| /****************************************************************************** |
| * |
| * Name: skgeinit.c |
| * Project: Gigabit Ethernet Adapters, Common Modules |
| * Version: $Revision: 1.97 $ |
| * Date: $Date: 2003/10/02 16:45:31 $ |
| * Purpose: Contains functions to initialize the adapter |
| * |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| * |
| * (C)Copyright 1998-2002 SysKonnect. |
| * (C)Copyright 2002-2003 Marvell. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * The information in this file is provided "AS IS" without warranty. |
| * |
| ******************************************************************************/ |
| |
| #include "h/skdrv1st.h" |
| #include "h/skdrv2nd.h" |
| |
| /* global variables ***********************************************************/ |
| |
| /* local variables ************************************************************/ |
| |
| #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) |
| static const char SysKonnectFileId[] = |
| "@(#) $Id: skgeinit.c,v 1.97 2003/10/02 16:45:31 rschmidt Exp $ (C) Marvell."; |
| #endif |
| |
| struct s_QOffTab { |
| int RxQOff; /* Receive Queue Address Offset */ |
| int XsQOff; /* Sync Tx Queue Address Offset */ |
| int XaQOff; /* Async Tx Queue Address Offset */ |
| }; |
| static struct s_QOffTab QOffTab[] = { |
| {Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2} |
| }; |
| |
| struct s_Config { |
| char ScanString[8]; |
| SK_U32 Value; |
| }; |
| |
| static struct s_Config OemConfig = { |
| {'O','E','M','_','C','o','n','f'}, |
| #ifdef SK_OEM_CONFIG |
| OEM_CONFIG_VALUE, |
| #else |
| 0, |
| #endif |
| }; |
| |
| /****************************************************************************** |
| * |
| * SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring |
| * |
| * Description: |
| * Enable or disable the descriptor polling of the receive descriptor |
| * ring (RxD) for port 'Port'. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGePollRxD( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_BOOL PollRxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| { |
| SK_GEPORT *pPrt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (PollRxD) ? |
| CSR_ENA_POL : CSR_DIS_POL); |
| } /* SkGePollRxD */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings |
| * |
| * Description: |
| * Enable or disable the descriptor polling of the transmit descriptor |
| * ring(s) (TxD) for port 'Port'. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGePollTxD( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_BOOL PollTxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U32 DWord; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL); |
| |
| if (pPrt->PXSQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord); |
| } |
| |
| if (pPrt->PXAQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord); |
| } |
| } /* SkGePollTxD */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeYellowLED() - Switch the yellow LED on or off. |
| * |
| * Description: |
| * Switch the yellow LED on or off. |
| * |
| * Note: |
| * This function may be called any time after SkGeInit(Level 1). |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeYellowLED( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int State) /* yellow LED state, 0 = OFF, 0 != ON */ |
| { |
| if (State == 0) { |
| /* Switch yellow LED OFF */ |
| SK_OUT8(IoC, B0_LED, LED_STAT_OFF); |
| } |
| else { |
| /* Switch yellow LED ON */ |
| SK_OUT8(IoC, B0_LED, LED_STAT_ON); |
| } |
| } /* SkGeYellowLED */ |
| |
| |
| #if (!defined(SK_SLIM) || defined(GENESIS)) |
| /****************************************************************************** |
| * |
| * SkGeXmitLED() - Modify the Operational Mode of a transmission LED. |
| * |
| * Description: |
| * The Rx or Tx LED which is specified by 'Led' will be |
| * enabled, disabled or switched on in test mode. |
| * |
| * Note: |
| * 'Led' must contain the address offset of the LEDs INI register. |
| * |
| * Usage: |
| * SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeXmitLED( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Led, /* offset to the LED Init Value register */ |
| int Mode) /* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */ |
| { |
| SK_U32 LedIni; |
| |
| switch (Mode) { |
| case SK_LED_ENA: |
| LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni); |
| SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| break; |
| case SK_LED_TST: |
| SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON); |
| SK_OUT32(IoC, Led + XMIT_LED_CNT, 100); |
| SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| break; |
| case SK_LED_DIS: |
| default: |
| /* |
| * Do NOT stop the LED Timer here. The LED might be |
| * in on state. But it needs to go off. |
| */ |
| SK_OUT32(IoC, Led + XMIT_LED_CNT, 0); |
| SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF); |
| break; |
| } |
| |
| /* |
| * 1000BT: The Transmit LED is driven by the PHY. |
| * But the default LED configuration is used for |
| * Level One and Broadcom PHYs. |
| * (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set.) |
| * (In this case it has to be added here. But we will see. XXX) |
| */ |
| } /* SkGeXmitLED */ |
| #endif /* !SK_SLIM || GENESIS */ |
| |
| |
| /****************************************************************************** |
| * |
| * DoCalcAddr() - Calculates the start and the end address of a queue. |
| * |
| * Description: |
| * This function calculates the start and the end address of a queue. |
| * Afterwards the 'StartVal' is incremented to the next start position. |
| * If the port is already initialized the calculated values |
| * will be checked against the configured values and an |
| * error will be returned, if they are not equal. |
| * If the port is not initialized the values will be written to |
| * *StartAdr and *EndAddr. |
| * |
| * Returns: |
| * 0: success |
| * 1: configuration error |
| */ |
| static int DoCalcAddr( |
| SK_AC *pAC, /* adapter context */ |
| SK_GEPORT SK_FAR *pPrt, /* port index */ |
| int QuSize, /* size of the queue to configure in kB */ |
| SK_U32 SK_FAR *StartVal, /* start value for address calculation */ |
| SK_U32 SK_FAR *QuStartAddr,/* start addr to calculate */ |
| SK_U32 SK_FAR *QuEndAddr) /* end address to calculate */ |
| { |
| SK_U32 EndVal; |
| SK_U32 NextStart; |
| int Rtv; |
| |
| Rtv = 0; |
| if (QuSize == 0) { |
| EndVal = *StartVal; |
| NextStart = EndVal; |
| } |
| else { |
| EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1; |
| NextStart = EndVal + 1; |
| } |
| |
| if (pPrt->PState >= SK_PRT_INIT) { |
| if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) { |
| Rtv = 1; |
| } |
| } |
| else { |
| *QuStartAddr = *StartVal; |
| *QuEndAddr = EndVal; |
| } |
| |
| *StartVal = NextStart; |
| return(Rtv); |
| } /* DoCalcAddr */ |
| |
| /****************************************************************************** |
| * |
| * SkGeInitAssignRamToQueues() - allocate default queue sizes |
| * |
| * Description: |
| * This function assigns the memory to the different queues and ports. |
| * When DualNet is set to SK_TRUE all ports get the same amount of memory. |
| * Otherwise the first port gets most of the memory and all the |
| * other ports just the required minimum. |
| * This function can only be called when pAC->GIni.GIRamSize and |
| * pAC->GIni.GIMacsFound have been initialized, usually this happens |
| * at init level 1 |
| * |
| * Returns: |
| * 0 - ok |
| * 1 - invalid input values |
| * 2 - not enough memory |
| */ |
| |
| int SkGeInitAssignRamToQueues( |
| SK_AC *pAC, /* Adapter context */ |
| int ActivePort, /* Active Port in RLMT mode */ |
| SK_BOOL DualNet) /* adapter context */ |
| { |
| int i; |
| int UsedKilobytes; /* memory already assigned */ |
| int ActivePortKilobytes; /* memory available for active port */ |
| SK_GEPORT *pGePort; |
| |
| UsedKilobytes = 0; |
| |
| if (ActivePort >= pAC->GIni.GIMacsFound) { |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n", |
| ActivePort)); |
| return(1); |
| } |
| if (((pAC->GIni.GIMacsFound * (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE)) + |
| ((RAM_QUOTA_SYNC == 0) ? 0 : SK_MIN_TXQ_SIZE)) > pAC->GIni.GIRamSize) { |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInitAssignRamToQueues: Not enough memory (%d)\n", |
| pAC->GIni.GIRamSize)); |
| return(2); |
| } |
| |
| if (DualNet) { |
| /* every port gets the same amount of memory */ |
| ActivePortKilobytes = pAC->GIni.GIRamSize / pAC->GIni.GIMacsFound; |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| pGePort = &pAC->GIni.GP[i]; |
| |
| /* take away the minimum memory for active queues */ |
| ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); |
| |
| /* receive queue gets the minimum + 80% of the rest */ |
| pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB(( |
| ActivePortKilobytes * (unsigned long) RAM_QUOTA_RX) / 100)) |
| + SK_MIN_RXQ_SIZE; |
| |
| ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); |
| |
| /* synchronous transmit queue */ |
| pGePort->PXSQSize = 0; |
| |
| /* asynchronous transmit queue */ |
| pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes + |
| SK_MIN_TXQ_SIZE); |
| } |
| } |
| else { |
| /* Rlmt Mode or single link adapter */ |
| |
| /* Set standby queue size defaults for all standby ports */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| if (i != ActivePort) { |
| pGePort = &pAC->GIni.GP[i]; |
| |
| pGePort->PRxQSize = SK_MIN_RXQ_SIZE; |
| pGePort->PXAQSize = SK_MIN_TXQ_SIZE; |
| pGePort->PXSQSize = 0; |
| |
| /* Count used RAM */ |
| UsedKilobytes += pGePort->PRxQSize + pGePort->PXAQSize; |
| } |
| } |
| /* what's left? */ |
| ActivePortKilobytes = pAC->GIni.GIRamSize - UsedKilobytes; |
| |
| /* assign it to the active port */ |
| /* first take away the minimum memory */ |
| ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); |
| pGePort = &pAC->GIni.GP[ActivePort]; |
| |
| /* receive queue get's the minimum + 80% of the rest */ |
| pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((ActivePortKilobytes * |
| (unsigned long) RAM_QUOTA_RX) / 100)) + SK_MIN_RXQ_SIZE; |
| |
| ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); |
| |
| /* synchronous transmit queue */ |
| pGePort->PXSQSize = 0; |
| |
| /* asynchronous transmit queue */ |
| pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes) + |
| SK_MIN_TXQ_SIZE; |
| } |
| #ifdef VCPU |
| VCPUprintf(0, "PRxQSize=%u, PXSQSize=%u, PXAQSize=%u\n", |
| pGePort->PRxQSize, pGePort->PXSQSize, pGePort->PXAQSize); |
| #endif /* VCPU */ |
| |
| return(0); |
| } /* SkGeInitAssignRamToQueues */ |
| |
| /****************************************************************************** |
| * |
| * SkGeCheckQSize() - Checks the Adapters Queue Size Configuration |
| * |
| * Description: |
| * This function verifies the Queue Size Configuration specified |
| * in the variables PRxQSize, PXSQSize, and PXAQSize of all |
| * used ports. |
| * This requirements must be fullfilled to have a valid configuration: |
| * - The size of all queues must not exceed GIRamSize. |
| * - The queue sizes must be specified in units of 8 kB. |
| * - The size of Rx queues of available ports must not be |
| * smaller than 16 kB. |
| * - The size of at least one Tx queue (synch. or asynch.) |
| * of available ports must not be smaller than 16 kB |
| * when Jumbo Frames are used. |
| * - The RAM start and end addresses must not be changed |
| * for ports which are already initialized. |
| * Furthermore SkGeCheckQSize() defines the Start and End Addresses |
| * of all ports and stores them into the HWAC port structure. |
| * |
| * Returns: |
| * 0: Queue Size Configuration valid |
| * 1: Queue Size Configuration invalid |
| */ |
| static int SkGeCheckQSize( |
| SK_AC *pAC, /* adapter context */ |
| int Port) /* port index */ |
| { |
| SK_GEPORT *pPrt; |
| int i; |
| int Rtv; |
| int Rtv2; |
| SK_U32 StartAddr; |
| #ifndef SK_SLIM |
| int UsedMem; /* total memory used (max. found ports) */ |
| #endif |
| |
| Rtv = 0; |
| |
| #ifndef SK_SLIM |
| |
| UsedMem = 0; |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| if ((pPrt->PRxQSize & QZ_UNITS) != 0 || |
| (pPrt->PXSQSize & QZ_UNITS) != 0 || |
| (pPrt->PXAQSize & QZ_UNITS) != 0) { |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| return(1); |
| } |
| |
| if (i == Port && pPrt->PRxQSize < SK_MIN_RXQ_SIZE) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG); |
| return(1); |
| } |
| |
| /* |
| * the size of at least one Tx queue (synch. or asynch.) has to be > 0. |
| * if Jumbo Frames are used, this size has to be >= 16 kB. |
| */ |
| if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) || |
| (pAC->GIni.GIPortUsage == SK_JUMBO_LINK && |
| ((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) || |
| (pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG); |
| return(1); |
| } |
| |
| UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize; |
| } |
| |
| if (UsedMem > pAC->GIni.GIRamSize) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| return(1); |
| } |
| #endif /* !SK_SLIM */ |
| |
| /* Now start address calculation */ |
| StartAddr = pAC->GIni.GIRamOffs; |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| /* Calculate/Check values for the receive queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr, |
| &pPrt->PRxQRamStart, &pPrt->PRxQRamEnd); |
| Rtv |= Rtv2; |
| |
| /* Calculate/Check values for the synchronous Tx queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr, |
| &pPrt->PXsQRamStart, &pPrt->PXsQRamEnd); |
| Rtv |= Rtv2; |
| |
| /* Calculate/Check values for the asynchronous Tx queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr, |
| &pPrt->PXaQRamStart, &pPrt->PXaQRamEnd); |
| Rtv |= Rtv2; |
| |
| if (Rtv) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG); |
| return(1); |
| } |
| } |
| |
| return(0); |
| } /* SkGeCheckQSize */ |
| |
| |
| #ifdef GENESIS |
| /****************************************************************************** |
| * |
| * SkGeInitMacArb() - Initialize the MAC Arbiter |
| * |
| * Description: |
| * This function initializes the MAC Arbiter. |
| * It must not be called if there is still an |
| * initialized or active port. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitMacArb( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| /* release local reset */ |
| SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53); |
| |
| SK_OUT8(IoC, B3_MA_RCINI_RX1, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_RX2, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_TX1, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_TX2, 0); |
| |
| /* recovery values are needed for XMAC II Rev. B2 only */ |
| /* Fast Output Enable Mode was intended to use with Rev. B2, but now? */ |
| |
| /* |
| * There is no start or enable button to push, therefore |
| * the MAC arbiter is configured and enabled now. |
| */ |
| } /* SkGeInitMacArb */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitPktArb() - Initialize the Packet Arbiter |
| * |
| * Description: |
| * This function initializes the Packet Arbiter. |
| * It must not be called if there is still an |
| * initialized or active port. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitPktArb( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| /* release local reset */ |
| SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); |
| |
| /* |
| * enable timeout timers if jumbo frames not used |
| * NOTE: the packet arbiter timeout interrupt is needed for |
| * half duplex hangup workaround |
| */ |
| if (pAC->GIni.GIPortUsage != SK_JUMBO_LINK) { |
| if (pAC->GIni.GIMacsFound == 1) { |
| SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1); |
| } |
| else { |
| SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2); |
| } |
| } |
| } /* SkGeInitPktArb */ |
| #endif /* GENESIS */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitMacFifo() - Initialize the MAC FIFOs |
| * |
| * Description: |
| * Initialize all MAC FIFOs of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitMacFifo( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_U16 Word; |
| #ifdef VCPU |
| SK_U32 DWord; |
| #endif /* VCPU */ |
| /* |
| * For each FIFO: |
| * - release local reset |
| * - use default value for MAC FIFO size |
| * - setup defaults for the control register |
| * - enable the FIFO |
| */ |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* Configure Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF); |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| /* Configure Tx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| /* Enable frame flushing if jumbo frames used */ |
| if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK) { |
| SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH); |
| } |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| /* set Rx GMAC FIFO Flush Mask */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), (SK_U16)RX_FF_FL_DEF_MSK); |
| |
| Word = (SK_U16)GMF_RX_CTRL_DEF; |
| |
| /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ |
| if (pAC->GIni.GIYukonLite && pAC->GIni.GIChipId == CHIP_ID_YUKON) { |
| |
| Word &= ~GMF_RX_F_FL_ON; |
| } |
| |
| /* Configure Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word); |
| |
| /* set Rx GMAC FIFO Flush Threshold (default: 0x0a -> 56 bytes) */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); |
| |
| /* Configure Tx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); |
| |
| #ifdef VCPU |
| SK_IN32(IoC, MR_ADDR(Port, RX_GMF_AF_THR), &DWord); |
| SK_IN32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), &DWord); |
| #endif /* VCPU */ |
| |
| /* set Tx GMAC FIFO Almost Empty Threshold */ |
| /* SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), 0); */ |
| } |
| #endif /* YUKON */ |
| |
| } /* SkGeInitMacFifo */ |
| |
| #ifdef SK_LNK_SYNC_CNT |
| /****************************************************************************** |
| * |
| * SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting |
| * |
| * Description: |
| * This function starts the Link Sync Counter of the specified |
| * port and enables the generation of an Link Sync IRQ. |
| * The Link Sync Counter may be used to detect an active link, |
| * if autonegotiation is not used. |
| * |
| * Note: |
| * o To ensure receiving the Link Sync Event the LinkSyncCounter |
| * should be initialized BEFORE clearing the XMAC's reset! |
| * o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this |
| * function. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeLoadLnkSyncCnt( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_U32 CntVal) /* Counter value */ |
| { |
| SK_U32 OrgIMsk; |
| SK_U32 NewIMsk; |
| SK_U32 ISrc; |
| SK_BOOL IrqPend; |
| |
| /* stop counter */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_STOP); |
| |
| /* |
| * ASIC problem: |
| * Each time starting the Link Sync Counter an IRQ is generated |
| * by the adapter. See problem report entry from 21.07.98 |
| * |
| * Workaround: Disable Link Sync IRQ and clear the unexpeced IRQ |
| * if no IRQ is already pending. |
| */ |
| IrqPend = SK_FALSE; |
| SK_IN32(IoC, B0_ISRC, &ISrc); |
| SK_IN32(IoC, B0_IMSK, &OrgIMsk); |
| if (Port == MAC_1) { |
| NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1; |
| if ((ISrc & IS_LNK_SYNC_M1) != 0) { |
| IrqPend = SK_TRUE; |
| } |
| } |
| else { |
| NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2; |
| if ((ISrc & IS_LNK_SYNC_M2) != 0) { |
| IrqPend = SK_TRUE; |
| } |
| } |
| if (!IrqPend) { |
| SK_OUT32(IoC, B0_IMSK, NewIMsk); |
| } |
| |
| /* load counter */ |
| SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal); |
| |
| /* start counter */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_START); |
| |
| if (!IrqPend) { |
| /* clear the unexpected IRQ, and restore the interrupt mask */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_CLR_IRQ); |
| SK_OUT32(IoC, B0_IMSK, OrgIMsk); |
| } |
| } /* SkGeLoadLnkSyncCnt*/ |
| #endif /* SK_LNK_SYNC_CNT */ |
| |
| #if defined(SK_DIAG) || defined(SK_CFG_SYNC) |
| /****************************************************************************** |
| * |
| * SkGeCfgSync() - Configure synchronous bandwidth for this port. |
| * |
| * Description: |
| * This function may be used to configure synchronous bandwidth |
| * to the specified port. This may be done any time after |
| * initializing the port. The configuration values are NOT saved |
| * in the HWAC port structure and will be overwritten any |
| * time when stopping and starting the port. |
| * Any values for the synchronous configuration will be ignored |
| * if the size of the synchronous queue is zero! |
| * |
| * The default configuration for the synchronous service is |
| * TXA_ENA_FSYNC. This means if the size of |
| * the synchronous queue is unequal zero but no specific |
| * synchronous bandwidth is configured, the synchronous queue |
| * will always have the 'unlimited' transmit priority! |
| * |
| * This mode will be restored if the synchronous bandwidth is |
| * deallocated ('IntTime' = 0 and 'LimCount' = 0). |
| * |
| * Returns: |
| * 0: success |
| * 1: parameter configuration error |
| * 2: try to configure quality of service although no |
| * synchronous queue is configured |
| */ |
| int SkGeCfgSync( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_U32 IntTime, /* Interval Timer Value in units of 8ns */ |
| SK_U32 LimCount, /* Number of bytes to transfer during IntTime */ |
| int SyncMode) /* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */ |
| { |
| int Rtv; |
| |
| Rtv = 0; |
| |
| /* check the parameters */ |
| if (LimCount > IntTime || |
| (LimCount == 0 && IntTime != 0) || |
| (LimCount != 0 && IntTime == 0)) { |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| return(1); |
| } |
| |
| if (pAC->GIni.GP[Port].PXSQSize == 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG); |
| return(2); |
| } |
| |
| /* calculate register values */ |
| IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100; |
| LimCount = LimCount / 8; |
| |
| if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| return(1); |
| } |
| |
| /* |
| * - Enable 'Force Sync' to ensure the synchronous queue |
| * has the priority while configuring the new values. |
| * - Also 'disable alloc' to ensure the settings complies |
| * to the SyncMode parameter. |
| * - Disable 'Rate Control' to configure the new values. |
| * - write IntTime and LimCount |
| * - start 'Rate Control' and disable 'Force Sync' |
| * if Interval Timer or Limit Counter not zero. |
| */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime); |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount); |
| |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| (SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC))); |
| |
| if (IntTime != 0 || LimCount != 0) { |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC); |
| } |
| |
| return(0); |
| } /* SkGeCfgSync */ |
| #endif /* SK_DIAG || SK_CFG_SYNC*/ |
| |
| |
| /****************************************************************************** |
| * |
| * DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue |
| * |
| * Desccription: |
| * If the queue is used, enable and initialize it. |
| * Make sure the queue is still reset, if it is not used. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void DoInitRamQueue( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int QuIoOffs, /* Queue IO Address Offset */ |
| SK_U32 QuStartAddr, /* Queue Start Address */ |
| SK_U32 QuEndAddr, /* Queue End Address */ |
| int QuType) /* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */ |
| { |
| SK_U32 RxUpThresVal; |
| SK_U32 RxLoThresVal; |
| |
| if (QuStartAddr != QuEndAddr) { |
| /* calculate thresholds, assume we have a big Rx queue */ |
| RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8; |
| RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8; |
| |
| /* build HW address format */ |
| QuStartAddr = QuStartAddr / 8; |
| QuEndAddr = QuEndAddr / 8; |
| |
| /* release local reset */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR); |
| |
| /* configure addresses */ |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr); |
| |
| switch (QuType) { |
| case SK_RX_SRAM_Q: |
| /* configure threshold for small Rx Queue */ |
| RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8; |
| |
| /* continue with SK_RX_BRAM_Q */ |
| case SK_RX_BRAM_Q: |
| /* write threshold for Rx Queue */ |
| |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal); |
| |
| /* the high priority threshold not used */ |
| break; |
| case SK_TX_RAM_Q: |
| /* |
| * Do NOT use Store & Forward under normal operation due to |
| * performance optimization (GENESIS only). |
| * But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB) |
| * or YUKON is used ((GMAC Tx FIFO is only 1 kB) |
| * we NEED Store & Forward of the RAM buffer. |
| */ |
| if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK || |
| pAC->GIni.GIYukon) { |
| /* enable Store & Forward Mode for the Tx Side */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD); |
| } |
| break; |
| } |
| |
| /* set queue operational */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD); |
| } |
| else { |
| /* ensure the queue is still disabled */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET); |
| } |
| } /* DoInitRamQueue */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitRamBufs() - Initialize the RAM Buffer Queues |
| * |
| * Description: |
| * Initialize all RAM Buffer Queues of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitRamBufs( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_GEPORT *pPrt; |
| int RxQType; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if (pPrt->PRxQSize == SK_MIN_RXQ_SIZE) { |
| RxQType = SK_RX_SRAM_Q; /* small Rx Queue */ |
| } |
| else { |
| RxQType = SK_RX_BRAM_Q; /* big Rx Queue */ |
| } |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart, |
| pPrt->PRxQRamEnd, RxQType); |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart, |
| pPrt->PXsQRamEnd, SK_TX_RAM_Q); |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, |
| pPrt->PXaQRamEnd, SK_TX_RAM_Q); |
| |
| } /* SkGeInitRamBufs */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitRamIface() - Initialize the RAM Interface |
| * |
| * Description: |
| * This function initializes the Adapters RAM Interface. |
| * |
| * Note: |
| * This function is used in the diagnostics. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeInitRamIface( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| /* release local reset */ |
| SK_OUT16(IoC, B3_RI_CTRL, RI_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT8(IoC, B3_RI_WTO_R1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_WTO_XA1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_WTO_XS1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_R1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_XA1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_XS1, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_WTO_R2, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_WTO_XA2, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_WTO_XS2, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_R2, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_XA2, SK_RI_TO_53); |
| SK_OUT8(IoC, B3_RI_RTO_XS2, SK_RI_TO_53); |
| |
| } /* SkGeInitRamIface */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitBmu() - Initialize the BMU state machines |
| * |
| * Description: |
| * Initialize all BMU state machines of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitBmu( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U32 RxWm; |
| SK_U32 TxWm; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| RxWm = SK_BMU_RX_WM; |
| TxWm = SK_BMU_TX_WM; |
| |
| if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) { |
| /* for better performance */ |
| RxWm /= 2; |
| TxWm /= 2; |
| } |
| |
| /* Rx Queue: Release all local resets and set the watermark */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm); |
| |
| /* |
| * Tx Queue: Release all local resets if the queue is used ! |
| * set watermark |
| */ |
| if (pPrt->PXSQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm); |
| } |
| |
| if (pPrt->PXAQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm); |
| } |
| /* |
| * Do NOT enable the descriptor poll timers here, because |
| * the descriptor addresses are not specified yet. |
| */ |
| } /* SkGeInitBmu */ |
| |
| |
| /****************************************************************************** |
| * |
| * TestStopBit() - Test the stop bit of the queue |
| * |
| * Description: |
| * Stopping a queue is not as simple as it seems to be. |
| * If descriptor polling is enabled, it may happen |
| * that RX/TX stop is done and SV idle is NOT set. |
| * In this case we have to issue another stop command. |
| * |
| * Returns: |
| * The queues control status register |
| */ |
| static SK_U32 TestStopBit( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* IO Context */ |
| int QuIoOffs) /* Queue IO Address Offset */ |
| { |
| SK_U32 QuCsr; /* CSR contents */ |
| |
| SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| |
| if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) { |
| /* Stop Descriptor overridden by start command */ |
| SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP); |
| |
| SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| } |
| |
| return(QuCsr); |
| } /* TestStopBit */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'. |
| * |
| * Description: |
| * After calling this function the descriptor rings and Rx and Tx |
| * queues of this port may be reconfigured. |
| * |
| * It is possible to stop the receive and transmit path separate or |
| * both together. |
| * |
| * Dir = SK_STOP_TX Stops the transmit path only and resets the MAC. |
| * The receive queue is still active and |
| * the pending Rx frames may be still transferred |
| * into the RxD. |
| * SK_STOP_RX Stop the receive path. The tansmit path |
| * has to be stopped once before. |
| * SK_STOP_ALL SK_STOP_TX + SK_STOP_RX |
| * |
| * RstMode = SK_SOFT_RST Resets the MAC. The PHY is still alive. |
| * SK_HARD_RST Resets the MAC and the PHY. |
| * |
| * Example: |
| * 1) A Link Down event was signaled for a port. Therefore the activity |
| * of this port should be stopped and a hardware reset should be issued |
| * to enable the workaround of XMAC Errata #2. But the received frames |
| * should not be discarded. |
| * ... |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST); |
| * (transfer all pending Rx frames) |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST); |
| * ... |
| * |
| * 2) An event was issued which request the driver to switch |
| * the 'virtual active' link to an other already active port |
| * as soon as possible. The frames in the receive queue of this |
| * port may be lost. But the PHY must not be reset during this |
| * event. |
| * ... |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST); |
| * ... |
| * |
| * Extended Description: |
| * If SK_STOP_TX is set, |
| * o disable the MAC's receive and transmitter to prevent |
| * from sending incomplete frames |
| * o stop the port's transmit queues before terminating the |
| * BMUs to prevent from performing incomplete PCI cycles |
| * on the PCI bus |
| * - The network Rx and Tx activity and PCI Tx transfer is |
| * disabled now. |
| * o reset the MAC depending on the RstMode |
| * o Stop Interval Timer and Limit Counter of Tx Arbiter, |
| * also disable Force Sync bit and Enable Alloc bit. |
| * o perform a local reset of the port's Tx path |
| * - reset the PCI FIFO of the async Tx queue |
| * - reset the PCI FIFO of the sync Tx queue |
| * - reset the RAM Buffer async Tx queue |
| * - reset the RAM Buffer sync Tx queue |
| * - reset the MAC Tx FIFO |
| * o switch Link and Tx LED off, stop the LED counters |
| * |
| * If SK_STOP_RX is set, |
| * o stop the port's receive queue |
| * - The path data transfer activity is fully stopped now. |
| * o perform a local reset of the port's Rx path |
| * - reset the PCI FIFO of the Rx queue |
| * - reset the RAM Buffer receive queue |
| * - reset the MAC Rx FIFO |
| * o switch Rx LED off, stop the LED counter |
| * |
| * If all ports are stopped, |
| * o reset the RAM Interface. |
| * |
| * Notes: |
| * o This function may be called during the driver states RESET_PORT and |
| * SWITCH_PORT. |
| */ |
| void SkGeStopPort( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* I/O context */ |
| int Port, /* port to stop (MAC_1 + n) */ |
| int Dir, /* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */ |
| int RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */ |
| { |
| #ifndef SK_DIAG |
| SK_EVPARA Para; |
| #endif /* !SK_DIAG */ |
| SK_GEPORT *pPrt; |
| SK_U32 DWord; |
| SK_U32 XsCsr; |
| SK_U32 XaCsr; |
| SK_U64 ToutStart; |
| int i; |
| int ToutCnt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if ((Dir & SK_STOP_TX) != 0) { |
| /* disable receiver and transmitter */ |
| SkMacRxTxDisable(pAC, IoC, Port); |
| |
| /* stop both transmit queues */ |
| /* |
| * If the BMU is in the reset state CSR_STOP will terminate |
| * immediately. |
| */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_STOP); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_STOP); |
| |
| ToutStart = SkOsGetTime(pAC); |
| ToutCnt = 0; |
| do { |
| /* |
| * Clear packet arbiter timeout to make sure |
| * this loop will terminate. |
| */ |
| SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| PA_CLR_TO_TX1 : PA_CLR_TO_TX2)); |
| |
| /* |
| * If the transfer stucks at the MAC the STOP command will not |
| * terminate if we don't flush the XMAC's transmit FIFO ! |
| */ |
| SkMacFlushTxFifo(pAC, IoC, Port); |
| |
| XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); |
| XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| |
| if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { |
| /* |
| * Timeout of 1/18 second reached. |
| * This needs to be checked at 1/18 sec only. |
| */ |
| ToutCnt++; |
| if (ToutCnt > 1) { |
| /* Might be a problem when the driver event handler |
| * calls StopPort again. XXX. |
| */ |
| |
| /* Fatal Error, Loop aborted */ |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E018, |
| SKERR_HWI_E018MSG); |
| #ifndef SK_DIAG |
| Para.Para64 = Port; |
| SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para); |
| #endif /* !SK_DIAG */ |
| return; |
| } |
| /* |
| * Cache incoherency workaround: Assume a start command |
| * has been lost while sending the frame. |
| */ |
| ToutStart = SkOsGetTime(pAC); |
| |
| if ((XsCsr & CSR_STOP) != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_START); |
| } |
| if ((XaCsr & CSR_STOP) != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_START); |
| } |
| } |
| |
| /* |
| * Because of the ASIC problem report entry from 21.08.1998 it is |
| * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. |
| */ |
| } while ((XsCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE || |
| (XaCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); |
| |
| /* Reset the MAC depending on the RstMode */ |
| if (RstMode == SK_SOFT_RST) { |
| SkMacSoftRst(pAC, IoC, Port); |
| } |
| else { |
| SkMacHardRst(pAC, IoC, Port); |
| } |
| |
| /* Disable Force Sync bit and Enable Alloc bit */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| /* Stop Interval Timer and Limit Counter of Tx Arbiter */ |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L); |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L); |
| |
| /* Perform a local reset of the port's Tx path */ |
| |
| /* Reset the PCI FIFO of the async Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET); |
| /* Reset the PCI FIFO of the sync Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET); |
| /* Reset the RAM Buffer async Tx queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); |
| /* Reset the RAM Buffer sync Tx queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET); |
| |
| /* Reset Tx MAC FIFO */ |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* Note: MFF_RST_SET does NOT reset the XMAC ! */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET); |
| |
| /* switch Link and Tx LED off, stop the LED counters */ |
| /* Link LED is switched off by the RLMT and the Diag itself */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| /* Reset TX MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| } |
| #endif /* YUKON */ |
| } |
| |
| if ((Dir & SK_STOP_RX) != 0) { |
| /* |
| * The RX Stop Command will not terminate if no buffers |
| * are queued in the RxD ring. But it will always reach |
| * the Idle state. Therefore we can use this feature to |
| * stop the transfer of received packets. |
| */ |
| /* stop the port's receive queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_STOP); |
| |
| i = 100; |
| do { |
| /* |
| * Clear packet arbiter timeout to make sure |
| * this loop will terminate |
| */ |
| SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| PA_CLR_TO_RX1 : PA_CLR_TO_RX2)); |
| |
| DWord = TestStopBit(pAC, IoC, pPrt->PRxQOff); |
| |
| /* timeout if i==0 (bug fix for #10748) */ |
| if (--i == 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024, |
| SKERR_HWI_E024MSG); |
| break; |
| } |
| /* |
| * because of the ASIC problem report entry from 21.08.98 |
| * it is required to wait until CSR_STOP is reset and |
| * CSR_SV_IDLE is set. |
| */ |
| } while ((DWord & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); |
| |
| /* The path data transfer activity is fully stopped now */ |
| |
| /* Perform a local reset of the port's Rx path */ |
| |
| /* Reset the PCI FIFO of the Rx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET); |
| /* Reset the RAM Buffer receive queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET); |
| |
| /* Reset Rx MAC FIFO */ |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET); |
| |
| /* switch Rx LED off, stop the LED counter */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| /* Reset Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| } |
| #endif /* YUKON */ |
| } |
| } /* SkGeStopPort */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit0() - Level 0 Initialization |
| * |
| * Description: |
| * - Initialize the BMU address offsets |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInit0( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| int i; |
| SK_GEPORT *pPrt; |
| |
| for (i = 0; i < SK_MAX_MACS; i++) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| pPrt->PState = SK_PRT_RESET; |
| pPrt->PRxQOff = QOffTab[i].RxQOff; |
| pPrt->PXsQOff = QOffTab[i].XsQOff; |
| pPrt->PXaQOff = QOffTab[i].XaQOff; |
| pPrt->PCheckPar = SK_FALSE; |
| pPrt->PIsave = 0; |
| pPrt->PPrevShorts = 0; |
| pPrt->PLinkResCt = 0; |
| pPrt->PAutoNegTOCt = 0; |
| pPrt->PPrevRx = 0; |
| pPrt->PPrevFcs = 0; |
| pPrt->PRxLim = SK_DEF_RX_WA_LIM; |
| pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL; |
| pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS; |
| pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS; |
| pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN; |
| pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE; |
| pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL | |
| SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL); |
| pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN; |
| pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE; |
| pPrt->PMSCap = 0; |
| pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO; |
| pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET; |
| pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN; |
| pPrt->PAutoNegFail = SK_FALSE; |
| pPrt->PHWLinkUp = SK_FALSE; |
| pPrt->PLinkBroken = SK_TRUE; /* See WA code */ |
| pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE; |
| pPrt->PMacColThres = TX_COL_DEF; |
| pPrt->PMacJamLen = TX_JAM_LEN_DEF; |
| pPrt->PMacJamIpgVal = TX_JAM_IPG_DEF; |
| pPrt->PMacJamIpgData = TX_IPG_JAM_DEF; |
| pPrt->PMacIpgData = IPG_DATA_DEF; |
| pPrt->PMacLimit4 = SK_FALSE; |
| } |
| |
| pAC->GIni.GIPortUsage = SK_RED_LINK; |
| pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value; |
| pAC->GIni.GIValIrqMask = IS_ALL_MSK; |
| |
| } /* SkGeInit0*/ |
| |
| #ifdef SK_PCI_RESET |
| |
| /****************************************************************************** |
| * |
| * SkGePciReset() - Reset PCI interface |
| * |
| * Description: |
| * o Read PCI configuration. |
| * o Change power state to 3. |
| * o Change power state to 0. |
| * o Restore PCI configuration. |
| * |
| * Returns: |
| * 0: Success. |
| * 1: Power state could not be changed to 3. |
| */ |
| static int SkGePciReset( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| int i; |
| SK_U16 PmCtlSts; |
| SK_U32 Bp1; |
| SK_U32 Bp2; |
| SK_U16 PciCmd; |
| SK_U8 Cls; |
| SK_U8 Lat; |
| SK_U8 ConfigSpace[PCI_CFG_SIZE]; |
| |
| /* |
| * Note: Switching to D3 state is like a software reset. |
| * Switching from D3 to D0 is a hardware reset. |
| * We have to save and restore the configuration space. |
| */ |
| for (i = 0; i < PCI_CFG_SIZE; i++) { |
| SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]); |
| } |
| |
| /* We know the RAM Interface Arbiter is enabled. */ |
| SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3); |
| SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| |
| if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) { |
| return(1); |
| } |
| |
| /* Return to D0 state. */ |
| SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0); |
| |
| /* Check for D0 state. */ |
| SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| |
| if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) { |
| return(1); |
| } |
| |
| /* Check PCI Config Registers. */ |
| SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd); |
| SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls); |
| SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1); |
| SkPciReadCfgDWord(pAC, PCI_BASE_2ND, &Bp2); |
| SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat); |
| |
| if (PciCmd != 0 || Cls != (SK_U8)0 || Lat != (SK_U8)0 || |
| (Bp1 & 0xfffffff0L) != 0 || Bp2 != 1) { |
| return(1); |
| } |
| |
| /* Restore PCI Config Space. */ |
| for (i = 0; i < PCI_CFG_SIZE; i++) { |
| SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]); |
| } |
| |
| return(0); |
| } /* SkGePciReset */ |
| |
| #endif /* SK_PCI_RESET */ |
| |
| /****************************************************************************** |
| * |
| * SkGeInit1() - Level 1 Initialization |
| * |
| * Description: |
| * o Do a software reset. |
| * o Clear all reset bits. |
| * o Verify that the detected hardware is present. |
| * Return an error if not. |
| * o Get the hardware configuration |
| * + Read the number of MACs/Ports. |
| * + Read the RAM size. |
| * + Read the PCI Revision Id. |
| * + Find out the adapters host clock speed |
| * + Read and check the PHY type |
| * |
| * Returns: |
| * 0: success |
| * 5: Unexpected PHY type detected |
| * 6: HW self test failed |
| */ |
| static int SkGeInit1( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| SK_U8 Byte; |
| SK_U16 Word; |
| SK_U16 CtrlStat; |
| SK_U32 DWord; |
| int RetVal; |
| int i; |
| |
| RetVal = 0; |
| |
| /* save CLK_RUN bits (YUKON-Lite) */ |
| SK_IN16(IoC, B0_CTST, &CtrlStat); |
| |
| #ifdef SK_PCI_RESET |
| (void)SkGePciReset(pAC, IoC); |
| #endif /* SK_PCI_RESET */ |
| |
| /* do the SW-reset */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| |
| /* release the SW-reset */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_CLR); |
| |
| /* reset all error bits in the PCI STATUS register */ |
| /* |
| * Note: PCI Cfg cycles cannot be used, because they are not |
| * available on some platforms after 'boot time'. |
| */ |
| SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); |
| |
| SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); |
| SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| /* release Master Reset */ |
| SK_OUT8(IoC, B0_CTST, CS_MRST_CLR); |
| |
| #ifdef CLK_RUN |
| CtrlStat |= CS_CLK_RUN_ENA; |
| #endif /* CLK_RUN */ |
| |
| /* restore CLK_RUN bits */ |
| SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat & |
| (CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA))); |
| |
| /* read Chip Identification Number */ |
| SK_IN8(IoC, B2_CHIP_ID, &Byte); |
| pAC->GIni.GIChipId = Byte; |
| |
| /* read number of MACs */ |
| SK_IN8(IoC, B2_MAC_CFG, &Byte); |
| pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2; |
| |
| /* get Chip Revision Number */ |
| pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4); |
| |
| /* get diff. PCI parameters */ |
| SK_IN16(IoC, B0_CTST, &CtrlStat); |
| |
| /* read the adapters RAM size */ |
| SK_IN8(IoC, B2_E_0, &Byte); |
| |
| pAC->GIni.GIGenesis = SK_FALSE; |
| pAC->GIni.GIYukon = SK_FALSE; |
| pAC->GIni.GIYukonLite = SK_FALSE; |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) { |
| |
| pAC->GIni.GIGenesis = SK_TRUE; |
| |
| if (Byte == (SK_U8)3) { |
| /* special case: 4 x 64k x 36, offset = 0x80000 */ |
| pAC->GIni.GIRamSize = 1024; |
| pAC->GIni.GIRamOffs = (SK_U32)512 * 1024; |
| } |
| else { |
| pAC->GIni.GIRamSize = (int)Byte * 512; |
| pAC->GIni.GIRamOffs = 0; |
| } |
| /* all GE adapters work with 53.125 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_53; |
| |
| /* set Descr. Poll Timer Init Value to 250 ms */ |
| pAC->GIni.GIPollTimerVal = |
| SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) { |
| |
| pAC->GIni.GIYukon = SK_TRUE; |
| |
| pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4; |
| |
| pAC->GIni.GIRamOffs = 0; |
| |
| /* WA for chip Rev. A */ |
| pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON && |
| pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0; |
| |
| /* get PM Capabilities of PCI config space */ |
| SK_IN16(IoC, PCI_C(PCI_PM_CAP_REG), &Word); |
| |
| /* check if VAUX is available */ |
| if (((CtrlStat & CS_VAUX_AVAIL) != 0) && |
| /* check also if PME from D3cold is set */ |
| ((Word & PCI_PME_D3C_SUP) != 0)) { |
| /* set entry in GE init struct */ |
| pAC->GIni.GIVauxAvail = SK_TRUE; |
| } |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) { |
| /* this is Rev. A1 */ |
| pAC->GIni.GIYukonLite = SK_TRUE; |
| } |
| else { |
| /* save Flash-Address Register */ |
| SK_IN32(IoC, B2_FAR, &DWord); |
| |
| /* test Flash-Address Register */ |
| SK_OUT8(IoC, B2_FAR + 3, 0xff); |
| SK_IN8(IoC, B2_FAR + 3, &Byte); |
| |
| if (Byte != 0) { |
| /* this is Rev. A0 */ |
| pAC->GIni.GIYukonLite = SK_TRUE; |
| |
| /* restore Flash-Address Register */ |
| SK_OUT32(IoC, B2_FAR, DWord); |
| } |
| } |
| |
| /* switch power to VCC (WA for VAUX problem) */ |
| SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | |
| PC_VAUX_OFF | PC_VCC_ON)); |
| |
| /* read the Interrupt source */ |
| SK_IN32(IoC, B0_ISRC, &DWord); |
| |
| if ((DWord & IS_HW_ERR) != 0) { |
| /* read the HW Error Interrupt source */ |
| SK_IN32(IoC, B0_HWE_ISRC, &DWord); |
| |
| if ((DWord & IS_IRQ_SENSOR) != 0) { |
| /* disable HW Error IRQ */ |
| pAC->GIni.GIValIrqMask &= ~IS_HW_ERR; |
| } |
| } |
| |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| /* set GMAC Link Control reset */ |
| SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET); |
| |
| /* clear GMAC Link Control reset */ |
| SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR); |
| } |
| /* all YU chips work with 78.125 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_78; |
| |
| pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; /* 215 ms */ |
| } |
| #endif /* YUKON */ |
| |
| /* check if 64-bit PCI Slot is present */ |
| pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0); |
| |
| /* check if 66 MHz PCI Clock is active */ |
| pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0); |
| |
| /* read PCI HW Revision Id. */ |
| SK_IN8(IoC, PCI_C(PCI_REV_ID), &Byte); |
| pAC->GIni.GIPciHwRev = Byte; |
| |
| /* read the PMD type */ |
| SK_IN8(IoC, B2_PMD_TYP, &Byte); |
| pAC->GIni.GICopperType = (SK_U8)(Byte == 'T'); |
| |
| /* read the PHY type */ |
| SK_IN8(IoC, B2_E_1, &Byte); |
| |
| Byte &= 0x0f; /* the PHY type is stored in the lower nibble */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| switch (Byte) { |
| case SK_PHY_XMAC: |
| pAC->GIni.GP[i].PhyAddr = PHY_ADDR_XMAC; |
| break; |
| case SK_PHY_BCOM: |
| pAC->GIni.GP[i].PhyAddr = PHY_ADDR_BCOM; |
| pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| break; |
| #ifdef OTHER_PHY |
| case SK_PHY_LONE: |
| pAC->GIni.GP[i].PhyAddr = PHY_ADDR_LONE; |
| break; |
| case SK_PHY_NAT: |
| pAC->GIni.GP[i].PhyAddr = PHY_ADDR_NAT; |
| break; |
| #endif /* OTHER_PHY */ |
| default: |
| /* ERROR: unexpected PHY type detected */ |
| RetVal = 5; |
| break; |
| } |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| if (Byte < (SK_U8)SK_PHY_MARV_COPPER) { |
| /* if this field is not initialized */ |
| Byte = (SK_U8)SK_PHY_MARV_COPPER; |
| |
| pAC->GIni.GICopperType = SK_TRUE; |
| } |
| |
| pAC->GIni.GP[i].PhyAddr = PHY_ADDR_MARV; |
| |
| if (pAC->GIni.GICopperType) { |
| |
| pAC->GIni.GP[i].PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_AUTO | |
| SK_LSPEED_CAP_10MBPS | SK_LSPEED_CAP_100MBPS | |
| SK_LSPEED_CAP_1000MBPS); |
| |
| pAC->GIni.GP[i].PLinkSpeed = (SK_U8)SK_LSPEED_AUTO; |
| |
| pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| } |
| else { |
| Byte = (SK_U8)SK_PHY_MARV_FIBER; |
| } |
| } |
| #endif /* YUKON */ |
| |
| pAC->GIni.GP[i].PhyType = (int)Byte; |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("PHY type: %d PHY addr: %04x\n", Byte, |
| pAC->GIni.GP[i].PhyAddr)); |
| } |
| |
| /* get MAC Type & set function pointers dependent on */ |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| |
| pAC->GIni.GIMacType = SK_MAC_XMAC; |
| |
| pAC->GIni.GIFunc.pFnMacUpdateStats = SkXmUpdateStats; |
| pAC->GIni.GIFunc.pFnMacStatistic = SkXmMacStatistic; |
| pAC->GIni.GIFunc.pFnMacResetCounter = SkXmResetCounter; |
| pAC->GIni.GIFunc.pFnMacOverflow = SkXmOverflowStatus; |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| pAC->GIni.GIMacType = SK_MAC_GMAC; |
| |
| pAC->GIni.GIFunc.pFnMacUpdateStats = SkGmUpdateStats; |
| pAC->GIni.GIFunc.pFnMacStatistic = SkGmMacStatistic; |
| pAC->GIni.GIFunc.pFnMacResetCounter = SkGmResetCounter; |
| pAC->GIni.GIFunc.pFnMacOverflow = SkGmOverflowStatus; |
| |
| #ifdef SPECIAL_HANDLING |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON) { |
| /* check HW self test result */ |
| SK_IN8(IoC, B2_E_3, &Byte); |
| if (Byte & B2_E3_RES_MASK) { |
| RetVal = 6; |
| } |
| } |
| #endif |
| } |
| #endif /* YUKON */ |
| |
| return(RetVal); |
| } /* SkGeInit1 */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit2() - Level 2 Initialization |
| * |
| * Description: |
| * - start the Blink Source Counter |
| * - start the Descriptor Poll Timer |
| * - configure the MAC-Arbiter |
| * - configure the Packet-Arbiter |
| * - enable the Tx Arbiters |
| * - enable the RAM Interface Arbiter |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInit2( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| #ifdef GENESIS |
| SK_U32 DWord; |
| #endif /* GENESIS */ |
| int i; |
| |
| /* start the Descriptor Poll Timer */ |
| if (pAC->GIni.GIPollTimerVal != 0) { |
| if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) { |
| pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG); |
| } |
| SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal); |
| SK_OUT8(IoC, B28_DPT_CTRL, DPT_START); |
| } |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* start the Blink Source Counter */ |
| DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| |
| SK_OUT32(IoC, B2_BSC_INI, DWord); |
| SK_OUT8(IoC, B2_BSC_CTRL, BSC_START); |
| |
| /* |
| * Configure the MAC Arbiter and the Packet Arbiter. |
| * They will be started once and never be stopped. |
| */ |
| SkGeInitMacArb(pAC, IoC); |
| |
| SkGeInitPktArb(pAC, IoC); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| /* start Time Stamp Timer */ |
| SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START); |
| } |
| #endif /* YUKON */ |
| |
| /* enable the Tx Arbiters */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB); |
| } |
| |
| /* enable the RAM Interface Arbiter */ |
| SkGeInitRamIface(pAC, IoC); |
| |
| } /* SkGeInit2 */ |
| |
| /****************************************************************************** |
| * |
| * SkGeInit() - Initialize the GE Adapter with the specified level. |
| * |
| * Description: |
| * Level 0: Initialize the Module structures. |
| * Level 1: Generic Hardware Initialization. The IOP/MemBase pointer has |
| * to be set before calling this level. |
| * |
| * o Do a software reset. |
| * o Clear all reset bits. |
| * o Verify that the detected hardware is present. |
| * Return an error if not. |
| * o Get the hardware configuration |
| * + Set GIMacsFound with the number of MACs. |
| * + Store the RAM size in GIRamSize. |
| * + Save the PCI Revision ID in GIPciHwRev. |
| * o return an error |
| * if Number of MACs > SK_MAX_MACS |
| * |
| * After returning from Level 0 the adapter |
| * may be accessed with IO operations. |
| * |
| * Level 2: start the Blink Source Counter |
| * |
| * Returns: |
| * 0: success |
| * 1: Number of MACs exceeds SK_MAX_MACS (after level 1) |
| * 2: Adapter not present or not accessible |
| * 3: Illegal initialization level |
| * 4: Initialization Level 1 Call missing |
| * 5: Unexpected PHY type detected |
| * 6: HW self test failed |
| */ |
| int SkGeInit( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Level) /* initialization level */ |
| { |
| int RetVal; /* return value */ |
| SK_U32 DWord; |
| |
| RetVal = 0; |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInit(Level %d)\n", Level)); |
| |
| switch (Level) { |
| case SK_INIT_DATA: |
| /* Initialization Level 0 */ |
| SkGeInit0(pAC, IoC); |
| pAC->GIni.GILevel = SK_INIT_DATA; |
| break; |
| |
| case SK_INIT_IO: |
| /* Initialization Level 1 */ |
| RetVal = SkGeInit1(pAC, IoC); |
| if (RetVal != 0) { |
| break; |
| } |
| |
| /* check if the adapter seems to be accessible */ |
| SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL); |
| SK_IN32(IoC, B2_IRQM_INI, &DWord); |
| SK_OUT32(IoC, B2_IRQM_INI, 0L); |
| |
| if (DWord != SK_TEST_VAL) { |
| RetVal = 2; |
| break; |
| } |
| |
| /* check if the number of GIMacsFound matches SK_MAX_MACS */ |
| if (pAC->GIni.GIMacsFound > SK_MAX_MACS) { |
| RetVal = 1; |
| break; |
| } |
| |
| /* Level 1 successfully passed */ |
| pAC->GIni.GILevel = SK_INIT_IO; |
| break; |
| |
| case SK_INIT_RUN: |
| /* Initialization Level 2 */ |
| if (pAC->GIni.GILevel != SK_INIT_IO) { |
| #ifndef SK_DIAG |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG); |
| #endif /* !SK_DIAG */ |
| RetVal = 4; |
| break; |
| } |
| SkGeInit2(pAC, IoC); |
| |
| /* Level 2 successfully passed */ |
| pAC->GIni.GILevel = SK_INIT_RUN; |
| break; |
| |
| default: |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG); |
| RetVal = 3; |
| break; |
| } |
| |
| return(RetVal); |
| } /* SkGeInit */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeDeInit() - Deinitialize the adapter |
| * |
| * Description: |
| * All ports of the adapter will be stopped if not already done. |
| * Do a software reset and switch off all LEDs. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeDeInit( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC) /* IO context */ |
| { |
| int i; |
| SK_U16 Word; |
| |
| #ifdef SK_PHY_LP_MODE |
| SK_U8 Byte; |
| SK_U16 PmCtlSts; |
| #endif /* SK_PHY_LP_MODE */ |
| |
| #if (!defined(SK_SLIM) && !defined(VCPU)) |
| /* ensure I2C is ready */ |
| SkI2cWaitIrq(pAC, IoC); |
| #endif |
| |
| /* stop all current transfer activity */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| if (pAC->GIni.GP[i].PState != SK_PRT_STOP && |
| pAC->GIni.GP[i].PState != SK_PRT_RESET) { |
| |
| SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST); |
| } |
| } |
| |
| #ifdef SK_PHY_LP_MODE |
| /* |
| * for power saving purposes within mobile environments |
| * we set the PHY to coma mode and switch to D3 power state. |
| */ |
| if (pAC->GIni.GIYukonLite && |
| pAC->GIni.GIChipRev == CHIP_REV_YU_LITE_A3) { |
| |
| /* for all ports switch PHY to coma mode */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP); |
| } |
| |
| if (pAC->GIni.GIVauxAvail) { |
| /* switch power to VAUX */ |
| Byte = PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF; |
| |
| SK_OUT8(IoC, B0_POWER_CTRL, Byte); |
| } |
| |
| /* switch to D3 state */ |
| SK_IN16(IoC, PCI_C(PCI_PM_CTL_STS), &PmCtlSts); |
| |
| PmCtlSts |= PCI_PM_STATE_D3; |
| |
| SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| |
| SK_OUT16(IoC, PCI_C(PCI_PM_CTL_STS), PmCtlSts); |
| } |
| #endif /* SK_PHY_LP_MODE */ |
| |
| /* Reset all bits in the PCI STATUS register */ |
| /* |
| * Note: PCI Cfg cycles cannot be used, because they are not |
| * available on some platforms after 'boot time'. |
| */ |
| SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); |
| |
| SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); |
| SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| /* do the reset, all LEDs are switched off now */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| |
| pAC->GIni.GILevel = SK_INIT_DATA; |
| } /* SkGeDeInit */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitPort() Initialize the specified port. |
| * |
| * Description: |
| * PRxQSize, PXSQSize, and PXAQSize has to be |
| * configured for the specified port before calling this function. |
| * The descriptor rings has to be initialized too. |
| * |
| * o (Re)configure queues of the specified port. |
| * o configure the MAC of the specified port. |
| * o put ASIC and MAC(s) in operational mode. |
| * o initialize Rx/Tx and Sync LED |
| * o initialize RAM Buffers and MAC FIFOs |
| * |
| * The port is ready to connect when returning. |
| * |
| * Note: |
| * The MAC's Rx and Tx state machine is still disabled when returning. |
| * |
| * Returns: |
| * 0: success |
| * 1: Queue size initialization error. The configured values |
| * for PRxQSize, PXSQSize, or PXAQSize are invalid for one |
| * or more queues. The specified port was NOT initialized. |
| * An error log entry was generated. |
| * 2: The port has to be stopped before it can be initialized again. |
| */ |
| int SkGeInitPort( |
| SK_AC *pAC, /* adapter context */ |
| SK_IOC IoC, /* IO context */ |
| int Port) /* Port to configure */ |
| { |
| SK_GEPORT *pPrt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if (SkGeCheckQSize(pAC, Port) != 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG); |
| return(1); |
| } |
| |
| if (pPrt->PState == SK_PRT_INIT || pPrt->PState == SK_PRT_RUN) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG); |
| return(2); |
| } |
| |
| /* configuration ok, initialize the Port now */ |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* initialize Rx, Tx and Link LED */ |
| /* |
| * If 1000BT Phy needs LED initialization than swap |
| * LED and XMAC initialization order |
| */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA); |
| /* The Link LED is initialized by RLMT or Diagnostics itself */ |
| |
| SkXmInitMac(pAC, IoC, Port); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| SkGmInitMac(pAC, IoC, Port); |
| } |
| #endif /* YUKON */ |
| |
| /* do NOT initialize the Link Sync Counter */ |
| |
| SkGeInitMacFifo(pAC, IoC, Port); |
| |
| SkGeInitRamBufs(pAC, IoC, Port); |
| |
| if (pPrt->PXSQSize != 0) { |
| /* enable Force Sync bit if synchronous queue available */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC); |
| } |
| |
| SkGeInitBmu(pAC, IoC, Port); |
| |
| /* mark port as initialized */ |
| pPrt->PState = SK_PRT_INIT; |
| |
| return(0); |
| } /* SkGeInitPort */ |