Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /****************************************************************************** |
| 2 | * |
| 3 | * Name: skgeinit.c |
| 4 | * Project: Gigabit Ethernet Adapters, Common Modules |
| 5 | * Version: $Revision: 1.97 $ |
| 6 | * Date: $Date: 2003/10/02 16:45:31 $ |
| 7 | * Purpose: Contains functions to initialize the adapter |
| 8 | * |
| 9 | ******************************************************************************/ |
| 10 | |
| 11 | /****************************************************************************** |
| 12 | * |
| 13 | * (C)Copyright 1998-2002 SysKonnect. |
| 14 | * (C)Copyright 2002-2003 Marvell. |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or modify |
| 17 | * it under the terms of the GNU General Public License as published by |
| 18 | * the Free Software Foundation; either version 2 of the License, or |
| 19 | * (at your option) any later version. |
| 20 | * |
| 21 | * The information in this file is provided "AS IS" without warranty. |
| 22 | * |
| 23 | ******************************************************************************/ |
| 24 | |
| 25 | #include "h/skdrv1st.h" |
| 26 | #include "h/skdrv2nd.h" |
| 27 | |
| 28 | /* global variables ***********************************************************/ |
| 29 | |
| 30 | /* local variables ************************************************************/ |
| 31 | |
| 32 | #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) |
| 33 | static const char SysKonnectFileId[] = |
| 34 | "@(#) $Id: skgeinit.c,v 1.97 2003/10/02 16:45:31 rschmidt Exp $ (C) Marvell."; |
| 35 | #endif |
| 36 | |
| 37 | struct s_QOffTab { |
| 38 | int RxQOff; /* Receive Queue Address Offset */ |
| 39 | int XsQOff; /* Sync Tx Queue Address Offset */ |
| 40 | int XaQOff; /* Async Tx Queue Address Offset */ |
| 41 | }; |
| 42 | static struct s_QOffTab QOffTab[] = { |
| 43 | {Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2} |
| 44 | }; |
| 45 | |
| 46 | struct s_Config { |
| 47 | char ScanString[8]; |
| 48 | SK_U32 Value; |
| 49 | }; |
| 50 | |
| 51 | static struct s_Config OemConfig = { |
| 52 | {'O','E','M','_','C','o','n','f'}, |
| 53 | #ifdef SK_OEM_CONFIG |
| 54 | OEM_CONFIG_VALUE, |
| 55 | #else |
| 56 | 0, |
| 57 | #endif |
| 58 | }; |
| 59 | |
| 60 | /****************************************************************************** |
| 61 | * |
| 62 | * SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring |
| 63 | * |
| 64 | * Description: |
| 65 | * Enable or disable the descriptor polling of the receive descriptor |
| 66 | * ring (RxD) for port 'Port'. |
| 67 | * The new configuration is *not* saved over any SkGeStopPort() and |
| 68 | * SkGeInitPort() calls. |
| 69 | * |
| 70 | * Returns: |
| 71 | * nothing |
| 72 | */ |
| 73 | void SkGePollRxD( |
| 74 | SK_AC *pAC, /* adapter context */ |
| 75 | SK_IOC IoC, /* IO context */ |
| 76 | int Port, /* Port Index (MAC_1 + n) */ |
| 77 | SK_BOOL PollRxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| 78 | { |
| 79 | SK_GEPORT *pPrt; |
| 80 | |
| 81 | pPrt = &pAC->GIni.GP[Port]; |
| 82 | |
| 83 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (PollRxD) ? |
| 84 | CSR_ENA_POL : CSR_DIS_POL); |
| 85 | } /* SkGePollRxD */ |
| 86 | |
| 87 | |
| 88 | /****************************************************************************** |
| 89 | * |
| 90 | * SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings |
| 91 | * |
| 92 | * Description: |
| 93 | * Enable or disable the descriptor polling of the transmit descriptor |
| 94 | * ring(s) (TxD) for port 'Port'. |
| 95 | * The new configuration is *not* saved over any SkGeStopPort() and |
| 96 | * SkGeInitPort() calls. |
| 97 | * |
| 98 | * Returns: |
| 99 | * nothing |
| 100 | */ |
| 101 | void SkGePollTxD( |
| 102 | SK_AC *pAC, /* adapter context */ |
| 103 | SK_IOC IoC, /* IO context */ |
| 104 | int Port, /* Port Index (MAC_1 + n) */ |
| 105 | SK_BOOL PollTxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| 106 | { |
| 107 | SK_GEPORT *pPrt; |
| 108 | SK_U32 DWord; |
| 109 | |
| 110 | pPrt = &pAC->GIni.GP[Port]; |
| 111 | |
| 112 | DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL); |
| 113 | |
| 114 | if (pPrt->PXSQSize != 0) { |
| 115 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord); |
| 116 | } |
| 117 | |
| 118 | if (pPrt->PXAQSize != 0) { |
| 119 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord); |
| 120 | } |
| 121 | } /* SkGePollTxD */ |
| 122 | |
| 123 | |
| 124 | /****************************************************************************** |
| 125 | * |
| 126 | * SkGeYellowLED() - Switch the yellow LED on or off. |
| 127 | * |
| 128 | * Description: |
| 129 | * Switch the yellow LED on or off. |
| 130 | * |
| 131 | * Note: |
| 132 | * This function may be called any time after SkGeInit(Level 1). |
| 133 | * |
| 134 | * Returns: |
| 135 | * nothing |
| 136 | */ |
| 137 | void SkGeYellowLED( |
| 138 | SK_AC *pAC, /* adapter context */ |
| 139 | SK_IOC IoC, /* IO context */ |
| 140 | int State) /* yellow LED state, 0 = OFF, 0 != ON */ |
| 141 | { |
| 142 | if (State == 0) { |
| 143 | /* Switch yellow LED OFF */ |
| 144 | SK_OUT8(IoC, B0_LED, LED_STAT_OFF); |
| 145 | } |
| 146 | else { |
| 147 | /* Switch yellow LED ON */ |
| 148 | SK_OUT8(IoC, B0_LED, LED_STAT_ON); |
| 149 | } |
| 150 | } /* SkGeYellowLED */ |
| 151 | |
| 152 | |
| 153 | #if (!defined(SK_SLIM) || defined(GENESIS)) |
| 154 | /****************************************************************************** |
| 155 | * |
| 156 | * SkGeXmitLED() - Modify the Operational Mode of a transmission LED. |
| 157 | * |
| 158 | * Description: |
| 159 | * The Rx or Tx LED which is specified by 'Led' will be |
| 160 | * enabled, disabled or switched on in test mode. |
| 161 | * |
| 162 | * Note: |
| 163 | * 'Led' must contain the address offset of the LEDs INI register. |
| 164 | * |
| 165 | * Usage: |
| 166 | * SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| 167 | * |
| 168 | * Returns: |
| 169 | * nothing |
| 170 | */ |
| 171 | void SkGeXmitLED( |
| 172 | SK_AC *pAC, /* adapter context */ |
| 173 | SK_IOC IoC, /* IO context */ |
| 174 | int Led, /* offset to the LED Init Value register */ |
| 175 | int Mode) /* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */ |
| 176 | { |
| 177 | SK_U32 LedIni; |
| 178 | |
| 179 | switch (Mode) { |
| 180 | case SK_LED_ENA: |
| 181 | LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| 182 | SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni); |
| 183 | SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| 184 | break; |
| 185 | case SK_LED_TST: |
| 186 | SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON); |
| 187 | SK_OUT32(IoC, Led + XMIT_LED_CNT, 100); |
| 188 | SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| 189 | break; |
| 190 | case SK_LED_DIS: |
| 191 | default: |
| 192 | /* |
| 193 | * Do NOT stop the LED Timer here. The LED might be |
| 194 | * in on state. But it needs to go off. |
| 195 | */ |
| 196 | SK_OUT32(IoC, Led + XMIT_LED_CNT, 0); |
| 197 | SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF); |
| 198 | break; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * 1000BT: The Transmit LED is driven by the PHY. |
| 203 | * But the default LED configuration is used for |
| 204 | * Level One and Broadcom PHYs. |
| 205 | * (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set.) |
| 206 | * (In this case it has to be added here. But we will see. XXX) |
| 207 | */ |
| 208 | } /* SkGeXmitLED */ |
| 209 | #endif /* !SK_SLIM || GENESIS */ |
| 210 | |
| 211 | |
| 212 | /****************************************************************************** |
| 213 | * |
| 214 | * DoCalcAddr() - Calculates the start and the end address of a queue. |
| 215 | * |
| 216 | * Description: |
| 217 | * This function calculates the start and the end address of a queue. |
| 218 | * Afterwards the 'StartVal' is incremented to the next start position. |
| 219 | * If the port is already initialized the calculated values |
| 220 | * will be checked against the configured values and an |
| 221 | * error will be returned, if they are not equal. |
| 222 | * If the port is not initialized the values will be written to |
| 223 | * *StartAdr and *EndAddr. |
| 224 | * |
| 225 | * Returns: |
| 226 | * 0: success |
| 227 | * 1: configuration error |
| 228 | */ |
| 229 | static int DoCalcAddr( |
| 230 | SK_AC *pAC, /* adapter context */ |
| 231 | SK_GEPORT SK_FAR *pPrt, /* port index */ |
| 232 | int QuSize, /* size of the queue to configure in kB */ |
| 233 | SK_U32 SK_FAR *StartVal, /* start value for address calculation */ |
| 234 | SK_U32 SK_FAR *QuStartAddr,/* start addr to calculate */ |
| 235 | SK_U32 SK_FAR *QuEndAddr) /* end address to calculate */ |
| 236 | { |
| 237 | SK_U32 EndVal; |
| 238 | SK_U32 NextStart; |
| 239 | int Rtv; |
| 240 | |
| 241 | Rtv = 0; |
| 242 | if (QuSize == 0) { |
| 243 | EndVal = *StartVal; |
| 244 | NextStart = EndVal; |
| 245 | } |
| 246 | else { |
| 247 | EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1; |
| 248 | NextStart = EndVal + 1; |
| 249 | } |
| 250 | |
| 251 | if (pPrt->PState >= SK_PRT_INIT) { |
| 252 | if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) { |
| 253 | Rtv = 1; |
| 254 | } |
| 255 | } |
| 256 | else { |
| 257 | *QuStartAddr = *StartVal; |
| 258 | *QuEndAddr = EndVal; |
| 259 | } |
| 260 | |
| 261 | *StartVal = NextStart; |
| 262 | return(Rtv); |
| 263 | } /* DoCalcAddr */ |
| 264 | |
| 265 | /****************************************************************************** |
| 266 | * |
| 267 | * SkGeInitAssignRamToQueues() - allocate default queue sizes |
| 268 | * |
| 269 | * Description: |
| 270 | * This function assigns the memory to the different queues and ports. |
| 271 | * When DualNet is set to SK_TRUE all ports get the same amount of memory. |
| 272 | * Otherwise the first port gets most of the memory and all the |
| 273 | * other ports just the required minimum. |
| 274 | * This function can only be called when pAC->GIni.GIRamSize and |
| 275 | * pAC->GIni.GIMacsFound have been initialized, usually this happens |
| 276 | * at init level 1 |
| 277 | * |
| 278 | * Returns: |
| 279 | * 0 - ok |
| 280 | * 1 - invalid input values |
| 281 | * 2 - not enough memory |
| 282 | */ |
| 283 | |
| 284 | int SkGeInitAssignRamToQueues( |
| 285 | SK_AC *pAC, /* Adapter context */ |
| 286 | int ActivePort, /* Active Port in RLMT mode */ |
| 287 | SK_BOOL DualNet) /* adapter context */ |
| 288 | { |
| 289 | int i; |
| 290 | int UsedKilobytes; /* memory already assigned */ |
| 291 | int ActivePortKilobytes; /* memory available for active port */ |
| 292 | SK_GEPORT *pGePort; |
| 293 | |
| 294 | UsedKilobytes = 0; |
| 295 | |
| 296 | if (ActivePort >= pAC->GIni.GIMacsFound) { |
| 297 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| 298 | ("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n", |
| 299 | ActivePort)); |
| 300 | return(1); |
| 301 | } |
| 302 | if (((pAC->GIni.GIMacsFound * (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE)) + |
| 303 | ((RAM_QUOTA_SYNC == 0) ? 0 : SK_MIN_TXQ_SIZE)) > pAC->GIni.GIRamSize) { |
| 304 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| 305 | ("SkGeInitAssignRamToQueues: Not enough memory (%d)\n", |
| 306 | pAC->GIni.GIRamSize)); |
| 307 | return(2); |
| 308 | } |
| 309 | |
| 310 | if (DualNet) { |
| 311 | /* every port gets the same amount of memory */ |
| 312 | ActivePortKilobytes = pAC->GIni.GIRamSize / pAC->GIni.GIMacsFound; |
| 313 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 314 | |
| 315 | pGePort = &pAC->GIni.GP[i]; |
| 316 | |
| 317 | /* take away the minimum memory for active queues */ |
| 318 | ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); |
| 319 | |
| 320 | /* receive queue gets the minimum + 80% of the rest */ |
| 321 | pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB(( |
| 322 | ActivePortKilobytes * (unsigned long) RAM_QUOTA_RX) / 100)) |
| 323 | + SK_MIN_RXQ_SIZE; |
| 324 | |
| 325 | ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); |
| 326 | |
| 327 | /* synchronous transmit queue */ |
| 328 | pGePort->PXSQSize = 0; |
| 329 | |
| 330 | /* asynchronous transmit queue */ |
| 331 | pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes + |
| 332 | SK_MIN_TXQ_SIZE); |
| 333 | } |
| 334 | } |
| 335 | else { |
| 336 | /* Rlmt Mode or single link adapter */ |
| 337 | |
| 338 | /* Set standby queue size defaults for all standby ports */ |
| 339 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 340 | |
| 341 | if (i != ActivePort) { |
| 342 | pGePort = &pAC->GIni.GP[i]; |
| 343 | |
| 344 | pGePort->PRxQSize = SK_MIN_RXQ_SIZE; |
| 345 | pGePort->PXAQSize = SK_MIN_TXQ_SIZE; |
| 346 | pGePort->PXSQSize = 0; |
| 347 | |
| 348 | /* Count used RAM */ |
| 349 | UsedKilobytes += pGePort->PRxQSize + pGePort->PXAQSize; |
| 350 | } |
| 351 | } |
| 352 | /* what's left? */ |
| 353 | ActivePortKilobytes = pAC->GIni.GIRamSize - UsedKilobytes; |
| 354 | |
| 355 | /* assign it to the active port */ |
| 356 | /* first take away the minimum memory */ |
| 357 | ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); |
| 358 | pGePort = &pAC->GIni.GP[ActivePort]; |
| 359 | |
| 360 | /* receive queue get's the minimum + 80% of the rest */ |
| 361 | pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((ActivePortKilobytes * |
| 362 | (unsigned long) RAM_QUOTA_RX) / 100)) + SK_MIN_RXQ_SIZE; |
| 363 | |
| 364 | ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); |
| 365 | |
| 366 | /* synchronous transmit queue */ |
| 367 | pGePort->PXSQSize = 0; |
| 368 | |
| 369 | /* asynchronous transmit queue */ |
| 370 | pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes) + |
| 371 | SK_MIN_TXQ_SIZE; |
| 372 | } |
| 373 | #ifdef VCPU |
| 374 | VCPUprintf(0, "PRxQSize=%u, PXSQSize=%u, PXAQSize=%u\n", |
| 375 | pGePort->PRxQSize, pGePort->PXSQSize, pGePort->PXAQSize); |
| 376 | #endif /* VCPU */ |
| 377 | |
| 378 | return(0); |
| 379 | } /* SkGeInitAssignRamToQueues */ |
| 380 | |
| 381 | /****************************************************************************** |
| 382 | * |
| 383 | * SkGeCheckQSize() - Checks the Adapters Queue Size Configuration |
| 384 | * |
| 385 | * Description: |
| 386 | * This function verifies the Queue Size Configuration specified |
| 387 | * in the variables PRxQSize, PXSQSize, and PXAQSize of all |
| 388 | * used ports. |
| 389 | * This requirements must be fullfilled to have a valid configuration: |
| 390 | * - The size of all queues must not exceed GIRamSize. |
| 391 | * - The queue sizes must be specified in units of 8 kB. |
| 392 | * - The size of Rx queues of available ports must not be |
| 393 | * smaller than 16 kB. |
| 394 | * - The size of at least one Tx queue (synch. or asynch.) |
| 395 | * of available ports must not be smaller than 16 kB |
| 396 | * when Jumbo Frames are used. |
| 397 | * - The RAM start and end addresses must not be changed |
| 398 | * for ports which are already initialized. |
| 399 | * Furthermore SkGeCheckQSize() defines the Start and End Addresses |
| 400 | * of all ports and stores them into the HWAC port structure. |
| 401 | * |
| 402 | * Returns: |
| 403 | * 0: Queue Size Configuration valid |
| 404 | * 1: Queue Size Configuration invalid |
| 405 | */ |
| 406 | static int SkGeCheckQSize( |
| 407 | SK_AC *pAC, /* adapter context */ |
| 408 | int Port) /* port index */ |
| 409 | { |
| 410 | SK_GEPORT *pPrt; |
| 411 | int i; |
| 412 | int Rtv; |
| 413 | int Rtv2; |
| 414 | SK_U32 StartAddr; |
| 415 | #ifndef SK_SLIM |
| 416 | int UsedMem; /* total memory used (max. found ports) */ |
| 417 | #endif |
| 418 | |
| 419 | Rtv = 0; |
| 420 | |
| 421 | #ifndef SK_SLIM |
| 422 | |
| 423 | UsedMem = 0; |
| 424 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 425 | pPrt = &pAC->GIni.GP[i]; |
| 426 | |
| 427 | if ((pPrt->PRxQSize & QZ_UNITS) != 0 || |
| 428 | (pPrt->PXSQSize & QZ_UNITS) != 0 || |
| 429 | (pPrt->PXAQSize & QZ_UNITS) != 0) { |
| 430 | |
| 431 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| 432 | return(1); |
| 433 | } |
| 434 | |
| 435 | if (i == Port && pPrt->PRxQSize < SK_MIN_RXQ_SIZE) { |
| 436 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG); |
| 437 | return(1); |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * the size of at least one Tx queue (synch. or asynch.) has to be > 0. |
| 442 | * if Jumbo Frames are used, this size has to be >= 16 kB. |
| 443 | */ |
| 444 | if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) || |
| 445 | (pAC->GIni.GIPortUsage == SK_JUMBO_LINK && |
| 446 | ((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) || |
| 447 | (pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) { |
| 448 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG); |
| 449 | return(1); |
| 450 | } |
| 451 | |
| 452 | UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize; |
| 453 | } |
| 454 | |
| 455 | if (UsedMem > pAC->GIni.GIRamSize) { |
| 456 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| 457 | return(1); |
| 458 | } |
| 459 | #endif /* !SK_SLIM */ |
| 460 | |
| 461 | /* Now start address calculation */ |
| 462 | StartAddr = pAC->GIni.GIRamOffs; |
| 463 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 464 | pPrt = &pAC->GIni.GP[i]; |
| 465 | |
| 466 | /* Calculate/Check values for the receive queue */ |
| 467 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr, |
| 468 | &pPrt->PRxQRamStart, &pPrt->PRxQRamEnd); |
| 469 | Rtv |= Rtv2; |
| 470 | |
| 471 | /* Calculate/Check values for the synchronous Tx queue */ |
| 472 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr, |
| 473 | &pPrt->PXsQRamStart, &pPrt->PXsQRamEnd); |
| 474 | Rtv |= Rtv2; |
| 475 | |
| 476 | /* Calculate/Check values for the asynchronous Tx queue */ |
| 477 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr, |
| 478 | &pPrt->PXaQRamStart, &pPrt->PXaQRamEnd); |
| 479 | Rtv |= Rtv2; |
| 480 | |
| 481 | if (Rtv) { |
| 482 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG); |
| 483 | return(1); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | return(0); |
| 488 | } /* SkGeCheckQSize */ |
| 489 | |
| 490 | |
| 491 | #ifdef GENESIS |
| 492 | /****************************************************************************** |
| 493 | * |
| 494 | * SkGeInitMacArb() - Initialize the MAC Arbiter |
| 495 | * |
| 496 | * Description: |
| 497 | * This function initializes the MAC Arbiter. |
| 498 | * It must not be called if there is still an |
| 499 | * initialized or active port. |
| 500 | * |
| 501 | * Returns: |
| 502 | * nothing |
| 503 | */ |
| 504 | static void SkGeInitMacArb( |
| 505 | SK_AC *pAC, /* adapter context */ |
| 506 | SK_IOC IoC) /* IO context */ |
| 507 | { |
| 508 | /* release local reset */ |
| 509 | SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR); |
| 510 | |
| 511 | /* configure timeout values */ |
| 512 | SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53); |
| 513 | SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53); |
| 514 | SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53); |
| 515 | SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53); |
| 516 | |
| 517 | SK_OUT8(IoC, B3_MA_RCINI_RX1, 0); |
| 518 | SK_OUT8(IoC, B3_MA_RCINI_RX2, 0); |
| 519 | SK_OUT8(IoC, B3_MA_RCINI_TX1, 0); |
| 520 | SK_OUT8(IoC, B3_MA_RCINI_TX2, 0); |
| 521 | |
| 522 | /* recovery values are needed for XMAC II Rev. B2 only */ |
| 523 | /* Fast Output Enable Mode was intended to use with Rev. B2, but now? */ |
| 524 | |
| 525 | /* |
| 526 | * There is no start or enable button to push, therefore |
| 527 | * the MAC arbiter is configured and enabled now. |
| 528 | */ |
| 529 | } /* SkGeInitMacArb */ |
| 530 | |
| 531 | |
| 532 | /****************************************************************************** |
| 533 | * |
| 534 | * SkGeInitPktArb() - Initialize the Packet Arbiter |
| 535 | * |
| 536 | * Description: |
| 537 | * This function initializes the Packet Arbiter. |
| 538 | * It must not be called if there is still an |
| 539 | * initialized or active port. |
| 540 | * |
| 541 | * Returns: |
| 542 | * nothing |
| 543 | */ |
| 544 | static void SkGeInitPktArb( |
| 545 | SK_AC *pAC, /* adapter context */ |
| 546 | SK_IOC IoC) /* IO context */ |
| 547 | { |
| 548 | /* release local reset */ |
| 549 | SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR); |
| 550 | |
| 551 | /* configure timeout values */ |
| 552 | SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); |
| 553 | SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); |
| 554 | SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); |
| 555 | SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); |
| 556 | |
| 557 | /* |
| 558 | * enable timeout timers if jumbo frames not used |
| 559 | * NOTE: the packet arbiter timeout interrupt is needed for |
| 560 | * half duplex hangup workaround |
| 561 | */ |
| 562 | if (pAC->GIni.GIPortUsage != SK_JUMBO_LINK) { |
| 563 | if (pAC->GIni.GIMacsFound == 1) { |
| 564 | SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1); |
| 565 | } |
| 566 | else { |
| 567 | SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2); |
| 568 | } |
| 569 | } |
| 570 | } /* SkGeInitPktArb */ |
| 571 | #endif /* GENESIS */ |
| 572 | |
| 573 | |
| 574 | /****************************************************************************** |
| 575 | * |
| 576 | * SkGeInitMacFifo() - Initialize the MAC FIFOs |
| 577 | * |
| 578 | * Description: |
| 579 | * Initialize all MAC FIFOs of the specified port |
| 580 | * |
| 581 | * Returns: |
| 582 | * nothing |
| 583 | */ |
| 584 | static void SkGeInitMacFifo( |
| 585 | SK_AC *pAC, /* adapter context */ |
| 586 | SK_IOC IoC, /* IO context */ |
| 587 | int Port) /* Port Index (MAC_1 + n) */ |
| 588 | { |
| 589 | SK_U16 Word; |
| 590 | #ifdef VCPU |
| 591 | SK_U32 DWord; |
| 592 | #endif /* VCPU */ |
| 593 | /* |
| 594 | * For each FIFO: |
| 595 | * - release local reset |
| 596 | * - use default value for MAC FIFO size |
| 597 | * - setup defaults for the control register |
| 598 | * - enable the FIFO |
| 599 | */ |
| 600 | |
| 601 | #ifdef GENESIS |
| 602 | if (pAC->GIni.GIGenesis) { |
| 603 | /* Configure Rx MAC FIFO */ |
| 604 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR); |
| 605 | SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF); |
| 606 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD); |
| 607 | |
| 608 | /* Configure Tx MAC FIFO */ |
| 609 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR); |
| 610 | SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); |
| 611 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD); |
| 612 | |
| 613 | /* Enable frame flushing if jumbo frames used */ |
| 614 | if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK) { |
| 615 | SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH); |
| 616 | } |
| 617 | } |
| 618 | #endif /* GENESIS */ |
| 619 | |
| 620 | #ifdef YUKON |
| 621 | if (pAC->GIni.GIYukon) { |
| 622 | /* set Rx GMAC FIFO Flush Mask */ |
| 623 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), (SK_U16)RX_FF_FL_DEF_MSK); |
| 624 | |
| 625 | Word = (SK_U16)GMF_RX_CTRL_DEF; |
| 626 | |
| 627 | /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ |
| 628 | if (pAC->GIni.GIYukonLite && pAC->GIni.GIChipId == CHIP_ID_YUKON) { |
| 629 | |
| 630 | Word &= ~GMF_RX_F_FL_ON; |
| 631 | } |
| 632 | |
| 633 | /* Configure Rx MAC FIFO */ |
| 634 | SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| 635 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word); |
| 636 | |
| 637 | /* set Rx GMAC FIFO Flush Threshold (default: 0x0a -> 56 bytes) */ |
| 638 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); |
| 639 | |
| 640 | /* Configure Tx MAC FIFO */ |
| 641 | SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| 642 | SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); |
| 643 | |
| 644 | #ifdef VCPU |
| 645 | SK_IN32(IoC, MR_ADDR(Port, RX_GMF_AF_THR), &DWord); |
| 646 | SK_IN32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), &DWord); |
| 647 | #endif /* VCPU */ |
| 648 | |
| 649 | /* set Tx GMAC FIFO Almost Empty Threshold */ |
| 650 | /* SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), 0); */ |
| 651 | } |
| 652 | #endif /* YUKON */ |
| 653 | |
| 654 | } /* SkGeInitMacFifo */ |
| 655 | |
| 656 | #ifdef SK_LNK_SYNC_CNT |
| 657 | /****************************************************************************** |
| 658 | * |
| 659 | * SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting |
| 660 | * |
| 661 | * Description: |
| 662 | * This function starts the Link Sync Counter of the specified |
| 663 | * port and enables the generation of an Link Sync IRQ. |
| 664 | * The Link Sync Counter may be used to detect an active link, |
| 665 | * if autonegotiation is not used. |
| 666 | * |
| 667 | * Note: |
| 668 | * o To ensure receiving the Link Sync Event the LinkSyncCounter |
| 669 | * should be initialized BEFORE clearing the XMAC's reset! |
| 670 | * o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this |
| 671 | * function. |
| 672 | * |
| 673 | * Returns: |
| 674 | * nothing |
| 675 | */ |
| 676 | void SkGeLoadLnkSyncCnt( |
| 677 | SK_AC *pAC, /* adapter context */ |
| 678 | SK_IOC IoC, /* IO context */ |
| 679 | int Port, /* Port Index (MAC_1 + n) */ |
| 680 | SK_U32 CntVal) /* Counter value */ |
| 681 | { |
| 682 | SK_U32 OrgIMsk; |
| 683 | SK_U32 NewIMsk; |
| 684 | SK_U32 ISrc; |
| 685 | SK_BOOL IrqPend; |
| 686 | |
| 687 | /* stop counter */ |
| 688 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_STOP); |
| 689 | |
| 690 | /* |
| 691 | * ASIC problem: |
| 692 | * Each time starting the Link Sync Counter an IRQ is generated |
| 693 | * by the adapter. See problem report entry from 21.07.98 |
| 694 | * |
| 695 | * Workaround: Disable Link Sync IRQ and clear the unexpeced IRQ |
| 696 | * if no IRQ is already pending. |
| 697 | */ |
| 698 | IrqPend = SK_FALSE; |
| 699 | SK_IN32(IoC, B0_ISRC, &ISrc); |
| 700 | SK_IN32(IoC, B0_IMSK, &OrgIMsk); |
| 701 | if (Port == MAC_1) { |
| 702 | NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1; |
| 703 | if ((ISrc & IS_LNK_SYNC_M1) != 0) { |
| 704 | IrqPend = SK_TRUE; |
| 705 | } |
| 706 | } |
| 707 | else { |
| 708 | NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2; |
| 709 | if ((ISrc & IS_LNK_SYNC_M2) != 0) { |
| 710 | IrqPend = SK_TRUE; |
| 711 | } |
| 712 | } |
| 713 | if (!IrqPend) { |
| 714 | SK_OUT32(IoC, B0_IMSK, NewIMsk); |
| 715 | } |
| 716 | |
| 717 | /* load counter */ |
| 718 | SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal); |
| 719 | |
| 720 | /* start counter */ |
| 721 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_START); |
| 722 | |
| 723 | if (!IrqPend) { |
| 724 | /* clear the unexpected IRQ, and restore the interrupt mask */ |
| 725 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_CLR_IRQ); |
| 726 | SK_OUT32(IoC, B0_IMSK, OrgIMsk); |
| 727 | } |
| 728 | } /* SkGeLoadLnkSyncCnt*/ |
| 729 | #endif /* SK_LNK_SYNC_CNT */ |
| 730 | |
| 731 | #if defined(SK_DIAG) || defined(SK_CFG_SYNC) |
| 732 | /****************************************************************************** |
| 733 | * |
| 734 | * SkGeCfgSync() - Configure synchronous bandwidth for this port. |
| 735 | * |
| 736 | * Description: |
| 737 | * This function may be used to configure synchronous bandwidth |
| 738 | * to the specified port. This may be done any time after |
| 739 | * initializing the port. The configuration values are NOT saved |
| 740 | * in the HWAC port structure and will be overwritten any |
| 741 | * time when stopping and starting the port. |
| 742 | * Any values for the synchronous configuration will be ignored |
| 743 | * if the size of the synchronous queue is zero! |
| 744 | * |
| 745 | * The default configuration for the synchronous service is |
| 746 | * TXA_ENA_FSYNC. This means if the size of |
| 747 | * the synchronous queue is unequal zero but no specific |
| 748 | * synchronous bandwidth is configured, the synchronous queue |
| 749 | * will always have the 'unlimited' transmit priority! |
| 750 | * |
| 751 | * This mode will be restored if the synchronous bandwidth is |
| 752 | * deallocated ('IntTime' = 0 and 'LimCount' = 0). |
| 753 | * |
| 754 | * Returns: |
| 755 | * 0: success |
| 756 | * 1: parameter configuration error |
| 757 | * 2: try to configure quality of service although no |
| 758 | * synchronous queue is configured |
| 759 | */ |
| 760 | int SkGeCfgSync( |
| 761 | SK_AC *pAC, /* adapter context */ |
| 762 | SK_IOC IoC, /* IO context */ |
| 763 | int Port, /* Port Index (MAC_1 + n) */ |
| 764 | SK_U32 IntTime, /* Interval Timer Value in units of 8ns */ |
| 765 | SK_U32 LimCount, /* Number of bytes to transfer during IntTime */ |
| 766 | int SyncMode) /* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */ |
| 767 | { |
| 768 | int Rtv; |
| 769 | |
| 770 | Rtv = 0; |
| 771 | |
| 772 | /* check the parameters */ |
| 773 | if (LimCount > IntTime || |
| 774 | (LimCount == 0 && IntTime != 0) || |
| 775 | (LimCount != 0 && IntTime == 0)) { |
| 776 | |
| 777 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| 778 | return(1); |
| 779 | } |
| 780 | |
| 781 | if (pAC->GIni.GP[Port].PXSQSize == 0) { |
| 782 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG); |
| 783 | return(2); |
| 784 | } |
| 785 | |
| 786 | /* calculate register values */ |
| 787 | IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100; |
| 788 | LimCount = LimCount / 8; |
| 789 | |
| 790 | if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) { |
| 791 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| 792 | return(1); |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * - Enable 'Force Sync' to ensure the synchronous queue |
| 797 | * has the priority while configuring the new values. |
| 798 | * - Also 'disable alloc' to ensure the settings complies |
| 799 | * to the SyncMode parameter. |
| 800 | * - Disable 'Rate Control' to configure the new values. |
| 801 | * - write IntTime and LimCount |
| 802 | * - start 'Rate Control' and disable 'Force Sync' |
| 803 | * if Interval Timer or Limit Counter not zero. |
| 804 | */ |
| 805 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| 806 | TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| 807 | |
| 808 | SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime); |
| 809 | SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount); |
| 810 | |
| 811 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| 812 | (SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC))); |
| 813 | |
| 814 | if (IntTime != 0 || LimCount != 0) { |
| 815 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC); |
| 816 | } |
| 817 | |
| 818 | return(0); |
| 819 | } /* SkGeCfgSync */ |
| 820 | #endif /* SK_DIAG || SK_CFG_SYNC*/ |
| 821 | |
| 822 | |
| 823 | /****************************************************************************** |
| 824 | * |
| 825 | * DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue |
| 826 | * |
| 827 | * Desccription: |
| 828 | * If the queue is used, enable and initialize it. |
| 829 | * Make sure the queue is still reset, if it is not used. |
| 830 | * |
| 831 | * Returns: |
| 832 | * nothing |
| 833 | */ |
| 834 | static void DoInitRamQueue( |
| 835 | SK_AC *pAC, /* adapter context */ |
| 836 | SK_IOC IoC, /* IO context */ |
| 837 | int QuIoOffs, /* Queue IO Address Offset */ |
| 838 | SK_U32 QuStartAddr, /* Queue Start Address */ |
| 839 | SK_U32 QuEndAddr, /* Queue End Address */ |
| 840 | int QuType) /* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */ |
| 841 | { |
| 842 | SK_U32 RxUpThresVal; |
| 843 | SK_U32 RxLoThresVal; |
| 844 | |
| 845 | if (QuStartAddr != QuEndAddr) { |
| 846 | /* calculate thresholds, assume we have a big Rx queue */ |
| 847 | RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8; |
| 848 | RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8; |
| 849 | |
| 850 | /* build HW address format */ |
| 851 | QuStartAddr = QuStartAddr / 8; |
| 852 | QuEndAddr = QuEndAddr / 8; |
| 853 | |
| 854 | /* release local reset */ |
| 855 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR); |
| 856 | |
| 857 | /* configure addresses */ |
| 858 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr); |
| 859 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr); |
| 860 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr); |
| 861 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr); |
| 862 | |
| 863 | switch (QuType) { |
| 864 | case SK_RX_SRAM_Q: |
| 865 | /* configure threshold for small Rx Queue */ |
| 866 | RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8; |
| 867 | |
| 868 | /* continue with SK_RX_BRAM_Q */ |
| 869 | case SK_RX_BRAM_Q: |
| 870 | /* write threshold for Rx Queue */ |
| 871 | |
| 872 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal); |
| 873 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal); |
| 874 | |
| 875 | /* the high priority threshold not used */ |
| 876 | break; |
| 877 | case SK_TX_RAM_Q: |
| 878 | /* |
| 879 | * Do NOT use Store & Forward under normal operation due to |
| 880 | * performance optimization (GENESIS only). |
| 881 | * But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB) |
| 882 | * or YUKON is used ((GMAC Tx FIFO is only 1 kB) |
| 883 | * we NEED Store & Forward of the RAM buffer. |
| 884 | */ |
| 885 | if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK || |
| 886 | pAC->GIni.GIYukon) { |
| 887 | /* enable Store & Forward Mode for the Tx Side */ |
| 888 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD); |
| 889 | } |
| 890 | break; |
| 891 | } |
| 892 | |
| 893 | /* set queue operational */ |
| 894 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD); |
| 895 | } |
| 896 | else { |
| 897 | /* ensure the queue is still disabled */ |
| 898 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET); |
| 899 | } |
| 900 | } /* DoInitRamQueue */ |
| 901 | |
| 902 | |
| 903 | /****************************************************************************** |
| 904 | * |
| 905 | * SkGeInitRamBufs() - Initialize the RAM Buffer Queues |
| 906 | * |
| 907 | * Description: |
| 908 | * Initialize all RAM Buffer Queues of the specified port |
| 909 | * |
| 910 | * Returns: |
| 911 | * nothing |
| 912 | */ |
| 913 | static void SkGeInitRamBufs( |
| 914 | SK_AC *pAC, /* adapter context */ |
| 915 | SK_IOC IoC, /* IO context */ |
| 916 | int Port) /* Port Index (MAC_1 + n) */ |
| 917 | { |
| 918 | SK_GEPORT *pPrt; |
| 919 | int RxQType; |
| 920 | |
| 921 | pPrt = &pAC->GIni.GP[Port]; |
| 922 | |
| 923 | if (pPrt->PRxQSize == SK_MIN_RXQ_SIZE) { |
| 924 | RxQType = SK_RX_SRAM_Q; /* small Rx Queue */ |
| 925 | } |
| 926 | else { |
| 927 | RxQType = SK_RX_BRAM_Q; /* big Rx Queue */ |
| 928 | } |
| 929 | |
| 930 | DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart, |
| 931 | pPrt->PRxQRamEnd, RxQType); |
| 932 | |
| 933 | DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart, |
| 934 | pPrt->PXsQRamEnd, SK_TX_RAM_Q); |
| 935 | |
| 936 | DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, |
| 937 | pPrt->PXaQRamEnd, SK_TX_RAM_Q); |
| 938 | |
| 939 | } /* SkGeInitRamBufs */ |
| 940 | |
| 941 | |
| 942 | /****************************************************************************** |
| 943 | * |
| 944 | * SkGeInitRamIface() - Initialize the RAM Interface |
| 945 | * |
| 946 | * Description: |
| 947 | * This function initializes the Adapters RAM Interface. |
| 948 | * |
| 949 | * Note: |
| 950 | * This function is used in the diagnostics. |
| 951 | * |
| 952 | * Returns: |
| 953 | * nothing |
| 954 | */ |
| 955 | void SkGeInitRamIface( |
| 956 | SK_AC *pAC, /* adapter context */ |
| 957 | SK_IOC IoC) /* IO context */ |
| 958 | { |
| 959 | /* release local reset */ |
| 960 | SK_OUT16(IoC, B3_RI_CTRL, RI_RST_CLR); |
| 961 | |
| 962 | /* configure timeout values */ |
| 963 | SK_OUT8(IoC, B3_RI_WTO_R1, SK_RI_TO_53); |
| 964 | SK_OUT8(IoC, B3_RI_WTO_XA1, SK_RI_TO_53); |
| 965 | SK_OUT8(IoC, B3_RI_WTO_XS1, SK_RI_TO_53); |
| 966 | SK_OUT8(IoC, B3_RI_RTO_R1, SK_RI_TO_53); |
| 967 | SK_OUT8(IoC, B3_RI_RTO_XA1, SK_RI_TO_53); |
| 968 | SK_OUT8(IoC, B3_RI_RTO_XS1, SK_RI_TO_53); |
| 969 | SK_OUT8(IoC, B3_RI_WTO_R2, SK_RI_TO_53); |
| 970 | SK_OUT8(IoC, B3_RI_WTO_XA2, SK_RI_TO_53); |
| 971 | SK_OUT8(IoC, B3_RI_WTO_XS2, SK_RI_TO_53); |
| 972 | SK_OUT8(IoC, B3_RI_RTO_R2, SK_RI_TO_53); |
| 973 | SK_OUT8(IoC, B3_RI_RTO_XA2, SK_RI_TO_53); |
| 974 | SK_OUT8(IoC, B3_RI_RTO_XS2, SK_RI_TO_53); |
| 975 | |
| 976 | } /* SkGeInitRamIface */ |
| 977 | |
| 978 | |
| 979 | /****************************************************************************** |
| 980 | * |
| 981 | * SkGeInitBmu() - Initialize the BMU state machines |
| 982 | * |
| 983 | * Description: |
| 984 | * Initialize all BMU state machines of the specified port |
| 985 | * |
| 986 | * Returns: |
| 987 | * nothing |
| 988 | */ |
| 989 | static void SkGeInitBmu( |
| 990 | SK_AC *pAC, /* adapter context */ |
| 991 | SK_IOC IoC, /* IO context */ |
| 992 | int Port) /* Port Index (MAC_1 + n) */ |
| 993 | { |
| 994 | SK_GEPORT *pPrt; |
| 995 | SK_U32 RxWm; |
| 996 | SK_U32 TxWm; |
| 997 | |
| 998 | pPrt = &pAC->GIni.GP[Port]; |
| 999 | |
| 1000 | RxWm = SK_BMU_RX_WM; |
| 1001 | TxWm = SK_BMU_TX_WM; |
| 1002 | |
| 1003 | if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) { |
| 1004 | /* for better performance */ |
| 1005 | RxWm /= 2; |
| 1006 | TxWm /= 2; |
| 1007 | } |
| 1008 | |
| 1009 | /* Rx Queue: Release all local resets and set the watermark */ |
| 1010 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET); |
| 1011 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm); |
| 1012 | |
| 1013 | /* |
| 1014 | * Tx Queue: Release all local resets if the queue is used ! |
| 1015 | * set watermark |
| 1016 | */ |
| 1017 | if (pPrt->PXSQSize != 0) { |
| 1018 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET); |
| 1019 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm); |
| 1020 | } |
| 1021 | |
| 1022 | if (pPrt->PXAQSize != 0) { |
| 1023 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET); |
| 1024 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm); |
| 1025 | } |
| 1026 | /* |
| 1027 | * Do NOT enable the descriptor poll timers here, because |
| 1028 | * the descriptor addresses are not specified yet. |
| 1029 | */ |
| 1030 | } /* SkGeInitBmu */ |
| 1031 | |
| 1032 | |
| 1033 | /****************************************************************************** |
| 1034 | * |
| 1035 | * TestStopBit() - Test the stop bit of the queue |
| 1036 | * |
| 1037 | * Description: |
| 1038 | * Stopping a queue is not as simple as it seems to be. |
| 1039 | * If descriptor polling is enabled, it may happen |
| 1040 | * that RX/TX stop is done and SV idle is NOT set. |
| 1041 | * In this case we have to issue another stop command. |
| 1042 | * |
| 1043 | * Returns: |
| 1044 | * The queues control status register |
| 1045 | */ |
| 1046 | static SK_U32 TestStopBit( |
| 1047 | SK_AC *pAC, /* Adapter Context */ |
| 1048 | SK_IOC IoC, /* IO Context */ |
| 1049 | int QuIoOffs) /* Queue IO Address Offset */ |
| 1050 | { |
| 1051 | SK_U32 QuCsr; /* CSR contents */ |
| 1052 | |
| 1053 | SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| 1054 | |
| 1055 | if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) { |
| 1056 | /* Stop Descriptor overridden by start command */ |
| 1057 | SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP); |
| 1058 | |
| 1059 | SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| 1060 | } |
| 1061 | |
| 1062 | return(QuCsr); |
| 1063 | } /* TestStopBit */ |
| 1064 | |
| 1065 | |
| 1066 | /****************************************************************************** |
| 1067 | * |
| 1068 | * SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'. |
| 1069 | * |
| 1070 | * Description: |
| 1071 | * After calling this function the descriptor rings and Rx and Tx |
| 1072 | * queues of this port may be reconfigured. |
| 1073 | * |
| 1074 | * It is possible to stop the receive and transmit path separate or |
| 1075 | * both together. |
| 1076 | * |
| 1077 | * Dir = SK_STOP_TX Stops the transmit path only and resets the MAC. |
| 1078 | * The receive queue is still active and |
| 1079 | * the pending Rx frames may be still transferred |
| 1080 | * into the RxD. |
| 1081 | * SK_STOP_RX Stop the receive path. The tansmit path |
| 1082 | * has to be stopped once before. |
| 1083 | * SK_STOP_ALL SK_STOP_TX + SK_STOP_RX |
| 1084 | * |
| 1085 | * RstMode = SK_SOFT_RST Resets the MAC. The PHY is still alive. |
| 1086 | * SK_HARD_RST Resets the MAC and the PHY. |
| 1087 | * |
| 1088 | * Example: |
| 1089 | * 1) A Link Down event was signaled for a port. Therefore the activity |
| 1090 | * of this port should be stopped and a hardware reset should be issued |
| 1091 | * to enable the workaround of XMAC Errata #2. But the received frames |
| 1092 | * should not be discarded. |
| 1093 | * ... |
| 1094 | * SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST); |
| 1095 | * (transfer all pending Rx frames) |
| 1096 | * SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST); |
| 1097 | * ... |
| 1098 | * |
| 1099 | * 2) An event was issued which request the driver to switch |
| 1100 | * the 'virtual active' link to an other already active port |
| 1101 | * as soon as possible. The frames in the receive queue of this |
| 1102 | * port may be lost. But the PHY must not be reset during this |
| 1103 | * event. |
| 1104 | * ... |
| 1105 | * SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST); |
| 1106 | * ... |
| 1107 | * |
| 1108 | * Extended Description: |
| 1109 | * If SK_STOP_TX is set, |
| 1110 | * o disable the MAC's receive and transmitter to prevent |
| 1111 | * from sending incomplete frames |
| 1112 | * o stop the port's transmit queues before terminating the |
| 1113 | * BMUs to prevent from performing incomplete PCI cycles |
| 1114 | * on the PCI bus |
| 1115 | * - The network Rx and Tx activity and PCI Tx transfer is |
| 1116 | * disabled now. |
| 1117 | * o reset the MAC depending on the RstMode |
| 1118 | * o Stop Interval Timer and Limit Counter of Tx Arbiter, |
| 1119 | * also disable Force Sync bit and Enable Alloc bit. |
| 1120 | * o perform a local reset of the port's Tx path |
| 1121 | * - reset the PCI FIFO of the async Tx queue |
| 1122 | * - reset the PCI FIFO of the sync Tx queue |
| 1123 | * - reset the RAM Buffer async Tx queue |
| 1124 | * - reset the RAM Buffer sync Tx queue |
| 1125 | * - reset the MAC Tx FIFO |
| 1126 | * o switch Link and Tx LED off, stop the LED counters |
| 1127 | * |
| 1128 | * If SK_STOP_RX is set, |
| 1129 | * o stop the port's receive queue |
| 1130 | * - The path data transfer activity is fully stopped now. |
| 1131 | * o perform a local reset of the port's Rx path |
| 1132 | * - reset the PCI FIFO of the Rx queue |
| 1133 | * - reset the RAM Buffer receive queue |
| 1134 | * - reset the MAC Rx FIFO |
| 1135 | * o switch Rx LED off, stop the LED counter |
| 1136 | * |
| 1137 | * If all ports are stopped, |
| 1138 | * o reset the RAM Interface. |
| 1139 | * |
| 1140 | * Notes: |
| 1141 | * o This function may be called during the driver states RESET_PORT and |
| 1142 | * SWITCH_PORT. |
| 1143 | */ |
| 1144 | void SkGeStopPort( |
| 1145 | SK_AC *pAC, /* adapter context */ |
| 1146 | SK_IOC IoC, /* I/O context */ |
| 1147 | int Port, /* port to stop (MAC_1 + n) */ |
| 1148 | int Dir, /* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */ |
| 1149 | int RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */ |
| 1150 | { |
| 1151 | #ifndef SK_DIAG |
| 1152 | SK_EVPARA Para; |
| 1153 | #endif /* !SK_DIAG */ |
| 1154 | SK_GEPORT *pPrt; |
| 1155 | SK_U32 DWord; |
| 1156 | SK_U32 XsCsr; |
| 1157 | SK_U32 XaCsr; |
| 1158 | SK_U64 ToutStart; |
| 1159 | int i; |
| 1160 | int ToutCnt; |
| 1161 | |
| 1162 | pPrt = &pAC->GIni.GP[Port]; |
| 1163 | |
| 1164 | if ((Dir & SK_STOP_TX) != 0) { |
| 1165 | /* disable receiver and transmitter */ |
| 1166 | SkMacRxTxDisable(pAC, IoC, Port); |
| 1167 | |
| 1168 | /* stop both transmit queues */ |
| 1169 | /* |
| 1170 | * If the BMU is in the reset state CSR_STOP will terminate |
| 1171 | * immediately. |
| 1172 | */ |
| 1173 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_STOP); |
| 1174 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_STOP); |
| 1175 | |
| 1176 | ToutStart = SkOsGetTime(pAC); |
| 1177 | ToutCnt = 0; |
| 1178 | do { |
| 1179 | /* |
| 1180 | * Clear packet arbiter timeout to make sure |
| 1181 | * this loop will terminate. |
| 1182 | */ |
| 1183 | SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| 1184 | PA_CLR_TO_TX1 : PA_CLR_TO_TX2)); |
| 1185 | |
| 1186 | /* |
| 1187 | * If the transfer stucks at the MAC the STOP command will not |
| 1188 | * terminate if we don't flush the XMAC's transmit FIFO ! |
| 1189 | */ |
| 1190 | SkMacFlushTxFifo(pAC, IoC, Port); |
| 1191 | |
| 1192 | XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); |
| 1193 | XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| 1194 | |
| 1195 | if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { |
| 1196 | /* |
| 1197 | * Timeout of 1/18 second reached. |
| 1198 | * This needs to be checked at 1/18 sec only. |
| 1199 | */ |
| 1200 | ToutCnt++; |
| 1201 | if (ToutCnt > 1) { |
| 1202 | /* Might be a problem when the driver event handler |
| 1203 | * calls StopPort again. XXX. |
| 1204 | */ |
| 1205 | |
| 1206 | /* Fatal Error, Loop aborted */ |
| 1207 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E018, |
| 1208 | SKERR_HWI_E018MSG); |
| 1209 | #ifndef SK_DIAG |
| 1210 | Para.Para64 = Port; |
| 1211 | SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para); |
| 1212 | #endif /* !SK_DIAG */ |
| 1213 | return; |
| 1214 | } |
| 1215 | /* |
| 1216 | * Cache incoherency workaround: Assume a start command |
| 1217 | * has been lost while sending the frame. |
| 1218 | */ |
| 1219 | ToutStart = SkOsGetTime(pAC); |
| 1220 | |
| 1221 | if ((XsCsr & CSR_STOP) != 0) { |
| 1222 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_START); |
| 1223 | } |
| 1224 | if ((XaCsr & CSR_STOP) != 0) { |
| 1225 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_START); |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * Because of the ASIC problem report entry from 21.08.1998 it is |
| 1231 | * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. |
| 1232 | */ |
| 1233 | } while ((XsCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE || |
| 1234 | (XaCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); |
| 1235 | |
| 1236 | /* Reset the MAC depending on the RstMode */ |
| 1237 | if (RstMode == SK_SOFT_RST) { |
| 1238 | SkMacSoftRst(pAC, IoC, Port); |
| 1239 | } |
| 1240 | else { |
| 1241 | SkMacHardRst(pAC, IoC, Port); |
| 1242 | } |
| 1243 | |
| 1244 | /* Disable Force Sync bit and Enable Alloc bit */ |
| 1245 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| 1246 | TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| 1247 | |
| 1248 | /* Stop Interval Timer and Limit Counter of Tx Arbiter */ |
| 1249 | SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L); |
| 1250 | SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L); |
| 1251 | |
| 1252 | /* Perform a local reset of the port's Tx path */ |
| 1253 | |
| 1254 | /* Reset the PCI FIFO of the async Tx queue */ |
| 1255 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET); |
| 1256 | /* Reset the PCI FIFO of the sync Tx queue */ |
| 1257 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET); |
| 1258 | /* Reset the RAM Buffer async Tx queue */ |
| 1259 | SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); |
| 1260 | /* Reset the RAM Buffer sync Tx queue */ |
| 1261 | SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET); |
| 1262 | |
| 1263 | /* Reset Tx MAC FIFO */ |
| 1264 | #ifdef GENESIS |
| 1265 | if (pAC->GIni.GIGenesis) { |
| 1266 | /* Note: MFF_RST_SET does NOT reset the XMAC ! */ |
| 1267 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET); |
| 1268 | |
| 1269 | /* switch Link and Tx LED off, stop the LED counters */ |
| 1270 | /* Link LED is switched off by the RLMT and the Diag itself */ |
| 1271 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS); |
| 1272 | } |
| 1273 | #endif /* GENESIS */ |
| 1274 | |
| 1275 | #ifdef YUKON |
| 1276 | if (pAC->GIni.GIYukon) { |
| 1277 | /* Reset TX MAC FIFO */ |
| 1278 | SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| 1279 | } |
| 1280 | #endif /* YUKON */ |
| 1281 | } |
| 1282 | |
| 1283 | if ((Dir & SK_STOP_RX) != 0) { |
| 1284 | /* |
| 1285 | * The RX Stop Command will not terminate if no buffers |
| 1286 | * are queued in the RxD ring. But it will always reach |
| 1287 | * the Idle state. Therefore we can use this feature to |
| 1288 | * stop the transfer of received packets. |
| 1289 | */ |
| 1290 | /* stop the port's receive queue */ |
| 1291 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_STOP); |
| 1292 | |
| 1293 | i = 100; |
| 1294 | do { |
| 1295 | /* |
| 1296 | * Clear packet arbiter timeout to make sure |
| 1297 | * this loop will terminate |
| 1298 | */ |
| 1299 | SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| 1300 | PA_CLR_TO_RX1 : PA_CLR_TO_RX2)); |
| 1301 | |
| 1302 | DWord = TestStopBit(pAC, IoC, pPrt->PRxQOff); |
| 1303 | |
| 1304 | /* timeout if i==0 (bug fix for #10748) */ |
| 1305 | if (--i == 0) { |
| 1306 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024, |
| 1307 | SKERR_HWI_E024MSG); |
| 1308 | break; |
| 1309 | } |
| 1310 | /* |
| 1311 | * because of the ASIC problem report entry from 21.08.98 |
| 1312 | * it is required to wait until CSR_STOP is reset and |
| 1313 | * CSR_SV_IDLE is set. |
| 1314 | */ |
| 1315 | } while ((DWord & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); |
| 1316 | |
| 1317 | /* The path data transfer activity is fully stopped now */ |
| 1318 | |
| 1319 | /* Perform a local reset of the port's Rx path */ |
| 1320 | |
| 1321 | /* Reset the PCI FIFO of the Rx queue */ |
| 1322 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET); |
| 1323 | /* Reset the RAM Buffer receive queue */ |
| 1324 | SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET); |
| 1325 | |
| 1326 | /* Reset Rx MAC FIFO */ |
| 1327 | #ifdef GENESIS |
| 1328 | if (pAC->GIni.GIGenesis) { |
| 1329 | |
| 1330 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET); |
| 1331 | |
| 1332 | /* switch Rx LED off, stop the LED counter */ |
| 1333 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS); |
| 1334 | } |
| 1335 | #endif /* GENESIS */ |
| 1336 | |
| 1337 | #ifdef YUKON |
| 1338 | if (pAC->GIni.GIYukon) { |
| 1339 | /* Reset Rx MAC FIFO */ |
| 1340 | SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| 1341 | } |
| 1342 | #endif /* YUKON */ |
| 1343 | } |
| 1344 | } /* SkGeStopPort */ |
| 1345 | |
| 1346 | |
| 1347 | /****************************************************************************** |
| 1348 | * |
| 1349 | * SkGeInit0() - Level 0 Initialization |
| 1350 | * |
| 1351 | * Description: |
| 1352 | * - Initialize the BMU address offsets |
| 1353 | * |
| 1354 | * Returns: |
| 1355 | * nothing |
| 1356 | */ |
| 1357 | static void SkGeInit0( |
| 1358 | SK_AC *pAC, /* adapter context */ |
| 1359 | SK_IOC IoC) /* IO context */ |
| 1360 | { |
| 1361 | int i; |
| 1362 | SK_GEPORT *pPrt; |
| 1363 | |
| 1364 | for (i = 0; i < SK_MAX_MACS; i++) { |
| 1365 | pPrt = &pAC->GIni.GP[i]; |
| 1366 | |
| 1367 | pPrt->PState = SK_PRT_RESET; |
| 1368 | pPrt->PRxQOff = QOffTab[i].RxQOff; |
| 1369 | pPrt->PXsQOff = QOffTab[i].XsQOff; |
| 1370 | pPrt->PXaQOff = QOffTab[i].XaQOff; |
| 1371 | pPrt->PCheckPar = SK_FALSE; |
| 1372 | pPrt->PIsave = 0; |
| 1373 | pPrt->PPrevShorts = 0; |
| 1374 | pPrt->PLinkResCt = 0; |
| 1375 | pPrt->PAutoNegTOCt = 0; |
| 1376 | pPrt->PPrevRx = 0; |
| 1377 | pPrt->PPrevFcs = 0; |
| 1378 | pPrt->PRxLim = SK_DEF_RX_WA_LIM; |
| 1379 | pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL; |
| 1380 | pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS; |
| 1381 | pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS; |
| 1382 | pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN; |
| 1383 | pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE; |
| 1384 | pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| 1385 | pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL | |
| 1386 | SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL); |
| 1387 | pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN; |
| 1388 | pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| 1389 | pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE; |
| 1390 | pPrt->PMSCap = 0; |
| 1391 | pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO; |
| 1392 | pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET; |
| 1393 | pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN; |
| 1394 | pPrt->PAutoNegFail = SK_FALSE; |
| 1395 | pPrt->PHWLinkUp = SK_FALSE; |
| 1396 | pPrt->PLinkBroken = SK_TRUE; /* See WA code */ |
| 1397 | pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE; |
| 1398 | pPrt->PMacColThres = TX_COL_DEF; |
| 1399 | pPrt->PMacJamLen = TX_JAM_LEN_DEF; |
| 1400 | pPrt->PMacJamIpgVal = TX_JAM_IPG_DEF; |
| 1401 | pPrt->PMacJamIpgData = TX_IPG_JAM_DEF; |
| 1402 | pPrt->PMacIpgData = IPG_DATA_DEF; |
| 1403 | pPrt->PMacLimit4 = SK_FALSE; |
| 1404 | } |
| 1405 | |
| 1406 | pAC->GIni.GIPortUsage = SK_RED_LINK; |
| 1407 | pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value; |
| 1408 | pAC->GIni.GIValIrqMask = IS_ALL_MSK; |
| 1409 | |
| 1410 | } /* SkGeInit0*/ |
| 1411 | |
| 1412 | #ifdef SK_PCI_RESET |
| 1413 | |
| 1414 | /****************************************************************************** |
| 1415 | * |
| 1416 | * SkGePciReset() - Reset PCI interface |
| 1417 | * |
| 1418 | * Description: |
| 1419 | * o Read PCI configuration. |
| 1420 | * o Change power state to 3. |
| 1421 | * o Change power state to 0. |
| 1422 | * o Restore PCI configuration. |
| 1423 | * |
| 1424 | * Returns: |
| 1425 | * 0: Success. |
| 1426 | * 1: Power state could not be changed to 3. |
| 1427 | */ |
| 1428 | static int SkGePciReset( |
| 1429 | SK_AC *pAC, /* adapter context */ |
| 1430 | SK_IOC IoC) /* IO context */ |
| 1431 | { |
| 1432 | int i; |
| 1433 | SK_U16 PmCtlSts; |
| 1434 | SK_U32 Bp1; |
| 1435 | SK_U32 Bp2; |
| 1436 | SK_U16 PciCmd; |
| 1437 | SK_U8 Cls; |
| 1438 | SK_U8 Lat; |
| 1439 | SK_U8 ConfigSpace[PCI_CFG_SIZE]; |
| 1440 | |
| 1441 | /* |
| 1442 | * Note: Switching to D3 state is like a software reset. |
| 1443 | * Switching from D3 to D0 is a hardware reset. |
| 1444 | * We have to save and restore the configuration space. |
| 1445 | */ |
| 1446 | for (i = 0; i < PCI_CFG_SIZE; i++) { |
| 1447 | SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]); |
| 1448 | } |
| 1449 | |
| 1450 | /* We know the RAM Interface Arbiter is enabled. */ |
| 1451 | SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3); |
| 1452 | SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| 1453 | |
| 1454 | if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) { |
| 1455 | return(1); |
| 1456 | } |
| 1457 | |
| 1458 | /* Return to D0 state. */ |
| 1459 | SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0); |
| 1460 | |
| 1461 | /* Check for D0 state. */ |
| 1462 | SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| 1463 | |
| 1464 | if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) { |
| 1465 | return(1); |
| 1466 | } |
| 1467 | |
| 1468 | /* Check PCI Config Registers. */ |
| 1469 | SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd); |
| 1470 | SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls); |
| 1471 | SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1); |
| 1472 | SkPciReadCfgDWord(pAC, PCI_BASE_2ND, &Bp2); |
| 1473 | SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat); |
| 1474 | |
| 1475 | if (PciCmd != 0 || Cls != (SK_U8)0 || Lat != (SK_U8)0 || |
| 1476 | (Bp1 & 0xfffffff0L) != 0 || Bp2 != 1) { |
| 1477 | return(1); |
| 1478 | } |
| 1479 | |
| 1480 | /* Restore PCI Config Space. */ |
| 1481 | for (i = 0; i < PCI_CFG_SIZE; i++) { |
| 1482 | SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]); |
| 1483 | } |
| 1484 | |
| 1485 | return(0); |
| 1486 | } /* SkGePciReset */ |
| 1487 | |
| 1488 | #endif /* SK_PCI_RESET */ |
| 1489 | |
| 1490 | /****************************************************************************** |
| 1491 | * |
| 1492 | * SkGeInit1() - Level 1 Initialization |
| 1493 | * |
| 1494 | * Description: |
| 1495 | * o Do a software reset. |
| 1496 | * o Clear all reset bits. |
| 1497 | * o Verify that the detected hardware is present. |
| 1498 | * Return an error if not. |
| 1499 | * o Get the hardware configuration |
| 1500 | * + Read the number of MACs/Ports. |
| 1501 | * + Read the RAM size. |
| 1502 | * + Read the PCI Revision Id. |
| 1503 | * + Find out the adapters host clock speed |
| 1504 | * + Read and check the PHY type |
| 1505 | * |
| 1506 | * Returns: |
| 1507 | * 0: success |
| 1508 | * 5: Unexpected PHY type detected |
| 1509 | * 6: HW self test failed |
| 1510 | */ |
| 1511 | static int SkGeInit1( |
| 1512 | SK_AC *pAC, /* adapter context */ |
| 1513 | SK_IOC IoC) /* IO context */ |
| 1514 | { |
| 1515 | SK_U8 Byte; |
| 1516 | SK_U16 Word; |
| 1517 | SK_U16 CtrlStat; |
| 1518 | SK_U32 DWord; |
| 1519 | int RetVal; |
| 1520 | int i; |
| 1521 | |
| 1522 | RetVal = 0; |
| 1523 | |
| 1524 | /* save CLK_RUN bits (YUKON-Lite) */ |
| 1525 | SK_IN16(IoC, B0_CTST, &CtrlStat); |
| 1526 | |
| 1527 | #ifdef SK_PCI_RESET |
| 1528 | (void)SkGePciReset(pAC, IoC); |
| 1529 | #endif /* SK_PCI_RESET */ |
| 1530 | |
| 1531 | /* do the SW-reset */ |
| 1532 | SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| 1533 | |
| 1534 | /* release the SW-reset */ |
| 1535 | SK_OUT8(IoC, B0_CTST, CS_RST_CLR); |
| 1536 | |
| 1537 | /* reset all error bits in the PCI STATUS register */ |
| 1538 | /* |
| 1539 | * Note: PCI Cfg cycles cannot be used, because they are not |
| 1540 | * available on some platforms after 'boot time'. |
| 1541 | */ |
| 1542 | SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); |
| 1543 | |
| 1544 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| 1545 | SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); |
| 1546 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| 1547 | |
| 1548 | /* release Master Reset */ |
| 1549 | SK_OUT8(IoC, B0_CTST, CS_MRST_CLR); |
| 1550 | |
| 1551 | #ifdef CLK_RUN |
| 1552 | CtrlStat |= CS_CLK_RUN_ENA; |
| 1553 | #endif /* CLK_RUN */ |
| 1554 | |
| 1555 | /* restore CLK_RUN bits */ |
| 1556 | SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat & |
| 1557 | (CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA))); |
| 1558 | |
| 1559 | /* read Chip Identification Number */ |
| 1560 | SK_IN8(IoC, B2_CHIP_ID, &Byte); |
| 1561 | pAC->GIni.GIChipId = Byte; |
| 1562 | |
| 1563 | /* read number of MACs */ |
| 1564 | SK_IN8(IoC, B2_MAC_CFG, &Byte); |
| 1565 | pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2; |
| 1566 | |
| 1567 | /* get Chip Revision Number */ |
| 1568 | pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4); |
| 1569 | |
| 1570 | /* get diff. PCI parameters */ |
| 1571 | SK_IN16(IoC, B0_CTST, &CtrlStat); |
| 1572 | |
| 1573 | /* read the adapters RAM size */ |
| 1574 | SK_IN8(IoC, B2_E_0, &Byte); |
| 1575 | |
| 1576 | pAC->GIni.GIGenesis = SK_FALSE; |
| 1577 | pAC->GIni.GIYukon = SK_FALSE; |
| 1578 | pAC->GIni.GIYukonLite = SK_FALSE; |
| 1579 | |
| 1580 | #ifdef GENESIS |
| 1581 | if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) { |
| 1582 | |
| 1583 | pAC->GIni.GIGenesis = SK_TRUE; |
| 1584 | |
| 1585 | if (Byte == (SK_U8)3) { |
| 1586 | /* special case: 4 x 64k x 36, offset = 0x80000 */ |
| 1587 | pAC->GIni.GIRamSize = 1024; |
| 1588 | pAC->GIni.GIRamOffs = (SK_U32)512 * 1024; |
| 1589 | } |
| 1590 | else { |
| 1591 | pAC->GIni.GIRamSize = (int)Byte * 512; |
| 1592 | pAC->GIni.GIRamOffs = 0; |
| 1593 | } |
| 1594 | /* all GE adapters work with 53.125 MHz host clock */ |
| 1595 | pAC->GIni.GIHstClkFact = SK_FACT_53; |
| 1596 | |
| 1597 | /* set Descr. Poll Timer Init Value to 250 ms */ |
| 1598 | pAC->GIni.GIPollTimerVal = |
| 1599 | SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| 1600 | } |
| 1601 | #endif /* GENESIS */ |
| 1602 | |
| 1603 | #ifdef YUKON |
| 1604 | if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) { |
| 1605 | |
| 1606 | pAC->GIni.GIYukon = SK_TRUE; |
| 1607 | |
| 1608 | pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4; |
| 1609 | |
| 1610 | pAC->GIni.GIRamOffs = 0; |
| 1611 | |
| 1612 | /* WA for chip Rev. A */ |
| 1613 | pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON && |
| 1614 | pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0; |
| 1615 | |
| 1616 | /* get PM Capabilities of PCI config space */ |
| 1617 | SK_IN16(IoC, PCI_C(PCI_PM_CAP_REG), &Word); |
| 1618 | |
| 1619 | /* check if VAUX is available */ |
| 1620 | if (((CtrlStat & CS_VAUX_AVAIL) != 0) && |
| 1621 | /* check also if PME from D3cold is set */ |
| 1622 | ((Word & PCI_PME_D3C_SUP) != 0)) { |
| 1623 | /* set entry in GE init struct */ |
| 1624 | pAC->GIni.GIVauxAvail = SK_TRUE; |
| 1625 | } |
| 1626 | |
| 1627 | if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) { |
| 1628 | /* this is Rev. A1 */ |
| 1629 | pAC->GIni.GIYukonLite = SK_TRUE; |
| 1630 | } |
| 1631 | else { |
| 1632 | /* save Flash-Address Register */ |
| 1633 | SK_IN32(IoC, B2_FAR, &DWord); |
| 1634 | |
| 1635 | /* test Flash-Address Register */ |
| 1636 | SK_OUT8(IoC, B2_FAR + 3, 0xff); |
| 1637 | SK_IN8(IoC, B2_FAR + 3, &Byte); |
| 1638 | |
| 1639 | if (Byte != 0) { |
| 1640 | /* this is Rev. A0 */ |
| 1641 | pAC->GIni.GIYukonLite = SK_TRUE; |
| 1642 | |
| 1643 | /* restore Flash-Address Register */ |
| 1644 | SK_OUT32(IoC, B2_FAR, DWord); |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | /* switch power to VCC (WA for VAUX problem) */ |
| 1649 | SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | |
| 1650 | PC_VAUX_OFF | PC_VCC_ON)); |
| 1651 | |
| 1652 | /* read the Interrupt source */ |
| 1653 | SK_IN32(IoC, B0_ISRC, &DWord); |
| 1654 | |
| 1655 | if ((DWord & IS_HW_ERR) != 0) { |
| 1656 | /* read the HW Error Interrupt source */ |
| 1657 | SK_IN32(IoC, B0_HWE_ISRC, &DWord); |
| 1658 | |
| 1659 | if ((DWord & IS_IRQ_SENSOR) != 0) { |
| 1660 | /* disable HW Error IRQ */ |
| 1661 | pAC->GIni.GIValIrqMask &= ~IS_HW_ERR; |
| 1662 | } |
| 1663 | } |
| 1664 | |
| 1665 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 1666 | /* set GMAC Link Control reset */ |
| 1667 | SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET); |
| 1668 | |
| 1669 | /* clear GMAC Link Control reset */ |
| 1670 | SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR); |
| 1671 | } |
| 1672 | /* all YU chips work with 78.125 MHz host clock */ |
| 1673 | pAC->GIni.GIHstClkFact = SK_FACT_78; |
| 1674 | |
| 1675 | pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; /* 215 ms */ |
| 1676 | } |
| 1677 | #endif /* YUKON */ |
| 1678 | |
| 1679 | /* check if 64-bit PCI Slot is present */ |
| 1680 | pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0); |
| 1681 | |
| 1682 | /* check if 66 MHz PCI Clock is active */ |
| 1683 | pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0); |
| 1684 | |
| 1685 | /* read PCI HW Revision Id. */ |
| 1686 | SK_IN8(IoC, PCI_C(PCI_REV_ID), &Byte); |
| 1687 | pAC->GIni.GIPciHwRev = Byte; |
| 1688 | |
| 1689 | /* read the PMD type */ |
| 1690 | SK_IN8(IoC, B2_PMD_TYP, &Byte); |
| 1691 | pAC->GIni.GICopperType = (SK_U8)(Byte == 'T'); |
| 1692 | |
| 1693 | /* read the PHY type */ |
| 1694 | SK_IN8(IoC, B2_E_1, &Byte); |
| 1695 | |
| 1696 | Byte &= 0x0f; /* the PHY type is stored in the lower nibble */ |
| 1697 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 1698 | |
| 1699 | #ifdef GENESIS |
| 1700 | if (pAC->GIni.GIGenesis) { |
| 1701 | switch (Byte) { |
| 1702 | case SK_PHY_XMAC: |
| 1703 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_XMAC; |
| 1704 | break; |
| 1705 | case SK_PHY_BCOM: |
| 1706 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_BCOM; |
| 1707 | pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| 1708 | SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| 1709 | break; |
| 1710 | #ifdef OTHER_PHY |
| 1711 | case SK_PHY_LONE: |
| 1712 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_LONE; |
| 1713 | break; |
| 1714 | case SK_PHY_NAT: |
| 1715 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_NAT; |
| 1716 | break; |
| 1717 | #endif /* OTHER_PHY */ |
| 1718 | default: |
| 1719 | /* ERROR: unexpected PHY type detected */ |
| 1720 | RetVal = 5; |
| 1721 | break; |
| 1722 | } |
| 1723 | } |
| 1724 | #endif /* GENESIS */ |
| 1725 | |
| 1726 | #ifdef YUKON |
| 1727 | if (pAC->GIni.GIYukon) { |
| 1728 | |
| 1729 | if (Byte < (SK_U8)SK_PHY_MARV_COPPER) { |
| 1730 | /* if this field is not initialized */ |
| 1731 | Byte = (SK_U8)SK_PHY_MARV_COPPER; |
| 1732 | |
| 1733 | pAC->GIni.GICopperType = SK_TRUE; |
| 1734 | } |
| 1735 | |
| 1736 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_MARV; |
| 1737 | |
| 1738 | if (pAC->GIni.GICopperType) { |
| 1739 | |
| 1740 | pAC->GIni.GP[i].PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_AUTO | |
| 1741 | SK_LSPEED_CAP_10MBPS | SK_LSPEED_CAP_100MBPS | |
| 1742 | SK_LSPEED_CAP_1000MBPS); |
| 1743 | |
| 1744 | pAC->GIni.GP[i].PLinkSpeed = (SK_U8)SK_LSPEED_AUTO; |
| 1745 | |
| 1746 | pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| 1747 | SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| 1748 | } |
| 1749 | else { |
| 1750 | Byte = (SK_U8)SK_PHY_MARV_FIBER; |
| 1751 | } |
| 1752 | } |
| 1753 | #endif /* YUKON */ |
| 1754 | |
| 1755 | pAC->GIni.GP[i].PhyType = (int)Byte; |
| 1756 | |
| 1757 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| 1758 | ("PHY type: %d PHY addr: %04x\n", Byte, |
| 1759 | pAC->GIni.GP[i].PhyAddr)); |
| 1760 | } |
| 1761 | |
| 1762 | /* get MAC Type & set function pointers dependent on */ |
| 1763 | #ifdef GENESIS |
| 1764 | if (pAC->GIni.GIGenesis) { |
| 1765 | |
| 1766 | pAC->GIni.GIMacType = SK_MAC_XMAC; |
| 1767 | |
| 1768 | pAC->GIni.GIFunc.pFnMacUpdateStats = SkXmUpdateStats; |
| 1769 | pAC->GIni.GIFunc.pFnMacStatistic = SkXmMacStatistic; |
| 1770 | pAC->GIni.GIFunc.pFnMacResetCounter = SkXmResetCounter; |
| 1771 | pAC->GIni.GIFunc.pFnMacOverflow = SkXmOverflowStatus; |
| 1772 | } |
| 1773 | #endif /* GENESIS */ |
| 1774 | |
| 1775 | #ifdef YUKON |
| 1776 | if (pAC->GIni.GIYukon) { |
| 1777 | |
| 1778 | pAC->GIni.GIMacType = SK_MAC_GMAC; |
| 1779 | |
| 1780 | pAC->GIni.GIFunc.pFnMacUpdateStats = SkGmUpdateStats; |
| 1781 | pAC->GIni.GIFunc.pFnMacStatistic = SkGmMacStatistic; |
| 1782 | pAC->GIni.GIFunc.pFnMacResetCounter = SkGmResetCounter; |
| 1783 | pAC->GIni.GIFunc.pFnMacOverflow = SkGmOverflowStatus; |
| 1784 | |
| 1785 | #ifdef SPECIAL_HANDLING |
| 1786 | if (pAC->GIni.GIChipId == CHIP_ID_YUKON) { |
| 1787 | /* check HW self test result */ |
| 1788 | SK_IN8(IoC, B2_E_3, &Byte); |
| 1789 | if (Byte & B2_E3_RES_MASK) { |
| 1790 | RetVal = 6; |
| 1791 | } |
| 1792 | } |
| 1793 | #endif |
| 1794 | } |
| 1795 | #endif /* YUKON */ |
| 1796 | |
| 1797 | return(RetVal); |
| 1798 | } /* SkGeInit1 */ |
| 1799 | |
| 1800 | |
| 1801 | /****************************************************************************** |
| 1802 | * |
| 1803 | * SkGeInit2() - Level 2 Initialization |
| 1804 | * |
| 1805 | * Description: |
| 1806 | * - start the Blink Source Counter |
| 1807 | * - start the Descriptor Poll Timer |
| 1808 | * - configure the MAC-Arbiter |
| 1809 | * - configure the Packet-Arbiter |
| 1810 | * - enable the Tx Arbiters |
| 1811 | * - enable the RAM Interface Arbiter |
| 1812 | * |
| 1813 | * Returns: |
| 1814 | * nothing |
| 1815 | */ |
| 1816 | static void SkGeInit2( |
| 1817 | SK_AC *pAC, /* adapter context */ |
| 1818 | SK_IOC IoC) /* IO context */ |
| 1819 | { |
| 1820 | #ifdef GENESIS |
| 1821 | SK_U32 DWord; |
| 1822 | #endif /* GENESIS */ |
| 1823 | int i; |
| 1824 | |
| 1825 | /* start the Descriptor Poll Timer */ |
| 1826 | if (pAC->GIni.GIPollTimerVal != 0) { |
| 1827 | if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) { |
| 1828 | pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; |
| 1829 | |
| 1830 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG); |
| 1831 | } |
| 1832 | SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal); |
| 1833 | SK_OUT8(IoC, B28_DPT_CTRL, DPT_START); |
| 1834 | } |
| 1835 | |
| 1836 | #ifdef GENESIS |
| 1837 | if (pAC->GIni.GIGenesis) { |
| 1838 | /* start the Blink Source Counter */ |
| 1839 | DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| 1840 | |
| 1841 | SK_OUT32(IoC, B2_BSC_INI, DWord); |
| 1842 | SK_OUT8(IoC, B2_BSC_CTRL, BSC_START); |
| 1843 | |
| 1844 | /* |
| 1845 | * Configure the MAC Arbiter and the Packet Arbiter. |
| 1846 | * They will be started once and never be stopped. |
| 1847 | */ |
| 1848 | SkGeInitMacArb(pAC, IoC); |
| 1849 | |
| 1850 | SkGeInitPktArb(pAC, IoC); |
| 1851 | } |
| 1852 | #endif /* GENESIS */ |
| 1853 | |
| 1854 | #ifdef YUKON |
| 1855 | if (pAC->GIni.GIYukon) { |
| 1856 | /* start Time Stamp Timer */ |
| 1857 | SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START); |
| 1858 | } |
| 1859 | #endif /* YUKON */ |
| 1860 | |
| 1861 | /* enable the Tx Arbiters */ |
| 1862 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 1863 | SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB); |
| 1864 | } |
| 1865 | |
| 1866 | /* enable the RAM Interface Arbiter */ |
| 1867 | SkGeInitRamIface(pAC, IoC); |
| 1868 | |
| 1869 | } /* SkGeInit2 */ |
| 1870 | |
| 1871 | /****************************************************************************** |
| 1872 | * |
| 1873 | * SkGeInit() - Initialize the GE Adapter with the specified level. |
| 1874 | * |
| 1875 | * Description: |
| 1876 | * Level 0: Initialize the Module structures. |
| 1877 | * Level 1: Generic Hardware Initialization. The IOP/MemBase pointer has |
| 1878 | * to be set before calling this level. |
| 1879 | * |
| 1880 | * o Do a software reset. |
| 1881 | * o Clear all reset bits. |
| 1882 | * o Verify that the detected hardware is present. |
| 1883 | * Return an error if not. |
| 1884 | * o Get the hardware configuration |
| 1885 | * + Set GIMacsFound with the number of MACs. |
| 1886 | * + Store the RAM size in GIRamSize. |
| 1887 | * + Save the PCI Revision ID in GIPciHwRev. |
| 1888 | * o return an error |
| 1889 | * if Number of MACs > SK_MAX_MACS |
| 1890 | * |
| 1891 | * After returning from Level 0 the adapter |
| 1892 | * may be accessed with IO operations. |
| 1893 | * |
| 1894 | * Level 2: start the Blink Source Counter |
| 1895 | * |
| 1896 | * Returns: |
| 1897 | * 0: success |
| 1898 | * 1: Number of MACs exceeds SK_MAX_MACS (after level 1) |
| 1899 | * 2: Adapter not present or not accessible |
| 1900 | * 3: Illegal initialization level |
| 1901 | * 4: Initialization Level 1 Call missing |
| 1902 | * 5: Unexpected PHY type detected |
| 1903 | * 6: HW self test failed |
| 1904 | */ |
| 1905 | int SkGeInit( |
| 1906 | SK_AC *pAC, /* adapter context */ |
| 1907 | SK_IOC IoC, /* IO context */ |
| 1908 | int Level) /* initialization level */ |
| 1909 | { |
| 1910 | int RetVal; /* return value */ |
| 1911 | SK_U32 DWord; |
| 1912 | |
| 1913 | RetVal = 0; |
| 1914 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| 1915 | ("SkGeInit(Level %d)\n", Level)); |
| 1916 | |
| 1917 | switch (Level) { |
| 1918 | case SK_INIT_DATA: |
| 1919 | /* Initialization Level 0 */ |
| 1920 | SkGeInit0(pAC, IoC); |
| 1921 | pAC->GIni.GILevel = SK_INIT_DATA; |
| 1922 | break; |
| 1923 | |
| 1924 | case SK_INIT_IO: |
| 1925 | /* Initialization Level 1 */ |
| 1926 | RetVal = SkGeInit1(pAC, IoC); |
| 1927 | if (RetVal != 0) { |
| 1928 | break; |
| 1929 | } |
| 1930 | |
| 1931 | /* check if the adapter seems to be accessible */ |
| 1932 | SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL); |
| 1933 | SK_IN32(IoC, B2_IRQM_INI, &DWord); |
| 1934 | SK_OUT32(IoC, B2_IRQM_INI, 0L); |
| 1935 | |
| 1936 | if (DWord != SK_TEST_VAL) { |
| 1937 | RetVal = 2; |
| 1938 | break; |
| 1939 | } |
| 1940 | |
| 1941 | /* check if the number of GIMacsFound matches SK_MAX_MACS */ |
| 1942 | if (pAC->GIni.GIMacsFound > SK_MAX_MACS) { |
| 1943 | RetVal = 1; |
| 1944 | break; |
| 1945 | } |
| 1946 | |
| 1947 | /* Level 1 successfully passed */ |
| 1948 | pAC->GIni.GILevel = SK_INIT_IO; |
| 1949 | break; |
| 1950 | |
| 1951 | case SK_INIT_RUN: |
| 1952 | /* Initialization Level 2 */ |
| 1953 | if (pAC->GIni.GILevel != SK_INIT_IO) { |
| 1954 | #ifndef SK_DIAG |
| 1955 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG); |
| 1956 | #endif /* !SK_DIAG */ |
| 1957 | RetVal = 4; |
| 1958 | break; |
| 1959 | } |
| 1960 | SkGeInit2(pAC, IoC); |
| 1961 | |
| 1962 | /* Level 2 successfully passed */ |
| 1963 | pAC->GIni.GILevel = SK_INIT_RUN; |
| 1964 | break; |
| 1965 | |
| 1966 | default: |
| 1967 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG); |
| 1968 | RetVal = 3; |
| 1969 | break; |
| 1970 | } |
| 1971 | |
| 1972 | return(RetVal); |
| 1973 | } /* SkGeInit */ |
| 1974 | |
| 1975 | |
| 1976 | /****************************************************************************** |
| 1977 | * |
| 1978 | * SkGeDeInit() - Deinitialize the adapter |
| 1979 | * |
| 1980 | * Description: |
| 1981 | * All ports of the adapter will be stopped if not already done. |
| 1982 | * Do a software reset and switch off all LEDs. |
| 1983 | * |
| 1984 | * Returns: |
| 1985 | * nothing |
| 1986 | */ |
| 1987 | void SkGeDeInit( |
| 1988 | SK_AC *pAC, /* adapter context */ |
| 1989 | SK_IOC IoC) /* IO context */ |
| 1990 | { |
| 1991 | int i; |
| 1992 | SK_U16 Word; |
| 1993 | |
| 1994 | #ifdef SK_PHY_LP_MODE |
| 1995 | SK_U8 Byte; |
| 1996 | SK_U16 PmCtlSts; |
| 1997 | #endif /* SK_PHY_LP_MODE */ |
| 1998 | |
| 1999 | #if (!defined(SK_SLIM) && !defined(VCPU)) |
| 2000 | /* ensure I2C is ready */ |
| 2001 | SkI2cWaitIrq(pAC, IoC); |
| 2002 | #endif |
| 2003 | |
| 2004 | /* stop all current transfer activity */ |
| 2005 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 2006 | if (pAC->GIni.GP[i].PState != SK_PRT_STOP && |
| 2007 | pAC->GIni.GP[i].PState != SK_PRT_RESET) { |
| 2008 | |
| 2009 | SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST); |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | #ifdef SK_PHY_LP_MODE |
| 2014 | /* |
| 2015 | * for power saving purposes within mobile environments |
| 2016 | * we set the PHY to coma mode and switch to D3 power state. |
| 2017 | */ |
| 2018 | if (pAC->GIni.GIYukonLite && |
| 2019 | pAC->GIni.GIChipRev == CHIP_REV_YU_LITE_A3) { |
| 2020 | |
| 2021 | /* for all ports switch PHY to coma mode */ |
| 2022 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| 2023 | |
| 2024 | SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP); |
| 2025 | } |
| 2026 | |
| 2027 | if (pAC->GIni.GIVauxAvail) { |
| 2028 | /* switch power to VAUX */ |
| 2029 | Byte = PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF; |
| 2030 | |
| 2031 | SK_OUT8(IoC, B0_POWER_CTRL, Byte); |
| 2032 | } |
| 2033 | |
| 2034 | /* switch to D3 state */ |
| 2035 | SK_IN16(IoC, PCI_C(PCI_PM_CTL_STS), &PmCtlSts); |
| 2036 | |
| 2037 | PmCtlSts |= PCI_PM_STATE_D3; |
| 2038 | |
| 2039 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| 2040 | |
| 2041 | SK_OUT16(IoC, PCI_C(PCI_PM_CTL_STS), PmCtlSts); |
| 2042 | } |
| 2043 | #endif /* SK_PHY_LP_MODE */ |
| 2044 | |
| 2045 | /* Reset all bits in the PCI STATUS register */ |
| 2046 | /* |
| 2047 | * Note: PCI Cfg cycles cannot be used, because they are not |
| 2048 | * available on some platforms after 'boot time'. |
| 2049 | */ |
| 2050 | SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); |
| 2051 | |
| 2052 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| 2053 | SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); |
| 2054 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| 2055 | |
| 2056 | /* do the reset, all LEDs are switched off now */ |
| 2057 | SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| 2058 | |
| 2059 | pAC->GIni.GILevel = SK_INIT_DATA; |
| 2060 | } /* SkGeDeInit */ |
| 2061 | |
| 2062 | |
| 2063 | /****************************************************************************** |
| 2064 | * |
| 2065 | * SkGeInitPort() Initialize the specified port. |
| 2066 | * |
| 2067 | * Description: |
| 2068 | * PRxQSize, PXSQSize, and PXAQSize has to be |
| 2069 | * configured for the specified port before calling this function. |
| 2070 | * The descriptor rings has to be initialized too. |
| 2071 | * |
| 2072 | * o (Re)configure queues of the specified port. |
| 2073 | * o configure the MAC of the specified port. |
| 2074 | * o put ASIC and MAC(s) in operational mode. |
| 2075 | * o initialize Rx/Tx and Sync LED |
| 2076 | * o initialize RAM Buffers and MAC FIFOs |
| 2077 | * |
| 2078 | * The port is ready to connect when returning. |
| 2079 | * |
| 2080 | * Note: |
| 2081 | * The MAC's Rx and Tx state machine is still disabled when returning. |
| 2082 | * |
| 2083 | * Returns: |
| 2084 | * 0: success |
| 2085 | * 1: Queue size initialization error. The configured values |
| 2086 | * for PRxQSize, PXSQSize, or PXAQSize are invalid for one |
| 2087 | * or more queues. The specified port was NOT initialized. |
| 2088 | * An error log entry was generated. |
| 2089 | * 2: The port has to be stopped before it can be initialized again. |
| 2090 | */ |
| 2091 | int SkGeInitPort( |
| 2092 | SK_AC *pAC, /* adapter context */ |
| 2093 | SK_IOC IoC, /* IO context */ |
| 2094 | int Port) /* Port to configure */ |
| 2095 | { |
| 2096 | SK_GEPORT *pPrt; |
| 2097 | |
| 2098 | pPrt = &pAC->GIni.GP[Port]; |
| 2099 | |
| 2100 | if (SkGeCheckQSize(pAC, Port) != 0) { |
| 2101 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG); |
| 2102 | return(1); |
| 2103 | } |
| 2104 | |
| 2105 | if (pPrt->PState == SK_PRT_INIT || pPrt->PState == SK_PRT_RUN) { |
| 2106 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG); |
| 2107 | return(2); |
| 2108 | } |
| 2109 | |
| 2110 | /* configuration ok, initialize the Port now */ |
| 2111 | |
| 2112 | #ifdef GENESIS |
| 2113 | if (pAC->GIni.GIGenesis) { |
| 2114 | /* initialize Rx, Tx and Link LED */ |
| 2115 | /* |
| 2116 | * If 1000BT Phy needs LED initialization than swap |
| 2117 | * LED and XMAC initialization order |
| 2118 | */ |
| 2119 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| 2120 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA); |
| 2121 | /* The Link LED is initialized by RLMT or Diagnostics itself */ |
| 2122 | |
| 2123 | SkXmInitMac(pAC, IoC, Port); |
| 2124 | } |
| 2125 | #endif /* GENESIS */ |
| 2126 | |
| 2127 | #ifdef YUKON |
| 2128 | if (pAC->GIni.GIYukon) { |
| 2129 | |
| 2130 | SkGmInitMac(pAC, IoC, Port); |
| 2131 | } |
| 2132 | #endif /* YUKON */ |
| 2133 | |
| 2134 | /* do NOT initialize the Link Sync Counter */ |
| 2135 | |
| 2136 | SkGeInitMacFifo(pAC, IoC, Port); |
| 2137 | |
| 2138 | SkGeInitRamBufs(pAC, IoC, Port); |
| 2139 | |
| 2140 | if (pPrt->PXSQSize != 0) { |
| 2141 | /* enable Force Sync bit if synchronous queue available */ |
| 2142 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC); |
| 2143 | } |
| 2144 | |
| 2145 | SkGeInitBmu(pAC, IoC, Port); |
| 2146 | |
| 2147 | /* mark port as initialized */ |
| 2148 | pPrt->PState = SK_PRT_INIT; |
| 2149 | |
| 2150 | return(0); |
| 2151 | } /* SkGeInitPort */ |