Seth Jennings | 2b28111 | 2013-07-10 16:05:03 -0700 | [diff] [blame] | 1 | /* |
| 2 | * zswap.c - zswap driver file |
| 3 | * |
| 4 | * zswap is a backend for frontswap that takes pages that are in the process |
| 5 | * of being swapped out and attempts to compress and store them in a |
| 6 | * RAM-based memory pool. This can result in a significant I/O reduction on |
| 7 | * the swap device and, in the case where decompressing from RAM is faster |
| 8 | * than reading from the swap device, can also improve workload performance. |
| 9 | * |
| 10 | * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU General Public License |
| 14 | * as published by the Free Software Foundation; either version 2 |
| 15 | * of the License, or (at your option) any later version. |
| 16 | * |
| 17 | * This program is distributed in the hope that it will be useful, |
| 18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 20 | * GNU General Public License for more details. |
| 21 | */ |
| 22 | |
| 23 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/cpu.h> |
| 27 | #include <linux/highmem.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/spinlock.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <linux/atomic.h> |
| 32 | #include <linux/frontswap.h> |
| 33 | #include <linux/rbtree.h> |
| 34 | #include <linux/swap.h> |
| 35 | #include <linux/crypto.h> |
| 36 | #include <linux/mempool.h> |
| 37 | #include <linux/zbud.h> |
| 38 | |
| 39 | #include <linux/mm_types.h> |
| 40 | #include <linux/page-flags.h> |
| 41 | #include <linux/swapops.h> |
| 42 | #include <linux/writeback.h> |
| 43 | #include <linux/pagemap.h> |
| 44 | |
| 45 | /********************************* |
| 46 | * statistics |
| 47 | **********************************/ |
| 48 | /* Number of memory pages used by the compressed pool */ |
| 49 | static u64 zswap_pool_pages; |
| 50 | /* The number of compressed pages currently stored in zswap */ |
| 51 | static atomic_t zswap_stored_pages = ATOMIC_INIT(0); |
| 52 | |
| 53 | /* |
| 54 | * The statistics below are not protected from concurrent access for |
| 55 | * performance reasons so they may not be a 100% accurate. However, |
| 56 | * they do provide useful information on roughly how many times a |
| 57 | * certain event is occurring. |
| 58 | */ |
| 59 | |
| 60 | /* Pool limit was hit (see zswap_max_pool_percent) */ |
| 61 | static u64 zswap_pool_limit_hit; |
| 62 | /* Pages written back when pool limit was reached */ |
| 63 | static u64 zswap_written_back_pages; |
| 64 | /* Store failed due to a reclaim failure after pool limit was reached */ |
| 65 | static u64 zswap_reject_reclaim_fail; |
| 66 | /* Compressed page was too big for the allocator to (optimally) store */ |
| 67 | static u64 zswap_reject_compress_poor; |
| 68 | /* Store failed because underlying allocator could not get memory */ |
| 69 | static u64 zswap_reject_alloc_fail; |
| 70 | /* Store failed because the entry metadata could not be allocated (rare) */ |
| 71 | static u64 zswap_reject_kmemcache_fail; |
| 72 | /* Duplicate store was encountered (rare) */ |
| 73 | static u64 zswap_duplicate_entry; |
| 74 | |
| 75 | /********************************* |
| 76 | * tunables |
| 77 | **********************************/ |
| 78 | /* Enable/disable zswap (disabled by default, fixed at boot for now) */ |
| 79 | static bool zswap_enabled __read_mostly; |
| 80 | module_param_named(enabled, zswap_enabled, bool, 0); |
| 81 | |
| 82 | /* Compressor to be used by zswap (fixed at boot for now) */ |
| 83 | #define ZSWAP_COMPRESSOR_DEFAULT "lzo" |
| 84 | static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; |
| 85 | module_param_named(compressor, zswap_compressor, charp, 0); |
| 86 | |
| 87 | /* The maximum percentage of memory that the compressed pool can occupy */ |
| 88 | static unsigned int zswap_max_pool_percent = 20; |
| 89 | module_param_named(max_pool_percent, |
| 90 | zswap_max_pool_percent, uint, 0644); |
| 91 | |
| 92 | /********************************* |
| 93 | * compression functions |
| 94 | **********************************/ |
| 95 | /* per-cpu compression transforms */ |
| 96 | static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; |
| 97 | |
| 98 | enum comp_op { |
| 99 | ZSWAP_COMPOP_COMPRESS, |
| 100 | ZSWAP_COMPOP_DECOMPRESS |
| 101 | }; |
| 102 | |
| 103 | static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, |
| 104 | u8 *dst, unsigned int *dlen) |
| 105 | { |
| 106 | struct crypto_comp *tfm; |
| 107 | int ret; |
| 108 | |
| 109 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); |
| 110 | switch (op) { |
| 111 | case ZSWAP_COMPOP_COMPRESS: |
| 112 | ret = crypto_comp_compress(tfm, src, slen, dst, dlen); |
| 113 | break; |
| 114 | case ZSWAP_COMPOP_DECOMPRESS: |
| 115 | ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); |
| 116 | break; |
| 117 | default: |
| 118 | ret = -EINVAL; |
| 119 | } |
| 120 | |
| 121 | put_cpu(); |
| 122 | return ret; |
| 123 | } |
| 124 | |
| 125 | static int __init zswap_comp_init(void) |
| 126 | { |
| 127 | if (!crypto_has_comp(zswap_compressor, 0, 0)) { |
| 128 | pr_info("%s compressor not available\n", zswap_compressor); |
| 129 | /* fall back to default compressor */ |
| 130 | zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; |
| 131 | if (!crypto_has_comp(zswap_compressor, 0, 0)) |
| 132 | /* can't even load the default compressor */ |
| 133 | return -ENODEV; |
| 134 | } |
| 135 | pr_info("using %s compressor\n", zswap_compressor); |
| 136 | |
| 137 | /* alloc percpu transforms */ |
| 138 | zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); |
| 139 | if (!zswap_comp_pcpu_tfms) |
| 140 | return -ENOMEM; |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | static void zswap_comp_exit(void) |
| 145 | { |
| 146 | /* free percpu transforms */ |
| 147 | if (zswap_comp_pcpu_tfms) |
| 148 | free_percpu(zswap_comp_pcpu_tfms); |
| 149 | } |
| 150 | |
| 151 | /********************************* |
| 152 | * data structures |
| 153 | **********************************/ |
| 154 | /* |
| 155 | * struct zswap_entry |
| 156 | * |
| 157 | * This structure contains the metadata for tracking a single compressed |
| 158 | * page within zswap. |
| 159 | * |
| 160 | * rbnode - links the entry into red-black tree for the appropriate swap type |
| 161 | * refcount - the number of outstanding reference to the entry. This is needed |
| 162 | * to protect against premature freeing of the entry by code |
| 163 | * concurent calls to load, invalidate, and writeback. The lock |
| 164 | * for the zswap_tree structure that contains the entry must |
| 165 | * be held while changing the refcount. Since the lock must |
| 166 | * be held, there is no reason to also make refcount atomic. |
| 167 | * offset - the swap offset for the entry. Index into the red-black tree. |
| 168 | * handle - zsmalloc allocation handle that stores the compressed page data |
| 169 | * length - the length in bytes of the compressed page data. Needed during |
| 170 | * decompression |
| 171 | */ |
| 172 | struct zswap_entry { |
| 173 | struct rb_node rbnode; |
| 174 | pgoff_t offset; |
| 175 | int refcount; |
| 176 | unsigned int length; |
| 177 | unsigned long handle; |
| 178 | }; |
| 179 | |
| 180 | struct zswap_header { |
| 181 | swp_entry_t swpentry; |
| 182 | }; |
| 183 | |
| 184 | /* |
| 185 | * The tree lock in the zswap_tree struct protects a few things: |
| 186 | * - the rbtree |
| 187 | * - the refcount field of each entry in the tree |
| 188 | */ |
| 189 | struct zswap_tree { |
| 190 | struct rb_root rbroot; |
| 191 | spinlock_t lock; |
| 192 | struct zbud_pool *pool; |
| 193 | }; |
| 194 | |
| 195 | static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; |
| 196 | |
| 197 | /********************************* |
| 198 | * zswap entry functions |
| 199 | **********************************/ |
| 200 | static struct kmem_cache *zswap_entry_cache; |
| 201 | |
| 202 | static int zswap_entry_cache_create(void) |
| 203 | { |
| 204 | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); |
| 205 | return (zswap_entry_cache == NULL); |
| 206 | } |
| 207 | |
| 208 | static void zswap_entry_cache_destory(void) |
| 209 | { |
| 210 | kmem_cache_destroy(zswap_entry_cache); |
| 211 | } |
| 212 | |
| 213 | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) |
| 214 | { |
| 215 | struct zswap_entry *entry; |
| 216 | entry = kmem_cache_alloc(zswap_entry_cache, gfp); |
| 217 | if (!entry) |
| 218 | return NULL; |
| 219 | entry->refcount = 1; |
| 220 | return entry; |
| 221 | } |
| 222 | |
| 223 | static void zswap_entry_cache_free(struct zswap_entry *entry) |
| 224 | { |
| 225 | kmem_cache_free(zswap_entry_cache, entry); |
| 226 | } |
| 227 | |
| 228 | /* caller must hold the tree lock */ |
| 229 | static void zswap_entry_get(struct zswap_entry *entry) |
| 230 | { |
| 231 | entry->refcount++; |
| 232 | } |
| 233 | |
| 234 | /* caller must hold the tree lock */ |
| 235 | static int zswap_entry_put(struct zswap_entry *entry) |
| 236 | { |
| 237 | entry->refcount--; |
| 238 | return entry->refcount; |
| 239 | } |
| 240 | |
| 241 | /********************************* |
| 242 | * rbtree functions |
| 243 | **********************************/ |
| 244 | static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) |
| 245 | { |
| 246 | struct rb_node *node = root->rb_node; |
| 247 | struct zswap_entry *entry; |
| 248 | |
| 249 | while (node) { |
| 250 | entry = rb_entry(node, struct zswap_entry, rbnode); |
| 251 | if (entry->offset > offset) |
| 252 | node = node->rb_left; |
| 253 | else if (entry->offset < offset) |
| 254 | node = node->rb_right; |
| 255 | else |
| 256 | return entry; |
| 257 | } |
| 258 | return NULL; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * In the case that a entry with the same offset is found, a pointer to |
| 263 | * the existing entry is stored in dupentry and the function returns -EEXIST |
| 264 | */ |
| 265 | static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, |
| 266 | struct zswap_entry **dupentry) |
| 267 | { |
| 268 | struct rb_node **link = &root->rb_node, *parent = NULL; |
| 269 | struct zswap_entry *myentry; |
| 270 | |
| 271 | while (*link) { |
| 272 | parent = *link; |
| 273 | myentry = rb_entry(parent, struct zswap_entry, rbnode); |
| 274 | if (myentry->offset > entry->offset) |
| 275 | link = &(*link)->rb_left; |
| 276 | else if (myentry->offset < entry->offset) |
| 277 | link = &(*link)->rb_right; |
| 278 | else { |
| 279 | *dupentry = myentry; |
| 280 | return -EEXIST; |
| 281 | } |
| 282 | } |
| 283 | rb_link_node(&entry->rbnode, parent, link); |
| 284 | rb_insert_color(&entry->rbnode, root); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /********************************* |
| 289 | * per-cpu code |
| 290 | **********************************/ |
| 291 | static DEFINE_PER_CPU(u8 *, zswap_dstmem); |
| 292 | |
| 293 | static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) |
| 294 | { |
| 295 | struct crypto_comp *tfm; |
| 296 | u8 *dst; |
| 297 | |
| 298 | switch (action) { |
| 299 | case CPU_UP_PREPARE: |
| 300 | tfm = crypto_alloc_comp(zswap_compressor, 0, 0); |
| 301 | if (IS_ERR(tfm)) { |
| 302 | pr_err("can't allocate compressor transform\n"); |
| 303 | return NOTIFY_BAD; |
| 304 | } |
| 305 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; |
| 306 | dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); |
| 307 | if (!dst) { |
| 308 | pr_err("can't allocate compressor buffer\n"); |
| 309 | crypto_free_comp(tfm); |
| 310 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; |
| 311 | return NOTIFY_BAD; |
| 312 | } |
| 313 | per_cpu(zswap_dstmem, cpu) = dst; |
| 314 | break; |
| 315 | case CPU_DEAD: |
| 316 | case CPU_UP_CANCELED: |
| 317 | tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); |
| 318 | if (tfm) { |
| 319 | crypto_free_comp(tfm); |
| 320 | *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; |
| 321 | } |
| 322 | dst = per_cpu(zswap_dstmem, cpu); |
| 323 | kfree(dst); |
| 324 | per_cpu(zswap_dstmem, cpu) = NULL; |
| 325 | break; |
| 326 | default: |
| 327 | break; |
| 328 | } |
| 329 | return NOTIFY_OK; |
| 330 | } |
| 331 | |
| 332 | static int zswap_cpu_notifier(struct notifier_block *nb, |
| 333 | unsigned long action, void *pcpu) |
| 334 | { |
| 335 | unsigned long cpu = (unsigned long)pcpu; |
| 336 | return __zswap_cpu_notifier(action, cpu); |
| 337 | } |
| 338 | |
| 339 | static struct notifier_block zswap_cpu_notifier_block = { |
| 340 | .notifier_call = zswap_cpu_notifier |
| 341 | }; |
| 342 | |
| 343 | static int zswap_cpu_init(void) |
| 344 | { |
| 345 | unsigned long cpu; |
| 346 | |
| 347 | get_online_cpus(); |
| 348 | for_each_online_cpu(cpu) |
| 349 | if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) |
| 350 | goto cleanup; |
| 351 | register_cpu_notifier(&zswap_cpu_notifier_block); |
| 352 | put_online_cpus(); |
| 353 | return 0; |
| 354 | |
| 355 | cleanup: |
| 356 | for_each_online_cpu(cpu) |
| 357 | __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); |
| 358 | put_online_cpus(); |
| 359 | return -ENOMEM; |
| 360 | } |
| 361 | |
| 362 | /********************************* |
| 363 | * helpers |
| 364 | **********************************/ |
| 365 | static bool zswap_is_full(void) |
| 366 | { |
| 367 | return (totalram_pages * zswap_max_pool_percent / 100 < |
| 368 | zswap_pool_pages); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Carries out the common pattern of freeing and entry's zsmalloc allocation, |
| 373 | * freeing the entry itself, and decrementing the number of stored pages. |
| 374 | */ |
| 375 | static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry) |
| 376 | { |
| 377 | zbud_free(tree->pool, entry->handle); |
| 378 | zswap_entry_cache_free(entry); |
| 379 | atomic_dec(&zswap_stored_pages); |
| 380 | zswap_pool_pages = zbud_get_pool_size(tree->pool); |
| 381 | } |
| 382 | |
| 383 | /********************************* |
| 384 | * writeback code |
| 385 | **********************************/ |
| 386 | /* return enum for zswap_get_swap_cache_page */ |
| 387 | enum zswap_get_swap_ret { |
| 388 | ZSWAP_SWAPCACHE_NEW, |
| 389 | ZSWAP_SWAPCACHE_EXIST, |
| 390 | ZSWAP_SWAPCACHE_NOMEM |
| 391 | }; |
| 392 | |
| 393 | /* |
| 394 | * zswap_get_swap_cache_page |
| 395 | * |
| 396 | * This is an adaption of read_swap_cache_async() |
| 397 | * |
| 398 | * This function tries to find a page with the given swap entry |
| 399 | * in the swapper_space address space (the swap cache). If the page |
| 400 | * is found, it is returned in retpage. Otherwise, a page is allocated, |
| 401 | * added to the swap cache, and returned in retpage. |
| 402 | * |
| 403 | * If success, the swap cache page is returned in retpage |
| 404 | * Returns 0 if page was already in the swap cache, page is not locked |
| 405 | * Returns 1 if the new page needs to be populated, page is locked |
| 406 | * Returns <0 on error |
| 407 | */ |
| 408 | static int zswap_get_swap_cache_page(swp_entry_t entry, |
| 409 | struct page **retpage) |
| 410 | { |
| 411 | struct page *found_page, *new_page = NULL; |
Sunghan Suh | 822518d | 2013-09-11 14:20:22 -0700 | [diff] [blame] | 412 | struct address_space *swapper_space = swap_address_space(entry); |
Seth Jennings | 2b28111 | 2013-07-10 16:05:03 -0700 | [diff] [blame] | 413 | int err; |
| 414 | |
| 415 | *retpage = NULL; |
| 416 | do { |
| 417 | /* |
| 418 | * First check the swap cache. Since this is normally |
| 419 | * called after lookup_swap_cache() failed, re-calling |
| 420 | * that would confuse statistics. |
| 421 | */ |
| 422 | found_page = find_get_page(swapper_space, entry.val); |
| 423 | if (found_page) |
| 424 | break; |
| 425 | |
| 426 | /* |
| 427 | * Get a new page to read into from swap. |
| 428 | */ |
| 429 | if (!new_page) { |
| 430 | new_page = alloc_page(GFP_KERNEL); |
| 431 | if (!new_page) |
| 432 | break; /* Out of memory */ |
| 433 | } |
| 434 | |
| 435 | /* |
| 436 | * call radix_tree_preload() while we can wait. |
| 437 | */ |
| 438 | err = radix_tree_preload(GFP_KERNEL); |
| 439 | if (err) |
| 440 | break; |
| 441 | |
| 442 | /* |
| 443 | * Swap entry may have been freed since our caller observed it. |
| 444 | */ |
| 445 | err = swapcache_prepare(entry); |
| 446 | if (err == -EEXIST) { /* seems racy */ |
| 447 | radix_tree_preload_end(); |
| 448 | continue; |
| 449 | } |
| 450 | if (err) { /* swp entry is obsolete ? */ |
| 451 | radix_tree_preload_end(); |
| 452 | break; |
| 453 | } |
| 454 | |
| 455 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ |
| 456 | __set_page_locked(new_page); |
| 457 | SetPageSwapBacked(new_page); |
| 458 | err = __add_to_swap_cache(new_page, entry); |
| 459 | if (likely(!err)) { |
| 460 | radix_tree_preload_end(); |
| 461 | lru_cache_add_anon(new_page); |
| 462 | *retpage = new_page; |
| 463 | return ZSWAP_SWAPCACHE_NEW; |
| 464 | } |
| 465 | radix_tree_preload_end(); |
| 466 | ClearPageSwapBacked(new_page); |
| 467 | __clear_page_locked(new_page); |
| 468 | /* |
| 469 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
| 470 | * clear SWAP_HAS_CACHE flag. |
| 471 | */ |
| 472 | swapcache_free(entry, NULL); |
| 473 | } while (err != -ENOMEM); |
| 474 | |
| 475 | if (new_page) |
| 476 | page_cache_release(new_page); |
| 477 | if (!found_page) |
| 478 | return ZSWAP_SWAPCACHE_NOMEM; |
| 479 | *retpage = found_page; |
| 480 | return ZSWAP_SWAPCACHE_EXIST; |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Attempts to free an entry by adding a page to the swap cache, |
| 485 | * decompressing the entry data into the page, and issuing a |
| 486 | * bio write to write the page back to the swap device. |
| 487 | * |
| 488 | * This can be thought of as a "resumed writeback" of the page |
| 489 | * to the swap device. We are basically resuming the same swap |
| 490 | * writeback path that was intercepted with the frontswap_store() |
| 491 | * in the first place. After the page has been decompressed into |
| 492 | * the swap cache, the compressed version stored by zswap can be |
| 493 | * freed. |
| 494 | */ |
| 495 | static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) |
| 496 | { |
| 497 | struct zswap_header *zhdr; |
| 498 | swp_entry_t swpentry; |
| 499 | struct zswap_tree *tree; |
| 500 | pgoff_t offset; |
| 501 | struct zswap_entry *entry; |
| 502 | struct page *page; |
| 503 | u8 *src, *dst; |
| 504 | unsigned int dlen; |
| 505 | int ret, refcount; |
| 506 | struct writeback_control wbc = { |
| 507 | .sync_mode = WB_SYNC_NONE, |
| 508 | }; |
| 509 | |
| 510 | /* extract swpentry from data */ |
| 511 | zhdr = zbud_map(pool, handle); |
| 512 | swpentry = zhdr->swpentry; /* here */ |
| 513 | zbud_unmap(pool, handle); |
| 514 | tree = zswap_trees[swp_type(swpentry)]; |
| 515 | offset = swp_offset(swpentry); |
| 516 | BUG_ON(pool != tree->pool); |
| 517 | |
| 518 | /* find and ref zswap entry */ |
| 519 | spin_lock(&tree->lock); |
| 520 | entry = zswap_rb_search(&tree->rbroot, offset); |
| 521 | if (!entry) { |
| 522 | /* entry was invalidated */ |
| 523 | spin_unlock(&tree->lock); |
| 524 | return 0; |
| 525 | } |
| 526 | zswap_entry_get(entry); |
| 527 | spin_unlock(&tree->lock); |
| 528 | BUG_ON(offset != entry->offset); |
| 529 | |
| 530 | /* try to allocate swap cache page */ |
| 531 | switch (zswap_get_swap_cache_page(swpentry, &page)) { |
| 532 | case ZSWAP_SWAPCACHE_NOMEM: /* no memory */ |
| 533 | ret = -ENOMEM; |
| 534 | goto fail; |
| 535 | |
| 536 | case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */ |
| 537 | /* page is already in the swap cache, ignore for now */ |
| 538 | page_cache_release(page); |
| 539 | ret = -EEXIST; |
| 540 | goto fail; |
| 541 | |
| 542 | case ZSWAP_SWAPCACHE_NEW: /* page is locked */ |
| 543 | /* decompress */ |
| 544 | dlen = PAGE_SIZE; |
| 545 | src = (u8 *)zbud_map(tree->pool, entry->handle) + |
| 546 | sizeof(struct zswap_header); |
| 547 | dst = kmap_atomic(page); |
| 548 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, |
| 549 | entry->length, dst, &dlen); |
| 550 | kunmap_atomic(dst); |
| 551 | zbud_unmap(tree->pool, entry->handle); |
| 552 | BUG_ON(ret); |
| 553 | BUG_ON(dlen != PAGE_SIZE); |
| 554 | |
| 555 | /* page is up to date */ |
| 556 | SetPageUptodate(page); |
| 557 | } |
| 558 | |
| 559 | /* start writeback */ |
| 560 | __swap_writepage(page, &wbc, end_swap_bio_write); |
| 561 | page_cache_release(page); |
| 562 | zswap_written_back_pages++; |
| 563 | |
| 564 | spin_lock(&tree->lock); |
| 565 | |
| 566 | /* drop local reference */ |
| 567 | zswap_entry_put(entry); |
| 568 | /* drop the initial reference from entry creation */ |
| 569 | refcount = zswap_entry_put(entry); |
| 570 | |
| 571 | /* |
| 572 | * There are three possible values for refcount here: |
| 573 | * (1) refcount is 1, load is in progress, unlink from rbtree, |
| 574 | * load will free |
| 575 | * (2) refcount is 0, (normal case) entry is valid, |
| 576 | * remove from rbtree and free entry |
| 577 | * (3) refcount is -1, invalidate happened during writeback, |
| 578 | * free entry |
| 579 | */ |
| 580 | if (refcount >= 0) { |
| 581 | /* no invalidate yet, remove from rbtree */ |
| 582 | rb_erase(&entry->rbnode, &tree->rbroot); |
| 583 | } |
| 584 | spin_unlock(&tree->lock); |
| 585 | if (refcount <= 0) { |
| 586 | /* free the entry */ |
| 587 | zswap_free_entry(tree, entry); |
| 588 | return 0; |
| 589 | } |
| 590 | return -EAGAIN; |
| 591 | |
| 592 | fail: |
| 593 | spin_lock(&tree->lock); |
| 594 | zswap_entry_put(entry); |
| 595 | spin_unlock(&tree->lock); |
| 596 | return ret; |
| 597 | } |
| 598 | |
| 599 | /********************************* |
| 600 | * frontswap hooks |
| 601 | **********************************/ |
| 602 | /* attempts to compress and store an single page */ |
| 603 | static int zswap_frontswap_store(unsigned type, pgoff_t offset, |
| 604 | struct page *page) |
| 605 | { |
| 606 | struct zswap_tree *tree = zswap_trees[type]; |
| 607 | struct zswap_entry *entry, *dupentry; |
| 608 | int ret; |
| 609 | unsigned int dlen = PAGE_SIZE, len; |
| 610 | unsigned long handle; |
| 611 | char *buf; |
| 612 | u8 *src, *dst; |
| 613 | struct zswap_header *zhdr; |
| 614 | |
| 615 | if (!tree) { |
| 616 | ret = -ENODEV; |
| 617 | goto reject; |
| 618 | } |
| 619 | |
| 620 | /* reclaim space if needed */ |
| 621 | if (zswap_is_full()) { |
| 622 | zswap_pool_limit_hit++; |
| 623 | if (zbud_reclaim_page(tree->pool, 8)) { |
| 624 | zswap_reject_reclaim_fail++; |
| 625 | ret = -ENOMEM; |
| 626 | goto reject; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /* allocate entry */ |
| 631 | entry = zswap_entry_cache_alloc(GFP_KERNEL); |
| 632 | if (!entry) { |
| 633 | zswap_reject_kmemcache_fail++; |
| 634 | ret = -ENOMEM; |
| 635 | goto reject; |
| 636 | } |
| 637 | |
| 638 | /* compress */ |
| 639 | dst = get_cpu_var(zswap_dstmem); |
| 640 | src = kmap_atomic(page); |
| 641 | ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); |
| 642 | kunmap_atomic(src); |
| 643 | if (ret) { |
| 644 | ret = -EINVAL; |
| 645 | goto freepage; |
| 646 | } |
| 647 | |
| 648 | /* store */ |
| 649 | len = dlen + sizeof(struct zswap_header); |
| 650 | ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, |
| 651 | &handle); |
| 652 | if (ret == -ENOSPC) { |
| 653 | zswap_reject_compress_poor++; |
| 654 | goto freepage; |
| 655 | } |
| 656 | if (ret) { |
| 657 | zswap_reject_alloc_fail++; |
| 658 | goto freepage; |
| 659 | } |
| 660 | zhdr = zbud_map(tree->pool, handle); |
| 661 | zhdr->swpentry = swp_entry(type, offset); |
| 662 | buf = (u8 *)(zhdr + 1); |
| 663 | memcpy(buf, dst, dlen); |
| 664 | zbud_unmap(tree->pool, handle); |
| 665 | put_cpu_var(zswap_dstmem); |
| 666 | |
| 667 | /* populate entry */ |
| 668 | entry->offset = offset; |
| 669 | entry->handle = handle; |
| 670 | entry->length = dlen; |
| 671 | |
| 672 | /* map */ |
| 673 | spin_lock(&tree->lock); |
| 674 | do { |
| 675 | ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); |
| 676 | if (ret == -EEXIST) { |
| 677 | zswap_duplicate_entry++; |
| 678 | /* remove from rbtree */ |
| 679 | rb_erase(&dupentry->rbnode, &tree->rbroot); |
| 680 | if (!zswap_entry_put(dupentry)) { |
| 681 | /* free */ |
| 682 | zswap_free_entry(tree, dupentry); |
| 683 | } |
| 684 | } |
| 685 | } while (ret == -EEXIST); |
| 686 | spin_unlock(&tree->lock); |
| 687 | |
| 688 | /* update stats */ |
| 689 | atomic_inc(&zswap_stored_pages); |
| 690 | zswap_pool_pages = zbud_get_pool_size(tree->pool); |
| 691 | |
| 692 | return 0; |
| 693 | |
| 694 | freepage: |
| 695 | put_cpu_var(zswap_dstmem); |
| 696 | zswap_entry_cache_free(entry); |
| 697 | reject: |
| 698 | return ret; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * returns 0 if the page was successfully decompressed |
| 703 | * return -1 on entry not found or error |
| 704 | */ |
| 705 | static int zswap_frontswap_load(unsigned type, pgoff_t offset, |
| 706 | struct page *page) |
| 707 | { |
| 708 | struct zswap_tree *tree = zswap_trees[type]; |
| 709 | struct zswap_entry *entry; |
| 710 | u8 *src, *dst; |
| 711 | unsigned int dlen; |
| 712 | int refcount, ret; |
| 713 | |
| 714 | /* find */ |
| 715 | spin_lock(&tree->lock); |
| 716 | entry = zswap_rb_search(&tree->rbroot, offset); |
| 717 | if (!entry) { |
| 718 | /* entry was written back */ |
| 719 | spin_unlock(&tree->lock); |
| 720 | return -1; |
| 721 | } |
| 722 | zswap_entry_get(entry); |
| 723 | spin_unlock(&tree->lock); |
| 724 | |
| 725 | /* decompress */ |
| 726 | dlen = PAGE_SIZE; |
| 727 | src = (u8 *)zbud_map(tree->pool, entry->handle) + |
| 728 | sizeof(struct zswap_header); |
| 729 | dst = kmap_atomic(page); |
| 730 | ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, |
| 731 | dst, &dlen); |
| 732 | kunmap_atomic(dst); |
| 733 | zbud_unmap(tree->pool, entry->handle); |
| 734 | BUG_ON(ret); |
| 735 | |
| 736 | spin_lock(&tree->lock); |
| 737 | refcount = zswap_entry_put(entry); |
| 738 | if (likely(refcount)) { |
| 739 | spin_unlock(&tree->lock); |
| 740 | return 0; |
| 741 | } |
| 742 | spin_unlock(&tree->lock); |
| 743 | |
| 744 | /* |
| 745 | * We don't have to unlink from the rbtree because |
| 746 | * zswap_writeback_entry() or zswap_frontswap_invalidate page() |
| 747 | * has already done this for us if we are the last reference. |
| 748 | */ |
| 749 | /* free */ |
| 750 | |
| 751 | zswap_free_entry(tree, entry); |
| 752 | |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | /* frees an entry in zswap */ |
| 757 | static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) |
| 758 | { |
| 759 | struct zswap_tree *tree = zswap_trees[type]; |
| 760 | struct zswap_entry *entry; |
| 761 | int refcount; |
| 762 | |
| 763 | /* find */ |
| 764 | spin_lock(&tree->lock); |
| 765 | entry = zswap_rb_search(&tree->rbroot, offset); |
| 766 | if (!entry) { |
| 767 | /* entry was written back */ |
| 768 | spin_unlock(&tree->lock); |
| 769 | return; |
| 770 | } |
| 771 | |
| 772 | /* remove from rbtree */ |
| 773 | rb_erase(&entry->rbnode, &tree->rbroot); |
| 774 | |
| 775 | /* drop the initial reference from entry creation */ |
| 776 | refcount = zswap_entry_put(entry); |
| 777 | |
| 778 | spin_unlock(&tree->lock); |
| 779 | |
| 780 | if (refcount) { |
| 781 | /* writeback in progress, writeback will free */ |
| 782 | return; |
| 783 | } |
| 784 | |
| 785 | /* free */ |
| 786 | zswap_free_entry(tree, entry); |
| 787 | } |
| 788 | |
| 789 | /* frees all zswap entries for the given swap type */ |
| 790 | static void zswap_frontswap_invalidate_area(unsigned type) |
| 791 | { |
| 792 | struct zswap_tree *tree = zswap_trees[type]; |
| 793 | struct rb_node *node; |
| 794 | struct zswap_entry *entry; |
| 795 | |
| 796 | if (!tree) |
| 797 | return; |
| 798 | |
| 799 | /* walk the tree and free everything */ |
| 800 | spin_lock(&tree->lock); |
| 801 | /* |
| 802 | * TODO: Even though this code should not be executed because |
| 803 | * the try_to_unuse() in swapoff should have emptied the tree, |
| 804 | * it is very wasteful to rebalance the tree after every |
| 805 | * removal when we are freeing the whole tree. |
| 806 | * |
| 807 | * If post-order traversal code is ever added to the rbtree |
| 808 | * implementation, it should be used here. |
| 809 | */ |
| 810 | while ((node = rb_first(&tree->rbroot))) { |
| 811 | entry = rb_entry(node, struct zswap_entry, rbnode); |
| 812 | rb_erase(&entry->rbnode, &tree->rbroot); |
| 813 | zbud_free(tree->pool, entry->handle); |
| 814 | zswap_entry_cache_free(entry); |
| 815 | atomic_dec(&zswap_stored_pages); |
| 816 | } |
| 817 | tree->rbroot = RB_ROOT; |
| 818 | spin_unlock(&tree->lock); |
| 819 | } |
| 820 | |
| 821 | static struct zbud_ops zswap_zbud_ops = { |
| 822 | .evict = zswap_writeback_entry |
| 823 | }; |
| 824 | |
| 825 | static void zswap_frontswap_init(unsigned type) |
| 826 | { |
| 827 | struct zswap_tree *tree; |
| 828 | |
| 829 | tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); |
| 830 | if (!tree) |
| 831 | goto err; |
| 832 | tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); |
| 833 | if (!tree->pool) |
| 834 | goto freetree; |
| 835 | tree->rbroot = RB_ROOT; |
| 836 | spin_lock_init(&tree->lock); |
| 837 | zswap_trees[type] = tree; |
| 838 | return; |
| 839 | |
| 840 | freetree: |
| 841 | kfree(tree); |
| 842 | err: |
| 843 | pr_err("alloc failed, zswap disabled for swap type %d\n", type); |
| 844 | } |
| 845 | |
| 846 | static struct frontswap_ops zswap_frontswap_ops = { |
| 847 | .store = zswap_frontswap_store, |
| 848 | .load = zswap_frontswap_load, |
| 849 | .invalidate_page = zswap_frontswap_invalidate_page, |
| 850 | .invalidate_area = zswap_frontswap_invalidate_area, |
| 851 | .init = zswap_frontswap_init |
| 852 | }; |
| 853 | |
| 854 | /********************************* |
| 855 | * debugfs functions |
| 856 | **********************************/ |
| 857 | #ifdef CONFIG_DEBUG_FS |
| 858 | #include <linux/debugfs.h> |
| 859 | |
| 860 | static struct dentry *zswap_debugfs_root; |
| 861 | |
| 862 | static int __init zswap_debugfs_init(void) |
| 863 | { |
| 864 | if (!debugfs_initialized()) |
| 865 | return -ENODEV; |
| 866 | |
| 867 | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); |
| 868 | if (!zswap_debugfs_root) |
| 869 | return -ENOMEM; |
| 870 | |
| 871 | debugfs_create_u64("pool_limit_hit", S_IRUGO, |
| 872 | zswap_debugfs_root, &zswap_pool_limit_hit); |
| 873 | debugfs_create_u64("reject_reclaim_fail", S_IRUGO, |
| 874 | zswap_debugfs_root, &zswap_reject_reclaim_fail); |
| 875 | debugfs_create_u64("reject_alloc_fail", S_IRUGO, |
| 876 | zswap_debugfs_root, &zswap_reject_alloc_fail); |
| 877 | debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, |
| 878 | zswap_debugfs_root, &zswap_reject_kmemcache_fail); |
| 879 | debugfs_create_u64("reject_compress_poor", S_IRUGO, |
| 880 | zswap_debugfs_root, &zswap_reject_compress_poor); |
| 881 | debugfs_create_u64("written_back_pages", S_IRUGO, |
| 882 | zswap_debugfs_root, &zswap_written_back_pages); |
| 883 | debugfs_create_u64("duplicate_entry", S_IRUGO, |
| 884 | zswap_debugfs_root, &zswap_duplicate_entry); |
| 885 | debugfs_create_u64("pool_pages", S_IRUGO, |
| 886 | zswap_debugfs_root, &zswap_pool_pages); |
| 887 | debugfs_create_atomic_t("stored_pages", S_IRUGO, |
| 888 | zswap_debugfs_root, &zswap_stored_pages); |
| 889 | |
| 890 | return 0; |
| 891 | } |
| 892 | |
| 893 | static void __exit zswap_debugfs_exit(void) |
| 894 | { |
| 895 | debugfs_remove_recursive(zswap_debugfs_root); |
| 896 | } |
| 897 | #else |
| 898 | static int __init zswap_debugfs_init(void) |
| 899 | { |
| 900 | return 0; |
| 901 | } |
| 902 | |
| 903 | static void __exit zswap_debugfs_exit(void) { } |
| 904 | #endif |
| 905 | |
| 906 | /********************************* |
| 907 | * module init and exit |
| 908 | **********************************/ |
| 909 | static int __init init_zswap(void) |
| 910 | { |
| 911 | if (!zswap_enabled) |
| 912 | return 0; |
| 913 | |
| 914 | pr_info("loading zswap\n"); |
| 915 | if (zswap_entry_cache_create()) { |
| 916 | pr_err("entry cache creation failed\n"); |
| 917 | goto error; |
| 918 | } |
| 919 | if (zswap_comp_init()) { |
| 920 | pr_err("compressor initialization failed\n"); |
| 921 | goto compfail; |
| 922 | } |
| 923 | if (zswap_cpu_init()) { |
| 924 | pr_err("per-cpu initialization failed\n"); |
| 925 | goto pcpufail; |
| 926 | } |
| 927 | frontswap_register_ops(&zswap_frontswap_ops); |
| 928 | if (zswap_debugfs_init()) |
| 929 | pr_warn("debugfs initialization failed\n"); |
| 930 | return 0; |
| 931 | pcpufail: |
| 932 | zswap_comp_exit(); |
| 933 | compfail: |
| 934 | zswap_entry_cache_destory(); |
| 935 | error: |
| 936 | return -ENOMEM; |
| 937 | } |
| 938 | /* must be late so crypto has time to come up */ |
| 939 | late_initcall(init_zswap); |
| 940 | |
| 941 | MODULE_LICENSE("GPL"); |
| 942 | MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); |
| 943 | MODULE_DESCRIPTION("Compressed cache for swap pages"); |