blob: 0eb2c09dd004895171abd8fe227d4802fee15a92 [file] [log] [blame]
Lee Jonesd90db4a2014-03-20 09:20:33 +00001/*
2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
3 *
4 * Author: Angus Clark <angus.clark@st.com>
5 *
6 * Copyright (C) 2010-2014 STicroelectronics Limited
7 *
8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
9 *
10 * This code is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
Lee Jonesa63984c2014-03-20 09:20:46 +000017#include <linux/regmap.h>
Lee Jonesd90db4a2014-03-20 09:20:33 +000018#include <linux/platform_device.h>
Lee Jonesa63984c2014-03-20 09:20:46 +000019#include <linux/mfd/syscon.h>
Lee Jonesd90db4a2014-03-20 09:20:33 +000020#include <linux/mtd/mtd.h>
21#include <linux/sched.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/of.h>
25
Lee Jones5549fbd2014-03-20 09:20:39 +000026#include "serial_flash_cmds.h"
27
Lee Jonesbc09fb52014-03-20 09:20:34 +000028/*
29 * FSM SPI Controller Registers
30 */
31#define SPI_CLOCKDIV 0x0010
32#define SPI_MODESELECT 0x0018
33#define SPI_CONFIGDATA 0x0020
34#define SPI_STA_MODE_CHANGE 0x0028
35#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
36#define SPI_FAST_SEQ_ADD1 0x0104
37#define SPI_FAST_SEQ_ADD2 0x0108
38#define SPI_FAST_SEQ_ADD_CFG 0x010c
39#define SPI_FAST_SEQ_OPC1 0x0110
40#define SPI_FAST_SEQ_OPC2 0x0114
41#define SPI_FAST_SEQ_OPC3 0x0118
42#define SPI_FAST_SEQ_OPC4 0x011c
43#define SPI_FAST_SEQ_OPC5 0x0120
44#define SPI_MODE_BITS 0x0124
45#define SPI_DUMMY_BITS 0x0128
46#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
47#define SPI_FAST_SEQ_1 0x0130
48#define SPI_FAST_SEQ_2 0x0134
49#define SPI_FAST_SEQ_3 0x0138
50#define SPI_FAST_SEQ_4 0x013c
51#define SPI_FAST_SEQ_CFG 0x0140
52#define SPI_FAST_SEQ_STA 0x0144
53#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
54#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
55#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
56#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
57#define SPI_PROGRAM_ERASE_TIME 0x0158
58#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
59#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
60#define SPI_STATUS_WR_TIME_REG 0x0164
61#define SPI_FAST_SEQ_DATA_REG 0x0300
62
63/*
64 * Register: SPI_MODESELECT
65 */
66#define SPI_MODESELECT_CONTIG 0x01
67#define SPI_MODESELECT_FASTREAD 0x02
68#define SPI_MODESELECT_DUALIO 0x04
69#define SPI_MODESELECT_FSM 0x08
70#define SPI_MODESELECT_QUADBOOT 0x10
71
72/*
73 * Register: SPI_CONFIGDATA
74 */
75#define SPI_CFG_DEVICE_ST 0x1
76#define SPI_CFG_DEVICE_ATMEL 0x4
77#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
78#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
79#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
80
Lee Jones86f309fd2014-03-20 09:20:35 +000081#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
82#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
83#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
84
Lee Jonesbc09fb52014-03-20 09:20:34 +000085/*
86 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
87 */
88#define TRANSFER_SIZE(x) ((x) * 8)
89
90/*
91 * Register: SPI_FAST_SEQ_ADD_CFG
92 */
93#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
94#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
95#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
96#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
97#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
98#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
99#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
100#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
101#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
102#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
103
104/*
105 * Register: SPI_FAST_SEQ_n
106 */
107#define SEQ_OPC_OPCODE(x) ((x) << 0)
108#define SEQ_OPC_CYCLES(x) ((x) << 8)
109#define SEQ_OPC_PADS_1 (0x0 << 14)
110#define SEQ_OPC_PADS_2 (0x1 << 14)
111#define SEQ_OPC_PADS_4 (0x3 << 14)
112#define SEQ_OPC_CSDEASSERT (1 << 16)
113
114/*
115 * Register: SPI_FAST_SEQ_CFG
116 */
117#define SEQ_CFG_STARTSEQ (1 << 0)
118#define SEQ_CFG_SWRESET (1 << 5)
119#define SEQ_CFG_CSDEASSERT (1 << 6)
120#define SEQ_CFG_READNOTWRITE (1 << 7)
121#define SEQ_CFG_ERASE (1 << 8)
122#define SEQ_CFG_PADS_1 (0x0 << 16)
123#define SEQ_CFG_PADS_2 (0x1 << 16)
124#define SEQ_CFG_PADS_4 (0x3 << 16)
125
126/*
127 * Register: SPI_MODE_BITS
128 */
129#define MODE_DATA(x) (x & 0xff)
130#define MODE_CYCLES(x) ((x & 0x3f) << 16)
131#define MODE_PADS_1 (0x0 << 22)
132#define MODE_PADS_2 (0x1 << 22)
133#define MODE_PADS_4 (0x3 << 22)
134#define DUMMY_CSDEASSERT (1 << 24)
135
136/*
137 * Register: SPI_DUMMY_BITS
138 */
139#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
140#define DUMMY_PADS_1 (0x0 << 22)
141#define DUMMY_PADS_2 (0x1 << 22)
142#define DUMMY_PADS_4 (0x3 << 22)
143#define DUMMY_CSDEASSERT (1 << 24)
144
145/*
146 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
147 */
148#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
149#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
150#define STA_PADS_1 (0x0 << 16)
151#define STA_PADS_2 (0x1 << 16)
152#define STA_PADS_4 (0x3 << 16)
153#define STA_CSDEASSERT (0x1 << 20)
154#define STA_RDNOTWR (0x1 << 21)
155
156/*
157 * FSM SPI Instruction Opcodes
158 */
159#define STFSM_OPC_CMD 0x1
160#define STFSM_OPC_ADD 0x2
161#define STFSM_OPC_STA 0x3
162#define STFSM_OPC_MODE 0x4
163#define STFSM_OPC_DUMMY 0x5
164#define STFSM_OPC_DATA 0x6
165#define STFSM_OPC_WAIT 0x7
166#define STFSM_OPC_JUMP 0x8
167#define STFSM_OPC_GOTO 0x9
168#define STFSM_OPC_STOP 0xF
169
170/*
171 * FSM SPI Instructions (== opcode + operand).
172 */
173#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
174
175#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
176#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
177#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
178#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
179#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
180#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
181#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
182
183#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
184#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
185
186#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
187#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
188#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
189#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
190
191#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
192#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
193#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
194#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
195
Lee Jones86f309fd2014-03-20 09:20:35 +0000196#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
197#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
198
199#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
200
Lee Jones3c8b85b2014-03-20 09:20:36 +0000201#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
202
Lee Jonese85a6192014-03-20 09:20:54 +0000203/* Flash Commands */
204#define FLASH_CMD_WREN 0x06
205#define FLASH_CMD_WRDI 0x04
206#define FLASH_CMD_RDID 0x9f
207#define FLASH_CMD_RDSR 0x05
208#define FLASH_CMD_RDSR2 0x35
209#define FLASH_CMD_WRSR 0x01
210#define FLASH_CMD_SE_4K 0x20
211#define FLASH_CMD_SE_32K 0x52
212#define FLASH_CMD_SE 0xd8
213#define FLASH_CMD_CHIPERASE 0xc7
214#define FLASH_CMD_WRVCR 0x81
215#define FLASH_CMD_RDVCR 0x85
216
217#define FLASH_CMD_READ 0x03 /* READ */
218#define FLASH_CMD_READ_FAST 0x0b /* FAST READ */
219#define FLASH_CMD_READ_1_1_2 0x3b /* DUAL OUTPUT READ */
220#define FLASH_CMD_READ_1_2_2 0xbb /* DUAL I/O READ */
221#define FLASH_CMD_READ_1_1_4 0x6b /* QUAD OUTPUT READ */
222#define FLASH_CMD_READ_1_4_4 0xeb /* QUAD I/O READ */
223
224#define FLASH_CMD_WRITE 0x02 /* PAGE PROGRAM */
225#define FLASH_CMD_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */
226#define FLASH_CMD_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */
227#define FLASH_CMD_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */
228#define FLASH_CMD_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */
229
230#define FLASH_CMD_EN4B_ADDR 0xb7 /* Enter 4-byte address mode */
231#define FLASH_CMD_EX4B_ADDR 0xe9 /* Exit 4-byte address mode */
232
233/* READ commands with 32-bit addressing (N25Q256 and S25FLxxxS) */
234#define FLASH_CMD_READ4 0x13
235#define FLASH_CMD_READ4_FAST 0x0c
236#define FLASH_CMD_READ4_1_1_2 0x3c
237#define FLASH_CMD_READ4_1_2_2 0xbc
238#define FLASH_CMD_READ4_1_1_4 0x6c
239#define FLASH_CMD_READ4_1_4_4 0xec
240
Lee Jones176b4372014-03-20 09:20:59 +0000241/* Status register */
242#define FLASH_STATUS_BUSY 0x01
243#define FLASH_STATUS_WEL 0x02
244#define FLASH_STATUS_BP0 0x04
245#define FLASH_STATUS_BP1 0x08
246#define FLASH_STATUS_BP2 0x10
247#define FLASH_STATUS_SRWP0 0x80
248#define FLASH_STATUS_TIMEOUT 0xff
249
Lee Jonese514f102014-03-20 09:20:57 +0000250#define FLASH_PAGESIZE 256 /* In Bytes */
251#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
Lee Jones176b4372014-03-20 09:20:59 +0000252#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
Lee Jonese514f102014-03-20 09:20:57 +0000253
Lee Jonese85a6192014-03-20 09:20:54 +0000254/*
255 * Flags to tweak operation of default read/write/erase routines
256 */
257#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
258#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
259#define CFG_WRITE_EX_32BIT_ADDR_DELAY 0x00000004
260#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
261#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
262
Lee Jonesd90db4a2014-03-20 09:20:33 +0000263struct stfsm {
264 struct device *dev;
265 void __iomem *base;
266 struct resource *region;
267 struct mtd_info mtd;
268 struct mutex lock;
Lee Jones24fec652014-03-20 09:20:41 +0000269 struct flash_info *info;
Lee Jones86f309fd2014-03-20 09:20:35 +0000270
Lee Jonese85a6192014-03-20 09:20:54 +0000271 uint32_t configuration;
Lee Jones86f309fd2014-03-20 09:20:35 +0000272 uint32_t fifo_dir_delay;
Lee Jonesa63984c2014-03-20 09:20:46 +0000273 bool booted_from_spi;
Lee Jones0ea7d702014-03-20 09:20:50 +0000274 bool reset_signal;
275 bool reset_por;
Lee Jonesd90db4a2014-03-20 09:20:33 +0000276};
277
Lee Jones3c8b85b2014-03-20 09:20:36 +0000278struct stfsm_seq {
279 uint32_t data_size;
280 uint32_t addr1;
281 uint32_t addr2;
282 uint32_t addr_cfg;
283 uint32_t seq_opc[5];
284 uint32_t mode;
285 uint32_t dummy;
286 uint32_t status;
287 uint8_t seq[16];
288 uint32_t seq_cfg;
289} __packed __aligned(4);
290
Lee Jones08981272014-03-20 09:20:42 +0000291/* Parameters to configure a READ or WRITE FSM sequence */
292struct seq_rw_config {
293 uint32_t flags; /* flags to support config */
294 uint8_t cmd; /* FLASH command */
295 int write; /* Write Sequence */
296 uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
297 uint8_t data_pads; /* No. of data pads */
298 uint8_t mode_data; /* MODE data */
299 uint8_t mode_cycles; /* No. of MODE cycles */
300 uint8_t dummy_cycles; /* No. of DUMMY cycles */
301};
302
Lee Jones11d7f822014-03-20 09:20:40 +0000303/* SPI Flash Device Table */
304struct flash_info {
305 char *name;
306 /*
307 * JEDEC id zero means "no ID" (most older chips); otherwise it has
308 * a high byte of zero plus three data bytes: the manufacturer id,
309 * then a two byte device id.
310 */
311 u32 jedec_id;
312 u16 ext_id;
313 /*
314 * The size listed here is what works with FLASH_CMD_SE, which isn't
315 * necessarily called a "sector" by the vendor.
316 */
317 unsigned sector_size;
318 u16 n_sectors;
319 u32 flags;
320 /*
321 * Note, where FAST_READ is supported, freq_max specifies the
322 * FAST_READ frequency, not the READ frequency.
323 */
324 u32 max_freq;
325 int (*config)(struct stfsm *);
326};
327
Lee Jones218b8702014-03-20 09:20:55 +0000328static int stfsm_n25q_config(struct stfsm *fsm);
329
Lee Jones11d7f822014-03-20 09:20:40 +0000330static struct flash_info flash_types[] = {
331 /*
332 * ST Microelectronics/Numonyx --
333 * (newer production versions may have feature updates
334 * (eg faster operating frequency)
335 */
336#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
337 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
338 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
339 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
340 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
341 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
342 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
343
344#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
345 FLASH_FLAG_READ_FAST | \
346 FLASH_FLAG_READ_1_1_2 | \
347 FLASH_FLAG_WRITE_1_1_2)
348 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
349 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
350
351#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
352 FLASH_FLAG_READ_FAST | \
353 FLASH_FLAG_READ_1_1_2 | \
354 FLASH_FLAG_READ_1_2_2 | \
355 FLASH_FLAG_READ_1_1_4 | \
356 FLASH_FLAG_READ_1_4_4 | \
357 FLASH_FLAG_SE_4K | \
358 FLASH_FLAG_SE_32K)
359 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
360 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, NULL }
361
362#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
363 FLASH_FLAG_READ_FAST | \
364 FLASH_FLAG_READ_1_1_2 | \
365 FLASH_FLAG_READ_1_2_2 | \
366 FLASH_FLAG_READ_1_1_4 | \
367 FLASH_FLAG_READ_1_4_4 | \
368 FLASH_FLAG_WRITE_1_1_2 | \
369 FLASH_FLAG_WRITE_1_2_2 | \
370 FLASH_FLAG_WRITE_1_1_4 | \
371 FLASH_FLAG_WRITE_1_4_4)
Lee Jones218b8702014-03-20 09:20:55 +0000372 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
373 stfsm_n25q_config },
Lee Jones11d7f822014-03-20 09:20:40 +0000374 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
Lee Jones218b8702014-03-20 09:20:55 +0000375 N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
Lee Jones11d7f822014-03-20 09:20:40 +0000376
377 /*
378 * Spansion S25FLxxxP
379 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
380 */
381#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
382 FLASH_FLAG_READ_1_1_2 | \
383 FLASH_FLAG_READ_1_2_2 | \
384 FLASH_FLAG_READ_1_1_4 | \
385 FLASH_FLAG_READ_1_4_4 | \
386 FLASH_FLAG_WRITE_1_1_4 | \
387 FLASH_FLAG_READ_FAST)
388 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
389 NULL },
390 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
391 NULL },
392
393 /*
394 * Spansion S25FLxxxS
395 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
396 * - RESET# signal supported by die but not bristled out on all
397 * package types. The package type is a function of board design,
398 * so this information is captured in the board's flags.
399 * - Supports 'DYB' sector protection. Depending on variant, sectors
400 * may default to locked state on power-on.
401 */
402#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
403 FLASH_FLAG_RESET | \
404 FLASH_FLAG_DYB_LOCKING)
405 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
406 NULL },
407 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
408 NULL },
409 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
410 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },
411 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
412 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },
413
414 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
415#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
416 FLASH_FLAG_READ_FAST | \
417 FLASH_FLAG_READ_1_1_2 | \
418 FLASH_FLAG_WRITE_1_1_2)
419 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
420 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
421 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
422 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
423 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
424
425 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
426#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
427 FLASH_FLAG_READ_FAST | \
428 FLASH_FLAG_READ_1_1_2 | \
429 FLASH_FLAG_READ_1_2_2 | \
430 FLASH_FLAG_READ_1_1_4 | \
431 FLASH_FLAG_READ_1_4_4 | \
432 FLASH_FLAG_WRITE_1_1_4)
433 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, NULL },
434 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, NULL },
435 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, NULL },
436 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, NULL },
437
438 /* Sentinel */
439 { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
440};
441
Lee Jonesa37b2f52014-03-20 09:20:53 +0000442/*
443 * FSM message sequence configurations:
444 *
445 * All configs are presented in order of preference
446 */
447
448/* Default READ configurations, in order of preference */
449static struct seq_rw_config default_read_configs[] = {
450 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
451 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
452 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
453 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
454 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
455 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
456 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
457};
458
459/* Default WRITE configurations */
460static struct seq_rw_config default_write_configs[] = {
461 {FLASH_FLAG_WRITE_1_4_4, FLASH_CMD_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
462 {FLASH_FLAG_WRITE_1_1_4, FLASH_CMD_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
463 {FLASH_FLAG_WRITE_1_2_2, FLASH_CMD_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
464 {FLASH_FLAG_WRITE_1_1_2, FLASH_CMD_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
465 {FLASH_FLAG_READ_WRITE, FLASH_CMD_WRITE, 1, 1, 1, 0x00, 0, 0},
466 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
467};
468
Lee Jonese85a6192014-03-20 09:20:54 +0000469/*
470 * [N25Qxxx] Configuration
471 */
472#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
473#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
474#define N25Q_VCR_WRAP_CONT 0x3
475
476/* N25Q 3-byte Address READ configurations
477 * - 'FAST' variants configured for 8 dummy cycles.
478 *
479 * Note, the number of dummy cycles used for 'FAST' READ operations is
480 * configurable and would normally be tuned according to the READ command and
481 * operating frequency. However, this applies universally to all 'FAST' READ
482 * commands, including those used by the SPIBoot controller, and remains in
483 * force until the device is power-cycled. Since the SPIBoot controller is
484 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
485 * cycles.
486 */
487static struct seq_rw_config n25q_read3_configs[] = {
488 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
489 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
490 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
491 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
492 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
493 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
494 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
495};
496
497/* N25Q 4-byte Address READ configurations
498 * - use special 4-byte address READ commands (reduces overheads, and
499 * reduces risk of hitting watchdog reset issues).
500 * - 'FAST' variants configured for 8 dummy cycles (see note above.)
501 */
502static struct seq_rw_config n25q_read4_configs[] = {
503 {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8},
504 {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
505 {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8},
506 {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
507 {FLASH_FLAG_READ_FAST, FLASH_CMD_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
508 {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ4, 0, 1, 1, 0x00, 0, 0},
509 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
510};
511
Lee Jones218b8702014-03-20 09:20:55 +0000512static struct stfsm_seq stfsm_seq_read; /* Dynamically populated */
513static struct stfsm_seq stfsm_seq_write; /* Dynamically populated */
Lee Jones0de08e42014-03-20 09:20:51 +0000514static struct stfsm_seq stfsm_seq_en_32bit_addr;/* Dynamically populated */
515
Lee Jones1bd512b2014-03-20 09:20:38 +0000516static struct stfsm_seq stfsm_seq_read_jedec = {
517 .data_size = TRANSFER_SIZE(8),
518 .seq_opc[0] = (SEQ_OPC_PADS_1 |
519 SEQ_OPC_CYCLES(8) |
520 SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
521 .seq = {
522 STFSM_INST_CMD1,
523 STFSM_INST_DATA_READ,
524 STFSM_INST_STOP,
525 },
526 .seq_cfg = (SEQ_CFG_PADS_1 |
527 SEQ_CFG_READNOTWRITE |
528 SEQ_CFG_CSDEASSERT |
529 SEQ_CFG_STARTSEQ),
530};
531
Lee Jones176b4372014-03-20 09:20:59 +0000532static struct stfsm_seq stfsm_seq_read_status_fifo = {
533 .data_size = TRANSFER_SIZE(4),
534 .seq_opc[0] = (SEQ_OPC_PADS_1 |
535 SEQ_OPC_CYCLES(8) |
536 SEQ_OPC_OPCODE(FLASH_CMD_RDSR)),
537 .seq = {
538 STFSM_INST_CMD1,
539 STFSM_INST_DATA_READ,
540 STFSM_INST_STOP,
541 },
542 .seq_cfg = (SEQ_CFG_PADS_1 |
543 SEQ_CFG_READNOTWRITE |
544 SEQ_CFG_CSDEASSERT |
545 SEQ_CFG_STARTSEQ),
546};
547
Lee Jonesfa5ba3a2014-03-20 09:20:47 +0000548static struct stfsm_seq stfsm_seq_erase_sector = {
549 /* 'addr_cfg' configured during initialisation */
550 .seq_opc = {
551 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
552 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
553
554 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
555 SEQ_OPC_OPCODE(FLASH_CMD_SE)),
556 },
557 .seq = {
558 STFSM_INST_CMD1,
559 STFSM_INST_CMD2,
560 STFSM_INST_ADD1,
561 STFSM_INST_ADD2,
562 STFSM_INST_STOP,
563 },
564 .seq_cfg = (SEQ_CFG_PADS_1 |
565 SEQ_CFG_READNOTWRITE |
566 SEQ_CFG_CSDEASSERT |
567 SEQ_CFG_STARTSEQ),
568};
569
Lee Jones4a341fe2014-03-20 09:21:00 +0000570static struct stfsm_seq stfsm_seq_erase_chip = {
571 .seq_opc = {
572 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
573 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
574
575 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
576 SEQ_OPC_OPCODE(FLASH_CMD_CHIPERASE) | SEQ_OPC_CSDEASSERT),
577 },
578 .seq = {
579 STFSM_INST_CMD1,
580 STFSM_INST_CMD2,
581 STFSM_INST_WAIT,
582 STFSM_INST_STOP,
583 },
584 .seq_cfg = (SEQ_CFG_PADS_1 |
585 SEQ_CFG_ERASE |
586 SEQ_CFG_READNOTWRITE |
587 SEQ_CFG_CSDEASSERT |
588 SEQ_CFG_STARTSEQ),
589};
590
Lee Jones150571b2014-03-20 09:21:02 +0000591static struct stfsm_seq stfsm_seq_write_status = {
592 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
593 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
594 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
595 SEQ_OPC_OPCODE(FLASH_CMD_WRSR)),
596 .seq = {
597 STFSM_INST_CMD1,
598 STFSM_INST_CMD2,
599 STFSM_INST_STA_WR1,
600 STFSM_INST_STOP,
601 },
602 .seq_cfg = (SEQ_CFG_PADS_1 |
603 SEQ_CFG_READNOTWRITE |
604 SEQ_CFG_CSDEASSERT |
605 SEQ_CFG_STARTSEQ),
606};
607
Lee Jones249516c2014-03-20 09:20:52 +0000608static struct stfsm_seq stfsm_seq_wrvcr = {
609 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
610 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
611 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
612 SEQ_OPC_OPCODE(FLASH_CMD_WRVCR)),
613 .seq = {
614 STFSM_INST_CMD1,
615 STFSM_INST_CMD2,
616 STFSM_INST_STA_WR1,
617 STFSM_INST_STOP,
618 },
619 .seq_cfg = (SEQ_CFG_PADS_1 |
620 SEQ_CFG_READNOTWRITE |
621 SEQ_CFG_CSDEASSERT |
622 SEQ_CFG_STARTSEQ),
623};
624
Lee Jones6bd29602014-03-20 09:20:48 +0000625static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
626{
627 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
628 SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR));
629 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
630 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
631 SEQ_OPC_CSDEASSERT);
632
633 seq->seq[0] = STFSM_INST_CMD2;
634 seq->seq[1] = STFSM_INST_CMD1;
635 seq->seq[2] = STFSM_INST_WAIT;
636 seq->seq[3] = STFSM_INST_STOP;
637
638 seq->seq_cfg = (SEQ_CFG_PADS_1 |
639 SEQ_CFG_ERASE |
640 SEQ_CFG_READNOTWRITE |
641 SEQ_CFG_CSDEASSERT |
642 SEQ_CFG_STARTSEQ);
643
644 return 0;
645}
646
Lee Jones3c8b85b2014-03-20 09:20:36 +0000647static inline int stfsm_is_idle(struct stfsm *fsm)
648{
649 return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
650}
651
Lee Jones86f309fd2014-03-20 09:20:35 +0000652static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
653{
654 return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
655}
656
657static void stfsm_clear_fifo(struct stfsm *fsm)
658{
659 uint32_t avail;
660
661 for (;;) {
662 avail = stfsm_fifo_available(fsm);
663 if (!avail)
664 break;
665
666 while (avail) {
667 readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
668 avail--;
669 }
670 }
671}
672
Lee Jones3c8b85b2014-03-20 09:20:36 +0000673static inline void stfsm_load_seq(struct stfsm *fsm,
674 const struct stfsm_seq *seq)
675{
676 void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
677 const uint32_t *src = (const uint32_t *)seq;
678 int words = sizeof(*seq) / sizeof(*src);
679
680 BUG_ON(!stfsm_is_idle(fsm));
681
682 while (words--) {
683 writel(*src, dst);
684 src++;
685 dst += 4;
686 }
687}
688
689static void stfsm_wait_seq(struct stfsm *fsm)
690{
691 unsigned long deadline;
692 int timeout = 0;
693
694 deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
695
696 while (!timeout) {
697 if (time_after_eq(jiffies, deadline))
698 timeout = 1;
699
700 if (stfsm_is_idle(fsm))
701 return;
702
703 cond_resched();
704 }
705
706 dev_err(fsm->dev, "timeout on sequence completion\n");
707}
708
Lee Jones030e82d2014-03-20 09:20:37 +0000709static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf,
710 const uint32_t size)
711{
712 uint32_t remaining = size >> 2;
713 uint32_t avail;
714 uint32_t words;
715
716 dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
717
718 BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
719
720 while (remaining) {
721 for (;;) {
722 avail = stfsm_fifo_available(fsm);
723 if (avail)
724 break;
725 udelay(1);
726 }
727 words = min(avail, remaining);
728 remaining -= words;
729
730 readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
731 buf += words;
732 }
733}
734
Lee Jones30ca64f2014-03-20 09:20:58 +0000735static int stfsm_write_fifo(struct stfsm *fsm,
736 const uint32_t *buf, const uint32_t size)
737{
738 uint32_t words = size >> 2;
739
740 dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
741
742 BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
743
744 writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
745
746 return size;
747}
748
Lee Jones0de08e42014-03-20 09:20:51 +0000749static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
750{
751 struct stfsm_seq *seq = &stfsm_seq_en_32bit_addr;
752 uint32_t cmd = enter ? FLASH_CMD_EN4B_ADDR : FLASH_CMD_EX4B_ADDR;
753
754 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
755 SEQ_OPC_CYCLES(8) |
756 SEQ_OPC_OPCODE(cmd) |
757 SEQ_OPC_CSDEASSERT);
758
759 stfsm_load_seq(fsm, seq);
760
761 stfsm_wait_seq(fsm);
762
763 return 0;
764}
765
Lee Jones176b4372014-03-20 09:20:59 +0000766static uint8_t stfsm_wait_busy(struct stfsm *fsm)
767{
768 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
769 unsigned long deadline;
770 uint32_t status;
771 int timeout = 0;
772
773 /* Use RDRS1 */
774 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
775 SEQ_OPC_CYCLES(8) |
776 SEQ_OPC_OPCODE(FLASH_CMD_RDSR));
777
778 /* Load read_status sequence */
779 stfsm_load_seq(fsm, seq);
780
781 /*
782 * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
783 */
784 deadline = jiffies + FLASH_MAX_BUSY_WAIT;
785 while (!timeout) {
786 cond_resched();
787
788 if (time_after_eq(jiffies, deadline))
789 timeout = 1;
790
791 stfsm_wait_seq(fsm);
792
793 stfsm_read_fifo(fsm, &status, 4);
794
795 if ((status & FLASH_STATUS_BUSY) == 0)
796 return 0;
797
798 if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
799 ((status & S25FL_STATUS_P_ERR) ||
800 (status & S25FL_STATUS_E_ERR)))
801 return (uint8_t)(status & 0xff);
802
803 if (!timeout)
804 /* Restart */
805 writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
806 }
807
808 dev_err(fsm->dev, "timeout on wait_busy\n");
809
810 return FLASH_STATUS_TIMEOUT;
811}
812
Lee Jonesac94dbc2014-03-20 09:21:01 +0000813static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
814 uint8_t *status)
815{
816 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
817 uint32_t tmp;
818
819 dev_dbg(fsm->dev, "reading STA[%s]\n",
820 (cmd == FLASH_CMD_RDSR) ? "1" : "2");
821
822 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
823 SEQ_OPC_CYCLES(8) |
824 SEQ_OPC_OPCODE(cmd)),
825
826 stfsm_load_seq(fsm, seq);
827
828 stfsm_read_fifo(fsm, &tmp, 4);
829
830 *status = (uint8_t)(tmp >> 24);
831
832 stfsm_wait_seq(fsm);
833
834 return 0;
835}
836
Lee Jones150571b2014-03-20 09:21:02 +0000837static int stfsm_write_status(struct stfsm *fsm, uint16_t status,
838 int sta_bytes)
839{
840 struct stfsm_seq *seq = &stfsm_seq_write_status;
841
842 dev_dbg(fsm->dev, "writing STA[%s] 0x%04x\n",
843 (sta_bytes == 1) ? "1" : "1+2", status);
844
845 seq->status = (uint32_t)status | STA_PADS_1 | STA_CSDEASSERT;
846 seq->seq[2] = (sta_bytes == 1) ?
847 STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
848
849 stfsm_load_seq(fsm, seq);
850
851 stfsm_wait_seq(fsm);
852
853 return 0;
854};
855
Lee Jones249516c2014-03-20 09:20:52 +0000856static int stfsm_wrvcr(struct stfsm *fsm, uint8_t data)
857{
858 struct stfsm_seq *seq = &stfsm_seq_wrvcr;
859
860 dev_dbg(fsm->dev, "writing VCR 0x%02x\n", data);
861
862 seq->status = (STA_DATA_BYTE1(data) | STA_PADS_1 | STA_CSDEASSERT);
863
864 stfsm_load_seq(fsm, seq);
865
866 stfsm_wait_seq(fsm);
867
868 return 0;
869}
870
Lee Jones0ea7d702014-03-20 09:20:50 +0000871/*
872 * SoC reset on 'boot-from-spi' systems
873 *
874 * Certain modes of operation cause the Flash device to enter a particular state
875 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
876 * Addr' commands). On boot-from-spi systems, it is important to consider what
877 * happens if a warm reset occurs during this period. The SPIBoot controller
878 * assumes that Flash device is in its default reset state, 24-bit address mode,
879 * and ready to accept commands. This can be achieved using some form of
880 * on-board logic/controller to force a device POR in response to a SoC-level
881 * reset or by making use of the device reset signal if available (limited
882 * number of devices only).
883 *
884 * Failure to take such precautions can cause problems following a warm reset.
885 * For some operations (e.g. ERASE), there is little that can be done. For
886 * other modes of operation (e.g. 32-bit addressing), options are often
887 * available that can help minimise the window in which a reset could cause a
888 * problem.
889 *
890 */
891static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
892{
893 /* Reset signal is available on the board and supported by the device */
894 if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
895 return true;
896
897 /* Board-level logic forces a power-on-reset */
898 if (fsm->reset_por)
899 return true;
900
901 /* Reset is not properly handled and may result in failure to reboot */
902 return false;
903}
904
Lee Jonesfa5ba3a2014-03-20 09:20:47 +0000905/* Configure 'addr_cfg' according to addressing mode */
906static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
907 struct stfsm_seq *seq)
908{
909 int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
910
911 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
912 ADR_CFG_PADS_1_ADD1 |
913 ADR_CFG_CYCLES_ADD2(16) |
914 ADR_CFG_PADS_1_ADD2 |
915 ADR_CFG_CSDEASSERT_ADD2);
916}
917
Lee Jones08981272014-03-20 09:20:42 +0000918/* Search for preferred configuration based on available flags */
919static struct seq_rw_config *
920stfsm_search_seq_rw_configs(struct stfsm *fsm,
921 struct seq_rw_config cfgs[])
922{
923 struct seq_rw_config *config;
924 int flags = fsm->info->flags;
925
926 for (config = cfgs; config->cmd != 0; config++)
927 if ((config->flags & flags) == config->flags)
928 return config;
929
930 return NULL;
931}
932
Lee Jones97ccf2d2014-03-20 09:20:44 +0000933/* Prepare a READ/WRITE sequence according to configuration parameters */
934static void stfsm_prepare_rw_seq(struct stfsm *fsm,
935 struct stfsm_seq *seq,
936 struct seq_rw_config *cfg)
937{
938 int addr1_cycles, addr2_cycles;
939 int i = 0;
940
941 memset(seq, 0, sizeof(*seq));
942
943 /* Add READ/WRITE OPC */
944 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
945 SEQ_OPC_CYCLES(8) |
946 SEQ_OPC_OPCODE(cfg->cmd));
947
948 /* Add WREN OPC for a WRITE sequence */
949 if (cfg->write)
950 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
951 SEQ_OPC_CYCLES(8) |
952 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
953 SEQ_OPC_CSDEASSERT);
954
955 /* Address configuration (24 or 32-bit addresses) */
956 addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
957 addr1_cycles /= cfg->addr_pads;
958 addr2_cycles = 16 / cfg->addr_pads;
959 seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
960 (cfg->addr_pads - 1) << 6 | /* ADD1 pads */
961 (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
962 ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
963
964 /* Data/Sequence configuration */
965 seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
966 SEQ_CFG_STARTSEQ |
967 SEQ_CFG_CSDEASSERT);
968 if (!cfg->write)
969 seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
970
971 /* Mode configuration (no. of pads taken from addr cfg) */
972 seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
973 (cfg->mode_cycles & 0x3f) << 16 | /* cycles */
974 (cfg->addr_pads - 1) << 22); /* pads */
975
976 /* Dummy configuration (no. of pads taken from addr cfg) */
977 seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
978 (cfg->addr_pads - 1) << 22); /* pads */
979
980
981 /* Instruction sequence */
982 i = 0;
983 if (cfg->write)
984 seq->seq[i++] = STFSM_INST_CMD2;
985
986 seq->seq[i++] = STFSM_INST_CMD1;
987
988 seq->seq[i++] = STFSM_INST_ADD1;
989 seq->seq[i++] = STFSM_INST_ADD2;
990
991 if (cfg->mode_cycles)
992 seq->seq[i++] = STFSM_INST_MODE;
993
994 if (cfg->dummy_cycles)
995 seq->seq[i++] = STFSM_INST_DUMMY;
996
997 seq->seq[i++] =
998 cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
999 seq->seq[i++] = STFSM_INST_STOP;
1000}
1001
Lee Jones88cccb82014-03-20 09:20:49 +00001002static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1003 struct stfsm_seq *seq,
1004 struct seq_rw_config *cfgs)
1005{
1006 struct seq_rw_config *config;
1007
1008 config = stfsm_search_seq_rw_configs(fsm, cfgs);
1009 if (!config) {
1010 dev_err(fsm->dev, "failed to find suitable config\n");
1011 return -EINVAL;
1012 }
1013
1014 stfsm_prepare_rw_seq(fsm, seq, config);
1015
1016 return 0;
1017}
1018
Lee Jones4eb3f0d82014-03-20 09:20:56 +00001019/* Prepare a READ/WRITE/ERASE 'default' sequences */
1020static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1021{
1022 uint32_t flags = fsm->info->flags;
1023 int ret;
1024
1025 /* Configure 'READ' sequence */
1026 ret = stfsm_search_prepare_rw_seq(fsm, &stfsm_seq_read,
1027 default_read_configs);
1028 if (ret) {
1029 dev_err(fsm->dev,
1030 "failed to prep READ sequence with flags [0x%08x]\n",
1031 flags);
1032 return ret;
1033 }
1034
1035 /* Configure 'WRITE' sequence */
1036 ret = stfsm_search_prepare_rw_seq(fsm, &stfsm_seq_write,
1037 default_write_configs);
1038 if (ret) {
1039 dev_err(fsm->dev,
1040 "failed to prep WRITE sequence with flags [0x%08x]\n",
1041 flags);
1042 return ret;
1043 }
1044
1045 /* Configure 'ERASE_SECTOR' sequence */
1046 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1047
1048 return 0;
1049}
1050
Lee Jones218b8702014-03-20 09:20:55 +00001051static int stfsm_n25q_config(struct stfsm *fsm)
1052{
1053 uint32_t flags = fsm->info->flags;
1054 uint8_t vcr;
1055 int ret = 0;
1056 bool soc_reset;
1057
1058 /* Configure 'READ' sequence */
1059 if (flags & FLASH_FLAG_32BIT_ADDR)
1060 ret = stfsm_search_prepare_rw_seq(fsm, &stfsm_seq_read,
1061 n25q_read4_configs);
1062 else
1063 ret = stfsm_search_prepare_rw_seq(fsm, &stfsm_seq_read,
1064 n25q_read3_configs);
1065 if (ret) {
1066 dev_err(fsm->dev,
1067 "failed to prepare READ sequence with flags [0x%08x]\n",
1068 flags);
1069 return ret;
1070 }
1071
1072 /* Configure 'WRITE' sequence (default configs) */
1073 ret = stfsm_search_prepare_rw_seq(fsm, &stfsm_seq_write,
1074 default_write_configs);
1075 if (ret) {
1076 dev_err(fsm->dev,
1077 "preparing WRITE sequence using flags [0x%08x] failed\n",
1078 flags);
1079 return ret;
1080 }
1081
1082 /* * Configure 'ERASE_SECTOR' sequence */
1083 stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1084
1085 /* Configure 32-bit address support */
1086 if (flags & FLASH_FLAG_32BIT_ADDR) {
1087 stfsm_n25q_en_32bit_addr_seq(&stfsm_seq_en_32bit_addr);
1088
1089 soc_reset = stfsm_can_handle_soc_reset(fsm);
1090 if (soc_reset || !fsm->booted_from_spi) {
1091 /*
1092 * If we can handle SoC resets, we enable 32-bit
1093 * address mode pervasively
1094 */
1095 stfsm_enter_32bit_addr(fsm, 1);
1096 } else {
1097 /*
1098 * If not, enable/disable for WRITE and ERASE
1099 * operations (READ uses special commands)
1100 */
1101 fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1102 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1103 }
1104 }
1105
1106 /*
1107 * Configure device to use 8 dummy cycles
1108 */
1109 vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1110 N25Q_VCR_WRAP_CONT);
1111 stfsm_wrvcr(fsm, vcr);
1112
1113 return 0;
1114}
1115
Lee Jonese514f102014-03-20 09:20:57 +00001116static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1117 uint32_t offset)
1118{
1119 struct stfsm_seq *seq = &stfsm_seq_read;
1120 uint32_t data_pads;
1121 uint32_t read_mask;
1122 uint32_t size_ub;
1123 uint32_t size_lb;
1124 uint32_t size_mop;
1125 uint32_t tmp[4];
1126 uint32_t page_buf[FLASH_PAGESIZE_32];
1127 uint8_t *p;
1128
1129 dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1130
1131 /* Enter 32-bit address mode, if required */
1132 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1133 stfsm_enter_32bit_addr(fsm, 1);
1134
1135 /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1136 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1137 read_mask = (data_pads << 2) - 1;
1138
1139 /* Handle non-aligned buf */
1140 p = ((uint32_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1141
1142 /* Handle non-aligned size */
1143 size_ub = (size + read_mask) & ~read_mask;
1144 size_lb = size & ~read_mask;
1145 size_mop = size & read_mask;
1146
1147 seq->data_size = TRANSFER_SIZE(size_ub);
1148 seq->addr1 = (offset >> 16) & 0xffff;
1149 seq->addr2 = offset & 0xffff;
1150
1151 stfsm_load_seq(fsm, seq);
1152
1153 if (size_lb)
1154 stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1155
1156 if (size_mop) {
1157 stfsm_read_fifo(fsm, tmp, read_mask + 1);
1158 memcpy(p + size_lb, &tmp, size_mop);
1159 }
1160
1161 /* Handle non-aligned buf */
1162 if ((uint32_t)buf & 0x3)
1163 memcpy(buf, page_buf, size);
1164
1165 /* Wait for sequence to finish */
1166 stfsm_wait_seq(fsm);
1167
1168 stfsm_clear_fifo(fsm);
1169
1170 /* Exit 32-bit address mode, if required */
1171 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1172 stfsm_enter_32bit_addr(fsm, 0);
1173
1174 return 0;
1175}
1176
Lee Jones176b4372014-03-20 09:20:59 +00001177static int stfsm_write(struct stfsm *fsm, const uint8_t *const buf,
1178 const uint32_t size, const uint32_t offset)
1179{
1180 struct stfsm_seq *seq = &stfsm_seq_write;
1181 uint32_t data_pads;
1182 uint32_t write_mask;
1183 uint32_t size_ub;
1184 uint32_t size_lb;
1185 uint32_t size_mop;
1186 uint32_t tmp[4];
1187 uint32_t page_buf[FLASH_PAGESIZE_32];
1188 uint8_t *t = (uint8_t *)&tmp;
1189 const uint8_t *p;
1190 int ret;
1191 int i;
1192
1193 dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1194
1195 /* Enter 32-bit address mode, if required */
1196 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1197 stfsm_enter_32bit_addr(fsm, 1);
1198
1199 /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1200 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1201 write_mask = (data_pads << 2) - 1;
1202
1203 /* Handle non-aligned buf */
1204 if ((uint32_t)buf & 0x3) {
1205 memcpy(page_buf, buf, size);
1206 p = (uint8_t *)page_buf;
1207 } else {
1208 p = buf;
1209 }
1210
1211 /* Handle non-aligned size */
1212 size_ub = (size + write_mask) & ~write_mask;
1213 size_lb = size & ~write_mask;
1214 size_mop = size & write_mask;
1215
1216 seq->data_size = TRANSFER_SIZE(size_ub);
1217 seq->addr1 = (offset >> 16) & 0xffff;
1218 seq->addr2 = offset & 0xffff;
1219
1220 /* Need to set FIFO to write mode, before writing data to FIFO (see
1221 * GNBvb79594)
1222 */
1223 writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1224
1225 /*
1226 * Before writing data to the FIFO, apply a small delay to allow a
1227 * potential change of FIFO direction to complete.
1228 */
1229 if (fsm->fifo_dir_delay == 0)
1230 readl(fsm->base + SPI_FAST_SEQ_CFG);
1231 else
1232 udelay(fsm->fifo_dir_delay);
1233
1234
1235 /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1236 if (size_lb) {
1237 stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1238 p += size_lb;
1239 }
1240
1241 /* Handle non-aligned size */
1242 if (size_mop) {
1243 memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
1244 for (i = 0; i < size_mop; i++)
1245 t[i] = *p++;
1246
1247 stfsm_write_fifo(fsm, tmp, write_mask + 1);
1248 }
1249
1250 /* Start sequence */
1251 stfsm_load_seq(fsm, seq);
1252
1253 /* Wait for sequence to finish */
1254 stfsm_wait_seq(fsm);
1255
1256 /* Wait for completion */
1257 ret = stfsm_wait_busy(fsm);
1258
1259 /* Exit 32-bit address mode, if required */
1260 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) {
1261 stfsm_enter_32bit_addr(fsm, 0);
1262 if (fsm->configuration & CFG_WRITE_EX_32BIT_ADDR_DELAY)
1263 udelay(1);
1264 }
1265
1266 return 0;
1267}
1268
Lee Jonese514f102014-03-20 09:20:57 +00001269/*
1270 * Read an address range from the flash chip. The address range
1271 * may be any size provided it is within the physical boundaries.
1272 */
1273static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1274 size_t *retlen, u_char *buf)
1275{
1276 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1277 uint32_t bytes;
1278
1279 dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1280 __func__, (u32)from, len);
1281
1282 mutex_lock(&fsm->lock);
1283
1284 while (len > 0) {
1285 bytes = min_t(size_t, len, FLASH_PAGESIZE);
1286
1287 stfsm_read(fsm, buf, bytes, from);
1288
1289 buf += bytes;
1290 from += bytes;
1291 len -= bytes;
1292
1293 *retlen += bytes;
1294 }
1295
1296 mutex_unlock(&fsm->lock);
1297
1298 return 0;
1299}
1300
Lee Jones4a341fe2014-03-20 09:21:00 +00001301static int stfsm_erase_sector(struct stfsm *fsm, const uint32_t offset)
1302{
1303 struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1304 int ret;
1305
1306 dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1307
1308 /* Enter 32-bit address mode, if required */
1309 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1310 stfsm_enter_32bit_addr(fsm, 1);
1311
1312 seq->addr1 = (offset >> 16) & 0xffff;
1313 seq->addr2 = offset & 0xffff;
1314
1315 stfsm_load_seq(fsm, seq);
1316
1317 stfsm_wait_seq(fsm);
1318
1319 /* Wait for completion */
1320 ret = stfsm_wait_busy(fsm);
1321
1322 /* Exit 32-bit address mode, if required */
1323 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1324 stfsm_enter_32bit_addr(fsm, 0);
1325
1326 return ret;
1327}
1328
1329static int stfsm_erase_chip(struct stfsm *fsm)
1330{
1331 const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1332
1333 dev_dbg(fsm->dev, "erasing chip\n");
1334
1335 stfsm_load_seq(fsm, seq);
1336
1337 stfsm_wait_seq(fsm);
1338
1339 return stfsm_wait_busy(fsm);
1340}
1341
Lee Jones176b4372014-03-20 09:20:59 +00001342/*
1343 * Write an address range to the flash chip. Data must be written in
1344 * FLASH_PAGESIZE chunks. The address range may be any size provided
1345 * it is within the physical boundaries.
1346 */
1347static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1348 size_t *retlen, const u_char *buf)
1349{
1350 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1351
1352 u32 page_offs;
1353 u32 bytes;
1354 uint8_t *b = (uint8_t *)buf;
1355 int ret = 0;
1356
1357 dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1358
1359 *retlen = 0;
1360
1361 if (!len)
1362 return 0;
1363
1364 if (to + len > mtd->size)
1365 return -EINVAL;
1366
1367 /* Offset within page */
1368 page_offs = to % FLASH_PAGESIZE;
1369
1370 mutex_lock(&fsm->lock);
1371
1372 while (len) {
1373 /* Write up to page boundary */
1374 bytes = min(FLASH_PAGESIZE - page_offs, len);
1375
1376 ret = stfsm_write(fsm, b, bytes, to);
1377 if (ret)
1378 goto out1;
1379
1380 b += bytes;
1381 len -= bytes;
1382 to += bytes;
1383
1384 /* We are now page-aligned */
1385 page_offs = 0;
1386
1387 *retlen += bytes;
1388
1389 }
1390
1391out1:
1392 mutex_unlock(&fsm->lock);
1393
1394 return ret;
1395}
1396
Lee Jones4a341fe2014-03-20 09:21:00 +00001397/*
1398 * Erase an address range on the flash chip. The address range may extend
1399 * one or more erase sectors. Return an error is there is a problem erasing.
1400 */
1401static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1402{
1403 struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1404 u32 addr, len;
1405 int ret;
1406
1407 dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1408 (long long)instr->addr, (long long)instr->len);
1409
1410 addr = instr->addr;
1411 len = instr->len;
1412
1413 mutex_lock(&fsm->lock);
1414
1415 /* Whole-chip erase? */
1416 if (len == mtd->size) {
1417 ret = stfsm_erase_chip(fsm);
1418 if (ret)
1419 goto out1;
1420 } else {
1421 while (len) {
1422 ret = stfsm_erase_sector(fsm, addr);
1423 if (ret)
1424 goto out1;
1425
1426 addr += mtd->erasesize;
1427 len -= mtd->erasesize;
1428 }
1429 }
1430
1431 mutex_unlock(&fsm->lock);
1432
1433 instr->state = MTD_ERASE_DONE;
1434 mtd_erase_callback(instr);
1435
1436 return 0;
1437
1438out1:
1439 instr->state = MTD_ERASE_FAILED;
1440 mutex_unlock(&fsm->lock);
1441
1442 return ret;
1443}
1444
Lee Jones1bd512b2014-03-20 09:20:38 +00001445static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *const jedec)
1446{
1447 const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1448 uint32_t tmp[2];
1449
1450 stfsm_load_seq(fsm, seq);
1451
1452 stfsm_read_fifo(fsm, tmp, 8);
1453
1454 memcpy(jedec, tmp, 5);
1455
1456 stfsm_wait_seq(fsm);
1457}
1458
1459static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1460{
Lee Jones24fec652014-03-20 09:20:41 +00001461 struct flash_info *info;
Lee Jones1bd512b2014-03-20 09:20:38 +00001462 u16 ext_jedec;
1463 u32 jedec;
1464 u8 id[5];
1465
1466 stfsm_read_jedec(fsm, id);
1467
1468 jedec = id[0] << 16 | id[1] << 8 | id[2];
1469 /*
1470 * JEDEC also defines an optional "extended device information"
1471 * string for after vendor-specific data, after the three bytes
1472 * we use here. Supporting some chips might require using it.
1473 */
1474 ext_jedec = id[3] << 8 | id[4];
1475
1476 dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
1477 jedec, id[0], id[1], id[2], id[3], id[4]);
1478
Lee Jones24fec652014-03-20 09:20:41 +00001479 for (info = flash_types; info->name; info++) {
1480 if (info->jedec_id == jedec) {
1481 if (info->ext_id && info->ext_id != ext_jedec)
1482 continue;
1483 return info;
1484 }
1485 }
1486 dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1487
Lee Jones1bd512b2014-03-20 09:20:38 +00001488 return NULL;
1489}
1490
Lee Jones86f309fd2014-03-20 09:20:35 +00001491static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1492{
1493 int ret, timeout = 10;
1494
1495 /* Wait for controller to accept mode change */
1496 while (--timeout) {
1497 ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1498 if (ret & 0x1)
1499 break;
1500 udelay(1);
1501 }
1502
1503 if (!timeout)
1504 return -EBUSY;
1505
1506 writel(mode, fsm->base + SPI_MODESELECT);
1507
1508 return 0;
1509}
1510
1511static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1512{
1513 uint32_t emi_freq;
1514 uint32_t clk_div;
1515
1516 /* TODO: Make this dynamic */
1517 emi_freq = STFSM_DEFAULT_EMI_FREQ;
1518
1519 /*
1520 * Calculate clk_div - values between 2 and 128
1521 * Multiple of 2, rounded up
1522 */
1523 clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1524 if (clk_div < 2)
1525 clk_div = 2;
1526 else if (clk_div > 128)
1527 clk_div = 128;
1528
1529 /*
1530 * Determine a suitable delay for the IP to complete a change of
1531 * direction of the FIFO. The required delay is related to the clock
1532 * divider used. The following heuristics are based on empirical tests,
1533 * using a 100MHz EMI clock.
1534 */
1535 if (clk_div <= 4)
1536 fsm->fifo_dir_delay = 0;
1537 else if (clk_div <= 10)
1538 fsm->fifo_dir_delay = 1;
1539 else
1540 fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1541
1542 dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1543 emi_freq, spi_freq, clk_div);
1544
1545 writel(clk_div, fsm->base + SPI_CLOCKDIV);
1546}
1547
1548static int stfsm_init(struct stfsm *fsm)
1549{
1550 int ret;
1551
1552 /* Perform a soft reset of the FSM controller */
1553 writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1554 udelay(1);
1555 writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1556
1557 /* Set clock to 'safe' frequency initially */
1558 stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1559
1560 /* Switch to FSM */
1561 ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1562 if (ret)
1563 return ret;
1564
1565 /* Set timing parameters */
1566 writel(SPI_CFG_DEVICE_ST |
1567 SPI_CFG_DEFAULT_MIN_CS_HIGH |
1568 SPI_CFG_DEFAULT_CS_SETUPHOLD |
1569 SPI_CFG_DEFAULT_DATA_HOLD,
1570 fsm->base + SPI_CONFIGDATA);
1571 writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1572
1573 /* Clear FIFO, just in case */
1574 stfsm_clear_fifo(fsm);
1575
1576 return 0;
1577}
1578
Lee Jonesa63984c2014-03-20 09:20:46 +00001579static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1580{
1581 struct stfsm *fsm = platform_get_drvdata(pdev);
1582 struct device_node *np = pdev->dev.of_node;
1583 struct regmap *regmap;
1584 uint32_t boot_device_reg;
1585 uint32_t boot_device_spi;
1586 uint32_t boot_device; /* Value we read from *boot_device_reg */
1587 int ret;
1588
1589 /* Booting from SPI NOR Flash is the default */
1590 fsm->booted_from_spi = true;
1591
1592 regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1593 if (IS_ERR(regmap))
1594 goto boot_device_fail;
1595
Lee Jones0ea7d702014-03-20 09:20:50 +00001596 fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1597
1598 fsm->reset_por = of_property_read_bool(np, "st,reset-por");
1599
Lee Jonesa63984c2014-03-20 09:20:46 +00001600 /* Where in the syscon the boot device information lives */
1601 ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
1602 if (ret)
1603 goto boot_device_fail;
1604
1605 /* Boot device value when booted from SPI NOR */
1606 ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
1607 if (ret)
1608 goto boot_device_fail;
1609
1610 ret = regmap_read(regmap, boot_device_reg, &boot_device);
1611 if (ret)
1612 goto boot_device_fail;
1613
1614 if (boot_device != boot_device_spi)
1615 fsm->booted_from_spi = false;
1616
1617 return;
1618
1619boot_device_fail:
1620 dev_warn(&pdev->dev,
1621 "failed to fetch boot device, assuming boot from SPI\n");
1622}
1623
Lee Jonesd90db4a2014-03-20 09:20:33 +00001624static int stfsm_probe(struct platform_device *pdev)
1625{
1626 struct device_node *np = pdev->dev.of_node;
Lee Jones24fec652014-03-20 09:20:41 +00001627 struct flash_info *info;
Lee Jonesd90db4a2014-03-20 09:20:33 +00001628 struct resource *res;
1629 struct stfsm *fsm;
Lee Jones86f309fd2014-03-20 09:20:35 +00001630 int ret;
Lee Jonesd90db4a2014-03-20 09:20:33 +00001631
1632 if (!np) {
1633 dev_err(&pdev->dev, "No DT found\n");
1634 return -EINVAL;
1635 }
1636
1637 fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
1638 if (!fsm)
1639 return -ENOMEM;
1640
1641 fsm->dev = &pdev->dev;
1642
1643 platform_set_drvdata(pdev, fsm);
1644
1645 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1646 if (!res) {
1647 dev_err(&pdev->dev, "Resource not found\n");
1648 return -ENODEV;
1649 }
1650
1651 fsm->base = devm_ioremap_resource(&pdev->dev, res);
1652 if (IS_ERR(fsm->base)) {
1653 dev_err(&pdev->dev,
1654 "Failed to reserve memory region %pR\n", res);
1655 return PTR_ERR(fsm->base);
1656 }
1657
1658 mutex_init(&fsm->lock);
1659
Lee Jones86f309fd2014-03-20 09:20:35 +00001660 ret = stfsm_init(fsm);
1661 if (ret) {
1662 dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
1663 return ret;
1664 }
1665
Lee Jonesa63984c2014-03-20 09:20:46 +00001666 stfsm_fetch_platform_configs(pdev);
1667
Lee Jones1bd512b2014-03-20 09:20:38 +00001668 /* Detect SPI FLASH device */
Lee Jones24fec652014-03-20 09:20:41 +00001669 info = stfsm_jedec_probe(fsm);
1670 if (!info)
1671 return -ENODEV;
1672 fsm->info = info;
Lee Jones1bd512b2014-03-20 09:20:38 +00001673
Lee Jones3b5d1982014-03-20 09:20:43 +00001674 /* Use device size to determine address width */
1675 if (info->sector_size * info->n_sectors > 0x1000000)
1676 info->flags |= FLASH_FLAG_32BIT_ADDR;
1677
Lee Jones218b8702014-03-20 09:20:55 +00001678 /*
1679 * Configure READ/WRITE/ERASE sequences according to platform and
1680 * device flags.
1681 */
1682 if (info->config) {
1683 ret = info->config(fsm);
1684 if (ret)
1685 return ret;
Lee Jones4eb3f0d82014-03-20 09:20:56 +00001686 } else {
1687 ret = stfsm_prepare_rwe_seqs_default(fsm);
1688 if (ret)
1689 return ret;
Lee Jones218b8702014-03-20 09:20:55 +00001690 }
1691
Lee Jonesd90db4a2014-03-20 09:20:33 +00001692 fsm->mtd.dev.parent = &pdev->dev;
1693 fsm->mtd.type = MTD_NORFLASH;
1694 fsm->mtd.writesize = 4;
1695 fsm->mtd.writebufsize = fsm->mtd.writesize;
1696 fsm->mtd.flags = MTD_CAP_NORFLASH;
Lee Jones24fec652014-03-20 09:20:41 +00001697 fsm->mtd.size = info->sector_size * info->n_sectors;
1698 fsm->mtd.erasesize = info->sector_size;
1699
Lee Jonese514f102014-03-20 09:20:57 +00001700 fsm->mtd._read = stfsm_mtd_read;
Lee Jones176b4372014-03-20 09:20:59 +00001701 fsm->mtd._write = stfsm_mtd_write;
Lee Jones4a341fe2014-03-20 09:21:00 +00001702 fsm->mtd._erase = stfsm_mtd_erase;
Lee Jonese514f102014-03-20 09:20:57 +00001703
Lee Jones4a341fe2014-03-20 09:21:00 +00001704 dev_info(&pdev->dev,
Lee Jones24fec652014-03-20 09:20:41 +00001705 "Found serial flash device: %s\n"
1706 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
1707 info->name,
1708 (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
1709 fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
Lee Jonesd90db4a2014-03-20 09:20:33 +00001710
1711 return mtd_device_parse_register(&fsm->mtd, NULL, NULL, NULL, 0);
1712}
1713
1714static int stfsm_remove(struct platform_device *pdev)
1715{
1716 struct stfsm *fsm = platform_get_drvdata(pdev);
1717 int err;
1718
1719 err = mtd_device_unregister(&fsm->mtd);
1720 if (err)
1721 return err;
1722
1723 return 0;
1724}
1725
1726static struct of_device_id stfsm_match[] = {
1727 { .compatible = "st,spi-fsm", },
1728 {},
1729};
1730MODULE_DEVICE_TABLE(of, stfsm_match);
1731
1732static struct platform_driver stfsm_driver = {
1733 .probe = stfsm_probe,
1734 .remove = stfsm_remove,
1735 .driver = {
1736 .name = "st-spi-fsm",
1737 .owner = THIS_MODULE,
1738 .of_match_table = stfsm_match,
1739 },
1740};
1741module_platform_driver(stfsm_driver);
1742
1743MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
1744MODULE_DESCRIPTION("ST SPI FSM driver");
1745MODULE_LICENSE("GPL");