blob: d2bea48051a0bae98ac3744621dc10dbb0a1d60b [file] [log] [blame]
Anton Blanchard6dd7a822016-07-01 08:19:45 +10001/*
Daniel Axtensde696a22017-03-15 23:37:34 +11002 * Calculate a crc32c with vpmsum acceleration
Anton Blanchard6dd7a822016-07-01 08:19:45 +10003 *
4 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
Anton Blanchard6dd7a822016-07-01 08:19:45 +100011 .section .rodata
12.balign 16
13
14.byteswap_constant:
15 /* byte reverse permute constant */
16 .octa 0x0F0E0D0C0B0A09080706050403020100
17
Anton Blanchard6dd7a822016-07-01 08:19:45 +100018.constants:
19
20 /* Reduce 262144 kbits to 1024 bits */
21 /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
22 .octa 0x00000000b6ca9e20000000009c37c408
23
24 /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
25 .octa 0x00000000350249a800000001b51df26c
26
27 /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
28 .octa 0x00000001862dac54000000000724b9d0
29
30 /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
31 .octa 0x00000001d87fb48c00000001c00532fe
32
33 /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
34 .octa 0x00000001f39b699e00000000f05a9362
35
36 /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
37 .octa 0x0000000101da11b400000001e1007970
38
39 /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
40 .octa 0x00000001cab571e000000000a57366ee
41
42 /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
43 .octa 0x00000000c7020cfe0000000192011284
44
45 /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
46 .octa 0x00000000cdaed1ae0000000162716d9a
47
48 /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
49 .octa 0x00000001e804effc00000000cd97ecde
50
51 /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
52 .octa 0x0000000077c3ea3a0000000058812bc0
53
54 /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
55 .octa 0x0000000068df31b40000000088b8c12e
56
57 /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
58 .octa 0x00000000b059b6c200000001230b234c
59
60 /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
61 .octa 0x0000000145fb8ed800000001120b416e
62
63 /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
64 .octa 0x00000000cbc0916800000001974aecb0
65
66 /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
67 .octa 0x000000005ceeedc2000000008ee3f226
68
69 /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
70 .octa 0x0000000047d74e8600000001089aba9a
71
72 /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
73 .octa 0x00000001407e9e220000000065113872
74
75 /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
76 .octa 0x00000001da967bda000000005c07ec10
77
78 /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
79 .octa 0x000000006c8983680000000187590924
80
81 /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
82 .octa 0x00000000f2d14c9800000000e35da7c6
83
84 /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
85 .octa 0x00000001993c6ad4000000000415855a
86
87 /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
88 .octa 0x000000014683d1ac0000000073617758
89
90 /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
91 .octa 0x00000001a7c93e6c0000000176021d28
92
93 /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
94 .octa 0x000000010211e90a00000001c358fd0a
95
96 /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
97 .octa 0x000000001119403e00000001ff7a2c18
98
99 /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
100 .octa 0x000000001c3261aa00000000f2d9f7e4
101
102 /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
103 .octa 0x000000014e37a634000000016cf1f9c8
104
105 /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
106 .octa 0x0000000073786c0c000000010af9279a
107
108 /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
109 .octa 0x000000011dc037f80000000004f101e8
110
111 /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
112 .octa 0x0000000031433dfc0000000070bcf184
113
114 /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
115 .octa 0x000000009cde8348000000000a8de642
116
117 /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
118 .octa 0x0000000038d3c2a60000000062ea130c
119
120 /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
121 .octa 0x000000011b25f26000000001eb31cbb2
122
123 /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
124 .octa 0x000000001629e6f00000000170783448
125
126 /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
127 .octa 0x0000000160838b4c00000001a684b4c6
128
129 /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
130 .octa 0x000000007a44011c00000000253ca5b4
131
132 /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
133 .octa 0x00000000226f417a0000000057b4b1e2
134
135 /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
136 .octa 0x0000000045eb2eb400000000b6bd084c
137
138 /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
139 .octa 0x000000014459d70c0000000123c2d592
140
141 /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
142 .octa 0x00000001d406ed8200000000159dafce
143
144 /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
145 .octa 0x0000000160c8e1a80000000127e1a64e
146
147 /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
148 .octa 0x0000000027ba80980000000056860754
149
150 /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
151 .octa 0x000000006d92d01800000001e661aae8
152
153 /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
154 .octa 0x000000012ed7e3f200000000f82c6166
155
156 /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
157 .octa 0x000000002dc8778800000000c4f9c7ae
158
159 /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
160 .octa 0x0000000018240bb80000000074203d20
161
162 /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
163 .octa 0x000000001ad381580000000198173052
164
165 /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
166 .octa 0x00000001396b78f200000001ce8aba54
167
168 /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
169 .octa 0x000000011a68133400000001850d5d94
170
171 /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
172 .octa 0x000000012104732e00000001d609239c
173
174 /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
175 .octa 0x00000000a140d90c000000001595f048
176
177 /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
178 .octa 0x00000001b7215eda0000000042ccee08
179
180 /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
181 .octa 0x00000001aaf1df3c000000010a389d74
182
183 /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
184 .octa 0x0000000029d15b8a000000012a840da6
185
186 /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
187 .octa 0x00000000f1a96922000000001d181c0c
188
189 /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
190 .octa 0x00000001ac80d03c0000000068b7d1f6
191
192 /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
193 .octa 0x000000000f11d56a000000005b0f14fc
194
195 /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
196 .octa 0x00000001f1c022a20000000179e9e730
197
198 /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
199 .octa 0x0000000173d00ae200000001ce1368d6
200
201 /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
202 .octa 0x00000001d4ffe4ac0000000112c3a84c
203
204 /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
205 .octa 0x000000016edc5ae400000000de940fee
206
207 /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
208 .octa 0x00000001f1a0214000000000fe896b7e
209
210 /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
211 .octa 0x00000000ca0b28a000000001f797431c
212
213 /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
214 .octa 0x00000001928e30a20000000053e989ba
215
216 /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
217 .octa 0x0000000097b1b002000000003920cd16
218
219 /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
220 .octa 0x00000000b15bf90600000001e6f579b8
221
222 /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
223 .octa 0x00000000411c5d52000000007493cb0a
224
225 /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
226 .octa 0x00000001c36f330000000001bdd376d8
227
228 /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
229 .octa 0x00000001119227e0000000016badfee6
230
231 /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
232 .octa 0x00000000114d47020000000071de5c58
233
234 /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
235 .octa 0x00000000458b5b9800000000453f317c
236
237 /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
238 .octa 0x000000012e31fb8e0000000121675cce
239
240 /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
241 .octa 0x000000005cf619d800000001f409ee92
242
243 /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
244 .octa 0x0000000063f4d8b200000000f36b9c88
245
246 /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
247 .octa 0x000000004138dc8a0000000036b398f4
248
249 /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
250 .octa 0x00000001d29ee8e000000001748f9adc
251
252 /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
253 .octa 0x000000006a08ace800000001be94ec00
254
255 /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
256 .octa 0x0000000127d4201000000000b74370d6
257
258 /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
259 .octa 0x0000000019d76b6200000001174d0b98
260
261 /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
262 .octa 0x00000001b1471f6e00000000befc06a4
263
264 /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
265 .octa 0x00000001f64c19cc00000001ae125288
266
267 /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
268 .octa 0x00000000003c0ea00000000095c19b34
269
270 /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
271 .octa 0x000000014d73abf600000001a78496f2
272
273 /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
274 .octa 0x00000001620eb84400000001ac5390a0
275
276 /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
277 .octa 0x0000000147655048000000002a80ed6e
278
279 /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
280 .octa 0x0000000067b5077e00000001fa9b0128
281
282 /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
283 .octa 0x0000000010ffe20600000001ea94929e
284
285 /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
286 .octa 0x000000000fee8f1e0000000125f4305c
287
288 /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
289 .octa 0x00000001da26fbae00000001471e2002
290
291 /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
292 .octa 0x00000001b3a8bd880000000132d2253a
293
294 /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
295 .octa 0x00000000e8f3898e00000000f26b3592
296
297 /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
298 .octa 0x00000000b0d0d28c00000000bc8b67b0
299
300 /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
301 .octa 0x0000000030f2a798000000013a826ef2
302
303 /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
304 .octa 0x000000000fba10020000000081482c84
305
306 /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
307 .octa 0x00000000bdb9bd7200000000e77307c2
308
309 /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
310 .octa 0x0000000075d3bf5a00000000d4a07ec8
311
312 /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
313 .octa 0x00000000ef1f98a00000000017102100
314
315 /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
316 .octa 0x00000000689c760200000000db406486
317
318 /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
319 .octa 0x000000016d5fa5fe0000000192db7f88
320
321 /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
322 .octa 0x00000001d0d2b9ca000000018bf67b1e
323
324 /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
325 .octa 0x0000000041e7b470000000007c09163e
326
327 /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
328 .octa 0x00000001cbb6495e000000000adac060
329
330 /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
331 .octa 0x000000010052a0b000000000bd8316ae
332
333 /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
334 .octa 0x00000001d8effb5c000000019f09ab54
335
336 /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
337 .octa 0x00000001d969853c0000000125155542
338
339 /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
340 .octa 0x00000000523ccce2000000018fdb5882
341
342 /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
343 .octa 0x000000001e2436bc00000000e794b3f4
344
345 /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
346 .octa 0x00000000ddd1c3a2000000016f9bb022
347
348 /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
349 .octa 0x0000000019fcfe3800000000290c9978
350
351 /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
352 .octa 0x00000001ce95db640000000083c0f350
353
354 /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
355 .octa 0x00000000af5828060000000173ea6628
356
357 /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
358 .octa 0x00000001006388f600000001c8b4e00a
359
360 /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
361 .octa 0x0000000179eca00a00000000de95d6aa
362
363 /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
364 .octa 0x0000000122410a6a000000010b7f7248
365
366 /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
367 .octa 0x000000004288e87c00000001326e3a06
368
369 /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
370 .octa 0x000000016c5490da00000000bb62c2e6
371
372 /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
373 .octa 0x00000000d1c71f6e0000000156a4b2c2
374
375 /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
376 .octa 0x00000001b4ce08a6000000011dfe763a
377
378 /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
379 .octa 0x00000001466ba60c000000007bcca8e2
380
381 /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
382 .octa 0x00000001f6c488a40000000186118faa
383
384 /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
385 .octa 0x000000013bfb06820000000111a65a88
386
387 /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
388 .octa 0x00000000690e9e54000000003565e1c4
389
390 /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
391 .octa 0x00000000281346b6000000012ed02a82
392
393 /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
394 .octa 0x000000015646402400000000c486ecfc
395
396 /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
397 .octa 0x000000016063a8dc0000000001b951b2
398
399 /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
400 .octa 0x0000000116a663620000000048143916
401
402 /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
403 .octa 0x000000017e8aa4d200000001dc2ae124
404
405 /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
406 .octa 0x00000001728eb10c00000001416c58d6
407
408 /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
409 .octa 0x00000001b08fd7fa00000000a479744a
410
411 /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
412 .octa 0x00000001092a16e80000000096ca3a26
413
414 /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
415 .octa 0x00000000a505637c00000000ff223d4e
416
417 /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
418 .octa 0x00000000d94869b2000000010e84da42
419
420 /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
421 .octa 0x00000001c8b203ae00000001b61ba3d0
422
423 /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
424 .octa 0x000000005704aea000000000680f2de8
425
426 /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
427 .octa 0x000000012e295fa2000000008772a9a8
428
429 /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
430 .octa 0x000000011d0908bc0000000155f295bc
431
432 /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
433 .octa 0x0000000193ed97ea00000000595f9282
434
435 /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
436 .octa 0x000000013a0f1c520000000164b1c25a
437
438 /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
439 .octa 0x000000010c2c40c000000000fbd67c50
440
441 /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
442 .octa 0x00000000ff6fac3e0000000096076268
443
444 /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
445 .octa 0x000000017b3609c000000001d288e4cc
446
447 /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
448 .octa 0x0000000088c8c92200000001eaac1bdc
449
450 /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
451 .octa 0x00000001751baae600000001f1ea39e2
452
453 /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
454 .octa 0x000000010795297200000001eb6506fc
455
456 /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
457 .octa 0x0000000162b00abe000000010f806ffe
458
459 /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
460 .octa 0x000000000d7b404c000000010408481e
461
462 /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
463 .octa 0x00000000763b13d40000000188260534
464
465 /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
466 .octa 0x00000000f6dc22d80000000058fc73e0
467
468 /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
469 .octa 0x000000007daae06000000000391c59b8
470
471 /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
472 .octa 0x000000013359ab7c000000018b638400
473
474 /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
475 .octa 0x000000008add438a000000011738f5c4
476
477 /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
478 .octa 0x00000001edbefdea000000008cf7c6da
479
480 /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
481 .octa 0x000000004104e0f800000001ef97fb16
482
483 /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
484 .octa 0x00000000b48a82220000000102130e20
485
486 /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
487 .octa 0x00000001bcb4684400000000db968898
488
489 /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
490 .octa 0x000000013293ce0a00000000b5047b5e
491
492 /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
493 .octa 0x00000001710d0844000000010b90fdb2
494
495 /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
496 .octa 0x0000000117907f6e000000004834a32e
497
498 /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
499 .octa 0x0000000087ddf93e0000000059c8f2b0
500
501 /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
502 .octa 0x000000005970e9b00000000122cec508
503
504 /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
505 .octa 0x0000000185b2b7d0000000000a330cda
506
507 /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
508 .octa 0x00000001dcee0efc000000014a47148c
509
510 /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
511 .octa 0x0000000030da27220000000042c61cb8
512
513 /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
514 .octa 0x000000012f925a180000000012fe6960
515
516 /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
517 .octa 0x00000000dd2e357c00000000dbda2c20
518
519 /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
520 .octa 0x00000000071c80de000000011122410c
521
522 /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
523 .octa 0x000000011513140a00000000977b2070
524
525 /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
526 .octa 0x00000001df876e8e000000014050438e
527
528 /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
529 .octa 0x000000015f81d6ce0000000147c840e8
530
531 /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
532 .octa 0x000000019dd94dbe00000001cc7c88ce
533
534 /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
535 .octa 0x00000001373d206e00000001476b35a4
536
537 /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
538 .octa 0x00000000668ccade000000013d52d508
539
540 /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
541 .octa 0x00000001b192d268000000008e4be32e
542
543 /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
544 .octa 0x00000000e30f3a7800000000024120fe
545
546 /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
547 .octa 0x000000010ef1f7bc00000000ddecddb4
548
549 /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
550 .octa 0x00000001f5ac738000000000d4d403bc
551
552 /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
553 .octa 0x000000011822ea7000000001734b89aa
554
555 /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
556 .octa 0x00000000c3a33848000000010e7a58d6
557
558 /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
559 .octa 0x00000001bd151c2400000001f9f04e9c
560
561 /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
562 .octa 0x0000000056002d7600000000b692225e
563
564 /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
565 .octa 0x000000014657c4f4000000019b8d3f3e
566
567 /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
568 .octa 0x0000000113742d7c00000001a874f11e
569
570 /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
571 .octa 0x000000019c5920ba000000010d5a4254
572
573 /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
574 .octa 0x000000005216d2d600000000bbb2f5d6
575
576 /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
577 .octa 0x0000000136f5ad8a0000000179cc0e36
578
579 /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
580 .octa 0x000000018b07beb600000001dca1da4a
581
582 /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
583 .octa 0x00000000db1e93b000000000feb1a192
584
585 /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
586 .octa 0x000000000b96fa3a00000000d1eeedd6
587
588 /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
589 .octa 0x00000001d9968af0000000008fad9bb4
590
591 /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
592 .octa 0x000000000e4a77a200000001884938e4
593
594 /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
595 .octa 0x00000000508c2ac800000001bc2e9bc0
596
597 /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
598 .octa 0x0000000021572a8000000001f9658a68
599
600 /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
601 .octa 0x00000001b859daf2000000001b9224fc
602
603 /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
604 .octa 0x000000016f7884740000000055b2fb84
605
606 /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
607 .octa 0x00000001b438810e000000018b090348
608
609 /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
610 .octa 0x0000000095ddc6f2000000011ccbd5ea
611
612 /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
613 .octa 0x00000001d977c20c0000000007ae47f8
614
615 /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
616 .octa 0x00000000ebedb99a0000000172acbec0
617
618 /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
619 .octa 0x00000001df9e9e9200000001c6e3ff20
620
621 /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
622 .octa 0x00000001a4a3f95200000000e1b38744
623
624 /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
625 .octa 0x00000000e2f5122000000000791585b2
626
627 /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
628 .octa 0x000000004aa01f3e00000000ac53b894
629
630 /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
631 .octa 0x00000000b3e90a5800000001ed5f2cf4
632
633 /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
634 .octa 0x000000000c9ca2aa00000001df48b2e0
635
636 /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
637 .octa 0x000000015168231600000000049c1c62
638
639 /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
640 .octa 0x0000000036fce78c000000017c460c12
641
642 /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
643 .octa 0x000000009037dc10000000015be4da7e
644
645 /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
646 .octa 0x00000000d3298582000000010f38f668
647
648 /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
649 .octa 0x00000001b42e8ad60000000039f40a00
650
651 /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
652 .octa 0x00000000142a983800000000bd4c10c4
653
654 /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
655 .octa 0x0000000109c7f1900000000042db1d98
656
657 /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
658 .octa 0x0000000056ff931000000001c905bae6
659
660 /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
661 .octa 0x00000001594513aa00000000069d40ea
662
663 /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
664 .octa 0x00000001e3b5b1e8000000008e4fbad0
665
666 /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
667 .octa 0x000000011dd5fc080000000047bedd46
668
669 /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
670 .octa 0x00000001675f0cc20000000026396bf8
671
672 /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
673 .octa 0x00000000d1c8dd4400000000379beb92
674
675 /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
676 .octa 0x0000000115ebd3d8000000000abae54a
677
678 /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
679 .octa 0x00000001ecbd0dac0000000007e6a128
680
681 /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
682 .octa 0x00000000cdf67af2000000000ade29d2
683
684 /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
685 .octa 0x000000004c01ff4c00000000f974c45c
686
687 /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
688 .octa 0x00000000f2d8657e00000000e77ac60a
689
690 /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
691 .octa 0x000000006bae74c40000000145895816
692
693 /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
694 .octa 0x0000000152af8aa00000000038e362be
695
696 /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
697 .octa 0x0000000004663802000000007f991a64
698
699 /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
700 .octa 0x00000001ab2f5afc00000000fa366d3a
701
702 /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
703 .octa 0x0000000074a4ebd400000001a2bb34f0
704
705 /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
706 .octa 0x00000001d7ab3a4c0000000028a9981e
707
708 /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
709 .octa 0x00000001a8da60c600000001dbc672be
710
711 /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
712 .octa 0x000000013cf6382000000000b04d77f6
713
714 /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
715 .octa 0x00000000bec12e1e0000000124400d96
716
717 /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
718 .octa 0x00000001c6368010000000014ca4b414
719
720 /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
721 .octa 0x00000001e6e78758000000012fe2c938
722
723 /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
724 .octa 0x000000008d7f2b3c00000001faed01e6
725
726 /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
727 .octa 0x000000016b4a156e000000007e80ecfe
728
729 /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
730 .octa 0x00000001c63cfeb60000000098daee94
731
732 /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
733 .octa 0x000000015f902670000000010a04edea
734
735 /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
736 .octa 0x00000001cd5de11e00000001c00b4524
737
738 /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
739 .octa 0x000000001acaec540000000170296550
740
741 /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
742 .octa 0x000000002bd0ca780000000181afaa48
743
744 /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
745 .octa 0x0000000032d63d5c0000000185a31ffa
746
747 /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
748 .octa 0x000000001c6d4e4c000000002469f608
749
750 /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
751 .octa 0x0000000106a60b92000000006980102a
752
753 /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
754 .octa 0x00000000d3855e120000000111ea9ca8
755
756 /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
757 .octa 0x00000000e312563600000001bd1d29ce
758
759 /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
760 .octa 0x000000009e8f7ea400000001b34b9580
761
762 /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
763 .octa 0x00000001c82e562c000000003076054e
764
765 /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
766 .octa 0x00000000ca9f09ce000000012a608ea4
767
768 /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
769 .octa 0x00000000c63764e600000000784d05fe
770
771 /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
772 .octa 0x0000000168d2e49e000000016ef0d82a
773
774 /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
775 .octa 0x00000000e986c1480000000075bda454
776
777 /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
778 .octa 0x00000000cfb65894000000003dc0a1c4
779
780 /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
781 .octa 0x0000000111cadee400000000e9a5d8be
782
783 /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
784 .octa 0x0000000171fb63ce00000001609bc4b4
785
786.short_constants:
787
788 /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
789 /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
790 .octa 0x7fec2963e5bf80485cf015c388e56f72
791
792 /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
793 .octa 0x38e888d4844752a9963a18920246e2e6
794
795 /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
796 .octa 0x42316c00730206ad419a441956993a31
797
798 /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
799 .octa 0x543d5c543e65ddf9924752ba2b830011
800
801 /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
802 .octa 0x78e87aaf56767c9255bd7f9518e4a304
803
804 /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
805 .octa 0x8f68fcec1903da7f6d76739fe0553f1e
806
807 /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
808 .octa 0x3f4840246791d588c133722b1fe0b5c3
809
810 /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
811 .octa 0x34c96751b04de25a64b67ee0e55ef1f3
812
813 /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
814 .octa 0x156c8e180b4a395b069db049b8fdb1e7
815
816 /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
817 .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
818
819 /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
820 .octa 0x041d37768cd75659817cdc5119b29a35
821
822 /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
823 .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
824
825 /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
826 .octa 0x0e148e8252377a554f256efcb82be955
827
828 /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
829 .octa 0x9c25531d19e65ddeec1631edb2dea967
830
831 /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
832 .octa 0x790606ff9957c0a65d27e147510ac59a
833
834 /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
835 .octa 0x82f63b786ea2d55ca66805eb18b8ea18
836
837
838.barrett_constants:
839 /* 33 bit reflected Barrett constant m - (4^32)/n */
840 .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
841 /* 33 bit reflected Barrett constant n */
842 .octa 0x00000000000000000000000105ec76f1
843
Daniel Axtensde696a22017-03-15 23:37:34 +1100844#define CRC_FUNCTION_NAME __crc32c_vpmsum
Daniel Axtens08c7dd12017-03-15 23:37:35 +1100845#define REFLECT
Daniel Axtensde696a22017-03-15 23:37:34 +1100846#include "crc32-vpmsum_core.S"