blob: dc1cee51fe2ebca1b993095e81753255b75dd569 [file] [log] [blame]
sewardjf98e1c02008-10-25 16:22:41 +00001
2/*--------------------------------------------------------------------*/
3/*--- LibHB: a library for implementing and checking ---*/
4/*--- the happens-before relationship in concurrent programs. ---*/
5/*--- libhb_main.c ---*/
6/*--------------------------------------------------------------------*/
7
8/*
9 This file is part of LibHB, a library for implementing and checking
10 the happens-before relationship in concurrent programs.
11
12 Copyright (C) 2008-2008 OpenWorks Ltd
13 info@open-works.co.uk
14
15 This program is free software; you can redistribute it and/or
16 modify it under the terms of the GNU General Public License as
17 published by the Free Software Foundation; either version 2 of the
18 License, or (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
28 02111-1307, USA.
29
30 The GNU General Public License is contained in the file COPYING.
31*/
32
33#include "pub_tool_basics.h"
34#include "pub_tool_libcassert.h"
35#include "pub_tool_libcbase.h"
36#include "pub_tool_libcprint.h"
37#include "pub_tool_mallocfree.h"
38#include "pub_tool_wordfm.h"
sewardjbc307e52008-12-06 22:10:54 +000039#include "pub_tool_sparsewa.h"
sewardjf98e1c02008-10-25 16:22:41 +000040#include "pub_tool_xarray.h"
41#include "pub_tool_oset.h"
42#include "pub_tool_threadstate.h"
43#include "pub_tool_aspacemgr.h"
44#include "pub_tool_execontext.h"
45#include "pub_tool_errormgr.h"
sewardjd024ae52008-11-09 20:47:57 +000046#include "pub_tool_options.h" // VG_(clo_verbosity)
sewardjf98e1c02008-10-25 16:22:41 +000047#include "hg_basics.h"
48#include "hg_wordset.h"
49#include "hg_lock_n_thread.h"
50#include "hg_errors.h"
51
52#include "libhb.h"
53
54
sewardj8f5374e2008-12-07 11:40:17 +000055/////////////////////////////////////////////////////////////////
56/////////////////////////////////////////////////////////////////
57// //
58// Debugging #defines //
59// //
60/////////////////////////////////////////////////////////////////
61/////////////////////////////////////////////////////////////////
62
63/* Check the sanity of shadow values in the core memory state
64 machine. Change #if 0 to #if 1 to enable this. */
65#if 0
66# define CHECK_MSM 1
67#else
68# define CHECK_MSM 0
69#endif
70
71
72/* Check sanity (reference counts, etc) in the conflicting access
73 machinery. Change #if 0 to #if 1 to enable this. */
74#if 0
75# define CHECK_CEM 1
76#else
77# define CHECK_CEM 0
78#endif
79
80
81/* Check sanity in the compressed shadow memory machinery,
82 particularly in its caching innards. Unfortunately there's no
83 almost-zero-cost way to make them selectable at run time. Hence
84 set the #if 0 to #if 1 and rebuild if you want them. */
85#if 0
86# define CHECK_ZSM 1 /* do sanity-check CacheLine stuff */
87# define inline __attribute__((noinline))
88 /* probably want to ditch -fomit-frame-pointer too */
89#else
90# define CHECK_ZSM 0 /* don't sanity-check CacheLine stuff */
91#endif
92
93
94/////////////////////////////////////////////////////////////////
95/////////////////////////////////////////////////////////////////
96// //
97// Forward declarations //
98// //
99/////////////////////////////////////////////////////////////////
100/////////////////////////////////////////////////////////////////
101
sewardjf98e1c02008-10-25 16:22:41 +0000102/* fwds for
103 Globals needed by other parts of the library. These are set
104 once at startup and then never changed. */
105static void (*main_get_stacktrace)( Thr*, Addr*, UWord ) = NULL;
sewardjd52392d2008-11-08 20:36:26 +0000106static ExeContext* (*main_get_EC)( Thr* ) = NULL;
sewardjf98e1c02008-10-25 16:22:41 +0000107
sewardjf98e1c02008-10-25 16:22:41 +0000108
109
110/////////////////////////////////////////////////////////////////
111/////////////////////////////////////////////////////////////////
112// //
113// SECTION BEGIN compressed shadow memory //
114// //
115/////////////////////////////////////////////////////////////////
116/////////////////////////////////////////////////////////////////
117
118#ifndef __HB_ZSM_H
119#define __HB_ZSM_H
120
121typedef ULong SVal;
122
123/* This value has special significance to the implementation, and callers
124 may not store it in the shadow memory. */
125#define SVal_INVALID (3ULL << 62)
126
127/* This is the default value for shadow memory. Initially the shadow
128 memory contains no accessible areas and so all reads produce this
129 value. TODO: make this caller-defineable. */
130#define SVal_NOACCESS (2ULL << 62)
131
132/* Initialise the library. Once initialised, it will (or may) call
133 rcinc and rcdec in response to all the calls below, in order to
134 allow the user to do reference counting on the SVals stored herein.
135 It is important to understand, however, that due to internal
136 caching, the reference counts are in general inaccurate, and can be
137 both above or below the true reference count for an item. In
138 particular, the library may indicate that the reference count for
139 an item is zero, when in fact it is not.
140
141 To make the reference counting exact and therefore non-pointless,
142 call zsm_flush_cache. Immediately after it returns, the reference
143 counts for all items, as deduced by the caller by observing calls
144 to rcinc and rcdec, will be correct, and so any items with a zero
145 reference count may be freed (or at least considered to be
146 unreferenced by this library).
147*/
148static void zsm_init ( void(*rcinc)(SVal), void(*rcdec)(SVal) );
149
150static void zsm_set_range ( Addr, SizeT, SVal );
151static SVal zsm_read8 ( Addr );
152static void zsm_copy_range ( Addr, Addr, SizeT );
153static void zsm_flush_cache ( void );
154
155#endif /* ! __HB_ZSM_H */
156
157
sewardjf98e1c02008-10-25 16:22:41 +0000158/* Round a up to the next multiple of N. N must be a power of 2 */
159#define ROUNDUP(a, N) ((a + N - 1) & ~(N-1))
160/* Round a down to the next multiple of N. N must be a power of 2 */
161#define ROUNDDN(a, N) ((a) & ~(N-1))
162
163
164
165/* ------ User-supplied RC functions ------ */
166static void(*rcinc)(SVal) = NULL;
167static void(*rcdec)(SVal) = NULL;
168
169
170/* ------ CacheLine ------ */
171
172#define N_LINE_BITS 6 /* must be >= 3 */
173#define N_LINE_ARANGE (1 << N_LINE_BITS)
174#define N_LINE_TREES (N_LINE_ARANGE >> 3)
175
176typedef
177 struct {
178 UShort descrs[N_LINE_TREES];
179 SVal svals[N_LINE_ARANGE]; // == N_LINE_TREES * 8
180 }
181 CacheLine;
182
183#define TREE_DESCR_16_0 (1<<0)
184#define TREE_DESCR_32_0 (1<<1)
185#define TREE_DESCR_16_1 (1<<2)
186#define TREE_DESCR_64 (1<<3)
187#define TREE_DESCR_16_2 (1<<4)
188#define TREE_DESCR_32_1 (1<<5)
189#define TREE_DESCR_16_3 (1<<6)
190#define TREE_DESCR_8_0 (1<<7)
191#define TREE_DESCR_8_1 (1<<8)
192#define TREE_DESCR_8_2 (1<<9)
193#define TREE_DESCR_8_3 (1<<10)
194#define TREE_DESCR_8_4 (1<<11)
195#define TREE_DESCR_8_5 (1<<12)
196#define TREE_DESCR_8_6 (1<<13)
197#define TREE_DESCR_8_7 (1<<14)
198#define TREE_DESCR_DTY (1<<15)
199
200typedef
201 struct {
202 SVal dict[4]; /* can represent up to 4 diff values in the line */
203 UChar ix2s[N_LINE_ARANGE/4]; /* array of N_LINE_ARANGE 2-bit
204 dict indexes */
205 /* if dict[0] == SVal_INVALID then dict[1] is the index of the
206 LineF to use, and dict[2..] are also SVal_INVALID. */
207 }
208 LineZ; /* compressed rep for a cache line */
209
210typedef
211 struct {
212 Bool inUse;
213 SVal w64s[N_LINE_ARANGE];
214 }
215 LineF; /* full rep for a cache line */
216
217/* Shadow memory.
218 Primary map is a WordFM Addr SecMap*.
219 SecMaps cover some page-size-ish section of address space and hold
220 a compressed representation.
221 CacheLine-sized chunks of SecMaps are copied into a Cache, being
222 decompressed when moved into the cache and recompressed on the
223 way out. Because of this, the cache must operate as a writeback
224 cache, not a writethrough one.
225
226 Each SecMap must hold a power-of-2 number of CacheLines. Hence
227 N_SECMAP_BITS must >= N_LINE_BITS.
228*/
229#define N_SECMAP_BITS 13
230#define N_SECMAP_ARANGE (1 << N_SECMAP_BITS)
231
232// # CacheLines held by a SecMap
233#define N_SECMAP_ZLINES (N_SECMAP_ARANGE / N_LINE_ARANGE)
234
235/* The data in the SecMap is held in the array of LineZs. Each LineZ
236 either carries the required data directly, in a compressed
237 representation, or it holds (in .dict[0]) an index to the LineF in
238 .linesF that holds the full representation.
239
240 Currently-unused LineF's have their .inUse bit set to zero.
241 Since each in-use LineF is referred to be exactly one LineZ,
242 the number of .linesZ[] that refer to .linesF should equal
243 the number of .linesF[] that have .inUse == True.
244
245 RC obligations: the RCs presented to the user include exactly
246 the values in:
247 * direct Z reps, that is, ones for which .dict[0] != SVal_INVALID
248 * F reps that are in use (.inUse == True)
249
250 Hence the following actions at the following transitions are required:
251
252 F rep: .inUse==True -> .inUse==False -- rcdec_LineF
253 F rep: .inUse==False -> .inUse==True -- rcinc_LineF
254 Z rep: .dict[0] from other to SVal_INVALID -- rcdec_LineZ
255 Z rep: .dict[0] from SVal_INVALID to other -- rcinc_LineZ
256*/
257typedef
258 struct {
259 UInt magic;
260 LineZ linesZ[N_SECMAP_ZLINES];
261 LineF* linesF;
262 UInt linesF_size;
263 }
264 SecMap;
265
266#define SecMap_MAGIC 0x571e58cbU
267
268static inline Bool is_sane_SecMap ( SecMap* sm ) {
269 return sm != NULL && sm->magic == SecMap_MAGIC;
270}
271
272/* ------ Cache ------ */
273
274#define N_WAY_BITS 16
275#define N_WAY_NENT (1 << N_WAY_BITS)
276
277/* Each tag is the address of the associated CacheLine, rounded down
278 to a CacheLine address boundary. A CacheLine size must be a power
279 of 2 and must be 8 or more. Hence an easy way to initialise the
280 cache so it is empty is to set all the tag values to any value % 8
281 != 0, eg 1. This means all queries in the cache initially miss.
282 It does however require us to detect and not writeback, any line
283 with a bogus tag. */
284typedef
285 struct {
286 CacheLine lyns0[N_WAY_NENT];
287 Addr tags0[N_WAY_NENT];
288 }
289 Cache;
290
291static inline Bool is_valid_scache_tag ( Addr tag ) {
292 /* a valid tag should be naturally aligned to the start of
293 a CacheLine. */
294 return 0 == (tag & (N_LINE_ARANGE - 1));
295}
296
297
298/* --------- Primary data structures --------- */
299
300/* Shadow memory primary map */
301static WordFM* map_shmem = NULL; /* WordFM Addr SecMap* */
302static Cache cache_shmem;
303
304
305static UWord stats__secmaps_search = 0; // # SM finds
306static UWord stats__secmaps_search_slow = 0; // # SM lookupFMs
307static UWord stats__secmaps_allocd = 0; // # SecMaps issued
308static UWord stats__secmap_ga_space_covered = 0; // # ga bytes covered
309static UWord stats__secmap_linesZ_allocd = 0; // # LineZ's issued
310static UWord stats__secmap_linesZ_bytes = 0; // .. using this much storage
311static UWord stats__secmap_linesF_allocd = 0; // # LineF's issued
312static UWord stats__secmap_linesF_bytes = 0; // .. using this much storage
313static UWord stats__secmap_iterator_steppings = 0; // # calls to stepSMIter
314static UWord stats__cache_Z_fetches = 0; // # Z lines fetched
315static UWord stats__cache_Z_wbacks = 0; // # Z lines written back
316static UWord stats__cache_F_fetches = 0; // # F lines fetched
317static UWord stats__cache_F_wbacks = 0; // # F lines written back
318static UWord stats__cache_invals = 0; // # cache invals
319static UWord stats__cache_flushes = 0; // # cache flushes
320static UWord stats__cache_totrefs = 0; // # total accesses
321static UWord stats__cache_totmisses = 0; // # misses
322static ULong stats__cache_make_New_arange = 0; // total arange made New
323static ULong stats__cache_make_New_inZrep = 0; // arange New'd on Z reps
324static UWord stats__cline_normalises = 0; // # calls to cacheline_normalise
325static UWord stats__cline_read64s = 0; // # calls to s_m_read64
326static UWord stats__cline_read32s = 0; // # calls to s_m_read32
327static UWord stats__cline_read16s = 0; // # calls to s_m_read16
328static UWord stats__cline_read8s = 0; // # calls to s_m_read8
329static UWord stats__cline_write64s = 0; // # calls to s_m_write64
330static UWord stats__cline_write32s = 0; // # calls to s_m_write32
331static UWord stats__cline_write16s = 0; // # calls to s_m_write16
332static UWord stats__cline_write8s = 0; // # calls to s_m_write8
333static UWord stats__cline_set64s = 0; // # calls to s_m_set64
334static UWord stats__cline_set32s = 0; // # calls to s_m_set32
335static UWord stats__cline_set16s = 0; // # calls to s_m_set16
336static UWord stats__cline_set8s = 0; // # calls to s_m_set8
337static UWord stats__cline_get8s = 0; // # calls to s_m_get8
338static UWord stats__cline_copy8s = 0; // # calls to s_m_copy8
339static UWord stats__cline_64to32splits = 0; // # 64-bit accesses split
340static UWord stats__cline_32to16splits = 0; // # 32-bit accesses split
341static UWord stats__cline_16to8splits = 0; // # 16-bit accesses split
342static UWord stats__cline_64to32pulldown = 0; // # calls to pulldown_to_32
343static UWord stats__cline_32to16pulldown = 0; // # calls to pulldown_to_16
344static UWord stats__cline_16to8pulldown = 0; // # calls to pulldown_to_8
345
346static inline Addr shmem__round_to_SecMap_base ( Addr a ) {
347 return a & ~(N_SECMAP_ARANGE - 1);
348}
349static inline UWord shmem__get_SecMap_offset ( Addr a ) {
350 return a & (N_SECMAP_ARANGE - 1);
351}
352
353
354/*----------------------------------------------------------------*/
355/*--- map_shmem :: WordFM Addr SecMap ---*/
356/*--- shadow memory (low level handlers) (shmem__* fns) ---*/
357/*----------------------------------------------------------------*/
358
359/*--------------- SecMap allocation --------------- */
360
361static HChar* shmem__bigchunk_next = NULL;
362static HChar* shmem__bigchunk_end1 = NULL;
363
364static void* shmem__bigchunk_alloc ( SizeT n )
365{
366 const SizeT sHMEM__BIGCHUNK_SIZE = 4096 * 256 * 4;
367 tl_assert(n > 0);
368 n = VG_ROUNDUP(n, 16);
369 tl_assert(shmem__bigchunk_next <= shmem__bigchunk_end1);
370 tl_assert(shmem__bigchunk_end1 - shmem__bigchunk_next
371 <= (SSizeT)sHMEM__BIGCHUNK_SIZE);
372 if (shmem__bigchunk_next + n > shmem__bigchunk_end1) {
373 if (0)
374 VG_(printf)("XXXXX bigchunk: abandoning %d bytes\n",
375 (Int)(shmem__bigchunk_end1 - shmem__bigchunk_next));
376 shmem__bigchunk_next = VG_(am_shadow_alloc)( sHMEM__BIGCHUNK_SIZE );
377 if (shmem__bigchunk_next == NULL)
378 VG_(out_of_memory_NORETURN)(
379 "helgrind:shmem__bigchunk_alloc", sHMEM__BIGCHUNK_SIZE );
380 shmem__bigchunk_end1 = shmem__bigchunk_next + sHMEM__BIGCHUNK_SIZE;
381 }
382 tl_assert(shmem__bigchunk_next);
383 tl_assert( 0 == (((Addr)shmem__bigchunk_next) & (16-1)) );
384 tl_assert(shmem__bigchunk_next + n <= shmem__bigchunk_end1);
385 shmem__bigchunk_next += n;
386 return shmem__bigchunk_next - n;
387}
388
389static SecMap* shmem__alloc_SecMap ( void )
390{
391 Word i, j;
392 SecMap* sm = shmem__bigchunk_alloc( sizeof(SecMap) );
393 if (0) VG_(printf)("alloc_SecMap %p\n",sm);
394 tl_assert(sm);
395 sm->magic = SecMap_MAGIC;
396 for (i = 0; i < N_SECMAP_ZLINES; i++) {
397 sm->linesZ[i].dict[0] = SVal_NOACCESS;
398 sm->linesZ[i].dict[1] = SVal_INVALID;
399 sm->linesZ[i].dict[2] = SVal_INVALID;
400 sm->linesZ[i].dict[3] = SVal_INVALID;
401 for (j = 0; j < N_LINE_ARANGE/4; j++)
402 sm->linesZ[i].ix2s[j] = 0; /* all reference dict[0] */
403 }
404 sm->linesF = NULL;
405 sm->linesF_size = 0;
406 stats__secmaps_allocd++;
407 stats__secmap_ga_space_covered += N_SECMAP_ARANGE;
408 stats__secmap_linesZ_allocd += N_SECMAP_ZLINES;
409 stats__secmap_linesZ_bytes += N_SECMAP_ZLINES * sizeof(LineZ);
410 return sm;
411}
412
413typedef struct { Addr gaKey; SecMap* sm; } SMCacheEnt;
414static SMCacheEnt smCache[3] = { {1,NULL}, {1,NULL}, {1,NULL} };
415
416static SecMap* shmem__find_SecMap ( Addr ga )
417{
418 SecMap* sm = NULL;
419 Addr gaKey = shmem__round_to_SecMap_base(ga);
420 // Cache
421 stats__secmaps_search++;
422 if (LIKELY(gaKey == smCache[0].gaKey))
423 return smCache[0].sm;
424 if (LIKELY(gaKey == smCache[1].gaKey)) {
425 SMCacheEnt tmp = smCache[0];
426 smCache[0] = smCache[1];
427 smCache[1] = tmp;
428 return smCache[0].sm;
429 }
430 if (gaKey == smCache[2].gaKey) {
431 SMCacheEnt tmp = smCache[1];
432 smCache[1] = smCache[2];
433 smCache[2] = tmp;
434 return smCache[1].sm;
435 }
436 // end Cache
437 stats__secmaps_search_slow++;
438 if (VG_(lookupFM)( map_shmem,
439 NULL/*keyP*/, (UWord*)&sm, (UWord)gaKey )) {
440 tl_assert(sm != NULL);
441 smCache[2] = smCache[1];
442 smCache[1] = smCache[0];
443 smCache[0].gaKey = gaKey;
444 smCache[0].sm = sm;
445 } else {
446 tl_assert(sm == NULL);
447 }
448 return sm;
449}
450
451static SecMap* shmem__find_or_alloc_SecMap ( Addr ga )
452{
453 SecMap* sm = shmem__find_SecMap ( ga );
454 if (LIKELY(sm)) {
455 return sm;
456 } else {
457 /* create a new one */
458 Addr gaKey = shmem__round_to_SecMap_base(ga);
459 sm = shmem__alloc_SecMap();
460 tl_assert(sm);
461 VG_(addToFM)( map_shmem, (UWord)gaKey, (UWord)sm );
462 return sm;
463 }
464}
465
466
467/* ------------ LineF and LineZ related ------------ */
468
469static void rcinc_LineF ( LineF* lineF ) {
470 UWord i;
471 tl_assert(lineF->inUse);
472 for (i = 0; i < N_LINE_ARANGE; i++)
473 rcinc(lineF->w64s[i]);
474}
475
476static void rcdec_LineF ( LineF* lineF ) {
477 UWord i;
478 tl_assert(lineF->inUse);
479 for (i = 0; i < N_LINE_ARANGE; i++)
480 rcdec(lineF->w64s[i]);
481}
482
483static void rcinc_LineZ ( LineZ* lineZ ) {
484 tl_assert(lineZ->dict[0] != SVal_INVALID);
485 rcinc(lineZ->dict[0]);
486 if (lineZ->dict[1] != SVal_INVALID) rcinc(lineZ->dict[1]);
487 if (lineZ->dict[2] != SVal_INVALID) rcinc(lineZ->dict[2]);
488 if (lineZ->dict[3] != SVal_INVALID) rcinc(lineZ->dict[3]);
489}
490
491static void rcdec_LineZ ( LineZ* lineZ ) {
492 tl_assert(lineZ->dict[0] != SVal_INVALID);
493 rcdec(lineZ->dict[0]);
494 if (lineZ->dict[1] != SVal_INVALID) rcdec(lineZ->dict[1]);
495 if (lineZ->dict[2] != SVal_INVALID) rcdec(lineZ->dict[2]);
496 if (lineZ->dict[3] != SVal_INVALID) rcdec(lineZ->dict[3]);
497}
498
499inline
500static void write_twobit_array ( UChar* arr, UWord ix, UWord b2 ) {
501 Word bix, shft, mask, prep;
502 tl_assert(ix >= 0);
503 bix = ix >> 2;
504 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
505 mask = 3 << shft;
506 prep = b2 << shft;
507 arr[bix] = (arr[bix] & ~mask) | prep;
508}
509
510inline
511static UWord read_twobit_array ( UChar* arr, UWord ix ) {
512 Word bix, shft;
513 tl_assert(ix >= 0);
514 bix = ix >> 2;
515 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
516 return (arr[bix] >> shft) & 3;
517}
518
519/* Given address 'tag', find either the Z or F line containing relevant
520 data, so it can be read into the cache.
521*/
522static void find_ZF_for_reading ( /*OUT*/LineZ** zp,
523 /*OUT*/LineF** fp, Addr tag ) {
524 LineZ* lineZ;
525 LineF* lineF;
526 UWord zix;
527 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
528 UWord smoff = shmem__get_SecMap_offset(tag);
529 /* since smoff is derived from a valid tag, it should be
530 cacheline-aligned. */
531 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
532 zix = smoff >> N_LINE_BITS;
533 tl_assert(zix < N_SECMAP_ZLINES);
534 lineZ = &sm->linesZ[zix];
535 lineF = NULL;
536 if (lineZ->dict[0] == SVal_INVALID) {
537 UInt fix = (UInt)lineZ->dict[1];
538 tl_assert(sm->linesF);
539 tl_assert(sm->linesF_size > 0);
540 tl_assert(fix >= 0 && fix < sm->linesF_size);
541 lineF = &sm->linesF[fix];
542 tl_assert(lineF->inUse);
543 lineZ = NULL;
544 }
545 *zp = lineZ;
546 *fp = lineF;
547}
548
549/* Given address 'tag', return the relevant SecMap and the index of
550 the LineZ within it, in the expectation that the line is to be
551 overwritten. Regardless of whether 'tag' is currently associated
552 with a Z or F representation, to rcdec on the current
553 representation, in recognition of the fact that the contents are
554 just about to be overwritten. */
555static __attribute__((noinline))
556void find_Z_for_writing ( /*OUT*/SecMap** smp,
557 /*OUT*/Word* zixp,
558 Addr tag ) {
559 LineZ* lineZ;
560 LineF* lineF;
561 UWord zix;
562 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
563 UWord smoff = shmem__get_SecMap_offset(tag);
564 /* since smoff is derived from a valid tag, it should be
565 cacheline-aligned. */
566 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
567 zix = smoff >> N_LINE_BITS;
568 tl_assert(zix < N_SECMAP_ZLINES);
569 lineZ = &sm->linesZ[zix];
570 lineF = NULL;
571 /* re RCs, we are freeing up this LineZ/LineF so that new data can
572 be parked in it. Hence have to rcdec it accordingly. */
573 /* If lineZ has an associated lineF, free it up. */
574 if (lineZ->dict[0] == SVal_INVALID) {
575 UInt fix = (UInt)lineZ->dict[1];
576 tl_assert(sm->linesF);
577 tl_assert(sm->linesF_size > 0);
578 tl_assert(fix >= 0 && fix < sm->linesF_size);
579 lineF = &sm->linesF[fix];
580 tl_assert(lineF->inUse);
581 rcdec_LineF(lineF);
582 lineF->inUse = False;
583 } else {
584 rcdec_LineZ(lineZ);
585 }
586 *smp = sm;
587 *zixp = zix;
588}
589
590static __attribute__((noinline))
591void alloc_F_for_writing ( /*MOD*/SecMap* sm, /*OUT*/Word* fixp ) {
592 UInt i, new_size;
593 LineF* nyu;
594
595 if (sm->linesF) {
596 tl_assert(sm->linesF_size > 0);
597 } else {
598 tl_assert(sm->linesF_size == 0);
599 }
600
601 if (sm->linesF) {
602 for (i = 0; i < sm->linesF_size; i++) {
603 if (!sm->linesF[i].inUse) {
604 *fixp = (Word)i;
605 return;
606 }
607 }
608 }
609
610 /* No free F line found. Expand existing array and try again. */
611 new_size = sm->linesF_size==0 ? 1 : 2 * sm->linesF_size;
612 nyu = HG_(zalloc)( "libhb.aFfw.1 (LineF storage)",
613 new_size * sizeof(LineF) );
614 tl_assert(nyu);
615
616 stats__secmap_linesF_allocd += (new_size - sm->linesF_size);
617 stats__secmap_linesF_bytes += (new_size - sm->linesF_size)
618 * sizeof(LineF);
619
620 if (0)
621 VG_(printf)("SM %p: expand F array from %d to %d\n",
622 sm, (Int)sm->linesF_size, new_size);
623
624 for (i = 0; i < new_size; i++)
625 nyu[i].inUse = False;
626
627 if (sm->linesF) {
628 for (i = 0; i < sm->linesF_size; i++) {
629 tl_assert(sm->linesF[i].inUse);
630 nyu[i] = sm->linesF[i];
631 }
632 VG_(memset)(sm->linesF, 0, sm->linesF_size * sizeof(LineF) );
633 HG_(free)(sm->linesF);
634 }
635
636 sm->linesF = nyu;
637 sm->linesF_size = new_size;
638
639 for (i = 0; i < sm->linesF_size; i++) {
640 if (!sm->linesF[i].inUse) {
641 *fixp = (Word)i;
642 return;
643 }
644 }
645
646 /*NOTREACHED*/
647 tl_assert(0);
648}
649
650
651/* ------------ CacheLine and implicit-tree related ------------ */
652
653__attribute__((unused))
654static void pp_CacheLine ( CacheLine* cl ) {
655 Word i;
656 if (!cl) {
657 VG_(printf)("%s","pp_CacheLine(NULL)\n");
658 return;
659 }
660 for (i = 0; i < N_LINE_TREES; i++)
661 VG_(printf)(" descr: %04lx\n", (UWord)cl->descrs[i]);
662 for (i = 0; i < N_LINE_ARANGE; i++)
663 VG_(printf)(" sval: %08lx\n", (UWord)cl->svals[i]);
664}
665
666static UChar descr_to_validbits ( UShort descr )
667{
668 /* a.k.a Party Time for gcc's constant folder */
669# define DESCR(b8_7, b8_6, b8_5, b8_4, b8_3, b8_2, b8_1, b8_0, \
670 b16_3, b32_1, b16_2, b64, b16_1, b32_0, b16_0) \
671 ( (UShort) ( ( (b8_7) << 14) | ( (b8_6) << 13) | \
672 ( (b8_5) << 12) | ( (b8_4) << 11) | \
673 ( (b8_3) << 10) | ( (b8_2) << 9) | \
674 ( (b8_1) << 8) | ( (b8_0) << 7) | \
675 ( (b16_3) << 6) | ( (b32_1) << 5) | \
676 ( (b16_2) << 4) | ( (b64) << 3) | \
677 ( (b16_1) << 2) | ( (b32_0) << 1) | \
678 ( (b16_0) << 0) ) )
679
680# define BYTE(bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0) \
681 ( (UChar) ( ( (bit7) << 7) | ( (bit6) << 6) | \
682 ( (bit5) << 5) | ( (bit4) << 4) | \
683 ( (bit3) << 3) | ( (bit2) << 2) | \
684 ( (bit1) << 1) | ( (bit0) << 0) ) )
685
686 /* these should all get folded out at compile time */
687 tl_assert(DESCR(1,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_7);
688 tl_assert(DESCR(0,0,0,0,0,0,0,1, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_0);
689 tl_assert(DESCR(0,0,0,0,0,0,0,0, 1,0,0, 0, 0,0,0) == TREE_DESCR_16_3);
690 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,0,0) == TREE_DESCR_32_1);
691 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,1, 0, 0,0,0) == TREE_DESCR_16_2);
692 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0) == TREE_DESCR_64);
693 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 1,0,0) == TREE_DESCR_16_1);
694 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,1,0) == TREE_DESCR_32_0);
695 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,1) == TREE_DESCR_16_0);
696
697 switch (descr) {
698 /*
699 +--------------------------------- TREE_DESCR_8_7
700 | +------------------- TREE_DESCR_8_0
701 | | +---------------- TREE_DESCR_16_3
702 | | | +-------------- TREE_DESCR_32_1
703 | | | | +------------ TREE_DESCR_16_2
704 | | | | | +--------- TREE_DESCR_64
705 | | | | | | +------ TREE_DESCR_16_1
706 | | | | | | | +---- TREE_DESCR_32_0
707 | | | | | | | | +-- TREE_DESCR_16_0
708 | | | | | | | | |
709 | | | | | | | | | GRANULARITY, 7 -> 0 */
710 case DESCR(1,1,1,1,1,1,1,1, 0,0,0, 0, 0,0,0): /* 8 8 8 8 8 8 8 8 */
711 return BYTE(1,1,1,1,1,1,1,1);
712 case DESCR(1,1,0,0,1,1,1,1, 0,0,1, 0, 0,0,0): /* 8 8 16 8 8 8 8 */
713 return BYTE(1,1,0,1,1,1,1,1);
714 case DESCR(0,0,1,1,1,1,1,1, 1,0,0, 0, 0,0,0): /* 16 8 8 8 8 8 8 */
715 return BYTE(0,1,1,1,1,1,1,1);
716 case DESCR(0,0,0,0,1,1,1,1, 1,0,1, 0, 0,0,0): /* 16 16 8 8 8 8 */
717 return BYTE(0,1,0,1,1,1,1,1);
718
719 case DESCR(1,1,1,1,1,1,0,0, 0,0,0, 0, 0,0,1): /* 8 8 8 8 8 8 16 */
720 return BYTE(1,1,1,1,1,1,0,1);
721 case DESCR(1,1,0,0,1,1,0,0, 0,0,1, 0, 0,0,1): /* 8 8 16 8 8 16 */
722 return BYTE(1,1,0,1,1,1,0,1);
723 case DESCR(0,0,1,1,1,1,0,0, 1,0,0, 0, 0,0,1): /* 16 8 8 8 8 16 */
724 return BYTE(0,1,1,1,1,1,0,1);
725 case DESCR(0,0,0,0,1,1,0,0, 1,0,1, 0, 0,0,1): /* 16 16 8 8 16 */
726 return BYTE(0,1,0,1,1,1,0,1);
727
728 case DESCR(1,1,1,1,0,0,1,1, 0,0,0, 0, 1,0,0): /* 8 8 8 8 16 8 8 */
729 return BYTE(1,1,1,1,0,1,1,1);
730 case DESCR(1,1,0,0,0,0,1,1, 0,0,1, 0, 1,0,0): /* 8 8 16 16 8 8 */
731 return BYTE(1,1,0,1,0,1,1,1);
732 case DESCR(0,0,1,1,0,0,1,1, 1,0,0, 0, 1,0,0): /* 16 8 8 16 8 8 */
733 return BYTE(0,1,1,1,0,1,1,1);
734 case DESCR(0,0,0,0,0,0,1,1, 1,0,1, 0, 1,0,0): /* 16 16 16 8 8 */
735 return BYTE(0,1,0,1,0,1,1,1);
736
737 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 1,0,1): /* 8 8 8 8 16 16 */
738 return BYTE(1,1,1,1,0,1,0,1);
739 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 1,0,1): /* 8 8 16 16 16 */
740 return BYTE(1,1,0,1,0,1,0,1);
741 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 1,0,1): /* 16 8 8 16 16 */
742 return BYTE(0,1,1,1,0,1,0,1);
743 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 1,0,1): /* 16 16 16 16 */
744 return BYTE(0,1,0,1,0,1,0,1);
745
746 case DESCR(0,0,0,0,1,1,1,1, 0,1,0, 0, 0,0,0): /* 32 8 8 8 8 */
747 return BYTE(0,0,0,1,1,1,1,1);
748 case DESCR(0,0,0,0,1,1,0,0, 0,1,0, 0, 0,0,1): /* 32 8 8 16 */
749 return BYTE(0,0,0,1,1,1,0,1);
750 case DESCR(0,0,0,0,0,0,1,1, 0,1,0, 0, 1,0,0): /* 32 16 8 8 */
751 return BYTE(0,0,0,1,0,1,1,1);
752 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 1,0,1): /* 32 16 16 */
753 return BYTE(0,0,0,1,0,1,0,1);
754
755 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 0,1,0): /* 8 8 8 8 32 */
756 return BYTE(1,1,1,1,0,0,0,1);
757 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 0,1,0): /* 8 8 16 32 */
758 return BYTE(1,1,0,1,0,0,0,1);
759 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 0,1,0): /* 16 8 8 32 */
760 return BYTE(0,1,1,1,0,0,0,1);
761 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 0,1,0): /* 16 16 32 */
762 return BYTE(0,1,0,1,0,0,0,1);
763
764 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,1,0): /* 32 32 */
765 return BYTE(0,0,0,1,0,0,0,1);
766
767 case DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0): /* 64 */
768 return BYTE(0,0,0,0,0,0,0,1);
769
770 default: return BYTE(0,0,0,0,0,0,0,0);
771 /* INVALID - any valid descr produces at least one
772 valid bit in tree[0..7]*/
773 }
774 /* NOTREACHED*/
775 tl_assert(0);
776
777# undef DESCR
778# undef BYTE
779}
780
781__attribute__((unused))
782static Bool is_sane_Descr ( UShort descr ) {
783 return descr_to_validbits(descr) != 0;
784}
785
786static void sprintf_Descr ( /*OUT*/HChar* dst, UShort descr ) {
787 VG_(sprintf)(dst,
788 "%d%d%d%d%d%d%d%d %d%d%d %d %d%d%d",
789 (Int)((descr & TREE_DESCR_8_7) ? 1 : 0),
790 (Int)((descr & TREE_DESCR_8_6) ? 1 : 0),
791 (Int)((descr & TREE_DESCR_8_5) ? 1 : 0),
792 (Int)((descr & TREE_DESCR_8_4) ? 1 : 0),
793 (Int)((descr & TREE_DESCR_8_3) ? 1 : 0),
794 (Int)((descr & TREE_DESCR_8_2) ? 1 : 0),
795 (Int)((descr & TREE_DESCR_8_1) ? 1 : 0),
796 (Int)((descr & TREE_DESCR_8_0) ? 1 : 0),
797 (Int)((descr & TREE_DESCR_16_3) ? 1 : 0),
798 (Int)((descr & TREE_DESCR_32_1) ? 1 : 0),
799 (Int)((descr & TREE_DESCR_16_2) ? 1 : 0),
800 (Int)((descr & TREE_DESCR_64) ? 1 : 0),
801 (Int)((descr & TREE_DESCR_16_1) ? 1 : 0),
802 (Int)((descr & TREE_DESCR_32_0) ? 1 : 0),
803 (Int)((descr & TREE_DESCR_16_0) ? 1 : 0)
804 );
805}
806static void sprintf_Byte ( /*OUT*/HChar* dst, UChar byte ) {
807 VG_(sprintf)(dst, "%d%d%d%d%d%d%d%d",
808 (Int)((byte & 128) ? 1 : 0),
809 (Int)((byte & 64) ? 1 : 0),
810 (Int)((byte & 32) ? 1 : 0),
811 (Int)((byte & 16) ? 1 : 0),
812 (Int)((byte & 8) ? 1 : 0),
813 (Int)((byte & 4) ? 1 : 0),
814 (Int)((byte & 2) ? 1 : 0),
815 (Int)((byte & 1) ? 1 : 0)
816 );
817}
818
819static Bool is_sane_Descr_and_Tree ( UShort descr, SVal* tree ) {
820 Word i;
821 UChar validbits = descr_to_validbits(descr);
822 HChar buf[128], buf2[128];
823 if (validbits == 0)
824 goto bad;
825 for (i = 0; i < 8; i++) {
826 if (validbits & (1<<i)) {
827 if (tree[i] == SVal_INVALID)
828 goto bad;
829 } else {
830 if (tree[i] != SVal_INVALID)
831 goto bad;
832 }
833 }
834 return True;
835 bad:
836 sprintf_Descr( buf, descr );
837 sprintf_Byte( buf2, validbits );
838 VG_(printf)("%s","is_sane_Descr_and_Tree: bad tree {\n");
839 VG_(printf)(" validbits 0x%02lx %s\n", (UWord)validbits, buf2);
840 VG_(printf)(" descr 0x%04lx %s\n", (UWord)descr, buf);
841 for (i = 0; i < 8; i++)
842 VG_(printf)(" [%ld] 0x%016llx\n", i, tree[i]);
843 VG_(printf)("%s","}\n");
844 return 0;
845}
846
847static Bool is_sane_CacheLine ( CacheLine* cl )
848{
849 Word tno, cloff;
850
851 if (!cl) goto bad;
852
853 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
854 UShort descr = cl->descrs[tno];
855 SVal* tree = &cl->svals[cloff];
856 if (!is_sane_Descr_and_Tree(descr, tree))
857 goto bad;
858 }
859 tl_assert(cloff == N_LINE_ARANGE);
860 return True;
861 bad:
862 pp_CacheLine(cl);
863 return False;
864}
865
866static UShort normalise_tree ( /*MOD*/SVal* tree )
867{
868 UShort descr;
869 /* pre: incoming tree[0..7] does not have any invalid shvals, in
870 particular no zeroes. */
871 if (UNLIKELY(tree[7] == SVal_INVALID || tree[6] == SVal_INVALID
872 || tree[5] == SVal_INVALID || tree[4] == SVal_INVALID
873 || tree[3] == SVal_INVALID || tree[2] == SVal_INVALID
874 || tree[1] == SVal_INVALID || tree[0] == SVal_INVALID))
875 tl_assert(0);
876
877 descr = TREE_DESCR_8_7 | TREE_DESCR_8_6 | TREE_DESCR_8_5
878 | TREE_DESCR_8_4 | TREE_DESCR_8_3 | TREE_DESCR_8_2
879 | TREE_DESCR_8_1 | TREE_DESCR_8_0;
880 /* build 16-bit layer */
881 if (tree[1] == tree[0]) {
882 tree[1] = SVal_INVALID;
883 descr &= ~(TREE_DESCR_8_1 | TREE_DESCR_8_0);
884 descr |= TREE_DESCR_16_0;
885 }
886 if (tree[3] == tree[2]) {
887 tree[3] = SVal_INVALID;
888 descr &= ~(TREE_DESCR_8_3 | TREE_DESCR_8_2);
889 descr |= TREE_DESCR_16_1;
890 }
891 if (tree[5] == tree[4]) {
892 tree[5] = SVal_INVALID;
893 descr &= ~(TREE_DESCR_8_5 | TREE_DESCR_8_4);
894 descr |= TREE_DESCR_16_2;
895 }
896 if (tree[7] == tree[6]) {
897 tree[7] = SVal_INVALID;
898 descr &= ~(TREE_DESCR_8_7 | TREE_DESCR_8_6);
899 descr |= TREE_DESCR_16_3;
900 }
901 /* build 32-bit layer */
902 if (tree[2] == tree[0]
903 && (descr & TREE_DESCR_16_1) && (descr & TREE_DESCR_16_0)) {
904 tree[2] = SVal_INVALID; /* [3,1] must already be SVal_INVALID */
905 descr &= ~(TREE_DESCR_16_1 | TREE_DESCR_16_0);
906 descr |= TREE_DESCR_32_0;
907 }
908 if (tree[6] == tree[4]
909 && (descr & TREE_DESCR_16_3) && (descr & TREE_DESCR_16_2)) {
910 tree[6] = SVal_INVALID; /* [7,5] must already be SVal_INVALID */
911 descr &= ~(TREE_DESCR_16_3 | TREE_DESCR_16_2);
912 descr |= TREE_DESCR_32_1;
913 }
914 /* build 64-bit layer */
915 if (tree[4] == tree[0]
916 && (descr & TREE_DESCR_32_1) && (descr & TREE_DESCR_32_0)) {
917 tree[4] = SVal_INVALID; /* [7,6,5,3,2,1] must already be SVal_INVALID */
918 descr &= ~(TREE_DESCR_32_1 | TREE_DESCR_32_0);
919 descr |= TREE_DESCR_64;
920 }
921 return descr;
922}
923
924/* This takes a cacheline where all the data is at the leaves
925 (w8[..]) and builds a correctly normalised tree. */
926static void normalise_CacheLine ( /*MOD*/CacheLine* cl )
927{
928 Word tno, cloff;
929 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
930 SVal* tree = &cl->svals[cloff];
931 cl->descrs[tno] = normalise_tree( tree );
932 }
933 tl_assert(cloff == N_LINE_ARANGE);
sewardj8f5374e2008-12-07 11:40:17 +0000934 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +0000935 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
936 stats__cline_normalises++;
937}
938
939
940typedef struct { UChar count; SVal sval; } CountedSVal;
941
942static
943void sequentialise_CacheLine ( /*OUT*/CountedSVal* dst,
944 /*OUT*/Word* dstUsedP,
945 Word nDst, CacheLine* src )
946{
947 Word tno, cloff, dstUsed;
948
949 tl_assert(nDst == N_LINE_ARANGE);
950 dstUsed = 0;
951
952 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
953 UShort descr = src->descrs[tno];
954 SVal* tree = &src->svals[cloff];
955
956 /* sequentialise the tree described by (descr,tree). */
957# define PUT(_n,_v) \
958 do { dst[dstUsed ].count = (_n); \
959 dst[dstUsed++].sval = (_v); \
960 } while (0)
961
962 /* byte 0 */
963 if (descr & TREE_DESCR_64) PUT(8, tree[0]); else
964 if (descr & TREE_DESCR_32_0) PUT(4, tree[0]); else
965 if (descr & TREE_DESCR_16_0) PUT(2, tree[0]); else
966 if (descr & TREE_DESCR_8_0) PUT(1, tree[0]);
967 /* byte 1 */
968 if (descr & TREE_DESCR_8_1) PUT(1, tree[1]);
969 /* byte 2 */
970 if (descr & TREE_DESCR_16_1) PUT(2, tree[2]); else
971 if (descr & TREE_DESCR_8_2) PUT(1, tree[2]);
972 /* byte 3 */
973 if (descr & TREE_DESCR_8_3) PUT(1, tree[3]);
974 /* byte 4 */
975 if (descr & TREE_DESCR_32_1) PUT(4, tree[4]); else
976 if (descr & TREE_DESCR_16_2) PUT(2, tree[4]); else
977 if (descr & TREE_DESCR_8_4) PUT(1, tree[4]);
978 /* byte 5 */
979 if (descr & TREE_DESCR_8_5) PUT(1, tree[5]);
980 /* byte 6 */
981 if (descr & TREE_DESCR_16_3) PUT(2, tree[6]); else
982 if (descr & TREE_DESCR_8_6) PUT(1, tree[6]);
983 /* byte 7 */
984 if (descr & TREE_DESCR_8_7) PUT(1, tree[7]);
985
986# undef PUT
987 /* END sequentialise the tree described by (descr,tree). */
988
989 }
990 tl_assert(cloff == N_LINE_ARANGE);
991 tl_assert(dstUsed <= nDst);
992
993 *dstUsedP = dstUsed;
994}
995
996/* Write the cacheline 'wix' to backing store. Where it ends up
997 is determined by its tag field. */
998static __attribute__((noinline)) void cacheline_wback ( UWord wix )
999{
1000 Word i, j, k, m;
1001 Addr tag;
1002 SecMap* sm;
1003 CacheLine* cl;
1004 LineZ* lineZ;
1005 LineF* lineF;
1006 Word zix, fix, csvalsUsed;
1007 CountedSVal csvals[N_LINE_ARANGE];
1008 SVal sv;
1009
1010 if (0)
1011 VG_(printf)("scache wback line %d\n", (Int)wix);
1012
1013 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1014
1015 tag = cache_shmem.tags0[wix];
1016 cl = &cache_shmem.lyns0[wix];
1017
1018 /* The cache line may have been invalidated; if so, ignore it. */
1019 if (!is_valid_scache_tag(tag))
1020 return;
1021
1022 /* Where are we going to put it? */
1023 sm = NULL;
1024 lineZ = NULL;
1025 lineF = NULL;
1026 zix = fix = -1;
1027
1028 /* find the Z line to write in and rcdec it or the associated F
1029 line. */
1030 find_Z_for_writing( &sm, &zix, tag );
1031
1032 tl_assert(sm);
1033 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
1034 lineZ = &sm->linesZ[zix];
1035
1036 /* Generate the data to be stored */
sewardj8f5374e2008-12-07 11:40:17 +00001037 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001038 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1039
1040 csvalsUsed = -1;
1041 sequentialise_CacheLine( csvals, &csvalsUsed,
1042 N_LINE_ARANGE, cl );
1043 tl_assert(csvalsUsed >= 1 && csvalsUsed <= N_LINE_ARANGE);
1044 if (0) VG_(printf)("%lu ", csvalsUsed);
1045
1046 lineZ->dict[0] = lineZ->dict[1]
1047 = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1048
1049 /* i indexes actual shadow values, k is cursor in csvals */
1050 i = 0;
1051 for (k = 0; k < csvalsUsed; k++) {
1052
1053 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001054 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001055 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1056 /* do we already have it? */
1057 if (sv == lineZ->dict[0]) { j = 0; goto dict_ok; }
1058 if (sv == lineZ->dict[1]) { j = 1; goto dict_ok; }
1059 if (sv == lineZ->dict[2]) { j = 2; goto dict_ok; }
1060 if (sv == lineZ->dict[3]) { j = 3; goto dict_ok; }
1061 /* no. look for a free slot. */
sewardj8f5374e2008-12-07 11:40:17 +00001062 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001063 tl_assert(sv != SVal_INVALID);
1064 if (lineZ->dict[0]
1065 == SVal_INVALID) { lineZ->dict[0] = sv; j = 0; goto dict_ok; }
1066 if (lineZ->dict[1]
1067 == SVal_INVALID) { lineZ->dict[1] = sv; j = 1; goto dict_ok; }
1068 if (lineZ->dict[2]
1069 == SVal_INVALID) { lineZ->dict[2] = sv; j = 2; goto dict_ok; }
1070 if (lineZ->dict[3]
1071 == SVal_INVALID) { lineZ->dict[3] = sv; j = 3; goto dict_ok; }
1072 break; /* we'll have to use the f rep */
1073 dict_ok:
1074 m = csvals[k].count;
1075 if (m == 8) {
1076 write_twobit_array( lineZ->ix2s, i+0, j );
1077 write_twobit_array( lineZ->ix2s, i+1, j );
1078 write_twobit_array( lineZ->ix2s, i+2, j );
1079 write_twobit_array( lineZ->ix2s, i+3, j );
1080 write_twobit_array( lineZ->ix2s, i+4, j );
1081 write_twobit_array( lineZ->ix2s, i+5, j );
1082 write_twobit_array( lineZ->ix2s, i+6, j );
1083 write_twobit_array( lineZ->ix2s, i+7, j );
1084 i += 8;
1085 }
1086 else if (m == 4) {
1087 write_twobit_array( lineZ->ix2s, i+0, j );
1088 write_twobit_array( lineZ->ix2s, i+1, j );
1089 write_twobit_array( lineZ->ix2s, i+2, j );
1090 write_twobit_array( lineZ->ix2s, i+3, j );
1091 i += 4;
1092 }
1093 else if (m == 1) {
1094 write_twobit_array( lineZ->ix2s, i+0, j );
1095 i += 1;
1096 }
1097 else if (m == 2) {
1098 write_twobit_array( lineZ->ix2s, i+0, j );
1099 write_twobit_array( lineZ->ix2s, i+1, j );
1100 i += 2;
1101 }
1102 else {
1103 tl_assert(0); /* 8 4 2 or 1 are the only legitimate values for m */
1104 }
1105
1106 }
1107
1108 if (LIKELY(i == N_LINE_ARANGE)) {
1109 /* Construction of the compressed representation was
1110 successful. */
1111 rcinc_LineZ(lineZ);
1112 stats__cache_Z_wbacks++;
1113 } else {
1114 /* Cannot use the compressed(z) representation. Use the full(f)
1115 rep instead. */
1116 tl_assert(i >= 0 && i < N_LINE_ARANGE);
1117 alloc_F_for_writing( sm, &fix );
1118 tl_assert(sm->linesF);
1119 tl_assert(sm->linesF_size > 0);
1120 tl_assert(fix >= 0 && fix < (Word)sm->linesF_size);
1121 lineF = &sm->linesF[fix];
1122 tl_assert(!lineF->inUse);
1123 lineZ->dict[0] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1124 lineZ->dict[1] = (SVal)fix;
1125 lineF->inUse = True;
1126 i = 0;
1127 for (k = 0; k < csvalsUsed; k++) {
sewardj8f5374e2008-12-07 11:40:17 +00001128 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001129 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1130 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001131 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001132 tl_assert(sv != SVal_INVALID);
1133 for (m = csvals[k].count; m > 0; m--) {
1134 lineF->w64s[i] = sv;
1135 i++;
1136 }
1137 }
1138 tl_assert(i == N_LINE_ARANGE);
1139 rcinc_LineF(lineF);
1140 stats__cache_F_wbacks++;
1141 }
sewardjf98e1c02008-10-25 16:22:41 +00001142}
1143
1144/* Fetch the cacheline 'wix' from the backing store. The tag
1145 associated with 'wix' is assumed to have already been filled in;
1146 hence that is used to determine where in the backing store to read
1147 from. */
1148static __attribute__((noinline)) void cacheline_fetch ( UWord wix )
1149{
1150 Word i;
1151 Addr tag;
1152 CacheLine* cl;
1153 LineZ* lineZ;
1154 LineF* lineF;
1155
1156 if (0)
1157 VG_(printf)("scache fetch line %d\n", (Int)wix);
1158
1159 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1160
1161 tag = cache_shmem.tags0[wix];
1162 cl = &cache_shmem.lyns0[wix];
1163
1164 /* reject nonsense requests */
1165 tl_assert(is_valid_scache_tag(tag));
1166
1167 lineZ = NULL;
1168 lineF = NULL;
1169 find_ZF_for_reading( &lineZ, &lineF, tag );
1170 tl_assert( (lineZ && !lineF) || (!lineZ && lineF) );
1171
1172 /* expand the data into the bottom layer of the tree, then get
1173 cacheline_normalise to build the descriptor array. */
1174 if (lineF) {
1175 tl_assert(lineF->inUse);
1176 for (i = 0; i < N_LINE_ARANGE; i++) {
1177 cl->svals[i] = lineF->w64s[i];
1178 }
1179 stats__cache_F_fetches++;
1180 } else {
1181 for (i = 0; i < N_LINE_ARANGE; i++) {
1182 SVal sv;
1183 UWord ix = read_twobit_array( lineZ->ix2s, i );
1184 /* correct, but expensive: tl_assert(ix >= 0 && ix <= 3); */
1185 sv = lineZ->dict[ix];
1186 tl_assert(sv != SVal_INVALID);
1187 cl->svals[i] = sv;
1188 }
1189 stats__cache_Z_fetches++;
1190 }
1191 normalise_CacheLine( cl );
1192}
1193
1194static void shmem__invalidate_scache ( void ) {
1195 Word wix;
1196 if (0) VG_(printf)("%s","scache inval\n");
1197 tl_assert(!is_valid_scache_tag(1));
1198 for (wix = 0; wix < N_WAY_NENT; wix++) {
1199 cache_shmem.tags0[wix] = 1/*INVALID*/;
1200 }
1201 stats__cache_invals++;
1202}
1203
1204static void shmem__flush_and_invalidate_scache ( void ) {
1205 Word wix;
1206 Addr tag;
1207 if (0) VG_(printf)("%s","scache flush and invalidate\n");
1208 tl_assert(!is_valid_scache_tag(1));
1209 for (wix = 0; wix < N_WAY_NENT; wix++) {
1210 tag = cache_shmem.tags0[wix];
1211 if (tag == 1/*INVALID*/) {
1212 /* already invalid; nothing to do */
1213 } else {
1214 tl_assert(is_valid_scache_tag(tag));
1215 cacheline_wback( wix );
1216 }
1217 cache_shmem.tags0[wix] = 1/*INVALID*/;
1218 }
1219 stats__cache_flushes++;
1220 stats__cache_invals++;
1221}
1222
1223
1224static inline Bool aligned16 ( Addr a ) {
1225 return 0 == (a & 1);
1226}
1227static inline Bool aligned32 ( Addr a ) {
1228 return 0 == (a & 3);
1229}
1230static inline Bool aligned64 ( Addr a ) {
1231 return 0 == (a & 7);
1232}
1233static inline UWord get_cacheline_offset ( Addr a ) {
1234 return (UWord)(a & (N_LINE_ARANGE - 1));
1235}
1236static inline Addr cacheline_ROUNDUP ( Addr a ) {
1237 return ROUNDUP(a, N_LINE_ARANGE);
1238}
1239static inline Addr cacheline_ROUNDDN ( Addr a ) {
1240 return ROUNDDN(a, N_LINE_ARANGE);
1241}
1242static inline UWord get_treeno ( Addr a ) {
1243 return get_cacheline_offset(a) >> 3;
1244}
1245static inline UWord get_tree_offset ( Addr a ) {
1246 return a & 7;
1247}
1248
1249static __attribute__((noinline))
1250 CacheLine* get_cacheline_MISS ( Addr a ); /* fwds */
1251static inline CacheLine* get_cacheline ( Addr a )
1252{
1253 /* tag is 'a' with the in-line offset masked out,
1254 eg a[31]..a[4] 0000 */
1255 Addr tag = a & ~(N_LINE_ARANGE - 1);
1256 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1257 stats__cache_totrefs++;
1258 if (LIKELY(tag == cache_shmem.tags0[wix])) {
1259 return &cache_shmem.lyns0[wix];
1260 } else {
1261 return get_cacheline_MISS( a );
1262 }
1263}
1264
1265static __attribute__((noinline))
1266 CacheLine* get_cacheline_MISS ( Addr a )
1267{
1268 /* tag is 'a' with the in-line offset masked out,
1269 eg a[31]..a[4] 0000 */
1270
1271 CacheLine* cl;
1272 Addr* tag_old_p;
1273 Addr tag = a & ~(N_LINE_ARANGE - 1);
1274 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1275
1276 tl_assert(tag != cache_shmem.tags0[wix]);
1277
1278 /* Dump the old line into the backing store. */
1279 stats__cache_totmisses++;
1280
1281 cl = &cache_shmem.lyns0[wix];
1282 tag_old_p = &cache_shmem.tags0[wix];
1283
1284 if (is_valid_scache_tag( *tag_old_p )) {
1285 /* EXPENSIVE and REDUNDANT: callee does it */
sewardj8f5374e2008-12-07 11:40:17 +00001286 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001287 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1288 cacheline_wback( wix );
1289 }
1290 /* and reload the new one */
1291 *tag_old_p = tag;
1292 cacheline_fetch( wix );
sewardj8f5374e2008-12-07 11:40:17 +00001293 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001294 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1295 return cl;
1296}
1297
1298static UShort pulldown_to_32 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1299 stats__cline_64to32pulldown++;
1300 switch (toff) {
1301 case 0: case 4:
1302 tl_assert(descr & TREE_DESCR_64);
1303 tree[4] = tree[0];
1304 descr &= ~TREE_DESCR_64;
1305 descr |= (TREE_DESCR_32_1 | TREE_DESCR_32_0);
1306 break;
1307 default:
1308 tl_assert(0);
1309 }
1310 return descr;
1311}
1312
1313static UShort pulldown_to_16 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1314 stats__cline_32to16pulldown++;
1315 switch (toff) {
1316 case 0: case 2:
1317 if (!(descr & TREE_DESCR_32_0)) {
1318 descr = pulldown_to_32(tree, 0, descr);
1319 }
1320 tl_assert(descr & TREE_DESCR_32_0);
1321 tree[2] = tree[0];
1322 descr &= ~TREE_DESCR_32_0;
1323 descr |= (TREE_DESCR_16_1 | TREE_DESCR_16_0);
1324 break;
1325 case 4: case 6:
1326 if (!(descr & TREE_DESCR_32_1)) {
1327 descr = pulldown_to_32(tree, 4, descr);
1328 }
1329 tl_assert(descr & TREE_DESCR_32_1);
1330 tree[6] = tree[4];
1331 descr &= ~TREE_DESCR_32_1;
1332 descr |= (TREE_DESCR_16_3 | TREE_DESCR_16_2);
1333 break;
1334 default:
1335 tl_assert(0);
1336 }
1337 return descr;
1338}
1339
1340static UShort pulldown_to_8 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1341 stats__cline_16to8pulldown++;
1342 switch (toff) {
1343 case 0: case 1:
1344 if (!(descr & TREE_DESCR_16_0)) {
1345 descr = pulldown_to_16(tree, 0, descr);
1346 }
1347 tl_assert(descr & TREE_DESCR_16_0);
1348 tree[1] = tree[0];
1349 descr &= ~TREE_DESCR_16_0;
1350 descr |= (TREE_DESCR_8_1 | TREE_DESCR_8_0);
1351 break;
1352 case 2: case 3:
1353 if (!(descr & TREE_DESCR_16_1)) {
1354 descr = pulldown_to_16(tree, 2, descr);
1355 }
1356 tl_assert(descr & TREE_DESCR_16_1);
1357 tree[3] = tree[2];
1358 descr &= ~TREE_DESCR_16_1;
1359 descr |= (TREE_DESCR_8_3 | TREE_DESCR_8_2);
1360 break;
1361 case 4: case 5:
1362 if (!(descr & TREE_DESCR_16_2)) {
1363 descr = pulldown_to_16(tree, 4, descr);
1364 }
1365 tl_assert(descr & TREE_DESCR_16_2);
1366 tree[5] = tree[4];
1367 descr &= ~TREE_DESCR_16_2;
1368 descr |= (TREE_DESCR_8_5 | TREE_DESCR_8_4);
1369 break;
1370 case 6: case 7:
1371 if (!(descr & TREE_DESCR_16_3)) {
1372 descr = pulldown_to_16(tree, 6, descr);
1373 }
1374 tl_assert(descr & TREE_DESCR_16_3);
1375 tree[7] = tree[6];
1376 descr &= ~TREE_DESCR_16_3;
1377 descr |= (TREE_DESCR_8_7 | TREE_DESCR_8_6);
1378 break;
1379 default:
1380 tl_assert(0);
1381 }
1382 return descr;
1383}
1384
1385
1386static UShort pullup_descr_to_16 ( UShort descr, UWord toff ) {
1387 UShort mask;
1388 switch (toff) {
1389 case 0:
1390 mask = TREE_DESCR_8_1 | TREE_DESCR_8_0;
1391 tl_assert( (descr & mask) == mask );
1392 descr &= ~mask;
1393 descr |= TREE_DESCR_16_0;
1394 break;
1395 case 2:
1396 mask = TREE_DESCR_8_3 | TREE_DESCR_8_2;
1397 tl_assert( (descr & mask) == mask );
1398 descr &= ~mask;
1399 descr |= TREE_DESCR_16_1;
1400 break;
1401 case 4:
1402 mask = TREE_DESCR_8_5 | TREE_DESCR_8_4;
1403 tl_assert( (descr & mask) == mask );
1404 descr &= ~mask;
1405 descr |= TREE_DESCR_16_2;
1406 break;
1407 case 6:
1408 mask = TREE_DESCR_8_7 | TREE_DESCR_8_6;
1409 tl_assert( (descr & mask) == mask );
1410 descr &= ~mask;
1411 descr |= TREE_DESCR_16_3;
1412 break;
1413 default:
1414 tl_assert(0);
1415 }
1416 return descr;
1417}
1418
1419static UShort pullup_descr_to_32 ( UShort descr, UWord toff ) {
1420 UShort mask;
1421 switch (toff) {
1422 case 0:
1423 if (!(descr & TREE_DESCR_16_0))
1424 descr = pullup_descr_to_16(descr, 0);
1425 if (!(descr & TREE_DESCR_16_1))
1426 descr = pullup_descr_to_16(descr, 2);
1427 mask = TREE_DESCR_16_1 | TREE_DESCR_16_0;
1428 tl_assert( (descr & mask) == mask );
1429 descr &= ~mask;
1430 descr |= TREE_DESCR_32_0;
1431 break;
1432 case 4:
1433 if (!(descr & TREE_DESCR_16_2))
1434 descr = pullup_descr_to_16(descr, 4);
1435 if (!(descr & TREE_DESCR_16_3))
1436 descr = pullup_descr_to_16(descr, 6);
1437 mask = TREE_DESCR_16_3 | TREE_DESCR_16_2;
1438 tl_assert( (descr & mask) == mask );
1439 descr &= ~mask;
1440 descr |= TREE_DESCR_32_1;
1441 break;
1442 default:
1443 tl_assert(0);
1444 }
1445 return descr;
1446}
1447
1448static Bool valid_value_is_above_me_32 ( UShort descr, UWord toff ) {
1449 switch (toff) {
1450 case 0: case 4:
1451 return 0 != (descr & TREE_DESCR_64);
1452 default:
1453 tl_assert(0);
1454 }
1455}
1456
1457static Bool valid_value_is_below_me_16 ( UShort descr, UWord toff ) {
1458 switch (toff) {
1459 case 0:
1460 return 0 != (descr & (TREE_DESCR_8_1 | TREE_DESCR_8_0));
1461 case 2:
1462 return 0 != (descr & (TREE_DESCR_8_3 | TREE_DESCR_8_2));
1463 case 4:
1464 return 0 != (descr & (TREE_DESCR_8_5 | TREE_DESCR_8_4));
1465 case 6:
1466 return 0 != (descr & (TREE_DESCR_8_7 | TREE_DESCR_8_6));
1467 default:
1468 tl_assert(0);
1469 }
1470}
1471
1472/* ------------ Cache management ------------ */
1473
1474static void zsm_flush_cache ( void )
1475{
1476 shmem__flush_and_invalidate_scache();
1477}
1478
1479
1480static void zsm_init ( void(*p_rcinc)(SVal), void(*p_rcdec)(SVal) )
1481{
1482 tl_assert( sizeof(UWord) == sizeof(Addr) );
1483
1484 rcinc = p_rcinc;
1485 rcdec = p_rcdec;
1486
1487 tl_assert(map_shmem == NULL);
1488 map_shmem = VG_(newFM)( HG_(zalloc), "libhb.zsm_init.1 (map_shmem)",
1489 HG_(free),
1490 NULL/*unboxed UWord cmp*/);
1491 tl_assert(map_shmem != NULL);
1492 shmem__invalidate_scache();
1493
1494 /* a SecMap must contain an integral number of CacheLines */
1495 tl_assert(0 == (N_SECMAP_ARANGE % N_LINE_ARANGE));
1496 /* also ... a CacheLine holds an integral number of trees */
1497 tl_assert(0 == (N_LINE_ARANGE % 8));
1498}
1499
1500/////////////////////////////////////////////////////////////////
1501/////////////////////////////////////////////////////////////////
1502// //
1503// SECTION END compressed shadow memory //
1504// //
1505/////////////////////////////////////////////////////////////////
1506/////////////////////////////////////////////////////////////////
1507
1508
1509
1510/////////////////////////////////////////////////////////////////
1511/////////////////////////////////////////////////////////////////
1512// //
1513// SECTION BEGIN vts primitives //
1514// //
1515/////////////////////////////////////////////////////////////////
1516/////////////////////////////////////////////////////////////////
1517
1518#ifndef __HB_VTS_H
1519#define __HB_VTS_H
1520
1521/* VtsIDs can't exceed 30 bits, since they have to be packed into the
1522 lowest 30 bits of an SVal. */
1523typedef UInt VtsID;
1524#define VtsID_INVALID 0xFFFFFFFF
1525
1526/* A VTS contains .ts, its vector clock, and also .id, a field to hold
1527 a backlink for the caller's convenience. Since we have no idea
1528 what to set that to in the library, it always gets set to
1529 VtsID_INVALID. */
1530typedef
1531 struct {
1532 VtsID id;
1533 XArray* ts; /* XArray* ScalarTS(abstract) */
1534 }
1535 VTS;
1536
1537
1538/* Create a new, empty VTS. */
1539VTS* VTS__new ( void );
1540
1541/* Delete this VTS in its entirety. */
1542void VTS__delete ( VTS* vts );
1543
1544/* Create a new singleton VTS. */
1545VTS* VTS__singleton ( Thr* thr, ULong tym );
1546
1547/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1548 not modified. */
1549VTS* VTS__tick ( Thr* me, VTS* vts );
1550
1551/* Return a new VTS constructed as the join (max) of the 2 args.
1552 Neither arg is modified. */
1553VTS* VTS__join ( VTS* a, VTS* b );
1554
1555/* Compute the partial ordering relation of the two args. */
1556typedef
1557 enum { POrd_EQ=4, POrd_LT, POrd_GT, POrd_UN }
1558 POrd;
1559
1560POrd VTS__cmp ( VTS* a, VTS* b );
1561
1562/* Compute an arbitrary structural (total) ordering on the two args,
1563 based on their VCs, so they can be looked up in a table, tree, etc.
1564 Returns -1, 0 or 1. */
1565Word VTS__cmp_structural ( VTS* a, VTS* b );
1566
1567/* Debugging only. Display the given VTS in the buffer. */
1568void VTS__show ( HChar* buf, Int nBuf, VTS* vts );
1569
1570/* Debugging only. Return vts[index], so to speak. */
sewardj8669fd32008-10-27 21:42:36 +00001571ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx );
sewardjf98e1c02008-10-25 16:22:41 +00001572
1573#endif /* ! __HB_VTS_H */
1574
1575
1576/*--------------- to do with Vector Timestamps ---------------*/
1577
1578/* Scalar Timestamp */
1579typedef
1580 struct {
1581 Thr* thr;
1582 ULong tym;
1583 }
1584 ScalarTS;
1585
1586
1587static Bool is_sane_VTS ( VTS* vts )
1588{
1589 UWord i, n;
1590 ScalarTS *st1, *st2;
1591 if (!vts) return False;
1592 if (!vts->ts) return False;
1593 n = VG_(sizeXA)( vts->ts );
1594 if (n >= 2) {
1595 for (i = 0; i < n-1; i++) {
1596 st1 = VG_(indexXA)( vts->ts, i );
1597 st2 = VG_(indexXA)( vts->ts, i+1 );
1598 if (st1->thr >= st2->thr)
1599 return False;
1600 if (st1->tym == 0 || st2->tym == 0)
1601 return False;
1602 }
1603 }
1604 return True;
1605}
1606
1607
1608/* Create a new, empty VTS.
1609*/
1610VTS* VTS__new ( void )
1611{
1612 VTS* vts;
1613 vts = HG_(zalloc)( "libhb.VTS__new.1", sizeof(VTS) );
1614 tl_assert(vts);
1615 vts->id = VtsID_INVALID;
1616 vts->ts = VG_(newXA)( HG_(zalloc), "libhb.VTS__new.2",
1617 HG_(free), sizeof(ScalarTS) );
1618 tl_assert(vts->ts);
1619 return vts;
1620}
1621
1622
1623/* Delete this VTS in its entirety.
1624*/
1625void VTS__delete ( VTS* vts )
1626{
1627 tl_assert(vts);
1628 tl_assert(vts->ts);
1629 VG_(deleteXA)( vts->ts );
1630 HG_(free)(vts);
1631}
1632
1633
1634/* Create a new singleton VTS.
1635*/
1636VTS* VTS__singleton ( Thr* thr, ULong tym ) {
1637 ScalarTS st;
1638 VTS* vts;
1639 tl_assert(thr);
1640 tl_assert(tym >= 1);
1641 vts = VTS__new();
1642 st.thr = thr;
1643 st.tym = tym;
1644 VG_(addToXA)( vts->ts, &st );
1645 return vts;
1646}
1647
1648
1649/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1650 not modified.
1651*/
1652VTS* VTS__tick ( Thr* me, VTS* vts )
1653{
1654 ScalarTS* here = NULL;
1655 ScalarTS tmp;
1656 VTS* res;
1657 Word i, n;
1658 tl_assert(me);
1659 tl_assert(is_sane_VTS(vts));
1660 //if (0) VG_(printf)("tick vts thrno %ld szin %d\n",
1661 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(vts) );
1662 res = VTS__new();
1663 n = VG_(sizeXA)( vts->ts );
1664
1665 /* main loop doesn't handle zero-entry case correctly, so
1666 special-case it. */
1667 if (n == 0) {
1668 tmp.thr = me;
1669 tmp.tym = 1;
1670 VG_(addToXA)( res->ts, &tmp );
1671 tl_assert(is_sane_VTS(res));
1672 return res;
1673 }
1674
1675 for (i = 0; i < n; i++) {
1676 here = VG_(indexXA)( vts->ts, i );
1677 if (me < here->thr) {
1678 /* We just went past 'me', without seeing it. */
1679 tmp.thr = me;
1680 tmp.tym = 1;
1681 VG_(addToXA)( res->ts, &tmp );
1682 tmp = *here;
1683 VG_(addToXA)( res->ts, &tmp );
1684 i++;
1685 break;
1686 }
1687 else if (me == here->thr) {
1688 tmp = *here;
1689 tmp.tym++;
1690 VG_(addToXA)( res->ts, &tmp );
1691 i++;
1692 break;
1693 }
1694 else /* me > here->thr */ {
1695 tmp = *here;
1696 VG_(addToXA)( res->ts, &tmp );
1697 }
1698 }
1699 tl_assert(i >= 0 && i <= n);
1700 if (i == n && here && here->thr < me) {
1701 tmp.thr = me;
1702 tmp.tym = 1;
1703 VG_(addToXA)( res->ts, &tmp );
1704 } else {
1705 for (/*keepgoing*/; i < n; i++) {
1706 here = VG_(indexXA)( vts->ts, i );
1707 tmp = *here;
1708 VG_(addToXA)( res->ts, &tmp );
1709 }
1710 }
1711 tl_assert(is_sane_VTS(res));
1712 //if (0) VG_(printf)("tick vts thrno %ld szou %d\n",
1713 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(res) );
1714 return res;
1715}
1716
1717
1718/* Return a new VTS constructed as the join (max) of the 2 args.
1719 Neither arg is modified.
1720*/
1721VTS* VTS__join ( VTS* a, VTS* b )
1722{
1723 Word ia, ib, useda, usedb;
1724 ULong tyma, tymb, tymMax;
1725 Thr* thr;
1726 VTS* res;
1727 ScalarTS *tmpa, *tmpb;
1728
1729 tl_assert(a && a->ts);
1730 tl_assert(b && b->ts);
1731 useda = VG_(sizeXA)( a->ts );
1732 usedb = VG_(sizeXA)( b->ts );
1733
1734 res = VTS__new();
1735 ia = ib = 0;
1736
1737 while (1) {
1738
1739 /* This logic is to enumerate triples (thr, tyma, tymb) drawn
1740 from a and b in order, where thr is the next Thr*
1741 occurring in either a or b, and tyma/b are the relevant
1742 scalar timestamps, taking into account implicit zeroes. */
1743 tl_assert(ia >= 0 && ia <= useda);
1744 tl_assert(ib >= 0 && ib <= usedb);
1745 tmpa = tmpb = NULL;
1746
1747 if (ia == useda && ib == usedb) {
1748 /* both empty - done */
1749 break;
1750 }
1751 else
1752 if (ia == useda && ib != usedb) {
1753 /* a empty, use up b */
1754 tmpb = VG_(indexXA)( b->ts, ib );
1755 thr = tmpb->thr;
1756 tyma = 0;
1757 tymb = tmpb->tym;
1758 ib++;
1759 }
1760 else
1761 if (ia != useda && ib == usedb) {
1762 /* b empty, use up a */
1763 tmpa = VG_(indexXA)( a->ts, ia );
1764 thr = tmpa->thr;
1765 tyma = tmpa->tym;
1766 tymb = 0;
1767 ia++;
1768 }
1769 else {
1770 /* both not empty; extract lowest-Thr*'d triple */
1771 tmpa = VG_(indexXA)( a->ts, ia );
1772 tmpb = VG_(indexXA)( b->ts, ib );
1773 if (tmpa->thr < tmpb->thr) {
1774 /* a has the lowest unconsidered Thr* */
1775 thr = tmpa->thr;
1776 tyma = tmpa->tym;
1777 tymb = 0;
1778 ia++;
1779 }
1780 else
1781 if (tmpa->thr > tmpb->thr) {
1782 /* b has the lowest unconsidered Thr* */
1783 thr = tmpb->thr;
1784 tyma = 0;
1785 tymb = tmpb->tym;
1786 ib++;
1787 } else {
1788 /* they both next mention the same Thr* */
1789 tl_assert(tmpa->thr == tmpb->thr);
1790 thr = tmpa->thr; /* == tmpb->thr */
1791 tyma = tmpa->tym;
1792 tymb = tmpb->tym;
1793 ia++;
1794 ib++;
1795 }
1796 }
1797
1798 /* having laboriously determined (thr, tyma, tymb), do something
1799 useful with it. */
1800 tymMax = tyma > tymb ? tyma : tymb;
1801 if (tymMax > 0) {
1802 ScalarTS st;
1803 st.thr = thr;
1804 st.tym = tymMax;
1805 VG_(addToXA)( res->ts, &st );
1806 }
1807
1808 }
1809
1810 tl_assert(is_sane_VTS( res ));
1811
1812 return res;
1813}
1814
1815
1816/* Compute the partial ordering relation of the two args.
1817*/
1818POrd VTS__cmp ( VTS* a, VTS* b )
1819{
1820 Word ia, ib, useda, usedb;
1821 ULong tyma, tymb;
1822 Thr* thr;
1823 ScalarTS *tmpa, *tmpb;
1824
1825 Bool all_leq = True;
1826 Bool all_geq = True;
1827
1828 tl_assert(a && a->ts);
1829 tl_assert(b && b->ts);
1830 useda = VG_(sizeXA)( a->ts );
1831 usedb = VG_(sizeXA)( b->ts );
1832
1833 ia = ib = 0;
1834
1835 while (1) {
1836
1837 /* This logic is to enumerate triples (thr, tyma, tymb) drawn
1838 from a and b in order, where thr is the next Thr*
1839 occurring in either a or b, and tyma/b are the relevant
1840 scalar timestamps, taking into account implicit zeroes. */
1841 tl_assert(ia >= 0 && ia <= useda);
1842 tl_assert(ib >= 0 && ib <= usedb);
1843 tmpa = tmpb = NULL;
1844
1845 if (ia == useda && ib == usedb) {
1846 /* both empty - done */
1847 break;
1848 }
1849 else
1850 if (ia == useda && ib != usedb) {
1851 /* a empty, use up b */
1852 tmpb = VG_(indexXA)( b->ts, ib );
1853 thr = tmpb->thr;
1854 tyma = 0;
1855 tymb = tmpb->tym;
1856 ib++;
1857 }
1858 else
1859 if (ia != useda && ib == usedb) {
1860 /* b empty, use up a */
1861 tmpa = VG_(indexXA)( a->ts, ia );
1862 thr = tmpa->thr;
1863 tyma = tmpa->tym;
1864 tymb = 0;
1865 ia++;
1866 }
1867 else {
1868 /* both not empty; extract lowest-Thr*'d triple */
1869 tmpa = VG_(indexXA)( a->ts, ia );
1870 tmpb = VG_(indexXA)( b->ts, ib );
1871 if (tmpa->thr < tmpb->thr) {
1872 /* a has the lowest unconsidered Thr* */
1873 thr = tmpa->thr;
1874 tyma = tmpa->tym;
1875 tymb = 0;
1876 ia++;
1877 }
1878 else
1879 if (tmpa->thr > tmpb->thr) {
1880 /* b has the lowest unconsidered Thr* */
1881 thr = tmpb->thr;
1882 tyma = 0;
1883 tymb = tmpb->tym;
1884 ib++;
1885 } else {
1886 /* they both next mention the same Thr* */
1887 tl_assert(tmpa->thr == tmpb->thr);
1888 thr = tmpa->thr; /* == tmpb->thr */
1889 tyma = tmpa->tym;
1890 tymb = tmpb->tym;
1891 ia++;
1892 ib++;
1893 }
1894 }
1895
1896 /* having laboriously determined (thr, tyma, tymb), do something
1897 useful with it. */
1898 if (tyma < tymb)
1899 all_geq = False;
1900 if (tyma > tymb)
1901 all_leq = False;
1902 }
1903
1904 if (all_leq && all_geq)
1905 return POrd_EQ;
1906 /* now we know they aren't equal, so either all_leq or all_geq or
1907 both are false. */
1908 if (all_leq)
1909 return POrd_LT;
1910 if (all_geq)
1911 return POrd_GT;
1912 /* hmm, neither all_geq or all_leq. This means unordered. */
1913 return POrd_UN;
1914}
1915
1916
1917/* Compute an arbitrary structural (total) ordering on the two args,
1918 based on their VCs, so they can be looked up in a table, tree, etc.
1919 Returns -1, 0 or 1. (really just 'deriving Ord' :-)
1920*/
1921Word VTS__cmp_structural ( VTS* a, VTS* b )
1922{
1923 /* We just need to generate an arbitrary total ordering based on
1924 a->ts and b->ts. Preferably do it in a way which comes across likely
1925 differences relatively quickly. */
1926 Word i, useda, usedb;
1927 ScalarTS *tmpa, *tmpb;
1928
1929 tl_assert(a && a->ts);
1930 tl_assert(b && b->ts);
1931 useda = VG_(sizeXA)( a->ts );
1932 usedb = VG_(sizeXA)( b->ts );
1933
1934 if (useda < usedb) return -1;
1935 if (useda > usedb) return 1;
1936
1937 /* Same length vectors, so let's step through them together. */
1938 tl_assert(useda == usedb);
1939 for (i = 0; i < useda; i++) {
1940 tmpa = VG_(indexXA)( a->ts, i );
1941 tmpb = VG_(indexXA)( b->ts, i );
1942 if (tmpa->tym < tmpb->tym) return -1;
1943 if (tmpa->tym > tmpb->tym) return 1;
1944 if (tmpa->thr < tmpb->thr) return -1;
1945 if (tmpa->thr > tmpb->thr) return 1;
1946 }
1947
1948 /* They're identical. */
1949 return 0;
1950}
1951
1952
1953/* Debugging only. Display the given VTS in the buffer.
1954*/
1955void VTS__show ( HChar* buf, Int nBuf, VTS* vts ) {
1956 ScalarTS* st;
1957 HChar unit[64];
1958 Word i, n;
1959 Int avail = nBuf;
1960 tl_assert(vts && vts->ts);
1961 tl_assert(nBuf > 16);
1962 buf[0] = '[';
1963 buf[1] = 0;
1964 n = VG_(sizeXA)( vts->ts );
1965 for (i = 0; i < n; i++) {
1966 tl_assert(avail >= 40);
1967 st = VG_(indexXA)( vts->ts, i );
1968 VG_(memset)(unit, 0, sizeof(unit));
1969 VG_(sprintf)(unit, i < n-1 ? "%p:%lld " : "%p:%lld",
1970 st->thr, st->tym);
1971 if (avail < VG_(strlen)(unit) + 40/*let's say*/) {
1972 VG_(strcat)(buf, " ...]");
1973 buf[nBuf-1] = 0;
1974 return;
1975 }
1976 VG_(strcat)(buf, unit);
1977 avail -= VG_(strlen)(unit);
1978 }
1979 VG_(strcat)(buf, "]");
1980 buf[nBuf-1] = 0;
1981}
1982
1983
1984/* Debugging only. Return vts[index], so to speak.
1985*/
1986ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx ) {
1987 UWord i, n;
1988 tl_assert(vts && vts->ts);
1989 n = VG_(sizeXA)( vts->ts );
1990 for (i = 0; i < n; i++) {
1991 ScalarTS* st = VG_(indexXA)( vts->ts, i );
1992 if (st->thr == idx)
1993 return st->tym;
1994 }
1995 return 0;
1996}
1997
1998
1999/////////////////////////////////////////////////////////////////
2000/////////////////////////////////////////////////////////////////
2001// //
2002// SECTION END vts primitives //
2003// //
2004/////////////////////////////////////////////////////////////////
2005/////////////////////////////////////////////////////////////////
2006
2007
2008
2009/////////////////////////////////////////////////////////////////
2010/////////////////////////////////////////////////////////////////
2011// //
2012// SECTION BEGIN main library //
2013// //
2014/////////////////////////////////////////////////////////////////
2015/////////////////////////////////////////////////////////////////
2016
2017
2018/////////////////////////////////////////////////////////
2019// //
2020// VTS set //
2021// //
2022/////////////////////////////////////////////////////////
2023
2024static WordFM* /* VTS* void void */ vts_set = NULL;
2025
2026static void vts_set_init ( void )
2027{
2028 tl_assert(!vts_set);
2029 vts_set = VG_(newFM)( HG_(zalloc), "libhb.vts_set_init.1",
2030 HG_(free),
2031 (Word(*)(UWord,UWord))VTS__cmp_structural );
2032 tl_assert(vts_set);
2033}
2034
2035/* Given a newly made VTS, look in vts_set to see if we already have
2036 an identical one. If yes, free up this one and return instead a
2037 pointer to the existing one. If no, add this one to the set and
2038 return the same pointer. Caller differentiates the two cases by
2039 comparing returned pointer with the supplied one (although that
2040 does require that the supplied VTS is not already in the set).
2041*/
2042static VTS* vts_set__find_and_dealloc__or_add ( VTS* cand )
2043{
2044 UWord keyW, valW;
2045 /* lookup cand (by value) */
2046 if (VG_(lookupFM)( vts_set, &keyW, &valW, (UWord)cand )) {
2047 /* found it */
2048 tl_assert(valW == 0);
2049 /* if this fails, cand (by ref) was already present (!) */
2050 tl_assert(keyW != (UWord)cand);
2051 VTS__delete(cand);
2052 return (VTS*)keyW;
2053 } else {
2054 /* not present. Add and return pointer to same. */
2055 VG_(addToFM)( vts_set, (UWord)cand, 0/*val is unused*/ );
2056 return cand;
2057 }
2058}
2059
2060
2061/////////////////////////////////////////////////////////
2062// //
2063// VTS table //
2064// //
2065/////////////////////////////////////////////////////////
2066
2067static void VtsID__invalidate_caches ( void ); /* fwds */
2068
2069/* A type to hold VTS table entries. Invariants:
2070 If .vts == NULL, then this entry is not in use, so:
2071 - .rc == 0
2072 - this entry is on the freelist (unfortunately, does not imply
2073 any constraints on value for .nextfree)
2074 If .vts != NULL, then this entry is in use:
2075 - .vts is findable in vts_set
2076 - .vts->id == this entry number
2077 - no specific value for .rc (even 0 is OK)
2078 - this entry is not on freelist, so .nextfree == VtsID_INVALID
2079*/
2080typedef
2081 struct {
2082 VTS* vts; /* vts, in vts_set */
2083 UWord rc; /* reference count - enough for entire aspace */
2084 VtsID freelink; /* chain for free entries, VtsID_INVALID at end */
2085 }
2086 VtsTE;
2087
2088/* The VTS table. */
2089static XArray* /* of VtsTE */ vts_tab = NULL;
2090
2091/* An index into the VTS table, indicating the start of the list of
2092 free (available for use) entries. If the list is empty, this is
2093 VtsID_INVALID. */
2094static VtsID vts_tab_freelist = VtsID_INVALID;
2095
2096/* Do a GC of vts_tab when the freelist becomes empty AND the size of
2097 vts_tab equals or exceeds this size. After GC, the value here is
2098 set appropriately so as to check for the next GC point. */
2099static Word vts_next_GC_at = 1000;
2100
2101static void vts_tab_init ( void )
2102{
2103 vts_tab
2104 = VG_(newXA)( HG_(zalloc), "libhb.vts_tab_init.1",
2105 HG_(free), sizeof(VtsTE) );
2106 vts_tab_freelist
2107 = VtsID_INVALID;
2108 tl_assert(vts_tab);
2109}
2110
2111/* Add ii to the free list, checking that it looks out-of-use. */
2112static void add_to_free_list ( VtsID ii )
2113{
2114 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2115 tl_assert(ie->vts == NULL);
2116 tl_assert(ie->rc == 0);
2117 tl_assert(ie->freelink == VtsID_INVALID);
2118 ie->freelink = vts_tab_freelist;
2119 vts_tab_freelist = ii;
2120}
2121
2122/* Get an entry from the free list. This will return VtsID_INVALID if
2123 the free list is empty. */
2124static VtsID get_from_free_list ( void )
2125{
2126 VtsID ii;
2127 VtsTE* ie;
2128 if (vts_tab_freelist == VtsID_INVALID)
2129 return VtsID_INVALID;
2130 ii = vts_tab_freelist;
2131 ie = VG_(indexXA)( vts_tab, ii );
2132 tl_assert(ie->vts == NULL);
2133 tl_assert(ie->rc == 0);
2134 vts_tab_freelist = ie->freelink;
2135 return ii;
2136}
2137
2138/* Produce a new VtsID that can be used, either by getting it from
2139 the freelist, or, if that is empty, by expanding vts_tab. */
2140static VtsID get_new_VtsID ( void )
2141{
2142 VtsID ii;
2143 VtsTE te;
2144 ii = get_from_free_list();
2145 if (ii != VtsID_INVALID)
2146 return ii;
2147 te.vts = NULL;
2148 te.rc = 0;
2149 te.freelink = VtsID_INVALID;
2150 ii = (VtsID)VG_(addToXA)( vts_tab, &te );
2151 return ii;
2152}
2153
2154
2155/* Indirect callback from lib_zsm. */
2156static void VtsID__rcinc ( VtsID ii )
2157{
2158 VtsTE* ie;
2159 /* VG_(indexXA) does a range check for us */
2160 ie = VG_(indexXA)( vts_tab, ii );
2161 tl_assert(ie->vts); /* else it's not in use */
2162 tl_assert(ie->rc < ~0UL); /* else we can't continue */
2163 tl_assert(ie->vts->id == ii);
2164 ie->rc++;
2165}
2166
2167/* Indirect callback from lib_zsm. */
2168static void VtsID__rcdec ( VtsID ii )
2169{
2170 VtsTE* ie;
2171 /* VG_(indexXA) does a range check for us */
2172 ie = VG_(indexXA)( vts_tab, ii );
2173 tl_assert(ie->vts); /* else it's not in use */
2174 tl_assert(ie->rc > 0); /* else RC snafu */
2175 tl_assert(ie->vts->id == ii);
2176 ie->rc--;
2177}
2178
2179
2180/* Look up 'cand' in our collection of VTSs. If present, deallocate
2181 it and return the VtsID for the pre-existing version. If not
2182 present, add it to both vts_tab and vts_set, allocate a fresh VtsID
2183 for it, and return that. */
2184static VtsID vts_tab__find_and_dealloc__or_add ( VTS* cand )
2185{
2186 VTS* auld;
2187 tl_assert(cand->id == VtsID_INVALID);
2188 auld = vts_set__find_and_dealloc__or_add(cand);
2189 if (auld != cand) {
2190 /* We already have an Aulde one. Use that. */
2191 VtsTE* ie;
2192 tl_assert(auld->id != VtsID_INVALID);
2193 ie = VG_(indexXA)( vts_tab, auld->id );
2194 tl_assert(ie->vts == auld);
2195 return auld->id;
2196 } else {
2197 VtsID ii = get_new_VtsID();
2198 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2199 ie->vts = cand;
2200 ie->rc = 0;
2201 ie->freelink = VtsID_INVALID;
2202 cand->id = ii;
2203 return ii;
2204 }
2205}
2206
2207
2208static void show_vts_stats ( HChar* caller )
2209{
2210 UWord nSet, nTab, nLive;
2211 ULong totrc;
2212 UWord n, i;
2213 nSet = VG_(sizeFM)( vts_set );
2214 nTab = VG_(sizeXA)( vts_tab );
2215 totrc = 0;
2216 nLive = 0;
2217 n = VG_(sizeXA)( vts_tab );
2218 for (i = 0; i < n; i++) {
2219 VtsTE* ie = VG_(indexXA)( vts_tab, i );
2220 if (ie->vts) {
2221 nLive++;
2222 totrc += (ULong)ie->rc;
2223 } else {
2224 tl_assert(ie->rc == 0);
2225 }
2226 }
2227 VG_(printf)(" show_vts_stats %s\n", caller);
2228 VG_(printf)(" vts_tab size %4lu\n", nTab);
2229 VG_(printf)(" vts_tab live %4lu\n", nLive);
2230 VG_(printf)(" vts_set size %4lu\n", nSet);
2231 VG_(printf)(" total rc %4llu\n", totrc);
2232}
2233
2234/* NOT TO BE CALLED FROM WITHIN libzsm. */
sewardj8fd92d32008-11-20 23:17:01 +00002235__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00002236static void vts_tab__do_GC ( Bool show_stats )
2237{
2238 UWord i, nTab, nLive, nFreed;
2239
2240 /* check this is actually necessary. */
2241 tl_assert(vts_tab_freelist == VtsID_INVALID);
2242
2243 /* empty the caches for partial order checks and binary joins. We
2244 could do better and prune out the entries to be deleted, but it
2245 ain't worth the hassle. */
2246 VtsID__invalidate_caches();
2247
2248 /* First, make the reference counts up to date. */
2249 zsm_flush_cache();
2250
2251 nTab = VG_(sizeXA)( vts_tab );
2252
2253 if (show_stats) {
2254 VG_(printf)("<<GC begins at vts_tab size %lu>>\n", nTab);
2255 show_vts_stats("before GC");
2256 }
2257
2258 /* Now we can inspect the entire vts_tab. Any entries
2259 with zero .rc fields are now no longer in use and can be
2260 free list, removed from vts_set, and deleted. */
2261 nFreed = 0;
2262 for (i = 0; i < nTab; i++) {
2263 Bool present;
2264 UWord oldK = 0, oldV = 0;
2265 VtsTE* te = VG_(indexXA)( vts_tab, i );
2266 if (te->vts == NULL) {
2267 tl_assert(te->rc == 0);
2268 continue; /* already on the free list (presumably) */
2269 }
2270 if (te->rc > 0)
2271 continue; /* in use */
2272 /* Ok, we got one we can free. */
2273 tl_assert(te->vts->id == i);
2274 /* first, remove it from vts_set. */
2275 present = VG_(delFromFM)( vts_set,
2276 &oldK, &oldV, (UWord)te->vts );
2277 tl_assert(present); /* else it isn't in vts_set ?! */
2278 tl_assert(oldV == 0); /* no info stored in vts_set val fields */
2279 tl_assert(oldK == (UWord)te->vts); /* else what did delFromFM find?! */
2280 /* now free the VTS itself */
2281 VTS__delete(te->vts);
2282 te->vts = NULL;
2283 /* and finally put this entry on the free list */
2284 tl_assert(te->freelink == VtsID_INVALID); /* can't already be on it */
2285 add_to_free_list( i );
2286 nFreed++;
2287 }
2288
2289 /* Now figure out when the next GC should be. We'll allow the
2290 number of VTSs to double before GCing again. Except of course
2291 that since we can't (or, at least, don't) shrink vts_tab, we
2292 can't set the threshhold value smaller than it. */
2293 tl_assert(nFreed <= nTab);
2294 nLive = nTab - nFreed;
2295 tl_assert(nLive >= 0 && nLive <= nTab);
2296 vts_next_GC_at = 2 * nLive;
2297 if (vts_next_GC_at < nTab)
2298 vts_next_GC_at = nTab;
2299
2300 if (show_stats) {
2301 show_vts_stats("after GC");
2302 VG_(printf)("<<GC ends, next gc at %ld>>\n", vts_next_GC_at);
2303 }
2304
sewardjd024ae52008-11-09 20:47:57 +00002305 if (VG_(clo_verbosity) > 1) {
sewardjf98e1c02008-10-25 16:22:41 +00002306 static UInt ctr = 0;
2307 tl_assert(nTab > 0);
sewardjd024ae52008-11-09 20:47:57 +00002308 VG_(message)(Vg_DebugMsg,
2309 "libhb: VTS GC: #%u old size %lu live %lu (%2llu%%)",
sewardjf98e1c02008-10-25 16:22:41 +00002310 ctr++, nTab, nLive, (100ULL * nLive) / nTab);
2311 }
2312}
2313
2314
2315/////////////////////////////////////////////////////////
2316// //
2317// Vts IDs //
2318// //
2319/////////////////////////////////////////////////////////
2320
2321//////////////////////////
2322static ULong stats__getOrdering_queries = 0;
2323static ULong stats__getOrdering_misses = 0;
2324static ULong stats__join2_queries = 0;
2325static ULong stats__join2_misses = 0;
2326
2327static inline UInt ROL32 ( UInt w, Int n ) {
2328 w = (w << n) | (w >> (32-n));
2329 return w;
2330}
2331static inline UInt hash_VtsIDs ( VtsID vi1, VtsID vi2, UInt nTab ) {
2332 UInt hash = ROL32(vi1,19) ^ ROL32(vi2,13);
2333 return hash % nTab;
2334}
2335
2336#define N_GETORDERING_CACHE 1023
2337static
2338 struct { VtsID vi1; VtsID vi2; POrd ord; }
2339 getOrdering_cache[N_GETORDERING_CACHE];
2340
2341#define N_JOIN2_CACHE 1023
2342static
2343 struct { VtsID vi1; VtsID vi2; VtsID res; }
2344 join2_cache[N_JOIN2_CACHE];
2345
2346static void VtsID__invalidate_caches ( void ) {
2347 Int i;
2348 for (i = 0; i < N_GETORDERING_CACHE; i++) {
2349 getOrdering_cache[i].vi1 = VtsID_INVALID;
2350 getOrdering_cache[i].vi2 = VtsID_INVALID;
2351 getOrdering_cache[i].ord = 0; /* an invalid POrd value */
2352 }
2353 for (i = 0; i < N_JOIN2_CACHE; i++) {
2354 join2_cache[i].vi1 = VtsID_INVALID;
2355 join2_cache[i].vi2 = VtsID_INVALID;
2356 join2_cache[i].res = VtsID_INVALID;
2357 }
2358}
2359//////////////////////////
2360
sewardjd52392d2008-11-08 20:36:26 +00002361//static Bool VtsID__is_valid ( VtsID vi ) {
2362// VtsTE* ve;
2363// if (vi >= (VtsID)VG_(sizeXA)( vts_tab ))
2364// return False;
2365// ve = VG_(indexXA)( vts_tab, vi );
2366// if (!ve->vts)
2367// return False;
2368// tl_assert(ve->vts->id == vi);
2369// return True;
2370//}
sewardjf98e1c02008-10-25 16:22:41 +00002371
2372static VTS* VtsID__to_VTS ( VtsID vi ) {
2373 VtsTE* te = VG_(indexXA)( vts_tab, vi );
2374 tl_assert(te->vts);
2375 return te->vts;
2376}
2377
2378static void VtsID__pp ( VtsID vi ) {
2379 HChar buf[100];
2380 VTS* vts = VtsID__to_VTS(vi);
2381 VTS__show( buf, sizeof(buf)-1, vts );
2382 buf[sizeof(buf)-1] = 0;
2383 VG_(printf)("%s", buf);
2384}
2385
2386/* compute partial ordering relation of vi1 and vi2. */
2387__attribute__((noinline))
2388static POrd VtsID__getOrdering_WRK ( VtsID vi1, VtsID vi2 ) {
2389 UInt hash;
2390 POrd ord;
2391 VTS *v1, *v2;
2392 //if (vi1 == vi2) return POrd_EQ;
2393 tl_assert(vi1 != vi2);
2394 ////++
2395 stats__getOrdering_queries++;
2396 hash = hash_VtsIDs(vi1, vi2, N_GETORDERING_CACHE);
2397 if (getOrdering_cache[hash].vi1 == vi1
2398 && getOrdering_cache[hash].vi2 == vi2)
2399 return getOrdering_cache[hash].ord;
2400 stats__getOrdering_misses++;
2401 ////--
2402 v1 = VtsID__to_VTS(vi1);
2403 v2 = VtsID__to_VTS(vi2);
2404 ord = VTS__cmp( v1, v2 );
2405 ////++
2406 getOrdering_cache[hash].vi1 = vi1;
2407 getOrdering_cache[hash].vi2 = vi2;
2408 getOrdering_cache[hash].ord = ord;
2409 ////--
2410 return ord;
2411}
2412static inline POrd VtsID__getOrdering ( VtsID vi1, VtsID vi2 ) {
2413 return vi1 == vi2 ? POrd_EQ : VtsID__getOrdering_WRK(vi1, vi2);
2414}
2415
2416/* compute binary join */
2417__attribute__((noinline))
2418static VtsID VtsID__join2_WRK ( VtsID vi1, VtsID vi2 ) {
2419 UInt hash;
2420 VtsID res;
2421 VTS *vts1, *vts2, *nyu;
2422 //if (vi1 == vi2) return vi1;
2423 tl_assert(vi1 != vi2);
2424 ////++
2425 stats__join2_queries++;
2426 hash = hash_VtsIDs(vi1, vi2, N_JOIN2_CACHE);
2427 if (join2_cache[hash].vi1 == vi1
2428 && join2_cache[hash].vi2 == vi2)
2429 return join2_cache[hash].res;
2430 stats__join2_misses++;
2431 ////--
2432 vts1 = VtsID__to_VTS(vi1);
2433 vts2 = VtsID__to_VTS(vi2);
2434 nyu = VTS__join(vts1,vts2);
2435 res = vts_tab__find_and_dealloc__or_add(nyu);
2436 ////++
2437 join2_cache[hash].vi1 = vi1;
2438 join2_cache[hash].vi2 = vi2;
2439 join2_cache[hash].res = res;
2440 ////--
2441 return res;
2442}
2443static inline VtsID VtsID__join2 ( VtsID vi1, VtsID vi2 ) {
2444 return vi1 == vi2 ? vi1 : VtsID__join2_WRK(vi1, vi2);
2445}
2446
2447/* create a singleton VTS, namely [thr:1] */
2448static VtsID VtsID__mk_Singleton ( Thr* thr, ULong tym ) {
2449 VTS* nyu = VTS__singleton(thr,tym);
2450 return vts_tab__find_and_dealloc__or_add(nyu);
2451}
2452
2453/* tick operation, creates value 1 if specified index is absent */
2454static VtsID VtsID__tick ( VtsID vi, Thr* idx ) {
2455 VTS* vts = VtsID__to_VTS(vi);
2456 VTS* nyu = VTS__tick(idx,vts);
2457 return vts_tab__find_and_dealloc__or_add(nyu);
2458}
2459
2460/* index into a VTS (only for assertions) */
2461static ULong VtsID__indexAt ( VtsID vi, Thr* idx ) {
2462 VTS* vts = VtsID__to_VTS(vi);
2463 return VTS__indexAt_SLOW( vts, idx );
2464}
2465
2466
2467/////////////////////////////////////////////////////////
2468// //
2469// Threads //
2470// //
2471/////////////////////////////////////////////////////////
2472
2473struct _Thr {
2474 /* Current VTSs for this thread. They change as we go along. viR
2475 is the VTS to be used for reads, viW for writes. Usually they
2476 are the same, but can differ when we deal with reader-writer
2477 locks. It is always the case that VtsID__getOrdering(viW,viR)
2478 == POrd_LT or POrdEQ -- that is, viW must be the same, or
2479 lagging behind, viR. */
2480 VtsID viR;
2481 VtsID viW;
2482 /* opaque (to us) data we hold on behalf of the library's user. */
2483 void* opaque;
2484};
2485
2486static Thr* Thr__new ( void ) {
2487 Thr* thr = HG_(zalloc)( "libhb.Thr__new.1", sizeof(Thr) );
2488 thr->viR = VtsID_INVALID;
2489 thr->viW = VtsID_INVALID;
2490 return thr;
2491}
2492
2493
2494/////////////////////////////////////////////////////////
2495// //
2496// Shadow Values //
2497// //
2498/////////////////////////////////////////////////////////
2499
2500// type SVal, SVal_INVALID and SVal_NOACCESS are defined by
2501// hb_zsm.h. We have to do everything else here.
2502
2503/* SVal is 64 bit unsigned int.
2504
2505 <---------30---------> <---------30--------->
2506 00 X-----Rmin-VtsID-----X 00 X-----Wmin-VtsID-----X C(Rmin,Wmin)
2507 01 X--------------------X XX X--------------------X E(rror)
2508 10 X--------------------X XX X--------------------X A: SVal_NOACCESS
2509 11 X--------------------X XX X--------------------X I: SVal_INVALID
2510*/
2511#define SVAL_TAGMASK (3ULL << 62)
2512
2513static inline Bool SVal__isC ( SVal s ) {
2514 return (0ULL << 62) == (s & SVAL_TAGMASK);
2515}
2516static inline SVal SVal__mkC ( VtsID rmini, VtsID wmini ) {
2517 //tl_assert(VtsID__is_valid(rmini));
2518 //tl_assert(VtsID__is_valid(wmini));
2519 return (((ULong)rmini) << 32) | ((ULong)wmini);
2520}
2521static inline VtsID SVal__unC_Rmin ( SVal s ) {
2522 tl_assert(SVal__isC(s));
2523 return (VtsID)(s >> 32);
2524}
2525static inline VtsID SVal__unC_Wmin ( SVal s ) {
2526 tl_assert(SVal__isC(s));
2527 return (VtsID)(s & 0xFFFFFFFFULL);
2528}
2529
2530static Bool SVal__isE ( SVal s ) {
2531 return (1ULL << 62) == (s & SVAL_TAGMASK);
2532}
2533static SVal SVal__mkE ( void ) {
2534 return 1ULL << 62;
2535}
2536
2537static Bool SVal__isA ( SVal s ) {
2538 return (2ULL << 62) == (s & SVAL_TAGMASK);
2539}
2540static SVal SVal__mkA ( void ) {
2541 return 2ULL << 62;
2542}
2543
2544/* Direct callback from lib_zsm. */
2545static void SVal__rcinc ( SVal s ) {
2546 if (SVal__isC(s)) {
2547 VtsID__rcinc( SVal__unC_Rmin(s) );
2548 VtsID__rcinc( SVal__unC_Wmin(s) );
2549 }
2550}
2551
2552/* Direct callback from lib_zsm. */
2553static void SVal__rcdec ( SVal s ) {
2554 if (SVal__isC(s)) {
2555 VtsID__rcdec( SVal__unC_Rmin(s) );
2556 VtsID__rcdec( SVal__unC_Wmin(s) );
2557 }
2558}
2559
2560
2561/////////////////////////////////////////////////////////
2562// //
sewardjd86e3a22008-12-03 11:39:37 +00002563// A simple group (memory) allocator //
2564// //
2565/////////////////////////////////////////////////////////
2566
2567//////////////// BEGIN general group allocator
2568typedef
2569 struct {
2570 UWord elemSzB; /* element size */
2571 UWord nPerGroup; /* # elems per group */
2572 void* (*alloc)(HChar*, SizeT); /* group allocator */
2573 HChar* cc; /* group allocator's cc */
2574 void (*free)(void*); /* group allocator's free-er (unused) */
2575 /* XArray of void* (pointers to groups). The groups themselves.
2576 Each element is a pointer to a block of size (elemSzB *
2577 nPerGroup) bytes. */
2578 XArray* groups;
2579 /* next free element. Is a pointer to an element in one of the
2580 groups pointed to by .groups. */
2581 void* nextFree;
2582 }
2583 GroupAlloc;
2584
2585static void init_GroupAlloc ( /*MOD*/GroupAlloc* ga,
2586 UWord elemSzB,
2587 UWord nPerGroup,
2588 void* (*alloc)(HChar*, SizeT),
2589 HChar* cc,
2590 void (*free)(void*) )
2591{
2592 tl_assert(0 == (elemSzB % sizeof(UWord)));
2593 tl_assert(elemSzB >= sizeof(UWord));
2594 tl_assert(nPerGroup >= 100); /* let's say */
2595 tl_assert(alloc);
2596 tl_assert(cc);
2597 tl_assert(free);
2598 tl_assert(ga);
2599 VG_(memset)(ga, 0, sizeof(*ga));
2600 ga->elemSzB = elemSzB;
2601 ga->nPerGroup = nPerGroup;
2602 ga->groups = NULL;
2603 ga->alloc = alloc;
2604 ga->cc = cc;
2605 ga->free = free;
2606 ga->groups = VG_(newXA)( alloc, cc, free, sizeof(void*) );
2607 ga->nextFree = NULL;
2608 tl_assert(ga->groups);
2609}
2610
2611/* The freelist is empty. Allocate a new group and put all the new
2612 elements in it onto the freelist. */
2613__attribute__((noinline))
2614static void gal_add_new_group ( GroupAlloc* ga )
2615{
2616 Word i;
2617 UWord* group;
2618 tl_assert(ga);
2619 tl_assert(ga->nextFree == NULL);
2620 group = ga->alloc( ga->cc, ga->elemSzB * ga->nPerGroup );
2621 tl_assert(group);
2622 /* extend the freelist through the new group. Place the freelist
2623 pointer in the first word of each element. That's why the
2624 element size must be at least one word. */
2625 for (i = ga->nPerGroup-1; i >= 0; i--) {
2626 UChar* elemC = ((UChar*)group) + i * ga->elemSzB;
2627 UWord* elem = (UWord*)elemC;
2628 tl_assert(0 == (((UWord)elem) % sizeof(UWord)));
2629 *elem = (UWord)ga->nextFree;
2630 ga->nextFree = elem;
2631 }
2632 /* and add to our collection of groups */
2633 VG_(addToXA)( ga->groups, &group );
2634}
2635
2636inline static void* gal_Alloc ( GroupAlloc* ga )
2637{
2638 UWord* elem;
2639 if (UNLIKELY(ga->nextFree == NULL)) {
2640 gal_add_new_group(ga);
2641 }
2642 elem = ga->nextFree;
2643 ga->nextFree = (void*)*elem;
2644 *elem = 0; /* unnecessary, but just to be on the safe side */
2645 return elem;
2646}
2647
2648inline static void* gal_Alloc_w_size_check ( GroupAlloc* ga, SizeT n )
2649{
2650 tl_assert(n == ga->elemSzB);
2651 return gal_Alloc( ga );
2652}
2653
2654inline static void gal_Free ( GroupAlloc* ga, void* p )
2655{
2656 UWord* elem = (UWord*)p;
2657 *elem = (UWord)ga->nextFree;
2658 ga->nextFree = elem;
2659}
2660//////////////// END general group allocator
2661
2662
2663/////////////////////////////////////////////////////////
2664// //
sewardjf98e1c02008-10-25 16:22:41 +00002665// Change-event map2 //
2666// //
2667/////////////////////////////////////////////////////////
2668
2669#define EVENT_MAP_GC_AT (1 * 1000 * 1000)
2670#define EVENT_MAP_GC_DISCARD_FRACTION 0.5
2671
2672/* This is in two parts:
2673
2674 1. An OSet of RCECs. This is a set of reference-counted stack
2675 traces. When the reference count of a stack trace becomes zero,
2676 it is removed from the set and freed up. The intent is to have
2677 a set of stack traces which can be referred to from (2), but to
2678 only represent each one once. The set is indexed/searched by
2679 ordering on the stack trace vectors.
2680
2681 2. An OSet of OldRefs. These store information about each old ref
2682 that we need to record. It is indexed by address of the
2683 location for which the information is recorded. For LRU
2684 purposes, each OldRef also contains a generation number,
2685 indicating when it was most recently accessed.
2686
2687 The important part of an OldRef is, however, its accs[] array.
2688 This is an array of N_OLDREF_ACCS pairs of Thr and a RCEC. This
2689 allows us to collect the last access-traceback by up to
2690 N_OLDREF_ACCS different threads for this location. The accs[]
2691 array is a MTF-array. If a pair falls off the end, that's too
2692 bad -- we will lose info about that thread's access to this
2693 location.
2694
2695 When this OSet becomes too big, we can throw away the entries
2696 whose generation numbers are below some threshold; hence doing
2697 approximate LRU discarding. For each discarded OldRef we must
2698 of course decrement the reference count on the all RCECs it
2699 refers to, in order that entries from (1) eventually get
2700 discarded too.
2701*/
2702
2703
2704static UWord stats__ctxt_rcdec1 = 0;
2705static UWord stats__ctxt_rcdec2 = 0;
2706static UWord stats__ctxt_rcdec3 = 0;
2707static UWord stats__ctxt_rcdec_calls = 0;
2708static UWord stats__ctxt_rcdec_discards = 0;
2709static UWord stats__ctxt_rcdec1_eq = 0;
2710
2711static UWord stats__ctxt_tab_curr = 0;
2712static UWord stats__ctxt_tab_max = 0;
2713
2714static UWord stats__ctxt_tab_qs = 0;
2715static UWord stats__ctxt_tab_cmps = 0;
2716
2717
2718///////////////////////////////////////////////////////
2719//// Part (1): An OSet of RCECs
2720///
2721
2722#define N_FRAMES 8
2723
2724// (UInt) `echo "Reference Counted Execution Context" | md5sum`
2725#define RCEC_MAGIC 0xab88abb2UL
2726
2727//#define N_RCEC_TAB 98317 /* prime */
2728#define N_RCEC_TAB 196613 /* prime */
2729
2730typedef
2731 struct _RCEC {
sewardjd86e3a22008-12-03 11:39:37 +00002732 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002733 struct _RCEC* next;
sewardjf98e1c02008-10-25 16:22:41 +00002734 UWord rc;
2735 UWord rcX; /* used for crosschecking */
2736 UWord frames[1 + N_FRAMES]; /* first word is hash of all the rest */
2737 }
2738 RCEC;
2739
2740static RCEC** contextTab = NULL; /* hash table of RCEC*s */
2741
2742
2743/* Gives an arbitrary total order on RCEC .frames fields */
2744static Word RCEC__cmp_by_frames ( RCEC* ec1, RCEC* ec2 ) {
2745 Word i;
2746 tl_assert(ec1 && ec1->magic == RCEC_MAGIC);
2747 tl_assert(ec2 && ec2->magic == RCEC_MAGIC);
2748 if (ec1->frames[0] < ec2->frames[0]) return -1;
2749 if (ec1->frames[0] > ec2->frames[0]) return 1;
2750 for (i = 1; i < 1 + N_FRAMES; i++) {
2751 if (ec1->frames[i] < ec2->frames[i]) return -1;
2752 if (ec1->frames[i] > ec2->frames[i]) return 1;
2753 }
2754 return 0;
2755}
2756
2757
2758/* Dec the ref of this RCEC. */
2759static void ctxt__rcdec ( RCEC* ec )
2760{
2761 stats__ctxt_rcdec_calls++;
2762 tl_assert(ec && ec->magic == RCEC_MAGIC);
2763 tl_assert(ec->rc > 0);
2764 ec->rc--;
2765}
2766
2767static void ctxt__rcinc ( RCEC* ec )
2768{
2769 tl_assert(ec && ec->magic == RCEC_MAGIC);
2770 ec->rc++;
2771}
2772
2773
sewardjd86e3a22008-12-03 11:39:37 +00002774//////////// BEGIN RCEC group allocator
2775static GroupAlloc rcec_group_allocator;
2776
2777static RCEC* alloc_RCEC ( void ) {
2778 return gal_Alloc ( &rcec_group_allocator );
2779}
2780
2781static void free_RCEC ( RCEC* rcec ) {
2782 tl_assert(rcec->magic == RCEC_MAGIC);
2783 gal_Free( &rcec_group_allocator, rcec );
2784}
2785//////////// END OldRef group allocator
2786
2787
sewardjf98e1c02008-10-25 16:22:41 +00002788/* Find 'ec' in the RCEC list whose head pointer lives at 'headp' and
2789 move it one step closer the the front of the list, so as to make
2790 subsequent searches for it cheaper. */
2791static void move_RCEC_one_step_forward ( RCEC** headp, RCEC* ec )
2792{
2793 RCEC *ec0, *ec1, *ec2;
2794 if (ec == *headp)
2795 tl_assert(0); /* already at head of list */
2796 tl_assert(ec != NULL);
2797 ec0 = *headp;
2798 ec1 = NULL;
2799 ec2 = NULL;
2800 while (True) {
2801 if (ec0 == NULL || ec0 == ec) break;
2802 ec2 = ec1;
2803 ec1 = ec0;
2804 ec0 = ec0->next;
2805 }
2806 tl_assert(ec0 == ec);
2807 if (ec0 != NULL && ec1 != NULL && ec2 != NULL) {
2808 RCEC* tmp;
2809 /* ec0 points to ec, ec1 to its predecessor, and ec2 to ec1's
2810 predecessor. Swap ec0 and ec1, that is, move ec0 one step
2811 closer to the start of the list. */
2812 tl_assert(ec2->next == ec1);
2813 tl_assert(ec1->next == ec0);
2814 tmp = ec0->next;
2815 ec2->next = ec0;
2816 ec0->next = ec1;
2817 ec1->next = tmp;
2818 }
2819 else
2820 if (ec0 != NULL && ec1 != NULL && ec2 == NULL) {
2821 /* it's second in the list. */
2822 tl_assert(*headp == ec1);
2823 tl_assert(ec1->next == ec0);
2824 ec1->next = ec0->next;
2825 ec0->next = ec1;
2826 *headp = ec0;
2827 }
2828}
2829
2830
2831/* Find the given RCEC in the tree, and return a pointer to it. Or,
2832 if not present, add the given one to the tree (by making a copy of
2833 it, so the caller can immediately deallocate the original) and
2834 return a pointer to the copy. The caller can safely have 'example'
2835 on its stack, since we will always return a pointer to a copy of
2836 it, not to the original. Note that the inserted node will have .rc
2837 of zero and so the caller must immediatly increment it. */
2838__attribute__((noinline))
2839static RCEC* ctxt__find_or_add ( RCEC* example )
2840{
2841 UWord hent;
2842 RCEC* copy;
2843 tl_assert(example && example->magic == RCEC_MAGIC);
2844 tl_assert(example->rc == 0);
2845
2846 /* Search the hash table to see if we already have it. */
2847 stats__ctxt_tab_qs++;
2848 hent = example->frames[0] % N_RCEC_TAB;
2849 copy = contextTab[hent];
2850 while (1) {
2851 if (!copy) break;
2852 tl_assert(copy->magic == RCEC_MAGIC);
2853 stats__ctxt_tab_cmps++;
2854 if (0 == RCEC__cmp_by_frames(copy, example)) break;
2855 copy = copy->next;
2856 }
2857
2858 if (copy) {
2859 tl_assert(copy != example);
2860 /* optimisation: if it's not at the head of its list, move 1
2861 step fwds, to make future searches cheaper */
2862 if (copy != contextTab[hent]) {
2863 move_RCEC_one_step_forward( &contextTab[hent], copy );
2864 }
2865 } else {
sewardjd86e3a22008-12-03 11:39:37 +00002866 copy = alloc_RCEC();
sewardjf98e1c02008-10-25 16:22:41 +00002867 tl_assert(copy != example);
2868 *copy = *example;
2869 copy->next = contextTab[hent];
2870 contextTab[hent] = copy;
2871 stats__ctxt_tab_curr++;
2872 if (stats__ctxt_tab_curr > stats__ctxt_tab_max)
2873 stats__ctxt_tab_max = stats__ctxt_tab_curr;
2874 }
2875 return copy;
2876}
2877
2878static inline UWord ROLW ( UWord w, Int n )
2879{
2880 Int bpw = 8 * sizeof(UWord);
2881 w = (w << n) | (w >> (bpw-n));
2882 return w;
2883}
2884
2885__attribute__((noinline))
2886static RCEC* get_RCEC ( Thr* thr )
2887{
2888 UWord hash, i;
2889 RCEC example;
2890 example.magic = RCEC_MAGIC;
2891 example.rc = 0;
2892 example.rcX = 0;
2893 main_get_stacktrace( thr, &example.frames[1], N_FRAMES );
2894 hash = 0;
2895 for (i = 1; i < 1 + N_FRAMES; i++) {
2896 hash ^= example.frames[i];
2897 hash = ROLW(hash, 19);
2898 }
2899 example.frames[0] = hash;
2900 return ctxt__find_or_add( &example );
2901}
2902
2903///////////////////////////////////////////////////////
sewardjbc307e52008-12-06 22:10:54 +00002904//// Part (2):
2905/// A SparseWA guest-addr -> OldRef, that refers to (1)
sewardjf98e1c02008-10-25 16:22:41 +00002906///
2907
2908// (UInt) `echo "Old Reference Information" | md5sum`
2909#define OldRef_MAGIC 0x30b1f075UL
2910
sewardjc5ea9962008-12-07 01:41:46 +00002911/* Records an access: a thread and a context. The size
2912 (1,2,4,8) and read-or-writeness are also encoded as
2913 follows: bottom bit of .thr is 1 if write, 0 if read
2914 bottom 2 bits of .rcec are encode size:
2915 00 = 1, 01 = 2, 10 = 4, 11 = 8
2916*/
sewardjf98e1c02008-10-25 16:22:41 +00002917typedef struct { Thr* thr; RCEC* rcec; } Thr_n_RCEC;
2918
2919#define N_OLDREF_ACCS 3
2920
2921typedef
2922 struct {
sewardjd86e3a22008-12-03 11:39:37 +00002923 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002924 UWord gen; /* when most recently accessed */
sewardjd86e3a22008-12-03 11:39:37 +00002925 /* or free list when not in use */
sewardjf98e1c02008-10-25 16:22:41 +00002926 /* unused slots in this array have .thr == NULL */
2927 Thr_n_RCEC accs[N_OLDREF_ACCS];
2928 }
2929 OldRef;
2930
sewardjd86e3a22008-12-03 11:39:37 +00002931
2932//////////// BEGIN OldRef group allocator
2933static GroupAlloc oldref_group_allocator;
2934
2935static OldRef* alloc_OldRef ( void ) {
2936 return gal_Alloc ( &oldref_group_allocator );
2937}
2938
2939static void free_OldRef ( OldRef* r ) {
2940 tl_assert(r->magic == OldRef_MAGIC);
2941 gal_Free( &oldref_group_allocator, r );
2942}
2943//////////// END OldRef group allocator
2944
sewardjd86e3a22008-12-03 11:39:37 +00002945
sewardjbc307e52008-12-06 22:10:54 +00002946static SparseWA* oldrefTree = NULL; /* SparseWA* OldRef* */
2947static UWord oldrefGen = 0; /* current LRU generation # */
2948static UWord oldrefTreeN = 0; /* # elems in oldrefTree */
2949static UWord oldrefGenIncAt = 0; /* inc gen # when size hits this */
sewardjf98e1c02008-10-25 16:22:41 +00002950
sewardjc5ea9962008-12-07 01:41:46 +00002951inline static void* ptr_or_UWord ( void* p, UWord w ) {
2952 return (void*)( ((UWord)p) | ((UWord)w) );
2953}
2954inline static void* ptr_and_UWord ( void* p, UWord w ) {
2955 return (void*)( ((UWord)p) & ((UWord)w) );
2956}
2957
sewardja781be62008-12-08 00:12:28 +00002958/* Compare the intervals [a1,a1+n1) and [a2,a2+n2). Return -1 if the
2959 first interval is lower, 1 if the first interval is higher, and 0
2960 if there is any overlap. Redundant paranoia with casting is there
2961 following what looked distinctly like a bug in gcc-4.1.2, in which
2962 some of the comparisons were done signedly instead of
2963 unsignedly. */
2964/* Copied from exp-ptrcheck/sg_main.c */
2965static Word cmp_nonempty_intervals ( Addr a1, SizeT n1,
2966 Addr a2, SizeT n2 ) {
2967 UWord a1w = (UWord)a1;
2968 UWord n1w = (UWord)n1;
2969 UWord a2w = (UWord)a2;
2970 UWord n2w = (UWord)n2;
2971 tl_assert(n1w > 0 && n2w > 0);
2972 if (a1w + n1w <= a2w) return -1L;
2973 if (a2w + n2w <= a1w) return 1L;
2974 return 0;
2975}
2976
sewardjc5ea9962008-12-07 01:41:46 +00002977static void event_map_bind ( Addr a, SizeT szB, Bool isW, Thr* thr )
sewardjf98e1c02008-10-25 16:22:41 +00002978{
sewardjd86e3a22008-12-03 11:39:37 +00002979 OldRef* ref;
sewardjc5ea9962008-12-07 01:41:46 +00002980 RCEC* rcec;
sewardjd86e3a22008-12-03 11:39:37 +00002981 Word i, j;
2982 UWord keyW, valW;
2983 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00002984
sewardjc5ea9962008-12-07 01:41:46 +00002985 rcec = get_RCEC( thr );
2986 ctxt__rcinc(rcec);
2987
2988 /* encode the size and writeness of the transaction in the bottom
2989 two bits of thr and rcec. */
2990 thr = ptr_or_UWord(thr, isW ? 1 : 0);
2991 switch (szB) {
2992 /* This doesn't look particularly branch-predictor friendly. */
2993 case 1: rcec = ptr_or_UWord(rcec, 0); break;
2994 case 2: rcec = ptr_or_UWord(rcec, 1); break;
2995 case 4: rcec = ptr_or_UWord(rcec, 2); break;
2996 case 8: rcec = ptr_or_UWord(rcec, 3); break;
2997 default: tl_assert(0);
2998 }
2999
3000 /* Look in the map to see if we already have this. */
sewardjbc307e52008-12-06 22:10:54 +00003001 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, a );
sewardjf98e1c02008-10-25 16:22:41 +00003002
sewardjd86e3a22008-12-03 11:39:37 +00003003 if (b) {
sewardjf98e1c02008-10-25 16:22:41 +00003004
3005 /* We already have a record for this address. We now need to
3006 see if we have a stack trace pertaining to this thread's
3007 access. */
sewardjd86e3a22008-12-03 11:39:37 +00003008 tl_assert(keyW == a);
3009 ref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003010 tl_assert(ref->magic == OldRef_MAGIC);
3011
3012 tl_assert(thr);
3013 for (i = 0; i < N_OLDREF_ACCS; i++) {
3014 if (ref->accs[i].thr == thr)
3015 break;
3016 }
3017
3018 if (i < N_OLDREF_ACCS) {
3019 /* thread 'thr' has an entry at index 'i'. Update it. */
3020 if (i > 0) {
3021 Thr_n_RCEC tmp = ref->accs[i-1];
3022 ref->accs[i-1] = ref->accs[i];
3023 ref->accs[i] = tmp;
3024 i--;
3025 }
sewardjc5ea9962008-12-07 01:41:46 +00003026 if (rcec == ref->accs[i].rcec) stats__ctxt_rcdec1_eq++;
sewardjf98e1c02008-10-25 16:22:41 +00003027 stats__ctxt_rcdec1++;
sewardjc5ea9962008-12-07 01:41:46 +00003028 ctxt__rcdec( ptr_and_UWord(ref->accs[i].rcec, ~3) );
3029 ref->accs[i].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003030 tl_assert(ref->accs[i].thr == thr);
3031 } else {
sewardjf98e1c02008-10-25 16:22:41 +00003032 /* No entry for this thread. Shuffle all of them down one
3033 slot, and put the new entry at the start of the array. */
3034 if (ref->accs[N_OLDREF_ACCS-1].thr) {
3035 /* the last slot is in use. We must dec the rc on the
3036 associated rcec. */
3037 tl_assert(ref->accs[N_OLDREF_ACCS-1].rcec);
3038 stats__ctxt_rcdec2++;
sewardjc5ea9962008-12-07 01:41:46 +00003039 ctxt__rcdec( ptr_and_UWord(ref->accs[N_OLDREF_ACCS-1].rcec, ~3) );
sewardjf98e1c02008-10-25 16:22:41 +00003040 } else {
3041 tl_assert(!ref->accs[N_OLDREF_ACCS-1].rcec);
3042 }
3043 for (j = N_OLDREF_ACCS-1; j >= 1; j--)
3044 ref->accs[j] = ref->accs[j-1];
3045 ref->accs[0].thr = thr;
sewardjc5ea9962008-12-07 01:41:46 +00003046 ref->accs[0].rcec = rcec;
3047 /* thr==NULL is used to signify an empty slot, so we can't
3048 add a NULL thr. */
3049 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003050 }
3051
3052 ref->gen = oldrefGen;
sewardjf98e1c02008-10-25 16:22:41 +00003053
3054 } else {
3055
3056 /* We don't have a record for this address. Create a new one. */
3057 if (oldrefTreeN >= oldrefGenIncAt) {
3058 oldrefGen++;
3059 oldrefGenIncAt = oldrefTreeN + 50000;
3060 if (0) VG_(printf)("oldrefTree: new gen %lu at size %lu\n",
3061 oldrefGen, oldrefTreeN );
3062 }
sewardjd86e3a22008-12-03 11:39:37 +00003063
3064 ref = alloc_OldRef();
sewardjf98e1c02008-10-25 16:22:41 +00003065 ref->magic = OldRef_MAGIC;
3066 ref->gen = oldrefGen;
sewardjc5ea9962008-12-07 01:41:46 +00003067 ref->accs[0].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003068 ref->accs[0].thr = thr;
sewardjc5ea9962008-12-07 01:41:46 +00003069 /* thr==NULL is used to signify an empty slot, so we can't
3070 add a NULL thr. */
3071 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003072 for (j = 1; j < N_OLDREF_ACCS; j++) {
3073 ref->accs[j].thr = NULL;
3074 ref->accs[j].rcec = NULL;
3075 }
sewardjbc307e52008-12-06 22:10:54 +00003076 VG_(addToSWA)( oldrefTree, a, (UWord)ref );
sewardjf98e1c02008-10-25 16:22:41 +00003077 oldrefTreeN++;
3078
3079 }
3080}
3081
3082
sewardjc5ea9962008-12-07 01:41:46 +00003083Bool libhb_event_map_lookup ( /*OUT*/ExeContext** resEC,
3084 /*OUT*/Thr** resThr,
3085 /*OUT*/SizeT* resSzB,
3086 /*OUT*/Bool* resIsW,
3087 Thr* thr, Addr a, SizeT szB, Bool isW )
sewardjf98e1c02008-10-25 16:22:41 +00003088{
sewardja781be62008-12-08 00:12:28 +00003089 Word i, j;
sewardjd86e3a22008-12-03 11:39:37 +00003090 OldRef* ref;
3091 UWord keyW, valW;
3092 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00003093
sewardjc5ea9962008-12-07 01:41:46 +00003094 Thr* cand_thr;
3095 RCEC* cand_rcec;
3096 Bool cand_isW;
3097 SizeT cand_szB;
sewardja781be62008-12-08 00:12:28 +00003098 Addr cand_a;
3099
3100 Addr toCheck[15];
3101 Int nToCheck = 0;
sewardjc5ea9962008-12-07 01:41:46 +00003102
3103 tl_assert(thr);
3104 tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1);
sewardjf98e1c02008-10-25 16:22:41 +00003105
sewardja781be62008-12-08 00:12:28 +00003106 toCheck[nToCheck++] = a;
3107 for (i = -7; i < (Word)szB; i++) {
3108 if (i != 0)
3109 toCheck[nToCheck++] = a + i;
3110 }
3111 tl_assert(nToCheck <= 15);
3112
3113 /* Now see if we can find a suitable matching event for
3114 any of the addresses in toCheck[0 .. nToCheck-1]. */
3115 for (j = 0; j < nToCheck; j++) {
3116
3117 cand_a = toCheck[j];
3118 // VG_(printf)("test %ld %p\n", j, cand_a);
3119
3120 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, cand_a );
3121 if (!b)
3122 continue;
3123
sewardjd86e3a22008-12-03 11:39:37 +00003124 ref = (OldRef*)valW;
sewardja781be62008-12-08 00:12:28 +00003125 tl_assert(keyW == cand_a);
sewardjf98e1c02008-10-25 16:22:41 +00003126 tl_assert(ref->magic == OldRef_MAGIC);
3127 tl_assert(ref->accs[0].thr); /* first slot must always be used */
3128
sewardjc5ea9962008-12-07 01:41:46 +00003129 cand_thr = NULL;
3130 cand_rcec = NULL;
3131 cand_isW = False;
3132 cand_szB = 0;
sewardjf98e1c02008-10-25 16:22:41 +00003133
sewardjc5ea9962008-12-07 01:41:46 +00003134 for (i = 0; i < N_OLDREF_ACCS; i++) {
3135 Thr_n_RCEC* cand = &ref->accs[i];
3136 cand_thr = ptr_and_UWord(cand->thr, ~3);
3137 cand_rcec = ptr_and_UWord(cand->rcec, ~3);
3138 /* Decode the writeness from the bottom bit of .thr. */
3139 cand_isW = 1 == (UWord)ptr_and_UWord(cand->thr, 1);
3140 /* Decode the size from the bottom two bits of .rcec. */
3141 switch ((UWord)ptr_and_UWord(cand->rcec, 3)) {
3142 case 0: cand_szB = 1; break;
3143 case 1: cand_szB = 2; break;
3144 case 2: cand_szB = 4; break;
3145 case 3: cand_szB = 8; break;
3146 default: tl_assert(0);
3147 }
3148
3149 if (cand_thr == NULL)
3150 /* This slot isn't in use. Ignore it. */
3151 continue;
3152
3153 if (cand_thr == thr)
3154 /* This is an access by the same thread, but we're only
3155 interested in accesses from other threads. Ignore. */
3156 continue;
3157
3158 if ((!cand_isW) && (!isW))
3159 /* We don't want to report a read racing against another
3160 read; that's stupid. So in this case move on. */
3161 continue;
3162
sewardja781be62008-12-08 00:12:28 +00003163 if (cmp_nonempty_intervals(a, szB, cand_a, cand_szB) != 0)
3164 /* No overlap with the access we're asking about. Ignore. */
3165 continue;
3166
sewardjc5ea9962008-12-07 01:41:46 +00003167 /* We have a match. Stop searching. */
3168 break;
3169 }
3170
3171 tl_assert(i >= 0 && i <= N_OLDREF_ACCS);
3172
sewardja781be62008-12-08 00:12:28 +00003173 if (i < N_OLDREF_ACCS) {
3174 /* return with success */
3175 tl_assert(cand_thr);
3176 tl_assert(cand_rcec);
3177 tl_assert(cand_rcec->magic == RCEC_MAGIC);
3178 tl_assert(cand_szB >= 1);
3179 *resEC = VG_(make_ExeContext_from_StackTrace)(
3180 &cand_rcec->frames[1], N_FRAMES
3181 );
3182 *resThr = cand_thr;
3183 *resSzB = cand_szB;
3184 *resIsW = cand_isW;
3185 return True;
3186 }
sewardjc5ea9962008-12-07 01:41:46 +00003187
sewardja781be62008-12-08 00:12:28 +00003188 /* consider next address in toCheck[] */
3189 } /* for (j = 0; j < nToCheck; j++) */
sewardjf98e1c02008-10-25 16:22:41 +00003190
sewardja781be62008-12-08 00:12:28 +00003191 /* really didn't find anything. */
3192 return False;
sewardjf98e1c02008-10-25 16:22:41 +00003193}
3194
3195static void event_map_init ( void )
3196{
3197 Word i;
sewardjd86e3a22008-12-03 11:39:37 +00003198
3199 /* Context (RCEC) group allocator */
3200 init_GroupAlloc ( &rcec_group_allocator,
3201 sizeof(RCEC),
3202 1000 /* RCECs per group */,
3203 HG_(zalloc),
3204 "libhb.event_map_init.1 (RCEC groups)",
3205 HG_(free) );
3206
3207 /* Context table */
sewardjf98e1c02008-10-25 16:22:41 +00003208 tl_assert(!contextTab);
sewardjd86e3a22008-12-03 11:39:37 +00003209 contextTab = HG_(zalloc)( "libhb.event_map_init.2 (context table)",
sewardjf98e1c02008-10-25 16:22:41 +00003210 N_RCEC_TAB * sizeof(RCEC*) );
3211 tl_assert(contextTab);
3212 for (i = 0; i < N_RCEC_TAB; i++)
3213 contextTab[i] = NULL;
3214
sewardjd86e3a22008-12-03 11:39:37 +00003215 /* Oldref group allocator */
3216 init_GroupAlloc ( &oldref_group_allocator,
3217 sizeof(OldRef),
3218 1000 /* OldRefs per group */,
3219 HG_(zalloc),
3220 "libhb.event_map_init.3 (OldRef groups)",
3221 HG_(free) );
3222
sewardjd86e3a22008-12-03 11:39:37 +00003223 /* Oldref tree */
sewardjf98e1c02008-10-25 16:22:41 +00003224 tl_assert(!oldrefTree);
sewardjbc307e52008-12-06 22:10:54 +00003225 oldrefTree = VG_(newSWA)(
3226 HG_(zalloc),
sewardjd86e3a22008-12-03 11:39:37 +00003227 "libhb.event_map_init.4 (oldref tree)",
sewardjbc307e52008-12-06 22:10:54 +00003228 HG_(free)
sewardjf98e1c02008-10-25 16:22:41 +00003229 );
3230 tl_assert(oldrefTree);
3231
3232 oldrefGen = 0;
3233 oldrefGenIncAt = 0;
3234 oldrefTreeN = 0;
3235}
3236
3237static void event_map__check_reference_counts ( Bool before )
3238{
3239 RCEC* rcec;
3240 OldRef* oldref;
3241 Word i;
3242 UWord nEnts = 0;
sewardjd86e3a22008-12-03 11:39:37 +00003243 UWord keyW, valW;
sewardjf98e1c02008-10-25 16:22:41 +00003244
3245 /* Set the 'check' reference counts to zero. Also, optionally
3246 check that the real reference counts are non-zero. We allow
3247 these to fall to zero before a GC, but the GC must get rid of
3248 all those that are zero, hence none should be zero after a
3249 GC. */
3250 for (i = 0; i < N_RCEC_TAB; i++) {
3251 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3252 nEnts++;
3253 tl_assert(rcec);
3254 tl_assert(rcec->magic == RCEC_MAGIC);
3255 if (!before)
3256 tl_assert(rcec->rc > 0);
3257 rcec->rcX = 0;
3258 }
3259 }
3260
3261 /* check that the stats are sane */
3262 tl_assert(nEnts == stats__ctxt_tab_curr);
3263 tl_assert(stats__ctxt_tab_curr <= stats__ctxt_tab_max);
3264
3265 /* visit all the referencing points, inc check ref counts */
sewardjbc307e52008-12-06 22:10:54 +00003266 VG_(initIterSWA)( oldrefTree );
3267 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003268 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003269 tl_assert(oldref->magic == OldRef_MAGIC);
3270 for (i = 0; i < N_OLDREF_ACCS; i++) {
sewardjc5ea9962008-12-07 01:41:46 +00003271 Thr* aThr = ptr_and_UWord(oldref->accs[i].thr, ~3);
3272 RCEC* aRef = ptr_and_UWord(oldref->accs[i].rcec, ~3);
3273 if (aThr) {
3274 tl_assert(aRef);
3275 tl_assert(aRef->magic == RCEC_MAGIC);
3276 aRef->rcX++;
sewardjf98e1c02008-10-25 16:22:41 +00003277 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003278 tl_assert(!aRef);
sewardjf98e1c02008-10-25 16:22:41 +00003279 }
3280 }
3281 }
3282
3283 /* compare check ref counts with actual */
3284 for (i = 0; i < N_RCEC_TAB; i++) {
3285 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3286 tl_assert(rcec->rc == rcec->rcX);
3287 }
3288 }
3289}
3290
sewardj8fd92d32008-11-20 23:17:01 +00003291__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00003292static void event_map_maybe_GC ( void )
3293{
3294 OldRef* oldref;
3295 UWord keyW, valW, retained, maxGen;
sewardjf98e1c02008-10-25 16:22:41 +00003296 XArray* refs2del;
3297 Word i, j, n2del;
3298
sewardj8fd92d32008-11-20 23:17:01 +00003299 UWord* genMap = NULL;
3300 UWord genMap_min = 0;
3301 UWord genMap_size = 0;
3302
sewardjf98e1c02008-10-25 16:22:41 +00003303 if (LIKELY(oldrefTreeN < EVENT_MAP_GC_AT))
3304 return;
3305
3306 if (0)
3307 VG_(printf)("libhb: event_map GC at size %lu\n", oldrefTreeN);
3308
sewardj8f5374e2008-12-07 11:40:17 +00003309 /* Check our counting is sane (expensive) */
3310 if (CHECK_CEM)
3311 tl_assert(oldrefTreeN == VG_(sizeSWA)( oldrefTree ));
sewardjf98e1c02008-10-25 16:22:41 +00003312
sewardj8f5374e2008-12-07 11:40:17 +00003313 /* Check the reference counts (expensive) */
3314 if (CHECK_CEM)
3315 event_map__check_reference_counts( True/*before*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003316
sewardj8fd92d32008-11-20 23:17:01 +00003317 /* Compute the distribution of generation values in the ref tree.
3318 There are likely only to be a few different generation numbers
3319 in the whole tree, but we don't know what they are. Hence use a
3320 dynamically resized array of counters. The array is genMap[0
3321 .. genMap_size-1], where genMap[0] is the count for the
3322 generation number genMap_min, genMap[1] is the count for
3323 genMap_min+1, etc. If a new number is seen outside the range
3324 [genMap_min .. genMap_min + genMap_size - 1] then the array is
3325 copied into a larger array, and genMap_min and genMap_size are
3326 adjusted accordingly. */
3327
sewardjf98e1c02008-10-25 16:22:41 +00003328 /* genMap :: generation-number -> count-of-nodes-with-that-number */
sewardjf98e1c02008-10-25 16:22:41 +00003329
sewardjbc307e52008-12-06 22:10:54 +00003330 VG_(initIterSWA)( oldrefTree );
3331 while ( VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj8fd92d32008-11-20 23:17:01 +00003332
sewardjd86e3a22008-12-03 11:39:37 +00003333 UWord ea, key;
3334 oldref = (OldRef*)valW;
3335 key = oldref->gen;
sewardj8fd92d32008-11-20 23:17:01 +00003336
3337 /* BEGIN find 'ea', which is the index in genMap holding the
3338 count for generation number 'key'. */
3339 if (UNLIKELY(genMap == NULL)) {
3340 /* deal with the first key to be seen, so that the following
3341 cases don't need to handle the complexity of a NULL count
3342 array. */
3343 genMap_min = key;
3344 genMap_size = 1;
3345 genMap = HG_(zalloc)( "libhb.emmG.1a",
3346 genMap_size * sizeof(UWord) );
3347 ea = 0;
3348 if (0) VG_(printf)("(%lu) case 1 [%lu .. %lu]\n",
3349 key, genMap_min, genMap_min+genMap_size- 1 );
sewardjf98e1c02008-10-25 16:22:41 +00003350 }
sewardj8fd92d32008-11-20 23:17:01 +00003351 else
3352 if (LIKELY(key >= genMap_min && key < genMap_min + genMap_size)) {
3353 /* this is the expected (almost-always-happens) case: 'key'
3354 is already mapped in the array. */
3355 ea = key - genMap_min;
3356 }
3357 else
3358 if (key < genMap_min) {
3359 /* 'key' appears before the start of the current array.
3360 Extend the current array by allocating a larger one and
3361 copying the current one to the upper end of it. */
3362 Word more;
3363 UWord* map2;
3364 more = genMap_min - key;
3365 tl_assert(more > 0);
3366 map2 = HG_(zalloc)( "libhb.emmG.1b",
3367 (genMap_size + more) * sizeof(UWord) );
3368 VG_(memcpy)( &map2[more], genMap, genMap_size * sizeof(UWord) );
3369 HG_(free)( genMap );
3370 genMap = map2;
3371 genMap_size += more;
3372 genMap_min -= more;
3373 ea = 0;
3374 tl_assert(genMap_min == key);
3375 if (0) VG_(printf)("(%lu) case 2 [%lu .. %lu]\n",
3376 key, genMap_min, genMap_min+genMap_size- 1 );
3377 }
3378 else {
3379 /* 'key' appears after the end of the current array. Extend
3380 the current array by allocating a larger one and copying
3381 the current one to the lower end of it. */
3382 Word more;
3383 UWord* map2;
3384 tl_assert(key >= genMap_min + genMap_size);
3385 more = key - (genMap_min + genMap_size) + 1;
3386 tl_assert(more > 0);
3387 map2 = HG_(zalloc)( "libhb.emmG.1c",
3388 (genMap_size + more) * sizeof(UWord) );
3389 VG_(memcpy)( &map2[0], genMap, genMap_size * sizeof(UWord) );
3390 HG_(free)( genMap );
3391 genMap = map2;
3392 genMap_size += more;
3393 ea = genMap_size - 1;;
3394 tl_assert(genMap_min + genMap_size - 1 == key);
3395 if (0) VG_(printf)("(%lu) case 3 [%lu .. %lu]\n",
3396 key, genMap_min, genMap_min+genMap_size- 1 );
3397 }
3398 /* END find 'ea' from 'key' */
3399
3400 tl_assert(ea >= 0 && ea < genMap_size);
sewardjd86e3a22008-12-03 11:39:37 +00003401 /* and the whole point of this elaborate computation of 'ea' is .. */
sewardj8fd92d32008-11-20 23:17:01 +00003402 genMap[ea]++;
sewardjf98e1c02008-10-25 16:22:41 +00003403 }
3404
sewardj8fd92d32008-11-20 23:17:01 +00003405 tl_assert(genMap);
3406 tl_assert(genMap_size > 0);
sewardjf98e1c02008-10-25 16:22:41 +00003407
sewardj8fd92d32008-11-20 23:17:01 +00003408 /* Sanity check what we just computed */
3409 { UWord sum = 0;
3410 for (i = 0; i < genMap_size; i++) {
3411 if (0) VG_(printf)(" xxx: gen %ld has %lu\n",
3412 i + genMap_min, genMap[i] );
3413 sum += genMap[i];
3414 }
3415 tl_assert(sum == oldrefTreeN);
3416 }
3417
3418 /* Figure out how many generations to throw away */
sewardjf98e1c02008-10-25 16:22:41 +00003419 retained = oldrefTreeN;
3420 maxGen = 0;
sewardj8fd92d32008-11-20 23:17:01 +00003421
3422 for (i = 0; i < genMap_size; i++) {
3423 keyW = i + genMap_min;
3424 valW = genMap[i];
sewardjf98e1c02008-10-25 16:22:41 +00003425 tl_assert(keyW > 0); /* can't allow a generation # 0 */
3426 if (0) VG_(printf)(" XXX: gen %lu has %lu\n", keyW, valW );
3427 tl_assert(keyW >= maxGen);
3428 tl_assert(retained >= valW);
3429 if (retained - valW
3430 > (UWord)(EVENT_MAP_GC_AT * EVENT_MAP_GC_DISCARD_FRACTION)) {
3431 retained -= valW;
3432 maxGen = keyW;
3433 } else {
3434 break;
3435 }
3436 }
sewardjf98e1c02008-10-25 16:22:41 +00003437
sewardj8fd92d32008-11-20 23:17:01 +00003438 HG_(free)(genMap);
sewardjf98e1c02008-10-25 16:22:41 +00003439
sewardj9b1f0fd2008-11-18 23:40:00 +00003440 tl_assert(retained >= 0 && retained <= oldrefTreeN);
sewardjf98e1c02008-10-25 16:22:41 +00003441
3442 /* Now make up a big list of the oldrefTree entries we want to
3443 delete. We can't simultaneously traverse the tree and delete
3444 stuff from it, so first we need to copy them off somewhere
3445 else. (sigh) */
sewardj8fd92d32008-11-20 23:17:01 +00003446 refs2del = VG_(newXA)( HG_(zalloc), "libhb.emmG.2",
sewardjd86e3a22008-12-03 11:39:37 +00003447 HG_(free), sizeof(Addr) );
sewardjf98e1c02008-10-25 16:22:41 +00003448
sewardj9b1f0fd2008-11-18 23:40:00 +00003449 if (retained < oldrefTreeN) {
3450
3451 /* This is the normal (expected) case. We discard any ref whose
3452 generation number <= maxGen. */
sewardjbc307e52008-12-06 22:10:54 +00003453 VG_(initIterSWA)( oldrefTree );
3454 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003455 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003456 tl_assert(oldref->magic == OldRef_MAGIC);
3457 if (oldref->gen <= maxGen) {
sewardjd86e3a22008-12-03 11:39:37 +00003458 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003459 }
sewardjf98e1c02008-10-25 16:22:41 +00003460 }
sewardj9b1f0fd2008-11-18 23:40:00 +00003461 if (VG_(clo_verbosity) > 1) {
3462 VG_(message)(Vg_DebugMsg,
3463 "libhb: EvM GC: delete generations %lu and below, "
3464 "retaining %lu entries",
3465 maxGen, retained );
3466 }
3467
3468 } else {
3469
3470 static UInt rand_seed = 0; /* leave as static */
3471
3472 /* Degenerate case: there's only one generation in the entire
3473 tree, so we need to have some other way of deciding which
3474 refs to throw away. Just throw out half of them randomly. */
3475 tl_assert(retained == oldrefTreeN);
sewardjbc307e52008-12-06 22:10:54 +00003476 VG_(initIterSWA)( oldrefTree );
3477 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj9b1f0fd2008-11-18 23:40:00 +00003478 UInt n;
sewardjd86e3a22008-12-03 11:39:37 +00003479 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003480 tl_assert(oldref->magic == OldRef_MAGIC);
3481 n = VG_(random)( &rand_seed );
3482 if ((n & 0xFFF) < 0x800) {
sewardjd86e3a22008-12-03 11:39:37 +00003483 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003484 retained--;
3485 }
3486 }
3487 if (VG_(clo_verbosity) > 1) {
3488 VG_(message)(Vg_DebugMsg,
3489 "libhb: EvM GC: randomly delete half the entries, "
3490 "retaining %lu entries",
3491 retained );
3492 }
3493
sewardjf98e1c02008-10-25 16:22:41 +00003494 }
3495
3496 n2del = VG_(sizeXA)( refs2del );
3497 tl_assert(n2del == (Word)(oldrefTreeN - retained));
3498
3499 if (0) VG_(printf)("%s","deleting entries\n");
3500 for (i = 0; i < n2del; i++) {
sewardjd86e3a22008-12-03 11:39:37 +00003501 Bool b;
3502 Addr ga2del = *(Addr*)VG_(indexXA)( refs2del, i );
sewardjbc307e52008-12-06 22:10:54 +00003503 b = VG_(delFromSWA)( oldrefTree, &keyW, &valW, ga2del );
sewardjd86e3a22008-12-03 11:39:37 +00003504 tl_assert(b);
3505 tl_assert(keyW == ga2del);
3506 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003507 for (j = 0; j < N_OLDREF_ACCS; j++) {
sewardjc5ea9962008-12-07 01:41:46 +00003508 Thr* aThr = ptr_and_UWord(oldref->accs[j].thr, ~3);
3509 RCEC* aRef = ptr_and_UWord(oldref->accs[j].rcec, ~3);
3510 if (aRef) {
3511 tl_assert(aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003512 stats__ctxt_rcdec3++;
sewardjc5ea9962008-12-07 01:41:46 +00003513 ctxt__rcdec( aRef );
sewardjf98e1c02008-10-25 16:22:41 +00003514 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003515 tl_assert(!aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003516 }
3517 }
sewardjd86e3a22008-12-03 11:39:37 +00003518
3519 free_OldRef( oldref );
sewardjf98e1c02008-10-25 16:22:41 +00003520 }
3521
3522 VG_(deleteXA)( refs2del );
3523
sewardjc5ea9962008-12-07 01:41:46 +00003524 tl_assert( VG_(sizeSWA)( oldrefTree ) == retained );
sewardjf98e1c02008-10-25 16:22:41 +00003525
3526 oldrefTreeN = retained;
3527 oldrefGenIncAt = oldrefTreeN; /* start new gen right away */
3528
3529 /* Throw away all RCECs with zero reference counts */
3530 for (i = 0; i < N_RCEC_TAB; i++) {
3531 RCEC** pp = &contextTab[i];
3532 RCEC* p = *pp;
3533 while (p) {
3534 if (p->rc == 0) {
3535 *pp = p->next;
sewardjd86e3a22008-12-03 11:39:37 +00003536 free_RCEC(p);
sewardjf98e1c02008-10-25 16:22:41 +00003537 p = *pp;
3538 tl_assert(stats__ctxt_tab_curr > 0);
3539 stats__ctxt_tab_curr--;
3540 } else {
3541 pp = &p->next;
3542 p = p->next;
3543 }
3544 }
3545 }
3546
sewardj8f5374e2008-12-07 11:40:17 +00003547 /* Check the reference counts (expensive) */
3548 if (CHECK_CEM)
3549 event_map__check_reference_counts( False/*after*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003550
3551 //if (0)
3552 //VG_(printf)("XXXX final sizes: oldrefTree %ld, contextTree %ld\n\n",
3553 // VG_(OSetGen_Size)(oldrefTree), VG_(OSetGen_Size)(contextTree));
3554
3555}
3556
3557
3558/////////////////////////////////////////////////////////
3559// //
3560// Core MSM //
3561// //
3562/////////////////////////////////////////////////////////
3563
sewardjb0e009d2008-11-19 16:35:15 +00003564/* Logic in msm_read/msm_write updated/verified after re-analysis,
3565 19 Nov 08. */
3566
sewardjb0e009d2008-11-19 16:35:15 +00003567/* 19 Nov 08: it seems that MSM_RACE2ERR == 1 is a bad idea. When
3568 nonzero, the effect is that when a race is detected for a location,
3569 that location is put into a special 'error' state and no further
3570 checking of it is done until it returns to a 'normal' state, which
3571 requires it to be deallocated and reallocated.
3572
3573 This is a bad idea, because of the interaction with suppressions.
3574 Suppose there is a race on the location, but the error is
3575 suppressed. The location now is marked as in-error. Now any
3576 subsequent race -- including ones we want to see -- will never be
3577 detected until the location is deallocated and reallocated.
3578
sewardj8f5374e2008-12-07 11:40:17 +00003579 Hence set MSM_RACE2ERR to zero. This causes raced-on locations to
sewardjb0e009d2008-11-19 16:35:15 +00003580 remain in the normal 'C' (constrained) state, but places on them
3581 the constraint that the next accesses happen-after both the
3582 existing constraint and the relevant vector clock of the thread
sewardj8f5374e2008-12-07 11:40:17 +00003583 doing the racing access.
sewardjb0e009d2008-11-19 16:35:15 +00003584*/
3585#define MSM_RACE2ERR 0
3586
sewardjf98e1c02008-10-25 16:22:41 +00003587static ULong stats__msm_read = 0;
3588static ULong stats__msm_read_change = 0;
3589static ULong stats__msm_write = 0;
3590static ULong stats__msm_write_change = 0;
3591
3592__attribute__((noinline))
3593static void record_race_info ( Thr* acc_thr,
sewardja781be62008-12-08 00:12:28 +00003594 Addr acc_addr, SizeT szB, Bool isWrite )
sewardjf98e1c02008-10-25 16:22:41 +00003595{
sewardjc5ea9962008-12-07 01:41:46 +00003596 /* Call here to report a race. We just hand it onwards to
3597 HG_(record_error_Race). If that in turn discovers that the
3598 error is going to be collected, then that queries the
3599 conflicting-event map. The alternative would be to query it
3600 right here. But that causes a lot of pointless queries for
3601 errors which will shortly be discarded as duplicates, and can
3602 become a performance overhead; so we defer the query until we
3603 know the error is not a duplicate. */
3604 tl_assert(acc_thr->opaque);
3605 HG_(record_error_Race)( acc_thr->opaque, acc_addr,
sewardja781be62008-12-08 00:12:28 +00003606 szB, isWrite, NULL/*mb_lastlock*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003607}
3608
3609static Bool is_sane_SVal_C ( SVal sv ) {
3610 POrd ord;
3611 if (!SVal__isC(sv)) return True;
3612 ord = VtsID__getOrdering( SVal__unC_Rmin(sv), SVal__unC_Wmin(sv) );
3613 if (ord == POrd_EQ || ord == POrd_LT) return True;
3614 return False;
3615}
3616
3617
3618/* Compute new state following a read */
3619static inline SVal msm_read ( SVal svOld,
3620 /* The following are only needed for
3621 creating error reports. */
3622 Thr* acc_thr,
3623 Addr acc_addr, SizeT szB )
3624{
3625 SVal svNew = SVal_INVALID;
3626 stats__msm_read++;
3627
3628 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003629 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003630 tl_assert(is_sane_SVal_C(svOld));
3631 }
3632
3633 if (SVal__isC(svOld)) {
3634 POrd ord;
3635 VtsID tviR = acc_thr->viR;
3636 VtsID tviW = acc_thr->viW;
3637 VtsID rmini = SVal__unC_Rmin(svOld);
3638 VtsID wmini = SVal__unC_Wmin(svOld);
3639
3640 ord = VtsID__getOrdering(rmini,tviR);
3641 if (ord == POrd_EQ || ord == POrd_LT) {
3642 /* no race */
3643 /* Note: RWLOCK subtlety: use tviW, not tviR */
3644 svNew = SVal__mkC( rmini, VtsID__join2(wmini, tviW) );
3645 goto out;
3646 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003647 /* assert on sanity of constraints. */
3648 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3649 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003650 svNew = MSM_RACE2ERR
3651 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003652 /* see comments on corresponding fragment in
3653 msm_write for explanation. */
3654 /* aggressive setting: */
3655 /*
sewardjb0e009d2008-11-19 16:35:15 +00003656 : SVal__mkC( VtsID__join2(wmini,tviR),
3657 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003658 */
3659 /* "consistent" setting: */
sewardj3b0c4d72008-11-20 11:20:50 +00003660 : SVal__mkC( VtsID__join2(rmini,tviR),
3661 VtsID__join2(wmini,tviW) );
sewardja781be62008-12-08 00:12:28 +00003662 record_race_info( acc_thr, acc_addr, szB, False/*!isWrite*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003663 goto out;
3664 }
3665 }
3666 if (SVal__isA(svOld)) {
3667 /* reading no-access memory (sigh); leave unchanged */
3668 /* check for no pollution */
3669 tl_assert(svOld == SVal_NOACCESS);
3670 svNew = SVal_NOACCESS;
3671 goto out;
3672 }
3673 if (SVal__isE(svOld)) {
3674 /* no race, location is already "in error" */
3675 svNew = SVal__mkE();
3676 goto out;
3677 }
3678 VG_(printf)("msm_read: bad svOld: 0x%016llx\n", svOld);
3679 tl_assert(0);
3680
3681 out:
sewardj8f5374e2008-12-07 11:40:17 +00003682 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003683 tl_assert(is_sane_SVal_C(svNew));
3684 }
3685 tl_assert(svNew != SVal_INVALID);
3686 if (svNew != svOld) {
sewardj8f5374e2008-12-07 11:40:17 +00003687 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003688 event_map_bind( acc_addr, szB, False/*!isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003689 stats__msm_read_change++;
3690 }
3691 }
3692 return svNew;
3693}
3694
3695
3696/* Compute new state following a write */
3697static inline SVal msm_write ( SVal svOld,
3698 /* The following are only needed for
3699 creating error reports. */
3700 Thr* acc_thr,
3701 Addr acc_addr, SizeT szB )
3702{
3703 SVal svNew = SVal_INVALID;
3704 stats__msm_write++;
3705
3706 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003707 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003708 tl_assert(is_sane_SVal_C(svOld));
3709 }
3710
3711 if (SVal__isC(svOld)) {
3712 POrd ord;
3713 VtsID tviW = acc_thr->viW;
3714 VtsID wmini = SVal__unC_Wmin(svOld);
3715
3716 ord = VtsID__getOrdering(wmini,tviW);
3717 if (ord == POrd_EQ || ord == POrd_LT) {
3718 /* no race */
3719 svNew = SVal__mkC( tviW, tviW );
3720 goto out;
3721 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003722 VtsID tviR = acc_thr->viR;
sewardjf98e1c02008-10-25 16:22:41 +00003723 VtsID rmini = SVal__unC_Rmin(svOld);
sewardjb0e009d2008-11-19 16:35:15 +00003724 /* assert on sanity of constraints. */
3725 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3726 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003727 svNew = MSM_RACE2ERR
3728 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003729 /* One possibility is, after a race is seen, to
3730 set the location's constraints as aggressively
3731 (as far ahead) as possible. However, that just
3732 causes lots more races to be reported, which is
3733 very confusing. Hence don't do this. */
3734 /*
sewardjb0e009d2008-11-19 16:35:15 +00003735 : SVal__mkC( VtsID__join2(wmini,tviR),
sewardjf98e1c02008-10-25 16:22:41 +00003736 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003737 */
3738 /* instead, re-set the constraints in a way which
3739 is consistent with (ie, as they would have been
3740 computed anyway) had no race been detected. */
sewardj3b0c4d72008-11-20 11:20:50 +00003741 : SVal__mkC( VtsID__join2(rmini,tviR),
3742 VtsID__join2(wmini,tviW) );
sewardja781be62008-12-08 00:12:28 +00003743 record_race_info( acc_thr, acc_addr, szB, True/*isWrite*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003744 goto out;
3745 }
3746 }
3747 if (SVal__isA(svOld)) {
3748 /* writing no-access memory (sigh); leave unchanged */
3749 /* check for no pollution */
3750 tl_assert(svOld == SVal_NOACCESS);
3751 svNew = SVal_NOACCESS;
3752 goto out;
3753 }
3754 if (SVal__isE(svOld)) {
3755 /* no race, location is already "in error" */
3756 svNew = SVal__mkE();
3757 goto out;
3758 }
3759 VG_(printf)("msm_write: bad svOld: 0x%016llx\n", svOld);
3760 tl_assert(0);
3761
3762 out:
sewardj8f5374e2008-12-07 11:40:17 +00003763 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003764 tl_assert(is_sane_SVal_C(svNew));
3765 }
3766 tl_assert(svNew != SVal_INVALID);
3767 if (svNew != svOld) {
sewardj8f5374e2008-12-07 11:40:17 +00003768 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003769 event_map_bind( acc_addr, szB, True/*isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003770 stats__msm_write_change++;
3771 }
3772 }
3773 return svNew;
3774}
3775
3776
3777/////////////////////////////////////////////////////////
3778// //
3779// Apply core MSM to specific memory locations //
3780// //
3781/////////////////////////////////////////////////////////
3782
3783/*------------- ZSM accesses: 8 bit apply ------------- */
3784
3785void zsm_apply8___msm_read ( Thr* thr, Addr a ) {
3786 CacheLine* cl;
3787 UWord cloff, tno, toff;
3788 SVal svOld, svNew;
3789 UShort descr;
3790 stats__cline_read8s++;
3791 cl = get_cacheline(a);
3792 cloff = get_cacheline_offset(a);
3793 tno = get_treeno(a);
3794 toff = get_tree_offset(a); /* == 0 .. 7 */
3795 descr = cl->descrs[tno];
3796 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3797 SVal* tree = &cl->svals[tno << 3];
3798 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003799 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003800 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3801 }
3802 svOld = cl->svals[cloff];
3803 svNew = msm_read( svOld, thr,a,1 );
3804 tl_assert(svNew != SVal_INVALID);
3805 cl->svals[cloff] = svNew;
3806}
3807
3808void zsm_apply8___msm_write ( Thr* thr, Addr a ) {
3809 CacheLine* cl;
3810 UWord cloff, tno, toff;
3811 SVal svOld, svNew;
3812 UShort descr;
3813 stats__cline_read8s++;
3814 cl = get_cacheline(a);
3815 cloff = get_cacheline_offset(a);
3816 tno = get_treeno(a);
3817 toff = get_tree_offset(a); /* == 0 .. 7 */
3818 descr = cl->descrs[tno];
3819 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3820 SVal* tree = &cl->svals[tno << 3];
3821 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003822 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003823 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3824 }
3825 svOld = cl->svals[cloff];
3826 svNew = msm_write( svOld, thr,a,1 );
3827 tl_assert(svNew != SVal_INVALID);
3828 cl->svals[cloff] = svNew;
3829}
3830
3831/*------------- ZSM accesses: 16 bit apply ------------- */
3832
3833void zsm_apply16___msm_read ( Thr* thr, Addr a ) {
3834 CacheLine* cl;
3835 UWord cloff, tno, toff;
3836 SVal svOld, svNew;
3837 UShort descr;
3838 stats__cline_read16s++;
3839 if (UNLIKELY(!aligned16(a))) goto slowcase;
3840 cl = get_cacheline(a);
3841 cloff = get_cacheline_offset(a);
3842 tno = get_treeno(a);
3843 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3844 descr = cl->descrs[tno];
3845 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3846 if (valid_value_is_below_me_16(descr, toff)) {
3847 goto slowcase;
3848 } else {
3849 SVal* tree = &cl->svals[tno << 3];
3850 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3851 }
sewardj8f5374e2008-12-07 11:40:17 +00003852 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003853 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3854 }
3855 svOld = cl->svals[cloff];
3856 svNew = msm_read( svOld, thr,a,2 );
3857 tl_assert(svNew != SVal_INVALID);
3858 cl->svals[cloff] = svNew;
3859 return;
3860 slowcase: /* misaligned, or must go further down the tree */
3861 stats__cline_16to8splits++;
3862 zsm_apply8___msm_read( thr, a + 0 );
3863 zsm_apply8___msm_read( thr, a + 1 );
3864}
3865
3866void zsm_apply16___msm_write ( Thr* thr, Addr a ) {
3867 CacheLine* cl;
3868 UWord cloff, tno, toff;
3869 SVal svOld, svNew;
3870 UShort descr;
3871 stats__cline_read16s++;
3872 if (UNLIKELY(!aligned16(a))) goto slowcase;
3873 cl = get_cacheline(a);
3874 cloff = get_cacheline_offset(a);
3875 tno = get_treeno(a);
3876 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3877 descr = cl->descrs[tno];
3878 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3879 if (valid_value_is_below_me_16(descr, toff)) {
3880 goto slowcase;
3881 } else {
3882 SVal* tree = &cl->svals[tno << 3];
3883 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3884 }
sewardj8f5374e2008-12-07 11:40:17 +00003885 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003886 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3887 }
3888 svOld = cl->svals[cloff];
3889 svNew = msm_write( svOld, thr,a,2 );
3890 tl_assert(svNew != SVal_INVALID);
3891 cl->svals[cloff] = svNew;
3892 return;
3893 slowcase: /* misaligned, or must go further down the tree */
3894 stats__cline_16to8splits++;
3895 zsm_apply8___msm_write( thr, a + 0 );
3896 zsm_apply8___msm_write( thr, a + 1 );
3897}
3898
3899/*------------- ZSM accesses: 32 bit apply ------------- */
3900
3901void zsm_apply32___msm_read ( Thr* thr, Addr a ) {
3902 CacheLine* cl;
3903 UWord cloff, tno, toff;
3904 SVal svOld, svNew;
3905 UShort descr;
3906 if (UNLIKELY(!aligned32(a))) goto slowcase;
3907 cl = get_cacheline(a);
3908 cloff = get_cacheline_offset(a);
3909 tno = get_treeno(a);
3910 toff = get_tree_offset(a); /* == 0 or 4 */
3911 descr = cl->descrs[tno];
3912 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3913 if (valid_value_is_above_me_32(descr, toff)) {
3914 SVal* tree = &cl->svals[tno << 3];
3915 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3916 } else {
3917 goto slowcase;
3918 }
sewardj8f5374e2008-12-07 11:40:17 +00003919 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003920 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3921 }
3922 svOld = cl->svals[cloff];
3923 svNew = msm_read( svOld, thr,a,4 );
3924 tl_assert(svNew != SVal_INVALID);
3925 cl->svals[cloff] = svNew;
3926 return;
3927 slowcase: /* misaligned, or must go further down the tree */
3928 stats__cline_32to16splits++;
3929 zsm_apply16___msm_read( thr, a + 0 );
3930 zsm_apply16___msm_read( thr, a + 2 );
3931}
3932
3933void zsm_apply32___msm_write ( Thr* thr, Addr a ) {
3934 CacheLine* cl;
3935 UWord cloff, tno, toff;
3936 SVal svOld, svNew;
3937 UShort descr;
3938 if (UNLIKELY(!aligned32(a))) goto slowcase;
3939 cl = get_cacheline(a);
3940 cloff = get_cacheline_offset(a);
3941 tno = get_treeno(a);
3942 toff = get_tree_offset(a); /* == 0 or 4 */
3943 descr = cl->descrs[tno];
3944 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3945 if (valid_value_is_above_me_32(descr, toff)) {
3946 SVal* tree = &cl->svals[tno << 3];
3947 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3948 } else {
3949 goto slowcase;
3950 }
sewardj8f5374e2008-12-07 11:40:17 +00003951 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003952 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3953 }
3954 svOld = cl->svals[cloff];
3955 svNew = msm_write( svOld, thr,a,4 );
3956 tl_assert(svNew != SVal_INVALID);
3957 cl->svals[cloff] = svNew;
3958 return;
3959 slowcase: /* misaligned, or must go further down the tree */
3960 stats__cline_32to16splits++;
3961 zsm_apply16___msm_write( thr, a + 0 );
3962 zsm_apply16___msm_write( thr, a + 2 );
3963}
3964
3965/*------------- ZSM accesses: 64 bit apply ------------- */
3966
3967void zsm_apply64___msm_read ( Thr* thr, Addr a ) {
3968 CacheLine* cl;
3969 UWord cloff, tno, toff;
3970 SVal svOld, svNew;
3971 UShort descr;
3972 stats__cline_read64s++;
3973 if (UNLIKELY(!aligned64(a))) goto slowcase;
3974 cl = get_cacheline(a);
3975 cloff = get_cacheline_offset(a);
3976 tno = get_treeno(a);
3977 toff = get_tree_offset(a); /* == 0, unused */
3978 descr = cl->descrs[tno];
3979 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
3980 goto slowcase;
3981 }
3982 svOld = cl->svals[cloff];
3983 svNew = msm_read( svOld, thr,a,8 );
3984 tl_assert(svNew != SVal_INVALID);
3985 cl->svals[cloff] = svNew;
3986 return;
3987 slowcase: /* misaligned, or must go further down the tree */
3988 stats__cline_64to32splits++;
3989 zsm_apply32___msm_read( thr, a + 0 );
3990 zsm_apply32___msm_read( thr, a + 4 );
3991}
3992
3993void zsm_apply64___msm_write ( Thr* thr, Addr a ) {
3994 CacheLine* cl;
3995 UWord cloff, tno, toff;
3996 SVal svOld, svNew;
3997 UShort descr;
3998 stats__cline_read64s++;
3999 if (UNLIKELY(!aligned64(a))) goto slowcase;
4000 cl = get_cacheline(a);
4001 cloff = get_cacheline_offset(a);
4002 tno = get_treeno(a);
4003 toff = get_tree_offset(a); /* == 0, unused */
4004 descr = cl->descrs[tno];
4005 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
4006 goto slowcase;
4007 }
4008 svOld = cl->svals[cloff];
4009 svNew = msm_write( svOld, thr,a,8 );
4010 tl_assert(svNew != SVal_INVALID);
4011 cl->svals[cloff] = svNew;
4012 return;
4013 slowcase: /* misaligned, or must go further down the tree */
4014 stats__cline_64to32splits++;
4015 zsm_apply32___msm_write( thr, a + 0 );
4016 zsm_apply32___msm_write( thr, a + 4 );
4017}
4018
4019/*--------------- ZSM accesses: 8 bit write --------------- */
4020
4021static
4022void zsm_write8 ( Addr a, SVal svNew ) {
4023 CacheLine* cl;
4024 UWord cloff, tno, toff;
4025 UShort descr;
4026 stats__cline_set8s++;
4027 cl = get_cacheline(a);
4028 cloff = get_cacheline_offset(a);
4029 tno = get_treeno(a);
4030 toff = get_tree_offset(a); /* == 0 .. 7 */
4031 descr = cl->descrs[tno];
4032 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
4033 SVal* tree = &cl->svals[tno << 3];
4034 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004035 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004036 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4037 }
4038 tl_assert(svNew != SVal_INVALID);
4039 cl->svals[cloff] = svNew;
4040}
4041
4042/*--------------- ZSM accesses: 16 bit write --------------- */
4043
4044static
4045void zsm_write16 ( Addr a, SVal svNew ) {
4046 CacheLine* cl;
4047 UWord cloff, tno, toff;
4048 UShort descr;
4049 stats__cline_set16s++;
4050 if (UNLIKELY(!aligned16(a))) goto slowcase;
4051 cl = get_cacheline(a);
4052 cloff = get_cacheline_offset(a);
4053 tno = get_treeno(a);
4054 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
4055 descr = cl->descrs[tno];
4056 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
4057 if (valid_value_is_below_me_16(descr, toff)) {
4058 /* Writing at this level. Need to fix up 'descr'. */
4059 cl->descrs[tno] = pullup_descr_to_16(descr, toff);
4060 /* At this point, the tree does not match cl->descr[tno] any
4061 more. The assignments below will fix it up. */
4062 } else {
4063 /* We can't indiscriminately write on the w16 node as in the
4064 w64 case, as that might make the node inconsistent with
4065 its parent. So first, pull down to this level. */
4066 SVal* tree = &cl->svals[tno << 3];
4067 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004068 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004069 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4070 }
4071 }
4072 tl_assert(svNew != SVal_INVALID);
4073 cl->svals[cloff + 0] = svNew;
4074 cl->svals[cloff + 1] = SVal_INVALID;
4075 return;
4076 slowcase: /* misaligned */
4077 stats__cline_16to8splits++;
4078 zsm_write8( a + 0, svNew );
4079 zsm_write8( a + 1, svNew );
4080}
4081
4082/*--------------- ZSM accesses: 32 bit write --------------- */
4083
4084static
4085void zsm_write32 ( Addr a, SVal svNew ) {
4086 CacheLine* cl;
4087 UWord cloff, tno, toff;
4088 UShort descr;
4089 stats__cline_set32s++;
4090 if (UNLIKELY(!aligned32(a))) goto slowcase;
4091 cl = get_cacheline(a);
4092 cloff = get_cacheline_offset(a);
4093 tno = get_treeno(a);
4094 toff = get_tree_offset(a); /* == 0 or 4 */
4095 descr = cl->descrs[tno];
4096 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
4097 if (valid_value_is_above_me_32(descr, toff)) {
4098 /* We can't indiscriminately write on the w32 node as in the
4099 w64 case, as that might make the node inconsistent with
4100 its parent. So first, pull down to this level. */
4101 SVal* tree = &cl->svals[tno << 3];
4102 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004103 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004104 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4105 } else {
4106 /* Writing at this level. Need to fix up 'descr'. */
4107 cl->descrs[tno] = pullup_descr_to_32(descr, toff);
4108 /* At this point, the tree does not match cl->descr[tno] any
4109 more. The assignments below will fix it up. */
4110 }
4111 }
4112 tl_assert(svNew != SVal_INVALID);
4113 cl->svals[cloff + 0] = svNew;
4114 cl->svals[cloff + 1] = SVal_INVALID;
4115 cl->svals[cloff + 2] = SVal_INVALID;
4116 cl->svals[cloff + 3] = SVal_INVALID;
4117 return;
4118 slowcase: /* misaligned */
4119 stats__cline_32to16splits++;
4120 zsm_write16( a + 0, svNew );
4121 zsm_write16( a + 2, svNew );
4122}
4123
4124/*--------------- ZSM accesses: 64 bit write --------------- */
4125
4126static
4127void zsm_write64 ( Addr a, SVal svNew ) {
4128 CacheLine* cl;
4129 UWord cloff, tno, toff;
4130 stats__cline_set64s++;
4131 if (UNLIKELY(!aligned64(a))) goto slowcase;
4132 cl = get_cacheline(a);
4133 cloff = get_cacheline_offset(a);
4134 tno = get_treeno(a);
4135 toff = get_tree_offset(a); /* == 0 */
4136 cl->descrs[tno] = TREE_DESCR_64;
4137 tl_assert(svNew != SVal_INVALID);
4138 cl->svals[cloff + 0] = svNew;
4139 cl->svals[cloff + 1] = SVal_INVALID;
4140 cl->svals[cloff + 2] = SVal_INVALID;
4141 cl->svals[cloff + 3] = SVal_INVALID;
4142 cl->svals[cloff + 4] = SVal_INVALID;
4143 cl->svals[cloff + 5] = SVal_INVALID;
4144 cl->svals[cloff + 6] = SVal_INVALID;
4145 cl->svals[cloff + 7] = SVal_INVALID;
4146 return;
4147 slowcase: /* misaligned */
4148 stats__cline_64to32splits++;
4149 zsm_write32( a + 0, svNew );
4150 zsm_write32( a + 4, svNew );
4151}
4152
4153/*------------- ZSM accesses: 8 bit read/copy ------------- */
4154
4155static
4156SVal zsm_read8 ( Addr a ) {
4157 CacheLine* cl;
4158 UWord cloff, tno, toff;
4159 UShort descr;
4160 stats__cline_get8s++;
4161 cl = get_cacheline(a);
4162 cloff = get_cacheline_offset(a);
4163 tno = get_treeno(a);
4164 toff = get_tree_offset(a); /* == 0 .. 7 */
4165 descr = cl->descrs[tno];
4166 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
4167 SVal* tree = &cl->svals[tno << 3];
4168 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
4169 }
4170 return cl->svals[cloff];
4171}
4172
4173static void zsm_copy8 ( Addr src, Addr dst, Bool uu_normalise ) {
4174 SVal sv;
4175 stats__cline_copy8s++;
4176 sv = zsm_read8( src );
4177 zsm_write8( dst, sv );
4178}
4179
4180/* ------------ Shadow memory range setting ops ------------ */
4181
4182void zsm_apply_range___msm_read ( Thr* thr,
4183 Addr a, SizeT len )
4184{
4185 /* fast track a couple of common cases */
4186 if (len == 4 && aligned32(a)) {
4187 zsm_apply32___msm_read( thr, a );
4188 return;
4189 }
4190 if (len == 8 && aligned64(a)) {
4191 zsm_apply64___msm_read( thr, a );
4192 return;
4193 }
4194
4195 /* be completely general (but as efficient as possible) */
4196 if (len == 0) return;
4197
4198 if (!aligned16(a) && len >= 1) {
4199 zsm_apply8___msm_read( thr, a );
4200 a += 1;
4201 len -= 1;
4202 tl_assert(aligned16(a));
4203 }
4204 if (len == 0) return;
4205
4206 if (!aligned32(a) && len >= 2) {
4207 zsm_apply16___msm_read( thr, a );
4208 a += 2;
4209 len -= 2;
4210 tl_assert(aligned32(a));
4211 }
4212 if (len == 0) return;
4213
4214 if (!aligned64(a) && len >= 4) {
4215 zsm_apply32___msm_read( thr, a );
4216 a += 4;
4217 len -= 4;
4218 tl_assert(aligned64(a));
4219 }
4220 if (len == 0) return;
4221
4222 if (len >= 8) {
4223 tl_assert(aligned64(a));
4224 while (len >= 8) {
4225 zsm_apply64___msm_read( thr, a );
4226 a += 8;
4227 len -= 8;
4228 }
4229 tl_assert(aligned64(a));
4230 }
4231 if (len == 0) return;
4232
4233 if (len >= 4)
4234 tl_assert(aligned32(a));
4235 if (len >= 4) {
4236 zsm_apply32___msm_read( thr, a );
4237 a += 4;
4238 len -= 4;
4239 }
4240 if (len == 0) return;
4241
4242 if (len >= 2)
4243 tl_assert(aligned16(a));
4244 if (len >= 2) {
4245 zsm_apply16___msm_read( thr, a );
4246 a += 2;
4247 len -= 2;
4248 }
4249 if (len == 0) return;
4250
4251 if (len >= 1) {
4252 zsm_apply8___msm_read( thr, a );
4253 a += 1;
4254 len -= 1;
4255 }
4256 tl_assert(len == 0);
4257}
4258
4259
4260
4261void zsm_apply_range___msm_write ( Thr* thr,
4262 Addr a, SizeT len )
4263{
4264 /* fast track a couple of common cases */
4265 if (len == 4 && aligned32(a)) {
4266 zsm_apply32___msm_write( thr, a );
4267 return;
4268 }
4269 if (len == 8 && aligned64(a)) {
4270 zsm_apply64___msm_write( thr, a );
4271 return;
4272 }
4273
4274 /* be completely general (but as efficient as possible) */
4275 if (len == 0) return;
4276
4277 if (!aligned16(a) && len >= 1) {
4278 zsm_apply8___msm_write( thr, a );
4279 a += 1;
4280 len -= 1;
4281 tl_assert(aligned16(a));
4282 }
4283 if (len == 0) return;
4284
4285 if (!aligned32(a) && len >= 2) {
4286 zsm_apply16___msm_write( thr, a );
4287 a += 2;
4288 len -= 2;
4289 tl_assert(aligned32(a));
4290 }
4291 if (len == 0) return;
4292
4293 if (!aligned64(a) && len >= 4) {
4294 zsm_apply32___msm_write( thr, a );
4295 a += 4;
4296 len -= 4;
4297 tl_assert(aligned64(a));
4298 }
4299 if (len == 0) return;
4300
4301 if (len >= 8) {
4302 tl_assert(aligned64(a));
4303 while (len >= 8) {
4304 zsm_apply64___msm_write( thr, a );
4305 a += 8;
4306 len -= 8;
4307 }
4308 tl_assert(aligned64(a));
4309 }
4310 if (len == 0) return;
4311
4312 if (len >= 4)
4313 tl_assert(aligned32(a));
4314 if (len >= 4) {
4315 zsm_apply32___msm_write( thr, a );
4316 a += 4;
4317 len -= 4;
4318 }
4319 if (len == 0) return;
4320
4321 if (len >= 2)
4322 tl_assert(aligned16(a));
4323 if (len >= 2) {
4324 zsm_apply16___msm_write( thr, a );
4325 a += 2;
4326 len -= 2;
4327 }
4328 if (len == 0) return;
4329
4330 if (len >= 1) {
4331 zsm_apply8___msm_write( thr, a );
4332 a += 1;
4333 len -= 1;
4334 }
4335 tl_assert(len == 0);
4336}
4337
4338
4339
4340
4341/* Block-copy states (needed for implementing realloc()). */
4342
4343static void zsm_copy_range ( Addr src, Addr dst, SizeT len )
4344{
4345 SizeT i;
4346 if (len == 0)
4347 return;
4348
4349 /* assert for non-overlappingness */
4350 tl_assert(src+len <= dst || dst+len <= src);
4351
4352 /* To be simple, just copy byte by byte. But so as not to wreck
4353 performance for later accesses to dst[0 .. len-1], normalise
4354 destination lines as we finish with them, and also normalise the
4355 line containing the first and last address. */
4356 for (i = 0; i < len; i++) {
4357 Bool normalise
4358 = get_cacheline_offset( dst+i+1 ) == 0 /* last in line */
4359 || i == 0 /* first in range */
4360 || i == len-1; /* last in range */
4361 zsm_copy8( src+i, dst+i, normalise );
4362 }
4363}
4364
4365
4366/* For setting address ranges to a given value. Has considerable
4367 sophistication so as to avoid generating large numbers of pointless
4368 cache loads/writebacks for large ranges. */
4369
4370/* Do small ranges in-cache, in the obvious way. */
4371static
4372void zsm_set_range_SMALL ( Addr a, SizeT len, SVal svNew )
4373{
4374 /* fast track a couple of common cases */
4375 if (len == 4 && aligned32(a)) {
4376 zsm_write32( a, svNew );
4377 return;
4378 }
4379 if (len == 8 && aligned64(a)) {
4380 zsm_write64( a, svNew );
4381 return;
4382 }
4383
4384 /* be completely general (but as efficient as possible) */
4385 if (len == 0) return;
4386
4387 if (!aligned16(a) && len >= 1) {
4388 zsm_write8( a, svNew );
4389 a += 1;
4390 len -= 1;
4391 tl_assert(aligned16(a));
4392 }
4393 if (len == 0) return;
4394
4395 if (!aligned32(a) && len >= 2) {
4396 zsm_write16( a, svNew );
4397 a += 2;
4398 len -= 2;
4399 tl_assert(aligned32(a));
4400 }
4401 if (len == 0) return;
4402
4403 if (!aligned64(a) && len >= 4) {
4404 zsm_write32( a, svNew );
4405 a += 4;
4406 len -= 4;
4407 tl_assert(aligned64(a));
4408 }
4409 if (len == 0) return;
4410
4411 if (len >= 8) {
4412 tl_assert(aligned64(a));
4413 while (len >= 8) {
4414 zsm_write64( a, svNew );
4415 a += 8;
4416 len -= 8;
4417 }
4418 tl_assert(aligned64(a));
4419 }
4420 if (len == 0) return;
4421
4422 if (len >= 4)
4423 tl_assert(aligned32(a));
4424 if (len >= 4) {
4425 zsm_write32( a, svNew );
4426 a += 4;
4427 len -= 4;
4428 }
4429 if (len == 0) return;
4430
4431 if (len >= 2)
4432 tl_assert(aligned16(a));
4433 if (len >= 2) {
4434 zsm_write16( a, svNew );
4435 a += 2;
4436 len -= 2;
4437 }
4438 if (len == 0) return;
4439
4440 if (len >= 1) {
4441 zsm_write8( a, svNew );
4442 a += 1;
4443 len -= 1;
4444 }
4445 tl_assert(len == 0);
4446}
4447
4448
4449/* If we're doing a small range, hand off to zsm_set_range_SMALL. But
4450 for larger ranges, try to operate directly on the out-of-cache
4451 representation, rather than dragging lines into the cache,
4452 overwriting them, and forcing them out. This turns out to be an
4453 important performance optimisation. */
4454
4455static void zsm_set_range ( Addr a, SizeT len, SVal svNew )
4456{
4457 tl_assert(svNew != SVal_INVALID);
4458 stats__cache_make_New_arange += (ULong)len;
4459
4460 if (0 && len > 500)
4461 VG_(printf)("make New ( %#lx, %ld )\n", a, len );
4462
4463 if (0) {
4464 static UWord n_New_in_cache = 0;
4465 static UWord n_New_not_in_cache = 0;
4466 /* tag is 'a' with the in-line offset masked out,
4467 eg a[31]..a[4] 0000 */
4468 Addr tag = a & ~(N_LINE_ARANGE - 1);
4469 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
4470 if (LIKELY(tag == cache_shmem.tags0[wix])) {
4471 n_New_in_cache++;
4472 } else {
4473 n_New_not_in_cache++;
4474 }
4475 if (0 == ((n_New_in_cache + n_New_not_in_cache) % 100000))
4476 VG_(printf)("shadow_mem_make_New: IN %lu OUT %lu\n",
4477 n_New_in_cache, n_New_not_in_cache );
4478 }
4479
4480 if (LIKELY(len < 2 * N_LINE_ARANGE)) {
4481 zsm_set_range_SMALL( a, len, svNew );
4482 } else {
4483 Addr before_start = a;
4484 Addr aligned_start = cacheline_ROUNDUP(a);
4485 Addr after_start = cacheline_ROUNDDN(a + len);
4486 UWord before_len = aligned_start - before_start;
4487 UWord aligned_len = after_start - aligned_start;
4488 UWord after_len = a + len - after_start;
4489 tl_assert(before_start <= aligned_start);
4490 tl_assert(aligned_start <= after_start);
4491 tl_assert(before_len < N_LINE_ARANGE);
4492 tl_assert(after_len < N_LINE_ARANGE);
4493 tl_assert(get_cacheline_offset(aligned_start) == 0);
4494 if (get_cacheline_offset(a) == 0) {
4495 tl_assert(before_len == 0);
4496 tl_assert(a == aligned_start);
4497 }
4498 if (get_cacheline_offset(a+len) == 0) {
4499 tl_assert(after_len == 0);
4500 tl_assert(after_start == a+len);
4501 }
4502 if (before_len > 0) {
4503 zsm_set_range_SMALL( before_start, before_len, svNew );
4504 }
4505 if (after_len > 0) {
4506 zsm_set_range_SMALL( after_start, after_len, svNew );
4507 }
4508 stats__cache_make_New_inZrep += (ULong)aligned_len;
4509
4510 while (1) {
4511 Addr tag;
4512 UWord wix;
4513 if (aligned_start >= after_start)
4514 break;
4515 tl_assert(get_cacheline_offset(aligned_start) == 0);
4516 tag = aligned_start & ~(N_LINE_ARANGE - 1);
4517 wix = (aligned_start >> N_LINE_BITS) & (N_WAY_NENT - 1);
4518 if (tag == cache_shmem.tags0[wix]) {
4519 UWord i;
4520 for (i = 0; i < N_LINE_ARANGE / 8; i++)
4521 zsm_write64( aligned_start + i * 8, svNew );
4522 } else {
4523 UWord i;
4524 Word zix;
4525 SecMap* sm;
4526 LineZ* lineZ;
4527 /* This line is not in the cache. Do not force it in; instead
4528 modify it in-place. */
4529 /* find the Z line to write in and rcdec it or the
4530 associated F line. */
4531 find_Z_for_writing( &sm, &zix, tag );
4532 tl_assert(sm);
4533 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
4534 lineZ = &sm->linesZ[zix];
4535 lineZ->dict[0] = svNew;
4536 lineZ->dict[1] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
4537 for (i = 0; i < N_LINE_ARANGE/4; i++)
4538 lineZ->ix2s[i] = 0; /* all refer to dict[0] */
4539 rcinc_LineZ(lineZ);
4540 }
4541 aligned_start += N_LINE_ARANGE;
4542 aligned_len -= N_LINE_ARANGE;
4543 }
4544 tl_assert(aligned_start == after_start);
4545 tl_assert(aligned_len == 0);
4546 }
4547}
4548
4549
4550/////////////////////////////////////////////////////////
4551// //
4552// Synchronisation objects //
4553// //
4554/////////////////////////////////////////////////////////
4555
4556// (UInt) `echo "Synchronisation object" | md5sum`
4557#define SO_MAGIC 0x56b3c5b0U
4558
4559struct _SO {
4560 VtsID viR; /* r-clock of sender */
4561 VtsID viW; /* w-clock of sender */
4562 UInt magic;
4563};
4564
4565static SO* SO__Alloc ( void ) {
4566 SO* so = HG_(zalloc)( "libhb.SO__Alloc.1", sizeof(SO) );
4567 so->viR = VtsID_INVALID;
4568 so->viW = VtsID_INVALID;
4569 so->magic = SO_MAGIC;
4570 return so;
4571}
4572static void SO__Dealloc ( SO* so ) {
4573 tl_assert(so);
4574 tl_assert(so->magic == SO_MAGIC);
4575 if (so->viR == VtsID_INVALID) {
4576 tl_assert(so->viW == VtsID_INVALID);
4577 } else {
4578 tl_assert(so->viW != VtsID_INVALID);
4579 VtsID__rcdec(so->viR);
4580 VtsID__rcdec(so->viW);
4581 }
4582 so->magic = 0;
4583 HG_(free)( so );
4584}
4585
4586
4587/////////////////////////////////////////////////////////
4588// //
4589// Top Level API //
4590// //
4591/////////////////////////////////////////////////////////
4592
4593static void show_thread_state ( HChar* str, Thr* t )
4594{
4595 if (1) return;
4596 if (t->viR == t->viW) {
4597 VG_(printf)("thr \"%s\" %p has vi* %u==", str, t, t->viR );
4598 VtsID__pp( t->viR );
4599 VG_(printf)("%s","\n");
4600 } else {
4601 VG_(printf)("thr \"%s\" %p has viR %u==", str, t, t->viR );
4602 VtsID__pp( t->viR );
4603 VG_(printf)(" viW %u==", t->viW);
4604 VtsID__pp( t->viW );
4605 VG_(printf)("%s","\n");
4606 }
4607}
4608
4609
4610Thr* libhb_init (
4611 void (*get_stacktrace)( Thr*, Addr*, UWord ),
sewardjd52392d2008-11-08 20:36:26 +00004612 ExeContext* (*get_EC)( Thr* )
sewardjf98e1c02008-10-25 16:22:41 +00004613 )
4614{
4615 Thr* thr;
4616 VtsID vi;
4617 tl_assert(get_stacktrace);
sewardjf98e1c02008-10-25 16:22:41 +00004618 tl_assert(get_EC);
4619 main_get_stacktrace = get_stacktrace;
sewardjf98e1c02008-10-25 16:22:41 +00004620 main_get_EC = get_EC;
4621
4622 // No need to initialise hg_wordfm.
4623 // No need to initialise hg_wordset.
4624
4625 vts_set_init();
4626 vts_tab_init();
4627 event_map_init();
4628 VtsID__invalidate_caches();
4629
4630 // initialise shadow memory
4631 zsm_init( SVal__rcinc, SVal__rcdec );
4632
4633 thr = Thr__new();
4634 vi = VtsID__mk_Singleton( thr, 1 );
4635 thr->viR = vi;
4636 thr->viW = vi;
4637 VtsID__rcinc(thr->viR);
4638 VtsID__rcinc(thr->viW);
4639
4640 show_thread_state(" root", thr);
4641 return thr;
4642}
4643
4644Thr* libhb_create ( Thr* parent )
4645{
4646 /* The child's VTSs are copies of the parent's VTSs, but ticked at
4647 the child's index. Since the child's index is guaranteed
4648 unique, it has never been seen before, so the implicit value
4649 before the tick is zero and after that is one. */
4650 Thr* child = Thr__new();
4651
4652 child->viR = VtsID__tick( parent->viR, child );
4653 child->viW = VtsID__tick( parent->viW, child );
4654 VtsID__rcinc(child->viR);
4655 VtsID__rcinc(child->viW);
4656
4657 tl_assert(VtsID__indexAt( child->viR, child ) == 1);
4658 tl_assert(VtsID__indexAt( child->viW, child ) == 1);
4659
4660 /* and the parent has to move along too */
4661 VtsID__rcdec(parent->viR);
4662 VtsID__rcdec(parent->viW);
4663 parent->viR = VtsID__tick( parent->viR, parent );
4664 parent->viW = VtsID__tick( parent->viW, parent );
4665 VtsID__rcinc(parent->viR);
4666 VtsID__rcinc(parent->viW);
4667
4668 show_thread_state(" child", child);
4669 show_thread_state("parent", parent);
4670
4671 return child;
4672}
4673
4674/* Shut down the library, and print stats (in fact that's _all_
4675 this is for. */
4676void libhb_shutdown ( Bool show_stats )
4677{
4678 if (show_stats) {
4679 VG_(printf)("%s","<<< BEGIN libhb stats >>>\n");
4680 VG_(printf)(" secmaps: %'10lu allocd (%'12lu g-a-range)\n",
4681 stats__secmaps_allocd,
4682 stats__secmap_ga_space_covered);
4683 VG_(printf)(" linesZ: %'10lu allocd (%'12lu bytes occupied)\n",
4684 stats__secmap_linesZ_allocd,
4685 stats__secmap_linesZ_bytes);
4686 VG_(printf)(" linesF: %'10lu allocd (%'12lu bytes occupied)\n",
4687 stats__secmap_linesF_allocd,
4688 stats__secmap_linesF_bytes);
4689 VG_(printf)(" secmaps: %'10lu iterator steppings\n",
4690 stats__secmap_iterator_steppings);
4691 VG_(printf)(" secmaps: %'10lu searches (%'12lu slow)\n",
4692 stats__secmaps_search, stats__secmaps_search_slow);
4693
4694 VG_(printf)("%s","\n");
4695 VG_(printf)(" cache: %'lu totrefs (%'lu misses)\n",
4696 stats__cache_totrefs, stats__cache_totmisses );
4697 VG_(printf)(" cache: %'14lu Z-fetch, %'14lu F-fetch\n",
4698 stats__cache_Z_fetches, stats__cache_F_fetches );
4699 VG_(printf)(" cache: %'14lu Z-wback, %'14lu F-wback\n",
4700 stats__cache_Z_wbacks, stats__cache_F_wbacks );
4701 VG_(printf)(" cache: %'14lu invals, %'14lu flushes\n",
4702 stats__cache_invals, stats__cache_flushes );
4703 VG_(printf)(" cache: %'14llu arange_New %'14llu direct-to-Zreps\n",
4704 stats__cache_make_New_arange,
4705 stats__cache_make_New_inZrep);
4706
4707 VG_(printf)("%s","\n");
4708 VG_(printf)(" cline: %'10lu normalises\n",
4709 stats__cline_normalises );
4710 VG_(printf)(" cline: rds 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4711 stats__cline_read64s,
4712 stats__cline_read32s,
4713 stats__cline_read16s,
4714 stats__cline_read8s );
4715 VG_(printf)(" cline: wrs 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4716 stats__cline_write64s,
4717 stats__cline_write32s,
4718 stats__cline_write16s,
4719 stats__cline_write8s );
4720 VG_(printf)(" cline: sets 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4721 stats__cline_set64s,
4722 stats__cline_set32s,
4723 stats__cline_set16s,
4724 stats__cline_set8s );
4725 VG_(printf)(" cline: get1s %'lu, copy1s %'lu\n",
4726 stats__cline_get8s, stats__cline_copy8s );
4727 VG_(printf)(" cline: splits: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4728 stats__cline_64to32splits,
4729 stats__cline_32to16splits,
4730 stats__cline_16to8splits );
4731 VG_(printf)(" cline: pulldowns: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4732 stats__cline_64to32pulldown,
4733 stats__cline_32to16pulldown,
4734 stats__cline_16to8pulldown );
4735 if (0)
4736 VG_(printf)(" cline: sizeof(CacheLineZ) %ld, covers %ld bytes of arange\n",
4737 (Word)sizeof(LineZ), (Word)N_LINE_ARANGE);
4738
4739 VG_(printf)("%s","\n");
4740
4741 VG_(printf)(" libhb: %'13llu msm_read (%'llu changed)\n",
4742 stats__msm_read, stats__msm_read_change);
4743 VG_(printf)(" libhb: %'13llu msm_write (%'llu changed)\n",
4744 stats__msm_write, stats__msm_write_change);
4745 VG_(printf)(" libhb: %'13llu getOrd queries (%'llu misses)\n",
4746 stats__getOrdering_queries, stats__getOrdering_misses);
4747 VG_(printf)(" libhb: %'13llu join2 queries (%'llu misses)\n",
4748 stats__join2_queries, stats__join2_misses);
4749
4750 VG_(printf)("%s","\n");
4751 VG_(printf)(
4752 " libhb: %ld entries in vts_table (approximately %lu bytes)\n",
4753 VG_(sizeXA)( vts_tab ), VG_(sizeXA)( vts_tab ) * sizeof(VtsTE)
4754 );
4755 VG_(printf)( " libhb: %lu entries in vts_set\n",
4756 VG_(sizeFM)( vts_set ) );
4757
4758 VG_(printf)("%s","\n");
4759 VG_(printf)( " libhb: ctxt__rcdec: 1=%lu(%lu eq), 2=%lu, 3=%lu\n",
4760 stats__ctxt_rcdec1, stats__ctxt_rcdec1_eq,
4761 stats__ctxt_rcdec2,
4762 stats__ctxt_rcdec3 );
4763 VG_(printf)( " libhb: ctxt__rcdec: calls %lu, discards %lu\n",
4764 stats__ctxt_rcdec_calls, stats__ctxt_rcdec_discards);
4765 VG_(printf)( " libhb: contextTab: %lu slots, %lu max ents\n",
4766 (UWord)N_RCEC_TAB,
4767 stats__ctxt_tab_curr );
4768 VG_(printf)( " libhb: contextTab: %lu queries, %lu cmps\n",
4769 stats__ctxt_tab_qs,
4770 stats__ctxt_tab_cmps );
4771#if 0
4772 VG_(printf)("sizeof(AvlNode) = %lu\n", sizeof(AvlNode));
4773 VG_(printf)("sizeof(WordBag) = %lu\n", sizeof(WordBag));
4774 VG_(printf)("sizeof(MaybeWord) = %lu\n", sizeof(MaybeWord));
4775 VG_(printf)("sizeof(CacheLine) = %lu\n", sizeof(CacheLine));
4776 VG_(printf)("sizeof(LineZ) = %lu\n", sizeof(LineZ));
4777 VG_(printf)("sizeof(LineF) = %lu\n", sizeof(LineF));
4778 VG_(printf)("sizeof(SecMap) = %lu\n", sizeof(SecMap));
4779 VG_(printf)("sizeof(Cache) = %lu\n", sizeof(Cache));
4780 VG_(printf)("sizeof(SMCacheEnt) = %lu\n", sizeof(SMCacheEnt));
4781 VG_(printf)("sizeof(CountedSVal) = %lu\n", sizeof(CountedSVal));
4782 VG_(printf)("sizeof(VTS) = %lu\n", sizeof(VTS));
4783 VG_(printf)("sizeof(ScalarTS) = %lu\n", sizeof(ScalarTS));
4784 VG_(printf)("sizeof(VtsTE) = %lu\n", sizeof(VtsTE));
4785 VG_(printf)("sizeof(MSMInfo) = %lu\n", sizeof(MSMInfo));
4786
4787 VG_(printf)("sizeof(struct _XArray) = %lu\n", sizeof(struct _XArray));
4788 VG_(printf)("sizeof(struct _WordFM) = %lu\n", sizeof(struct _WordFM));
4789 VG_(printf)("sizeof(struct _Thr) = %lu\n", sizeof(struct _Thr));
4790 VG_(printf)("sizeof(struct _SO) = %lu\n", sizeof(struct _SO));
4791#endif
4792
4793 VG_(printf)("%s","<<< END libhb stats >>>\n");
4794 VG_(printf)("%s","\n");
4795
4796 }
4797}
4798
4799void libhb_async_exit ( Thr* thr )
4800{
4801 /* is there anything we need to do? */
4802}
4803
4804/* Both Segs and SOs point to VTSs. However, there is no sharing, so
4805 a Seg that points at a VTS is its one-and-only owner, and ditto for
4806 a SO that points at a VTS. */
4807
4808SO* libhb_so_alloc ( void )
4809{
4810 return SO__Alloc();
4811}
4812
4813void libhb_so_dealloc ( SO* so )
4814{
4815 tl_assert(so);
4816 tl_assert(so->magic == SO_MAGIC);
4817 SO__Dealloc(so);
4818}
4819
4820/* See comments in libhb.h for details on the meaning of
4821 strong vs weak sends and strong vs weak receives. */
4822void libhb_so_send ( Thr* thr, SO* so, Bool strong_send )
4823{
4824 /* Copy the VTSs from 'thr' into the sync object, and then move
4825 the thread along one step. */
4826
4827 tl_assert(so);
4828 tl_assert(so->magic == SO_MAGIC);
4829
4830 /* stay sane .. a thread's read-clock must always lead or be the
4831 same as its write-clock */
4832 { POrd ord = VtsID__getOrdering(thr->viW, thr->viR);
4833 tl_assert(ord == POrd_EQ || ord == POrd_LT);
4834 }
4835
4836 /* since we're overwriting the VtsIDs in the SO, we need to drop
4837 any references made by the previous contents thereof */
4838 if (so->viR == VtsID_INVALID) {
4839 tl_assert(so->viW == VtsID_INVALID);
4840 so->viR = thr->viR;
4841 so->viW = thr->viW;
4842 VtsID__rcinc(so->viR);
4843 VtsID__rcinc(so->viW);
4844 } else {
4845 /* In a strong send, we dump any previous VC in the SO and
4846 install the sending thread's VC instead. For a weak send we
4847 must join2 with what's already there. */
4848 tl_assert(so->viW != VtsID_INVALID);
4849 VtsID__rcdec(so->viR);
4850 VtsID__rcdec(so->viW);
4851 so->viR = strong_send ? thr->viR : VtsID__join2( so->viR, thr->viR );
4852 so->viW = strong_send ? thr->viW : VtsID__join2( so->viW, thr->viW );
4853 VtsID__rcinc(so->viR);
4854 VtsID__rcinc(so->viW);
4855 }
4856
4857 /* move both parent clocks along */
4858 VtsID__rcdec(thr->viR);
4859 VtsID__rcdec(thr->viW);
4860 thr->viR = VtsID__tick( thr->viR, thr );
4861 thr->viW = VtsID__tick( thr->viW, thr );
4862 VtsID__rcinc(thr->viR);
4863 VtsID__rcinc(thr->viW);
4864 if (strong_send)
4865 show_thread_state("s-send", thr);
4866 else
4867 show_thread_state("w-send", thr);
4868}
4869
4870void libhb_so_recv ( Thr* thr, SO* so, Bool strong_recv )
4871{
4872 tl_assert(so);
4873 tl_assert(so->magic == SO_MAGIC);
4874
4875 if (so->viR != VtsID_INVALID) {
4876 tl_assert(so->viW != VtsID_INVALID);
4877
4878 /* Weak receive (basically, an R-acquisition of a R-W lock).
4879 This advances the read-clock of the receiver, but not the
4880 write-clock. */
4881 VtsID__rcdec(thr->viR);
4882 thr->viR = VtsID__join2( thr->viR, so->viR );
4883 VtsID__rcinc(thr->viR);
4884
4885 /* For a strong receive, we also advance the receiver's write
4886 clock, which means the receive as a whole is essentially
4887 equivalent to a W-acquisition of a R-W lock. */
4888 if (strong_recv) {
4889 VtsID__rcdec(thr->viW);
4890 thr->viW = VtsID__join2( thr->viW, so->viW );
4891 VtsID__rcinc(thr->viW);
4892 }
4893
4894 if (strong_recv)
4895 show_thread_state("s-recv", thr);
4896 else
4897 show_thread_state("w-recv", thr);
4898
4899 } else {
4900 tl_assert(so->viW == VtsID_INVALID);
4901 /* Deal with degenerate case: 'so' has no vts, so there has been
4902 no message posted to it. Just ignore this case. */
4903 show_thread_state("d-recv", thr);
4904 }
4905}
4906
4907Bool libhb_so_everSent ( SO* so )
4908{
4909 if (so->viR == VtsID_INVALID) {
4910 tl_assert(so->viW == VtsID_INVALID);
4911 return False;
4912 } else {
4913 tl_assert(so->viW != VtsID_INVALID);
4914 return True;
4915 }
4916}
4917
4918#define XXX1 0 // 0x67a106c
4919#define XXX2 0
4920
4921static Bool TRACEME(Addr a, SizeT szB) {
4922 if (XXX1 && a <= XXX1 && XXX1 <= a+szB) return True;
4923 if (XXX2 && a <= XXX2 && XXX2 <= a+szB) return True;
4924 return False;
4925}
4926static void trace ( Thr* thr, Addr a, SizeT szB, HChar* s ) {
4927 SVal sv = zsm_read8(a);
4928 VG_(printf)("thr %p (%#lx,%lu) %s: 0x%016llx ", thr,a,szB,s,sv);
4929 show_thread_state("", thr);
4930 VG_(printf)("%s","\n");
4931}
4932
4933void libhb_range_new ( Thr* thr, Addr a, SizeT szB )
4934{
4935 SVal sv = SVal__mkC(thr->viW, thr->viW);
4936 tl_assert(is_sane_SVal_C(sv));
4937 if(TRACEME(a,szB))trace(thr,a,szB,"nw-before");
4938 zsm_set_range( a, szB, sv );
4939 if(TRACEME(a,szB))trace(thr,a,szB,"nw-after ");
4940}
4941
4942void libhb_range_noaccess ( Thr* thr, Addr a, SizeT szB )
4943{
4944 if(TRACEME(a,szB))trace(thr,a,szB,"NA-before");
4945 zsm_set_range( a, szB, SVal__mkA() );
4946 if(TRACEME(a,szB))trace(thr,a,szB,"NA-after ");
4947}
4948
4949void* libhb_get_Thr_opaque ( Thr* thr ) {
4950 tl_assert(thr);
4951 return thr->opaque;
4952}
4953
4954void libhb_set_Thr_opaque ( Thr* thr, void* v ) {
4955 tl_assert(thr);
4956 thr->opaque = v;
4957}
4958
4959void libhb_copy_shadow_state ( Addr dst, Addr src, SizeT len )
4960{
4961 zsm_copy_range(dst, src, len);
4962}
4963
4964void libhb_maybe_GC ( void )
4965{
4966 event_map_maybe_GC();
4967 /* If there are still freelist entries available, no need for a
4968 GC. */
4969 if (vts_tab_freelist != VtsID_INVALID)
4970 return;
4971 /* So all the table entries are full, and we're having to expand
4972 the table. But did we hit the threshhold point yet? */
4973 if (VG_(sizeXA)( vts_tab ) < vts_next_GC_at)
4974 return;
4975 vts_tab__do_GC( False/*don't show stats*/ );
4976}
4977
4978
4979/////////////////////////////////////////////////////////////////
4980/////////////////////////////////////////////////////////////////
4981// //
4982// SECTION END main library //
4983// //
4984/////////////////////////////////////////////////////////////////
4985/////////////////////////////////////////////////////////////////
4986
4987/*--------------------------------------------------------------------*/
4988/*--- end libhb_main.c ---*/
4989/*--------------------------------------------------------------------*/