| /* |
| * zswap.c - zswap driver file |
| * |
| * zswap is a backend for frontswap that takes pages that are in the process |
| * of being swapped out and attempts to compress and store them in a |
| * RAM-based memory pool. This can result in a significant I/O reduction on |
| * the swap device and, in the case where decompressing from RAM is faster |
| * than reading from the swap device, can also improve workload performance. |
| * |
| * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/frontswap.h> |
| #include <linux/rbtree.h> |
| #include <linux/swap.h> |
| #include <linux/crypto.h> |
| #include <linux/mempool.h> |
| #include <linux/zbud.h> |
| |
| #include <linux/mm_types.h> |
| #include <linux/page-flags.h> |
| #include <linux/swapops.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| |
| /********************************* |
| * statistics |
| **********************************/ |
| /* Number of memory pages used by the compressed pool */ |
| static u64 zswap_pool_pages; |
| /* The number of compressed pages currently stored in zswap */ |
| static atomic_t zswap_stored_pages = ATOMIC_INIT(0); |
| |
| /* |
| * The statistics below are not protected from concurrent access for |
| * performance reasons so they may not be a 100% accurate. However, |
| * they do provide useful information on roughly how many times a |
| * certain event is occurring. |
| */ |
| |
| /* Pool limit was hit (see zswap_max_pool_percent) */ |
| static u64 zswap_pool_limit_hit; |
| /* Pages written back when pool limit was reached */ |
| static u64 zswap_written_back_pages; |
| /* Store failed due to a reclaim failure after pool limit was reached */ |
| static u64 zswap_reject_reclaim_fail; |
| /* Compressed page was too big for the allocator to (optimally) store */ |
| static u64 zswap_reject_compress_poor; |
| /* Store failed because underlying allocator could not get memory */ |
| static u64 zswap_reject_alloc_fail; |
| /* Store failed because the entry metadata could not be allocated (rare) */ |
| static u64 zswap_reject_kmemcache_fail; |
| /* Duplicate store was encountered (rare) */ |
| static u64 zswap_duplicate_entry; |
| |
| /********************************* |
| * tunables |
| **********************************/ |
| /* Enable/disable zswap (disabled by default, fixed at boot for now) */ |
| static bool zswap_enabled __read_mostly; |
| module_param_named(enabled, zswap_enabled, bool, 0); |
| |
| /* Compressor to be used by zswap (fixed at boot for now) */ |
| #define ZSWAP_COMPRESSOR_DEFAULT "lzo" |
| static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; |
| module_param_named(compressor, zswap_compressor, charp, 0); |
| |
| /* The maximum percentage of memory that the compressed pool can occupy */ |
| static unsigned int zswap_max_pool_percent = 20; |
| module_param_named(max_pool_percent, |
| zswap_max_pool_percent, uint, 0644); |
| |
| /********************************* |
| * compression functions |
| **********************************/ |
| /* per-cpu compression transforms */ |
| static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; |
| |
| enum comp_op { |
| ZSWAP_COMPOP_COMPRESS, |
| ZSWAP_COMPOP_DECOMPRESS |
| }; |
| |
| static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen) |
| { |
| struct crypto_comp *tfm; |
| int ret; |
| |
| tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); |
| switch (op) { |
| case ZSWAP_COMPOP_COMPRESS: |
| ret = crypto_comp_compress(tfm, src, slen, dst, dlen); |
| break; |
| case ZSWAP_COMPOP_DECOMPRESS: |
| ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| put_cpu(); |
| return ret; |
| } |
| |
| static int __init zswap_comp_init(void) |
| { |
| if (!crypto_has_comp(zswap_compressor, 0, 0)) { |
| pr_info("%s compressor not available\n", zswap_compressor); |
| /* fall back to default compressor */ |
| zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; |
| if (!crypto_has_comp(zswap_compressor, 0, 0)) |
| /* can't even load the default compressor */ |
| return -ENODEV; |
| } |
| pr_info("using %s compressor\n", zswap_compressor); |
| |
| /* alloc percpu transforms */ |
| zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); |
| if (!zswap_comp_pcpu_tfms) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void zswap_comp_exit(void) |
| { |
| /* free percpu transforms */ |
| if (zswap_comp_pcpu_tfms) |
| free_percpu(zswap_comp_pcpu_tfms); |
| } |
| |
| /********************************* |
| * data structures |
| **********************************/ |
| /* |
| * struct zswap_entry |
| * |
| * This structure contains the metadata for tracking a single compressed |
| * page within zswap. |
| * |
| * rbnode - links the entry into red-black tree for the appropriate swap type |
| * refcount - the number of outstanding reference to the entry. This is needed |
| * to protect against premature freeing of the entry by code |
| * concurent calls to load, invalidate, and writeback. The lock |
| * for the zswap_tree structure that contains the entry must |
| * be held while changing the refcount. Since the lock must |
| * be held, there is no reason to also make refcount atomic. |
| * offset - the swap offset for the entry. Index into the red-black tree. |
| * handle - zsmalloc allocation handle that stores the compressed page data |
| * length - the length in bytes of the compressed page data. Needed during |
| * decompression |
| */ |
| struct zswap_entry { |
| struct rb_node rbnode; |
| pgoff_t offset; |
| int refcount; |
| unsigned int length; |
| unsigned long handle; |
| }; |
| |
| struct zswap_header { |
| swp_entry_t swpentry; |
| }; |
| |
| /* |
| * The tree lock in the zswap_tree struct protects a few things: |
| * - the rbtree |
| * - the refcount field of each entry in the tree |
| */ |
| struct zswap_tree { |
| struct rb_root rbroot; |
| spinlock_t lock; |
| struct zbud_pool *pool; |
| }; |
| |
| static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; |
| |
| /********************************* |
| * zswap entry functions |
| **********************************/ |
| static struct kmem_cache *zswap_entry_cache; |
| |
| static int zswap_entry_cache_create(void) |
| { |
| zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); |
| return (zswap_entry_cache == NULL); |
| } |
| |
| static void zswap_entry_cache_destory(void) |
| { |
| kmem_cache_destroy(zswap_entry_cache); |
| } |
| |
| static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) |
| { |
| struct zswap_entry *entry; |
| entry = kmem_cache_alloc(zswap_entry_cache, gfp); |
| if (!entry) |
| return NULL; |
| entry->refcount = 1; |
| return entry; |
| } |
| |
| static void zswap_entry_cache_free(struct zswap_entry *entry) |
| { |
| kmem_cache_free(zswap_entry_cache, entry); |
| } |
| |
| /* caller must hold the tree lock */ |
| static void zswap_entry_get(struct zswap_entry *entry) |
| { |
| entry->refcount++; |
| } |
| |
| /* caller must hold the tree lock */ |
| static int zswap_entry_put(struct zswap_entry *entry) |
| { |
| entry->refcount--; |
| return entry->refcount; |
| } |
| |
| /********************************* |
| * rbtree functions |
| **********************************/ |
| static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) |
| { |
| struct rb_node *node = root->rb_node; |
| struct zswap_entry *entry; |
| |
| while (node) { |
| entry = rb_entry(node, struct zswap_entry, rbnode); |
| if (entry->offset > offset) |
| node = node->rb_left; |
| else if (entry->offset < offset) |
| node = node->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| /* |
| * In the case that a entry with the same offset is found, a pointer to |
| * the existing entry is stored in dupentry and the function returns -EEXIST |
| */ |
| static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, |
| struct zswap_entry **dupentry) |
| { |
| struct rb_node **link = &root->rb_node, *parent = NULL; |
| struct zswap_entry *myentry; |
| |
| while (*link) { |
| parent = *link; |
| myentry = rb_entry(parent, struct zswap_entry, rbnode); |
| if (myentry->offset > entry->offset) |
| link = &(*link)->rb_left; |
| else if (myentry->offset < entry->offset) |
| link = &(*link)->rb_right; |
| else { |
| *dupentry = myentry; |
| return -EEXIST; |
| } |
| } |
| rb_link_node(&entry->rbnode, parent, link); |
| rb_insert_color(&entry->rbnode, root); |
| return 0; |
| } |
| |
| /********************************* |
| * per-cpu code |
| **********************************/ |
| static DEFINE_PER_CPU(u8 *, zswap_dstmem); |
| |
| static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) |
| { |
| struct crypto_comp *tfm; |
| u8 *dst; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| tfm = crypto_alloc_comp(zswap_compressor, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_err("can't allocate compressor transform\n"); |
| return NOTIFY_BAD; |
| } |
| *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; |
| dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); |
| if (!dst) { |
| pr_err("can't allocate compressor buffer\n"); |
| crypto_free_comp(tfm); |
| *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; |
| return NOTIFY_BAD; |
| } |
| per_cpu(zswap_dstmem, cpu) = dst; |
| break; |
| case CPU_DEAD: |
| case CPU_UP_CANCELED: |
| tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); |
| if (tfm) { |
| crypto_free_comp(tfm); |
| *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; |
| } |
| dst = per_cpu(zswap_dstmem, cpu); |
| kfree(dst); |
| per_cpu(zswap_dstmem, cpu) = NULL; |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static int zswap_cpu_notifier(struct notifier_block *nb, |
| unsigned long action, void *pcpu) |
| { |
| unsigned long cpu = (unsigned long)pcpu; |
| return __zswap_cpu_notifier(action, cpu); |
| } |
| |
| static struct notifier_block zswap_cpu_notifier_block = { |
| .notifier_call = zswap_cpu_notifier |
| }; |
| |
| static int zswap_cpu_init(void) |
| { |
| unsigned long cpu; |
| |
| get_online_cpus(); |
| for_each_online_cpu(cpu) |
| if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) |
| goto cleanup; |
| register_cpu_notifier(&zswap_cpu_notifier_block); |
| put_online_cpus(); |
| return 0; |
| |
| cleanup: |
| for_each_online_cpu(cpu) |
| __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); |
| put_online_cpus(); |
| return -ENOMEM; |
| } |
| |
| /********************************* |
| * helpers |
| **********************************/ |
| static bool zswap_is_full(void) |
| { |
| return (totalram_pages * zswap_max_pool_percent / 100 < |
| zswap_pool_pages); |
| } |
| |
| /* |
| * Carries out the common pattern of freeing and entry's zsmalloc allocation, |
| * freeing the entry itself, and decrementing the number of stored pages. |
| */ |
| static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry) |
| { |
| zbud_free(tree->pool, entry->handle); |
| zswap_entry_cache_free(entry); |
| atomic_dec(&zswap_stored_pages); |
| zswap_pool_pages = zbud_get_pool_size(tree->pool); |
| } |
| |
| /********************************* |
| * writeback code |
| **********************************/ |
| /* return enum for zswap_get_swap_cache_page */ |
| enum zswap_get_swap_ret { |
| ZSWAP_SWAPCACHE_NEW, |
| ZSWAP_SWAPCACHE_EXIST, |
| ZSWAP_SWAPCACHE_NOMEM |
| }; |
| |
| /* |
| * zswap_get_swap_cache_page |
| * |
| * This is an adaption of read_swap_cache_async() |
| * |
| * This function tries to find a page with the given swap entry |
| * in the swapper_space address space (the swap cache). If the page |
| * is found, it is returned in retpage. Otherwise, a page is allocated, |
| * added to the swap cache, and returned in retpage. |
| * |
| * If success, the swap cache page is returned in retpage |
| * Returns 0 if page was already in the swap cache, page is not locked |
| * Returns 1 if the new page needs to be populated, page is locked |
| * Returns <0 on error |
| */ |
| static int zswap_get_swap_cache_page(swp_entry_t entry, |
| struct page **retpage) |
| { |
| struct page *found_page, *new_page = NULL; |
| struct address_space *swapper_space = swap_address_space(entry); |
| int err; |
| |
| *retpage = NULL; |
| do { |
| /* |
| * First check the swap cache. Since this is normally |
| * called after lookup_swap_cache() failed, re-calling |
| * that would confuse statistics. |
| */ |
| found_page = find_get_page(swapper_space, entry.val); |
| if (found_page) |
| break; |
| |
| /* |
| * Get a new page to read into from swap. |
| */ |
| if (!new_page) { |
| new_page = alloc_page(GFP_KERNEL); |
| if (!new_page) |
| break; /* Out of memory */ |
| } |
| |
| /* |
| * call radix_tree_preload() while we can wait. |
| */ |
| err = radix_tree_preload(GFP_KERNEL); |
| if (err) |
| break; |
| |
| /* |
| * Swap entry may have been freed since our caller observed it. |
| */ |
| err = swapcache_prepare(entry); |
| if (err == -EEXIST) { /* seems racy */ |
| radix_tree_preload_end(); |
| continue; |
| } |
| if (err) { /* swp entry is obsolete ? */ |
| radix_tree_preload_end(); |
| break; |
| } |
| |
| /* May fail (-ENOMEM) if radix-tree node allocation failed. */ |
| __set_page_locked(new_page); |
| SetPageSwapBacked(new_page); |
| err = __add_to_swap_cache(new_page, entry); |
| if (likely(!err)) { |
| radix_tree_preload_end(); |
| lru_cache_add_anon(new_page); |
| *retpage = new_page; |
| return ZSWAP_SWAPCACHE_NEW; |
| } |
| radix_tree_preload_end(); |
| ClearPageSwapBacked(new_page); |
| __clear_page_locked(new_page); |
| /* |
| * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
| * clear SWAP_HAS_CACHE flag. |
| */ |
| swapcache_free(entry, NULL); |
| } while (err != -ENOMEM); |
| |
| if (new_page) |
| page_cache_release(new_page); |
| if (!found_page) |
| return ZSWAP_SWAPCACHE_NOMEM; |
| *retpage = found_page; |
| return ZSWAP_SWAPCACHE_EXIST; |
| } |
| |
| /* |
| * Attempts to free an entry by adding a page to the swap cache, |
| * decompressing the entry data into the page, and issuing a |
| * bio write to write the page back to the swap device. |
| * |
| * This can be thought of as a "resumed writeback" of the page |
| * to the swap device. We are basically resuming the same swap |
| * writeback path that was intercepted with the frontswap_store() |
| * in the first place. After the page has been decompressed into |
| * the swap cache, the compressed version stored by zswap can be |
| * freed. |
| */ |
| static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) |
| { |
| struct zswap_header *zhdr; |
| swp_entry_t swpentry; |
| struct zswap_tree *tree; |
| pgoff_t offset; |
| struct zswap_entry *entry; |
| struct page *page; |
| u8 *src, *dst; |
| unsigned int dlen; |
| int ret, refcount; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| }; |
| |
| /* extract swpentry from data */ |
| zhdr = zbud_map(pool, handle); |
| swpentry = zhdr->swpentry; /* here */ |
| zbud_unmap(pool, handle); |
| tree = zswap_trees[swp_type(swpentry)]; |
| offset = swp_offset(swpentry); |
| BUG_ON(pool != tree->pool); |
| |
| /* find and ref zswap entry */ |
| spin_lock(&tree->lock); |
| entry = zswap_rb_search(&tree->rbroot, offset); |
| if (!entry) { |
| /* entry was invalidated */ |
| spin_unlock(&tree->lock); |
| return 0; |
| } |
| zswap_entry_get(entry); |
| spin_unlock(&tree->lock); |
| BUG_ON(offset != entry->offset); |
| |
| /* try to allocate swap cache page */ |
| switch (zswap_get_swap_cache_page(swpentry, &page)) { |
| case ZSWAP_SWAPCACHE_NOMEM: /* no memory */ |
| ret = -ENOMEM; |
| goto fail; |
| |
| case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */ |
| /* page is already in the swap cache, ignore for now */ |
| page_cache_release(page); |
| ret = -EEXIST; |
| goto fail; |
| |
| case ZSWAP_SWAPCACHE_NEW: /* page is locked */ |
| /* decompress */ |
| dlen = PAGE_SIZE; |
| src = (u8 *)zbud_map(tree->pool, entry->handle) + |
| sizeof(struct zswap_header); |
| dst = kmap_atomic(page); |
| ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, |
| entry->length, dst, &dlen); |
| kunmap_atomic(dst); |
| zbud_unmap(tree->pool, entry->handle); |
| BUG_ON(ret); |
| BUG_ON(dlen != PAGE_SIZE); |
| |
| /* page is up to date */ |
| SetPageUptodate(page); |
| } |
| |
| /* start writeback */ |
| __swap_writepage(page, &wbc, end_swap_bio_write); |
| page_cache_release(page); |
| zswap_written_back_pages++; |
| |
| spin_lock(&tree->lock); |
| |
| /* drop local reference */ |
| zswap_entry_put(entry); |
| /* drop the initial reference from entry creation */ |
| refcount = zswap_entry_put(entry); |
| |
| /* |
| * There are three possible values for refcount here: |
| * (1) refcount is 1, load is in progress, unlink from rbtree, |
| * load will free |
| * (2) refcount is 0, (normal case) entry is valid, |
| * remove from rbtree and free entry |
| * (3) refcount is -1, invalidate happened during writeback, |
| * free entry |
| */ |
| if (refcount >= 0) { |
| /* no invalidate yet, remove from rbtree */ |
| rb_erase(&entry->rbnode, &tree->rbroot); |
| } |
| spin_unlock(&tree->lock); |
| if (refcount <= 0) { |
| /* free the entry */ |
| zswap_free_entry(tree, entry); |
| return 0; |
| } |
| return -EAGAIN; |
| |
| fail: |
| spin_lock(&tree->lock); |
| zswap_entry_put(entry); |
| spin_unlock(&tree->lock); |
| return ret; |
| } |
| |
| /********************************* |
| * frontswap hooks |
| **********************************/ |
| /* attempts to compress and store an single page */ |
| static int zswap_frontswap_store(unsigned type, pgoff_t offset, |
| struct page *page) |
| { |
| struct zswap_tree *tree = zswap_trees[type]; |
| struct zswap_entry *entry, *dupentry; |
| int ret; |
| unsigned int dlen = PAGE_SIZE, len; |
| unsigned long handle; |
| char *buf; |
| u8 *src, *dst; |
| struct zswap_header *zhdr; |
| |
| if (!tree) { |
| ret = -ENODEV; |
| goto reject; |
| } |
| |
| /* reclaim space if needed */ |
| if (zswap_is_full()) { |
| zswap_pool_limit_hit++; |
| if (zbud_reclaim_page(tree->pool, 8)) { |
| zswap_reject_reclaim_fail++; |
| ret = -ENOMEM; |
| goto reject; |
| } |
| } |
| |
| /* allocate entry */ |
| entry = zswap_entry_cache_alloc(GFP_KERNEL); |
| if (!entry) { |
| zswap_reject_kmemcache_fail++; |
| ret = -ENOMEM; |
| goto reject; |
| } |
| |
| /* compress */ |
| dst = get_cpu_var(zswap_dstmem); |
| src = kmap_atomic(page); |
| ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); |
| kunmap_atomic(src); |
| if (ret) { |
| ret = -EINVAL; |
| goto freepage; |
| } |
| |
| /* store */ |
| len = dlen + sizeof(struct zswap_header); |
| ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, |
| &handle); |
| if (ret == -ENOSPC) { |
| zswap_reject_compress_poor++; |
| goto freepage; |
| } |
| if (ret) { |
| zswap_reject_alloc_fail++; |
| goto freepage; |
| } |
| zhdr = zbud_map(tree->pool, handle); |
| zhdr->swpentry = swp_entry(type, offset); |
| buf = (u8 *)(zhdr + 1); |
| memcpy(buf, dst, dlen); |
| zbud_unmap(tree->pool, handle); |
| put_cpu_var(zswap_dstmem); |
| |
| /* populate entry */ |
| entry->offset = offset; |
| entry->handle = handle; |
| entry->length = dlen; |
| |
| /* map */ |
| spin_lock(&tree->lock); |
| do { |
| ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); |
| if (ret == -EEXIST) { |
| zswap_duplicate_entry++; |
| /* remove from rbtree */ |
| rb_erase(&dupentry->rbnode, &tree->rbroot); |
| if (!zswap_entry_put(dupentry)) { |
| /* free */ |
| zswap_free_entry(tree, dupentry); |
| } |
| } |
| } while (ret == -EEXIST); |
| spin_unlock(&tree->lock); |
| |
| /* update stats */ |
| atomic_inc(&zswap_stored_pages); |
| zswap_pool_pages = zbud_get_pool_size(tree->pool); |
| |
| return 0; |
| |
| freepage: |
| put_cpu_var(zswap_dstmem); |
| zswap_entry_cache_free(entry); |
| reject: |
| return ret; |
| } |
| |
| /* |
| * returns 0 if the page was successfully decompressed |
| * return -1 on entry not found or error |
| */ |
| static int zswap_frontswap_load(unsigned type, pgoff_t offset, |
| struct page *page) |
| { |
| struct zswap_tree *tree = zswap_trees[type]; |
| struct zswap_entry *entry; |
| u8 *src, *dst; |
| unsigned int dlen; |
| int refcount, ret; |
| |
| /* find */ |
| spin_lock(&tree->lock); |
| entry = zswap_rb_search(&tree->rbroot, offset); |
| if (!entry) { |
| /* entry was written back */ |
| spin_unlock(&tree->lock); |
| return -1; |
| } |
| zswap_entry_get(entry); |
| spin_unlock(&tree->lock); |
| |
| /* decompress */ |
| dlen = PAGE_SIZE; |
| src = (u8 *)zbud_map(tree->pool, entry->handle) + |
| sizeof(struct zswap_header); |
| dst = kmap_atomic(page); |
| ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, |
| dst, &dlen); |
| kunmap_atomic(dst); |
| zbud_unmap(tree->pool, entry->handle); |
| BUG_ON(ret); |
| |
| spin_lock(&tree->lock); |
| refcount = zswap_entry_put(entry); |
| if (likely(refcount)) { |
| spin_unlock(&tree->lock); |
| return 0; |
| } |
| spin_unlock(&tree->lock); |
| |
| /* |
| * We don't have to unlink from the rbtree because |
| * zswap_writeback_entry() or zswap_frontswap_invalidate page() |
| * has already done this for us if we are the last reference. |
| */ |
| /* free */ |
| |
| zswap_free_entry(tree, entry); |
| |
| return 0; |
| } |
| |
| /* frees an entry in zswap */ |
| static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) |
| { |
| struct zswap_tree *tree = zswap_trees[type]; |
| struct zswap_entry *entry; |
| int refcount; |
| |
| /* find */ |
| spin_lock(&tree->lock); |
| entry = zswap_rb_search(&tree->rbroot, offset); |
| if (!entry) { |
| /* entry was written back */ |
| spin_unlock(&tree->lock); |
| return; |
| } |
| |
| /* remove from rbtree */ |
| rb_erase(&entry->rbnode, &tree->rbroot); |
| |
| /* drop the initial reference from entry creation */ |
| refcount = zswap_entry_put(entry); |
| |
| spin_unlock(&tree->lock); |
| |
| if (refcount) { |
| /* writeback in progress, writeback will free */ |
| return; |
| } |
| |
| /* free */ |
| zswap_free_entry(tree, entry); |
| } |
| |
| /* frees all zswap entries for the given swap type */ |
| static void zswap_frontswap_invalidate_area(unsigned type) |
| { |
| struct zswap_tree *tree = zswap_trees[type]; |
| struct rb_node *node; |
| struct zswap_entry *entry; |
| |
| if (!tree) |
| return; |
| |
| /* walk the tree and free everything */ |
| spin_lock(&tree->lock); |
| /* |
| * TODO: Even though this code should not be executed because |
| * the try_to_unuse() in swapoff should have emptied the tree, |
| * it is very wasteful to rebalance the tree after every |
| * removal when we are freeing the whole tree. |
| * |
| * If post-order traversal code is ever added to the rbtree |
| * implementation, it should be used here. |
| */ |
| while ((node = rb_first(&tree->rbroot))) { |
| entry = rb_entry(node, struct zswap_entry, rbnode); |
| rb_erase(&entry->rbnode, &tree->rbroot); |
| zbud_free(tree->pool, entry->handle); |
| zswap_entry_cache_free(entry); |
| atomic_dec(&zswap_stored_pages); |
| } |
| tree->rbroot = RB_ROOT; |
| spin_unlock(&tree->lock); |
| } |
| |
| static struct zbud_ops zswap_zbud_ops = { |
| .evict = zswap_writeback_entry |
| }; |
| |
| static void zswap_frontswap_init(unsigned type) |
| { |
| struct zswap_tree *tree; |
| |
| tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); |
| if (!tree) |
| goto err; |
| tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); |
| if (!tree->pool) |
| goto freetree; |
| tree->rbroot = RB_ROOT; |
| spin_lock_init(&tree->lock); |
| zswap_trees[type] = tree; |
| return; |
| |
| freetree: |
| kfree(tree); |
| err: |
| pr_err("alloc failed, zswap disabled for swap type %d\n", type); |
| } |
| |
| static struct frontswap_ops zswap_frontswap_ops = { |
| .store = zswap_frontswap_store, |
| .load = zswap_frontswap_load, |
| .invalidate_page = zswap_frontswap_invalidate_page, |
| .invalidate_area = zswap_frontswap_invalidate_area, |
| .init = zswap_frontswap_init |
| }; |
| |
| /********************************* |
| * debugfs functions |
| **********************************/ |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| |
| static struct dentry *zswap_debugfs_root; |
| |
| static int __init zswap_debugfs_init(void) |
| { |
| if (!debugfs_initialized()) |
| return -ENODEV; |
| |
| zswap_debugfs_root = debugfs_create_dir("zswap", NULL); |
| if (!zswap_debugfs_root) |
| return -ENOMEM; |
| |
| debugfs_create_u64("pool_limit_hit", S_IRUGO, |
| zswap_debugfs_root, &zswap_pool_limit_hit); |
| debugfs_create_u64("reject_reclaim_fail", S_IRUGO, |
| zswap_debugfs_root, &zswap_reject_reclaim_fail); |
| debugfs_create_u64("reject_alloc_fail", S_IRUGO, |
| zswap_debugfs_root, &zswap_reject_alloc_fail); |
| debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, |
| zswap_debugfs_root, &zswap_reject_kmemcache_fail); |
| debugfs_create_u64("reject_compress_poor", S_IRUGO, |
| zswap_debugfs_root, &zswap_reject_compress_poor); |
| debugfs_create_u64("written_back_pages", S_IRUGO, |
| zswap_debugfs_root, &zswap_written_back_pages); |
| debugfs_create_u64("duplicate_entry", S_IRUGO, |
| zswap_debugfs_root, &zswap_duplicate_entry); |
| debugfs_create_u64("pool_pages", S_IRUGO, |
| zswap_debugfs_root, &zswap_pool_pages); |
| debugfs_create_atomic_t("stored_pages", S_IRUGO, |
| zswap_debugfs_root, &zswap_stored_pages); |
| |
| return 0; |
| } |
| |
| static void __exit zswap_debugfs_exit(void) |
| { |
| debugfs_remove_recursive(zswap_debugfs_root); |
| } |
| #else |
| static int __init zswap_debugfs_init(void) |
| { |
| return 0; |
| } |
| |
| static void __exit zswap_debugfs_exit(void) { } |
| #endif |
| |
| /********************************* |
| * module init and exit |
| **********************************/ |
| static int __init init_zswap(void) |
| { |
| if (!zswap_enabled) |
| return 0; |
| |
| pr_info("loading zswap\n"); |
| if (zswap_entry_cache_create()) { |
| pr_err("entry cache creation failed\n"); |
| goto error; |
| } |
| if (zswap_comp_init()) { |
| pr_err("compressor initialization failed\n"); |
| goto compfail; |
| } |
| if (zswap_cpu_init()) { |
| pr_err("per-cpu initialization failed\n"); |
| goto pcpufail; |
| } |
| frontswap_register_ops(&zswap_frontswap_ops); |
| if (zswap_debugfs_init()) |
| pr_warn("debugfs initialization failed\n"); |
| return 0; |
| pcpufail: |
| zswap_comp_exit(); |
| compfail: |
| zswap_entry_cache_destory(); |
| error: |
| return -ENOMEM; |
| } |
| /* must be late so crypto has time to come up */ |
| late_initcall(init_zswap); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); |
| MODULE_DESCRIPTION("Compressed cache for swap pages"); |