSE, or this CPU doesn't
support SSE. */
switch (opc) {
/* ------------------------ Control flow --------------- */
case 0xC2: /* RET imm16 */
d32 = getUDisp16(eip); eip += 2;
dis_ret(cb, d32);
*isEnd = True;
DIP("ret %d\n", d32);
break;
case 0xC3: /* RET */
dis_ret(cb, 0);
*isEnd = True;
DIP("ret\n");
break;
case 0xE8: /* CALL J4 */
d32 = getUDisp32(eip); eip += 4;
d32 += eip; /* eip now holds return-to addr, d32 is call-to addr */
if (d32 == eip && getUChar(eip) >= 0x58
&& getUChar(eip) <= 0x5F) {
/* Specially treat the position-independent-code idiom
call X
X: popl %reg
as
movl %eip, %reg.
since this generates better code, but for no other reason. */
Int archReg = getUChar(eip) - 0x58;
/* VG_(printf)("-- fPIC thingy\n"); */
t1 = newTemp(cb);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t1);
uLiteral(cb, eip);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, archReg);
eip++; /* Step over the POP */
DIP("call 0x%x ; popl %s\n",d32,nameIReg(4,archReg));
} else {
/* The normal sequence for a call. */
t1 = newTemp(cb); t2 = newTemp(cb); t3 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, MOV, 4, TempReg, t3, TempReg, t1);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t1);
uLiteral(cb, 4);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, eip);
uInstr2(cb, STORE, 4, TempReg, t2, TempReg, t1);
jmp_lit(cb, d32);
LAST_UINSTR(cb).jmpkind = JmpCall;
*isEnd = True;
DIP("call 0x%x\n",d32);
}
break;
case 0xC8: /* ENTER */
d32 = getUDisp16(eip); eip += 2;
abyte = getUChar(eip); eip++;
vg_assert(sz == 4);
vg_assert(abyte == 0);
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, R_EBP, TempReg, t1);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBP);
if (d32) {
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, d32);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
}
DIP("enter 0x%x, 0x%x", d32, abyte);
break;
case 0xC9: /* LEAVE */
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_EBP, TempReg, t1);
/* First PUT ESP looks redundant, but need it because ESP must
always be up-to-date for Memcheck to work... */
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
uInstr2(cb, LOAD, 4, TempReg, t1, TempReg, t2);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBP);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t1);
uLiteral(cb, 4);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
DIP("leave");
break;
/* ---------------- Misc weird-ass insns --------------- */
case 0x27: /* DAA */
case 0x2F: /* DAS */
t1 = newTemp(cb);
uInstr2(cb, GET, 1, ArchReg, R_AL, TempReg, t1);
/* Widen %AL to 32 bits, so it's all defined when we push it. */
uInstr1(cb, WIDEN, 4, TempReg, t1);
uWiden(cb, 1, False);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr1(cb, CALLM, 0, Lit16,
opc == 0x27 ? VGOFF_(helper_DAA) : VGOFF_(helper_DAS) );
uFlagsRWU(cb, FlagsAC, FlagsSZACP, FlagO);
uInstr1(cb, POP, 4, TempReg, t1);
uInstr0(cb, CALLM_E, 0);
uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, R_AL);
DIP(opc == 0x27 ? "daa\n" : "das\n");
break;
case 0x37: /* AAA */
case 0x3F: /* AAS */
t1 = newTemp(cb);
uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, t1);
/* Widen %AL to 32 bits, so it's all defined when we push it. */
uInstr1(cb, WIDEN, 4, TempReg, t1);
uWiden(cb, 2, False);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr1(cb, CALLM, 0, Lit16,
opc == 0x37 ? VGOFF_(helper_AAA) : VGOFF_(helper_AAS) );
uFlagsRWU(cb, FlagA, FlagsAC, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t1);
uInstr0(cb, CALLM_E, 0);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
DIP(opc == 0x37 ? "aaa\n" : "aas\n");
break;
case 0xD4: /* AAM */
case 0xD5: /* AAD */
d32 = getUChar(eip); eip++;
if (d32 != 10) VG_(core_panic)("disInstr: AAM/AAD but base not 10 !");
t1 = newTemp(cb);
uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, t1);
/* Widen %AX to 32 bits, so it's all defined when we push it. */
uInstr1(cb, WIDEN, 4, TempReg, t1);
uWiden(cb, 2, False);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr1(cb, CALLM, 0, Lit16,
opc == 0xD4 ? VGOFF_(helper_AAM) : VGOFF_(helper_AAD) );
uFlagsRWU(cb, FlagsEmpty, FlagsSZP, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t1);
uInstr0(cb, CALLM_E, 0);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
DIP(opc == 0xD4 ? "aam\n" : "aad\n");
break;
/* ------------------------ CWD/CDQ -------------------- */
case 0x98: /* CBW */
t1 = newTemp(cb);
if (sz == 4) {
uInstr2(cb, GET, 2, ArchReg, R_EAX, TempReg, t1);
uInstr1(cb, WIDEN, 4, TempReg, t1); /* 4 == dst size */
uWiden(cb, 2, True);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_EAX);
DIP("cwd\n");
} else {
vg_assert(sz == 2);
uInstr2(cb, GET, 1, ArchReg, R_EAX, TempReg, t1);
uInstr1(cb, WIDEN, 2, TempReg, t1); /* 2 == dst size */
uWiden(cb, 1, True);
uInstr2(cb, PUT, 2, TempReg, t1, ArchReg, R_EAX);
DIP("cbw\n");
}
break;
case 0x99: /* CWD/CDQ */
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, t1);
uInstr2(cb, SAR, sz, Literal, 0, TempReg, t1);
uLiteral(cb, sz == 2 ? 15 : 31);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EDX);
DIP(sz == 2 ? "cwdq\n" : "cdqq\n");
break;
/* ------------------------ FPU ops -------------------- */
case 0x9E: /* SAHF */
codegen_SAHF ( cb );
DIP("sahf\n");
break;
case 0x9F: /* LAHF */
codegen_LAHF ( cb );
DIP("lahf\n");
break;
case 0x9B: /* FWAIT */
/* ignore? */
DIP("fwait\n");
break;
case 0xD8:
case 0xD9:
case 0xDA:
case 0xDB:
case 0xDC:
case 0xDD:
case 0xDE:
case 0xDF:
eip = dis_fpu ( cb, sorb, opc, eip );
break;
/* ------------------------ INC & DEC ------------------ */
case 0x40: /* INC eAX */
case 0x41: /* INC eCX */
case 0x42: /* INC eDX */
case 0x43: /* INC eBX */
case 0x44: /* INC eSP */
case 0x45: /* INC eBP */
case 0x46: /* INC eSI */
case 0x47: /* INC eDI */
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, (UInt)(opc - 0x40),
TempReg, t1);
uInstr1(cb, INC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, INC);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg,
(UInt)(opc - 0x40));
DIP("inc%c %s\n", nameISize(sz), nameIReg(sz,opc-0x40));
break;
case 0x48: /* DEC eAX */
case 0x49: /* DEC eCX */
case 0x4A: /* DEC eDX */
case 0x4B: /* DEC eBX */
case 0x4C: /* DEC eSP */
case 0x4D: /* DEC eBP */
case 0x4E: /* DEC eSI */
case 0x4F: /* DEC eDI */
t1 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, (UInt)(opc - 0x48),
TempReg, t1);
uInstr1(cb, DEC, sz, TempReg, t1);
setFlagsFromUOpcode(cb, DEC);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg,
(UInt)(opc - 0x48));
DIP("dec%c %s\n", nameISize(sz), nameIReg(sz,opc-0x48));
break;
/* ------------------------ INT ------------------------ */
case 0xCD: /* INT imm8 */
d32 = getUChar(eip); eip++;
if (d32 != 0x80) goto decode_failure;
/* It's important that all ArchRegs carry their up-to-date value
at this point. So we declare an end-of-block here, which
forces any TempRegs caching ArchRegs to be flushed. */
jmp_lit(cb, eip);
LAST_UINSTR(cb).jmpkind = JmpSyscall;
*isEnd = True;
DIP("int $0x80\n");
break;
/* ------------------------ Jcond, byte offset --------- */
case 0xEB: /* Jb (jump, byte offset) */
d32 = (eip+1) + getSDisp8(eip); eip++;
jmp_lit(cb, d32);
*isEnd = True;
DIP("jmp-8 0x%x\n", d32);
break;
case 0xE9: /* Jv (jump, 16/32 offset) */
d32 = (eip+sz) + getSDisp(sz,eip); eip += sz;
jmp_lit(cb, d32);
*isEnd = True;
DIP("jmp 0x%x\n", d32);
break;
case 0x70:
case 0x71:
case 0x72: /* JBb/JNAEb (jump below) */
case 0x73: /* JNBb/JAEb (jump not below) */
case 0x74: /* JZb/JEb (jump zero) */
case 0x75: /* JNZb/JNEb (jump not zero) */
case 0x76: /* JBEb/JNAb (jump below or equal) */
case 0x77: /* JNBEb/JAb (jump not below or equal) */
case 0x78: /* JSb (jump negative) */
case 0x79: /* JSb (jump not negative) */
case 0x7A: /* JP (jump parity even) */
case 0x7B: /* JNP/JPO (jump parity odd) */
case 0x7C: /* JLb/JNGEb (jump less) */
case 0x7D: /* JGEb/JNLb (jump greater or equal) */
case 0x7E: /* JLEb/JNGb (jump less or equal) */
case 0x7F: /* JGb/JNLEb (jump greater) */
d32 = (eip+1) + getSDisp8(eip); eip++;
jcc_lit(cb, d32, (Condcode)(opc - 0x70));
/* It's actually acceptable not to end this basic block at a
control transfer, reducing the number of jumps through
vg_dispatch, at the expense of possibly translating the insns
following this jump twice. This does give faster code, but
on the whole I don't think the effort is worth it. */
jmp_lit(cb, eip);
*isEnd = True;
/* The above 3 lines would be removed if the bb was not to end
here. */
DIP("j%s-8 0x%x\n", VG_(name_UCondcode)(opc - 0x70), d32);
break;
case 0xE3: /* JECXZ or perhaps JCXZ, depending on OSO ? Intel
manual says it depends on address size override,
which doesn't sound right to me. */
d32 = (eip+1) + getSDisp8(eip); eip++;
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ECX, TempReg, t1);
uInstr2(cb, JIFZ, 4, TempReg, t1, Literal, 0);
uLiteral(cb, d32);
DIP("j%sz 0x%x\n", nameIReg(sz, R_ECX), d32);
break;
case 0xE0: /* LOOPNE disp8 */
case 0xE1: /* LOOPE disp8 */
case 0xE2: /* LOOP disp8 */
/* Again, the docs say this uses ECX/CX as a count depending on
the address size override, not the operand one. Since we
don't handle address size overrides, I guess that means
ECX. */
d32 = (eip+1) + getSDisp8(eip); eip++;
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ECX, TempReg, t1);
uInstr1(cb, DEC, 4, TempReg, t1);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ECX);
uInstr2(cb, JIFZ, 4, TempReg, t1, Literal, 0);
uLiteral(cb, eip);
if (opc == 0xE0 || opc == 0xE1) { /* LOOPE/LOOPNE */
jcc_lit(cb, eip, (opc == 0xE1 ? CondNZ : CondZ));
}
jmp_lit(cb, d32);
*isEnd = True;
DIP("loop 0x%x\n", d32);
break;
/* ------------------------ IMUL ----------------------- */
case 0x69: /* IMUL Iv, Ev, Gv */
eip = dis_imul_I_E_G ( cb, sorb, sz, eip, sz );
break;
case 0x6B: /* IMUL Ib, Ev, Gv */
eip = dis_imul_I_E_G ( cb, sorb, sz, eip, 1 );
break;
/* ------------------------ MOV ------------------------ */
case 0x88: /* MOV Gb,Eb */
eip = dis_mov_G_E(cb, sorb, 1, eip);
break;
case 0x89: /* MOV Gv,Ev */
eip = dis_mov_G_E(cb, sorb, sz, eip);
break;
case 0x8A: /* MOV Eb,Gb */
eip = dis_mov_E_G(cb, sorb, 1, eip);
break;
case 0x8B: /* MOV Ev,Gv */
eip = dis_mov_E_G(cb, sorb, sz, eip);
break;
case 0x8D: /* LEA M,Gv */
modrm = getUChar(eip);
if (epartIsReg(modrm))
VG_(core_panic)("LEA M,Gv: modRM refers to register");
/* NOTE! this is the one place where a segment override prefix
has no effect on the address calculation. Therefore we pass
zero instead of sorb here. */
pair = disAMode ( cb, /*sorb*/ 0, eip, dis_buf );
eip += HI8(pair);
t1 = LOW24(pair);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("lea%c %s, %s\n", nameISize(sz), dis_buf,
nameIReg(sz,gregOfRM(modrm)));
break;
case 0x8C: /* MOV Sw,Ew -- MOV from a SEGMENT REGISTER */
eip = dis_mov_Sw_Ew(cb, sorb, eip);
break;
case 0x8E: /* MOV Ew,Sw -- MOV to a SEGMENT REGISTER */
eip = dis_mov_Ew_Sw(cb, sorb, eip);
break;
case 0xA0: /* MOV Ob,AL */
sz = 1;
/* Fall through ... */
case 0xA1: /* MOV Ov,eAX */
d32 = getUDisp32(eip); eip += 4;
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, d32);
handleSegOverride(cb, sorb, t2);
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, R_EAX);
DIP("mov%c %s0x%x, %s\n", nameISize(sz), sorbTxt(sorb),
d32, nameIReg(sz,R_EAX));
break;
case 0xA2: /* MOV AL,Ob */
sz = 1;
/* Fall through ... */
case 0xA3: /* MOV eAX,Ov */
d32 = getUDisp32(eip); eip += 4;
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, R_EAX, TempReg, t1);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, d32);
handleSegOverride(cb, sorb, t2);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("mov%c %s, %s0x%x\n", nameISize(sz), nameIReg(sz,R_EAX),
sorbTxt(sorb), d32);
break;
case 0xB0: /* MOV imm,AL */
case 0xB1: /* MOV imm,CL */
case 0xB2: /* MOV imm,DL */
case 0xB3: /* MOV imm,BL */
case 0xB4: /* MOV imm,AH */
case 0xB5: /* MOV imm,CH */
case 0xB6: /* MOV imm,DH */
case 0xB7: /* MOV imm,BH */
d32 = getUChar(eip); eip += 1;
t1 = newTemp(cb);
uInstr2(cb, MOV, 1, Literal, 0, TempReg, t1);
uLiteral(cb, d32);
uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, opc-0xB0);
DIP("movb $0x%x,%s\n", d32, nameIReg(1,opc-0xB0));
break;
case 0xB8: /* MOV imm,eAX */
case 0xB9: /* MOV imm,eCX */
case 0xBA: /* MOV imm,eDX */
case 0xBB: /* MOV imm,eBX */
case 0xBC: /* MOV imm,eSP */
case 0xBD: /* MOV imm,eBP */
case 0xBE: /* MOV imm,eSI */
case 0xBF: /* MOV imm,eDI */
d32 = getUDisp(sz,eip); eip += sz;
t1 = newTemp(cb);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t1);
uLiteral(cb, d32);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, opc-0xB8);
DIP("mov%c $0x%x,%s\n", nameISize(sz), d32, nameIReg(sz,opc-0xB8));
break;
case 0xC6: /* MOV Ib,Eb */
sz = 1;
goto do_Mov_I_E;
case 0xC7: /* MOV Iv,Ev */
goto do_Mov_I_E;
do_Mov_I_E:
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
eip++; /* mod/rm byte */
d32 = getUDisp(sz,eip); eip += sz;
t1 = newTemp(cb);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t1);
uLiteral(cb, d32);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("mov%c $0x%x, %s\n", nameISize(sz), d32,
nameIReg(sz,eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
eip += HI8(pair);
d32 = getUDisp(sz,eip); eip += sz;
t1 = newTemp(cb);
t2 = LOW24(pair);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t1);
uLiteral(cb, d32);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("mov%c $0x%x, %s\n", nameISize(sz), d32, dis_buf);
}
break;
/* ------------------------ opl imm, A ----------------- */
case 0x04: /* ADD Ib, AL */
eip = dis_op_imm_A(cb, 1, ADD, True, eip, "add" );
break;
case 0x05: /* ADD Iv, eAX */
eip = dis_op_imm_A(cb, sz, ADD, True, eip, "add" );
break;
case 0x0C: /* OR Ib, AL */
eip = dis_op_imm_A(cb, 1, OR, True, eip, "or" );
break;
case 0x0D: /* OR Iv, eAX */
eip = dis_op_imm_A(cb, sz, OR, True, eip, "or" );
break;
case 0x14: /* ADC Ib, AL */
eip = dis_op_imm_A(cb, 1, ADC, True, eip, "adc" );
break;
case 0x15: /* ADC Iv, eAX */
eip = dis_op_imm_A(cb, sz, ADC, True, eip, "adc" );
break;
case 0x1C: /* SBB Ib, AL */
eip = dis_op_imm_A(cb, 1, SBB, True, eip, "sbb" );
break;
case 0x1D: /* SBB Iv, eAX */
eip = dis_op_imm_A(cb, sz, SBB, True, eip, "sbb" );
break;
case 0x24: /* AND Ib, AL */
eip = dis_op_imm_A(cb, 1, AND, True, eip, "and" );
break;
case 0x25: /* AND Iv, eAX */
eip = dis_op_imm_A(cb, sz, AND, True, eip, "and" );
break;
case 0x2C: /* SUB Ib, AL */
eip = dis_op_imm_A(cb, 1, SUB, True, eip, "sub" );
break;
case 0x2D: /* SUB Iv, eAX */
eip = dis_op_imm_A(cb, sz, SUB, True, eip, "sub" );
break;
case 0x34: /* XOR Ib, AL */
eip = dis_op_imm_A(cb, 1, XOR, True, eip, "xor" );
break;
case 0x35: /* XOR Iv, eAX */
eip = dis_op_imm_A(cb, sz, XOR, True, eip, "xor" );
break;
case 0x3C: /* CMP Ib, AL */
eip = dis_op_imm_A(cb, 1, SUB, False, eip, "cmp" );
break;
case 0x3D: /* CMP Iv, eAX */
eip = dis_op_imm_A(cb, sz, SUB, False, eip, "cmp" );
break;
case 0xA8: /* TEST Ib, AL */
eip = dis_op_imm_A(cb, 1, AND, False, eip, "test" );
break;
case 0xA9: /* TEST Iv, eAX */
eip = dis_op_imm_A(cb, sz, AND, False, eip, "test" );
break;
/* ------------------------ opl Ev, Gv ----------------- */
case 0x02: /* ADD Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, ADD, True, 1, eip, "add" );
break;
case 0x03: /* ADD Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, ADD, True, sz, eip, "add" );
break;
case 0x0A: /* OR Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, OR, True, 1, eip, "or" );
break;
case 0x0B: /* OR Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, OR, True, sz, eip, "or" );
break;
case 0x12: /* ADC Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, ADC, True, 1, eip, "adc" );
break;
case 0x13: /* ADC Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, ADC, True, sz, eip, "adc" );
break;
case 0x1A: /* SBB Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, SBB, True, 1, eip, "sbb" );
break;
case 0x1B: /* SBB Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, SBB, True, sz, eip, "sbb" );
break;
case 0x22: /* AND Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, AND, True, 1, eip, "and" );
break;
case 0x23: /* AND Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, AND, True, sz, eip, "and" );
break;
case 0x2A: /* SUB Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, SUB, True, 1, eip, "sub" );
break;
case 0x2B: /* SUB Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, SUB, True, sz, eip, "sub" );
break;
case 0x32: /* XOR Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, XOR, True, 1, eip, "xor" );
break;
case 0x33: /* XOR Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, XOR, True, sz, eip, "xor" );
break;
case 0x3A: /* CMP Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, SUB, False, 1, eip, "cmp" );
break;
case 0x3B: /* CMP Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, SUB, False, sz, eip, "cmp" );
break;
case 0x84: /* TEST Eb,Gb */
eip = dis_op2_E_G ( cb, sorb, AND, False, 1, eip, "test" );
break;
case 0x85: /* TEST Ev,Gv */
eip = dis_op2_E_G ( cb, sorb, AND, False, sz, eip, "test" );
break;
/* ------------------------ opl Gv, Ev ----------------- */
case 0x00: /* ADD Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, ADD, True, 1, eip, "add" );
break;
case 0x01: /* ADD Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, ADD, True, sz, eip, "add" );
break;
case 0x08: /* OR Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, OR, True, 1, eip, "or" );
break;
case 0x09: /* OR Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, OR, True, sz, eip, "or" );
break;
case 0x10: /* ADC Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, ADC, True, 1, eip, "adc" );
break;
case 0x11: /* ADC Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, ADC, True, sz, eip, "adc" );
break;
case 0x18: /* SBB Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, SBB, True, 1, eip, "sbb" );
break;
case 0x19: /* SBB Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, SBB, True, sz, eip, "sbb" );
break;
case 0x20: /* AND Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, AND, True, 1, eip, "and" );
break;
case 0x21: /* AND Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, AND, True, sz, eip, "and" );
break;
case 0x28: /* SUB Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, SUB, True, 1, eip, "sub" );
break;
case 0x29: /* SUB Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, SUB, True, sz, eip, "sub" );
break;
case 0x30: /* XOR Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, XOR, True, 1, eip, "xor" );
break;
case 0x31: /* XOR Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, XOR, True, sz, eip, "xor" );
break;
case 0x38: /* CMP Gb,Eb */
eip = dis_op2_G_E ( cb, sorb, SUB, False, 1, eip, "cmp" );
break;
case 0x39: /* CMP Gv,Ev */
eip = dis_op2_G_E ( cb, sorb, SUB, False, sz, eip, "cmp" );
break;
/* ------------------------ POP ------------------------ */
case 0x58: /* POP eAX */
case 0x59: /* POP eCX */
case 0x5A: /* POP eDX */
case 0x5B: /* POP eBX */
case 0x5D: /* POP eBP */
case 0x5E: /* POP eSI */
case 0x5F: /* POP eDI */
case 0x5C: /* POP eSP */
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, opc-0x58);
DIP("pop%c %s\n", nameISize(sz), nameIReg(sz,opc-0x58));
break;
case 0x9D: /* POPF */
vg_assert(sz == 2 || sz == 4);
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr1(cb, PUTF, sz, TempReg, t1);
/* PUTF writes all the flags we are interested in */
uFlagsRWU(cb, FlagsEmpty, FlagsALL, FlagsEmpty);
DIP("popf%c\n", nameISize(sz));
break;
case 0x61: /* POPA */
{ Int reg;
/* Just to keep things sane, we assert for a size 4. It's
probably OK for size 2 as well, but I'd like to find a test
case; ie, have the assertion fail, before committing to it.
If it fails for you, uncomment the sz == 2 bit, try again,
and let me know whether or not it works. (jseward@acm.org). */
vg_assert(sz == 4 /* || sz == 2 */);
/* Eight values are popped, one per register, but the value of
%esp on the stack is ignored and instead incremented (in one
hit at the end) for each of the values. */
t1 = newTemp(cb); t2 = newTemp(cb); t3 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2);
uInstr2(cb, MOV, 4, TempReg, t2, TempReg, t3);
/* Do %edi, %esi, %ebp */
for (reg = 7; reg >= 5; reg--) {
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, reg);
}
/* Ignore (skip) value of %esp on stack. */
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
/* Do %ebx, %edx, %ecx, %eax */
for (reg = 3; reg >= 0; reg--) {
uInstr2(cb, LOAD, sz, TempReg, t2, TempReg, t1);
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, reg);
}
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t3);
uLiteral(cb, sz * 8); /* One 'sz' per register */
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ESP);
DIP("popa%c\n", nameISize(sz));
break;
}
case 0x8F: /* POPL/POPW m32 */
{ UInt pair1;
Int tmpa;
UChar rm = getUChar(eip);
/* make sure this instruction is correct POP */
vg_assert(!epartIsReg(rm) && (gregOfRM(rm) == 0));
/* and has correct size */
vg_assert(sz == 4);
t1 = newTemp(cb); t3 = newTemp(cb);
/* set t1 to ESP: t1 = ESP */
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t1);
/* load M[ESP] to virtual register t3: t3 = M[t1] */
uInstr2(cb, LOAD, 4, TempReg, t1, TempReg, t3);
/* increase ESP; must be done before the STORE. Intel manual says:
If the ESP register is used as a base register for addressing
a destination operand in memory, the POP instruction computes
the effective address of the operand after it increments the
ESP register.
*/
uInstr2(cb, ADD, 4, Literal, 0, TempReg, t1);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
/* resolve MODR/M */
pair1 = disAMode ( cb, sorb, eip, dis_buf );
tmpa = LOW24(pair1);
/* uInstr2(cb, LOAD, sz, TempReg, tmpa, TempReg, tmpa); */
/* store value from stack in memory, M[m32] = t3 */
uInstr2(cb, STORE, 4, TempReg, t3, TempReg, tmpa);
DIP("popl %s\n", dis_buf);
eip += HI8(pair1);
break;
}
case 0x1F: /* POP %DS */
dis_pop_segreg( cb, R_DS, sz ); break;
case 0x07: /* POP %ES */
dis_pop_segreg( cb, R_ES, sz ); break;
case 0x17: /* POP %SS */
dis_pop_segreg( cb, R_SS, sz ); break;
/* ------------------------ PUSH ----------------------- */
case 0x50: /* PUSH eAX */
case 0x51: /* PUSH eCX */
case 0x52: /* PUSH eDX */
case 0x53: /* PUSH eBX */
case 0x55: /* PUSH eBP */
case 0x56: /* PUSH eSI */
case 0x57: /* PUSH eDI */
case 0x54: /* PUSH eSP */
/* This is the Right Way, in that the value to be pushed is
established before %esp is changed, so that pushl %esp
correctly pushes the old value. */
t1 = newTemp(cb); t2 = newTemp(cb); t3 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, opc-0x50, TempReg, t1);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, MOV, 4, TempReg, t3, TempReg, t2);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("push%c %s\n", nameISize(sz), nameIReg(sz,opc-0x50));
break;
case 0x68: /* PUSH Iv */
d32 = getUDisp(sz,eip); eip += sz;
goto do_push_I;
case 0x6A: /* PUSH Ib, sign-extended to sz */
d32 = getSDisp8(eip); eip += 1;
goto do_push_I;
do_push_I:
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t1);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t1);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_ESP);
uInstr2(cb, MOV, sz, Literal, 0, TempReg, t2);
uLiteral(cb, d32);
uInstr2(cb, STORE, sz, TempReg, t2, TempReg, t1);
DIP("push%c $0x%x\n", nameISize(sz), d32);
break;
case 0x9C: /* PUSHF */
vg_assert(sz == 2 || sz == 4);
t1 = newTemp(cb); t2 = newTemp(cb); t3 = newTemp(cb);
uInstr1(cb, GETF, sz, TempReg, t1);
/* GETF reads all the flags we are interested in */
uFlagsRWU(cb, FlagsALL, FlagsEmpty, FlagsEmpty);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, MOV, 4, TempReg, t3, TempReg, t2);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
DIP("pushf%c\n", nameISize(sz));
break;
case 0x60: /* PUSHA */
{ Int reg;
/* Just to keep things sane, we assert for a size 4. It's
probably OK for size 2 as well, but I'd like to find a test
case; ie, have the assertion fail, before committing to it.
If it fails for you, uncomment the sz == 2 bit, try again,
and let me know whether or not it works. (jseward@acm.org). */
vg_assert(sz == 4 /* || sz == 2 */);
/* This is the Right Way, in that the value to be pushed is
established before %esp is changed, so that pusha
correctly pushes the old %esp value. New value of %esp is
pushed at start. */
t1 = newTemp(cb); t2 = newTemp(cb); t3 = newTemp(cb);
t4 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t3);
uInstr2(cb, MOV, 4, TempReg, t3, TempReg, t2);
uInstr2(cb, MOV, 4, TempReg, t3, TempReg, t4);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t4);
uLiteral(cb, sz * 8); /* One 'sz' per register. */
uInstr2(cb, PUT, 4, TempReg, t4, ArchReg, R_ESP);
/* Do %eax, %ecx, %edx, %ebx */
for (reg = 0; reg <= 3; reg++) {
uInstr2(cb, GET, sz, ArchReg, reg, TempReg, t1);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
}
/* Push old value of %esp */
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, STORE, sz, TempReg, t3, TempReg, t2);
/* Do %ebp, %esi, %edi */
for (reg = 5; reg <= 7; reg++) {
uInstr2(cb, GET, sz, ArchReg, reg, TempReg, t1);
uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2);
uLiteral(cb, sz);
uInstr2(cb, STORE, sz, TempReg, t1, TempReg, t2);
}
DIP("pusha%c\n", nameISize(sz));
break;
}
case 0x0E: /* PUSH %CS */
dis_push_segreg( cb, R_CS, sz ); break;
case 0x1E: /* PUSH %DS */
dis_push_segreg( cb, R_DS, sz ); break;
case 0x06: /* PUSH %ES */
dis_push_segreg( cb, R_ES, sz ); break;
case 0x16: /* PUSH %SS */
dis_push_segreg( cb, R_SS, sz ); break;
/* ------------------------ SCAS et al ----------------- */
case 0xA4: /* MOVS, no REP prefix */
case 0xA5:
dis_string_op( cb, dis_MOVS, ( opc == 0xA4 ? 1 : sz ), "movs", sorb );
break;
case 0xA6: /* CMPSb, no REP prefix */
case 0xA7:
dis_string_op( cb, dis_CMPS, ( opc == 0xA6 ? 1 : sz ), "cmps", sorb );
break;
case 0xAA: /* STOS, no REP prefix */
case 0xAB:
dis_string_op( cb, dis_STOS, ( opc == 0xAA ? 1 : sz ), "stos", sorb );
break;
case 0xAC: /* LODS, no REP prefix */
case 0xAD:
dis_string_op( cb, dis_LODS, ( opc == 0xAC ? 1 : sz ), "lods", sorb );
break;
case 0xAE: /* SCAS, no REP prefix */
case 0xAF:
dis_string_op( cb, dis_SCAS, ( opc == 0xAE ? 1 : sz ), "scas", sorb );
break;
case 0xFC: /* CLD */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CLD));
uFlagsRWU(cb, FlagsEmpty, FlagD, FlagsEmpty);
uInstr0(cb, CALLM_E, 0);
DIP("cld\n");
break;
case 0xFD: /* STD */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_STD));
uFlagsRWU(cb, FlagsEmpty, FlagD, FlagsEmpty);
uInstr0(cb, CALLM_E, 0);
DIP("std\n");
break;
case 0xF8: /* CLC */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CLC));
uFlagsRWU(cb, FlagsEmpty, FlagC, FlagsOSZAP);
uInstr0(cb, CALLM_E, 0);
DIP("clc\n");
break;
case 0xF9: /* STC */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_STC));
uFlagsRWU(cb, FlagsEmpty, FlagC, FlagsOSZAP);
uInstr0(cb, CALLM_E, 0);
DIP("stc\n");
break;
case 0xF5: /* CMC */
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CMC));
uFlagsRWU(cb, FlagC, FlagC, FlagsOSZAP);
uInstr0(cb, CALLM_E, 0);
DIP("cmc\n");
break;
/* REPNE prefix insn */
case 0xF2: {
Addr eip_orig = eip - 1;
vg_assert(sorb == 0);
abyte = getUChar(eip); eip++;
if (abyte == 0x66) { sz = 2; abyte = getUChar(eip); eip++; }
*isEnd = True;
switch (abyte) {
/* According to the Intel manual, "repne movs" should never occur, but
* in practice it has happened, so allow for it here... */
case 0xA4: sz = 1; /* REPNE MOVS<sz> */
case 0xA5:
dis_REP_op ( cb, CondNZ, dis_MOVS, sz, eip_orig, eip, "repne movs" );
break;
case 0xA6: sz = 1; /* REPNE CMPS<sz> */
case 0xA7:
dis_REP_op ( cb, CondNZ, dis_CMPS, sz, eip_orig, eip, "repne cmps" );
break;
case 0xAE: sz = 1; /* REPNE SCAS<sz> */
case 0xAF:
dis_REP_op ( cb, CondNZ, dis_SCAS, sz, eip_orig, eip, "repne scas" );
break;
default:
goto decode_failure;
}
break;
}
/* REP/REPE prefix insn (for SCAS and CMPS, 0xF3 means REPE,
for the rest, it means REP) */
case 0xF3: {
Addr eip_orig = eip - 1;
vg_assert(sorb == 0);
abyte = getUChar(eip); eip++;
if (abyte == 0x66) { sz = 2; abyte = getUChar(eip); eip++; }
*isEnd = True;
switch (abyte) {
case 0xA4: sz = 1; /* REP MOVS<sz> */
case 0xA5:
dis_REP_op ( cb, CondAlways, dis_MOVS, sz, eip_orig, eip, "rep movs" );
break;
case 0xA6: sz = 1; /* REPE CMP<sz> */
case 0xA7:
dis_REP_op ( cb, CondZ, dis_CMPS, sz, eip_orig, eip, "repe cmps" );
break;
case 0xAA: sz = 1; /* REP STOS<sz> */
case 0XAB:
dis_REP_op ( cb, CondAlways, dis_STOS, sz, eip_orig, eip, "rep stos" );
break;
case 0xAE: sz = 1; /* REPE SCAS<sz> */
case 0xAF:
dis_REP_op ( cb, CondZ, dis_SCAS, sz, eip_orig, eip, "repe scas" );
break;
case 0x90: /* REP NOP (PAUSE) */
/* a hint to the P4 re spin-wait loop */
DIP("rep nop (P4 pause)\n");
jmp_lit(cb, eip);
LAST_UINSTR(cb).jmpkind = JmpYield;
break;
case 0xC3: /* REP RET */
/* AMD K7/K8-specific optimisation; faster than vanilla RET */
dis_ret(cb, 0);
DIP("rep ret\n");
break;
default:
goto decode_failure;
}
break;
}
/* ------------------------ XCHG ----------------------- */
case 0x86: /* XCHG Gb,Eb */
sz = 1;
/* Fall through ... */
case 0x87: /* XCHG Gv,Ev */
modrm = getUChar(eip);
t1 = newTemp(cb); t2 = newTemp(cb);
if (epartIsReg(modrm)) {
uInstr2(cb, GET, sz, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(modrm), TempReg, t2);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, gregOfRM(modrm));
uInstr2(cb, PUT, sz, TempReg, t2, ArchReg, eregOfRM(modrm));
eip++;
DIP("xchg%c %s, %s\n",
nameISize(sz), nameIReg(sz,gregOfRM(modrm)),
nameIReg(sz,eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t3 = LOW24(pair);
uInstr2(cb, LOAD, sz, TempReg, t3, TempReg, t1);
uInstr2(cb, GET, sz, ArchReg, gregOfRM(modrm), TempReg, t2);
uInstr2(cb, STORE, sz, TempReg, t2, TempReg, t3);
uInstr2(cb, PUT, sz, TempReg, t1, ArchReg, gregOfRM(modrm));
eip += HI8(pair);
DIP("xchg%c %s, %s\n", nameISize(sz),
nameIReg(sz,gregOfRM(modrm)), dis_buf);
}
break;
case 0x90: /* XCHG eAX,eAX */
DIP("nop\n");
break;
case 0x91: /* XCHG eAX,eCX */
case 0x92: /* XCHG eAX,eDX */
case 0x93: /* XCHG eAX,eBX */
case 0x94: /* XCHG eAX,eSP */
case 0x95: /* XCHG eAX,eBP */
case 0x96: /* XCHG eAX,eSI */
case 0x97: /* XCHG eAX,eDI */
codegen_xchg_eAX_Reg ( cb, sz, opc - 0x90 );
break;
/* ------------------------ XLAT ----------------------- */
case 0xD7: /* XLAT */
t1 = newTemp(cb); t2 = newTemp(cb);
uInstr2(cb, GET, sz, ArchReg, R_EBX, TempReg, t1); /* get eBX */
handleSegOverride( cb, sorb, t1 ); /* make t1 DS:eBX */
uInstr2(cb, GET, 1, ArchReg, R_AL, TempReg, t2); /* get AL */
/* Widen %AL to 32 bits, so it's all defined when we add it. */
uInstr1(cb, WIDEN, 4, TempReg, t2);
uWiden(cb, 1, False);
uInstr2(cb, ADD, sz, TempReg, t2, TempReg, t1); /* add AL to eBX */
uInstr2(cb, LOAD, 1, TempReg, t1, TempReg, t2); /* get byte at t1 into t2 */
uInstr2(cb, PUT, 1, TempReg, t2, ArchReg, R_AL); /* put byte into AL */
DIP("xlat%c [ebx]\n", nameISize(sz));
break;
/* ------------------------ IN / OUT ----------------------- */
case 0xE4: /* IN ib, %al */
case 0xE5: /* IN ib, %{e}ax */
case 0xEC: /* IN (%dx),%al */
case 0xED: /* IN (%dx),%{e}ax */
t1 = newTemp(cb);
t2 = newTemp(cb);
t3 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
/* operand size? */
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t1);
uLiteral(cb, ( opc == 0xE4 || opc == 0xEC ) ? 1 : sz);
uInstr1(cb, PUSH, 4, TempReg, t1);
/* port number ? */
if ( opc == 0xE4 || opc == 0xE5 ) {
abyte = getUChar(eip); eip++;
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, abyte);
}
else
uInstr2(cb, GET, 4, ArchReg, R_EDX, TempReg, t2);
uInstr1(cb, PUSH, 4, TempReg, t2);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_IN));
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t2);
uInstr1(cb, CLEAR, 0, Lit16, 4);
uInstr0(cb, CALLM_E, 0);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EAX);
if ( opc == 0xE4 || opc == 0xE5 ) {
DIP("in 0x%x, %%eax/%%ax/%%al\n", getUChar(eip-1) );
} else {
DIP("in (%%dx), %%eax/%%ax/%%al\n");
}
break;
case 0xE6: /* OUT %al,ib */
case 0xE7: /* OUT %{e}ax,ib */
case 0xEE: /* OUT %al,(%dx) */
case 0xEF: /* OUT %{e}ax,(%dx) */
t1 = newTemp(cb);
t2 = newTemp(cb);
t3 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
/* operand size? */
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t1);
uLiteral(cb, ( opc == 0xE6 || opc == 0xEE ) ? 1 : sz);
uInstr1(cb, PUSH, 4, TempReg, t1);
/* port number ? */
if ( opc == 0xE6 || opc == 0xE7 ) {
abyte = getUChar(eip); eip++;
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, abyte);
}
else
uInstr2(cb, GET, 4, ArchReg, R_EDX, TempReg, t2);
uInstr1(cb, PUSH, 4, TempReg, t2);
uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t3);
uInstr1(cb, PUSH, 4, TempReg, t3);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_OUT));
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
uInstr1(cb, CLEAR, 0, Lit16, 12);
uInstr0(cb, CALLM_E, 0);
if ( opc == 0xE4 || opc == 0xE5 ) {
DIP("out %%eax/%%ax/%%al, 0x%x\n", getUChar(eip-1) );
} else {
DIP("out %%eax/%%ax/%%al, (%%dx)\n");
}
break;
/* ------------------------ (Grp1 extensions) ---------- */
case 0x80: /* Grp1 Ib,Eb */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
sz = 1;
d_sz = 1;
d32 = getSDisp8(eip + am_sz);
eip = dis_Grp1 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, d32 );
break;
case 0x81: /* Grp1 Iv,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = sz;
d32 = getUDisp(d_sz, eip + am_sz);
eip = dis_Grp1 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, d32 );
break;
case 0x83: /* Grp1 Ib,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 1;
d32 = getSDisp8(eip + am_sz);
eip = dis_Grp1 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, d32 );
break;
/* ------------------------ (Grp2 extensions) ---------- */
case 0xC0: /* Grp2 Ib,Eb */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 1;
d32 = getSDisp8(eip + am_sz);
sz = 1;
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, Literal, d32 );
break;
case 0xC1: /* Grp2 Ib,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 1;
d32 = getSDisp8(eip + am_sz);
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, Literal, d32 );
break;
case 0xD0: /* Grp2 1,Eb */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 0;
d32 = 1;
sz = 1;
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, Literal, d32 );
break;
case 0xD1: /* Grp2 1,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 0;
d32 = 1;
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, Literal, d32 );
break;
case 0xD2: /* Grp2 CL,Eb */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 0;
sz = 1;
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, ArchReg, R_ECX );
break;
case 0xD3: /* Grp2 CL,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d_sz = 0;
eip = dis_Grp2 ( cb, sorb, eip, modrm, am_sz, d_sz, sz, ArchReg, R_ECX );
break;
/* ------------------------ (Grp3 extensions) ---------- */
case 0xF6: /* Grp3 Eb */
eip = dis_Grp3 ( cb, sorb, 1, eip );
break;
case 0xF7: /* Grp3 Ev */
eip = dis_Grp3 ( cb, sorb, sz, eip );
break;
/* ------------------------ (Grp4 extensions) ---------- */
case 0xFE: /* Grp4 Eb */
eip = dis_Grp4 ( cb, sorb, eip );
break;
/* ------------------------ (Grp5 extensions) ---------- */
case 0xFF: /* Grp5 Ev */
eip = dis_Grp5 ( cb, sorb, sz, eip, isEnd );
break;
/* ------------------------ Escapes to 2-byte opcodes -- */
case 0x0F: {
opc = getUChar(eip); eip++;
switch (opc) {
/* =-=-=-=-=-=-=-=-=- Grp8 =-=-=-=-=-=-=-=-=-=-=-= */
case 0xBA: /* Grp8 Ib,Ev */
modrm = getUChar(eip);
am_sz = lengthAMode(eip);
d32 = getSDisp8(eip + am_sz);
eip = dis_Grp8_BT ( cb, sorb, eip, modrm, am_sz, sz, d32 );
break;
/* =-=-=-=-=-=-=-=-=- BSF/BSR -=-=-=-=-=-=-=-=-=-= */
case 0xBC: /* BSF Gv,Ev */
eip = dis_bs_E_G ( cb, sorb, sz, eip, True );
break;
case 0xBD: /* BSR Gv,Ev */
eip = dis_bs_E_G ( cb, sorb, sz, eip, False );
break;
/* =-=-=-=-=-=-=-=-=- BSWAP -=-=-=-=-=-=-=-=-=-=-= */
case 0xC8: /* BSWAP %eax */
case 0xC9:
case 0xCA:
case 0xCB:
case 0xCC:
case 0xCD:
case 0xCE:
case 0xCF: /* BSWAP %edi */
/* AFAICS from the Intel docs, this only exists at size 4. */
vg_assert(sz == 4);
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, opc-0xC8, TempReg, t1);
uInstr1(cb, BSWAP, 4, TempReg, t1);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, opc-0xC8);
DIP("bswapl %s\n", nameIReg(4, opc-0xC8));
break;
/* =-=-=-=-=-=-=-=-=- BT/BTS/BTR/BTC =-=-=-=-=-=-= */
case 0xA3: /* BT Gv,Ev */
eip = dis_bt_G_E ( cb, sorb, sz, eip, BtOpNone );
break;
case 0xB3: /* BTR Gv,Ev */
eip = dis_bt_G_E ( cb, sorb, sz, eip, BtOpReset );
break;
case 0xAB: /* BTS Gv,Ev */
eip = dis_bt_G_E ( cb, sorb, sz, eip, BtOpSet );
break;
case 0xBB: /* BTC Gv,Ev */
eip = dis_bt_G_E ( cb, sorb, sz, eip, BtOpComp );
break;
/* =-=-=-=-=-=-=-=-=- CMOV =-=-=-=-=-=-=-=-=-=-=-= */
case 0x40:
case 0x41:
case 0x42: /* CMOVBb/CMOVNAEb (cmov below) */
case 0x43: /* CMOVNBb/CMOVAEb (cmov not below) */
case 0x44: /* CMOVZb/CMOVEb (cmov zero) */
case 0x45: /* CMOVNZb/CMOVNEb (cmov not zero) */
case 0x46: /* CMOVBEb/CMOVNAb (cmov below or equal) */
case 0x47: /* CMOVNBEb/CMOVAb (cmov not below or equal) */
case 0x48: /* CMOVSb (cmov negative) */
case 0x49: /* CMOVSb (cmov not negative) */
case 0x4A: /* CMOVP (cmov parity even) */
case 0x4B: /* CMOVNP (cmov parity odd) */
case 0x4C: /* CMOVLb/CMOVNGEb (cmov less) */
case 0x4D: /* CMOVGEb/CMOVNLb (cmov greater or equal) */
case 0x4E: /* CMOVLEb/CMOVNGb (cmov less or equal) */
case 0x4F: /* CMOVGb/CMOVNLEb (cmov greater) */
eip = dis_cmov_E_G(cb, sorb, sz, (Condcode)(opc - 0x40), eip);
break;
/* =-=-=-=-=-=-=-=-=- CMPXCHG -=-=-=-=-=-=-=-=-=-= */
case 0xB0: /* CMPXCHG Gv,Ev */
eip = dis_cmpxchg_G_E ( cb, sorb, 1, eip );
break;
case 0xB1: /* CMPXCHG Gv,Ev */
eip = dis_cmpxchg_G_E ( cb, sorb, sz, eip );
break;
case 0xC7: /* CMPXCHG8B Gv */
eip = dis_cmpxchg8b ( cb, sorb, eip );
break;
/* =-=-=-=-=-=-=-=-=- CPUID -=-=-=-=-=-=-=-=-=-=-= */
case 0xA2: /* CPUID */
if (!VG_(cpu_has_feature)(VG_X86_FEAT_CPUID))
goto decode_failure;
t1 = newTemp(cb);
t2 = newTemp(cb);
t3 = newTemp(cb);
t4 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t1);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t2);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t3);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t3);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t4);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t4);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CPUID));
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t4);
uInstr2(cb, PUT, 4, TempReg, t4, ArchReg, R_EDX);
uInstr1(cb, POP, 4, TempReg, t3);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ECX);
uInstr1(cb, POP, 4, TempReg, t2);
uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBX);
uInstr1(cb, POP, 4, TempReg, t1);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_EAX);
uInstr0(cb, CALLM_E, 0);
DIP("cpuid\n");
break;
/* =-=-=-=-=-=-=-=-=- MOVZX, MOVSX =-=-=-=-=-=-=-= */
case 0xB6: /* MOVZXb Eb,Gv */
eip = dis_movx_E_G ( cb, sorb, eip, 1, 4, False );
break;
case 0xB7: /* MOVZXw Ew,Gv */
eip = dis_movx_E_G ( cb, sorb, eip, 2, 4, False );
break;
case 0xBE: /* MOVSXb Eb,Gv */
eip = dis_movx_E_G ( cb, sorb, eip, 1, 4, True );
break;
case 0xBF: /* MOVSXw Ew,Gv */
eip = dis_movx_E_G ( cb, sorb, eip, 2, 4, True );
break;
/* =-=-=-=-=-=-=-=-=-=-= MOVNTI -=-=-=-=-=-=-=-=-= */
case 0xC3: /* MOVNTI Gv,Ev */
vg_assert(sz == 4);
modrm = getUChar(eip);
vg_assert(!epartIsReg(modrm));
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, gregOfRM(modrm), TempReg, t1);
pair = disAMode ( cb, sorb, eip, dis_buf );
t2 = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2);
DIP("movnti %s,%s\n", nameIReg(4,gregOfRM(modrm)), dis_buf);
break;
/* =-=-=-=-=-=-=-=-=- MUL/IMUL =-=-=-=-=-=-=-=-=-= */
case 0xAF: /* IMUL Ev, Gv */
eip = dis_mul_E_G ( cb, sorb, sz, eip, True );
break;
/* =-=-=-=-=-=-=-=-=- Jcond d32 -=-=-=-=-=-=-=-=-= */
case 0x80:
case 0x81:
case 0x82: /* JBb/JNAEb (jump below) */
case 0x83: /* JNBb/JAEb (jump not below) */
case 0x84: /* JZb/JEb (jump zero) */
case 0x85: /* JNZb/JNEb (jump not zero) */
case 0x86: /* JBEb/JNAb (jump below or equal) */
case 0x87: /* JNBEb/JAb (jump not below or equal) */
case 0x88: /* JSb (jump negative) */
case 0x89: /* JSb (jump not negative) */
case 0x8A: /* JP (jump parity even) */
case 0x8B: /* JNP/JPO (jump parity odd) */
case 0x8C: /* JLb/JNGEb (jump less) */
case 0x8D: /* JGEb/JNLb (jump greater or equal) */
case 0x8E: /* JLEb/JNGb (jump less or equal) */
case 0x8F: /* JGb/JNLEb (jump greater) */
d32 = (eip+4) + getUDisp32(eip); eip += 4;
jcc_lit(cb, d32, (Condcode)(opc - 0x80));
jmp_lit(cb, eip);
*isEnd = True;
DIP("j%s-32 0x%x\n", VG_(name_UCondcode)(opc - 0x80), d32);
break;
/* =-=-=-=-=-=-=-=-=- RDTSC -=-=-=-=-=-=-=-=-=-=-= */
case 0x31: /* RDTSC */
t1 = newTemp(cb);
t2 = newTemp(cb);
t3 = newTemp(cb);
uInstr0(cb, CALLM_S, 0);
// Nb: even though these args aren't used by RDTSC_helper, need
// them to be defined (for Memcheck). The TempRegs pushed must
// also be distinct.
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t1);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t1);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2);
uLiteral(cb, 0);
uInstr1(cb, PUSH, 4, TempReg, t2);
uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_RDTSC));
uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty);
uInstr1(cb, POP, 4, TempReg, t3);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_EDX);
uInstr1(cb, POP, 4, TempReg, t3);
uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_EAX);
uInstr0(cb, CALLM_E, 0);
DIP("rdtsc\n");
break;
/* =-=-=-=-=-=-=-=-=- SETcc Eb =-=-=-=-=-=-=-=-=-= */
case 0x90:
case 0x91:
case 0x92: /* set-Bb/set-NAEb (jump below) */
case 0x93: /* set-NBb/set-AEb (jump not below) */
case 0x94: /* set-Zb/set-Eb (jump zero) */
case 0x95: /* set-NZb/set-NEb (jump not zero) */
case 0x96: /* set-BEb/set-NAb (jump below or equal) */
case 0x97: /* set-NBEb/set-Ab (jump not below or equal) */
case 0x98: /* set-Sb (jump negative) */
case 0x99: /* set-Sb (jump not negative) */
case 0x9A: /* set-P (jump parity even) */
case 0x9B: /* set-NP (jump parity odd) */
case 0x9C: /* set-Lb/set-NGEb (jump less) */
case 0x9D: /* set-GEb/set-NLb (jump greater or equal) */
case 0x9E: /* set-LEb/set-NGb (jump less or equal) */
case 0x9F: /* set-Gb/set-NLEb (jump greater) */
modrm = getUChar(eip);
t1 = newTemp(cb);
if (epartIsReg(modrm)) {
eip++;
uInstr1(cb, CC2VAL, 1, TempReg, t1);
uCond(cb, (Condcode)(opc-0x90));
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, PUT, 1, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("set%s %s\n", VG_(name_UCondcode)(opc-0x90),
nameIReg(1,eregOfRM(modrm)));
} else {
pair = disAMode ( cb, sorb, eip, dis_buf );
t2 = LOW24(pair);
eip += HI8(pair);
uInstr1(cb, CC2VAL, 1, TempReg, t1);
uCond(cb, (Condcode)(opc-0x90));
uFlagsRWU(cb, FlagsOSZACP, FlagsEmpty, FlagsEmpty);
uInstr2(cb, STORE, 1, TempReg, t1, TempReg, t2);
DIP("set%s %s\n", VG_(name_UCondcode)(opc-0x90), dis_buf);
}
break;
/* =-=-=-=-=-=-=-=-=- SHLD/SHRD -=-=-=-=-=-=-=-=-= */
case 0xA4: /* SHLDv imm8,Gv,Ev */
modrm = getUChar(eip);
eip = dis_SHLRD_Gv_Ev (
cb, sorb, eip, modrm, sz,
Literal, getUChar(eip + lengthAMode(eip)),
True );
break;
case 0xA5: /* SHLDv %cl,Gv,Ev */
modrm = getUChar(eip);
eip = dis_SHLRD_Gv_Ev (
cb, sorb, eip, modrm, sz, ArchReg, R_CL, True );
break;
case 0xAC: /* SHRDv imm8,Gv,Ev */
modrm = getUChar(eip);
eip = dis_SHLRD_Gv_Ev (
cb, sorb, eip, modrm, sz,
Literal, getUChar(eip + lengthAMode(eip)),
False );
break;
case 0xAD: /* SHRDv %cl,Gv,Ev */
modrm = getUChar(eip);
eip = dis_SHLRD_Gv_Ev (
cb, sorb, eip, modrm, sz, ArchReg, R_CL, False );
break;
/* =-=-=-=-=-=-=-=-=- CMPXCHG -=-=-=-=-=-=-=-=-=-= */
case 0xC0: /* XADD Gb,Eb */
eip = dis_xadd_G_E ( cb, sorb, 1, eip );
break;
case 0xC1: /* XADD Gv,Ev */
eip = dis_xadd_G_E ( cb, sorb, sz, eip );
break;
/* =-=-=-=-=-=-=-=-=- MMXery =-=-=-=-=-=-=-=-=-=-= */
case 0x0D: /* PREFETCH / PREFETCHW - 3Dnow!ery*/
case 0x18: /* PREFETCHT0/PREFETCHT1/PREFETCHT2/PREFETCHNTA */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
goto decode_failure;
}
if (gregOfRM(modrm) > 3) {
goto decode_failure;
}
eip += lengthAMode(eip);
if (VG_(print_codegen)) {
UChar* hintstr;
if (opc == 0x0D) {
switch (gregOfRM(modrm)) {
case 0: hintstr = ""; break;
case 1: hintstr = "w"; break;
default: goto decode_failure;
}
}
else {
switch (gregOfRM(modrm)) {
case 0: hintstr = "nta"; break;
case 1: hintstr = "t0"; break;
case 2: hintstr = "t1"; break;
case 3: hintstr = "t2"; break;
default: goto decode_failure;
}
}
VG_(printf)("prefetch%s ...\n", hintstr);
}
break;
case 0xAE: /* SFENCE */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (!epartIsReg(modrm)) {
goto decode_failure;
}
if (gregOfRM(modrm) != 7) {
goto decode_failure;
}
eip += lengthAMode(eip);
uInstr2(cb, SSE3, 0, /* ignore sz for internal ops */
Lit16, (((UShort)0x0F) << 8) | (UShort)0xAE,
Lit16, (UShort)modrm );
DIP("sfence\n");
break;
case 0x71: case 0x72: case 0x73: {
/* (sz==4): PSLL/PSRA/PSRL mmxreg by imm8 */
/* (sz==2): PSLL/PSRA/PSRL xmmreg by imm8 */
UChar byte1, byte2, byte3, subopc, mmreg;
vg_assert(sz == 4 || sz == 2);
byte1 = opc; /* 0x71/72/73 */
byte2 = getUChar(eip); eip++; /* amode / sub-opcode */
byte3 = getUChar(eip); eip++; /* imm8 */
mmreg = byte2 & 7;
subopc = (byte2 >> 3) & 7;
if (subopc == 2 || subopc == 6 || subopc == 4) {
/* 2 == 010 == SRL, 6 == 110 == SLL, 4 == 100 == SRA */
/* ok */
} else
if (sz == 2 && opc == 0x73 && (subopc == 7 || subopc == 3)) {
/* 3 == PSRLDQ, 7 == PSLLDQ */
/* This is allowable in SSE. Because sz==2 we fall thru to
SSE5 below. */
} else {
eip -= (sz==2 ? 3 : 2);
goto decode_failure;
}
if (sz == 4) {
/* The leading 0x0F is implied for MMX*, so we don't
include it. */
uInstr2(cb, MMX3, 0,
Lit16, (((UShort)byte1) << 8) | ((UShort)byte2),
Lit16, ((UShort)byte3) );
DIP("ps%s%s $%d, %s\n",
( subopc == 2 ? "rl"
: subopc == 6 ? "ll"
: subopc == 4 ? "ra"
: "??"),
nameMMXGran(opc & 3), (Int)byte3, nameMMXReg(mmreg) );
} else {
/* Whereas we have to include it for SSE. */
uInstr3(cb, SSE5, 0,
Lit16, (((UShort)0x66) << 8) | ((UShort)0x0F),
Lit16, (((UShort)byte1) << 8) | ((UShort)byte2),
Lit16, ((UShort)byte3) );
DIP("ps%s%s $%d, %s\n",
( subopc == 2 ? "rl"
: subopc == 6 ? "ll"
: subopc == 4 ? "ra"
: subopc == 3 ? "(PSRLDQ)"
: subopc == 7 ? "(PSLLDQ)"
: "??"),
nameMMXGran(opc & 3), (Int)byte3, nameXMMReg(mmreg) );
}
break;
}
case 0x77: /* EMMS */
vg_assert(sz == 4);
uInstr1(cb, MMX1, 0, Lit16, ((UShort)(opc)) );
DIP("emms\n");
break;
case 0x7E: /* MOVD (src)mmxreg, (dst)ireg-or-mem */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
eip++;
t1 = newTemp(cb);
uInstr2(cb, MMX2_ERegWr, 4,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, eregOfRM(modrm));
DIP("movd %s, %s\n",
nameMMXReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm)));
} else {
Int tmpa;
pair = disAMode ( cb, sorb, eip, dis_buf );
tmpa = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, MMX2_MemWr, 4,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("movd %s, %s\n", nameMMXReg(gregOfRM(modrm)), dis_buf);
}
break;
case 0x6E: /* MOVD (src)ireg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
eip++;
t1 = newTemp(cb);
uInstr2(cb, GET, 4, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr2(cb, MMX2_ERegRd, 4,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, t1 );
DIP("movd %s, %s\n",
nameIReg(4,eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)));
} else {
Int tmpa;
pair = disAMode ( cb, sorb, eip, dis_buf );
tmpa = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, MMX2_MemRd, 4,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("movd %s, %s\n", dis_buf, nameMMXReg(gregOfRM(modrm)));
}
break;
case 0x6F: /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
eip++;
uInstr1(cb, MMX2, 0,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm) );
DIP("movq %s, %s\n",
nameMMXReg(eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm)));
} else {
Int tmpa;
pair = disAMode ( cb, sorb, eip, dis_buf );
tmpa = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, MMX2_MemRd, 8,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("movq %s, %s\n",
dis_buf, nameMMXReg(gregOfRM(modrm)));
}
break;
case 0x7F: /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */
case 0xE7: /* MOVNTQ (src)mmxreg, (dst)mmxreg-or-mem */
vg_assert(sz == 4);
modrm = getUChar(eip);
if (epartIsReg(modrm)) {
eip++;
uInstr1(cb, MMX2, 0,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm) );
DIP("movq %s, %s\n",
nameMMXReg(gregOfRM(modrm)), nameMMXReg(eregOfRM(modrm)));
} else {
Int tmpa;
pair = disAMode ( cb, sorb, eip, dis_buf );
tmpa = LOW24(pair);
eip += HI8(pair);
uInstr2(cb, MMX2_MemWr, 8,
Lit16,
(((UShort)(opc)) << 8) | ((UShort)modrm),
TempReg, tmpa);
DIP("mov(nt)q %s, %s\n",
nameMMXReg(gregOfRM(modrm)), dis_buf);
}
break;
case 0xFC: case 0xFD: case 0xFE:
/* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "padd", True );
break;
case 0xD4:
/* PADDQ (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "paddq", False );
break;
case 0xEC: case 0xED:
/* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "padds", True );
break;
case 0xDC: case 0xDD:
/* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "paddus", True );
break;
case 0xF8: case 0xF9: case 0xFA: case 0xFB:
/* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psub", True );
break;
case 0xE8: case 0xE9:
/* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psubs", True );
break;
case 0xD8: case 0xD9:
/* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psubus", True );
break;
case 0xE4: /* PMULHUW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmulhuw", False );
break;
case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmulhw", False );
break;
case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmullw", False );
break;
case 0xF4: /* PMULUDQ (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmuludq", False );
break;
case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmaddwd", False );
break;
case 0x74: case 0x75: case 0x76:
/* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pcmpeq", True );
break;
case 0x64: case 0x65: case 0x66:
/* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pcmpgt", True );
break;
case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "packssdw", False );
break;
case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "packsswb", False );
break;
case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "packuswb", False );
break;
case 0x68: case 0x69: case 0x6A:
/* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "punpckh", True );
break;
case 0x60: case 0x61: case 0x62:
/* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "punpckl", True );
break;
case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pand", False );
break;
case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pandn", False );
break;
case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "por", False );
break;
case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pxor", False );
break;
case 0xF1: case 0xF2: case 0xF3:
/* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psll", True );
break;
case 0xD1: case 0xD2: case 0xD3:
/* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psrl", True );
break;
case 0xE1: case 0xE2:
/* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psra", True );
break;
case 0xDA:
/* PMINUB (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pminub", False );
break;
case 0xDE:
/* PMAXUB (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmaxub", False );
break;
case 0xEA:
/* PMINSW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pminsw", False );
break;
case 0xEE:
/* PMAXSW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pmaxsw", False );
break;
case 0xE0:
/* PAVGB (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pavgb", False );
break;
case 0xE3:
/* PAVGW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "pavgw", False );
break;
case 0xF6:
/* PSADBW (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg ( cb, sorb, eip, opc, "psadbw", False );
break;
case 0x70:
/* PSHUFW imm8, (src)mmxreg-or-mem, (dst)mmxreg */
vg_assert(sz == 4);
eip = dis_MMXop_regmem_to_reg_Imm8 ( cb, sorb, eip, opc, "pshufw", False );
break;
case 0xD7:
/* PMOVMSKB (src)mmxreg, (dst)ireg */
vg_assert(sz == 4);
modrm = getUChar(eip);
vg_assert(epartIsReg(modrm));
t1 = newTemp(cb);
uInstr3(cb, SSE2g_RegWr, 4,
Lit16, (((UShort)(0x0F)) << 8) | (UShort)(opc),
Lit16, (UShort)modrm,
TempReg, t1 );
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("pmovmskb %s, %s\n",
nameMMXReg(eregOfRM(modrm)), nameIReg(4,gregOfRM(modrm)));
eip++;
break;
case 0xC5:
/* PEXTRW (src)mmxreg, (dst)ireg */
vg_assert(sz == 4);
t1 = newTemp(cb);
modrm = getUChar(eip); eip++;
abyte = getUChar(eip); eip++;
vg_assert(epartIsReg(modrm));
uInstr3(cb, SSE2g1_RegWr, 4,
Lit16, (((UShort)(0x0F)) << 8) | (UShort)(opc),
Lit16, (UShort)modrm,
TempReg, t1 );
uLiteral(cb, abyte);
uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, gregOfRM(modrm));
DIP("pextrw %s, %d, %s\n",
nameMMXReg(eregOfRM(modrm)), (Int)abyte,
nameIReg(4, gregOfRM(modrm)));
break;
case 0xC4:
/* PINSRW (src)ireg, (dst)mmxreg */
vg_assert(sz == 4);
t1 = newTemp(cb);
modrm = getUChar(eip); eip++;
abyte = getUChar(eip); eip++;
vg_assert(epartIsReg(modrm));
uInstr2(cb, GET, 2, ArchReg, eregOfRM(modrm), TempReg, t1);
uInstr3(cb, SSE2e1_RegRd, 2,
Lit16, (((UShort)(0x0F)) << 8) | (UShort)(opc),
Lit16, (UShort)modrm,
TempReg, t1 );
uLiteral(cb, abyte);
DIP("pinsrw %s, %d, %s\n", nameIReg(2, eregOfRM(modrm)),
(Int)abyte, nameMMXReg(gregOfRM(modrm)));
break;
case 0xA1: /* POP %FS */
dis_pop_segreg( cb, R_FS, sz ); break;
case 0xA9: /* POP %GS */
dis_pop_segreg( cb, R_GS, sz ); break;
case 0xA0: /* PUSH %FS */
dis_push_segreg( cb, R_FS, sz ); break;
case 0xA8: /* PUSH %GS */
dis_push_segreg( cb, R_GS, sz ); break;
/* =-=-=-=-=-=-=-=-=- unimp2 =-=-=-=-=-=-=-=-=-=-= */
default:
goto decode_failure;
} /* switch (opc) for the 2-byte opcodes */
goto decode_success;
} /* case 0x0F: of primary opcode */
/* ------------------------ ??? ------------------------ */
default:
decode_failure:
/* All decode failures end up here. */
VG_(printf)("disInstr: unhandled instruction bytes: "
"0x%x 0x%x 0x%x 0x%x\n",
(Int)eip_start[0],
(Int)eip_start[1],
(Int)eip_start[2],
(Int)eip_start[3] );
/* Print address of failing instruction. */
VG_(describe_eip)((Addr)eip_start, loc_buf, M_VG_ERRTXT);
VG_(printf)(" at %s\n", loc_buf);
uInstr0(cb, CALLM_S, 0);
uInstr1(cb, CALLM, 0, Lit16,
VGOFF_(helper_undefined_instruction));
uInstr0(cb, CALLM_E, 0);
/* just because everything else insists the last instruction of
a BB is a jmp */
jmp_lit(cb, eip);
*isEnd = True;
break;
return eip;
} /* switch (opc) for the main (primary) opcode switch. */
decode_success:
/* All decode successes end up here. */
DIP("\n");
for (; first_uinstr < cb->used; first_uinstr++) {
VG_(sanity_check_UInstr)( first_uinstr, &cb->instrs[first_uinstr] );
if (VG_(print_codegen))
VG_(pp_UInstr)(first_uinstr, &cb->instrs[first_uinstr]);
}
return eip;
}
/* Disassemble a complete basic block, starting at eip, and dumping
the ucode into cb. Returns the size, in bytes, of the basic
block. */
Int VG_(disBB) ( UCodeBlock* cb, Addr eip0 )
{
Addr eip = eip0;
Bool isEnd = False;
Int delta = 0;
DIP("Original x86 code to UCode:\n\n");
/* After every x86 instruction do an INCEIP, except for the final one
* in the basic block. For them we patch in the x86 instruction size
* into the `extra4b' field of the basic-block-ending JMP.
*
* The INCEIPs and JMP.extra4b fields allows a tool to track x86
* instruction sizes, important for some tools (eg. Cachegrind).
*/
if (VG_(clo_single_step)) {
eip = disInstr ( cb, eip, &isEnd );
/* Add a JMP to the next (single x86 instruction) BB if it doesn't
* already end with a JMP instr. We also need to check for no UCode,
* which occurs if the x86 instr was a nop */
if (cb->used == 0 || LAST_UINSTR(cb).opcode != JMP) {
jmp_lit(cb, eip);
/* Print added JMP */
if (VG_(print_codegen))
VG_(pp_UInstr)(cb->used-1, &cb->instrs[cb->used-1]);
}
DIP("\n");
delta = eip - eip0;
} else {
Addr eip2;
while (!isEnd) {
eip2 = disInstr ( cb, eip, &isEnd );
delta = (eip2 - eip);
eip = eip2;
/* Split up giant basic blocks into pieces, so the
translations fall within 64k. */
if (eip - eip0 > 2000 && !isEnd) {
if (VG_(clo_verbosity) > 2)
VG_(message)(Vg_DebugMsg,
"Warning: splitting giant basic block into pieces at %p %(y",
eip, eip);
jmp_lit(cb, eip);
/* Print added JMP */
if (VG_(print_codegen))
VG_(pp_UInstr)(cb->used-1, &cb->instrs[cb->used-1]);
isEnd = True;
} else if (!isEnd) {
uInstr1(cb, INCEIP, 0, Lit16, delta);
/* Print added INCEIP */
if (VG_(print_codegen))
VG_(pp_UInstr)(cb->used-1, &cb->instrs[cb->used-1]);
}
DIP("\n");
}
}
/* Patch instruction size into final JMP. */
LAST_UINSTR(cb).extra4b = delta;
return eip - eip0;
}
#undef DIP
#undef DIS
/*--------------------------------------------------------------------*/
/*--- end vg_to_ucode.c ---*/
/*--------------------------------------------------------------------*/