Anton Blanchard | 6dd7a82 | 2016-07-01 08:19:45 +1000 | [diff] [blame] | 1 | /* |
Daniel Axtens | de696a2 | 2017-03-15 23:37:34 +1100 | [diff] [blame] | 2 | * Calculate a crc32c with vpmsum acceleration |
Anton Blanchard | 6dd7a82 | 2016-07-01 08:19:45 +1000 | [diff] [blame] | 3 | * |
| 4 | * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | */ |
Anton Blanchard | 6dd7a82 | 2016-07-01 08:19:45 +1000 | [diff] [blame] | 11 | .section .rodata |
| 12 | .balign 16 |
| 13 | |
| 14 | .byteswap_constant: |
| 15 | /* byte reverse permute constant */ |
| 16 | .octa 0x0F0E0D0C0B0A09080706050403020100 |
| 17 | |
Anton Blanchard | 6dd7a82 | 2016-07-01 08:19:45 +1000 | [diff] [blame] | 18 | .constants: |
| 19 | |
| 20 | /* Reduce 262144 kbits to 1024 bits */ |
| 21 | /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */ |
| 22 | .octa 0x00000000b6ca9e20000000009c37c408 |
| 23 | |
| 24 | /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */ |
| 25 | .octa 0x00000000350249a800000001b51df26c |
| 26 | |
| 27 | /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */ |
| 28 | .octa 0x00000001862dac54000000000724b9d0 |
| 29 | |
| 30 | /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */ |
| 31 | .octa 0x00000001d87fb48c00000001c00532fe |
| 32 | |
| 33 | /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */ |
| 34 | .octa 0x00000001f39b699e00000000f05a9362 |
| 35 | |
| 36 | /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */ |
| 37 | .octa 0x0000000101da11b400000001e1007970 |
| 38 | |
| 39 | /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */ |
| 40 | .octa 0x00000001cab571e000000000a57366ee |
| 41 | |
| 42 | /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */ |
| 43 | .octa 0x00000000c7020cfe0000000192011284 |
| 44 | |
| 45 | /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */ |
| 46 | .octa 0x00000000cdaed1ae0000000162716d9a |
| 47 | |
| 48 | /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */ |
| 49 | .octa 0x00000001e804effc00000000cd97ecde |
| 50 | |
| 51 | /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */ |
| 52 | .octa 0x0000000077c3ea3a0000000058812bc0 |
| 53 | |
| 54 | /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */ |
| 55 | .octa 0x0000000068df31b40000000088b8c12e |
| 56 | |
| 57 | /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */ |
| 58 | .octa 0x00000000b059b6c200000001230b234c |
| 59 | |
| 60 | /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */ |
| 61 | .octa 0x0000000145fb8ed800000001120b416e |
| 62 | |
| 63 | /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */ |
| 64 | .octa 0x00000000cbc0916800000001974aecb0 |
| 65 | |
| 66 | /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */ |
| 67 | .octa 0x000000005ceeedc2000000008ee3f226 |
| 68 | |
| 69 | /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */ |
| 70 | .octa 0x0000000047d74e8600000001089aba9a |
| 71 | |
| 72 | /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */ |
| 73 | .octa 0x00000001407e9e220000000065113872 |
| 74 | |
| 75 | /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */ |
| 76 | .octa 0x00000001da967bda000000005c07ec10 |
| 77 | |
| 78 | /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */ |
| 79 | .octa 0x000000006c8983680000000187590924 |
| 80 | |
| 81 | /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */ |
| 82 | .octa 0x00000000f2d14c9800000000e35da7c6 |
| 83 | |
| 84 | /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */ |
| 85 | .octa 0x00000001993c6ad4000000000415855a |
| 86 | |
| 87 | /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */ |
| 88 | .octa 0x000000014683d1ac0000000073617758 |
| 89 | |
| 90 | /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */ |
| 91 | .octa 0x00000001a7c93e6c0000000176021d28 |
| 92 | |
| 93 | /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */ |
| 94 | .octa 0x000000010211e90a00000001c358fd0a |
| 95 | |
| 96 | /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */ |
| 97 | .octa 0x000000001119403e00000001ff7a2c18 |
| 98 | |
| 99 | /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */ |
| 100 | .octa 0x000000001c3261aa00000000f2d9f7e4 |
| 101 | |
| 102 | /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */ |
| 103 | .octa 0x000000014e37a634000000016cf1f9c8 |
| 104 | |
| 105 | /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */ |
| 106 | .octa 0x0000000073786c0c000000010af9279a |
| 107 | |
| 108 | /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */ |
| 109 | .octa 0x000000011dc037f80000000004f101e8 |
| 110 | |
| 111 | /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */ |
| 112 | .octa 0x0000000031433dfc0000000070bcf184 |
| 113 | |
| 114 | /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */ |
| 115 | .octa 0x000000009cde8348000000000a8de642 |
| 116 | |
| 117 | /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */ |
| 118 | .octa 0x0000000038d3c2a60000000062ea130c |
| 119 | |
| 120 | /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */ |
| 121 | .octa 0x000000011b25f26000000001eb31cbb2 |
| 122 | |
| 123 | /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */ |
| 124 | .octa 0x000000001629e6f00000000170783448 |
| 125 | |
| 126 | /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */ |
| 127 | .octa 0x0000000160838b4c00000001a684b4c6 |
| 128 | |
| 129 | /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */ |
| 130 | .octa 0x000000007a44011c00000000253ca5b4 |
| 131 | |
| 132 | /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */ |
| 133 | .octa 0x00000000226f417a0000000057b4b1e2 |
| 134 | |
| 135 | /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */ |
| 136 | .octa 0x0000000045eb2eb400000000b6bd084c |
| 137 | |
| 138 | /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */ |
| 139 | .octa 0x000000014459d70c0000000123c2d592 |
| 140 | |
| 141 | /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */ |
| 142 | .octa 0x00000001d406ed8200000000159dafce |
| 143 | |
| 144 | /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */ |
| 145 | .octa 0x0000000160c8e1a80000000127e1a64e |
| 146 | |
| 147 | /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */ |
| 148 | .octa 0x0000000027ba80980000000056860754 |
| 149 | |
| 150 | /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */ |
| 151 | .octa 0x000000006d92d01800000001e661aae8 |
| 152 | |
| 153 | /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */ |
| 154 | .octa 0x000000012ed7e3f200000000f82c6166 |
| 155 | |
| 156 | /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */ |
| 157 | .octa 0x000000002dc8778800000000c4f9c7ae |
| 158 | |
| 159 | /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */ |
| 160 | .octa 0x0000000018240bb80000000074203d20 |
| 161 | |
| 162 | /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */ |
| 163 | .octa 0x000000001ad381580000000198173052 |
| 164 | |
| 165 | /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */ |
| 166 | .octa 0x00000001396b78f200000001ce8aba54 |
| 167 | |
| 168 | /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */ |
| 169 | .octa 0x000000011a68133400000001850d5d94 |
| 170 | |
| 171 | /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */ |
| 172 | .octa 0x000000012104732e00000001d609239c |
| 173 | |
| 174 | /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */ |
| 175 | .octa 0x00000000a140d90c000000001595f048 |
| 176 | |
| 177 | /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */ |
| 178 | .octa 0x00000001b7215eda0000000042ccee08 |
| 179 | |
| 180 | /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */ |
| 181 | .octa 0x00000001aaf1df3c000000010a389d74 |
| 182 | |
| 183 | /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */ |
| 184 | .octa 0x0000000029d15b8a000000012a840da6 |
| 185 | |
| 186 | /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */ |
| 187 | .octa 0x00000000f1a96922000000001d181c0c |
| 188 | |
| 189 | /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */ |
| 190 | .octa 0x00000001ac80d03c0000000068b7d1f6 |
| 191 | |
| 192 | /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */ |
| 193 | .octa 0x000000000f11d56a000000005b0f14fc |
| 194 | |
| 195 | /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */ |
| 196 | .octa 0x00000001f1c022a20000000179e9e730 |
| 197 | |
| 198 | /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */ |
| 199 | .octa 0x0000000173d00ae200000001ce1368d6 |
| 200 | |
| 201 | /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */ |
| 202 | .octa 0x00000001d4ffe4ac0000000112c3a84c |
| 203 | |
| 204 | /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */ |
| 205 | .octa 0x000000016edc5ae400000000de940fee |
| 206 | |
| 207 | /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */ |
| 208 | .octa 0x00000001f1a0214000000000fe896b7e |
| 209 | |
| 210 | /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */ |
| 211 | .octa 0x00000000ca0b28a000000001f797431c |
| 212 | |
| 213 | /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */ |
| 214 | .octa 0x00000001928e30a20000000053e989ba |
| 215 | |
| 216 | /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */ |
| 217 | .octa 0x0000000097b1b002000000003920cd16 |
| 218 | |
| 219 | /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */ |
| 220 | .octa 0x00000000b15bf90600000001e6f579b8 |
| 221 | |
| 222 | /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */ |
| 223 | .octa 0x00000000411c5d52000000007493cb0a |
| 224 | |
| 225 | /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */ |
| 226 | .octa 0x00000001c36f330000000001bdd376d8 |
| 227 | |
| 228 | /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */ |
| 229 | .octa 0x00000001119227e0000000016badfee6 |
| 230 | |
| 231 | /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */ |
| 232 | .octa 0x00000000114d47020000000071de5c58 |
| 233 | |
| 234 | /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */ |
| 235 | .octa 0x00000000458b5b9800000000453f317c |
| 236 | |
| 237 | /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */ |
| 238 | .octa 0x000000012e31fb8e0000000121675cce |
| 239 | |
| 240 | /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */ |
| 241 | .octa 0x000000005cf619d800000001f409ee92 |
| 242 | |
| 243 | /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */ |
| 244 | .octa 0x0000000063f4d8b200000000f36b9c88 |
| 245 | |
| 246 | /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */ |
| 247 | .octa 0x000000004138dc8a0000000036b398f4 |
| 248 | |
| 249 | /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */ |
| 250 | .octa 0x00000001d29ee8e000000001748f9adc |
| 251 | |
| 252 | /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */ |
| 253 | .octa 0x000000006a08ace800000001be94ec00 |
| 254 | |
| 255 | /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */ |
| 256 | .octa 0x0000000127d4201000000000b74370d6 |
| 257 | |
| 258 | /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */ |
| 259 | .octa 0x0000000019d76b6200000001174d0b98 |
| 260 | |
| 261 | /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */ |
| 262 | .octa 0x00000001b1471f6e00000000befc06a4 |
| 263 | |
| 264 | /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */ |
| 265 | .octa 0x00000001f64c19cc00000001ae125288 |
| 266 | |
| 267 | /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */ |
| 268 | .octa 0x00000000003c0ea00000000095c19b34 |
| 269 | |
| 270 | /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */ |
| 271 | .octa 0x000000014d73abf600000001a78496f2 |
| 272 | |
| 273 | /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */ |
| 274 | .octa 0x00000001620eb84400000001ac5390a0 |
| 275 | |
| 276 | /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */ |
| 277 | .octa 0x0000000147655048000000002a80ed6e |
| 278 | |
| 279 | /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */ |
| 280 | .octa 0x0000000067b5077e00000001fa9b0128 |
| 281 | |
| 282 | /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */ |
| 283 | .octa 0x0000000010ffe20600000001ea94929e |
| 284 | |
| 285 | /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */ |
| 286 | .octa 0x000000000fee8f1e0000000125f4305c |
| 287 | |
| 288 | /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */ |
| 289 | .octa 0x00000001da26fbae00000001471e2002 |
| 290 | |
| 291 | /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */ |
| 292 | .octa 0x00000001b3a8bd880000000132d2253a |
| 293 | |
| 294 | /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */ |
| 295 | .octa 0x00000000e8f3898e00000000f26b3592 |
| 296 | |
| 297 | /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */ |
| 298 | .octa 0x00000000b0d0d28c00000000bc8b67b0 |
| 299 | |
| 300 | /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */ |
| 301 | .octa 0x0000000030f2a798000000013a826ef2 |
| 302 | |
| 303 | /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */ |
| 304 | .octa 0x000000000fba10020000000081482c84 |
| 305 | |
| 306 | /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */ |
| 307 | .octa 0x00000000bdb9bd7200000000e77307c2 |
| 308 | |
| 309 | /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */ |
| 310 | .octa 0x0000000075d3bf5a00000000d4a07ec8 |
| 311 | |
| 312 | /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */ |
| 313 | .octa 0x00000000ef1f98a00000000017102100 |
| 314 | |
| 315 | /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */ |
| 316 | .octa 0x00000000689c760200000000db406486 |
| 317 | |
| 318 | /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */ |
| 319 | .octa 0x000000016d5fa5fe0000000192db7f88 |
| 320 | |
| 321 | /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */ |
| 322 | .octa 0x00000001d0d2b9ca000000018bf67b1e |
| 323 | |
| 324 | /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */ |
| 325 | .octa 0x0000000041e7b470000000007c09163e |
| 326 | |
| 327 | /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */ |
| 328 | .octa 0x00000001cbb6495e000000000adac060 |
| 329 | |
| 330 | /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */ |
| 331 | .octa 0x000000010052a0b000000000bd8316ae |
| 332 | |
| 333 | /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */ |
| 334 | .octa 0x00000001d8effb5c000000019f09ab54 |
| 335 | |
| 336 | /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */ |
| 337 | .octa 0x00000001d969853c0000000125155542 |
| 338 | |
| 339 | /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */ |
| 340 | .octa 0x00000000523ccce2000000018fdb5882 |
| 341 | |
| 342 | /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */ |
| 343 | .octa 0x000000001e2436bc00000000e794b3f4 |
| 344 | |
| 345 | /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */ |
| 346 | .octa 0x00000000ddd1c3a2000000016f9bb022 |
| 347 | |
| 348 | /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */ |
| 349 | .octa 0x0000000019fcfe3800000000290c9978 |
| 350 | |
| 351 | /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */ |
| 352 | .octa 0x00000001ce95db640000000083c0f350 |
| 353 | |
| 354 | /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */ |
| 355 | .octa 0x00000000af5828060000000173ea6628 |
| 356 | |
| 357 | /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */ |
| 358 | .octa 0x00000001006388f600000001c8b4e00a |
| 359 | |
| 360 | /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */ |
| 361 | .octa 0x0000000179eca00a00000000de95d6aa |
| 362 | |
| 363 | /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */ |
| 364 | .octa 0x0000000122410a6a000000010b7f7248 |
| 365 | |
| 366 | /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */ |
| 367 | .octa 0x000000004288e87c00000001326e3a06 |
| 368 | |
| 369 | /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */ |
| 370 | .octa 0x000000016c5490da00000000bb62c2e6 |
| 371 | |
| 372 | /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */ |
| 373 | .octa 0x00000000d1c71f6e0000000156a4b2c2 |
| 374 | |
| 375 | /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */ |
| 376 | .octa 0x00000001b4ce08a6000000011dfe763a |
| 377 | |
| 378 | /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */ |
| 379 | .octa 0x00000001466ba60c000000007bcca8e2 |
| 380 | |
| 381 | /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */ |
| 382 | .octa 0x00000001f6c488a40000000186118faa |
| 383 | |
| 384 | /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */ |
| 385 | .octa 0x000000013bfb06820000000111a65a88 |
| 386 | |
| 387 | /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */ |
| 388 | .octa 0x00000000690e9e54000000003565e1c4 |
| 389 | |
| 390 | /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */ |
| 391 | .octa 0x00000000281346b6000000012ed02a82 |
| 392 | |
| 393 | /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */ |
| 394 | .octa 0x000000015646402400000000c486ecfc |
| 395 | |
| 396 | /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */ |
| 397 | .octa 0x000000016063a8dc0000000001b951b2 |
| 398 | |
| 399 | /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */ |
| 400 | .octa 0x0000000116a663620000000048143916 |
| 401 | |
| 402 | /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */ |
| 403 | .octa 0x000000017e8aa4d200000001dc2ae124 |
| 404 | |
| 405 | /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */ |
| 406 | .octa 0x00000001728eb10c00000001416c58d6 |
| 407 | |
| 408 | /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */ |
| 409 | .octa 0x00000001b08fd7fa00000000a479744a |
| 410 | |
| 411 | /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */ |
| 412 | .octa 0x00000001092a16e80000000096ca3a26 |
| 413 | |
| 414 | /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */ |
| 415 | .octa 0x00000000a505637c00000000ff223d4e |
| 416 | |
| 417 | /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */ |
| 418 | .octa 0x00000000d94869b2000000010e84da42 |
| 419 | |
| 420 | /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */ |
| 421 | .octa 0x00000001c8b203ae00000001b61ba3d0 |
| 422 | |
| 423 | /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */ |
| 424 | .octa 0x000000005704aea000000000680f2de8 |
| 425 | |
| 426 | /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */ |
| 427 | .octa 0x000000012e295fa2000000008772a9a8 |
| 428 | |
| 429 | /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */ |
| 430 | .octa 0x000000011d0908bc0000000155f295bc |
| 431 | |
| 432 | /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */ |
| 433 | .octa 0x0000000193ed97ea00000000595f9282 |
| 434 | |
| 435 | /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */ |
| 436 | .octa 0x000000013a0f1c520000000164b1c25a |
| 437 | |
| 438 | /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */ |
| 439 | .octa 0x000000010c2c40c000000000fbd67c50 |
| 440 | |
| 441 | /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */ |
| 442 | .octa 0x00000000ff6fac3e0000000096076268 |
| 443 | |
| 444 | /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */ |
| 445 | .octa 0x000000017b3609c000000001d288e4cc |
| 446 | |
| 447 | /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */ |
| 448 | .octa 0x0000000088c8c92200000001eaac1bdc |
| 449 | |
| 450 | /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */ |
| 451 | .octa 0x00000001751baae600000001f1ea39e2 |
| 452 | |
| 453 | /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */ |
| 454 | .octa 0x000000010795297200000001eb6506fc |
| 455 | |
| 456 | /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */ |
| 457 | .octa 0x0000000162b00abe000000010f806ffe |
| 458 | |
| 459 | /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */ |
| 460 | .octa 0x000000000d7b404c000000010408481e |
| 461 | |
| 462 | /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */ |
| 463 | .octa 0x00000000763b13d40000000188260534 |
| 464 | |
| 465 | /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */ |
| 466 | .octa 0x00000000f6dc22d80000000058fc73e0 |
| 467 | |
| 468 | /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */ |
| 469 | .octa 0x000000007daae06000000000391c59b8 |
| 470 | |
| 471 | /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */ |
| 472 | .octa 0x000000013359ab7c000000018b638400 |
| 473 | |
| 474 | /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */ |
| 475 | .octa 0x000000008add438a000000011738f5c4 |
| 476 | |
| 477 | /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */ |
| 478 | .octa 0x00000001edbefdea000000008cf7c6da |
| 479 | |
| 480 | /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */ |
| 481 | .octa 0x000000004104e0f800000001ef97fb16 |
| 482 | |
| 483 | /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */ |
| 484 | .octa 0x00000000b48a82220000000102130e20 |
| 485 | |
| 486 | /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */ |
| 487 | .octa 0x00000001bcb4684400000000db968898 |
| 488 | |
| 489 | /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */ |
| 490 | .octa 0x000000013293ce0a00000000b5047b5e |
| 491 | |
| 492 | /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */ |
| 493 | .octa 0x00000001710d0844000000010b90fdb2 |
| 494 | |
| 495 | /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */ |
| 496 | .octa 0x0000000117907f6e000000004834a32e |
| 497 | |
| 498 | /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */ |
| 499 | .octa 0x0000000087ddf93e0000000059c8f2b0 |
| 500 | |
| 501 | /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */ |
| 502 | .octa 0x000000005970e9b00000000122cec508 |
| 503 | |
| 504 | /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */ |
| 505 | .octa 0x0000000185b2b7d0000000000a330cda |
| 506 | |
| 507 | /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */ |
| 508 | .octa 0x00000001dcee0efc000000014a47148c |
| 509 | |
| 510 | /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */ |
| 511 | .octa 0x0000000030da27220000000042c61cb8 |
| 512 | |
| 513 | /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */ |
| 514 | .octa 0x000000012f925a180000000012fe6960 |
| 515 | |
| 516 | /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */ |
| 517 | .octa 0x00000000dd2e357c00000000dbda2c20 |
| 518 | |
| 519 | /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */ |
| 520 | .octa 0x00000000071c80de000000011122410c |
| 521 | |
| 522 | /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */ |
| 523 | .octa 0x000000011513140a00000000977b2070 |
| 524 | |
| 525 | /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */ |
| 526 | .octa 0x00000001df876e8e000000014050438e |
| 527 | |
| 528 | /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */ |
| 529 | .octa 0x000000015f81d6ce0000000147c840e8 |
| 530 | |
| 531 | /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */ |
| 532 | .octa 0x000000019dd94dbe00000001cc7c88ce |
| 533 | |
| 534 | /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */ |
| 535 | .octa 0x00000001373d206e00000001476b35a4 |
| 536 | |
| 537 | /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */ |
| 538 | .octa 0x00000000668ccade000000013d52d508 |
| 539 | |
| 540 | /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */ |
| 541 | .octa 0x00000001b192d268000000008e4be32e |
| 542 | |
| 543 | /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */ |
| 544 | .octa 0x00000000e30f3a7800000000024120fe |
| 545 | |
| 546 | /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */ |
| 547 | .octa 0x000000010ef1f7bc00000000ddecddb4 |
| 548 | |
| 549 | /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */ |
| 550 | .octa 0x00000001f5ac738000000000d4d403bc |
| 551 | |
| 552 | /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */ |
| 553 | .octa 0x000000011822ea7000000001734b89aa |
| 554 | |
| 555 | /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */ |
| 556 | .octa 0x00000000c3a33848000000010e7a58d6 |
| 557 | |
| 558 | /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */ |
| 559 | .octa 0x00000001bd151c2400000001f9f04e9c |
| 560 | |
| 561 | /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */ |
| 562 | .octa 0x0000000056002d7600000000b692225e |
| 563 | |
| 564 | /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */ |
| 565 | .octa 0x000000014657c4f4000000019b8d3f3e |
| 566 | |
| 567 | /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */ |
| 568 | .octa 0x0000000113742d7c00000001a874f11e |
| 569 | |
| 570 | /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */ |
| 571 | .octa 0x000000019c5920ba000000010d5a4254 |
| 572 | |
| 573 | /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */ |
| 574 | .octa 0x000000005216d2d600000000bbb2f5d6 |
| 575 | |
| 576 | /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */ |
| 577 | .octa 0x0000000136f5ad8a0000000179cc0e36 |
| 578 | |
| 579 | /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */ |
| 580 | .octa 0x000000018b07beb600000001dca1da4a |
| 581 | |
| 582 | /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */ |
| 583 | .octa 0x00000000db1e93b000000000feb1a192 |
| 584 | |
| 585 | /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */ |
| 586 | .octa 0x000000000b96fa3a00000000d1eeedd6 |
| 587 | |
| 588 | /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */ |
| 589 | .octa 0x00000001d9968af0000000008fad9bb4 |
| 590 | |
| 591 | /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */ |
| 592 | .octa 0x000000000e4a77a200000001884938e4 |
| 593 | |
| 594 | /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */ |
| 595 | .octa 0x00000000508c2ac800000001bc2e9bc0 |
| 596 | |
| 597 | /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */ |
| 598 | .octa 0x0000000021572a8000000001f9658a68 |
| 599 | |
| 600 | /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */ |
| 601 | .octa 0x00000001b859daf2000000001b9224fc |
| 602 | |
| 603 | /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */ |
| 604 | .octa 0x000000016f7884740000000055b2fb84 |
| 605 | |
| 606 | /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */ |
| 607 | .octa 0x00000001b438810e000000018b090348 |
| 608 | |
| 609 | /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */ |
| 610 | .octa 0x0000000095ddc6f2000000011ccbd5ea |
| 611 | |
| 612 | /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */ |
| 613 | .octa 0x00000001d977c20c0000000007ae47f8 |
| 614 | |
| 615 | /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */ |
| 616 | .octa 0x00000000ebedb99a0000000172acbec0 |
| 617 | |
| 618 | /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */ |
| 619 | .octa 0x00000001df9e9e9200000001c6e3ff20 |
| 620 | |
| 621 | /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */ |
| 622 | .octa 0x00000001a4a3f95200000000e1b38744 |
| 623 | |
| 624 | /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */ |
| 625 | .octa 0x00000000e2f5122000000000791585b2 |
| 626 | |
| 627 | /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */ |
| 628 | .octa 0x000000004aa01f3e00000000ac53b894 |
| 629 | |
| 630 | /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */ |
| 631 | .octa 0x00000000b3e90a5800000001ed5f2cf4 |
| 632 | |
| 633 | /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */ |
| 634 | .octa 0x000000000c9ca2aa00000001df48b2e0 |
| 635 | |
| 636 | /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */ |
| 637 | .octa 0x000000015168231600000000049c1c62 |
| 638 | |
| 639 | /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */ |
| 640 | .octa 0x0000000036fce78c000000017c460c12 |
| 641 | |
| 642 | /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */ |
| 643 | .octa 0x000000009037dc10000000015be4da7e |
| 644 | |
| 645 | /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */ |
| 646 | .octa 0x00000000d3298582000000010f38f668 |
| 647 | |
| 648 | /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */ |
| 649 | .octa 0x00000001b42e8ad60000000039f40a00 |
| 650 | |
| 651 | /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */ |
| 652 | .octa 0x00000000142a983800000000bd4c10c4 |
| 653 | |
| 654 | /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */ |
| 655 | .octa 0x0000000109c7f1900000000042db1d98 |
| 656 | |
| 657 | /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */ |
| 658 | .octa 0x0000000056ff931000000001c905bae6 |
| 659 | |
| 660 | /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */ |
| 661 | .octa 0x00000001594513aa00000000069d40ea |
| 662 | |
| 663 | /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */ |
| 664 | .octa 0x00000001e3b5b1e8000000008e4fbad0 |
| 665 | |
| 666 | /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */ |
| 667 | .octa 0x000000011dd5fc080000000047bedd46 |
| 668 | |
| 669 | /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */ |
| 670 | .octa 0x00000001675f0cc20000000026396bf8 |
| 671 | |
| 672 | /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */ |
| 673 | .octa 0x00000000d1c8dd4400000000379beb92 |
| 674 | |
| 675 | /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */ |
| 676 | .octa 0x0000000115ebd3d8000000000abae54a |
| 677 | |
| 678 | /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */ |
| 679 | .octa 0x00000001ecbd0dac0000000007e6a128 |
| 680 | |
| 681 | /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */ |
| 682 | .octa 0x00000000cdf67af2000000000ade29d2 |
| 683 | |
| 684 | /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */ |
| 685 | .octa 0x000000004c01ff4c00000000f974c45c |
| 686 | |
| 687 | /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */ |
| 688 | .octa 0x00000000f2d8657e00000000e77ac60a |
| 689 | |
| 690 | /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */ |
| 691 | .octa 0x000000006bae74c40000000145895816 |
| 692 | |
| 693 | /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */ |
| 694 | .octa 0x0000000152af8aa00000000038e362be |
| 695 | |
| 696 | /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */ |
| 697 | .octa 0x0000000004663802000000007f991a64 |
| 698 | |
| 699 | /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */ |
| 700 | .octa 0x00000001ab2f5afc00000000fa366d3a |
| 701 | |
| 702 | /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */ |
| 703 | .octa 0x0000000074a4ebd400000001a2bb34f0 |
| 704 | |
| 705 | /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */ |
| 706 | .octa 0x00000001d7ab3a4c0000000028a9981e |
| 707 | |
| 708 | /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */ |
| 709 | .octa 0x00000001a8da60c600000001dbc672be |
| 710 | |
| 711 | /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */ |
| 712 | .octa 0x000000013cf6382000000000b04d77f6 |
| 713 | |
| 714 | /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */ |
| 715 | .octa 0x00000000bec12e1e0000000124400d96 |
| 716 | |
| 717 | /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */ |
| 718 | .octa 0x00000001c6368010000000014ca4b414 |
| 719 | |
| 720 | /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */ |
| 721 | .octa 0x00000001e6e78758000000012fe2c938 |
| 722 | |
| 723 | /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */ |
| 724 | .octa 0x000000008d7f2b3c00000001faed01e6 |
| 725 | |
| 726 | /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */ |
| 727 | .octa 0x000000016b4a156e000000007e80ecfe |
| 728 | |
| 729 | /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */ |
| 730 | .octa 0x00000001c63cfeb60000000098daee94 |
| 731 | |
| 732 | /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */ |
| 733 | .octa 0x000000015f902670000000010a04edea |
| 734 | |
| 735 | /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */ |
| 736 | .octa 0x00000001cd5de11e00000001c00b4524 |
| 737 | |
| 738 | /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */ |
| 739 | .octa 0x000000001acaec540000000170296550 |
| 740 | |
| 741 | /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */ |
| 742 | .octa 0x000000002bd0ca780000000181afaa48 |
| 743 | |
| 744 | /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */ |
| 745 | .octa 0x0000000032d63d5c0000000185a31ffa |
| 746 | |
| 747 | /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */ |
| 748 | .octa 0x000000001c6d4e4c000000002469f608 |
| 749 | |
| 750 | /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */ |
| 751 | .octa 0x0000000106a60b92000000006980102a |
| 752 | |
| 753 | /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */ |
| 754 | .octa 0x00000000d3855e120000000111ea9ca8 |
| 755 | |
| 756 | /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */ |
| 757 | .octa 0x00000000e312563600000001bd1d29ce |
| 758 | |
| 759 | /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */ |
| 760 | .octa 0x000000009e8f7ea400000001b34b9580 |
| 761 | |
| 762 | /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */ |
| 763 | .octa 0x00000001c82e562c000000003076054e |
| 764 | |
| 765 | /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */ |
| 766 | .octa 0x00000000ca9f09ce000000012a608ea4 |
| 767 | |
| 768 | /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */ |
| 769 | .octa 0x00000000c63764e600000000784d05fe |
| 770 | |
| 771 | /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */ |
| 772 | .octa 0x0000000168d2e49e000000016ef0d82a |
| 773 | |
| 774 | /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */ |
| 775 | .octa 0x00000000e986c1480000000075bda454 |
| 776 | |
| 777 | /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */ |
| 778 | .octa 0x00000000cfb65894000000003dc0a1c4 |
| 779 | |
| 780 | /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */ |
| 781 | .octa 0x0000000111cadee400000000e9a5d8be |
| 782 | |
| 783 | /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */ |
| 784 | .octa 0x0000000171fb63ce00000001609bc4b4 |
| 785 | |
| 786 | .short_constants: |
| 787 | |
| 788 | /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ |
| 789 | /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */ |
| 790 | .octa 0x7fec2963e5bf80485cf015c388e56f72 |
| 791 | |
| 792 | /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */ |
| 793 | .octa 0x38e888d4844752a9963a18920246e2e6 |
| 794 | |
| 795 | /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */ |
| 796 | .octa 0x42316c00730206ad419a441956993a31 |
| 797 | |
| 798 | /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */ |
| 799 | .octa 0x543d5c543e65ddf9924752ba2b830011 |
| 800 | |
| 801 | /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */ |
| 802 | .octa 0x78e87aaf56767c9255bd7f9518e4a304 |
| 803 | |
| 804 | /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */ |
| 805 | .octa 0x8f68fcec1903da7f6d76739fe0553f1e |
| 806 | |
| 807 | /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */ |
| 808 | .octa 0x3f4840246791d588c133722b1fe0b5c3 |
| 809 | |
| 810 | /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */ |
| 811 | .octa 0x34c96751b04de25a64b67ee0e55ef1f3 |
| 812 | |
| 813 | /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */ |
| 814 | .octa 0x156c8e180b4a395b069db049b8fdb1e7 |
| 815 | |
| 816 | /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */ |
| 817 | .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e |
| 818 | |
| 819 | /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */ |
| 820 | .octa 0x041d37768cd75659817cdc5119b29a35 |
| 821 | |
| 822 | /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */ |
| 823 | .octa 0x3a0777818cfaa9651ce9d94b36c41f1c |
| 824 | |
| 825 | /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */ |
| 826 | .octa 0x0e148e8252377a554f256efcb82be955 |
| 827 | |
| 828 | /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */ |
| 829 | .octa 0x9c25531d19e65ddeec1631edb2dea967 |
| 830 | |
| 831 | /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */ |
| 832 | .octa 0x790606ff9957c0a65d27e147510ac59a |
| 833 | |
| 834 | /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */ |
| 835 | .octa 0x82f63b786ea2d55ca66805eb18b8ea18 |
| 836 | |
| 837 | |
| 838 | .barrett_constants: |
| 839 | /* 33 bit reflected Barrett constant m - (4^32)/n */ |
| 840 | .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */ |
| 841 | /* 33 bit reflected Barrett constant n */ |
| 842 | .octa 0x00000000000000000000000105ec76f1 |
| 843 | |
Daniel Axtens | de696a2 | 2017-03-15 23:37:34 +1100 | [diff] [blame] | 844 | #define CRC_FUNCTION_NAME __crc32c_vpmsum |
Daniel Axtens | 08c7dd1 | 2017-03-15 23:37:35 +1100 | [diff] [blame] | 845 | #define REFLECT |
Daniel Axtens | de696a2 | 2017-03-15 23:37:34 +1100 | [diff] [blame] | 846 | #include "crc32-vpmsum_core.S" |