blob: 45194363a16048549a92725a8b9982b0acd68188 [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
James Hogana8a3c422017-03-14 10:15:19 +0000118You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300123
James Hogana8a3c422017-03-14 10:15:19 +0000124To use hardware assisted virtualization on MIPS (VZ ASE) rather than
125the default trap & emulate implementation (which changes the virtual
126memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
127flag KVM_VM_MIPS_VZ.
128
Jan Kiszka414fa982012-04-24 16:40:15 +0200129
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001304.3 KVM_GET_MSR_INDEX_LIST
131
132Capability: basic
133Architectures: x86
134Type: system
135Parameters: struct kvm_msr_list (in/out)
136Returns: 0 on success; -1 on error
137Errors:
138 E2BIG: the msr index list is to be to fit in the array specified by
139 the user.
140
141struct kvm_msr_list {
142 __u32 nmsrs; /* number of msrs in entries */
143 __u32 indices[0];
144};
145
146This ioctl returns the guest msrs that are supported. The list varies
147by kvm version and host processor, but does not change otherwise. The
148user fills in the size of the indices array in nmsrs, and in return
149kvm adjusts nmsrs to reflect the actual number of msrs and fills in
150the indices array with their numbers.
151
Avi Kivity2e2602c2010-07-07 14:09:39 +0300152Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
153not returned in the MSR list, as different vcpus can have a different number
154of banks, as set via the KVM_X86_SETUP_MCE ioctl.
155
Jan Kiszka414fa982012-04-24 16:40:15 +0200156
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001574.4 KVM_CHECK_EXTENSION
158
Alexander Graf92b591a2014-07-14 18:33:08 +0200159Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300160Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200161Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300162Parameters: extension identifier (KVM_CAP_*)
163Returns: 0 if unsupported; 1 (or some other positive integer) if supported
164
165The API allows the application to query about extensions to the core
166kvm API. Userspace passes an extension identifier (an integer) and
167receives an integer that describes the extension availability.
168Generally 0 means no and 1 means yes, but some extensions may report
169additional information in the integer return value.
170
Alexander Graf92b591a2014-07-14 18:33:08 +0200171Based on their initialization different VMs may have different capabilities.
172It is thus encouraged to use the vm ioctl to query for capabilities (available
173with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200174
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001754.5 KVM_GET_VCPU_MMAP_SIZE
176
177Capability: basic
178Architectures: all
179Type: system ioctl
180Parameters: none
181Returns: size of vcpu mmap area, in bytes
182
183The KVM_RUN ioctl (cf.) communicates with userspace via a shared
184memory region. This ioctl returns the size of that region. See the
185KVM_RUN documentation for details.
186
Jan Kiszka414fa982012-04-24 16:40:15 +0200187
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001884.6 KVM_SET_MEMORY_REGION
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: struct kvm_memory_region (in)
194Returns: 0 on success, -1 on error
195
Avi Kivityb74a07b2010-06-21 11:48:05 +0300196This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300197
Jan Kiszka414fa982012-04-24 16:40:15 +0200198
Paul Bolle68ba6972011-02-15 00:05:59 +01001994.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300200
201Capability: basic
202Architectures: all
203Type: vm ioctl
204Parameters: vcpu id (apic id on x86)
205Returns: vcpu fd on success, -1 on error
206
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200207This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
208The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300209
210The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
211the KVM_CHECK_EXTENSION ioctl() at run-time.
212The maximum possible value for max_vcpus can be retrieved using the
213KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
214
Pekka Enberg76d25402011-05-09 22:48:54 +0300215If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
216cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300217If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
218same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300219
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200220The maximum possible value for max_vcpu_id can be retrieved using the
221KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
222
223If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
224is the same as the value returned from KVM_CAP_MAX_VCPUS.
225
Paul Mackerras371fefd2011-06-29 00:23:08 +0000226On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
227threads in one or more virtual CPU cores. (This is because the
228hardware requires all the hardware threads in a CPU core to be in the
229same partition.) The KVM_CAP_PPC_SMT capability indicates the number
230of vcpus per virtual core (vcore). The vcore id is obtained by
231dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
232given vcore will always be in the same physical core as each other
233(though that might be a different physical core from time to time).
234Userspace can control the threading (SMT) mode of the guest by its
235allocation of vcpu ids. For example, if userspace wants
236single-threaded guest vcpus, it should make all vcpu ids be a multiple
237of the number of vcpus per vcore.
238
Carsten Otte5b1c1492012-01-04 10:25:23 +0100239For virtual cpus that have been created with S390 user controlled virtual
240machines, the resulting vcpu fd can be memory mapped at page offset
241KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
242cpu's hardware control block.
243
Jan Kiszka414fa982012-04-24 16:40:15 +0200244
Paul Bolle68ba6972011-02-15 00:05:59 +01002454.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300246
247Capability: basic
248Architectures: x86
249Type: vm ioctl
250Parameters: struct kvm_dirty_log (in/out)
251Returns: 0 on success, -1 on error
252
253/* for KVM_GET_DIRTY_LOG */
254struct kvm_dirty_log {
255 __u32 slot;
256 __u32 padding;
257 union {
258 void __user *dirty_bitmap; /* one bit per page */
259 __u64 padding;
260 };
261};
262
263Given a memory slot, return a bitmap containing any pages dirtied
264since the last call to this ioctl. Bit 0 is the first page in the
265memory slot. Ensure the entire structure is cleared to avoid padding
266issues.
267
Paolo Bonzinif481b062015-05-17 17:30:37 +0200268If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
269the address space for which you want to return the dirty bitmap.
270They must be less than the value that KVM_CHECK_EXTENSION returns for
271the KVM_CAP_MULTI_ADDRESS_SPACE capability.
272
Jan Kiszka414fa982012-04-24 16:40:15 +0200273
Paul Bolle68ba6972011-02-15 00:05:59 +01002744.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300275
276Capability: basic
277Architectures: x86
278Type: vm ioctl
279Parameters: struct kvm_memory_alias (in)
280Returns: 0 (success), -1 (error)
281
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300282This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300283
Jan Kiszka414fa982012-04-24 16:40:15 +0200284
Paul Bolle68ba6972011-02-15 00:05:59 +01002854.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300286
287Capability: basic
288Architectures: all
289Type: vcpu ioctl
290Parameters: none
291Returns: 0 on success, -1 on error
292Errors:
293 EINTR: an unmasked signal is pending
294
295This ioctl is used to run a guest virtual cpu. While there are no
296explicit parameters, there is an implicit parameter block that can be
297obtained by mmap()ing the vcpu fd at offset 0, with the size given by
298KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
299kvm_run' (see below).
300
Jan Kiszka414fa982012-04-24 16:40:15 +0200301
Paul Bolle68ba6972011-02-15 00:05:59 +01003024.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300303
304Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100305Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300306Type: vcpu ioctl
307Parameters: struct kvm_regs (out)
308Returns: 0 on success, -1 on error
309
310Reads the general purpose registers from the vcpu.
311
312/* x86 */
313struct kvm_regs {
314 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
315 __u64 rax, rbx, rcx, rdx;
316 __u64 rsi, rdi, rsp, rbp;
317 __u64 r8, r9, r10, r11;
318 __u64 r12, r13, r14, r15;
319 __u64 rip, rflags;
320};
321
James Hoganc2d2c212014-07-04 15:11:35 +0100322/* mips */
323struct kvm_regs {
324 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
325 __u64 gpr[32];
326 __u64 hi;
327 __u64 lo;
328 __u64 pc;
329};
330
Jan Kiszka414fa982012-04-24 16:40:15 +0200331
Paul Bolle68ba6972011-02-15 00:05:59 +01003324.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300333
334Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100335Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300336Type: vcpu ioctl
337Parameters: struct kvm_regs (in)
338Returns: 0 on success, -1 on error
339
340Writes the general purpose registers into the vcpu.
341
342See KVM_GET_REGS for the data structure.
343
Jan Kiszka414fa982012-04-24 16:40:15 +0200344
Paul Bolle68ba6972011-02-15 00:05:59 +01003454.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300346
347Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500348Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300349Type: vcpu ioctl
350Parameters: struct kvm_sregs (out)
351Returns: 0 on success, -1 on error
352
353Reads special registers from the vcpu.
354
355/* x86 */
356struct kvm_sregs {
357 struct kvm_segment cs, ds, es, fs, gs, ss;
358 struct kvm_segment tr, ldt;
359 struct kvm_dtable gdt, idt;
360 __u64 cr0, cr2, cr3, cr4, cr8;
361 __u64 efer;
362 __u64 apic_base;
363 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
364};
365
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000366/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500367
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368interrupt_bitmap is a bitmap of pending external interrupts. At most
369one bit may be set. This interrupt has been acknowledged by the APIC
370but not yet injected into the cpu core.
371
Jan Kiszka414fa982012-04-24 16:40:15 +0200372
Paul Bolle68ba6972011-02-15 00:05:59 +01003734.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300374
375Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500376Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300377Type: vcpu ioctl
378Parameters: struct kvm_sregs (in)
379Returns: 0 on success, -1 on error
380
381Writes special registers into the vcpu. See KVM_GET_SREGS for the
382data structures.
383
Jan Kiszka414fa982012-04-24 16:40:15 +0200384
Paul Bolle68ba6972011-02-15 00:05:59 +01003854.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300386
387Capability: basic
388Architectures: x86
389Type: vcpu ioctl
390Parameters: struct kvm_translation (in/out)
391Returns: 0 on success, -1 on error
392
393Translates a virtual address according to the vcpu's current address
394translation mode.
395
396struct kvm_translation {
397 /* in */
398 __u64 linear_address;
399
400 /* out */
401 __u64 physical_address;
402 __u8 valid;
403 __u8 writeable;
404 __u8 usermode;
405 __u8 pad[5];
406};
407
Jan Kiszka414fa982012-04-24 16:40:15 +0200408
Paul Bolle68ba6972011-02-15 00:05:59 +01004094.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300410
411Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100412Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300413Type: vcpu ioctl
414Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200415Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300416
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200417Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300418
419/* for KVM_INTERRUPT */
420struct kvm_interrupt {
421 /* in */
422 __u32 irq;
423};
424
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200425X86:
426
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200427Returns: 0 on success,
428 -EEXIST if an interrupt is already enqueued
429 -EINVAL the the irq number is invalid
430 -ENXIO if the PIC is in the kernel
431 -EFAULT if the pointer is invalid
432
433Note 'irq' is an interrupt vector, not an interrupt pin or line. This
434ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300435
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200436PPC:
437
438Queues an external interrupt to be injected. This ioctl is overleaded
439with 3 different irq values:
440
441a) KVM_INTERRUPT_SET
442
443 This injects an edge type external interrupt into the guest once it's ready
444 to receive interrupts. When injected, the interrupt is done.
445
446b) KVM_INTERRUPT_UNSET
447
448 This unsets any pending interrupt.
449
450 Only available with KVM_CAP_PPC_UNSET_IRQ.
451
452c) KVM_INTERRUPT_SET_LEVEL
453
454 This injects a level type external interrupt into the guest context. The
455 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
456 is triggered.
457
458 Only available with KVM_CAP_PPC_IRQ_LEVEL.
459
460Note that any value for 'irq' other than the ones stated above is invalid
461and incurs unexpected behavior.
462
James Hoganc2d2c212014-07-04 15:11:35 +0100463MIPS:
464
465Queues an external interrupt to be injected into the virtual CPU. A negative
466interrupt number dequeues the interrupt.
467
Jan Kiszka414fa982012-04-24 16:40:15 +0200468
Paul Bolle68ba6972011-02-15 00:05:59 +01004694.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300470
471Capability: basic
472Architectures: none
473Type: vcpu ioctl
474Parameters: none)
475Returns: -1 on error
476
477Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
478
Jan Kiszka414fa982012-04-24 16:40:15 +0200479
Paul Bolle68ba6972011-02-15 00:05:59 +01004804.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in/out)
486Returns: 0 on success, -1 on error
487
488Reads model-specific registers from the vcpu. Supported msr indices can
489be obtained using KVM_GET_MSR_INDEX_LIST.
490
491struct kvm_msrs {
492 __u32 nmsrs; /* number of msrs in entries */
493 __u32 pad;
494
495 struct kvm_msr_entry entries[0];
496};
497
498struct kvm_msr_entry {
499 __u32 index;
500 __u32 reserved;
501 __u64 data;
502};
503
504Application code should set the 'nmsrs' member (which indicates the
505size of the entries array) and the 'index' member of each array entry.
506kvm will fill in the 'data' member.
507
Jan Kiszka414fa982012-04-24 16:40:15 +0200508
Paul Bolle68ba6972011-02-15 00:05:59 +01005094.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300510
511Capability: basic
512Architectures: x86
513Type: vcpu ioctl
514Parameters: struct kvm_msrs (in)
515Returns: 0 on success, -1 on error
516
517Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
518data structures.
519
520Application code should set the 'nmsrs' member (which indicates the
521size of the entries array), and the 'index' and 'data' members of each
522array entry.
523
Jan Kiszka414fa982012-04-24 16:40:15 +0200524
Paul Bolle68ba6972011-02-15 00:05:59 +01005254.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_cpuid (in)
531Returns: 0 on success, -1 on error
532
533Defines the vcpu responses to the cpuid instruction. Applications
534should use the KVM_SET_CPUID2 ioctl if available.
535
536
537struct kvm_cpuid_entry {
538 __u32 function;
539 __u32 eax;
540 __u32 ebx;
541 __u32 ecx;
542 __u32 edx;
543 __u32 padding;
544};
545
546/* for KVM_SET_CPUID */
547struct kvm_cpuid {
548 __u32 nent;
549 __u32 padding;
550 struct kvm_cpuid_entry entries[0];
551};
552
Jan Kiszka414fa982012-04-24 16:40:15 +0200553
Paul Bolle68ba6972011-02-15 00:05:59 +01005544.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300555
556Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100557Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300558Type: vcpu ioctl
559Parameters: struct kvm_signal_mask (in)
560Returns: 0 on success, -1 on error
561
562Defines which signals are blocked during execution of KVM_RUN. This
563signal mask temporarily overrides the threads signal mask. Any
564unblocked signal received (except SIGKILL and SIGSTOP, which retain
565their traditional behaviour) will cause KVM_RUN to return with -EINTR.
566
567Note the signal will only be delivered if not blocked by the original
568signal mask.
569
570/* for KVM_SET_SIGNAL_MASK */
571struct kvm_signal_mask {
572 __u32 len;
573 __u8 sigset[0];
574};
575
Jan Kiszka414fa982012-04-24 16:40:15 +0200576
Paul Bolle68ba6972011-02-15 00:05:59 +01005774.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300578
579Capability: basic
580Architectures: x86
581Type: vcpu ioctl
582Parameters: struct kvm_fpu (out)
583Returns: 0 on success, -1 on error
584
585Reads the floating point state from the vcpu.
586
587/* for KVM_GET_FPU and KVM_SET_FPU */
588struct kvm_fpu {
589 __u8 fpr[8][16];
590 __u16 fcw;
591 __u16 fsw;
592 __u8 ftwx; /* in fxsave format */
593 __u8 pad1;
594 __u16 last_opcode;
595 __u64 last_ip;
596 __u64 last_dp;
597 __u8 xmm[16][16];
598 __u32 mxcsr;
599 __u32 pad2;
600};
601
Jan Kiszka414fa982012-04-24 16:40:15 +0200602
Paul Bolle68ba6972011-02-15 00:05:59 +01006034.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300604
605Capability: basic
606Architectures: x86
607Type: vcpu ioctl
608Parameters: struct kvm_fpu (in)
609Returns: 0 on success, -1 on error
610
611Writes the floating point state to the vcpu.
612
613/* for KVM_GET_FPU and KVM_SET_FPU */
614struct kvm_fpu {
615 __u8 fpr[8][16];
616 __u16 fcw;
617 __u16 fsw;
618 __u8 ftwx; /* in fxsave format */
619 __u8 pad1;
620 __u16 last_opcode;
621 __u64 last_ip;
622 __u64 last_dp;
623 __u8 xmm[16][16];
624 __u32 mxcsr;
625 __u32 pad2;
626};
627
Jan Kiszka414fa982012-04-24 16:40:15 +0200628
Paul Bolle68ba6972011-02-15 00:05:59 +01006294.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300630
Cornelia Huck84223592013-07-15 13:36:01 +0200631Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100632Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300633Type: vm ioctl
634Parameters: none
635Returns: 0 on success, -1 on error
636
Andre Przywaraac3d3732014-06-03 10:26:30 +0200637Creates an interrupt controller model in the kernel.
638On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
639future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
640PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
641On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
642KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
643KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
644On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200645
646Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
647before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300648
Jan Kiszka414fa982012-04-24 16:40:15 +0200649
Paul Bolle68ba6972011-02-15 00:05:59 +01006504.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300651
652Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100653Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300654Type: vm ioctl
655Parameters: struct kvm_irq_level
656Returns: 0 on success, -1 on error
657
658Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500659On some architectures it is required that an interrupt controller model has
660been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
661interrupts require the level to be set to 1 and then back to 0.
662
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500663On real hardware, interrupt pins can be active-low or active-high. This
664does not matter for the level field of struct kvm_irq_level: 1 always
665means active (asserted), 0 means inactive (deasserted).
666
667x86 allows the operating system to program the interrupt polarity
668(active-low/active-high) for level-triggered interrupts, and KVM used
669to consider the polarity. However, due to bitrot in the handling of
670active-low interrupts, the above convention is now valid on x86 too.
671This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
672should not present interrupts to the guest as active-low unless this
673capability is present (or unless it is not using the in-kernel irqchip,
674of course).
675
676
Marc Zyngier379e04c2013-04-02 17:46:31 +0100677ARM/arm64 can signal an interrupt either at the CPU level, or at the
678in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
679use PPIs designated for specific cpus. The irq field is interpreted
680like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500681
682  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
683 field: | irq_type | vcpu_index | irq_id |
684
685The irq_type field has the following values:
686- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
687- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
688 (the vcpu_index field is ignored)
689- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
690
691(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
692
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500693In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300694
695struct kvm_irq_level {
696 union {
697 __u32 irq; /* GSI */
698 __s32 status; /* not used for KVM_IRQ_LEVEL */
699 };
700 __u32 level; /* 0 or 1 */
701};
702
Jan Kiszka414fa982012-04-24 16:40:15 +0200703
Paul Bolle68ba6972011-02-15 00:05:59 +01007044.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300705
706Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100707Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300708Type: vm ioctl
709Parameters: struct kvm_irqchip (in/out)
710Returns: 0 on success, -1 on error
711
712Reads the state of a kernel interrupt controller created with
713KVM_CREATE_IRQCHIP into a buffer provided by the caller.
714
715struct kvm_irqchip {
716 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717 __u32 pad;
718 union {
719 char dummy[512]; /* reserving space */
720 struct kvm_pic_state pic;
721 struct kvm_ioapic_state ioapic;
722 } chip;
723};
724
Jan Kiszka414fa982012-04-24 16:40:15 +0200725
Paul Bolle68ba6972011-02-15 00:05:59 +01007264.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300727
728Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100729Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300730Type: vm ioctl
731Parameters: struct kvm_irqchip (in)
732Returns: 0 on success, -1 on error
733
734Sets the state of a kernel interrupt controller created with
735KVM_CREATE_IRQCHIP from a buffer provided by the caller.
736
737struct kvm_irqchip {
738 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
739 __u32 pad;
740 union {
741 char dummy[512]; /* reserving space */
742 struct kvm_pic_state pic;
743 struct kvm_ioapic_state ioapic;
744 } chip;
745};
746
Jan Kiszka414fa982012-04-24 16:40:15 +0200747
Paul Bolle68ba6972011-02-15 00:05:59 +01007484.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700749
750Capability: KVM_CAP_XEN_HVM
751Architectures: x86
752Type: vm ioctl
753Parameters: struct kvm_xen_hvm_config (in)
754Returns: 0 on success, -1 on error
755
756Sets the MSR that the Xen HVM guest uses to initialize its hypercall
757page, and provides the starting address and size of the hypercall
758blobs in userspace. When the guest writes the MSR, kvm copies one
759page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
760memory.
761
762struct kvm_xen_hvm_config {
763 __u32 flags;
764 __u32 msr;
765 __u64 blob_addr_32;
766 __u64 blob_addr_64;
767 __u8 blob_size_32;
768 __u8 blob_size_64;
769 __u8 pad2[30];
770};
771
Jan Kiszka414fa982012-04-24 16:40:15 +0200772
Paul Bolle68ba6972011-02-15 00:05:59 +01007734.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400774
775Capability: KVM_CAP_ADJUST_CLOCK
776Architectures: x86
777Type: vm ioctl
778Parameters: struct kvm_clock_data (out)
779Returns: 0 on success, -1 on error
780
781Gets the current timestamp of kvmclock as seen by the current guest. In
782conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
783such as migration.
784
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100785When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
786set of bits that KVM can return in struct kvm_clock_data's flag member.
787
788The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
789value is the exact kvmclock value seen by all VCPUs at the instant
790when KVM_GET_CLOCK was called. If clear, the returned value is simply
791CLOCK_MONOTONIC plus a constant offset; the offset can be modified
792with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
793but the exact value read by each VCPU could differ, because the host
794TSC is not stable.
795
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400796struct kvm_clock_data {
797 __u64 clock; /* kvmclock current value */
798 __u32 flags;
799 __u32 pad[9];
800};
801
Jan Kiszka414fa982012-04-24 16:40:15 +0200802
Paul Bolle68ba6972011-02-15 00:05:59 +01008034.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400804
805Capability: KVM_CAP_ADJUST_CLOCK
806Architectures: x86
807Type: vm ioctl
808Parameters: struct kvm_clock_data (in)
809Returns: 0 on success, -1 on error
810
Wu Fengguang2044892d2009-12-24 09:04:16 +0800811Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400812In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
813such as migration.
814
815struct kvm_clock_data {
816 __u64 clock; /* kvmclock current value */
817 __u32 flags;
818 __u32 pad[9];
819};
820
Jan Kiszka414fa982012-04-24 16:40:15 +0200821
Paul Bolle68ba6972011-02-15 00:05:59 +01008224.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100823
824Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100825Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100826Architectures: x86
827Type: vm ioctl
828Parameters: struct kvm_vcpu_event (out)
829Returns: 0 on success, -1 on error
830
831Gets currently pending exceptions, interrupts, and NMIs as well as related
832states of the vcpu.
833
834struct kvm_vcpu_events {
835 struct {
836 __u8 injected;
837 __u8 nr;
838 __u8 has_error_code;
839 __u8 pad;
840 __u32 error_code;
841 } exception;
842 struct {
843 __u8 injected;
844 __u8 nr;
845 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100846 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100847 } interrupt;
848 struct {
849 __u8 injected;
850 __u8 pending;
851 __u8 masked;
852 __u8 pad;
853 } nmi;
854 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100855 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200856 struct {
857 __u8 smm;
858 __u8 pending;
859 __u8 smm_inside_nmi;
860 __u8 latched_init;
861 } smi;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100862};
863
Paolo Bonzinif0778252015-04-01 15:06:40 +0200864Only two fields are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100865
Paolo Bonzinif0778252015-04-01 15:06:40 +0200866- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
867 interrupt.shadow contains a valid state.
868
869- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
870 smi contains a valid state.
Jan Kiszka414fa982012-04-24 16:40:15 +0200871
Paul Bolle68ba6972011-02-15 00:05:59 +01008724.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100873
874Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100875Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100876Architectures: x86
877Type: vm ioctl
878Parameters: struct kvm_vcpu_event (in)
879Returns: 0 on success, -1 on error
880
881Set pending exceptions, interrupts, and NMIs as well as related states of the
882vcpu.
883
884See KVM_GET_VCPU_EVENTS for the data structure.
885
Jan Kiszkadab4b912009-12-06 18:24:15 +0100886Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200887from the update. These fields are nmi.pending, sipi_vector, smi.smm,
888smi.pending. Keep the corresponding bits in the flags field cleared to
889suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100890
891KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
892KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200893KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100894
Jan Kiszka48005f62010-02-19 19:38:07 +0100895If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
896the flags field to signal that interrupt.shadow contains a valid state and
897shall be written into the VCPU.
898
Paolo Bonzinif0778252015-04-01 15:06:40 +0200899KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
900
Jan Kiszka414fa982012-04-24 16:40:15 +0200901
Paul Bolle68ba6972011-02-15 00:05:59 +01009024.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100903
904Capability: KVM_CAP_DEBUGREGS
905Architectures: x86
906Type: vm ioctl
907Parameters: struct kvm_debugregs (out)
908Returns: 0 on success, -1 on error
909
910Reads debug registers from the vcpu.
911
912struct kvm_debugregs {
913 __u64 db[4];
914 __u64 dr6;
915 __u64 dr7;
916 __u64 flags;
917 __u64 reserved[9];
918};
919
Jan Kiszka414fa982012-04-24 16:40:15 +0200920
Paul Bolle68ba6972011-02-15 00:05:59 +01009214.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100922
923Capability: KVM_CAP_DEBUGREGS
924Architectures: x86
925Type: vm ioctl
926Parameters: struct kvm_debugregs (in)
927Returns: 0 on success, -1 on error
928
929Writes debug registers into the vcpu.
930
931See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
932yet and must be cleared on entry.
933
Jan Kiszka414fa982012-04-24 16:40:15 +0200934
Paul Bolle68ba6972011-02-15 00:05:59 +01009354.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200936
937Capability: KVM_CAP_USER_MEM
938Architectures: all
939Type: vm ioctl
940Parameters: struct kvm_userspace_memory_region (in)
941Returns: 0 on success, -1 on error
942
943struct kvm_userspace_memory_region {
944 __u32 slot;
945 __u32 flags;
946 __u64 guest_phys_addr;
947 __u64 memory_size; /* bytes */
948 __u64 userspace_addr; /* start of the userspace allocated memory */
949};
950
951/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800952#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
953#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200954
955This ioctl allows the user to create or modify a guest physical memory
956slot. When changing an existing slot, it may be moved in the guest
957physical memory space, or its flags may be modified. It may not be
958resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +0530959Bits 0-15 of "slot" specifies the slot id and this value should be
960less than the maximum number of user memory slots supported per VM.
961The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
962if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200963
Paolo Bonzinif481b062015-05-17 17:30:37 +0200964If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
965specifies the address space which is being modified. They must be
966less than the value that KVM_CHECK_EXTENSION returns for the
967KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
968are unrelated; the restriction on overlapping slots only applies within
969each address space.
970
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200971Memory for the region is taken starting at the address denoted by the
972field userspace_addr, which must point at user addressable memory for
973the entire memory slot size. Any object may back this memory, including
974anonymous memory, ordinary files, and hugetlbfs.
975
976It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
977be identical. This allows large pages in the guest to be backed by large
978pages in the host.
979
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +0900980The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
981KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
982writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
983use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
984to make a new slot read-only. In this case, writes to this memory will be
985posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200986
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200987When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
988the memory region are automatically reflected into the guest. For example, an
989mmap() that affects the region will be made visible immediately. Another
990example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200991
992It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
993The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
994allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100995
Jan Kiszka414fa982012-04-24 16:40:15 +0200996
Paul Bolle68ba6972011-02-15 00:05:59 +01009974.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200998
999Capability: KVM_CAP_SET_TSS_ADDR
1000Architectures: x86
1001Type: vm ioctl
1002Parameters: unsigned long tss_address (in)
1003Returns: 0 on success, -1 on error
1004
1005This ioctl defines the physical address of a three-page region in the guest
1006physical address space. The region must be within the first 4GB of the
1007guest physical address space and must not conflict with any memory slot
1008or any mmio address. The guest may malfunction if it accesses this memory
1009region.
1010
1011This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1012because of a quirk in the virtualization implementation (see the internals
1013documentation when it pops into existence).
1014
Jan Kiszka414fa982012-04-24 16:40:15 +02001015
Paul Bolle68ba6972011-02-15 00:05:59 +010010164.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001017
Cornelia Huckd938dc52013-10-23 18:26:34 +02001018Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Nadav Amit90de4a12015-04-13 01:53:41 +03001019Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1020 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
Cornelia Huckd938dc52013-10-23 18:26:34 +02001021Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Alexander Graf71fbfd52010-03-24 21:48:29 +01001022Parameters: struct kvm_enable_cap (in)
1023Returns: 0 on success; -1 on error
1024
1025+Not all extensions are enabled by default. Using this ioctl the application
1026can enable an extension, making it available to the guest.
1027
1028On systems that do not support this ioctl, it always fails. On systems that
1029do support it, it only works for extensions that are supported for enablement.
1030
1031To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1032be used.
1033
1034struct kvm_enable_cap {
1035 /* in */
1036 __u32 cap;
1037
1038The capability that is supposed to get enabled.
1039
1040 __u32 flags;
1041
1042A bitfield indicating future enhancements. Has to be 0 for now.
1043
1044 __u64 args[4];
1045
1046Arguments for enabling a feature. If a feature needs initial values to
1047function properly, this is the place to put them.
1048
1049 __u8 pad[64];
1050};
1051
Cornelia Huckd938dc52013-10-23 18:26:34 +02001052The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1053for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001054
Paul Bolle68ba6972011-02-15 00:05:59 +010010554.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001056
1057Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001058Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001059Type: vcpu ioctl
1060Parameters: struct kvm_mp_state (out)
1061Returns: 0 on success; -1 on error
1062
1063struct kvm_mp_state {
1064 __u32 mp_state;
1065};
1066
1067Returns the vcpu's current "multiprocessing state" (though also valid on
1068uniprocessor guests).
1069
1070Possible values are:
1071
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001072 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001073 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001074 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001075 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001076 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001077 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001078 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001079 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001080 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001081 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001082 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1083 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1084 [s390]
1085 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1086 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001087
Tiejun Chenc32a4272014-11-20 11:07:18 +01001088On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001089in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001091
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001092For arm/arm64:
1093
1094The only states that are valid are KVM_MP_STATE_STOPPED and
1095KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001096
Paul Bolle68ba6972011-02-15 00:05:59 +010010974.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001098
1099Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001100Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001101Type: vcpu ioctl
1102Parameters: struct kvm_mp_state (in)
1103Returns: 0 on success; -1 on error
1104
1105Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1106arguments.
1107
Tiejun Chenc32a4272014-11-20 11:07:18 +01001108On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001109in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1110these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001111
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001112For arm/arm64:
1113
1114The only states that are valid are KVM_MP_STATE_STOPPED and
1115KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001116
Paul Bolle68ba6972011-02-15 00:05:59 +010011174.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001118
1119Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1120Architectures: x86
1121Type: vm ioctl
1122Parameters: unsigned long identity (in)
1123Returns: 0 on success, -1 on error
1124
1125This ioctl defines the physical address of a one-page region in the guest
1126physical address space. The region must be within the first 4GB of the
1127guest physical address space and must not conflict with any memory slot
1128or any mmio address. The guest may malfunction if it accesses this memory
1129region.
1130
1131This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1132because of a quirk in the virtualization implementation (see the internals
1133documentation when it pops into existence).
1134
Jan Kiszka414fa982012-04-24 16:40:15 +02001135
Paul Bolle68ba6972011-02-15 00:05:59 +010011364.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001137
1138Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001139Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001140Type: vm ioctl
1141Parameters: unsigned long vcpu_id
1142Returns: 0 on success, -1 on error
1143
1144Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1145as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1146is vcpu 0.
1147
Jan Kiszka414fa982012-04-24 16:40:15 +02001148
Paul Bolle68ba6972011-02-15 00:05:59 +010011494.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001150
1151Capability: KVM_CAP_XSAVE
1152Architectures: x86
1153Type: vcpu ioctl
1154Parameters: struct kvm_xsave (out)
1155Returns: 0 on success, -1 on error
1156
1157struct kvm_xsave {
1158 __u32 region[1024];
1159};
1160
1161This ioctl would copy current vcpu's xsave struct to the userspace.
1162
Jan Kiszka414fa982012-04-24 16:40:15 +02001163
Paul Bolle68ba6972011-02-15 00:05:59 +010011644.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001165
1166Capability: KVM_CAP_XSAVE
1167Architectures: x86
1168Type: vcpu ioctl
1169Parameters: struct kvm_xsave (in)
1170Returns: 0 on success, -1 on error
1171
1172struct kvm_xsave {
1173 __u32 region[1024];
1174};
1175
1176This ioctl would copy userspace's xsave struct to the kernel.
1177
Jan Kiszka414fa982012-04-24 16:40:15 +02001178
Paul Bolle68ba6972011-02-15 00:05:59 +010011794.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001180
1181Capability: KVM_CAP_XCRS
1182Architectures: x86
1183Type: vcpu ioctl
1184Parameters: struct kvm_xcrs (out)
1185Returns: 0 on success, -1 on error
1186
1187struct kvm_xcr {
1188 __u32 xcr;
1189 __u32 reserved;
1190 __u64 value;
1191};
1192
1193struct kvm_xcrs {
1194 __u32 nr_xcrs;
1195 __u32 flags;
1196 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1197 __u64 padding[16];
1198};
1199
1200This ioctl would copy current vcpu's xcrs to the userspace.
1201
Jan Kiszka414fa982012-04-24 16:40:15 +02001202
Paul Bolle68ba6972011-02-15 00:05:59 +010012034.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001204
1205Capability: KVM_CAP_XCRS
1206Architectures: x86
1207Type: vcpu ioctl
1208Parameters: struct kvm_xcrs (in)
1209Returns: 0 on success, -1 on error
1210
1211struct kvm_xcr {
1212 __u32 xcr;
1213 __u32 reserved;
1214 __u64 value;
1215};
1216
1217struct kvm_xcrs {
1218 __u32 nr_xcrs;
1219 __u32 flags;
1220 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1221 __u64 padding[16];
1222};
1223
1224This ioctl would set vcpu's xcr to the value userspace specified.
1225
Jan Kiszka414fa982012-04-24 16:40:15 +02001226
Paul Bolle68ba6972011-02-15 00:05:59 +010012274.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001228
1229Capability: KVM_CAP_EXT_CPUID
1230Architectures: x86
1231Type: system ioctl
1232Parameters: struct kvm_cpuid2 (in/out)
1233Returns: 0 on success, -1 on error
1234
1235struct kvm_cpuid2 {
1236 __u32 nent;
1237 __u32 padding;
1238 struct kvm_cpuid_entry2 entries[0];
1239};
1240
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001241#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1242#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1243#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001244
1245struct kvm_cpuid_entry2 {
1246 __u32 function;
1247 __u32 index;
1248 __u32 flags;
1249 __u32 eax;
1250 __u32 ebx;
1251 __u32 ecx;
1252 __u32 edx;
1253 __u32 padding[3];
1254};
1255
1256This ioctl returns x86 cpuid features which are supported by both the hardware
1257and kvm. Userspace can use the information returned by this ioctl to
1258construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1259hardware, kernel, and userspace capabilities, and with user requirements (for
1260example, the user may wish to constrain cpuid to emulate older hardware,
1261or for feature consistency across a cluster).
1262
1263Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1264with the 'nent' field indicating the number of entries in the variable-size
1265array 'entries'. If the number of entries is too low to describe the cpu
1266capabilities, an error (E2BIG) is returned. If the number is too high,
1267the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1268number is just right, the 'nent' field is adjusted to the number of valid
1269entries in the 'entries' array, which is then filled.
1270
1271The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001272with unknown or unsupported features masked out. Some features (for example,
1273x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1274emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001275
1276 function: the eax value used to obtain the entry
1277 index: the ecx value used to obtain the entry (for entries that are
1278 affected by ecx)
1279 flags: an OR of zero or more of the following:
1280 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1281 if the index field is valid
1282 KVM_CPUID_FLAG_STATEFUL_FUNC:
1283 if cpuid for this function returns different values for successive
1284 invocations; there will be several entries with the same function,
1285 all with this flag set
1286 KVM_CPUID_FLAG_STATE_READ_NEXT:
1287 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1288 the first entry to be read by a cpu
1289 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1290 this function/index combination
1291
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001292The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1293as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1294support. Instead it is reported via
1295
1296 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1297
1298if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1299feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1300
Jan Kiszka414fa982012-04-24 16:40:15 +02001301
Paul Bolle68ba6972011-02-15 00:05:59 +010013024.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001303
1304Capability: KVM_CAP_PPC_GET_PVINFO
1305Architectures: ppc
1306Type: vm ioctl
1307Parameters: struct kvm_ppc_pvinfo (out)
1308Returns: 0 on success, !0 on error
1309
1310struct kvm_ppc_pvinfo {
1311 __u32 flags;
1312 __u32 hcall[4];
1313 __u8 pad[108];
1314};
1315
1316This ioctl fetches PV specific information that need to be passed to the guest
1317using the device tree or other means from vm context.
1318
Liu Yu-B132019202e072012-07-03 05:48:52 +00001319The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001320
1321If any additional field gets added to this structure later on, a bit for that
1322additional piece of information will be set in the flags bitmap.
1323
Liu Yu-B132019202e072012-07-03 05:48:52 +00001324The flags bitmap is defined as:
1325
1326 /* the host supports the ePAPR idle hcall
1327 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001328
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013294.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001330
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001331Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001332Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001333Type: vm ioctl
1334Parameters: struct kvm_assigned_pci_dev (in)
1335Returns: 0 on success, -1 on error
1336
1337Assigns a host PCI device to the VM.
1338
1339struct kvm_assigned_pci_dev {
1340 __u32 assigned_dev_id;
1341 __u32 busnr;
1342 __u32 devfn;
1343 __u32 flags;
1344 __u32 segnr;
1345 union {
1346 __u32 reserved[11];
1347 };
1348};
1349
1350The PCI device is specified by the triple segnr, busnr, and devfn.
1351Identification in succeeding service requests is done via assigned_dev_id. The
1352following flags are specified:
1353
1354/* Depends on KVM_CAP_IOMMU */
1355#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
Jan Kiszka07700a92012-02-28 14:19:54 +01001356/* The following two depend on KVM_CAP_PCI_2_3 */
1357#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1358#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1359
1360If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1361via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1362assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1363guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
Jan Kiszka49f48172010-11-16 22:30:07 +01001364
Alex Williamson42387372011-12-20 21:59:03 -07001365The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1366isolation of the device. Usages not specifying this flag are deprecated.
1367
Alex Williamson3d27e232011-12-20 21:59:09 -07001368Only PCI header type 0 devices with PCI BAR resources are supported by
1369device assignment. The user requesting this ioctl must have read/write
1370access to the PCI sysfs resource files associated with the device.
1371
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001372Errors:
1373 ENOTTY: kernel does not support this ioctl
1374
1375 Other error conditions may be defined by individual device types or
1376 have their standard meanings.
1377
Jan Kiszka414fa982012-04-24 16:40:15 +02001378
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013794.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001380
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001381Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001382Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001383Type: vm ioctl
1384Parameters: struct kvm_assigned_pci_dev (in)
1385Returns: 0 on success, -1 on error
1386
1387Ends PCI device assignment, releasing all associated resources.
1388
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001389See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
Jan Kiszka49f48172010-11-16 22:30:07 +01001390used in kvm_assigned_pci_dev to identify the device.
1391
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001392Errors:
1393 ENOTTY: kernel does not support this ioctl
1394
1395 Other error conditions may be defined by individual device types or
1396 have their standard meanings.
Jan Kiszka414fa982012-04-24 16:40:15 +02001397
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013984.50 KVM_ASSIGN_DEV_IRQ (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001399
1400Capability: KVM_CAP_ASSIGN_DEV_IRQ
Tiejun Chenc32a4272014-11-20 11:07:18 +01001401Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001402Type: vm ioctl
1403Parameters: struct kvm_assigned_irq (in)
1404Returns: 0 on success, -1 on error
1405
1406Assigns an IRQ to a passed-through device.
1407
1408struct kvm_assigned_irq {
1409 __u32 assigned_dev_id;
Jan Kiszka91e3d712011-06-03 08:51:05 +02001410 __u32 host_irq; /* ignored (legacy field) */
Jan Kiszka49f48172010-11-16 22:30:07 +01001411 __u32 guest_irq;
1412 __u32 flags;
1413 union {
Jan Kiszka49f48172010-11-16 22:30:07 +01001414 __u32 reserved[12];
1415 };
1416};
1417
1418The following flags are defined:
1419
1420#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1421#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1422#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1423
1424#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1425#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1426#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1427
1428It is not valid to specify multiple types per host or guest IRQ. However, the
1429IRQ type of host and guest can differ or can even be null.
1430
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001431Errors:
1432 ENOTTY: kernel does not support this ioctl
1433
1434 Other error conditions may be defined by individual device types or
1435 have their standard meanings.
1436
Jan Kiszka414fa982012-04-24 16:40:15 +02001437
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020014384.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001439
1440Capability: KVM_CAP_ASSIGN_DEV_IRQ
Tiejun Chenc32a4272014-11-20 11:07:18 +01001441Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001442Type: vm ioctl
1443Parameters: struct kvm_assigned_irq (in)
1444Returns: 0 on success, -1 on error
1445
1446Ends an IRQ assignment to a passed-through device.
1447
1448See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1449by assigned_dev_id, flags must correspond to the IRQ type specified on
1450KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1451
Jan Kiszka414fa982012-04-24 16:40:15 +02001452
Paul Bolle68ba6972011-02-15 00:05:59 +010014534.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001454
1455Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001456Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001457Type: vm ioctl
1458Parameters: struct kvm_irq_routing (in)
1459Returns: 0 on success, -1 on error
1460
1461Sets the GSI routing table entries, overwriting any previously set entries.
1462
Eric Auger180ae7b2016-07-22 16:20:41 +00001463On arm/arm64, GSI routing has the following limitation:
1464- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1465
Jan Kiszka49f48172010-11-16 22:30:07 +01001466struct kvm_irq_routing {
1467 __u32 nr;
1468 __u32 flags;
1469 struct kvm_irq_routing_entry entries[0];
1470};
1471
1472No flags are specified so far, the corresponding field must be set to zero.
1473
1474struct kvm_irq_routing_entry {
1475 __u32 gsi;
1476 __u32 type;
1477 __u32 flags;
1478 __u32 pad;
1479 union {
1480 struct kvm_irq_routing_irqchip irqchip;
1481 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001482 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001483 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001484 __u32 pad[8];
1485 } u;
1486};
1487
1488/* gsi routing entry types */
1489#define KVM_IRQ_ROUTING_IRQCHIP 1
1490#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001491#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001492#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001493
Eric Auger76a10b82016-07-22 16:20:37 +00001494flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001495- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1496 type, specifies that the devid field contains a valid value. The per-VM
1497 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1498 the device ID. If this capability is not available, userspace should
1499 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001500- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001501
1502struct kvm_irq_routing_irqchip {
1503 __u32 irqchip;
1504 __u32 pin;
1505};
1506
1507struct kvm_irq_routing_msi {
1508 __u32 address_lo;
1509 __u32 address_hi;
1510 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001511 union {
1512 __u32 pad;
1513 __u32 devid;
1514 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001515};
1516
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001517If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1518for the device that wrote the MSI message. For PCI, this is usually a
1519BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001520
Radim Krčmář371313132016-07-12 22:09:27 +02001521On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1522feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1523address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1524address_hi must be zero.
1525
Cornelia Huck84223592013-07-15 13:36:01 +02001526struct kvm_irq_routing_s390_adapter {
1527 __u64 ind_addr;
1528 __u64 summary_addr;
1529 __u64 ind_offset;
1530 __u32 summary_offset;
1531 __u32 adapter_id;
1532};
1533
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001534struct kvm_irq_routing_hv_sint {
1535 __u32 vcpu;
1536 __u32 sint;
1537};
Jan Kiszka414fa982012-04-24 16:40:15 +02001538
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020015394.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001540
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001541Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001542Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001543Type: vm ioctl
1544Parameters: struct kvm_assigned_msix_nr (in)
1545Returns: 0 on success, -1 on error
1546
Jan Kiszka58f09642011-06-11 12:24:24 +02001547Set the number of MSI-X interrupts for an assigned device. The number is
1548reset again by terminating the MSI-X assignment of the device via
1549KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1550point will fail.
Jan Kiszka49f48172010-11-16 22:30:07 +01001551
1552struct kvm_assigned_msix_nr {
1553 __u32 assigned_dev_id;
1554 __u16 entry_nr;
1555 __u16 padding;
1556};
1557
1558#define KVM_MAX_MSIX_PER_DEV 256
1559
Jan Kiszka414fa982012-04-24 16:40:15 +02001560
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020015614.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001562
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001563Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001564Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001565Type: vm ioctl
1566Parameters: struct kvm_assigned_msix_entry (in)
1567Returns: 0 on success, -1 on error
1568
1569Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1570the GSI vector to zero means disabling the interrupt.
1571
1572struct kvm_assigned_msix_entry {
1573 __u32 assigned_dev_id;
1574 __u32 gsi;
1575 __u16 entry; /* The index of entry in the MSI-X table */
1576 __u16 padding[3];
1577};
1578
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001579Errors:
1580 ENOTTY: kernel does not support this ioctl
1581
1582 Other error conditions may be defined by individual device types or
1583 have their standard meanings.
1584
Jan Kiszka414fa982012-04-24 16:40:15 +02001585
15864.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001587
1588Capability: KVM_CAP_TSC_CONTROL
1589Architectures: x86
1590Type: vcpu ioctl
1591Parameters: virtual tsc_khz
1592Returns: 0 on success, -1 on error
1593
1594Specifies the tsc frequency for the virtual machine. The unit of the
1595frequency is KHz.
1596
Jan Kiszka414fa982012-04-24 16:40:15 +02001597
15984.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001599
1600Capability: KVM_CAP_GET_TSC_KHZ
1601Architectures: x86
1602Type: vcpu ioctl
1603Parameters: none
1604Returns: virtual tsc-khz on success, negative value on error
1605
1606Returns the tsc frequency of the guest. The unit of the return value is
1607KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1608error.
1609
Jan Kiszka414fa982012-04-24 16:40:15 +02001610
16114.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001612
1613Capability: KVM_CAP_IRQCHIP
1614Architectures: x86
1615Type: vcpu ioctl
1616Parameters: struct kvm_lapic_state (out)
1617Returns: 0 on success, -1 on error
1618
1619#define KVM_APIC_REG_SIZE 0x400
1620struct kvm_lapic_state {
1621 char regs[KVM_APIC_REG_SIZE];
1622};
1623
1624Reads the Local APIC registers and copies them into the input argument. The
1625data format and layout are the same as documented in the architecture manual.
1626
Radim Krčmář371313132016-07-12 22:09:27 +02001627If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1628enabled, then the format of APIC_ID register depends on the APIC mode
1629(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1630the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1631which is stored in bits 31-24 of the APIC register, or equivalently in
1632byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1633be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1634
1635If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1636always uses xAPIC format.
1637
Jan Kiszka414fa982012-04-24 16:40:15 +02001638
16394.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001640
1641Capability: KVM_CAP_IRQCHIP
1642Architectures: x86
1643Type: vcpu ioctl
1644Parameters: struct kvm_lapic_state (in)
1645Returns: 0 on success, -1 on error
1646
1647#define KVM_APIC_REG_SIZE 0x400
1648struct kvm_lapic_state {
1649 char regs[KVM_APIC_REG_SIZE];
1650};
1651
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001652Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001653and layout are the same as documented in the architecture manual.
1654
Radim Krčmář371313132016-07-12 22:09:27 +02001655The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1656regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1657See the note in KVM_GET_LAPIC.
1658
Jan Kiszka414fa982012-04-24 16:40:15 +02001659
16604.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001661
1662Capability: KVM_CAP_IOEVENTFD
1663Architectures: all
1664Type: vm ioctl
1665Parameters: struct kvm_ioeventfd (in)
1666Returns: 0 on success, !0 on error
1667
1668This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1669within the guest. A guest write in the registered address will signal the
1670provided event instead of triggering an exit.
1671
1672struct kvm_ioeventfd {
1673 __u64 datamatch;
1674 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001675 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001676 __s32 fd;
1677 __u32 flags;
1678 __u8 pad[36];
1679};
1680
Cornelia Huck2b834512013-02-28 12:33:20 +01001681For the special case of virtio-ccw devices on s390, the ioevent is matched
1682to a subchannel/virtqueue tuple instead.
1683
Sasha Levin55399a02011-05-28 14:12:30 +03001684The following flags are defined:
1685
1686#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1687#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1688#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001689#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1690 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001691
1692If datamatch flag is set, the event will be signaled only if the written value
1693to the registered address is equal to datamatch in struct kvm_ioeventfd.
1694
Cornelia Huck2b834512013-02-28 12:33:20 +01001695For virtio-ccw devices, addr contains the subchannel id and datamatch the
1696virtqueue index.
1697
Jason Wange9ea5062015-09-15 14:41:59 +08001698With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1699the kernel will ignore the length of guest write and may get a faster vmexit.
1700The speedup may only apply to specific architectures, but the ioeventfd will
1701work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001702
17034.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001704
1705Capability: KVM_CAP_SW_TLB
1706Architectures: ppc
1707Type: vcpu ioctl
1708Parameters: struct kvm_dirty_tlb (in)
1709Returns: 0 on success, -1 on error
1710
1711struct kvm_dirty_tlb {
1712 __u64 bitmap;
1713 __u32 num_dirty;
1714};
1715
1716This must be called whenever userspace has changed an entry in the shared
1717TLB, prior to calling KVM_RUN on the associated vcpu.
1718
1719The "bitmap" field is the userspace address of an array. This array
1720consists of a number of bits, equal to the total number of TLB entries as
1721determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1722nearest multiple of 64.
1723
1724Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1725array.
1726
1727The array is little-endian: the bit 0 is the least significant bit of the
1728first byte, bit 8 is the least significant bit of the second byte, etc.
1729This avoids any complications with differing word sizes.
1730
1731The "num_dirty" field is a performance hint for KVM to determine whether it
1732should skip processing the bitmap and just invalidate everything. It must
1733be set to the number of set bits in the bitmap.
1734
Jan Kiszka414fa982012-04-24 16:40:15 +02001735
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020017364.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
Jan Kiszka07700a92012-02-28 14:19:54 +01001737
1738Capability: KVM_CAP_PCI_2_3
1739Architectures: x86
1740Type: vm ioctl
1741Parameters: struct kvm_assigned_pci_dev (in)
1742Returns: 0 on success, -1 on error
1743
1744Allows userspace to mask PCI INTx interrupts from the assigned device. The
1745kernel will not deliver INTx interrupts to the guest between setting and
1746clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1747and emulation of PCI 2.3 INTx disable command register behavior.
1748
1749This may be used for both PCI 2.3 devices supporting INTx disable natively and
1750older devices lacking this support. Userspace is responsible for emulating the
1751read value of the INTx disable bit in the guest visible PCI command register.
1752When modifying the INTx disable state, userspace should precede updating the
1753physical device command register by calling this ioctl to inform the kernel of
1754the new intended INTx mask state.
1755
1756Note that the kernel uses the device INTx disable bit to internally manage the
1757device interrupt state for PCI 2.3 devices. Reads of this register may
1758therefore not match the expected value. Writes should always use the guest
1759intended INTx disable value rather than attempting to read-copy-update the
1760current physical device state. Races between user and kernel updates to the
1761INTx disable bit are handled lazily in the kernel. It's possible the device
1762may generate unintended interrupts, but they will not be injected into the
1763guest.
1764
1765See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1766by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1767evaluated.
1768
Jan Kiszka414fa982012-04-24 16:40:15 +02001769
David Gibson54738c02011-06-29 00:22:41 +000017704.62 KVM_CREATE_SPAPR_TCE
1771
1772Capability: KVM_CAP_SPAPR_TCE
1773Architectures: powerpc
1774Type: vm ioctl
1775Parameters: struct kvm_create_spapr_tce (in)
1776Returns: file descriptor for manipulating the created TCE table
1777
1778This creates a virtual TCE (translation control entry) table, which
1779is an IOMMU for PAPR-style virtual I/O. It is used to translate
1780logical addresses used in virtual I/O into guest physical addresses,
1781and provides a scatter/gather capability for PAPR virtual I/O.
1782
1783/* for KVM_CAP_SPAPR_TCE */
1784struct kvm_create_spapr_tce {
1785 __u64 liobn;
1786 __u32 window_size;
1787};
1788
1789The liobn field gives the logical IO bus number for which to create a
1790TCE table. The window_size field specifies the size of the DMA window
1791which this TCE table will translate - the table will contain one 64
1792bit TCE entry for every 4kiB of the DMA window.
1793
1794When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1795table has been created using this ioctl(), the kernel will handle it
1796in real mode, updating the TCE table. H_PUT_TCE calls for other
1797liobns will cause a vm exit and must be handled by userspace.
1798
1799The return value is a file descriptor which can be passed to mmap(2)
1800to map the created TCE table into userspace. This lets userspace read
1801the entries written by kernel-handled H_PUT_TCE calls, and also lets
1802userspace update the TCE table directly which is useful in some
1803circumstances.
1804
Jan Kiszka414fa982012-04-24 16:40:15 +02001805
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000018064.63 KVM_ALLOCATE_RMA
1807
1808Capability: KVM_CAP_PPC_RMA
1809Architectures: powerpc
1810Type: vm ioctl
1811Parameters: struct kvm_allocate_rma (out)
1812Returns: file descriptor for mapping the allocated RMA
1813
1814This allocates a Real Mode Area (RMA) from the pool allocated at boot
1815time by the kernel. An RMA is a physically-contiguous, aligned region
1816of memory used on older POWER processors to provide the memory which
1817will be accessed by real-mode (MMU off) accesses in a KVM guest.
1818POWER processors support a set of sizes for the RMA that usually
1819includes 64MB, 128MB, 256MB and some larger powers of two.
1820
1821/* for KVM_ALLOCATE_RMA */
1822struct kvm_allocate_rma {
1823 __u64 rma_size;
1824};
1825
1826The return value is a file descriptor which can be passed to mmap(2)
1827to map the allocated RMA into userspace. The mapped area can then be
1828passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1829RMA for a virtual machine. The size of the RMA in bytes (which is
1830fixed at host kernel boot time) is returned in the rma_size field of
1831the argument structure.
1832
1833The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1834is supported; 2 if the processor requires all virtual machines to have
1835an RMA, or 1 if the processor can use an RMA but doesn't require it,
1836because it supports the Virtual RMA (VRMA) facility.
1837
Jan Kiszka414fa982012-04-24 16:40:15 +02001838
Avi Kivity3f745f12011-12-07 12:42:47 +020018394.64 KVM_NMI
1840
1841Capability: KVM_CAP_USER_NMI
1842Architectures: x86
1843Type: vcpu ioctl
1844Parameters: none
1845Returns: 0 on success, -1 on error
1846
1847Queues an NMI on the thread's vcpu. Note this is well defined only
1848when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1849between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1850has been called, this interface is completely emulated within the kernel.
1851
1852To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1853following algorithm:
1854
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001855 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001856 - read the local APIC's state (KVM_GET_LAPIC)
1857 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1858 - if so, issue KVM_NMI
1859 - resume the vcpu
1860
1861Some guests configure the LINT1 NMI input to cause a panic, aiding in
1862debugging.
1863
Jan Kiszka414fa982012-04-24 16:40:15 +02001864
Alexander Grafe24ed812011-09-14 10:02:41 +020018654.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001866
1867Capability: KVM_CAP_S390_UCONTROL
1868Architectures: s390
1869Type: vcpu ioctl
1870Parameters: struct kvm_s390_ucas_mapping (in)
1871Returns: 0 in case of success
1872
1873The parameter is defined like this:
1874 struct kvm_s390_ucas_mapping {
1875 __u64 user_addr;
1876 __u64 vcpu_addr;
1877 __u64 length;
1878 };
1879
1880This ioctl maps the memory at "user_addr" with the length "length" to
1881the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001882be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001883
Jan Kiszka414fa982012-04-24 16:40:15 +02001884
Alexander Grafe24ed812011-09-14 10:02:41 +020018854.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001886
1887Capability: KVM_CAP_S390_UCONTROL
1888Architectures: s390
1889Type: vcpu ioctl
1890Parameters: struct kvm_s390_ucas_mapping (in)
1891Returns: 0 in case of success
1892
1893The parameter is defined like this:
1894 struct kvm_s390_ucas_mapping {
1895 __u64 user_addr;
1896 __u64 vcpu_addr;
1897 __u64 length;
1898 };
1899
1900This ioctl unmaps the memory in the vcpu's address space starting at
1901"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001902All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001903
Jan Kiszka414fa982012-04-24 16:40:15 +02001904
Alexander Grafe24ed812011-09-14 10:02:41 +020019054.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001906
1907Capability: KVM_CAP_S390_UCONTROL
1908Architectures: s390
1909Type: vcpu ioctl
1910Parameters: vcpu absolute address (in)
1911Returns: 0 in case of success
1912
1913This call creates a page table entry on the virtual cpu's address space
1914(for user controlled virtual machines) or the virtual machine's address
1915space (for regular virtual machines). This only works for minor faults,
1916thus it's recommended to access subject memory page via the user page
1917table upfront. This is useful to handle validity intercepts for user
1918controlled virtual machines to fault in the virtual cpu's lowcore pages
1919prior to calling the KVM_RUN ioctl.
1920
Jan Kiszka414fa982012-04-24 16:40:15 +02001921
Alexander Grafe24ed812011-09-14 10:02:41 +020019224.68 KVM_SET_ONE_REG
1923
1924Capability: KVM_CAP_ONE_REG
1925Architectures: all
1926Type: vcpu ioctl
1927Parameters: struct kvm_one_reg (in)
1928Returns: 0 on success, negative value on failure
1929
1930struct kvm_one_reg {
1931 __u64 id;
1932 __u64 addr;
1933};
1934
1935Using this ioctl, a single vcpu register can be set to a specific value
1936defined by user space with the passed in struct kvm_one_reg, where id
1937refers to the register identifier as described below and addr is a pointer
1938to a variable with the respective size. There can be architecture agnostic
1939and architecture specific registers. Each have their own range of operation
1940and their own constants and width. To keep track of the implemented
1941registers, find a list below:
1942
James Hoganbf5590f2014-07-04 15:11:34 +01001943 Arch | Register | Width (bits)
1944 | |
1945 PPC | KVM_REG_PPC_HIOR | 64
1946 PPC | KVM_REG_PPC_IAC1 | 64
1947 PPC | KVM_REG_PPC_IAC2 | 64
1948 PPC | KVM_REG_PPC_IAC3 | 64
1949 PPC | KVM_REG_PPC_IAC4 | 64
1950 PPC | KVM_REG_PPC_DAC1 | 64
1951 PPC | KVM_REG_PPC_DAC2 | 64
1952 PPC | KVM_REG_PPC_DABR | 64
1953 PPC | KVM_REG_PPC_DSCR | 64
1954 PPC | KVM_REG_PPC_PURR | 64
1955 PPC | KVM_REG_PPC_SPURR | 64
1956 PPC | KVM_REG_PPC_DAR | 64
1957 PPC | KVM_REG_PPC_DSISR | 32
1958 PPC | KVM_REG_PPC_AMR | 64
1959 PPC | KVM_REG_PPC_UAMOR | 64
1960 PPC | KVM_REG_PPC_MMCR0 | 64
1961 PPC | KVM_REG_PPC_MMCR1 | 64
1962 PPC | KVM_REG_PPC_MMCRA | 64
1963 PPC | KVM_REG_PPC_MMCR2 | 64
1964 PPC | KVM_REG_PPC_MMCRS | 64
1965 PPC | KVM_REG_PPC_SIAR | 64
1966 PPC | KVM_REG_PPC_SDAR | 64
1967 PPC | KVM_REG_PPC_SIER | 64
1968 PPC | KVM_REG_PPC_PMC1 | 32
1969 PPC | KVM_REG_PPC_PMC2 | 32
1970 PPC | KVM_REG_PPC_PMC3 | 32
1971 PPC | KVM_REG_PPC_PMC4 | 32
1972 PPC | KVM_REG_PPC_PMC5 | 32
1973 PPC | KVM_REG_PPC_PMC6 | 32
1974 PPC | KVM_REG_PPC_PMC7 | 32
1975 PPC | KVM_REG_PPC_PMC8 | 32
1976 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001977 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001978 PPC | KVM_REG_PPC_FPR31 | 64
1979 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001980 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001981 PPC | KVM_REG_PPC_VR31 | 128
1982 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001983 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001984 PPC | KVM_REG_PPC_VSR31 | 128
1985 PPC | KVM_REG_PPC_FPSCR | 64
1986 PPC | KVM_REG_PPC_VSCR | 32
1987 PPC | KVM_REG_PPC_VPA_ADDR | 64
1988 PPC | KVM_REG_PPC_VPA_SLB | 128
1989 PPC | KVM_REG_PPC_VPA_DTL | 128
1990 PPC | KVM_REG_PPC_EPCR | 32
1991 PPC | KVM_REG_PPC_EPR | 32
1992 PPC | KVM_REG_PPC_TCR | 32
1993 PPC | KVM_REG_PPC_TSR | 32
1994 PPC | KVM_REG_PPC_OR_TSR | 32
1995 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1996 PPC | KVM_REG_PPC_MAS0 | 32
1997 PPC | KVM_REG_PPC_MAS1 | 32
1998 PPC | KVM_REG_PPC_MAS2 | 64
1999 PPC | KVM_REG_PPC_MAS7_3 | 64
2000 PPC | KVM_REG_PPC_MAS4 | 32
2001 PPC | KVM_REG_PPC_MAS6 | 32
2002 PPC | KVM_REG_PPC_MMUCFG | 32
2003 PPC | KVM_REG_PPC_TLB0CFG | 32
2004 PPC | KVM_REG_PPC_TLB1CFG | 32
2005 PPC | KVM_REG_PPC_TLB2CFG | 32
2006 PPC | KVM_REG_PPC_TLB3CFG | 32
2007 PPC | KVM_REG_PPC_TLB0PS | 32
2008 PPC | KVM_REG_PPC_TLB1PS | 32
2009 PPC | KVM_REG_PPC_TLB2PS | 32
2010 PPC | KVM_REG_PPC_TLB3PS | 32
2011 PPC | KVM_REG_PPC_EPTCFG | 32
2012 PPC | KVM_REG_PPC_ICP_STATE | 64
2013 PPC | KVM_REG_PPC_TB_OFFSET | 64
2014 PPC | KVM_REG_PPC_SPMC1 | 32
2015 PPC | KVM_REG_PPC_SPMC2 | 32
2016 PPC | KVM_REG_PPC_IAMR | 64
2017 PPC | KVM_REG_PPC_TFHAR | 64
2018 PPC | KVM_REG_PPC_TFIAR | 64
2019 PPC | KVM_REG_PPC_TEXASR | 64
2020 PPC | KVM_REG_PPC_FSCR | 64
2021 PPC | KVM_REG_PPC_PSPB | 32
2022 PPC | KVM_REG_PPC_EBBHR | 64
2023 PPC | KVM_REG_PPC_EBBRR | 64
2024 PPC | KVM_REG_PPC_BESCR | 64
2025 PPC | KVM_REG_PPC_TAR | 64
2026 PPC | KVM_REG_PPC_DPDES | 64
2027 PPC | KVM_REG_PPC_DAWR | 64
2028 PPC | KVM_REG_PPC_DAWRX | 64
2029 PPC | KVM_REG_PPC_CIABR | 64
2030 PPC | KVM_REG_PPC_IC | 64
2031 PPC | KVM_REG_PPC_VTB | 64
2032 PPC | KVM_REG_PPC_CSIGR | 64
2033 PPC | KVM_REG_PPC_TACR | 64
2034 PPC | KVM_REG_PPC_TCSCR | 64
2035 PPC | KVM_REG_PPC_PID | 64
2036 PPC | KVM_REG_PPC_ACOP | 64
2037 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02002038 PPC | KVM_REG_PPC_LPCR | 32
2039 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002040 PPC | KVM_REG_PPC_PPR | 64
2041 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
2042 PPC | KVM_REG_PPC_DABRX | 32
2043 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05302044 PPC | KVM_REG_PPC_SPRG9 | 64
2045 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11002046 PPC | KVM_REG_PPC_TIDR | 64
2047 PPC | KVM_REG_PPC_PSSCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002048 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10002049 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002050 PPC | KVM_REG_PPC_TM_GPR31 | 64
2051 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10002052 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002053 PPC | KVM_REG_PPC_TM_VSR63 | 128
2054 PPC | KVM_REG_PPC_TM_CR | 64
2055 PPC | KVM_REG_PPC_TM_LR | 64
2056 PPC | KVM_REG_PPC_TM_CTR | 64
2057 PPC | KVM_REG_PPC_TM_FPSCR | 64
2058 PPC | KVM_REG_PPC_TM_AMR | 64
2059 PPC | KVM_REG_PPC_TM_PPR | 64
2060 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2061 PPC | KVM_REG_PPC_TM_VSCR | 32
2062 PPC | KVM_REG_PPC_TM_DSCR | 64
2063 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11002064 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002065 | |
2066 MIPS | KVM_REG_MIPS_R0 | 64
2067 ...
2068 MIPS | KVM_REG_MIPS_R31 | 64
2069 MIPS | KVM_REG_MIPS_HI | 64
2070 MIPS | KVM_REG_MIPS_LO | 64
2071 MIPS | KVM_REG_MIPS_PC | 64
2072 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00002073 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
2074 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002075 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00002076 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01002077 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00002078 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01002079 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002080 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00002081 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
2082 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
2083 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002084 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2085 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2086 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00002087 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
2088 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002089 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2090 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2091 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2092 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00002093 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002094 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2095 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01002096 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00002097 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002098 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2099 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2100 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2101 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01002102 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2103 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002104 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002105 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002106 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01002107 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2108 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2109 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2110 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2111 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2112 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002113 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2114 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2115 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00002116 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2117 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00002118 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00002119 MIPS | KVM_REG_MIPS_FCR_IR | 32
2120 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00002121 MIPS | KVM_REG_MIPS_MSA_IR | 32
2122 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02002123
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002124ARM registers are mapped using the lower 32 bits. The upper 16 of that
2125is the register group type, or coprocessor number:
2126
2127ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002128 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002129
Christoffer Dall11382452013-01-20 18:28:10 -05002130ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002131 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05002132
2133ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002134 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002135
Christoffer Dallc27581e2013-01-20 18:28:10 -05002136ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002137 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002138
Rusty Russell4fe21e42013-01-20 18:28:11 -05002139ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002140 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002141
2142ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002143 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002144
Marc Zyngier379e04c2013-04-02 17:46:31 +01002145
2146arm64 registers are mapped using the lower 32 bits. The upper 16 of
2147that is the register group type, or coprocessor number:
2148
2149arm64 core/FP-SIMD registers have the following id bit patterns. Note
2150that the size of the access is variable, as the kvm_regs structure
2151contains elements ranging from 32 to 128 bits. The index is a 32bit
2152value in the kvm_regs structure seen as a 32bit array.
2153 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2154
2155arm64 CCSIDR registers are demultiplexed by CSSELR value:
2156 0x6020 0000 0011 00 <csselr:8>
2157
2158arm64 system registers have the following id bit patterns:
2159 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2160
James Hoganc2d2c212014-07-04 15:11:35 +01002161
2162MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2163the register group type:
2164
2165MIPS core registers (see above) have the following id bit patterns:
2166 0x7030 0000 0000 <reg:16>
2167
2168MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2169patterns depending on whether they're 32-bit or 64-bit registers:
2170 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2171 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2172
James Hogan013044c2016-12-07 17:16:37 +00002173Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
2174versions of the EntryLo registers regardless of the word size of the host
2175hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
2176with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
2177the PFNX field starting at bit 30.
2178
James Hoganc2d2c212014-07-04 15:11:35 +01002179MIPS KVM control registers (see above) have the following id bit patterns:
2180 0x7030 0000 0002 <reg:16>
2181
James Hogan379245c2014-12-02 15:48:24 +00002182MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2183id bit patterns depending on the size of the register being accessed. They are
2184always accessed according to the current guest FPU mode (Status.FR and
2185Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00002186if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2187registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2188overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00002189 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2190 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00002191 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00002192
2193MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2194following id bit patterns:
2195 0x7020 0000 0003 01 <0:3> <reg:5>
2196
James Hoganab86bd62014-12-02 15:48:24 +00002197MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2198following id bit patterns:
2199 0x7020 0000 0003 02 <0:3> <reg:5>
2200
James Hoganc2d2c212014-07-04 15:11:35 +01002201
Alexander Grafe24ed812011-09-14 10:02:41 +020022024.69 KVM_GET_ONE_REG
2203
2204Capability: KVM_CAP_ONE_REG
2205Architectures: all
2206Type: vcpu ioctl
2207Parameters: struct kvm_one_reg (in and out)
2208Returns: 0 on success, negative value on failure
2209
2210This ioctl allows to receive the value of a single register implemented
2211in a vcpu. The register to read is indicated by the "id" field of the
2212kvm_one_reg struct passed in. On success, the register value can be found
2213at the memory location pointed to by "addr".
2214
2215The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002216list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002217
Jan Kiszka414fa982012-04-24 16:40:15 +02002218
Eric B Munson1c0b28c2012-03-10 14:37:27 -050022194.70 KVM_KVMCLOCK_CTRL
2220
2221Capability: KVM_CAP_KVMCLOCK_CTRL
2222Architectures: Any that implement pvclocks (currently x86 only)
2223Type: vcpu ioctl
2224Parameters: None
2225Returns: 0 on success, -1 on error
2226
2227This signals to the host kernel that the specified guest is being paused by
2228userspace. The host will set a flag in the pvclock structure that is checked
2229from the soft lockup watchdog. The flag is part of the pvclock structure that
2230is shared between guest and host, specifically the second bit of the flags
2231field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2232the host and read/cleared exclusively by the guest. The guest operation of
2233checking and clearing the flag must an atomic operation so
2234load-link/store-conditional, or equivalent must be used. There are two cases
2235where the guest will clear the flag: when the soft lockup watchdog timer resets
2236itself or when a soft lockup is detected. This ioctl can be called any time
2237after pausing the vcpu, but before it is resumed.
2238
Jan Kiszka414fa982012-04-24 16:40:15 +02002239
Jan Kiszka07975ad2012-03-29 21:14:12 +020022404.71 KVM_SIGNAL_MSI
2241
2242Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002243Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002244Type: vm ioctl
2245Parameters: struct kvm_msi (in)
2246Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2247
2248Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2249MSI messages.
2250
2251struct kvm_msi {
2252 __u32 address_lo;
2253 __u32 address_hi;
2254 __u32 data;
2255 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002256 __u32 devid;
2257 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002258};
2259
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002260flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2261 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2262 the device ID. If this capability is not available, userspace
2263 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002264
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002265If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2266for the device that wrote the MSI message. For PCI, this is usually a
2267BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002268
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002269On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2270feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2271address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2272address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002273
Jan Kiszka414fa982012-04-24 16:40:15 +02002274
Jan Kiszka0589ff62012-04-24 16:40:16 +020022754.71 KVM_CREATE_PIT2
2276
2277Capability: KVM_CAP_PIT2
2278Architectures: x86
2279Type: vm ioctl
2280Parameters: struct kvm_pit_config (in)
2281Returns: 0 on success, -1 on error
2282
2283Creates an in-kernel device model for the i8254 PIT. This call is only valid
2284after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2285parameters have to be passed:
2286
2287struct kvm_pit_config {
2288 __u32 flags;
2289 __u32 pad[15];
2290};
2291
2292Valid flags are:
2293
2294#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2295
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002296PIT timer interrupts may use a per-VM kernel thread for injection. If it
2297exists, this thread will have a name of the following pattern:
2298
2299kvm-pit/<owner-process-pid>
2300
2301When running a guest with elevated priorities, the scheduling parameters of
2302this thread may have to be adjusted accordingly.
2303
Jan Kiszka0589ff62012-04-24 16:40:16 +02002304This IOCTL replaces the obsolete KVM_CREATE_PIT.
2305
2306
23074.72 KVM_GET_PIT2
2308
2309Capability: KVM_CAP_PIT_STATE2
2310Architectures: x86
2311Type: vm ioctl
2312Parameters: struct kvm_pit_state2 (out)
2313Returns: 0 on success, -1 on error
2314
2315Retrieves the state of the in-kernel PIT model. Only valid after
2316KVM_CREATE_PIT2. The state is returned in the following structure:
2317
2318struct kvm_pit_state2 {
2319 struct kvm_pit_channel_state channels[3];
2320 __u32 flags;
2321 __u32 reserved[9];
2322};
2323
2324Valid flags are:
2325
2326/* disable PIT in HPET legacy mode */
2327#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2328
2329This IOCTL replaces the obsolete KVM_GET_PIT.
2330
2331
23324.73 KVM_SET_PIT2
2333
2334Capability: KVM_CAP_PIT_STATE2
2335Architectures: x86
2336Type: vm ioctl
2337Parameters: struct kvm_pit_state2 (in)
2338Returns: 0 on success, -1 on error
2339
2340Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2341See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2342
2343This IOCTL replaces the obsolete KVM_SET_PIT.
2344
2345
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000023464.74 KVM_PPC_GET_SMMU_INFO
2347
2348Capability: KVM_CAP_PPC_GET_SMMU_INFO
2349Architectures: powerpc
2350Type: vm ioctl
2351Parameters: None
2352Returns: 0 on success, -1 on error
2353
2354This populates and returns a structure describing the features of
2355the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002356This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002357device-tree properties for the guest operating system.
2358
Carlos Garciac98be0c2014-04-04 22:31:00 -04002359The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002360array of supported segment page sizes:
2361
2362 struct kvm_ppc_smmu_info {
2363 __u64 flags;
2364 __u32 slb_size;
2365 __u32 pad;
2366 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2367 };
2368
2369The supported flags are:
2370
2371 - KVM_PPC_PAGE_SIZES_REAL:
2372 When that flag is set, guest page sizes must "fit" the backing
2373 store page sizes. When not set, any page size in the list can
2374 be used regardless of how they are backed by userspace.
2375
2376 - KVM_PPC_1T_SEGMENTS
2377 The emulated MMU supports 1T segments in addition to the
2378 standard 256M ones.
2379
2380The "slb_size" field indicates how many SLB entries are supported
2381
2382The "sps" array contains 8 entries indicating the supported base
2383page sizes for a segment in increasing order. Each entry is defined
2384as follow:
2385
2386 struct kvm_ppc_one_seg_page_size {
2387 __u32 page_shift; /* Base page shift of segment (or 0) */
2388 __u32 slb_enc; /* SLB encoding for BookS */
2389 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2390 };
2391
2392An entry with a "page_shift" of 0 is unused. Because the array is
2393organized in increasing order, a lookup can stop when encoutering
2394such an entry.
2395
2396The "slb_enc" field provides the encoding to use in the SLB for the
2397page size. The bits are in positions such as the value can directly
2398be OR'ed into the "vsid" argument of the slbmte instruction.
2399
2400The "enc" array is a list which for each of those segment base page
2401size provides the list of supported actual page sizes (which can be
2402only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002403corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000024048 entries sorted by increasing sizes and an entry with a "0" shift
2405is an empty entry and a terminator:
2406
2407 struct kvm_ppc_one_page_size {
2408 __u32 page_shift; /* Page shift (or 0) */
2409 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2410 };
2411
2412The "pte_enc" field provides a value that can OR'ed into the hash
2413PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2414into the hash PTE second double word).
2415
Alex Williamsonf36992e2012-06-29 09:56:16 -060024164.75 KVM_IRQFD
2417
2418Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002419Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002420Type: vm ioctl
2421Parameters: struct kvm_irqfd (in)
2422Returns: 0 on success, -1 on error
2423
2424Allows setting an eventfd to directly trigger a guest interrupt.
2425kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2426kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002427an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002428the guest using the specified gsi pin. The irqfd is removed using
2429the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2430and kvm_irqfd.gsi.
2431
Alex Williamson7a844282012-09-21 11:58:03 -06002432With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2433mechanism allowing emulation of level-triggered, irqfd-based
2434interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2435additional eventfd in the kvm_irqfd.resamplefd field. When operating
2436in resample mode, posting of an interrupt through kvm_irq.fd asserts
2437the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002438as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002439kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2440the interrupt if the device making use of it still requires service.
2441Note that closing the resamplefd is not sufficient to disable the
2442irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2443and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2444
Eric Auger180ae7b2016-07-22 16:20:41 +00002445On arm/arm64, gsi routing being supported, the following can happen:
2446- in case no routing entry is associated to this gsi, injection fails
2447- in case the gsi is associated to an irqchip routing entry,
2448 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002449- in case the gsi is associated to an MSI routing entry, the MSI
2450 message and device ID are translated into an LPI (support restricted
2451 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002452
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070024534.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002454
2455Capability: KVM_CAP_PPC_ALLOC_HTAB
2456Architectures: powerpc
2457Type: vm ioctl
2458Parameters: Pointer to u32 containing hash table order (in/out)
2459Returns: 0 on success, -1 on error
2460
2461This requests the host kernel to allocate an MMU hash table for a
2462guest using the PAPR paravirtualization interface. This only does
2463anything if the kernel is configured to use the Book 3S HV style of
2464virtualization. Otherwise the capability doesn't exist and the ioctl
2465returns an ENOTTY error. The rest of this description assumes Book 3S
2466HV.
2467
2468There must be no vcpus running when this ioctl is called; if there
2469are, it will do nothing and return an EBUSY error.
2470
2471The parameter is a pointer to a 32-bit unsigned integer variable
2472containing the order (log base 2) of the desired size of the hash
2473table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002474ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002475
2476If no hash table has been allocated when any vcpu is asked to run
2477(with the KVM_RUN ioctl), the host kernel will allocate a
2478default-sized hash table (16 MB).
2479
2480If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002481with a different order from the existing hash table, the existing hash
2482table will be freed and a new one allocated. If this is ioctl is
2483called when a hash table has already been allocated of the same order
2484as specified, the kernel will clear out the existing hash table (zero
2485all HPTEs). In either case, if the guest is using the virtualized
2486real-mode area (VRMA) facility, the kernel will re-create the VMRA
2487HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002488
Cornelia Huck416ad652012-10-02 16:25:37 +020024894.77 KVM_S390_INTERRUPT
2490
2491Capability: basic
2492Architectures: s390
2493Type: vm ioctl, vcpu ioctl
2494Parameters: struct kvm_s390_interrupt (in)
2495Returns: 0 on success, -1 on error
2496
2497Allows to inject an interrupt to the guest. Interrupts can be floating
2498(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2499
2500Interrupt parameters are passed via kvm_s390_interrupt:
2501
2502struct kvm_s390_interrupt {
2503 __u32 type;
2504 __u32 parm;
2505 __u64 parm64;
2506};
2507
2508type can be one of the following:
2509
David Hildenbrand28225452014-10-15 16:48:16 +02002510KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002511KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2512KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2513KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002514KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2515KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002516KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2517 parameters in parm and parm64
2518KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2519KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2520KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002521KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2522 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2523 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2524 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002525KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2526 machine check interrupt code in parm64 (note that
2527 machine checks needing further payload are not
2528 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002529
2530Note that the vcpu ioctl is asynchronous to vcpu execution.
2531
Paul Mackerrasa2932922012-11-19 22:57:20 +000025324.78 KVM_PPC_GET_HTAB_FD
2533
2534Capability: KVM_CAP_PPC_HTAB_FD
2535Architectures: powerpc
2536Type: vm ioctl
2537Parameters: Pointer to struct kvm_get_htab_fd (in)
2538Returns: file descriptor number (>= 0) on success, -1 on error
2539
2540This returns a file descriptor that can be used either to read out the
2541entries in the guest's hashed page table (HPT), or to write entries to
2542initialize the HPT. The returned fd can only be written to if the
2543KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2544can only be read if that bit is clear. The argument struct looks like
2545this:
2546
2547/* For KVM_PPC_GET_HTAB_FD */
2548struct kvm_get_htab_fd {
2549 __u64 flags;
2550 __u64 start_index;
2551 __u64 reserved[2];
2552};
2553
2554/* Values for kvm_get_htab_fd.flags */
2555#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2556#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2557
2558The `start_index' field gives the index in the HPT of the entry at
2559which to start reading. It is ignored when writing.
2560
2561Reads on the fd will initially supply information about all
2562"interesting" HPT entries. Interesting entries are those with the
2563bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2564all entries. When the end of the HPT is reached, the read() will
2565return. If read() is called again on the fd, it will start again from
2566the beginning of the HPT, but will only return HPT entries that have
2567changed since they were last read.
2568
2569Data read or written is structured as a header (8 bytes) followed by a
2570series of valid HPT entries (16 bytes) each. The header indicates how
2571many valid HPT entries there are and how many invalid entries follow
2572the valid entries. The invalid entries are not represented explicitly
2573in the stream. The header format is:
2574
2575struct kvm_get_htab_header {
2576 __u32 index;
2577 __u16 n_valid;
2578 __u16 n_invalid;
2579};
2580
2581Writes to the fd create HPT entries starting at the index given in the
2582header; first `n_valid' valid entries with contents from the data
2583written, then `n_invalid' invalid entries, invalidating any previously
2584valid entries found.
2585
Scott Wood852b6d52013-04-12 14:08:42 +000025864.79 KVM_CREATE_DEVICE
2587
2588Capability: KVM_CAP_DEVICE_CTRL
2589Type: vm ioctl
2590Parameters: struct kvm_create_device (in/out)
2591Returns: 0 on success, -1 on error
2592Errors:
2593 ENODEV: The device type is unknown or unsupported
2594 EEXIST: Device already created, and this type of device may not
2595 be instantiated multiple times
2596
2597 Other error conditions may be defined by individual device types or
2598 have their standard meanings.
2599
2600Creates an emulated device in the kernel. The file descriptor returned
2601in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2602
2603If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2604device type is supported (not necessarily whether it can be created
2605in the current vm).
2606
2607Individual devices should not define flags. Attributes should be used
2608for specifying any behavior that is not implied by the device type
2609number.
2610
2611struct kvm_create_device {
2612 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2613 __u32 fd; /* out: device handle */
2614 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2615};
2616
26174.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2618
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002619Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2620 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2621Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002622Parameters: struct kvm_device_attr
2623Returns: 0 on success, -1 on error
2624Errors:
2625 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002626 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002627 EPERM: The attribute cannot (currently) be accessed this way
2628 (e.g. read-only attribute, or attribute that only makes
2629 sense when the device is in a different state)
2630
2631 Other error conditions may be defined by individual device types.
2632
2633Gets/sets a specified piece of device configuration and/or state. The
2634semantics are device-specific. See individual device documentation in
2635the "devices" directory. As with ONE_REG, the size of the data
2636transferred is defined by the particular attribute.
2637
2638struct kvm_device_attr {
2639 __u32 flags; /* no flags currently defined */
2640 __u32 group; /* device-defined */
2641 __u64 attr; /* group-defined */
2642 __u64 addr; /* userspace address of attr data */
2643};
2644
26454.81 KVM_HAS_DEVICE_ATTR
2646
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002647Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2648 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2649Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002650Parameters: struct kvm_device_attr
2651Returns: 0 on success, -1 on error
2652Errors:
2653 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002654 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002655
2656Tests whether a device supports a particular attribute. A successful
2657return indicates the attribute is implemented. It does not necessarily
2658indicate that the attribute can be read or written in the device's
2659current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002660
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100026614.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002662
2663Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +01002664Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002665Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302666Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002667Returns: 0 on success; -1 on error
2668Errors:
2669  EINVAL:    the target is unknown, or the combination of features is invalid.
2670  ENOENT:    a features bit specified is unknown.
2671
2672This tells KVM what type of CPU to present to the guest, and what
2673optional features it should have.  This will cause a reset of the cpu
2674registers to their initial values.  If this is not called, KVM_RUN will
2675return ENOEXEC for that vcpu.
2676
2677Note that because some registers reflect machine topology, all vcpus
2678should be created before this ioctl is invoked.
2679
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002680Userspace can call this function multiple times for a given vcpu, including
2681after the vcpu has been run. This will reset the vcpu to its initial
2682state. All calls to this function after the initial call must use the same
2683target and same set of feature flags, otherwise EINVAL will be returned.
2684
Marc Zyngieraa024c22013-01-20 18:28:13 -05002685Possible features:
2686 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002687 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2688 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c2013-04-02 17:46:31 +01002689 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2690 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Anup Patel50bb0c92014-04-29 11:24:17 +05302691 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2692 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002693 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2694 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002695
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002696
Anup Patel740edfc2013-09-30 14:20:08 +053026974.83 KVM_ARM_PREFERRED_TARGET
2698
2699Capability: basic
2700Architectures: arm, arm64
2701Type: vm ioctl
2702Parameters: struct struct kvm_vcpu_init (out)
2703Returns: 0 on success; -1 on error
2704Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002705 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302706
2707This queries KVM for preferred CPU target type which can be emulated
2708by KVM on underlying host.
2709
2710The ioctl returns struct kvm_vcpu_init instance containing information
2711about preferred CPU target type and recommended features for it. The
2712kvm_vcpu_init->features bitmap returned will have feature bits set if
2713the preferred target recommends setting these features, but this is
2714not mandatory.
2715
2716The information returned by this ioctl can be used to prepare an instance
2717of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2718in VCPU matching underlying host.
2719
2720
27214.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002722
2723Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002724Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002725Type: vcpu ioctl
2726Parameters: struct kvm_reg_list (in/out)
2727Returns: 0 on success; -1 on error
2728Errors:
2729  E2BIG:     the reg index list is too big to fit in the array specified by
2730             the user (the number required will be written into n).
2731
2732struct kvm_reg_list {
2733 __u64 n; /* number of registers in reg[] */
2734 __u64 reg[0];
2735};
2736
2737This ioctl returns the guest registers that are supported for the
2738KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2739
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002740
27414.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002742
2743Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c2013-04-02 17:46:31 +01002744Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002745Type: vm ioctl
2746Parameters: struct kvm_arm_device_address (in)
2747Returns: 0 on success, -1 on error
2748Errors:
2749 ENODEV: The device id is unknown
2750 ENXIO: Device not supported on current system
2751 EEXIST: Address already set
2752 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002753 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002754
2755struct kvm_arm_device_addr {
2756 __u64 id;
2757 __u64 addr;
2758};
2759
2760Specify a device address in the guest's physical address space where guests
2761can access emulated or directly exposed devices, which the host kernel needs
2762to know about. The id field is an architecture specific identifier for a
2763specific device.
2764
Marc Zyngier379e04c2013-04-02 17:46:31 +01002765ARM/arm64 divides the id field into two parts, a device id and an
2766address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002767
2768  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2769 field: | 0x00000000 | device id | addr type id |
2770
Marc Zyngier379e04c2013-04-02 17:46:31 +01002771ARM/arm64 currently only require this when using the in-kernel GIC
2772support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2773as the device id. When setting the base address for the guest's
2774mapping of the VGIC virtual CPU and distributor interface, the ioctl
2775must be called after calling KVM_CREATE_IRQCHIP, but before calling
2776KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2777base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002778
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002779Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2780should be used instead.
2781
2782
Anup Patel740edfc2013-09-30 14:20:08 +053027834.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002784
2785Capability: KVM_CAP_PPC_RTAS
2786Architectures: ppc
2787Type: vm ioctl
2788Parameters: struct kvm_rtas_token_args
2789Returns: 0 on success, -1 on error
2790
2791Defines a token value for a RTAS (Run Time Abstraction Services)
2792service in order to allow it to be handled in the kernel. The
2793argument struct gives the name of the service, which must be the name
2794of a service that has a kernel-side implementation. If the token
2795value is non-zero, it will be associated with that service, and
2796subsequent RTAS calls by the guest specifying that token will be
2797handled by the kernel. If the token value is 0, then any token
2798associated with the service will be forgotten, and subsequent RTAS
2799calls by the guest for that service will be passed to userspace to be
2800handled.
2801
Alex Bennée4bd9d342014-09-09 17:27:18 +010028024.87 KVM_SET_GUEST_DEBUG
2803
2804Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002805Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002806Type: vcpu ioctl
2807Parameters: struct kvm_guest_debug (in)
2808Returns: 0 on success; -1 on error
2809
2810struct kvm_guest_debug {
2811 __u32 control;
2812 __u32 pad;
2813 struct kvm_guest_debug_arch arch;
2814};
2815
2816Set up the processor specific debug registers and configure vcpu for
2817handling guest debug events. There are two parts to the structure, the
2818first a control bitfield indicates the type of debug events to handle
2819when running. Common control bits are:
2820
2821 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2822 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2823
2824The top 16 bits of the control field are architecture specific control
2825flags which can include the following:
2826
Alex Bennée4bd611c2015-07-07 17:29:57 +01002827 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002828 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002829 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2830 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2831 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2832
2833For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2834are enabled in memory so we need to ensure breakpoint exceptions are
2835correctly trapped and the KVM run loop exits at the breakpoint and not
2836running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2837we need to ensure the guest vCPUs architecture specific registers are
2838updated to the correct (supplied) values.
2839
2840The second part of the structure is architecture specific and
2841typically contains a set of debug registers.
2842
Alex Bennée834bf882015-07-07 17:30:02 +01002843For arm64 the number of debug registers is implementation defined and
2844can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2845KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2846indicating the number of supported registers.
2847
Alex Bennée4bd9d342014-09-09 17:27:18 +01002848When debug events exit the main run loop with the reason
2849KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2850structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002851
Alex Bennée209cf192014-09-09 17:27:19 +010028524.88 KVM_GET_EMULATED_CPUID
2853
2854Capability: KVM_CAP_EXT_EMUL_CPUID
2855Architectures: x86
2856Type: system ioctl
2857Parameters: struct kvm_cpuid2 (in/out)
2858Returns: 0 on success, -1 on error
2859
2860struct kvm_cpuid2 {
2861 __u32 nent;
2862 __u32 flags;
2863 struct kvm_cpuid_entry2 entries[0];
2864};
2865
2866The member 'flags' is used for passing flags from userspace.
2867
2868#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2869#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2870#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2871
2872struct kvm_cpuid_entry2 {
2873 __u32 function;
2874 __u32 index;
2875 __u32 flags;
2876 __u32 eax;
2877 __u32 ebx;
2878 __u32 ecx;
2879 __u32 edx;
2880 __u32 padding[3];
2881};
2882
2883This ioctl returns x86 cpuid features which are emulated by
2884kvm.Userspace can use the information returned by this ioctl to query
2885which features are emulated by kvm instead of being present natively.
2886
2887Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2888structure with the 'nent' field indicating the number of entries in
2889the variable-size array 'entries'. If the number of entries is too low
2890to describe the cpu capabilities, an error (E2BIG) is returned. If the
2891number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2892is returned. If the number is just right, the 'nent' field is adjusted
2893to the number of valid entries in the 'entries' array, which is then
2894filled.
2895
2896The entries returned are the set CPUID bits of the respective features
2897which kvm emulates, as returned by the CPUID instruction, with unknown
2898or unsupported feature bits cleared.
2899
2900Features like x2apic, for example, may not be present in the host cpu
2901but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2902emulated efficiently and thus not included here.
2903
2904The fields in each entry are defined as follows:
2905
2906 function: the eax value used to obtain the entry
2907 index: the ecx value used to obtain the entry (for entries that are
2908 affected by ecx)
2909 flags: an OR of zero or more of the following:
2910 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2911 if the index field is valid
2912 KVM_CPUID_FLAG_STATEFUL_FUNC:
2913 if cpuid for this function returns different values for successive
2914 invocations; there will be several entries with the same function,
2915 all with this flag set
2916 KVM_CPUID_FLAG_STATE_READ_NEXT:
2917 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2918 the first entry to be read by a cpu
2919 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2920 this function/index combination
2921
Thomas Huth41408c22015-02-06 15:01:21 +010029224.89 KVM_S390_MEM_OP
2923
2924Capability: KVM_CAP_S390_MEM_OP
2925Architectures: s390
2926Type: vcpu ioctl
2927Parameters: struct kvm_s390_mem_op (in)
2928Returns: = 0 on success,
2929 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2930 > 0 if an exception occurred while walking the page tables
2931
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002932Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c22015-02-06 15:01:21 +01002933
2934Parameters are specified via the following structure:
2935
2936struct kvm_s390_mem_op {
2937 __u64 gaddr; /* the guest address */
2938 __u64 flags; /* flags */
2939 __u32 size; /* amount of bytes */
2940 __u32 op; /* type of operation */
2941 __u64 buf; /* buffer in userspace */
2942 __u8 ar; /* the access register number */
2943 __u8 reserved[31]; /* should be set to 0 */
2944};
2945
2946The type of operation is specified in the "op" field. It is either
2947KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2948KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2949KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2950whether the corresponding memory access would create an access exception
2951(without touching the data in the memory at the destination). In case an
2952access exception occurred while walking the MMU tables of the guest, the
2953ioctl returns a positive error number to indicate the type of exception.
2954This exception is also raised directly at the corresponding VCPU if the
2955flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2956
2957The start address of the memory region has to be specified in the "gaddr"
2958field, and the length of the region in the "size" field. "buf" is the buffer
2959supplied by the userspace application where the read data should be written
2960to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2961is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2962when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2963register number to be used.
2964
2965The "reserved" field is meant for future extensions. It is not used by
2966KVM with the currently defined set of flags.
2967
Jason J. Herne30ee2a92014-09-23 09:23:01 -040029684.90 KVM_S390_GET_SKEYS
2969
2970Capability: KVM_CAP_S390_SKEYS
2971Architectures: s390
2972Type: vm ioctl
2973Parameters: struct kvm_s390_skeys
2974Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2975 keys, negative value on error
2976
2977This ioctl is used to get guest storage key values on the s390
2978architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2979
2980struct kvm_s390_skeys {
2981 __u64 start_gfn;
2982 __u64 count;
2983 __u64 skeydata_addr;
2984 __u32 flags;
2985 __u32 reserved[9];
2986};
2987
2988The start_gfn field is the number of the first guest frame whose storage keys
2989you want to get.
2990
2991The count field is the number of consecutive frames (starting from start_gfn)
2992whose storage keys to get. The count field must be at least 1 and the maximum
2993allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2994will cause the ioctl to return -EINVAL.
2995
2996The skeydata_addr field is the address to a buffer large enough to hold count
2997bytes. This buffer will be filled with storage key data by the ioctl.
2998
29994.91 KVM_S390_SET_SKEYS
3000
3001Capability: KVM_CAP_S390_SKEYS
3002Architectures: s390
3003Type: vm ioctl
3004Parameters: struct kvm_s390_skeys
3005Returns: 0 on success, negative value on error
3006
3007This ioctl is used to set guest storage key values on the s390
3008architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
3009See section on KVM_S390_GET_SKEYS for struct definition.
3010
3011The start_gfn field is the number of the first guest frame whose storage keys
3012you want to set.
3013
3014The count field is the number of consecutive frames (starting from start_gfn)
3015whose storage keys to get. The count field must be at least 1 and the maximum
3016allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3017will cause the ioctl to return -EINVAL.
3018
3019The skeydata_addr field is the address to a buffer containing count bytes of
3020storage keys. Each byte in the buffer will be set as the storage key for a
3021single frame starting at start_gfn for count frames.
3022
3023Note: If any architecturally invalid key value is found in the given data then
3024the ioctl will return -EINVAL.
3025
Jens Freimann47b43c52014-11-11 20:57:06 +010030264.92 KVM_S390_IRQ
3027
3028Capability: KVM_CAP_S390_INJECT_IRQ
3029Architectures: s390
3030Type: vcpu ioctl
3031Parameters: struct kvm_s390_irq (in)
3032Returns: 0 on success, -1 on error
3033Errors:
3034 EINVAL: interrupt type is invalid
3035 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
3036 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
3037 than the maximum of VCPUs
3038 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
3039 type is KVM_S390_SIGP_STOP and a stop irq is already pending
3040 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
3041 is already pending
3042
3043Allows to inject an interrupt to the guest.
3044
3045Using struct kvm_s390_irq as a parameter allows
3046to inject additional payload which is not
3047possible via KVM_S390_INTERRUPT.
3048
3049Interrupt parameters are passed via kvm_s390_irq:
3050
3051struct kvm_s390_irq {
3052 __u64 type;
3053 union {
3054 struct kvm_s390_io_info io;
3055 struct kvm_s390_ext_info ext;
3056 struct kvm_s390_pgm_info pgm;
3057 struct kvm_s390_emerg_info emerg;
3058 struct kvm_s390_extcall_info extcall;
3059 struct kvm_s390_prefix_info prefix;
3060 struct kvm_s390_stop_info stop;
3061 struct kvm_s390_mchk_info mchk;
3062 char reserved[64];
3063 } u;
3064};
3065
3066type can be one of the following:
3067
3068KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3069KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3070KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3071KVM_S390_RESTART - restart; no parameters
3072KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3073KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3074KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3075KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3076KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3077
3078
3079Note that the vcpu ioctl is asynchronous to vcpu execution.
3080
Jens Freimann816c7662014-11-24 17:13:46 +010030814.94 KVM_S390_GET_IRQ_STATE
3082
3083Capability: KVM_CAP_S390_IRQ_STATE
3084Architectures: s390
3085Type: vcpu ioctl
3086Parameters: struct kvm_s390_irq_state (out)
3087Returns: >= number of bytes copied into buffer,
3088 -EINVAL if buffer size is 0,
3089 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3090 -EFAULT if the buffer address was invalid
3091
3092This ioctl allows userspace to retrieve the complete state of all currently
3093pending interrupts in a single buffer. Use cases include migration
3094and introspection. The parameter structure contains the address of a
3095userspace buffer and its length:
3096
3097struct kvm_s390_irq_state {
3098 __u64 buf;
3099 __u32 flags;
3100 __u32 len;
3101 __u32 reserved[4];
3102};
3103
3104Userspace passes in the above struct and for each pending interrupt a
3105struct kvm_s390_irq is copied to the provided buffer.
3106
3107If -ENOBUFS is returned the buffer provided was too small and userspace
3108may retry with a bigger buffer.
3109
31104.95 KVM_S390_SET_IRQ_STATE
3111
3112Capability: KVM_CAP_S390_IRQ_STATE
3113Architectures: s390
3114Type: vcpu ioctl
3115Parameters: struct kvm_s390_irq_state (in)
3116Returns: 0 on success,
3117 -EFAULT if the buffer address was invalid,
3118 -EINVAL for an invalid buffer length (see below),
3119 -EBUSY if there were already interrupts pending,
3120 errors occurring when actually injecting the
3121 interrupt. See KVM_S390_IRQ.
3122
3123This ioctl allows userspace to set the complete state of all cpu-local
3124interrupts currently pending for the vcpu. It is intended for restoring
3125interrupt state after a migration. The input parameter is a userspace buffer
3126containing a struct kvm_s390_irq_state:
3127
3128struct kvm_s390_irq_state {
3129 __u64 buf;
3130 __u32 len;
3131 __u32 pad;
3132};
3133
3134The userspace memory referenced by buf contains a struct kvm_s390_irq
3135for each interrupt to be injected into the guest.
3136If one of the interrupts could not be injected for some reason the
3137ioctl aborts.
3138
3139len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3140and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3141which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01003142
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110031434.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02003144
3145Capability: KVM_CAP_X86_SMM
3146Architectures: x86
3147Type: vcpu ioctl
3148Parameters: none
3149Returns: 0 on success, -1 on error
3150
3151Queues an SMI on the thread's vcpu.
3152
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110031534.97 KVM_CAP_PPC_MULTITCE
3154
3155Capability: KVM_CAP_PPC_MULTITCE
3156Architectures: ppc
3157Type: vm
3158
3159This capability means the kernel is capable of handling hypercalls
3160H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3161space. This significantly accelerates DMA operations for PPC KVM guests.
3162User space should expect that its handlers for these hypercalls
3163are not going to be called if user space previously registered LIOBN
3164in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3165
3166In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3167user space might have to advertise it for the guest. For example,
3168IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3169present in the "ibm,hypertas-functions" device-tree property.
3170
3171The hypercalls mentioned above may or may not be processed successfully
3172in the kernel based fast path. If they can not be handled by the kernel,
3173they will get passed on to user space. So user space still has to have
3174an implementation for these despite the in kernel acceleration.
3175
3176This capability is always enabled.
3177
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110031784.98 KVM_CREATE_SPAPR_TCE_64
3179
3180Capability: KVM_CAP_SPAPR_TCE_64
3181Architectures: powerpc
3182Type: vm ioctl
3183Parameters: struct kvm_create_spapr_tce_64 (in)
3184Returns: file descriptor for manipulating the created TCE table
3185
3186This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3187windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3188
3189This capability uses extended struct in ioctl interface:
3190
3191/* for KVM_CAP_SPAPR_TCE_64 */
3192struct kvm_create_spapr_tce_64 {
3193 __u64 liobn;
3194 __u32 page_shift;
3195 __u32 flags;
3196 __u64 offset; /* in pages */
3197 __u64 size; /* in pages */
3198};
3199
3200The aim of extension is to support an additional bigger DMA window with
3201a variable page size.
3202KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3203a bus offset of the corresponding DMA window, @size and @offset are numbers
3204of IOMMU pages.
3205
3206@flags are not used at the moment.
3207
3208The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3209
David Gibsonccc4df42016-12-20 16:48:57 +110032104.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003211
3212Capability: KVM_CAP_REINJECT_CONTROL
3213Architectures: x86
3214Type: vm ioctl
3215Parameters: struct kvm_reinject_control (in)
3216Returns: 0 on success,
3217 -EFAULT if struct kvm_reinject_control cannot be read,
3218 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3219
3220i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3221where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3222vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3223interrupt whenever there isn't a pending interrupt from i8254.
3224!reinject mode injects an interrupt as soon as a tick arrives.
3225
3226struct kvm_reinject_control {
3227 __u8 pit_reinject;
3228 __u8 reserved[31];
3229};
3230
3231pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3232operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3233
David Gibsonccc4df42016-12-20 16:48:57 +110032344.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003235
3236Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3237Architectures: ppc
3238Type: vm ioctl
3239Parameters: struct kvm_ppc_mmuv3_cfg (in)
3240Returns: 0 on success,
3241 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3242 -EINVAL if the configuration is invalid
3243
3244This ioctl controls whether the guest will use radix or HPT (hashed
3245page table) translation, and sets the pointer to the process table for
3246the guest.
3247
3248struct kvm_ppc_mmuv3_cfg {
3249 __u64 flags;
3250 __u64 process_table;
3251};
3252
3253There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3254KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3255to use radix tree translation, and if clear, to use HPT translation.
3256KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3257to be able to use the global TLB and SLB invalidation instructions;
3258if clear, the guest may not use these instructions.
3259
3260The process_table field specifies the address and size of the guest
3261process table, which is in the guest's space. This field is formatted
3262as the second doubleword of the partition table entry, as defined in
3263the Power ISA V3.00, Book III section 5.7.6.1.
3264
David Gibsonccc4df42016-12-20 16:48:57 +110032654.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003266
3267Capability: KVM_CAP_PPC_RADIX_MMU
3268Architectures: ppc
3269Type: vm ioctl
3270Parameters: struct kvm_ppc_rmmu_info (out)
3271Returns: 0 on success,
3272 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3273 -EINVAL if no useful information can be returned
3274
3275This ioctl returns a structure containing two things: (a) a list
3276containing supported radix tree geometries, and (b) a list that maps
3277page sizes to put in the "AP" (actual page size) field for the tlbie
3278(TLB invalidate entry) instruction.
3279
3280struct kvm_ppc_rmmu_info {
3281 struct kvm_ppc_radix_geom {
3282 __u8 page_shift;
3283 __u8 level_bits[4];
3284 __u8 pad[3];
3285 } geometries[8];
3286 __u32 ap_encodings[8];
3287};
3288
3289The geometries[] field gives up to 8 supported geometries for the
3290radix page table, in terms of the log base 2 of the smallest page
3291size, and the number of bits indexed at each level of the tree, from
3292the PTE level up to the PGD level in that order. Any unused entries
3293will have 0 in the page_shift field.
3294
3295The ap_encodings gives the supported page sizes and their AP field
3296encodings, encoded with the AP value in the top 3 bits and the log
3297base 2 of the page size in the bottom 6 bits.
3298
David Gibsonef1ead02016-12-20 16:48:58 +110032994.102 KVM_PPC_RESIZE_HPT_PREPARE
3300
3301Capability: KVM_CAP_SPAPR_RESIZE_HPT
3302Architectures: powerpc
3303Type: vm ioctl
3304Parameters: struct kvm_ppc_resize_hpt (in)
3305Returns: 0 on successful completion,
3306 >0 if a new HPT is being prepared, the value is an estimated
3307 number of milliseconds until preparation is complete
3308 -EFAULT if struct kvm_reinject_control cannot be read,
3309 -EINVAL if the supplied shift or flags are invalid
3310 -ENOMEM if unable to allocate the new HPT
3311 -ENOSPC if there was a hash collision when moving existing
3312 HPT entries to the new HPT
3313 -EIO on other error conditions
3314
3315Used to implement the PAPR extension for runtime resizing of a guest's
3316Hashed Page Table (HPT). Specifically this starts, stops or monitors
3317the preparation of a new potential HPT for the guest, essentially
3318implementing the H_RESIZE_HPT_PREPARE hypercall.
3319
3320If called with shift > 0 when there is no pending HPT for the guest,
3321this begins preparation of a new pending HPT of size 2^(shift) bytes.
3322It then returns a positive integer with the estimated number of
3323milliseconds until preparation is complete.
3324
3325If called when there is a pending HPT whose size does not match that
3326requested in the parameters, discards the existing pending HPT and
3327creates a new one as above.
3328
3329If called when there is a pending HPT of the size requested, will:
3330 * If preparation of the pending HPT is already complete, return 0
3331 * If preparation of the pending HPT has failed, return an error
3332 code, then discard the pending HPT.
3333 * If preparation of the pending HPT is still in progress, return an
3334 estimated number of milliseconds until preparation is complete.
3335
3336If called with shift == 0, discards any currently pending HPT and
3337returns 0 (i.e. cancels any in-progress preparation).
3338
3339flags is reserved for future expansion, currently setting any bits in
3340flags will result in an -EINVAL.
3341
3342Normally this will be called repeatedly with the same parameters until
3343it returns <= 0. The first call will initiate preparation, subsequent
3344ones will monitor preparation until it completes or fails.
3345
3346struct kvm_ppc_resize_hpt {
3347 __u64 flags;
3348 __u32 shift;
3349 __u32 pad;
3350};
3351
33524.103 KVM_PPC_RESIZE_HPT_COMMIT
3353
3354Capability: KVM_CAP_SPAPR_RESIZE_HPT
3355Architectures: powerpc
3356Type: vm ioctl
3357Parameters: struct kvm_ppc_resize_hpt (in)
3358Returns: 0 on successful completion,
3359 -EFAULT if struct kvm_reinject_control cannot be read,
3360 -EINVAL if the supplied shift or flags are invalid
3361 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3362 have the requested size
3363 -EBUSY if the pending HPT is not fully prepared
3364 -ENOSPC if there was a hash collision when moving existing
3365 HPT entries to the new HPT
3366 -EIO on other error conditions
3367
3368Used to implement the PAPR extension for runtime resizing of a guest's
3369Hashed Page Table (HPT). Specifically this requests that the guest be
3370transferred to working with the new HPT, essentially implementing the
3371H_RESIZE_HPT_COMMIT hypercall.
3372
3373This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3374returned 0 with the same parameters. In other cases
3375KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3376-EBUSY, though others may be possible if the preparation was started,
3377but failed).
3378
3379This will have undefined effects on the guest if it has not already
3380placed itself in a quiescent state where no vcpu will make MMU enabled
3381memory accesses.
3382
3383On succsful completion, the pending HPT will become the guest's active
3384HPT and the previous HPT will be discarded.
3385
3386On failure, the guest will still be operating on its previous HPT.
3387
3388struct kvm_ppc_resize_hpt {
3389 __u64 flags;
3390 __u32 shift;
3391 __u32 pad;
3392};
3393
Avi Kivity9c1b96e2009-06-09 12:37:58 +030033945. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003395------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003396
3397Application code obtains a pointer to the kvm_run structure by
3398mmap()ing a vcpu fd. From that point, application code can control
3399execution by changing fields in kvm_run prior to calling the KVM_RUN
3400ioctl, and obtain information about the reason KVM_RUN returned by
3401looking up structure members.
3402
3403struct kvm_run {
3404 /* in */
3405 __u8 request_interrupt_window;
3406
3407Request that KVM_RUN return when it becomes possible to inject external
3408interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3409
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003410 __u8 immediate_exit;
3411
3412This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3413exits immediately, returning -EINTR. In the common scenario where a
3414signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3415to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3416Rather than blocking the signal outside KVM_RUN, userspace can set up
3417a signal handler that sets run->immediate_exit to a non-zero value.
3418
3419This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3420
3421 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003422
3423 /* out */
3424 __u32 exit_reason;
3425
3426When KVM_RUN has returned successfully (return value 0), this informs
3427application code why KVM_RUN has returned. Allowable values for this
3428field are detailed below.
3429
3430 __u8 ready_for_interrupt_injection;
3431
3432If request_interrupt_window has been specified, this field indicates
3433an interrupt can be injected now with KVM_INTERRUPT.
3434
3435 __u8 if_flag;
3436
3437The value of the current interrupt flag. Only valid if in-kernel
3438local APIC is not used.
3439
Paolo Bonzinif0778252015-04-01 15:06:40 +02003440 __u16 flags;
3441
3442More architecture-specific flags detailing state of the VCPU that may
3443affect the device's behavior. The only currently defined flag is
3444KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3445VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003446
3447 /* in (pre_kvm_run), out (post_kvm_run) */
3448 __u64 cr8;
3449
3450The value of the cr8 register. Only valid if in-kernel local APIC is
3451not used. Both input and output.
3452
3453 __u64 apic_base;
3454
3455The value of the APIC BASE msr. Only valid if in-kernel local
3456APIC is not used. Both input and output.
3457
3458 union {
3459 /* KVM_EXIT_UNKNOWN */
3460 struct {
3461 __u64 hardware_exit_reason;
3462 } hw;
3463
3464If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3465reasons. Further architecture-specific information is available in
3466hardware_exit_reason.
3467
3468 /* KVM_EXIT_FAIL_ENTRY */
3469 struct {
3470 __u64 hardware_entry_failure_reason;
3471 } fail_entry;
3472
3473If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3474to unknown reasons. Further architecture-specific information is
3475available in hardware_entry_failure_reason.
3476
3477 /* KVM_EXIT_EXCEPTION */
3478 struct {
3479 __u32 exception;
3480 __u32 error_code;
3481 } ex;
3482
3483Unused.
3484
3485 /* KVM_EXIT_IO */
3486 struct {
3487#define KVM_EXIT_IO_IN 0
3488#define KVM_EXIT_IO_OUT 1
3489 __u8 direction;
3490 __u8 size; /* bytes */
3491 __u16 port;
3492 __u32 count;
3493 __u64 data_offset; /* relative to kvm_run start */
3494 } io;
3495
Wu Fengguang2044892d2009-12-24 09:04:16 +08003496If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003497executed a port I/O instruction which could not be satisfied by kvm.
3498data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3499where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003500KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003501
Alex Bennée8ab30c12015-07-07 17:29:53 +01003502 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003503 struct {
3504 struct kvm_debug_exit_arch arch;
3505 } debug;
3506
Alex Bennée8ab30c12015-07-07 17:29:53 +01003507If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3508for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003509
3510 /* KVM_EXIT_MMIO */
3511 struct {
3512 __u64 phys_addr;
3513 __u8 data[8];
3514 __u32 len;
3515 __u8 is_write;
3516 } mmio;
3517
Wu Fengguang2044892d2009-12-24 09:04:16 +08003518If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003519executed a memory-mapped I/O instruction which could not be satisfied
3520by kvm. The 'data' member contains the written data if 'is_write' is
3521true, and should be filled by application code otherwise.
3522
Christoffer Dall6acdb162014-01-28 08:28:42 -08003523The 'data' member contains, in its first 'len' bytes, the value as it would
3524appear if the VCPU performed a load or store of the appropriate width directly
3525to the byte array.
3526
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003527NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003528 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003529operations are complete (and guest state is consistent) only after userspace
3530has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003531incomplete operations and then check for pending signals. Userspace
3532can re-enter the guest with an unmasked signal pending to complete
3533pending operations.
3534
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003535 /* KVM_EXIT_HYPERCALL */
3536 struct {
3537 __u64 nr;
3538 __u64 args[6];
3539 __u64 ret;
3540 __u32 longmode;
3541 __u32 pad;
3542 } hypercall;
3543
Avi Kivity647dc492010-04-01 14:39:21 +03003544Unused. This was once used for 'hypercall to userspace'. To implement
3545such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3546Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003547
3548 /* KVM_EXIT_TPR_ACCESS */
3549 struct {
3550 __u64 rip;
3551 __u32 is_write;
3552 __u32 pad;
3553 } tpr_access;
3554
3555To be documented (KVM_TPR_ACCESS_REPORTING).
3556
3557 /* KVM_EXIT_S390_SIEIC */
3558 struct {
3559 __u8 icptcode;
3560 __u64 mask; /* psw upper half */
3561 __u64 addr; /* psw lower half */
3562 __u16 ipa;
3563 __u32 ipb;
3564 } s390_sieic;
3565
3566s390 specific.
3567
3568 /* KVM_EXIT_S390_RESET */
3569#define KVM_S390_RESET_POR 1
3570#define KVM_S390_RESET_CLEAR 2
3571#define KVM_S390_RESET_SUBSYSTEM 4
3572#define KVM_S390_RESET_CPU_INIT 8
3573#define KVM_S390_RESET_IPL 16
3574 __u64 s390_reset_flags;
3575
3576s390 specific.
3577
Carsten Ottee168bf82012-01-04 10:25:22 +01003578 /* KVM_EXIT_S390_UCONTROL */
3579 struct {
3580 __u64 trans_exc_code;
3581 __u32 pgm_code;
3582 } s390_ucontrol;
3583
3584s390 specific. A page fault has occurred for a user controlled virtual
3585machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3586resolved by the kernel.
3587The program code and the translation exception code that were placed
3588in the cpu's lowcore are presented here as defined by the z Architecture
3589Principles of Operation Book in the Chapter for Dynamic Address Translation
3590(DAT)
3591
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003592 /* KVM_EXIT_DCR */
3593 struct {
3594 __u32 dcrn;
3595 __u32 data;
3596 __u8 is_write;
3597 } dcr;
3598
Alexander Grafce91ddc2014-07-28 19:29:13 +02003599Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003600
Alexander Grafad0a0482010-03-24 21:48:30 +01003601 /* KVM_EXIT_OSI */
3602 struct {
3603 __u64 gprs[32];
3604 } osi;
3605
3606MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3607hypercalls and exit with this exit struct that contains all the guest gprs.
3608
3609If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3610Userspace can now handle the hypercall and when it's done modify the gprs as
3611necessary. Upon guest entry all guest GPRs will then be replaced by the values
3612in this struct.
3613
Paul Mackerrasde56a942011-06-29 00:21:34 +00003614 /* KVM_EXIT_PAPR_HCALL */
3615 struct {
3616 __u64 nr;
3617 __u64 ret;
3618 __u64 args[9];
3619 } papr_hcall;
3620
3621This is used on 64-bit PowerPC when emulating a pSeries partition,
3622e.g. with the 'pseries' machine type in qemu. It occurs when the
3623guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3624contains the hypercall number (from the guest R3), and 'args' contains
3625the arguments (from the guest R4 - R12). Userspace should put the
3626return code in 'ret' and any extra returned values in args[].
3627The possible hypercalls are defined in the Power Architecture Platform
3628Requirements (PAPR) document available from www.power.org (free
3629developer registration required to access it).
3630
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003631 /* KVM_EXIT_S390_TSCH */
3632 struct {
3633 __u16 subchannel_id;
3634 __u16 subchannel_nr;
3635 __u32 io_int_parm;
3636 __u32 io_int_word;
3637 __u32 ipb;
3638 __u8 dequeued;
3639 } s390_tsch;
3640
3641s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3642and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3643interrupt for the target subchannel has been dequeued and subchannel_id,
3644subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3645interrupt. ipb is needed for instruction parameter decoding.
3646
Alexander Graf1c810632013-01-04 18:12:48 +01003647 /* KVM_EXIT_EPR */
3648 struct {
3649 __u32 epr;
3650 } epr;
3651
3652On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3653interrupt acknowledge path to the core. When the core successfully
3654delivers an interrupt, it automatically populates the EPR register with
3655the interrupt vector number and acknowledges the interrupt inside
3656the interrupt controller.
3657
3658In case the interrupt controller lives in user space, we need to do
3659the interrupt acknowledge cycle through it to fetch the next to be
3660delivered interrupt vector using this exit.
3661
3662It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3663external interrupt has just been delivered into the guest. User space
3664should put the acknowledged interrupt vector into the 'epr' field.
3665
Anup Patel8ad6b632014-04-29 11:24:19 +05303666 /* KVM_EXIT_SYSTEM_EVENT */
3667 struct {
3668#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3669#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003670#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05303671 __u32 type;
3672 __u64 flags;
3673 } system_event;
3674
3675If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3676a system-level event using some architecture specific mechanism (hypercall
3677or some special instruction). In case of ARM/ARM64, this is triggered using
3678HVC instruction based PSCI call from the vcpu. The 'type' field describes
3679the system-level event type. The 'flags' field describes architecture
3680specific flags for the system-level event.
3681
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003682Valid values for 'type' are:
3683 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3684 VM. Userspace is not obliged to honour this, and if it does honour
3685 this does not need to destroy the VM synchronously (ie it may call
3686 KVM_RUN again before shutdown finally occurs).
3687 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3688 As with SHUTDOWN, userspace can choose to ignore the request, or
3689 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003690 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3691 has requested a crash condition maintenance. Userspace can choose
3692 to ignore the request, or to gather VM memory core dump and/or
3693 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003694
Steve Rutherford7543a632015-07-29 23:21:41 -07003695 /* KVM_EXIT_IOAPIC_EOI */
3696 struct {
3697 __u8 vector;
3698 } eoi;
3699
3700Indicates that the VCPU's in-kernel local APIC received an EOI for a
3701level-triggered IOAPIC interrupt. This exit only triggers when the
3702IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3703the userspace IOAPIC should process the EOI and retrigger the interrupt if
3704it is still asserted. Vector is the LAPIC interrupt vector for which the
3705EOI was received.
3706
Andrey Smetanindb3975712015-11-10 15:36:35 +03003707 struct kvm_hyperv_exit {
3708#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03003709#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03003710 __u32 type;
3711 union {
3712 struct {
3713 __u32 msr;
3714 __u64 control;
3715 __u64 evt_page;
3716 __u64 msg_page;
3717 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03003718 struct {
3719 __u64 input;
3720 __u64 result;
3721 __u64 params[2];
3722 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03003723 } u;
3724 };
3725 /* KVM_EXIT_HYPERV */
3726 struct kvm_hyperv_exit hyperv;
3727Indicates that the VCPU exits into userspace to process some tasks
3728related to Hyper-V emulation.
3729Valid values for 'type' are:
3730 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3731Hyper-V SynIC state change. Notification is used to remap SynIC
3732event/message pages and to enable/disable SynIC messages/events processing
3733in userspace.
3734
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003735 /* Fix the size of the union. */
3736 char padding[256];
3737 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01003738
3739 /*
3740 * shared registers between kvm and userspace.
3741 * kvm_valid_regs specifies the register classes set by the host
3742 * kvm_dirty_regs specified the register classes dirtied by userspace
3743 * struct kvm_sync_regs is architecture specific, as well as the
3744 * bits for kvm_valid_regs and kvm_dirty_regs
3745 */
3746 __u64 kvm_valid_regs;
3747 __u64 kvm_dirty_regs;
3748 union {
3749 struct kvm_sync_regs regs;
3750 char padding[1024];
3751 } s;
3752
3753If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3754certain guest registers without having to call SET/GET_*REGS. Thus we can
3755avoid some system call overhead if userspace has to handle the exit.
3756Userspace can query the validity of the structure by checking
3757kvm_valid_regs for specific bits. These bits are architecture specific
3758and usually define the validity of a groups of registers. (e.g. one bit
3759 for general purpose registers)
3760
David Hildenbrandd8482c02014-07-29 08:19:26 +02003761Please note that the kernel is allowed to use the kvm_run structure as the
3762primary storage for certain register types. Therefore, the kernel may use the
3763values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3764
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003765};
Alexander Graf821246a2011-08-31 10:58:55 +02003766
Jan Kiszka414fa982012-04-24 16:40:15 +02003767
Borislav Petkov9c15bb12013-09-22 16:44:50 +02003768
Paul Mackerras699a0ea2014-06-02 11:02:59 +100037696. Capabilities that can be enabled on vCPUs
3770--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02003771
Cornelia Huck0907c852014-06-27 09:29:26 +02003772There are certain capabilities that change the behavior of the virtual CPU or
3773the virtual machine when enabled. To enable them, please see section 4.37.
3774Below you can find a list of capabilities and what their effect on the vCPU or
3775the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02003776
3777The following information is provided along with the description:
3778
3779 Architectures: which instruction set architectures provide this ioctl.
3780 x86 includes both i386 and x86_64.
3781
Cornelia Huck0907c852014-06-27 09:29:26 +02003782 Target: whether this is a per-vcpu or per-vm capability.
3783
Alexander Graf821246a2011-08-31 10:58:55 +02003784 Parameters: what parameters are accepted by the capability.
3785
3786 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3787 are not detailed, but errors with specific meanings are.
3788
Jan Kiszka414fa982012-04-24 16:40:15 +02003789
Alexander Graf821246a2011-08-31 10:58:55 +020037906.1 KVM_CAP_PPC_OSI
3791
3792Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003793Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003794Parameters: none
3795Returns: 0 on success; -1 on error
3796
3797This capability enables interception of OSI hypercalls that otherwise would
3798be treated as normal system calls to be injected into the guest. OSI hypercalls
3799were invented by Mac-on-Linux to have a standardized communication mechanism
3800between the guest and the host.
3801
3802When this capability is enabled, KVM_EXIT_OSI can occur.
3803
Jan Kiszka414fa982012-04-24 16:40:15 +02003804
Alexander Graf821246a2011-08-31 10:58:55 +020038056.2 KVM_CAP_PPC_PAPR
3806
3807Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003808Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003809Parameters: none
3810Returns: 0 on success; -1 on error
3811
3812This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3813done using the hypercall instruction "sc 1".
3814
3815It also sets the guest privilege level to "supervisor" mode. Usually the guest
3816runs in "hypervisor" privilege mode with a few missing features.
3817
3818In addition to the above, it changes the semantics of SDR1. In this mode, the
3819HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3820HTAB invisible to the guest.
3821
3822When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05003823
Jan Kiszka414fa982012-04-24 16:40:15 +02003824
Scott Wooddc83b8b2011-08-18 15:25:21 -050038256.3 KVM_CAP_SW_TLB
3826
3827Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003828Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05003829Parameters: args[0] is the address of a struct kvm_config_tlb
3830Returns: 0 on success; -1 on error
3831
3832struct kvm_config_tlb {
3833 __u64 params;
3834 __u64 array;
3835 __u32 mmu_type;
3836 __u32 array_len;
3837};
3838
3839Configures the virtual CPU's TLB array, establishing a shared memory area
3840between userspace and KVM. The "params" and "array" fields are userspace
3841addresses of mmu-type-specific data structures. The "array_len" field is an
3842safety mechanism, and should be set to the size in bytes of the memory that
3843userspace has reserved for the array. It must be at least the size dictated
3844by "mmu_type" and "params".
3845
3846While KVM_RUN is active, the shared region is under control of KVM. Its
3847contents are undefined, and any modification by userspace results in
3848boundedly undefined behavior.
3849
3850On return from KVM_RUN, the shared region will reflect the current state of
3851the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3852to tell KVM which entries have been changed, prior to calling KVM_RUN again
3853on this vcpu.
3854
3855For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3856 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3857 - The "array" field points to an array of type "struct
3858 kvm_book3e_206_tlb_entry".
3859 - The array consists of all entries in the first TLB, followed by all
3860 entries in the second TLB.
3861 - Within a TLB, entries are ordered first by increasing set number. Within a
3862 set, entries are ordered by way (increasing ESEL).
3863 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3864 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3865 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3866 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003867
38686.4 KVM_CAP_S390_CSS_SUPPORT
3869
3870Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02003871Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003872Parameters: none
3873Returns: 0 on success; -1 on error
3874
3875This capability enables support for handling of channel I/O instructions.
3876
3877TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3878handled in-kernel, while the other I/O instructions are passed to userspace.
3879
3880When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3881SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01003882
Cornelia Huck0907c852014-06-27 09:29:26 +02003883Note that even though this capability is enabled per-vcpu, the complete
3884virtual machine is affected.
3885
Alexander Graf1c810632013-01-04 18:12:48 +010038866.5 KVM_CAP_PPC_EPR
3887
3888Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003889Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01003890Parameters: args[0] defines whether the proxy facility is active
3891Returns: 0 on success; -1 on error
3892
3893This capability enables or disables the delivery of interrupts through the
3894external proxy facility.
3895
3896When enabled (args[0] != 0), every time the guest gets an external interrupt
3897delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3898to receive the topmost interrupt vector.
3899
3900When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3901
3902When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00003903
39046.6 KVM_CAP_IRQ_MPIC
3905
3906Architectures: ppc
3907Parameters: args[0] is the MPIC device fd
3908 args[1] is the MPIC CPU number for this vcpu
3909
3910This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003911
39126.7 KVM_CAP_IRQ_XICS
3913
3914Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003915Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003916Parameters: args[0] is the XICS device fd
3917 args[1] is the XICS CPU number (server ID) for this vcpu
3918
3919This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02003920
39216.8 KVM_CAP_S390_IRQCHIP
3922
3923Architectures: s390
3924Target: vm
3925Parameters: none
3926
3927This capability enables the in-kernel irqchip for s390. Please refer to
3928"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10003929
James Hogan5fafd8742014-12-08 23:07:56 +000039306.9 KVM_CAP_MIPS_FPU
3931
3932Architectures: mips
3933Target: vcpu
3934Parameters: args[0] is reserved for future use (should be 0).
3935
3936This capability allows the use of the host Floating Point Unit by the guest. It
3937allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3938done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3939(depending on the current guest FPU register mode), and the Status.FR,
3940Config5.FRE bits are accessible via the KVM API and also from the guest,
3941depending on them being supported by the FPU.
3942
James Hogand952bd02014-12-08 23:07:56 +000039436.10 KVM_CAP_MIPS_MSA
3944
3945Architectures: mips
3946Target: vcpu
3947Parameters: args[0] is reserved for future use (should be 0).
3948
3949This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3950It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3951Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3952accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3953the guest.
3954
Paul Mackerras699a0ea2014-06-02 11:02:59 +100039557. Capabilities that can be enabled on VMs
3956------------------------------------------
3957
3958There are certain capabilities that change the behavior of the virtual
3959machine when enabled. To enable them, please see section 4.37. Below
3960you can find a list of capabilities and what their effect on the VM
3961is when enabling them.
3962
3963The following information is provided along with the description:
3964
3965 Architectures: which instruction set architectures provide this ioctl.
3966 x86 includes both i386 and x86_64.
3967
3968 Parameters: what parameters are accepted by the capability.
3969
3970 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3971 are not detailed, but errors with specific meanings are.
3972
3973
39747.1 KVM_CAP_PPC_ENABLE_HCALL
3975
3976Architectures: ppc
3977Parameters: args[0] is the sPAPR hcall number
3978 args[1] is 0 to disable, 1 to enable in-kernel handling
3979
3980This capability controls whether individual sPAPR hypercalls (hcalls)
3981get handled by the kernel or not. Enabling or disabling in-kernel
3982handling of an hcall is effective across the VM. On creation, an
3983initial set of hcalls are enabled for in-kernel handling, which
3984consists of those hcalls for which in-kernel handlers were implemented
3985before this capability was implemented. If disabled, the kernel will
3986not to attempt to handle the hcall, but will always exit to userspace
3987to handle it. Note that it may not make sense to enable some and
3988disable others of a group of related hcalls, but KVM does not prevent
3989userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10003990
3991If the hcall number specified is not one that has an in-kernel
3992implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3993error.
David Hildenbrand2444b352014-10-09 14:10:13 +02003994
39957.2 KVM_CAP_S390_USER_SIGP
3996
3997Architectures: s390
3998Parameters: none
3999
4000This capability controls which SIGP orders will be handled completely in user
4001space. With this capability enabled, all fast orders will be handled completely
4002in the kernel:
4003- SENSE
4004- SENSE RUNNING
4005- EXTERNAL CALL
4006- EMERGENCY SIGNAL
4007- CONDITIONAL EMERGENCY SIGNAL
4008
4009All other orders will be handled completely in user space.
4010
4011Only privileged operation exceptions will be checked for in the kernel (or even
4012in the hardware prior to interception). If this capability is not enabled, the
4013old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004014
40157.3 KVM_CAP_S390_VECTOR_REGISTERS
4016
4017Architectures: s390
4018Parameters: none
4019Returns: 0 on success, negative value on error
4020
4021Allows use of the vector registers introduced with z13 processor, and
4022provides for the synchronization between host and user space. Will
4023return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004024
40257.4 KVM_CAP_S390_USER_STSI
4026
4027Architectures: s390
4028Parameters: none
4029
4030This capability allows post-handlers for the STSI instruction. After
4031initial handling in the kernel, KVM exits to user space with
4032KVM_EXIT_S390_STSI to allow user space to insert further data.
4033
4034Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4035vcpu->run:
4036struct {
4037 __u64 addr;
4038 __u8 ar;
4039 __u8 reserved;
4040 __u8 fc;
4041 __u8 sel1;
4042 __u16 sel2;
4043} s390_stsi;
4044
4045@addr - guest address of STSI SYSIB
4046@fc - function code
4047@sel1 - selector 1
4048@sel2 - selector 2
4049@ar - access register number
4050
4051KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004052
Steve Rutherford49df6392015-07-29 23:21:40 -070040537.5 KVM_CAP_SPLIT_IRQCHIP
4054
4055Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004056Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004057Returns: 0 on success, -1 on error
4058
4059Create a local apic for each processor in the kernel. This can be used
4060instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4061IOAPIC and PIC (and also the PIT, even though this has to be enabled
4062separately).
4063
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004064This capability also enables in kernel routing of interrupt requests;
4065when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4066used in the IRQ routing table. The first args[0] MSI routes are reserved
4067for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4068a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004069
4070Fails if VCPU has already been created, or if the irqchip is already in the
4071kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4072
David Hildenbrand051c87f2016-04-19 13:13:40 +020040737.6 KVM_CAP_S390_RI
4074
4075Architectures: s390
4076Parameters: none
4077
4078Allows use of runtime-instrumentation introduced with zEC12 processor.
4079Will return -EINVAL if the machine does not support runtime-instrumentation.
4080Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004081
Radim Krčmář371313132016-07-12 22:09:27 +020040827.7 KVM_CAP_X2APIC_API
4083
4084Architectures: x86
4085Parameters: args[0] - features that should be enabled
4086Returns: 0 on success, -EINVAL when args[0] contains invalid features
4087
4088Valid feature flags in args[0] are
4089
4090#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004091#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004092
4093Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4094KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4095allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4096respective sections.
4097
Radim Krčmářc5192652016-07-12 22:09:28 +02004098KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4099in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4100as a broadcast even in x2APIC mode in order to support physical x2APIC
4101without interrupt remapping. This is undesirable in logical mode,
4102where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004103
David Hildenbrand6502a342016-06-21 14:19:51 +020041047.8 KVM_CAP_S390_USER_INSTR0
4105
4106Architectures: s390
4107Parameters: none
4108
4109With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4110be intercepted and forwarded to user space. User space can use this
4111mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4112not inject an operating exception for these instructions, user space has
4113to take care of that.
4114
4115This capability can be enabled dynamically even if VCPUs were already
4116created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004117
Michael Ellermane928e9c2015-03-20 20:39:41 +110041188. Other capabilities.
4119----------------------
4120
4121This section lists capabilities that give information about other
4122features of the KVM implementation.
4123
41248.1 KVM_CAP_PPC_HWRNG
4125
4126Architectures: ppc
4127
4128This capability, if KVM_CHECK_EXTENSION indicates that it is
4129available, means that that the kernel has an implementation of the
4130H_RANDOM hypercall backed by a hardware random-number generator.
4131If present, the kernel H_RANDOM handler can be enabled for guest use
4132with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004133
41348.2 KVM_CAP_HYPERV_SYNIC
4135
4136Architectures: x86
4137This capability, if KVM_CHECK_EXTENSION indicates that it is
4138available, means that that the kernel has an implementation of the
4139Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4140used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4141
4142In order to use SynIC, it has to be activated by setting this
4143capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4144will disable the use of APIC hardware virtualization even if supported
4145by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004146
41478.3 KVM_CAP_PPC_RADIX_MMU
4148
4149Architectures: ppc
4150
4151This capability, if KVM_CHECK_EXTENSION indicates that it is
4152available, means that that the kernel can support guests using the
4153radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4154processor).
4155
41568.4 KVM_CAP_PPC_HASH_MMU_V3
4157
4158Architectures: ppc
4159
4160This capability, if KVM_CHECK_EXTENSION indicates that it is
4161available, means that that the kernel can support guests using the
4162hashed page table MMU defined in Power ISA V3.00 (as implemented in
4163the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004164
41658.5 KVM_CAP_MIPS_VZ
4166
4167Architectures: mips
4168
4169This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4170it is available, means that full hardware assisted virtualization capabilities
4171of the hardware are available for use through KVM. An appropriate
4172KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4173utilises it.
4174
4175If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4176available, it means that the VM is using full hardware assisted virtualization
4177capabilities of the hardware. This is useful to check after creating a VM with
4178KVM_VM_MIPS_DEFAULT.
4179
4180The value returned by KVM_CHECK_EXTENSION should be compared against known
4181values (see below). All other values are reserved. This is to allow for the
4182possibility of other hardware assisted virtualization implementations which
4183may be incompatible with the MIPS VZ ASE.
4184
4185 0: The trap & emulate implementation is in use to run guest code in user
4186 mode. Guest virtual memory segments are rearranged to fit the guest in the
4187 user mode address space.
4188
4189 1: The MIPS VZ ASE is in use, providing full hardware assisted
4190 virtualization, including standard guest virtual memory segments.
4191
41928.6 KVM_CAP_MIPS_TE
4193
4194Architectures: mips
4195
4196This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4197it is available, means that the trap & emulate implementation is available to
4198run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4199assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4200to KVM_CREATE_VM to create a VM which utilises it.
4201
4202If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4203available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004204
42058.7 KVM_CAP_MIPS_64BIT
4206
4207Architectures: mips
4208
4209This capability indicates the supported architecture type of the guest, i.e. the
4210supported register and address width.
4211
4212The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4213kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4214be checked specifically against known values (see below). All other values are
4215reserved.
4216
4217 0: MIPS32 or microMIPS32.
4218 Both registers and addresses are 32-bits wide.
4219 It will only be possible to run 32-bit guest code.
4220
4221 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4222 Registers are 64-bits wide, but addresses are 32-bits wide.
4223 64-bit guest code may run but cannot access MIPS64 memory segments.
4224 It will also be possible to run 32-bit guest code.
4225
4226 2: MIPS64 or microMIPS64 with access to all address segments.
4227 Both registers and addresses are 64-bits wide.
4228 It will be possible to run 64-bit or 32-bit guest code.