blob: 5d0d356e1e74c5b2abeb5ae83099b4ff5a842697 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
Tim Schmielau4e57b682005-10-30 15:03:48 -080040
41#include <linux/slab.h>
Tim Schmielau8c65b4a2005-11-07 00:59:43 -080042#include <asm/param.h> /* for timeouts in units of HZ */
Tim Schmielau4e57b682005-10-30 15:03:48 -080043
Linus Torvalds1da177e2005-04-16 15:20:36 -070044#include "sym_glue.h"
45#include "sym_nvram.h"
46
47#if 0
48#define SYM_DEBUG_GENERIC_SUPPORT
49#endif
50
51/*
52 * Needed function prototypes.
53 */
54static void sym_int_ma (struct sym_hcb *np);
55static void sym_int_sir (struct sym_hcb *np);
56static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62
63/*
64 * Print a buffer in hexadecimal format with a ".\n" at end.
65 */
66static void sym_printl_hex(u_char *p, int n)
67{
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
71}
72
Linus Torvalds1da177e2005-04-16 15:20:36 -070073static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74{
Matthew Wilcox92d578b2006-03-28 11:03:44 -050075 if (label)
76 sym_print_addr(cp->cmd, "%s: ", label);
77 else
78 sym_print_addr(cp->cmd, "");
Linus Torvalds1da177e2005-04-16 15:20:36 -070079
Matthew Wilcox1abfd372005-12-15 16:22:01 -050080 spi_print_msg(msg);
Matthew Wilcox33333ba2005-11-29 23:08:42 -050081 printf("\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -070082}
83
84static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85{
86 struct sym_tcb *tp = &np->target[target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +010087 dev_info(&tp->starget->dev, "%s: ", label);
Linus Torvalds1da177e2005-04-16 15:20:36 -070088
Matthew Wilcox1abfd372005-12-15 16:22:01 -050089 spi_print_msg(msg);
Matthew Wilcox33333ba2005-11-29 23:08:42 -050090 printf("\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -070091}
92
93/*
94 * Print something that tells about extended errors.
95 */
96void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97{
98 if (x_status & XE_PARITY_ERR) {
99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 }
101 if (x_status & XE_EXTRA_DATA) {
102 sym_print_addr(cmd, "extraneous data discarded.\n");
103 }
104 if (x_status & XE_BAD_PHASE) {
105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 }
107 if (x_status & XE_SODL_UNRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 }
110 if (x_status & XE_SWIDE_OVRUN) {
111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 }
113}
114
115/*
116 * Return a string for SCSI BUS mode.
117 */
118static char *sym_scsi_bus_mode(int mode)
119{
120 switch(mode) {
121 case SMODE_HVD: return "HVD";
122 case SMODE_SE: return "SE";
123 case SMODE_LVD: return "LVD";
124 }
125 return "??";
126}
127
128/*
129 * Soft reset the chip.
130 *
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
135 */
136static void sym_chip_reset (struct sym_hcb *np)
137{
138 OUTB(np, nc_istat, SRST);
Matthew Wilcox 53222b92005-05-20 19:15:43 +0100139 INB(np, nc_mbox1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700140 udelay(10);
141 OUTB(np, nc_istat, 0);
Matthew Wilcox 53222b92005-05-20 19:15:43 +0100142 INB(np, nc_mbox1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700143 udelay(2000); /* For BUS MODE to settle */
144}
145
146/*
147 * Really soft reset the chip.:)
148 *
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
151 * are running.
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
154 */
155static void sym_soft_reset (struct sym_hcb *np)
156{
157 u_char istat = 0;
158 int i;
159
160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 goto do_chip_reset;
162
163 OUTB(np, nc_istat, CABRT);
164 for (i = 100000 ; i ; --i) {
165 istat = INB(np, nc_istat);
166 if (istat & SIP) {
167 INW(np, nc_sist);
168 }
169 else if (istat & DIP) {
170 if (INB(np, nc_dstat) & ABRT)
171 break;
172 }
173 udelay(5);
174 }
175 OUTB(np, nc_istat, 0);
176 if (!i)
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np), istat);
179do_chip_reset:
180 sym_chip_reset(np);
181}
182
183/*
184 * Start reset process.
185 *
186 * The interrupt handler will reinitialize the chip.
187 */
188static void sym_start_reset(struct sym_hcb *np)
189{
190 sym_reset_scsi_bus(np, 1);
191}
192
193int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194{
195 u32 term;
196 int retv = 0;
197
198 sym_soft_reset(np); /* Soft reset the chip */
199 if (enab_int)
200 OUTW(np, nc_sien, RST);
201 /*
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
204 */
205 OUTB(np, nc_stest3, TE);
206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 OUTB(np, nc_scntl1, CRST);
Matthew Wilcox 53222b92005-05-20 19:15:43 +0100208 INB(np, nc_mbox1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209 udelay(200);
210
211 if (!SYM_SETUP_SCSI_BUS_CHECK)
212 goto out;
213 /*
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
217 * FALSE.
218 */
219 term = INB(np, nc_sstat0);
220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
225
226 if (!np->maxwide)
227 term &= 0x3ffff;
228
229 if (term != (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 sym_name(np));
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
234 sym_name(np),
235 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 (u_long)term, (u_long)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 retv = 1;
239 }
240out:
241 OUTB(np, nc_scntl1, 0);
242 return retv;
243}
244
245/*
246 * Select SCSI clock frequency
247 */
248static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249{
250 /*
251 * If multiplier not present or not selected, leave here.
252 */
253 if (np->multiplier <= 1) {
254 OUTB(np, nc_scntl3, scntl3);
255 return;
256 }
257
258 if (sym_verbose >= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np));
260
261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
262 /*
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
265 */
266 if (np->features & FE_LCKFRQ) {
267 int i = 20;
268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 udelay(20);
270 if (!i)
271 printf("%s: the chip cannot lock the frequency\n",
272 sym_name(np));
Matthew Wilcox 53222b92005-05-20 19:15:43 +0100273 } else {
274 INB(np, nc_mbox1);
275 udelay(50+10);
276 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
278 OUTB(np, nc_scntl3, scntl3);
279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
281}
282
283
284/*
285 * Determine the chip's clock frequency.
286 *
287 * This is essential for the negotiation of the synchronous
288 * transfer rate.
289 *
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
292 *
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
300 */
301
302/*
303 * calculate SCSI clock frequency (in KHz)
304 */
305static unsigned getfreq (struct sym_hcb *np, int gen)
306{
307 unsigned int ms = 0;
308 unsigned int f;
309
310 /*
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
313 *
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
324 */
325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
326 INW(np, nc_sist); /* clear pending scsi interrupt */
327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
328 INW(np, nc_sist); /* another one, just to be sure :) */
329 /*
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
333 */
334 if (np->features & FE_C10) {
335 OUTW(np, nc_sien, GEN);
336 OUTB(np, nc_istat1, SIRQD);
337 }
338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
344 /*
345 * Undo C1010-33 specific settings.
346 */
347 if (np->features & FE_C10) {
348 OUTW(np, nc_sien, 0);
349 OUTB(np, nc_istat1, 0);
350 }
351 /*
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
355 */
356 OUTB(np, nc_scntl3, 0);
357
358 /*
359 * adjust for prescaler, and convert into KHz
360 */
361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362
363 /*
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
366 */
367 if (np->features & FE_C10)
368 f = (f * 2) / 3;
369
370 if (sym_verbose >= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np), gen, ms/4, f);
373
374 return f;
375}
376
377static unsigned sym_getfreq (struct sym_hcb *np)
378{
379 u_int f1, f2;
380 int gen = 8;
381
382 getfreq (np, gen); /* throw away first result */
383 f1 = getfreq (np, gen);
384 f2 = getfreq (np, gen);
385 if (f1 > f2) f1 = f2; /* trust lower result */
386 return f1;
387}
388
389/*
390 * Get/probe chip SCSI clock frequency
391 */
392static void sym_getclock (struct sym_hcb *np, int mult)
393{
394 unsigned char scntl3 = np->sv_scntl3;
395 unsigned char stest1 = np->sv_stest1;
396 unsigned f1;
397
398 np->multiplier = 1;
399 f1 = 40000;
400 /*
401 * True with 875/895/896/895A with clock multiplier selected
402 */
403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 if (sym_verbose >= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np));
406 np->multiplier = mult;
407 }
408
409 /*
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
413 */
414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
416 f1 = sym_getfreq (np);
417
418 if (sym_verbose)
419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420
421 if (f1 < 45000) f1 = 40000;
422 else if (f1 < 55000) f1 = 50000;
423 else f1 = 80000;
424
425 if (f1 < 80000 && mult > 1) {
426 if (sym_verbose >= 2)
427 printf ("%s: clock multiplier assumed\n",
428 sym_name(np));
429 np->multiplier = mult;
430 }
431 } else {
432 if ((scntl3 & 7) == 3) f1 = 40000;
433 else if ((scntl3 & 7) == 5) f1 = 80000;
434 else f1 = 160000;
435
436 f1 /= np->multiplier;
437 }
438
439 /*
440 * Compute controller synchronous parameters.
441 */
442 f1 *= np->multiplier;
443 np->clock_khz = f1;
444}
445
446/*
447 * Get/probe PCI clock frequency
448 */
449static int sym_getpciclock (struct sym_hcb *np)
450{
451 int f = 0;
452
453 /*
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
456 */
457#if 1
458 if (np->features & FE_66MHZ) {
459#else
460 if (1) {
461#endif
462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 f = sym_getfreq(np);
464 OUTB(np, nc_stest1, 0);
465 }
466 np->pciclk_khz = f;
467
468 return f;
469}
470
471/*
472 * SYMBIOS chip clock divisor table.
473 *
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
476 */
477#define _5M 5000000
Matthew Wilcox76789f02006-03-28 11:03:44 -0500478static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479
480/*
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
483 */
484static int
485sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486{
487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
488 int div = np->clock_divn; /* Number of divisors supported */
489 u32 fak; /* Sync factor in sxfer */
490 u32 per; /* Period in tenths of ns */
491 u32 kpc; /* (per * clk) */
492 int ret;
493
494 /*
495 * Compute the synchronous period in tenths of nano-seconds
496 */
497 if (dt && sfac <= 9) per = 125;
498 else if (sfac <= 10) per = 250;
499 else if (sfac == 11) per = 303;
500 else if (sfac == 12) per = 500;
501 else per = 40 * sfac;
502 ret = per;
503
504 kpc = per * clk;
505 if (dt)
506 kpc <<= 1;
507
508 /*
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
514 */
515#if 1
516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 /*
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
520 */
521 while (div > 0) {
522 --div;
523 if (kpc > (div_10M[div] << 2)) {
524 ++div;
525 break;
526 }
527 }
528 fak = 0; /* No extra clocks */
529 if (div == np->clock_divn) { /* Are we too fast ? */
530 ret = -1;
531 }
532 *divp = div;
533 *fakp = fak;
534 return ret;
535 }
536#endif
537
538 /*
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
541 */
542 while (div-- > 0)
543 if (kpc >= (div_10M[div] << 2)) break;
544
545 /*
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 */
551 if (dt) {
552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 } else {
555 fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 }
558
559 /*
560 * Check against our hardware limits, or bugs :).
561 */
562 if (fak > 2) {
563 fak = 2;
564 ret = -1;
565 }
566
567 /*
568 * Compute and return sync parameters.
569 */
570 *divp = div;
571 *fakp = fak;
572
573 return ret;
574}
575
576/*
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
582 * transfers bursts.
583 *
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586 *
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
589 */
590
591/*
592 * Burst length from burst code.
593 */
594#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595
596/*
597 * Burst code from io register bits.
598 */
599#define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601
602/*
603 * Set initial io register bits from burst code.
604 */
605static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
606{
607 np->rv_ctest4 &= ~0x80;
608 np->rv_dmode &= ~(0x3 << 6);
609 np->rv_ctest5 &= ~0x4;
610
611 if (!bc) {
612 np->rv_ctest4 |= 0x80;
613 }
614 else {
615 --bc;
616 np->rv_dmode |= ((bc & 0x3) << 6);
617 np->rv_ctest5 |= (bc & 0x4);
618 }
619}
620
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621/*
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
628 * well. :)
629 */
630static void sym_save_initial_setting (struct sym_hcb *np)
631{
632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
634 np->sv_dmode = INB(np, nc_dmode) & 0xce;
635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
638 np->sv_gpcntl = INB(np, nc_gpcntl);
639 np->sv_stest1 = INB(np, nc_stest1);
640 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
641 np->sv_stest4 = INB(np, nc_stest4);
642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
643 np->sv_scntl4 = INB(np, nc_scntl4);
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
645 }
646 else
647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
648}
649
650/*
Matthew Wilcoxc2349df2006-03-28 11:03:44 -0500651 * Set SCSI BUS mode.
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
656 */
657static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658{
659 if (np->scsi_mode)
660 return;
661
662 np->scsi_mode = SMODE_SE;
663 if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 np->scsi_mode = (np->sv_stest4 & SMODE);
665 else if (np->features & FE_DIFF) {
666 if (SYM_SETUP_SCSI_DIFF == 1) {
667 if (np->sv_scntl3) {
668 if (np->sv_stest2 & 0x20)
669 np->scsi_mode = SMODE_HVD;
670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 if (!(INB(np, nc_gpreg) & 0x08))
672 np->scsi_mode = SMODE_HVD;
673 }
674 } else if (SYM_SETUP_SCSI_DIFF == 2)
675 np->scsi_mode = SMODE_HVD;
676 }
677 if (np->scsi_mode == SMODE_HVD)
678 np->rv_stest2 |= 0x20;
679}
680
681/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
684 */
685static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686{
687 u_char burst_max;
688 u32 period;
689 int i;
690
Matthew Wilcoxc2349df2006-03-28 11:03:44 -0500691 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692
693 /*
694 * Guess the frequency of the chip's clock.
695 */
696 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
697 np->clock_khz = 160000;
698 else if (np->features & FE_ULTRA)
699 np->clock_khz = 80000;
700 else
701 np->clock_khz = 40000;
702
703 /*
704 * Get the clock multiplier factor.
705 */
706 if (np->features & FE_QUAD)
707 np->multiplier = 4;
708 else if (np->features & FE_DBLR)
709 np->multiplier = 2;
710 else
711 np->multiplier = 1;
712
713 /*
714 * Measure SCSI clock frequency for chips
715 * it may vary from assumed one.
716 */
717 if (np->features & FE_VARCLK)
718 sym_getclock(np, np->multiplier);
719
720 /*
721 * Divisor to be used for async (timer pre-scaler).
722 */
723 i = np->clock_divn - 1;
724 while (--i >= 0) {
725 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
726 ++i;
727 break;
728 }
729 }
730 np->rv_scntl3 = i+1;
731
732 /*
733 * The C1010 uses hardwired divisors for async.
734 * So, we just throw away, the async. divisor.:-)
735 */
736 if (np->features & FE_C10)
737 np->rv_scntl3 = 0;
738
739 /*
740 * Minimum synchronous period factor supported by the chip.
741 * Btw, 'period' is in tenths of nanoseconds.
742 */
743 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
744
745 if (period <= 250) np->minsync = 10;
746 else if (period <= 303) np->minsync = 11;
747 else if (period <= 500) np->minsync = 12;
748 else np->minsync = (period + 40 - 1) / 40;
749
750 /*
751 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
752 */
753 if (np->minsync < 25 &&
754 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
755 np->minsync = 25;
756 else if (np->minsync < 12 &&
757 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
758 np->minsync = 12;
759
760 /*
761 * Maximum synchronous period factor supported by the chip.
762 */
763 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
764 np->maxsync = period > 2540 ? 254 : period / 10;
765
766 /*
767 * If chip is a C1010, guess the sync limits in DT mode.
768 */
769 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
770 if (np->clock_khz == 160000) {
771 np->minsync_dt = 9;
772 np->maxsync_dt = 50;
773 np->maxoffs_dt = nvram->type ? 62 : 31;
774 }
775 }
776
777 /*
778 * 64 bit addressing (895A/896/1010) ?
779 */
780 if (np->features & FE_DAC) {
Matthew Wilcox4d85b472007-10-05 15:55:09 -0400781 if (!use_dac(np))
782 np->rv_ccntl1 |= (DDAC);
783 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
784 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
785 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
786 np->rv_ccntl1 |= (0 | EXTIBMV);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787 }
788
789 /*
790 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
791 */
792 if (np->features & FE_NOPM)
793 np->rv_ccntl0 |= (ENPMJ);
794
795 /*
796 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
797 * In dual channel mode, contention occurs if internal cycles
798 * are used. Disable internal cycles.
799 */
Matthew Wilcoxe58bc062007-10-05 15:55:06 -0400800 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
Matthew Wilcoxbd678452007-10-05 15:55:05 -0400801 np->s.device->revision < 0x1)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 np->rv_ccntl0 |= DILS;
803
804 /*
805 * Select burst length (dwords)
806 */
807 burst_max = SYM_SETUP_BURST_ORDER;
808 if (burst_max == 255)
809 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
810 np->sv_ctest5);
811 if (burst_max > 7)
812 burst_max = 7;
813 if (burst_max > np->maxburst)
814 burst_max = np->maxburst;
815
816 /*
817 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
818 * This chip and the 860 Rev 1 may wrongly use PCI cache line
819 * based transactions on LOAD/STORE instructions. So we have
820 * to prevent these chips from using such PCI transactions in
821 * this driver. The generic ncr driver that does not use
822 * LOAD/STORE instructions does not need this work-around.
823 */
Matthew Wilcoxe58bc062007-10-05 15:55:06 -0400824 if ((np->s.device->device == PCI_DEVICE_ID_NCR_53C810 &&
Matthew Wilcoxbd678452007-10-05 15:55:05 -0400825 np->s.device->revision >= 0x10 && np->s.device->revision <= 0x11) ||
Matthew Wilcoxe58bc062007-10-05 15:55:06 -0400826 (np->s.device->device == PCI_DEVICE_ID_NCR_53C860 &&
Matthew Wilcoxbd678452007-10-05 15:55:05 -0400827 np->s.device->revision <= 0x1))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700828 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
829
830 /*
831 * Select all supported special features.
832 * If we are using on-board RAM for scripts, prefetch (PFEN)
833 * does not help, but burst op fetch (BOF) does.
834 * Disabling PFEN makes sure BOF will be used.
835 */
836 if (np->features & FE_ERL)
837 np->rv_dmode |= ERL; /* Enable Read Line */
838 if (np->features & FE_BOF)
839 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
840 if (np->features & FE_ERMP)
841 np->rv_dmode |= ERMP; /* Enable Read Multiple */
842#if 1
843 if ((np->features & FE_PFEN) && !np->ram_ba)
844#else
845 if (np->features & FE_PFEN)
846#endif
847 np->rv_dcntl |= PFEN; /* Prefetch Enable */
848 if (np->features & FE_CLSE)
849 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
850 if (np->features & FE_WRIE)
851 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
852 if (np->features & FE_DFS)
853 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
854
855 /*
856 * Select some other
857 */
858 np->rv_ctest4 |= MPEE; /* Master parity checking */
859 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
860
861 /*
862 * Get parity checking, host ID and verbose mode from NVRAM
863 */
864 np->myaddr = 255;
Matthew Wilcoxc2349df2006-03-28 11:03:44 -0500865 np->scsi_mode = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866 sym_nvram_setup_host(shost, np, nvram);
867
868 /*
869 * Get SCSI addr of host adapter (set by bios?).
870 */
871 if (np->myaddr == 255) {
872 np->myaddr = INB(np, nc_scid) & 0x07;
873 if (!np->myaddr)
874 np->myaddr = SYM_SETUP_HOST_ID;
875 }
876
877 /*
878 * Prepare initial io register bits for burst length
879 */
880 sym_init_burst(np, burst_max);
881
Matthew Wilcoxc2349df2006-03-28 11:03:44 -0500882 sym_set_bus_mode(np, nvram);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883
884 /*
885 * Set LED support from SCRIPTS.
886 * Ignore this feature for boards known to use a
887 * specific GPIO wiring and for the 895A, 896
888 * and 1010 that drive the LED directly.
889 */
890 if ((SYM_SETUP_SCSI_LED ||
891 (nvram->type == SYM_SYMBIOS_NVRAM ||
892 (nvram->type == SYM_TEKRAM_NVRAM &&
Matthew Wilcoxe58bc062007-10-05 15:55:06 -0400893 np->s.device->device == PCI_DEVICE_ID_NCR_53C895))) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
895 np->features |= FE_LED0;
896
897 /*
898 * Set irq mode.
899 */
900 switch(SYM_SETUP_IRQ_MODE & 3) {
901 case 2:
902 np->rv_dcntl |= IRQM;
903 break;
904 case 1:
905 np->rv_dcntl |= (np->sv_dcntl & IRQM);
906 break;
907 default:
908 break;
909 }
910
911 /*
912 * Configure targets according to driver setup.
913 * If NVRAM present get targets setup from NVRAM.
914 */
915 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
916 struct sym_tcb *tp = &np->target[i];
917
918 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
919 tp->usrtags = SYM_SETUP_MAX_TAG;
Matthew Wilcox23ff51e2006-02-28 06:28:15 -0700920 tp->usr_width = np->maxwide;
921 tp->usr_period = 9;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922
Matthew Wilcoxb37df482005-11-29 23:08:44 -0500923 sym_nvram_setup_target(tp, i, nvram);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924
925 if (!tp->usrtags)
926 tp->usrflags &= ~SYM_TAGS_ENABLED;
927 }
928
929 /*
930 * Let user know about the settings.
931 */
932 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
933 sym_nvram_type(nvram), np->myaddr,
934 (np->features & FE_ULTRA3) ? 80 :
935 (np->features & FE_ULTRA2) ? 40 :
936 (np->features & FE_ULTRA) ? 20 : 10,
937 sym_scsi_bus_mode(np->scsi_mode),
938 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
939 /*
940 * Tell him more on demand.
941 */
942 if (sym_verbose) {
943 printf("%s: %s IRQ line driver%s\n",
944 sym_name(np),
945 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
946 np->ram_ba ? ", using on-chip SRAM" : "");
947 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
948 if (np->features & FE_NOPM)
949 printf("%s: handling phase mismatch from SCRIPTS.\n",
950 sym_name(np));
951 }
952 /*
953 * And still more.
954 */
955 if (sym_verbose >= 2) {
956 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
957 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
958 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
959 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
960
961 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
962 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
963 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
964 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
965 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966
967 return 0;
968}
969
970/*
971 * Test the pci bus snoop logic :-(
972 *
973 * Has to be called with interrupts disabled.
974 */
Matthew Wilcox1f61d822006-03-28 11:03:43 -0500975#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
976static int sym_regtest(struct sym_hcb *np)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977{
978 register volatile u32 data;
979 /*
980 * chip registers may NOT be cached.
981 * write 0xffffffff to a read only register area,
982 * and try to read it back.
983 */
984 data = 0xffffffff;
985 OUTL(np, nc_dstat, data);
986 data = INL(np, nc_dstat);
987#if 1
988 if (data == 0xffffffff) {
989#else
990 if ((data & 0xe2f0fffd) != 0x02000080) {
991#endif
992 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
993 (unsigned) data);
Matthew Wilcox1f61d822006-03-28 11:03:43 -0500994 return 0x10;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995 }
Matthew Wilcox1f61d822006-03-28 11:03:43 -0500996 return 0;
997}
998#else
999static inline int sym_regtest(struct sym_hcb *np)
1000{
1001 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002}
1003#endif
1004
Matthew Wilcox1f61d822006-03-28 11:03:43 -05001005static int sym_snooptest(struct sym_hcb *np)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006{
Matthew Wilcox1f61d822006-03-28 11:03:43 -05001007 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1008 int i, err;
1009
1010 err = sym_regtest(np);
1011 if (err)
1012 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013restart_test:
1014 /*
1015 * Enable Master Parity Checking as we intend
1016 * to enable it for normal operations.
1017 */
1018 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1019 /*
1020 * init
1021 */
1022 pc = SCRIPTZ_BA(np, snooptest);
1023 host_wr = 1;
1024 sym_wr = 2;
1025 /*
1026 * Set memory and register.
1027 */
1028 np->scratch = cpu_to_scr(host_wr);
1029 OUTL(np, nc_temp, sym_wr);
1030 /*
1031 * Start script (exchange values)
1032 */
1033 OUTL(np, nc_dsa, np->hcb_ba);
1034 OUTL_DSP(np, pc);
1035 /*
1036 * Wait 'til done (with timeout)
1037 */
1038 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1039 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1040 break;
1041 if (i>=SYM_SNOOP_TIMEOUT) {
1042 printf ("CACHE TEST FAILED: timeout.\n");
1043 return (0x20);
1044 }
1045 /*
1046 * Check for fatal DMA errors.
1047 */
1048 dstat = INB(np, nc_dstat);
1049#if 1 /* Band aiding for broken hardwares that fail PCI parity */
1050 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1051 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1052 "DISABLING MASTER DATA PARITY CHECKING.\n",
1053 sym_name(np));
1054 np->rv_ctest4 &= ~MPEE;
1055 goto restart_test;
1056 }
1057#endif
1058 if (dstat & (MDPE|BF|IID)) {
1059 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1060 return (0x80);
1061 }
1062 /*
1063 * Save termination position.
1064 */
1065 pc = INL(np, nc_dsp);
1066 /*
1067 * Read memory and register.
1068 */
1069 host_rd = scr_to_cpu(np->scratch);
1070 sym_rd = INL(np, nc_scratcha);
1071 sym_bk = INL(np, nc_temp);
1072 /*
1073 * Check termination position.
1074 */
1075 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1076 printf ("CACHE TEST FAILED: script execution failed.\n");
1077 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1078 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1079 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1080 return (0x40);
1081 }
1082 /*
1083 * Show results.
1084 */
1085 if (host_wr != sym_rd) {
1086 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1087 (int) host_wr, (int) sym_rd);
1088 err |= 1;
1089 }
1090 if (host_rd != sym_wr) {
1091 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1092 (int) sym_wr, (int) host_rd);
1093 err |= 2;
1094 }
1095 if (sym_bk != sym_wr) {
1096 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1097 (int) sym_wr, (int) sym_bk);
1098 err |= 4;
1099 }
1100
Matthew Wilcox1f61d822006-03-28 11:03:43 -05001101 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102}
1103
1104/*
1105 * log message for real hard errors
1106 *
1107 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1108 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1109 *
1110 * exception register:
1111 * ds: dstat
1112 * si: sist
1113 *
1114 * SCSI bus lines:
1115 * so: control lines as driven by chip.
1116 * si: control lines as seen by chip.
1117 * sd: scsi data lines as seen by chip.
1118 *
1119 * wide/fastmode:
1120 * sx: sxfer (see the manual)
1121 * s3: scntl3 (see the manual)
1122 * s4: scntl4 (see the manual)
1123 *
1124 * current script command:
1125 * dsp: script address (relative to start of script).
1126 * dbc: first word of script command.
1127 *
1128 * First 24 register of the chip:
1129 * r0..rf
1130 */
1131static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1132{
1133 u32 dsp;
1134 int script_ofs;
1135 int script_size;
1136 char *script_name;
1137 u_char *script_base;
1138 int i;
1139
1140 dsp = INL(np, nc_dsp);
1141
1142 if (dsp > np->scripta_ba &&
1143 dsp <= np->scripta_ba + np->scripta_sz) {
1144 script_ofs = dsp - np->scripta_ba;
1145 script_size = np->scripta_sz;
1146 script_base = (u_char *) np->scripta0;
1147 script_name = "scripta";
1148 }
1149 else if (np->scriptb_ba < dsp &&
1150 dsp <= np->scriptb_ba + np->scriptb_sz) {
1151 script_ofs = dsp - np->scriptb_ba;
1152 script_size = np->scriptb_sz;
1153 script_base = (u_char *) np->scriptb0;
1154 script_name = "scriptb";
1155 } else {
1156 script_ofs = dsp;
1157 script_size = 0;
1158 script_base = NULL;
1159 script_name = "mem";
1160 }
1161
1162 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1164 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1165 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1166 (unsigned)INB(np, nc_scntl3),
1167 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1168 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1169
1170 if (((script_ofs & 3) == 0) &&
1171 (unsigned)script_ofs < script_size) {
1172 printf ("%s: script cmd = %08x\n", sym_name(np),
1173 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1174 }
1175
Linas Vepstasd68cd752007-10-05 15:55:04 -04001176 printf("%s: regdump:", sym_name(np));
1177 for (i = 0; i < 24; i++)
1178 printf(" %02x", (unsigned)INB_OFF(np, i));
1179 printf(".\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180
1181 /*
1182 * PCI BUS error.
1183 */
1184 if (dstat & (MDPE|BF))
1185 sym_log_bus_error(np);
1186}
1187
Linas Vepstasd68cd752007-10-05 15:55:04 -04001188void sym_dump_registers(struct sym_hcb *np)
1189{
1190 u_short sist;
1191 u_char dstat;
1192
1193 sist = INW(np, nc_sist);
1194 dstat = INB(np, nc_dstat);
1195 sym_log_hard_error(np, sist, dstat);
1196}
1197
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198static struct sym_chip sym_dev_table[] = {
1199 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1200 FE_ERL}
1201 ,
1202#ifdef SYM_DEBUG_GENERIC_SUPPORT
1203 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1204 FE_BOF}
1205 ,
1206#else
1207 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1208 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1209 ,
1210#endif
1211 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1212 FE_BOF|FE_ERL}
1213 ,
1214 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1215 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1216 ,
1217 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1218 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1219 ,
1220 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1221 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1222 ,
1223 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1224 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225 FE_RAM|FE_DIFF|FE_VARCLK}
1226 ,
1227 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1228 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229 FE_RAM|FE_DIFF|FE_VARCLK}
1230 ,
1231 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1232 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233 FE_RAM|FE_DIFF|FE_VARCLK}
1234 ,
1235 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1236 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237 FE_RAM|FE_DIFF|FE_VARCLK}
1238 ,
1239#ifdef SYM_DEBUG_GENERIC_SUPPORT
1240 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1241 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1242 FE_RAM|FE_LCKFRQ}
1243 ,
1244#else
1245 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1246 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1247 FE_RAM|FE_LCKFRQ}
1248 ,
1249#endif
1250 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1251 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1252 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1253 ,
1254 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1255 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257 ,
1258 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1259 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261 ,
1262 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1263 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1264 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1265 FE_C10}
1266 ,
1267 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1268 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1269 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1270 FE_C10|FE_U3EN}
1271 ,
1272 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1273 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1274 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1275 FE_C10|FE_U3EN}
1276 ,
1277 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1278 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1279 FE_RAM|FE_IO256|FE_LEDC}
1280};
1281
Tobias Klauser6391a112006-06-08 22:23:48 -07001282#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283
1284/*
1285 * Look up the chip table.
1286 *
1287 * Return a pointer to the chip entry if found,
1288 * zero otherwise.
1289 */
1290struct sym_chip *
1291sym_lookup_chip_table (u_short device_id, u_char revision)
1292{
1293 struct sym_chip *chip;
1294 int i;
1295
1296 for (i = 0; i < sym_num_devs; i++) {
1297 chip = &sym_dev_table[i];
1298 if (device_id != chip->device_id)
1299 continue;
1300 if (revision > chip->revision_id)
1301 continue;
1302 return chip;
1303 }
1304
1305 return NULL;
1306}
1307
1308#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1309/*
1310 * Lookup the 64 bit DMA segments map.
1311 * This is only used if the direct mapping
1312 * has been unsuccessful.
1313 */
1314int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1315{
1316 int i;
1317
Matthew Wilcox4d85b472007-10-05 15:55:09 -04001318 if (!use_dac(np))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001319 goto weird;
1320
1321 /* Look up existing mappings */
1322 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1323 if (h == np->dmap_bah[i])
1324 return i;
1325 }
1326 /* If direct mapping is free, get it */
1327 if (!np->dmap_bah[s])
1328 goto new;
1329 /* Collision -> lookup free mappings */
1330 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1331 if (!np->dmap_bah[s])
1332 goto new;
1333 }
1334weird:
1335 panic("sym: ran out of 64 bit DMA segment registers");
1336 return -1;
1337new:
1338 np->dmap_bah[s] = h;
1339 np->dmap_dirty = 1;
1340 return s;
1341}
1342
1343/*
1344 * Update IO registers scratch C..R so they will be
1345 * in sync. with queued CCB expectations.
1346 */
1347static void sym_update_dmap_regs(struct sym_hcb *np)
1348{
1349 int o, i;
1350
1351 if (!np->dmap_dirty)
1352 return;
1353 o = offsetof(struct sym_reg, nc_scrx[0]);
1354 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1355 OUTL_OFF(np, o, np->dmap_bah[i]);
1356 o += 4;
1357 }
1358 np->dmap_dirty = 0;
1359}
1360#endif
1361
1362/* Enforce all the fiddly SPI rules and the chip limitations */
1363static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1364 struct sym_trans *goal)
1365{
1366 if (!spi_support_wide(starget))
1367 goal->width = 0;
1368
1369 if (!spi_support_sync(starget)) {
1370 goal->iu = 0;
1371 goal->dt = 0;
1372 goal->qas = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001373 goal->offset = 0;
1374 return;
1375 }
1376
1377 if (spi_support_dt(starget)) {
1378 if (spi_support_dt_only(starget))
1379 goal->dt = 1;
1380
1381 if (goal->offset == 0)
1382 goal->dt = 0;
1383 } else {
1384 goal->dt = 0;
1385 }
1386
1387 /* Some targets fail to properly negotiate DT in SE mode */
1388 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1389 goal->dt = 0;
1390
1391 if (goal->dt) {
1392 /* all DT transfers must be wide */
1393 goal->width = 1;
1394 if (goal->offset > np->maxoffs_dt)
1395 goal->offset = np->maxoffs_dt;
1396 if (goal->period < np->minsync_dt)
1397 goal->period = np->minsync_dt;
1398 if (goal->period > np->maxsync_dt)
1399 goal->period = np->maxsync_dt;
1400 } else {
1401 goal->iu = goal->qas = 0;
1402 if (goal->offset > np->maxoffs)
1403 goal->offset = np->maxoffs;
1404 if (goal->period < np->minsync)
1405 goal->period = np->minsync;
1406 if (goal->period > np->maxsync)
1407 goal->period = np->maxsync;
1408 }
1409}
1410
1411/*
1412 * Prepare the next negotiation message if needed.
1413 *
1414 * Fill in the part of message buffer that contains the
1415 * negotiation and the nego_status field of the CCB.
1416 * Returns the size of the message in bytes.
1417 */
1418static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1419{
1420 struct sym_tcb *tp = &np->target[cp->target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +01001421 struct scsi_target *starget = tp->starget;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 struct sym_trans *goal = &tp->tgoal;
1423 int msglen = 0;
1424 int nego;
1425
1426 sym_check_goals(np, starget, goal);
1427
1428 /*
1429 * Many devices implement PPR in a buggy way, so only use it if we
1430 * really want to.
1431 */
Matthew Wilcox322e0792005-11-29 23:08:40 -05001432 if (goal->offset &&
1433 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434 nego = NS_PPR;
1435 } else if (spi_width(starget) != goal->width) {
1436 nego = NS_WIDE;
1437 } else if (spi_period(starget) != goal->period ||
1438 spi_offset(starget) != goal->offset) {
1439 nego = NS_SYNC;
1440 } else {
1441 goal->check_nego = 0;
1442 nego = 0;
1443 }
1444
1445 switch (nego) {
1446 case NS_SYNC:
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07001447 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1448 goal->offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 break;
1450 case NS_WIDE:
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07001451 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 break;
1453 case NS_PPR:
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07001454 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1455 goal->offset, goal->width,
1456 (goal->iu ? PPR_OPT_IU : 0) |
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 (goal->dt ? PPR_OPT_DT : 0) |
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07001458 (goal->qas ? PPR_OPT_QAS : 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 break;
1460 }
1461
1462 cp->nego_status = nego;
1463
1464 if (nego) {
1465 tp->nego_cp = cp; /* Keep track a nego will be performed */
1466 if (DEBUG_FLAGS & DEBUG_NEGO) {
1467 sym_print_nego_msg(np, cp->target,
1468 nego == NS_SYNC ? "sync msgout" :
1469 nego == NS_WIDE ? "wide msgout" :
1470 "ppr msgout", msgptr);
1471 }
1472 }
1473
1474 return msglen;
1475}
1476
1477/*
1478 * Insert a job into the start queue.
1479 */
Matthew Wilcox3bea15a2006-03-28 11:03:44 -05001480void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481{
1482 u_short qidx;
1483
1484#ifdef SYM_CONF_IARB_SUPPORT
1485 /*
1486 * If the previously queued CCB is not yet done,
1487 * set the IARB hint. The SCRIPTS will go with IARB
1488 * for this job when starting the previous one.
1489 * We leave devices a chance to win arbitration by
1490 * not using more than 'iarb_max' consecutive
1491 * immediate arbitrations.
1492 */
1493 if (np->last_cp && np->iarb_count < np->iarb_max) {
1494 np->last_cp->host_flags |= HF_HINT_IARB;
1495 ++np->iarb_count;
1496 }
1497 else
1498 np->iarb_count = 0;
1499 np->last_cp = cp;
1500#endif
1501
1502#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1503 /*
1504 * Make SCRIPTS aware of the 64 bit DMA
1505 * segment registers not being up-to-date.
1506 */
1507 if (np->dmap_dirty)
1508 cp->host_xflags |= HX_DMAP_DIRTY;
1509#endif
1510
1511 /*
1512 * Insert first the idle task and then our job.
1513 * The MBs should ensure proper ordering.
1514 */
1515 qidx = np->squeueput + 2;
1516 if (qidx >= MAX_QUEUE*2) qidx = 0;
1517
1518 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1519 MEMORY_WRITE_BARRIER();
1520 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1521
1522 np->squeueput = qidx;
1523
1524 if (DEBUG_FLAGS & DEBUG_QUEUE)
1525 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1526
1527 /*
1528 * Script processor may be waiting for reselect.
1529 * Wake it up.
1530 */
1531 MEMORY_WRITE_BARRIER();
1532 OUTB(np, nc_istat, SIGP|np->istat_sem);
1533}
1534
1535#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1536/*
1537 * Start next ready-to-start CCBs.
1538 */
1539void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1540{
1541 SYM_QUEHEAD *qp;
1542 struct sym_ccb *cp;
1543
1544 /*
1545 * Paranoia, as usual. :-)
1546 */
1547 assert(!lp->started_tags || !lp->started_no_tag);
1548
1549 /*
1550 * Try to start as many commands as asked by caller.
1551 * Prevent from having both tagged and untagged
1552 * commands queued to the device at the same time.
1553 */
1554 while (maxn--) {
1555 qp = sym_remque_head(&lp->waiting_ccbq);
1556 if (!qp)
1557 break;
1558 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1559 if (cp->tag != NO_TAG) {
1560 if (lp->started_no_tag ||
1561 lp->started_tags >= lp->started_max) {
1562 sym_insque_head(qp, &lp->waiting_ccbq);
1563 break;
1564 }
1565 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1566 lp->head.resel_sa =
1567 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1568 ++lp->started_tags;
1569 } else {
1570 if (lp->started_no_tag || lp->started_tags) {
1571 sym_insque_head(qp, &lp->waiting_ccbq);
1572 break;
1573 }
1574 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1575 lp->head.resel_sa =
1576 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1577 ++lp->started_no_tag;
1578 }
1579 cp->started = 1;
1580 sym_insque_tail(qp, &lp->started_ccbq);
1581 sym_put_start_queue(np, cp);
1582 }
1583}
1584#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1585
1586/*
1587 * The chip may have completed jobs. Look at the DONE QUEUE.
1588 *
1589 * On paper, memory read barriers may be needed here to
1590 * prevent out of order LOADs by the CPU from having
1591 * prefetched stale data prior to DMA having occurred.
1592 */
1593static int sym_wakeup_done (struct sym_hcb *np)
1594{
1595 struct sym_ccb *cp;
1596 int i, n;
1597 u32 dsa;
1598
1599 n = 0;
1600 i = np->dqueueget;
1601
1602 /* MEMORY_READ_BARRIER(); */
1603 while (1) {
1604 dsa = scr_to_cpu(np->dqueue[i]);
1605 if (!dsa)
1606 break;
1607 np->dqueue[i] = 0;
1608 if ((i = i+2) >= MAX_QUEUE*2)
1609 i = 0;
1610
1611 cp = sym_ccb_from_dsa(np, dsa);
1612 if (cp) {
1613 MEMORY_READ_BARRIER();
1614 sym_complete_ok (np, cp);
1615 ++n;
1616 }
1617 else
1618 printf ("%s: bad DSA (%x) in done queue.\n",
1619 sym_name(np), (u_int) dsa);
1620 }
1621 np->dqueueget = i;
1622
1623 return n;
1624}
1625
1626/*
1627 * Complete all CCBs queued to the COMP queue.
1628 *
1629 * These CCBs are assumed:
1630 * - Not to be referenced either by devices or
1631 * SCRIPTS-related queues and datas.
1632 * - To have to be completed with an error condition
1633 * or requeued.
1634 *
1635 * The device queue freeze count is incremented
1636 * for each CCB that does not prevent this.
1637 * This function is called when all CCBs involved
1638 * in error handling/recovery have been reaped.
1639 */
1640static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1641{
1642 SYM_QUEHEAD *qp;
1643 struct sym_ccb *cp;
1644
1645 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1646 struct scsi_cmnd *cmd;
1647 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1648 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1649 /* Leave quiet CCBs waiting for resources */
1650 if (cp->host_status == HS_WAIT)
1651 continue;
1652 cmd = cp->cmd;
1653 if (cam_status)
1654 sym_set_cam_status(cmd, cam_status);
1655#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
Matthew Wilcox 53222b92005-05-20 19:15:43 +01001656 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 struct sym_tcb *tp = &np->target[cp->target];
1658 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1659 if (lp) {
1660 sym_remque(&cp->link2_ccbq);
1661 sym_insque_tail(&cp->link2_ccbq,
1662 &lp->waiting_ccbq);
1663 if (cp->started) {
1664 if (cp->tag != NO_TAG)
1665 --lp->started_tags;
1666 else
1667 --lp->started_no_tag;
1668 }
1669 }
1670 cp->started = 0;
1671 continue;
1672 }
1673#endif
1674 sym_free_ccb(np, cp);
1675 sym_xpt_done(np, cmd);
1676 }
1677}
1678
1679/*
1680 * Complete all active CCBs with error.
1681 * Used on CHIP/SCSI RESET.
1682 */
1683static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1684{
1685 /*
1686 * Move all active CCBs to the COMP queue
1687 * and flush this queue.
1688 */
1689 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1690 sym_que_init(&np->busy_ccbq);
1691 sym_flush_comp_queue(np, cam_status);
1692}
1693
1694/*
1695 * Start chip.
1696 *
1697 * 'reason' means:
1698 * 0: initialisation.
1699 * 1: SCSI BUS RESET delivered or received.
1700 * 2: SCSI BUS MODE changed.
1701 */
1702void sym_start_up (struct sym_hcb *np, int reason)
1703{
1704 int i;
1705 u32 phys;
1706
1707 /*
1708 * Reset chip if asked, otherwise just clear fifos.
1709 */
1710 if (reason == 1)
1711 sym_soft_reset(np);
1712 else {
1713 OUTB(np, nc_stest3, TE|CSF);
1714 OUTONB(np, nc_ctest3, CLF);
1715 }
1716
1717 /*
1718 * Clear Start Queue
1719 */
1720 phys = np->squeue_ba;
1721 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1722 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1723 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1724 }
1725 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1726
1727 /*
1728 * Start at first entry.
1729 */
1730 np->squeueput = 0;
1731
1732 /*
1733 * Clear Done Queue
1734 */
1735 phys = np->dqueue_ba;
1736 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1737 np->dqueue[i] = 0;
1738 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1739 }
1740 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1741
1742 /*
1743 * Start at first entry.
1744 */
1745 np->dqueueget = 0;
1746
1747 /*
1748 * Install patches in scripts.
1749 * This also let point to first position the start
1750 * and done queue pointers used from SCRIPTS.
1751 */
1752 np->fw_patch(np);
1753
1754 /*
1755 * Wakeup all pending jobs.
1756 */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01001757 sym_flush_busy_queue(np, DID_RESET);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758
1759 /*
1760 * Init chip.
1761 */
1762 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01001763 INB(np, nc_mbox1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764 udelay(2000); /* The 895 needs time for the bus mode to settle */
1765
1766 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1767 /* full arb., ena parity, par->ATN */
1768 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1769
1770 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1771
1772 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1773 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1774 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1775 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1776 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1777
1778 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1779 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1780 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1781
1782 /* Extended Sreq/Sack filtering not supported on the C10 */
1783 if (np->features & FE_C10)
1784 OUTB(np, nc_stest2, np->rv_stest2);
1785 else
1786 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1787
1788 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1789 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1790
1791 /*
1792 * For now, disable AIP generation on C1010-66.
1793 */
Matthew Wilcoxe58bc062007-10-05 15:55:06 -04001794 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_66)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 OUTB(np, nc_aipcntl1, DISAIP);
1796
1797 /*
1798 * C10101 rev. 0 errata.
1799 * Errant SGE's when in narrow. Write bits 4 & 5 of
1800 * STEST1 register to disable SGE. We probably should do
1801 * that from SCRIPTS for each selection/reselection, but
1802 * I just don't want. :)
1803 */
Matthew Wilcoxe58bc062007-10-05 15:55:06 -04001804 if (np->s.device->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
Matthew Wilcoxbd678452007-10-05 15:55:05 -04001805 np->s.device->revision < 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1807
1808 /*
1809 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1810 * Disable overlapped arbitration for some dual function devices,
1811 * regardless revision id (kind of post-chip-design feature. ;-))
1812 */
Matthew Wilcoxe58bc062007-10-05 15:55:06 -04001813 if (np->s.device->device == PCI_DEVICE_ID_NCR_53C875)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 OUTB(np, nc_ctest0, (1<<5));
Matthew Wilcoxe58bc062007-10-05 15:55:06 -04001815 else if (np->s.device->device == PCI_DEVICE_ID_NCR_53C896)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 np->rv_ccntl0 |= DPR;
1817
1818 /*
1819 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1820 * and/or hardware phase mismatch, since only such chips
1821 * seem to support those IO registers.
1822 */
1823 if (np->features & (FE_DAC|FE_NOPM)) {
1824 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1825 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1826 }
1827
1828#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1829 /*
1830 * Set up scratch C and DRS IO registers to map the 32 bit
1831 * DMA address range our data structures are located in.
1832 */
Matthew Wilcox4d85b472007-10-05 15:55:09 -04001833 if (use_dac(np)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834 np->dmap_bah[0] = 0; /* ??? */
1835 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1836 OUTL(np, nc_drs, np->dmap_bah[0]);
1837 }
1838#endif
1839
1840 /*
1841 * If phase mismatch handled by scripts (895A/896/1010),
1842 * set PM jump addresses.
1843 */
1844 if (np->features & FE_NOPM) {
1845 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1846 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1847 }
1848
1849 /*
1850 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1851 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1852 */
1853 if (np->features & FE_LED0)
1854 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1855 else if (np->features & FE_LEDC)
1856 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1857
1858 /*
1859 * enable ints
1860 */
1861 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1862 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1863
1864 /*
1865 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1866 * Try to eat the spurious SBMC interrupt that may occur when
1867 * we reset the chip but not the SCSI BUS (at initialization).
1868 */
1869 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1870 OUTONW(np, nc_sien, SBMC);
1871 if (reason == 0) {
Matthew Wilcox 53222b92005-05-20 19:15:43 +01001872 INB(np, nc_mbox1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 mdelay(100);
1874 INW(np, nc_sist);
1875 }
1876 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1877 }
1878
1879 /*
1880 * Fill in target structure.
1881 * Reinitialize usrsync.
1882 * Reinitialize usrwide.
1883 * Prepare sync negotiation according to actual SCSI bus mode.
1884 */
1885 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1886 struct sym_tcb *tp = &np->target[i];
1887
1888 tp->to_reset = 0;
1889 tp->head.sval = 0;
1890 tp->head.wval = np->rv_scntl3;
1891 tp->head.uval = 0;
1892 }
1893
1894 /*
1895 * Download SCSI SCRIPTS to on-chip RAM if present,
1896 * and start script processor.
1897 * We do the download preferently from the CPU.
1898 * For platforms that may not support PCI memory mapping,
1899 * we use simple SCRIPTS that performs MEMORY MOVEs.
1900 */
1901 phys = SCRIPTA_BA(np, init);
1902 if (np->ram_ba) {
1903 if (sym_verbose >= 2)
1904 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1905 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
Matthew Wilcox8637baa2007-10-05 15:55:07 -04001906 if (np->features & FE_RAM8K) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1908 phys = scr_to_cpu(np->scr_ram_seg);
1909 OUTL(np, nc_mmws, phys);
1910 OUTL(np, nc_mmrs, phys);
1911 OUTL(np, nc_sfs, phys);
1912 phys = SCRIPTB_BA(np, start64);
1913 }
1914 }
1915
1916 np->istat_sem = 0;
1917
1918 OUTL(np, nc_dsa, np->hcb_ba);
1919 OUTL_DSP(np, phys);
1920
1921 /*
1922 * Notify the XPT about the RESET condition.
1923 */
1924 if (reason != 0)
1925 sym_xpt_async_bus_reset(np);
1926}
1927
1928/*
1929 * Switch trans mode for current job and its target.
1930 */
1931static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1932 u_char per, u_char wide, u_char div, u_char fak)
1933{
1934 SYM_QUEHEAD *qp;
1935 u_char sval, wval, uval;
1936 struct sym_tcb *tp = &np->target[target];
1937
1938 assert(target == (INB(np, nc_sdid) & 0x0f));
1939
1940 sval = tp->head.sval;
1941 wval = tp->head.wval;
1942 uval = tp->head.uval;
1943
1944#if 0
1945 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1946 sval, wval, uval, np->rv_scntl3);
1947#endif
1948 /*
1949 * Set the offset.
1950 */
1951 if (!(np->features & FE_C10))
1952 sval = (sval & ~0x1f) | ofs;
1953 else
1954 sval = (sval & ~0x3f) | ofs;
1955
1956 /*
1957 * Set the sync divisor and extra clock factor.
1958 */
1959 if (ofs != 0) {
1960 wval = (wval & ~0x70) | ((div+1) << 4);
1961 if (!(np->features & FE_C10))
1962 sval = (sval & ~0xe0) | (fak << 5);
1963 else {
1964 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1965 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1966 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1967 }
1968 }
1969
1970 /*
1971 * Set the bus width.
1972 */
1973 wval = wval & ~EWS;
1974 if (wide != 0)
1975 wval |= EWS;
1976
1977 /*
1978 * Set misc. ultra enable bits.
1979 */
1980 if (np->features & FE_C10) {
1981 uval = uval & ~(U3EN|AIPCKEN);
1982 if (opts) {
1983 assert(np->features & FE_U3EN);
1984 uval |= U3EN;
1985 }
1986 } else {
1987 wval = wval & ~ULTRA;
1988 if (per <= 12) wval |= ULTRA;
1989 }
1990
1991 /*
1992 * Stop there if sync parameters are unchanged.
1993 */
1994 if (tp->head.sval == sval &&
1995 tp->head.wval == wval &&
1996 tp->head.uval == uval)
1997 return;
1998 tp->head.sval = sval;
1999 tp->head.wval = wval;
2000 tp->head.uval = uval;
2001
2002 /*
2003 * Disable extended Sreq/Sack filtering if per < 50.
2004 * Not supported on the C1010.
2005 */
2006 if (per < 50 && !(np->features & FE_C10))
2007 OUTOFFB(np, nc_stest2, EXT);
2008
2009 /*
2010 * set actual value and sync_status
2011 */
2012 OUTB(np, nc_sxfer, tp->head.sval);
2013 OUTB(np, nc_scntl3, tp->head.wval);
2014
2015 if (np->features & FE_C10) {
2016 OUTB(np, nc_scntl4, tp->head.uval);
2017 }
2018
2019 /*
2020 * patch ALL busy ccbs of this target.
2021 */
2022 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2023 struct sym_ccb *cp;
2024 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2025 if (cp->target != target)
2026 continue;
2027 cp->phys.select.sel_scntl3 = tp->head.wval;
2028 cp->phys.select.sel_sxfer = tp->head.sval;
2029 if (np->features & FE_C10) {
2030 cp->phys.select.sel_scntl4 = tp->head.uval;
2031 }
2032 }
2033}
2034
2035/*
2036 * We received a WDTR.
2037 * Let everything be aware of the changes.
2038 */
2039static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2040{
2041 struct sym_tcb *tp = &np->target[target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +01002042 struct scsi_target *starget = tp->starget;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043
2044 if (spi_width(starget) == wide)
2045 return;
2046
2047 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2048
2049 tp->tgoal.width = wide;
2050 spi_offset(starget) = 0;
2051 spi_period(starget) = 0;
2052 spi_width(starget) = wide;
2053 spi_iu(starget) = 0;
2054 spi_dt(starget) = 0;
2055 spi_qas(starget) = 0;
2056
2057 if (sym_verbose >= 3)
2058 spi_display_xfer_agreement(starget);
2059}
2060
2061/*
2062 * We received a SDTR.
2063 * Let everything be aware of the changes.
2064 */
2065static void
2066sym_setsync(struct sym_hcb *np, int target,
2067 u_char ofs, u_char per, u_char div, u_char fak)
2068{
2069 struct sym_tcb *tp = &np->target[target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +01002070 struct scsi_target *starget = tp->starget;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2072
2073 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2074
2075 spi_period(starget) = per;
2076 spi_offset(starget) = ofs;
2077 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2078
2079 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2080 tp->tgoal.period = per;
2081 tp->tgoal.offset = ofs;
2082 tp->tgoal.check_nego = 0;
2083 }
2084
2085 spi_display_xfer_agreement(starget);
2086}
2087
2088/*
2089 * We received a PPR.
2090 * Let everything be aware of the changes.
2091 */
2092static void
2093sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2094 u_char per, u_char wide, u_char div, u_char fak)
2095{
2096 struct sym_tcb *tp = &np->target[target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +01002097 struct scsi_target *starget = tp->starget;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098
2099 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2100
2101 spi_width(starget) = tp->tgoal.width = wide;
2102 spi_period(starget) = tp->tgoal.period = per;
2103 spi_offset(starget) = tp->tgoal.offset = ofs;
2104 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2105 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2106 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2107 tp->tgoal.check_nego = 0;
2108
2109 spi_display_xfer_agreement(starget);
2110}
2111
2112/*
2113 * generic recovery from scsi interrupt
2114 *
2115 * The doc says that when the chip gets an SCSI interrupt,
2116 * it tries to stop in an orderly fashion, by completing
2117 * an instruction fetch that had started or by flushing
2118 * the DMA fifo for a write to memory that was executing.
2119 * Such a fashion is not enough to know if the instruction
2120 * that was just before the current DSP value has been
2121 * executed or not.
2122 *
2123 * There are some small SCRIPTS sections that deal with
2124 * the start queue and the done queue that may break any
2125 * assomption from the C code if we are interrupted
2126 * inside, so we reset if this happens. Btw, since these
2127 * SCRIPTS sections are executed while the SCRIPTS hasn't
2128 * started SCSI operations, it is very unlikely to happen.
2129 *
2130 * All the driver data structures are supposed to be
2131 * allocated from the same 4 GB memory window, so there
2132 * is a 1 to 1 relationship between DSA and driver data
2133 * structures. Since we are careful :) to invalidate the
2134 * DSA when we complete a command or when the SCRIPTS
2135 * pushes a DSA into a queue, we can trust it when it
2136 * points to a CCB.
2137 */
2138static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2139{
2140 u32 dsp = INL(np, nc_dsp);
2141 u32 dsa = INL(np, nc_dsa);
2142 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2143
2144 /*
2145 * If we haven't been interrupted inside the SCRIPTS
2146 * critical pathes, we can safely restart the SCRIPTS
2147 * and trust the DSA value if it matches a CCB.
2148 */
2149 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2150 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2151 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2152 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2153 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2154 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2155 (!(dsp > SCRIPTA_BA(np, done) &&
2156 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2157 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2158 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2159 /*
2160 * If we have a CCB, let the SCRIPTS call us back for
2161 * the handling of the error with SCRATCHA filled with
2162 * STARTPOS. This way, we will be able to freeze the
2163 * device queue and requeue awaiting IOs.
2164 */
2165 if (cp) {
2166 cp->host_status = hsts;
2167 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2168 }
2169 /*
2170 * Otherwise just restart the SCRIPTS.
2171 */
2172 else {
2173 OUTL(np, nc_dsa, 0xffffff);
2174 OUTL_DSP(np, SCRIPTA_BA(np, start));
2175 }
2176 }
2177 else
2178 goto reset_all;
2179
2180 return;
2181
2182reset_all:
2183 sym_start_reset(np);
2184}
2185
2186/*
2187 * chip exception handler for selection timeout
2188 */
2189static void sym_int_sto (struct sym_hcb *np)
2190{
2191 u32 dsp = INL(np, nc_dsp);
2192
2193 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2194
2195 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2196 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2197 else
2198 sym_start_reset(np);
2199}
2200
2201/*
2202 * chip exception handler for unexpected disconnect
2203 */
2204static void sym_int_udc (struct sym_hcb *np)
2205{
2206 printf ("%s: unexpected disconnect\n", sym_name(np));
2207 sym_recover_scsi_int(np, HS_UNEXPECTED);
2208}
2209
2210/*
2211 * chip exception handler for SCSI bus mode change
2212 *
2213 * spi2-r12 11.2.3 says a transceiver mode change must
2214 * generate a reset event and a device that detects a reset
2215 * event shall initiate a hard reset. It says also that a
2216 * device that detects a mode change shall set data transfer
2217 * mode to eight bit asynchronous, etc...
2218 * So, just reinitializing all except chip should be enough.
2219 */
2220static void sym_int_sbmc (struct sym_hcb *np)
2221{
2222 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2223
2224 /*
2225 * Notify user.
2226 */
2227 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2228 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2229
2230 /*
2231 * Should suspend command processing for a few seconds and
2232 * reinitialize all except the chip.
2233 */
2234 sym_start_up (np, 2);
2235}
2236
2237/*
2238 * chip exception handler for SCSI parity error.
2239 *
2240 * When the chip detects a SCSI parity error and is
2241 * currently executing a (CH)MOV instruction, it does
2242 * not interrupt immediately, but tries to finish the
2243 * transfer of the current scatter entry before
2244 * interrupting. The following situations may occur:
2245 *
2246 * - The complete scatter entry has been transferred
2247 * without the device having changed phase.
2248 * The chip will then interrupt with the DSP pointing
2249 * to the instruction that follows the MOV.
2250 *
2251 * - A phase mismatch occurs before the MOV finished
2252 * and phase errors are to be handled by the C code.
2253 * The chip will then interrupt with both PAR and MA
2254 * conditions set.
2255 *
2256 * - A phase mismatch occurs before the MOV finished and
2257 * phase errors are to be handled by SCRIPTS.
2258 * The chip will load the DSP with the phase mismatch
2259 * JUMP address and interrupt the host processor.
2260 */
2261static void sym_int_par (struct sym_hcb *np, u_short sist)
2262{
2263 u_char hsts = INB(np, HS_PRT);
2264 u32 dsp = INL(np, nc_dsp);
2265 u32 dbc = INL(np, nc_dbc);
2266 u32 dsa = INL(np, nc_dsa);
2267 u_char sbcl = INB(np, nc_sbcl);
2268 u_char cmd = dbc >> 24;
2269 int phase = cmd & 7;
2270 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2271
2272 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2273 sym_name(np), hsts, dbc, sbcl);
2274
2275 /*
2276 * Check that the chip is connected to the SCSI BUS.
2277 */
2278 if (!(INB(np, nc_scntl1) & ISCON)) {
2279 sym_recover_scsi_int(np, HS_UNEXPECTED);
2280 return;
2281 }
2282
2283 /*
2284 * If the nexus is not clearly identified, reset the bus.
2285 * We will try to do better later.
2286 */
2287 if (!cp)
2288 goto reset_all;
2289
2290 /*
2291 * Check instruction was a MOV, direction was INPUT and
2292 * ATN is asserted.
2293 */
2294 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2295 goto reset_all;
2296
2297 /*
2298 * Keep track of the parity error.
2299 */
2300 OUTONB(np, HF_PRT, HF_EXT_ERR);
2301 cp->xerr_status |= XE_PARITY_ERR;
2302
2303 /*
2304 * Prepare the message to send to the device.
2305 */
2306 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2307
2308 /*
2309 * If the old phase was DATA IN phase, we have to deal with
2310 * the 3 situations described above.
2311 * For other input phases (MSG IN and STATUS), the device
2312 * must resend the whole thing that failed parity checking
2313 * or signal error. So, jumping to dispatcher should be OK.
2314 */
2315 if (phase == 1 || phase == 5) {
2316 /* Phase mismatch handled by SCRIPTS */
2317 if (dsp == SCRIPTB_BA(np, pm_handle))
2318 OUTL_DSP(np, dsp);
2319 /* Phase mismatch handled by the C code */
2320 else if (sist & MA)
2321 sym_int_ma (np);
2322 /* No phase mismatch occurred */
2323 else {
2324 sym_set_script_dp (np, cp, dsp);
2325 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2326 }
2327 }
2328 else if (phase == 7) /* We definitely cannot handle parity errors */
2329#if 1 /* in message-in phase due to the relection */
2330 goto reset_all; /* path and various message anticipations. */
2331#else
2332 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2333#endif
2334 else
2335 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2336 return;
2337
2338reset_all:
2339 sym_start_reset(np);
2340 return;
2341}
2342
2343/*
2344 * chip exception handler for phase errors.
2345 *
2346 * We have to construct a new transfer descriptor,
2347 * to transfer the rest of the current block.
2348 */
2349static void sym_int_ma (struct sym_hcb *np)
2350{
2351 u32 dbc;
2352 u32 rest;
2353 u32 dsp;
2354 u32 dsa;
2355 u32 nxtdsp;
2356 u32 *vdsp;
2357 u32 oadr, olen;
2358 u32 *tblp;
2359 u32 newcmd;
2360 u_int delta;
2361 u_char cmd;
2362 u_char hflags, hflags0;
2363 struct sym_pmc *pm;
2364 struct sym_ccb *cp;
2365
2366 dsp = INL(np, nc_dsp);
2367 dbc = INL(np, nc_dbc);
2368 dsa = INL(np, nc_dsa);
2369
2370 cmd = dbc >> 24;
2371 rest = dbc & 0xffffff;
2372 delta = 0;
2373
2374 /*
2375 * locate matching cp if any.
2376 */
2377 cp = sym_ccb_from_dsa(np, dsa);
2378
2379 /*
2380 * Donnot take into account dma fifo and various buffers in
2381 * INPUT phase since the chip flushes everything before
2382 * raising the MA interrupt for interrupted INPUT phases.
2383 * For DATA IN phase, we will check for the SWIDE later.
2384 */
2385 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2386 u_char ss0, ss2;
2387
2388 if (np->features & FE_DFBC)
2389 delta = INW(np, nc_dfbc);
2390 else {
2391 u32 dfifo;
2392
2393 /*
2394 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2395 */
2396 dfifo = INL(np, nc_dfifo);
2397
2398 /*
2399 * Calculate remaining bytes in DMA fifo.
2400 * (CTEST5 = dfifo >> 16)
2401 */
2402 if (dfifo & (DFS << 16))
2403 delta = ((((dfifo >> 8) & 0x300) |
2404 (dfifo & 0xff)) - rest) & 0x3ff;
2405 else
2406 delta = ((dfifo & 0xff) - rest) & 0x7f;
2407 }
2408
2409 /*
2410 * The data in the dma fifo has not been transfered to
2411 * the target -> add the amount to the rest
2412 * and clear the data.
2413 * Check the sstat2 register in case of wide transfer.
2414 */
2415 rest += delta;
2416 ss0 = INB(np, nc_sstat0);
2417 if (ss0 & OLF) rest++;
2418 if (!(np->features & FE_C10))
2419 if (ss0 & ORF) rest++;
2420 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2421 ss2 = INB(np, nc_sstat2);
2422 if (ss2 & OLF1) rest++;
2423 if (!(np->features & FE_C10))
2424 if (ss2 & ORF1) rest++;
2425 }
2426
2427 /*
2428 * Clear fifos.
2429 */
2430 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2431 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2432 }
2433
2434 /*
2435 * log the information
2436 */
2437 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2438 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2439 (unsigned) rest, (unsigned) delta);
2440
2441 /*
2442 * try to find the interrupted script command,
2443 * and the address at which to continue.
2444 */
2445 vdsp = NULL;
2446 nxtdsp = 0;
2447 if (dsp > np->scripta_ba &&
2448 dsp <= np->scripta_ba + np->scripta_sz) {
2449 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2450 nxtdsp = dsp;
2451 }
2452 else if (dsp > np->scriptb_ba &&
2453 dsp <= np->scriptb_ba + np->scriptb_sz) {
2454 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2455 nxtdsp = dsp;
2456 }
2457
2458 /*
2459 * log the information
2460 */
2461 if (DEBUG_FLAGS & DEBUG_PHASE) {
2462 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2463 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2464 }
2465
2466 if (!vdsp) {
2467 printf ("%s: interrupted SCRIPT address not found.\n",
2468 sym_name (np));
2469 goto reset_all;
2470 }
2471
2472 if (!cp) {
2473 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2474 sym_name (np));
2475 goto reset_all;
2476 }
2477
2478 /*
2479 * get old startaddress and old length.
2480 */
2481 oadr = scr_to_cpu(vdsp[1]);
2482
2483 if (cmd & 0x10) { /* Table indirect */
2484 tblp = (u32 *) ((char*) &cp->phys + oadr);
2485 olen = scr_to_cpu(tblp[0]);
2486 oadr = scr_to_cpu(tblp[1]);
2487 } else {
2488 tblp = (u32 *) 0;
2489 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2490 }
2491
2492 if (DEBUG_FLAGS & DEBUG_PHASE) {
2493 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2494 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2495 tblp,
2496 (unsigned) olen,
2497 (unsigned) oadr);
2498 }
2499
2500 /*
2501 * check cmd against assumed interrupted script command.
2502 * If dt data phase, the MOVE instruction hasn't bit 4 of
2503 * the phase.
2504 */
2505 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2506 sym_print_addr(cp->cmd,
2507 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2508 cmd, scr_to_cpu(vdsp[0]) >> 24);
2509
2510 goto reset_all;
2511 }
2512
2513 /*
2514 * if old phase not dataphase, leave here.
2515 */
2516 if (cmd & 2) {
2517 sym_print_addr(cp->cmd,
2518 "phase change %x-%x %d@%08x resid=%d.\n",
2519 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2520 (unsigned)oadr, (unsigned)rest);
2521 goto unexpected_phase;
2522 }
2523
2524 /*
2525 * Choose the correct PM save area.
2526 *
2527 * Look at the PM_SAVE SCRIPT if you want to understand
2528 * this stuff. The equivalent code is implemented in
2529 * SCRIPTS for the 895A, 896 and 1010 that are able to
2530 * handle PM from the SCRIPTS processor.
2531 */
2532 hflags0 = INB(np, HF_PRT);
2533 hflags = hflags0;
2534
2535 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2536 if (hflags & HF_IN_PM0)
2537 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2538 else if (hflags & HF_IN_PM1)
2539 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2540
2541 if (hflags & HF_DP_SAVED)
2542 hflags ^= HF_ACT_PM;
2543 }
2544
2545 if (!(hflags & HF_ACT_PM)) {
2546 pm = &cp->phys.pm0;
2547 newcmd = SCRIPTA_BA(np, pm0_data);
2548 }
2549 else {
2550 pm = &cp->phys.pm1;
2551 newcmd = SCRIPTA_BA(np, pm1_data);
2552 }
2553
2554 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2555 if (hflags != hflags0)
2556 OUTB(np, HF_PRT, hflags);
2557
2558 /*
2559 * fillin the phase mismatch context
2560 */
2561 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2562 pm->sg.size = cpu_to_scr(rest);
2563 pm->ret = cpu_to_scr(nxtdsp);
2564
2565 /*
2566 * If we have a SWIDE,
2567 * - prepare the address to write the SWIDE from SCRIPTS,
2568 * - compute the SCRIPTS address to restart from,
2569 * - move current data pointer context by one byte.
2570 */
2571 nxtdsp = SCRIPTA_BA(np, dispatch);
2572 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2573 (INB(np, nc_scntl2) & WSR)) {
2574 u32 tmp;
2575
2576 /*
2577 * Set up the table indirect for the MOVE
2578 * of the residual byte and adjust the data
2579 * pointer context.
2580 */
2581 tmp = scr_to_cpu(pm->sg.addr);
2582 cp->phys.wresid.addr = cpu_to_scr(tmp);
2583 pm->sg.addr = cpu_to_scr(tmp + 1);
2584 tmp = scr_to_cpu(pm->sg.size);
2585 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2586 pm->sg.size = cpu_to_scr(tmp - 1);
2587
2588 /*
2589 * If only the residual byte is to be moved,
2590 * no PM context is needed.
2591 */
2592 if ((tmp&0xffffff) == 1)
2593 newcmd = pm->ret;
2594
2595 /*
2596 * Prepare the address of SCRIPTS that will
2597 * move the residual byte to memory.
2598 */
2599 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2600 }
2601
2602 if (DEBUG_FLAGS & DEBUG_PHASE) {
2603 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2604 hflags0, hflags, newcmd,
2605 (unsigned)scr_to_cpu(pm->sg.addr),
2606 (unsigned)scr_to_cpu(pm->sg.size),
2607 (unsigned)scr_to_cpu(pm->ret));
2608 }
2609
2610 /*
2611 * Restart the SCRIPTS processor.
2612 */
2613 sym_set_script_dp (np, cp, newcmd);
2614 OUTL_DSP(np, nxtdsp);
2615 return;
2616
2617 /*
2618 * Unexpected phase changes that occurs when the current phase
2619 * is not a DATA IN or DATA OUT phase are due to error conditions.
2620 * Such event may only happen when the SCRIPTS is using a
2621 * multibyte SCSI MOVE.
2622 *
2623 * Phase change Some possible cause
2624 *
2625 * COMMAND --> MSG IN SCSI parity error detected by target.
2626 * COMMAND --> STATUS Bad command or refused by target.
2627 * MSG OUT --> MSG IN Message rejected by target.
2628 * MSG OUT --> COMMAND Bogus target that discards extended
2629 * negotiation messages.
2630 *
2631 * The code below does not care of the new phase and so
2632 * trusts the target. Why to annoy it ?
2633 * If the interrupted phase is COMMAND phase, we restart at
2634 * dispatcher.
2635 * If a target does not get all the messages after selection,
2636 * the code assumes blindly that the target discards extended
2637 * messages and clears the negotiation status.
2638 * If the target does not want all our response to negotiation,
2639 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2640 * bloat for such a should_not_happen situation).
2641 * In all other situation, we reset the BUS.
2642 * Are these assumptions reasonnable ? (Wait and see ...)
2643 */
2644unexpected_phase:
2645 dsp -= 8;
2646 nxtdsp = 0;
2647
2648 switch (cmd & 7) {
2649 case 2: /* COMMAND phase */
2650 nxtdsp = SCRIPTA_BA(np, dispatch);
2651 break;
2652#if 0
2653 case 3: /* STATUS phase */
2654 nxtdsp = SCRIPTA_BA(np, dispatch);
2655 break;
2656#endif
2657 case 6: /* MSG OUT phase */
2658 /*
2659 * If the device may want to use untagged when we want
2660 * tagged, we prepare an IDENTIFY without disc. granted,
2661 * since we will not be able to handle reselect.
2662 * Otherwise, we just don't care.
2663 */
2664 if (dsp == SCRIPTA_BA(np, send_ident)) {
2665 if (cp->tag != NO_TAG && olen - rest <= 3) {
2666 cp->host_status = HS_BUSY;
2667 np->msgout[0] = IDENTIFY(0, cp->lun);
2668 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2669 }
2670 else
2671 nxtdsp = SCRIPTB_BA(np, ident_break);
2672 }
2673 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2674 dsp == SCRIPTB_BA(np, send_sdtr) ||
2675 dsp == SCRIPTB_BA(np, send_ppr)) {
2676 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2677 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2678 struct scsi_device *dev = cp->cmd->device;
2679 dev->ppr = 0;
2680 }
2681 }
2682 break;
2683#if 0
2684 case 7: /* MSG IN phase */
2685 nxtdsp = SCRIPTA_BA(np, clrack);
2686 break;
2687#endif
2688 }
2689
2690 if (nxtdsp) {
2691 OUTL_DSP(np, nxtdsp);
2692 return;
2693 }
2694
2695reset_all:
2696 sym_start_reset(np);
2697}
2698
2699/*
2700 * chip interrupt handler
2701 *
2702 * In normal situations, interrupt conditions occur one at
2703 * a time. But when something bad happens on the SCSI BUS,
2704 * the chip may raise several interrupt flags before
2705 * stopping and interrupting the CPU. The additionnal
2706 * interrupt flags are stacked in some extra registers
2707 * after the SIP and/or DIP flag has been raised in the
2708 * ISTAT. After the CPU has read the interrupt condition
2709 * flag from SIST or DSTAT, the chip unstacks the other
2710 * interrupt flags and sets the corresponding bits in
2711 * SIST or DSTAT. Since the chip starts stacking once the
2712 * SIP or DIP flag is set, there is a small window of time
2713 * where the stacking does not occur.
2714 *
2715 * Typically, multiple interrupt conditions may happen in
2716 * the following situations:
2717 *
2718 * - SCSI parity error + Phase mismatch (PAR|MA)
2719 * When an parity error is detected in input phase
2720 * and the device switches to msg-in phase inside a
2721 * block MOV.
2722 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2723 * When a stupid device does not want to handle the
2724 * recovery of an SCSI parity error.
2725 * - Some combinations of STO, PAR, UDC, ...
2726 * When using non compliant SCSI stuff, when user is
2727 * doing non compliant hot tampering on the BUS, when
2728 * something really bad happens to a device, etc ...
2729 *
2730 * The heuristic suggested by SYMBIOS to handle
2731 * multiple interrupts is to try unstacking all
2732 * interrupts conditions and to handle them on some
2733 * priority based on error severity.
2734 * This will work when the unstacking has been
2735 * successful, but we cannot be 100 % sure of that,
2736 * since the CPU may have been faster to unstack than
2737 * the chip is able to stack. Hmmm ... But it seems that
2738 * such a situation is very unlikely to happen.
2739 *
2740 * If this happen, for example STO caught by the CPU
2741 * then UDC happenning before the CPU have restarted
2742 * the SCRIPTS, the driver may wrongly complete the
2743 * same command on UDC, since the SCRIPTS didn't restart
2744 * and the DSA still points to the same command.
2745 * We avoid this situation by setting the DSA to an
2746 * invalid value when the CCB is completed and before
2747 * restarting the SCRIPTS.
2748 *
2749 * Another issue is that we need some section of our
2750 * recovery procedures to be somehow uninterruptible but
2751 * the SCRIPTS processor does not provides such a
2752 * feature. For this reason, we handle recovery preferently
2753 * from the C code and check against some SCRIPTS critical
2754 * sections from the C code.
2755 *
2756 * Hopefully, the interrupt handling of the driver is now
2757 * able to resist to weird BUS error conditions, but donnot
2758 * ask me for any guarantee that it will never fail. :-)
2759 * Use at your own decision and risk.
2760 */
2761
2762void sym_interrupt (struct sym_hcb *np)
2763{
2764 u_char istat, istatc;
2765 u_char dstat;
2766 u_short sist;
2767
2768 /*
2769 * interrupt on the fly ?
2770 * (SCRIPTS may still be running)
2771 *
2772 * A `dummy read' is needed to ensure that the
2773 * clear of the INTF flag reaches the device
2774 * and that posted writes are flushed to memory
2775 * before the scanning of the DONE queue.
2776 * Note that SCRIPTS also (dummy) read to memory
2777 * prior to deliver the INTF interrupt condition.
2778 */
2779 istat = INB(np, nc_istat);
2780 if (istat & INTF) {
2781 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2782 istat = INB(np, nc_istat); /* DUMMY READ */
2783 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2784 sym_wakeup_done(np);
2785 }
2786
2787 if (!(istat & (SIP|DIP)))
2788 return;
2789
2790#if 0 /* We should never get this one */
2791 if (istat & CABRT)
2792 OUTB(np, nc_istat, CABRT);
2793#endif
2794
2795 /*
2796 * PAR and MA interrupts may occur at the same time,
2797 * and we need to know of both in order to handle
2798 * this situation properly. We try to unstack SCSI
2799 * interrupts for that reason. BTW, I dislike a LOT
2800 * such a loop inside the interrupt routine.
2801 * Even if DMA interrupt stacking is very unlikely to
2802 * happen, we also try unstacking these ones, since
2803 * this has no performance impact.
2804 */
2805 sist = 0;
2806 dstat = 0;
2807 istatc = istat;
2808 do {
2809 if (istatc & SIP)
2810 sist |= INW(np, nc_sist);
2811 if (istatc & DIP)
2812 dstat |= INB(np, nc_dstat);
2813 istatc = INB(np, nc_istat);
2814 istat |= istatc;
Linas Vepstasd68cd752007-10-05 15:55:04 -04002815
2816 /* Prevent deadlock waiting on a condition that may
2817 * never clear. */
2818 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2819 if (pci_channel_offline(np->s.device))
2820 return;
2821 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 } while (istatc & (SIP|DIP));
2823
2824 if (DEBUG_FLAGS & DEBUG_TINY)
2825 printf ("<%d|%x:%x|%x:%x>",
2826 (int)INB(np, nc_scr0),
2827 dstat,sist,
2828 (unsigned)INL(np, nc_dsp),
2829 (unsigned)INL(np, nc_dbc));
2830 /*
2831 * On paper, a memory read barrier may be needed here to
2832 * prevent out of order LOADs by the CPU from having
2833 * prefetched stale data prior to DMA having occurred.
2834 * And since we are paranoid ... :)
2835 */
2836 MEMORY_READ_BARRIER();
2837
2838 /*
2839 * First, interrupts we want to service cleanly.
2840 *
2841 * Phase mismatch (MA) is the most frequent interrupt
2842 * for chip earlier than the 896 and so we have to service
2843 * it as quickly as possible.
2844 * A SCSI parity error (PAR) may be combined with a phase
2845 * mismatch condition (MA).
2846 * Programmed interrupts (SIR) are used to call the C code
2847 * from SCRIPTS.
2848 * The single step interrupt (SSI) is not used in this
2849 * driver.
2850 */
2851 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2852 !(dstat & (MDPE|BF|ABRT|IID))) {
2853 if (sist & PAR) sym_int_par (np, sist);
2854 else if (sist & MA) sym_int_ma (np);
2855 else if (dstat & SIR) sym_int_sir (np);
2856 else if (dstat & SSI) OUTONB_STD();
2857 else goto unknown_int;
2858 return;
2859 }
2860
2861 /*
2862 * Now, interrupts that donnot happen in normal
2863 * situations and that we may need to recover from.
2864 *
2865 * On SCSI RESET (RST), we reset everything.
2866 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2867 * active CCBs with RESET status, prepare all devices
2868 * for negotiating again and restart the SCRIPTS.
2869 * On STO and UDC, we complete the CCB with the corres-
2870 * ponding status and restart the SCRIPTS.
2871 */
2872 if (sist & RST) {
2873 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2874 sym_start_up (np, 1);
2875 return;
2876 }
2877
2878 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2879 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2880
2881 if (!(sist & (GEN|HTH|SGE)) &&
2882 !(dstat & (MDPE|BF|ABRT|IID))) {
2883 if (sist & SBMC) sym_int_sbmc (np);
2884 else if (sist & STO) sym_int_sto (np);
2885 else if (sist & UDC) sym_int_udc (np);
2886 else goto unknown_int;
2887 return;
2888 }
2889
2890 /*
2891 * Now, interrupts we are not able to recover cleanly.
2892 *
2893 * Log message for hard errors.
2894 * Reset everything.
2895 */
2896
2897 sym_log_hard_error(np, sist, dstat);
2898
2899 if ((sist & (GEN|HTH|SGE)) ||
2900 (dstat & (MDPE|BF|ABRT|IID))) {
2901 sym_start_reset(np);
2902 return;
2903 }
2904
2905unknown_int:
2906 /*
2907 * We just miss the cause of the interrupt. :(
2908 * Print a message. The timeout will do the real work.
2909 */
2910 printf( "%s: unknown interrupt(s) ignored, "
2911 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2912 sym_name(np), istat, dstat, sist);
2913}
2914
2915/*
2916 * Dequeue from the START queue all CCBs that match
2917 * a given target/lun/task condition (-1 means all),
2918 * and move them from the BUSY queue to the COMP queue
Matthew Wilcox 53222b92005-05-20 19:15:43 +01002919 * with DID_SOFT_ERROR status condition.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 * This function is used during error handling/recovery.
2921 * It is called with SCRIPTS not running.
2922 */
2923static int
2924sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2925{
2926 int j;
2927 struct sym_ccb *cp;
2928
2929 /*
2930 * Make sure the starting index is within range.
2931 */
2932 assert((i >= 0) && (i < 2*MAX_QUEUE));
2933
2934 /*
2935 * Walk until end of START queue and dequeue every job
2936 * that matches the target/lun/task condition.
2937 */
2938 j = i;
2939 while (i != np->squeueput) {
2940 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2941 assert(cp);
2942#ifdef SYM_CONF_IARB_SUPPORT
2943 /* Forget hints for IARB, they may be no longer relevant */
2944 cp->host_flags &= ~HF_HINT_IARB;
2945#endif
2946 if ((target == -1 || cp->target == target) &&
2947 (lun == -1 || cp->lun == lun) &&
2948 (task == -1 || cp->tag == task)) {
Matthew Wilcox 53222b92005-05-20 19:15:43 +01002949 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950 sym_remque(&cp->link_ccbq);
2951 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2952 }
2953 else {
2954 if (i != j)
2955 np->squeue[j] = np->squeue[i];
2956 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2957 }
2958 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2959 }
2960 if (i != j) /* Copy back the idle task if needed */
2961 np->squeue[j] = np->squeue[i];
2962 np->squeueput = j; /* Update our current start queue pointer */
2963
2964 return (i - j) / 2;
2965}
2966
2967/*
2968 * chip handler for bad SCSI status condition
2969 *
2970 * In case of bad SCSI status, we unqueue all the tasks
2971 * currently queued to the controller but not yet started
2972 * and then restart the SCRIPTS processor immediately.
2973 *
2974 * QUEUE FULL and BUSY conditions are handled the same way.
2975 * Basically all the not yet started tasks are requeued in
2976 * device queue and the queue is frozen until a completion.
2977 *
2978 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2979 * the CCB of the failed command to prepare a REQUEST SENSE
2980 * SCSI command and queue it to the controller queue.
2981 *
2982 * SCRATCHA is assumed to have been loaded with STARTPOS
2983 * before the SCRIPTS called the C code.
2984 */
2985static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2986{
2987 u32 startp;
2988 u_char s_status = cp->ssss_status;
2989 u_char h_flags = cp->host_flags;
2990 int msglen;
2991 int i;
2992
2993 /*
2994 * Compute the index of the next job to start from SCRIPTS.
2995 */
2996 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
2997
2998 /*
2999 * The last CCB queued used for IARB hint may be
3000 * no longer relevant. Forget it.
3001 */
3002#ifdef SYM_CONF_IARB_SUPPORT
3003 if (np->last_cp)
3004 np->last_cp = 0;
3005#endif
3006
3007 /*
3008 * Now deal with the SCSI status.
3009 */
3010 switch(s_status) {
3011 case S_BUSY:
3012 case S_QUEUE_FULL:
3013 if (sym_verbose >= 2) {
3014 sym_print_addr(cp->cmd, "%s\n",
3015 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3016 }
3017 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3018 sym_complete_error (np, cp);
3019 break;
3020 case S_TERMINATED:
3021 case S_CHECK_COND:
3022 /*
3023 * If we get an SCSI error when requesting sense, give up.
3024 */
3025 if (h_flags & HF_SENSE) {
3026 sym_complete_error (np, cp);
3027 break;
3028 }
3029
3030 /*
3031 * Dequeue all queued CCBs for that device not yet started,
3032 * and restart the SCRIPTS processor immediately.
3033 */
3034 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3035 OUTL_DSP(np, SCRIPTA_BA(np, start));
3036
3037 /*
3038 * Save some info of the actual IO.
3039 * Compute the data residual.
3040 */
3041 cp->sv_scsi_status = cp->ssss_status;
3042 cp->sv_xerr_status = cp->xerr_status;
3043 cp->sv_resid = sym_compute_residual(np, cp);
3044
3045 /*
3046 * Prepare all needed data structures for
3047 * requesting sense data.
3048 */
3049
3050 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3051 msglen = 1;
3052
3053 /*
3054 * If we are currently using anything different from
3055 * async. 8 bit data transfers with that target,
3056 * start a negotiation, since the device may want
3057 * to report us a UNIT ATTENTION condition due to
3058 * a cause we currently ignore, and we donnot want
3059 * to be stuck with WIDE and/or SYNC data transfer.
3060 *
3061 * cp->nego_status is filled by sym_prepare_nego().
3062 */
3063 cp->nego_status = 0;
3064 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3065 /*
3066 * Message table indirect structure.
3067 */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003068 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069 cp->phys.smsg.size = cpu_to_scr(msglen);
3070
3071 /*
3072 * sense command
3073 */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003074 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003075 cp->phys.cmd.size = cpu_to_scr(6);
3076
3077 /*
3078 * patch requested size into sense command
3079 */
3080 cp->sensecmd[0] = REQUEST_SENSE;
3081 cp->sensecmd[1] = 0;
3082 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3083 cp->sensecmd[1] = cp->lun << 5;
3084 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3085 cp->data_len = SYM_SNS_BBUF_LEN;
3086
3087 /*
3088 * sense data
3089 */
3090 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003091 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003092 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3093
3094 /*
3095 * requeue the command.
3096 */
3097 startp = SCRIPTB_BA(np, sdata_in);
3098
3099 cp->phys.head.savep = cpu_to_scr(startp);
3100 cp->phys.head.lastp = cpu_to_scr(startp);
3101 cp->startp = cpu_to_scr(startp);
3102 cp->goalp = cpu_to_scr(startp + 16);
3103
3104 cp->host_xflags = 0;
3105 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3106 cp->ssss_status = S_ILLEGAL;
3107 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3108 cp->xerr_status = 0;
3109 cp->extra_bytes = 0;
3110
3111 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3112
3113 /*
3114 * Requeue the command.
3115 */
3116 sym_put_start_queue(np, cp);
3117
3118 /*
3119 * Give back to upper layer everything we have dequeued.
3120 */
3121 sym_flush_comp_queue(np, 0);
3122 break;
3123 }
3124}
3125
3126/*
3127 * After a device has accepted some management message
3128 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3129 * a device signals a UNIT ATTENTION condition, some
3130 * tasks are thrown away by the device. We are required
3131 * to reflect that on our tasks list since the device
3132 * will never complete these tasks.
3133 *
3134 * This function move from the BUSY queue to the COMP
3135 * queue all disconnected CCBs for a given target that
3136 * match the following criteria:
3137 * - lun=-1 means any logical UNIT otherwise a given one.
3138 * - task=-1 means any task, otherwise a given one.
3139 */
3140int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3141{
3142 SYM_QUEHEAD qtmp, *qp;
3143 int i = 0;
3144 struct sym_ccb *cp;
3145
3146 /*
3147 * Move the entire BUSY queue to our temporary queue.
3148 */
3149 sym_que_init(&qtmp);
3150 sym_que_splice(&np->busy_ccbq, &qtmp);
3151 sym_que_init(&np->busy_ccbq);
3152
3153 /*
3154 * Put all CCBs that matches our criteria into
3155 * the COMP queue and put back other ones into
3156 * the BUSY queue.
3157 */
3158 while ((qp = sym_remque_head(&qtmp)) != 0) {
3159 struct scsi_cmnd *cmd;
3160 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3161 cmd = cp->cmd;
3162 if (cp->host_status != HS_DISCONNECT ||
3163 cp->target != target ||
3164 (lun != -1 && cp->lun != lun) ||
3165 (task != -1 &&
3166 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3167 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3168 continue;
3169 }
3170 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3171
3172 /* Preserve the software timeout condition */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003173 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003174 sym_set_cam_status(cmd, cam_status);
3175 ++i;
3176#if 0
3177printf("XXXX TASK @%p CLEARED\n", cp);
3178#endif
3179 }
3180 return i;
3181}
3182
3183/*
3184 * chip handler for TASKS recovery
3185 *
3186 * We cannot safely abort a command, while the SCRIPTS
3187 * processor is running, since we just would be in race
3188 * with it.
3189 *
3190 * As long as we have tasks to abort, we keep the SEM
3191 * bit set in the ISTAT. When this bit is set, the
3192 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3193 * each time it enters the scheduler.
3194 *
3195 * If we have to reset a target, clear tasks of a unit,
3196 * or to perform the abort of a disconnected job, we
3197 * restart the SCRIPTS for selecting the target. Once
3198 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3199 * If it loses arbitration, the SCRIPTS will interrupt again
3200 * the next time it will enter its scheduler, and so on ...
3201 *
3202 * On SIR_TARGET_SELECTED, we scan for the more
3203 * appropriate thing to do:
3204 *
3205 * - If nothing, we just sent a M_ABORT message to the
3206 * target to get rid of the useless SCSI bus ownership.
3207 * According to the specs, no tasks shall be affected.
3208 * - If the target is to be reset, we send it a M_RESET
3209 * message.
3210 * - If a logical UNIT is to be cleared , we send the
3211 * IDENTIFY(lun) + M_ABORT.
3212 * - If an untagged task is to be aborted, we send the
3213 * IDENTIFY(lun) + M_ABORT.
3214 * - If a tagged task is to be aborted, we send the
3215 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3216 *
3217 * Once our 'kiss of death' :) message has been accepted
3218 * by the target, the SCRIPTS interrupts again
3219 * (SIR_ABORT_SENT). On this interrupt, we complete
3220 * all the CCBs that should have been aborted by the
3221 * target according to our message.
3222 */
3223static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3224{
3225 SYM_QUEHEAD *qp;
3226 struct sym_ccb *cp;
3227 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3228 struct scsi_target *starget;
3229 int target=-1, lun=-1, task;
3230 int i, k;
3231
3232 switch(num) {
3233 /*
3234 * The SCRIPTS processor stopped before starting
3235 * the next command in order to allow us to perform
3236 * some task recovery.
3237 */
3238 case SIR_SCRIPT_STOPPED:
3239 /*
3240 * Do we have any target to reset or unit to clear ?
3241 */
3242 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3243 tp = &np->target[i];
3244 if (tp->to_reset ||
3245 (tp->lun0p && tp->lun0p->to_clear)) {
3246 target = i;
3247 break;
3248 }
3249 if (!tp->lunmp)
3250 continue;
3251 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3252 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3253 target = i;
3254 break;
3255 }
3256 }
3257 if (target != -1)
3258 break;
3259 }
3260
3261 /*
3262 * If not, walk the busy queue for any
3263 * disconnected CCB to be aborted.
3264 */
3265 if (target == -1) {
3266 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3267 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3268 if (cp->host_status != HS_DISCONNECT)
3269 continue;
3270 if (cp->to_abort) {
3271 target = cp->target;
3272 break;
3273 }
3274 }
3275 }
3276
3277 /*
3278 * If some target is to be selected,
3279 * prepare and start the selection.
3280 */
3281 if (target != -1) {
3282 tp = &np->target[target];
3283 np->abrt_sel.sel_id = target;
3284 np->abrt_sel.sel_scntl3 = tp->head.wval;
3285 np->abrt_sel.sel_sxfer = tp->head.sval;
3286 OUTL(np, nc_dsa, np->hcb_ba);
3287 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3288 return;
3289 }
3290
3291 /*
3292 * Now look for a CCB to abort that haven't started yet.
3293 * Btw, the SCRIPTS processor is still stopped, so
3294 * we are not in race.
3295 */
3296 i = 0;
3297 cp = NULL;
3298 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3299 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3300 if (cp->host_status != HS_BUSY &&
3301 cp->host_status != HS_NEGOTIATE)
3302 continue;
3303 if (!cp->to_abort)
3304 continue;
3305#ifdef SYM_CONF_IARB_SUPPORT
3306 /*
3307 * If we are using IMMEDIATE ARBITRATION, we donnot
3308 * want to cancel the last queued CCB, since the
3309 * SCRIPTS may have anticipated the selection.
3310 */
3311 if (cp == np->last_cp) {
3312 cp->to_abort = 0;
3313 continue;
3314 }
3315#endif
3316 i = 1; /* Means we have found some */
3317 break;
3318 }
3319 if (!i) {
3320 /*
3321 * We are done, so we donnot need
3322 * to synchronize with the SCRIPTS anylonger.
3323 * Remove the SEM flag from the ISTAT.
3324 */
3325 np->istat_sem = 0;
3326 OUTB(np, nc_istat, SIGP);
3327 break;
3328 }
3329 /*
3330 * Compute index of next position in the start
3331 * queue the SCRIPTS intends to start and dequeue
3332 * all CCBs for that device that haven't been started.
3333 */
3334 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3335 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3336
3337 /*
3338 * Make sure at least our IO to abort has been dequeued.
3339 */
3340#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003341 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003342#else
3343 sym_remque(&cp->link_ccbq);
3344 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3345#endif
3346 /*
3347 * Keep track in cam status of the reason of the abort.
3348 */
3349 if (cp->to_abort == 2)
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003350 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 else
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003352 sym_set_cam_status(cp->cmd, DID_ABORT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003353
3354 /*
3355 * Complete with error everything that we have dequeued.
3356 */
3357 sym_flush_comp_queue(np, 0);
3358 break;
3359 /*
3360 * The SCRIPTS processor has selected a target
3361 * we may have some manual recovery to perform for.
3362 */
3363 case SIR_TARGET_SELECTED:
3364 target = INB(np, nc_sdid) & 0xf;
3365 tp = &np->target[target];
3366
3367 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3368
3369 /*
3370 * If the target is to be reset, prepare a
3371 * M_RESET message and clear the to_reset flag
3372 * since we donnot expect this operation to fail.
3373 */
3374 if (tp->to_reset) {
3375 np->abrt_msg[0] = M_RESET;
3376 np->abrt_tbl.size = 1;
3377 tp->to_reset = 0;
3378 break;
3379 }
3380
3381 /*
3382 * Otherwise, look for some logical unit to be cleared.
3383 */
3384 if (tp->lun0p && tp->lun0p->to_clear)
3385 lun = 0;
3386 else if (tp->lunmp) {
3387 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3388 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3389 lun = k;
3390 break;
3391 }
3392 }
3393 }
3394
3395 /*
3396 * If a logical unit is to be cleared, prepare
3397 * an IDENTIFY(lun) + ABORT MESSAGE.
3398 */
3399 if (lun != -1) {
3400 struct sym_lcb *lp = sym_lp(tp, lun);
3401 lp->to_clear = 0; /* We don't expect to fail here */
3402 np->abrt_msg[0] = IDENTIFY(0, lun);
3403 np->abrt_msg[1] = M_ABORT;
3404 np->abrt_tbl.size = 2;
3405 break;
3406 }
3407
3408 /*
3409 * Otherwise, look for some disconnected job to
3410 * abort for this target.
3411 */
3412 i = 0;
3413 cp = NULL;
3414 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3415 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3416 if (cp->host_status != HS_DISCONNECT)
3417 continue;
3418 if (cp->target != target)
3419 continue;
3420 if (!cp->to_abort)
3421 continue;
3422 i = 1; /* Means we have some */
3423 break;
3424 }
3425
3426 /*
3427 * If we have none, probably since the device has
3428 * completed the command before we won abitration,
3429 * send a M_ABORT message without IDENTIFY.
3430 * According to the specs, the device must just
3431 * disconnect the BUS and not abort any task.
3432 */
3433 if (!i) {
3434 np->abrt_msg[0] = M_ABORT;
3435 np->abrt_tbl.size = 1;
3436 break;
3437 }
3438
3439 /*
3440 * We have some task to abort.
3441 * Set the IDENTIFY(lun)
3442 */
3443 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3444
3445 /*
3446 * If we want to abort an untagged command, we
3447 * will send a IDENTIFY + M_ABORT.
3448 * Otherwise (tagged command), we will send
3449 * a IDENTITFY + task attributes + ABORT TAG.
3450 */
3451 if (cp->tag == NO_TAG) {
3452 np->abrt_msg[1] = M_ABORT;
3453 np->abrt_tbl.size = 2;
3454 } else {
3455 np->abrt_msg[1] = cp->scsi_smsg[1];
3456 np->abrt_msg[2] = cp->scsi_smsg[2];
3457 np->abrt_msg[3] = M_ABORT_TAG;
3458 np->abrt_tbl.size = 4;
3459 }
3460 /*
3461 * Keep track of software timeout condition, since the
3462 * peripheral driver may not count retries on abort
3463 * conditions not due to timeout.
3464 */
3465 if (cp->to_abort == 2)
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003466 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003467 cp->to_abort = 0; /* We donnot expect to fail here */
3468 break;
3469
3470 /*
3471 * The target has accepted our message and switched
3472 * to BUS FREE phase as we expected.
3473 */
3474 case SIR_ABORT_SENT:
3475 target = INB(np, nc_sdid) & 0xf;
3476 tp = &np->target[target];
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003477 starget = tp->starget;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478
3479 /*
3480 ** If we didn't abort anything, leave here.
3481 */
3482 if (np->abrt_msg[0] == M_ABORT)
3483 break;
3484
3485 /*
3486 * If we sent a M_RESET, then a hardware reset has
3487 * been performed by the target.
3488 * - Reset everything to async 8 bit
3489 * - Tell ourself to negotiate next time :-)
3490 * - Prepare to clear all disconnected CCBs for
3491 * this target from our task list (lun=task=-1)
3492 */
3493 lun = -1;
3494 task = -1;
3495 if (np->abrt_msg[0] == M_RESET) {
3496 tp->head.sval = 0;
3497 tp->head.wval = np->rv_scntl3;
3498 tp->head.uval = 0;
3499 spi_period(starget) = 0;
3500 spi_offset(starget) = 0;
3501 spi_width(starget) = 0;
3502 spi_iu(starget) = 0;
3503 spi_dt(starget) = 0;
3504 spi_qas(starget) = 0;
3505 tp->tgoal.check_nego = 1;
3506 }
3507
3508 /*
3509 * Otherwise, check for the LUN and TASK(s)
3510 * concerned by the cancelation.
3511 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3512 * or an ABORT message :-)
3513 */
3514 else {
3515 lun = np->abrt_msg[0] & 0x3f;
3516 if (np->abrt_msg[1] == M_ABORT_TAG)
3517 task = np->abrt_msg[2];
3518 }
3519
3520 /*
3521 * Complete all the CCBs the device should have
3522 * aborted due to our 'kiss of death' message.
3523 */
3524 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3525 sym_dequeue_from_squeue(np, i, target, lun, -1);
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003526 sym_clear_tasks(np, DID_ABORT, target, lun, task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 sym_flush_comp_queue(np, 0);
3528
3529 /*
3530 * If we sent a BDR, make upper layer aware of that.
3531 */
3532 if (np->abrt_msg[0] == M_RESET)
3533 sym_xpt_async_sent_bdr(np, target);
3534 break;
3535 }
3536
3537 /*
3538 * Print to the log the message we intend to send.
3539 */
3540 if (num == SIR_TARGET_SELECTED) {
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003541 dev_info(&tp->starget->dev, "control msgout:");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3543 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3544 }
3545
3546 /*
3547 * Let the SCRIPTS processor continue.
3548 */
3549 OUTONB_STD();
3550}
3551
3552/*
3553 * Gerard's alchemy:) that deals with with the data
3554 * pointer for both MDP and the residual calculation.
3555 *
3556 * I didn't want to bloat the code by more than 200
3557 * lines for the handling of both MDP and the residual.
3558 * This has been achieved by using a data pointer
3559 * representation consisting in an index in the data
3560 * array (dp_sg) and a negative offset (dp_ofs) that
3561 * have the following meaning:
3562 *
3563 * - dp_sg = SYM_CONF_MAX_SG
3564 * we are at the end of the data script.
3565 * - dp_sg < SYM_CONF_MAX_SG
3566 * dp_sg points to the next entry of the scatter array
3567 * we want to transfer.
3568 * - dp_ofs < 0
3569 * dp_ofs represents the residual of bytes of the
3570 * previous entry scatter entry we will send first.
3571 * - dp_ofs = 0
3572 * no residual to send first.
3573 *
3574 * The function sym_evaluate_dp() accepts an arbitray
3575 * offset (basically from the MDP message) and returns
3576 * the corresponding values of dp_sg and dp_ofs.
3577 */
3578
3579static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3580{
3581 u32 dp_scr;
3582 int dp_ofs, dp_sg, dp_sgmin;
3583 int tmp;
3584 struct sym_pmc *pm;
3585
3586 /*
3587 * Compute the resulted data pointer in term of a script
3588 * address within some DATA script and a signed byte offset.
3589 */
3590 dp_scr = scr;
3591 dp_ofs = *ofs;
3592 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3593 pm = &cp->phys.pm0;
3594 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3595 pm = &cp->phys.pm1;
3596 else
3597 pm = NULL;
3598
3599 if (pm) {
3600 dp_scr = scr_to_cpu(pm->ret);
Matthew Wilcoxe2230ea2006-02-12 09:28:19 -07003601 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602 }
3603
3604 /*
3605 * If we are auto-sensing, then we are done.
3606 */
3607 if (cp->host_flags & HF_SENSE) {
3608 *ofs = dp_ofs;
3609 return 0;
3610 }
3611
3612 /*
3613 * Deduce the index of the sg entry.
3614 * Keep track of the index of the first valid entry.
3615 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3616 * end of the data.
3617 */
Matthew Wilcox44f30b0f2005-11-29 23:08:33 -05003618 tmp = scr_to_cpu(cp->goalp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003619 dp_sg = SYM_CONF_MAX_SG;
3620 if (dp_scr != tmp)
3621 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3622 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3623
3624 /*
3625 * Move to the sg entry the data pointer belongs to.
3626 *
3627 * If we are inside the data area, we expect result to be:
3628 *
3629 * Either,
3630 * dp_ofs = 0 and dp_sg is the index of the sg entry
3631 * the data pointer belongs to (or the end of the data)
3632 * Or,
3633 * dp_ofs < 0 and dp_sg is the index of the sg entry
3634 * the data pointer belongs to + 1.
3635 */
3636 if (dp_ofs < 0) {
3637 int n;
3638 while (dp_sg > dp_sgmin) {
3639 --dp_sg;
3640 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3641 n = dp_ofs + (tmp & 0xffffff);
3642 if (n > 0) {
3643 ++dp_sg;
3644 break;
3645 }
3646 dp_ofs = n;
3647 }
3648 }
3649 else if (dp_ofs > 0) {
3650 while (dp_sg < SYM_CONF_MAX_SG) {
3651 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3652 dp_ofs -= (tmp & 0xffffff);
3653 ++dp_sg;
3654 if (dp_ofs <= 0)
3655 break;
3656 }
3657 }
3658
3659 /*
3660 * Make sure the data pointer is inside the data area.
3661 * If not, return some error.
3662 */
3663 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3664 goto out_err;
3665 else if (dp_sg > SYM_CONF_MAX_SG ||
3666 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3667 goto out_err;
3668
3669 /*
3670 * Save the extreme pointer if needed.
3671 */
3672 if (dp_sg > cp->ext_sg ||
3673 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3674 cp->ext_sg = dp_sg;
3675 cp->ext_ofs = dp_ofs;
3676 }
3677
3678 /*
3679 * Return data.
3680 */
3681 *ofs = dp_ofs;
3682 return dp_sg;
3683
3684out_err:
3685 return -1;
3686}
3687
3688/*
3689 * chip handler for MODIFY DATA POINTER MESSAGE
3690 *
3691 * We also call this function on IGNORE WIDE RESIDUE
3692 * messages that do not match a SWIDE full condition.
3693 * Btw, we assume in that situation that such a message
3694 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3695 */
3696
3697static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3698{
3699 int dp_ofs = ofs;
3700 u32 dp_scr = sym_get_script_dp (np, cp);
3701 u32 dp_ret;
3702 u32 tmp;
3703 u_char hflags;
3704 int dp_sg;
3705 struct sym_pmc *pm;
3706
3707 /*
3708 * Not supported for auto-sense.
3709 */
3710 if (cp->host_flags & HF_SENSE)
3711 goto out_reject;
3712
3713 /*
3714 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3715 * to the resulted data pointer.
3716 */
3717 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3718 if (dp_sg < 0)
3719 goto out_reject;
3720
3721 /*
3722 * And our alchemy:) allows to easily calculate the data
3723 * script address we want to return for the next data phase.
3724 */
Matthew Wilcox44f30b0f2005-11-29 23:08:33 -05003725 dp_ret = cpu_to_scr(cp->goalp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3727
3728 /*
3729 * If offset / scatter entry is zero we donnot need
3730 * a context for the new current data pointer.
3731 */
3732 if (dp_ofs == 0) {
3733 dp_scr = dp_ret;
3734 goto out_ok;
3735 }
3736
3737 /*
3738 * Get a context for the new current data pointer.
3739 */
3740 hflags = INB(np, HF_PRT);
3741
3742 if (hflags & HF_DP_SAVED)
3743 hflags ^= HF_ACT_PM;
3744
3745 if (!(hflags & HF_ACT_PM)) {
3746 pm = &cp->phys.pm0;
3747 dp_scr = SCRIPTA_BA(np, pm0_data);
3748 }
3749 else {
3750 pm = &cp->phys.pm1;
3751 dp_scr = SCRIPTA_BA(np, pm1_data);
3752 }
3753
3754 hflags &= ~(HF_DP_SAVED);
3755
3756 OUTB(np, HF_PRT, hflags);
3757
3758 /*
3759 * Set up the new current data pointer.
3760 * ofs < 0 there, and for the next data phase, we
3761 * want to transfer part of the data of the sg entry
3762 * corresponding to index dp_sg-1 prior to returning
3763 * to the main data script.
3764 */
3765 pm->ret = cpu_to_scr(dp_ret);
3766 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3767 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3768 pm->sg.addr = cpu_to_scr(tmp);
3769 pm->sg.size = cpu_to_scr(-dp_ofs);
3770
3771out_ok:
3772 sym_set_script_dp (np, cp, dp_scr);
3773 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3774 return;
3775
3776out_reject:
3777 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3778}
3779
3780
3781/*
3782 * chip calculation of the data residual.
3783 *
3784 * As I used to say, the requirement of data residual
3785 * in SCSI is broken, useless and cannot be achieved
3786 * without huge complexity.
3787 * But most OSes and even the official CAM require it.
3788 * When stupidity happens to be so widely spread inside
3789 * a community, it gets hard to convince.
3790 *
3791 * Anyway, I don't care, since I am not going to use
3792 * any software that considers this data residual as
3793 * a relevant information. :)
3794 */
3795
3796int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3797{
3798 int dp_sg, dp_sgmin, resid = 0;
3799 int dp_ofs = 0;
3800
3801 /*
3802 * Check for some data lost or just thrown away.
3803 * We are not required to be quite accurate in this
3804 * situation. Btw, if we are odd for output and the
3805 * device claims some more data, it may well happen
3806 * than our residual be zero. :-)
3807 */
3808 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3809 if (cp->xerr_status & XE_EXTRA_DATA)
3810 resid -= cp->extra_bytes;
3811 if (cp->xerr_status & XE_SODL_UNRUN)
3812 ++resid;
3813 if (cp->xerr_status & XE_SWIDE_OVRUN)
3814 --resid;
3815 }
3816
3817 /*
3818 * If all data has been transferred,
3819 * there is no residual.
3820 */
Matthew Wilcox44f30b0f2005-11-29 23:08:33 -05003821 if (cp->phys.head.lastp == cp->goalp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003822 return resid;
3823
3824 /*
3825 * If no data transfer occurs, or if the data
3826 * pointer is weird, return full residual.
3827 */
3828 if (cp->startp == cp->phys.head.lastp ||
3829 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3830 &dp_ofs) < 0) {
3831 return cp->data_len;
3832 }
3833
3834 /*
3835 * If we were auto-sensing, then we are done.
3836 */
3837 if (cp->host_flags & HF_SENSE) {
3838 return -dp_ofs;
3839 }
3840
3841 /*
3842 * We are now full comfortable in the computation
3843 * of the data residual (2's complement).
3844 */
3845 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3846 resid = -cp->ext_ofs;
3847 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3848 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3849 resid += (tmp & 0xffffff);
3850 }
3851
Matthew Wilcox 53222b92005-05-20 19:15:43 +01003852 resid -= cp->odd_byte_adjustment;
3853
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 /*
3855 * Hopefully, the result is not too wrong.
3856 */
3857 return resid;
3858}
3859
3860/*
3861 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3862 *
3863 * When we try to negotiate, we append the negotiation message
3864 * to the identify and (maybe) simple tag message.
3865 * The host status field is set to HS_NEGOTIATE to mark this
3866 * situation.
3867 *
3868 * If the target doesn't answer this message immediately
3869 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3870 * will be raised eventually.
3871 * The handler removes the HS_NEGOTIATE status, and sets the
3872 * negotiated value to the default (async / nowide).
3873 *
3874 * If we receive a matching answer immediately, we check it
3875 * for validity, and set the values.
3876 *
3877 * If we receive a Reject message immediately, we assume the
3878 * negotiation has failed, and fall back to standard values.
3879 *
3880 * If we receive a negotiation message while not in HS_NEGOTIATE
3881 * state, it's a target initiated negotiation. We prepare a
3882 * (hopefully) valid answer, set our parameters, and send back
3883 * this answer to the target.
3884 *
3885 * If the target doesn't fetch the answer (no message out phase),
3886 * we assume the negotiation has failed, and fall back to default
3887 * settings (SIR_NEGO_PROTO interrupt).
3888 *
3889 * When we set the values, we adjust them in all ccbs belonging
3890 * to this target, in the controller's register, and in the "phys"
3891 * field of the controller's struct sym_hcb.
3892 */
3893
3894/*
3895 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3896 */
3897static int
3898sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3899{
3900 int target = cp->target;
3901 u_char chg, ofs, per, fak, div;
3902
3903 if (DEBUG_FLAGS & DEBUG_NEGO) {
3904 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3905 }
3906
3907 /*
3908 * Get requested values.
3909 */
3910 chg = 0;
3911 per = np->msgin[3];
3912 ofs = np->msgin[4];
3913
3914 /*
3915 * Check values against our limits.
3916 */
3917 if (ofs) {
3918 if (ofs > np->maxoffs)
3919 {chg = 1; ofs = np->maxoffs;}
3920 }
3921
3922 if (ofs) {
3923 if (per < np->minsync)
3924 {chg = 1; per = np->minsync;}
3925 }
3926
3927 /*
3928 * Get new chip synchronous parameters value.
3929 */
3930 div = fak = 0;
3931 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3932 goto reject_it;
3933
3934 if (DEBUG_FLAGS & DEBUG_NEGO) {
3935 sym_print_addr(cp->cmd,
3936 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3937 ofs, per, div, fak, chg);
3938 }
3939
3940 /*
3941 * If it was an answer we want to change,
3942 * then it isn't acceptable. Reject it.
3943 */
3944 if (!req && chg)
3945 goto reject_it;
3946
3947 /*
3948 * Apply new values.
3949 */
3950 sym_setsync (np, target, ofs, per, div, fak);
3951
3952 /*
3953 * It was an answer. We are done.
3954 */
3955 if (!req)
3956 return 0;
3957
3958 /*
3959 * It was a request. Prepare an answer message.
3960 */
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07003961 spi_populate_sync_msg(np->msgout, per, ofs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003962
3963 if (DEBUG_FLAGS & DEBUG_NEGO) {
3964 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3965 }
3966
3967 np->msgin [0] = M_NOOP;
3968
3969 return 0;
3970
3971reject_it:
3972 sym_setsync (np, target, 0, 0, 0, 0);
3973 return -1;
3974}
3975
3976static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3977{
3978 int req = 1;
3979 int result;
3980
3981 /*
3982 * Request or answer ?
3983 */
3984 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3985 OUTB(np, HS_PRT, HS_BUSY);
3986 if (cp->nego_status && cp->nego_status != NS_SYNC)
3987 goto reject_it;
3988 req = 0;
3989 }
3990
3991 /*
3992 * Check and apply new values.
3993 */
3994 result = sym_sync_nego_check(np, req, cp);
3995 if (result) /* Not acceptable, reject it */
3996 goto reject_it;
3997 if (req) { /* Was a request, send response. */
3998 cp->nego_status = NS_SYNC;
3999 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4000 }
4001 else /* Was a response, we are done. */
4002 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4003 return;
4004
4005reject_it:
4006 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4007}
4008
4009/*
4010 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4011 */
4012static int
4013sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4014{
4015 struct sym_tcb *tp = &np->target[target];
4016 unsigned char fak, div;
4017 int dt, chg = 0;
4018
4019 unsigned char per = np->msgin[3];
4020 unsigned char ofs = np->msgin[5];
4021 unsigned char wide = np->msgin[6];
4022 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4023
4024 if (DEBUG_FLAGS & DEBUG_NEGO) {
4025 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4026 }
4027
4028 /*
4029 * Check values against our limits.
4030 */
4031 if (wide > np->maxwide) {
4032 chg = 1;
4033 wide = np->maxwide;
4034 }
4035 if (!wide || !(np->features & FE_U3EN))
4036 opts = 0;
4037
4038 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4039 chg = 1;
4040
4041 dt = opts & PPR_OPT_DT;
4042
4043 if (ofs) {
4044 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4045 if (ofs > maxoffs) {
4046 chg = 1;
4047 ofs = maxoffs;
4048 }
4049 }
4050
4051 if (ofs) {
4052 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4053 if (per < minsync) {
4054 chg = 1;
4055 per = minsync;
4056 }
4057 }
4058
4059 /*
4060 * Get new chip synchronous parameters value.
4061 */
4062 div = fak = 0;
4063 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4064 goto reject_it;
4065
4066 /*
4067 * If it was an answer we want to change,
4068 * then it isn't acceptable. Reject it.
4069 */
4070 if (!req && chg)
4071 goto reject_it;
4072
4073 /*
4074 * Apply new values.
4075 */
4076 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4077
4078 /*
4079 * It was an answer. We are done.
4080 */
4081 if (!req)
4082 return 0;
4083
4084 /*
4085 * It was a request. Prepare an answer message.
4086 */
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07004087 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004088
4089 if (DEBUG_FLAGS & DEBUG_NEGO) {
4090 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4091 }
4092
4093 np->msgin [0] = M_NOOP;
4094
4095 return 0;
4096
4097reject_it:
4098 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4099 /*
4100 * If it is a device response that should result in
4101 * ST, we may want to try a legacy negotiation later.
4102 */
4103 if (!req && !opts) {
4104 tp->tgoal.period = per;
4105 tp->tgoal.offset = ofs;
4106 tp->tgoal.width = wide;
4107 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4108 tp->tgoal.check_nego = 1;
4109 }
4110 return -1;
4111}
4112
4113static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4114{
4115 int req = 1;
4116 int result;
4117
4118 /*
4119 * Request or answer ?
4120 */
4121 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4122 OUTB(np, HS_PRT, HS_BUSY);
4123 if (cp->nego_status && cp->nego_status != NS_PPR)
4124 goto reject_it;
4125 req = 0;
4126 }
4127
4128 /*
4129 * Check and apply new values.
4130 */
4131 result = sym_ppr_nego_check(np, req, cp->target);
4132 if (result) /* Not acceptable, reject it */
4133 goto reject_it;
4134 if (req) { /* Was a request, send response. */
4135 cp->nego_status = NS_PPR;
4136 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4137 }
4138 else /* Was a response, we are done. */
4139 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4140 return;
4141
4142reject_it:
4143 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4144}
4145
4146/*
4147 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4148 */
4149static int
4150sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4151{
4152 int target = cp->target;
4153 u_char chg, wide;
4154
4155 if (DEBUG_FLAGS & DEBUG_NEGO) {
4156 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4157 }
4158
4159 /*
4160 * Get requested values.
4161 */
4162 chg = 0;
4163 wide = np->msgin[3];
4164
4165 /*
4166 * Check values against our limits.
4167 */
4168 if (wide > np->maxwide) {
4169 chg = 1;
4170 wide = np->maxwide;
4171 }
4172
4173 if (DEBUG_FLAGS & DEBUG_NEGO) {
4174 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4175 wide, chg);
4176 }
4177
4178 /*
4179 * If it was an answer we want to change,
4180 * then it isn't acceptable. Reject it.
4181 */
4182 if (!req && chg)
4183 goto reject_it;
4184
4185 /*
4186 * Apply new values.
4187 */
4188 sym_setwide (np, target, wide);
4189
4190 /*
4191 * It was an answer. We are done.
4192 */
4193 if (!req)
4194 return 0;
4195
4196 /*
4197 * It was a request. Prepare an answer message.
4198 */
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07004199 spi_populate_width_msg(np->msgout, wide);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200
4201 np->msgin [0] = M_NOOP;
4202
4203 if (DEBUG_FLAGS & DEBUG_NEGO) {
4204 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4205 }
4206
4207 return 0;
4208
4209reject_it:
4210 return -1;
4211}
4212
4213static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4214{
4215 int req = 1;
4216 int result;
4217
4218 /*
4219 * Request or answer ?
4220 */
4221 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4222 OUTB(np, HS_PRT, HS_BUSY);
4223 if (cp->nego_status && cp->nego_status != NS_WIDE)
4224 goto reject_it;
4225 req = 0;
4226 }
4227
4228 /*
4229 * Check and apply new values.
4230 */
4231 result = sym_wide_nego_check(np, req, cp);
4232 if (result) /* Not acceptable, reject it */
4233 goto reject_it;
4234 if (req) { /* Was a request, send response. */
4235 cp->nego_status = NS_WIDE;
4236 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4237 } else { /* Was a response. */
4238 /*
4239 * Negotiate for SYNC immediately after WIDE response.
4240 * This allows to negotiate for both WIDE and SYNC on
4241 * a single SCSI command (Suggested by Justin Gibbs).
4242 */
4243 if (tp->tgoal.offset) {
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07004244 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4245 tp->tgoal.offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246
4247 if (DEBUG_FLAGS & DEBUG_NEGO) {
4248 sym_print_nego_msg(np, cp->target,
4249 "sync msgout", np->msgout);
4250 }
4251
4252 cp->nego_status = NS_SYNC;
4253 OUTB(np, HS_PRT, HS_NEGOTIATE);
4254 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4255 return;
4256 } else
4257 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4258 }
4259
4260 return;
4261
4262reject_it:
4263 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4264}
4265
4266/*
4267 * Reset DT, SYNC or WIDE to default settings.
4268 *
4269 * Called when a negotiation does not succeed either
4270 * on rejection or on protocol error.
4271 *
4272 * A target that understands a PPR message should never
4273 * reject it, and messing with it is very unlikely.
4274 * So, if a PPR makes problems, we may just want to
4275 * try a legacy negotiation later.
4276 */
4277static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4278{
4279 switch (cp->nego_status) {
4280 case NS_PPR:
4281#if 0
4282 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4283#else
4284 if (tp->tgoal.period < np->minsync)
4285 tp->tgoal.period = np->minsync;
4286 if (tp->tgoal.offset > np->maxoffs)
4287 tp->tgoal.offset = np->maxoffs;
4288 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4289 tp->tgoal.check_nego = 1;
4290#endif
4291 break;
4292 case NS_SYNC:
4293 sym_setsync (np, cp->target, 0, 0, 0, 0);
4294 break;
4295 case NS_WIDE:
4296 sym_setwide (np, cp->target, 0);
4297 break;
4298 }
4299 np->msgin [0] = M_NOOP;
4300 np->msgout[0] = M_NOOP;
4301 cp->nego_status = 0;
4302}
4303
4304/*
4305 * chip handler for MESSAGE REJECT received in response to
4306 * PPR, WIDE or SYNCHRONOUS negotiation.
4307 */
4308static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4309{
4310 sym_nego_default(np, tp, cp);
4311 OUTB(np, HS_PRT, HS_BUSY);
4312}
4313
4314/*
4315 * chip exception handler for programmed interrupts.
4316 */
4317static void sym_int_sir (struct sym_hcb *np)
4318{
4319 u_char num = INB(np, nc_dsps);
4320 u32 dsa = INL(np, nc_dsa);
4321 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4322 u_char target = INB(np, nc_sdid) & 0x0f;
4323 struct sym_tcb *tp = &np->target[target];
4324 int tmp;
4325
4326 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4327
4328 switch (num) {
4329#if SYM_CONF_DMA_ADDRESSING_MODE == 2
4330 /*
4331 * SCRIPTS tell us that we may have to update
4332 * 64 bit DMA segment registers.
4333 */
4334 case SIR_DMAP_DIRTY:
4335 sym_update_dmap_regs(np);
4336 goto out;
4337#endif
4338 /*
4339 * Command has been completed with error condition
4340 * or has been auto-sensed.
4341 */
4342 case SIR_COMPLETE_ERROR:
4343 sym_complete_error(np, cp);
4344 return;
4345 /*
4346 * The C code is currently trying to recover from something.
4347 * Typically, user want to abort some command.
4348 */
4349 case SIR_SCRIPT_STOPPED:
4350 case SIR_TARGET_SELECTED:
4351 case SIR_ABORT_SENT:
4352 sym_sir_task_recovery(np, num);
4353 return;
4354 /*
4355 * The device didn't go to MSG OUT phase after having
4356 * been selected with ATN. We donnot want to handle
4357 * that.
4358 */
4359 case SIR_SEL_ATN_NO_MSG_OUT:
4360 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4361 sym_name (np), target);
4362 goto out_stuck;
4363 /*
4364 * The device didn't switch to MSG IN phase after
4365 * having reseleted the initiator.
4366 */
4367 case SIR_RESEL_NO_MSG_IN:
4368 printf ("%s:%d: No MSG IN phase after reselection.\n",
4369 sym_name (np), target);
4370 goto out_stuck;
4371 /*
4372 * After reselection, the device sent a message that wasn't
4373 * an IDENTIFY.
4374 */
4375 case SIR_RESEL_NO_IDENTIFY:
4376 printf ("%s:%d: No IDENTIFY after reselection.\n",
4377 sym_name (np), target);
4378 goto out_stuck;
4379 /*
4380 * The device reselected a LUN we donnot know about.
4381 */
4382 case SIR_RESEL_BAD_LUN:
4383 np->msgout[0] = M_RESET;
4384 goto out;
4385 /*
4386 * The device reselected for an untagged nexus and we
4387 * haven't any.
4388 */
4389 case SIR_RESEL_BAD_I_T_L:
4390 np->msgout[0] = M_ABORT;
4391 goto out;
4392 /*
4393 * The device reselected for a tagged nexus that we donnot
4394 * have.
4395 */
4396 case SIR_RESEL_BAD_I_T_L_Q:
4397 np->msgout[0] = M_ABORT_TAG;
4398 goto out;
4399 /*
4400 * The SCRIPTS let us know that the device has grabbed
4401 * our message and will abort the job.
4402 */
4403 case SIR_RESEL_ABORTED:
4404 np->lastmsg = np->msgout[0];
4405 np->msgout[0] = M_NOOP;
4406 printf ("%s:%d: message %x sent on bad reselection.\n",
4407 sym_name (np), target, np->lastmsg);
4408 goto out;
4409 /*
4410 * The SCRIPTS let us know that a message has been
4411 * successfully sent to the device.
4412 */
4413 case SIR_MSG_OUT_DONE:
4414 np->lastmsg = np->msgout[0];
4415 np->msgout[0] = M_NOOP;
4416 /* Should we really care of that */
4417 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4418 if (cp) {
4419 cp->xerr_status &= ~XE_PARITY_ERR;
4420 if (!cp->xerr_status)
4421 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4422 }
4423 }
4424 goto out;
4425 /*
4426 * The device didn't send a GOOD SCSI status.
4427 * We may have some work to do prior to allow
4428 * the SCRIPTS processor to continue.
4429 */
4430 case SIR_BAD_SCSI_STATUS:
4431 if (!cp)
4432 goto out;
4433 sym_sir_bad_scsi_status(np, num, cp);
4434 return;
4435 /*
4436 * We are asked by the SCRIPTS to prepare a
4437 * REJECT message.
4438 */
4439 case SIR_REJECT_TO_SEND:
4440 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4441 np->msgout[0] = M_REJECT;
4442 goto out;
4443 /*
4444 * We have been ODD at the end of a DATA IN
4445 * transfer and the device didn't send a
4446 * IGNORE WIDE RESIDUE message.
4447 * It is a data overrun condition.
4448 */
4449 case SIR_SWIDE_OVERRUN:
4450 if (cp) {
4451 OUTONB(np, HF_PRT, HF_EXT_ERR);
4452 cp->xerr_status |= XE_SWIDE_OVRUN;
4453 }
4454 goto out;
4455 /*
4456 * We have been ODD at the end of a DATA OUT
4457 * transfer.
4458 * It is a data underrun condition.
4459 */
4460 case SIR_SODL_UNDERRUN:
4461 if (cp) {
4462 OUTONB(np, HF_PRT, HF_EXT_ERR);
4463 cp->xerr_status |= XE_SODL_UNRUN;
4464 }
4465 goto out;
4466 /*
4467 * The device wants us to tranfer more data than
4468 * expected or in the wrong direction.
4469 * The number of extra bytes is in scratcha.
4470 * It is a data overrun condition.
4471 */
4472 case SIR_DATA_OVERRUN:
4473 if (cp) {
4474 OUTONB(np, HF_PRT, HF_EXT_ERR);
4475 cp->xerr_status |= XE_EXTRA_DATA;
4476 cp->extra_bytes += INL(np, nc_scratcha);
4477 }
4478 goto out;
4479 /*
4480 * The device switched to an illegal phase (4/5).
4481 */
4482 case SIR_BAD_PHASE:
4483 if (cp) {
4484 OUTONB(np, HF_PRT, HF_EXT_ERR);
4485 cp->xerr_status |= XE_BAD_PHASE;
4486 }
4487 goto out;
4488 /*
4489 * We received a message.
4490 */
4491 case SIR_MSG_RECEIVED:
4492 if (!cp)
4493 goto out_stuck;
4494 switch (np->msgin [0]) {
4495 /*
4496 * We received an extended message.
4497 * We handle MODIFY DATA POINTER, SDTR, WDTR
4498 * and reject all other extended messages.
4499 */
4500 case M_EXTENDED:
4501 switch (np->msgin [2]) {
4502 case M_X_MODIFY_DP:
4503 if (DEBUG_FLAGS & DEBUG_POINTER)
Matthew Wilcox92d578b2006-03-28 11:03:44 -05004504 sym_print_msg(cp, NULL, np->msgin);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004505 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4506 (np->msgin[5]<<8) + (np->msgin[6]);
4507 sym_modify_dp(np, tp, cp, tmp);
4508 return;
4509 case M_X_SYNC_REQ:
4510 sym_sync_nego(np, tp, cp);
4511 return;
4512 case M_X_PPR_REQ:
4513 sym_ppr_nego(np, tp, cp);
4514 return;
4515 case M_X_WIDE_REQ:
4516 sym_wide_nego(np, tp, cp);
4517 return;
4518 default:
4519 goto out_reject;
4520 }
4521 break;
4522 /*
4523 * We received a 1/2 byte message not handled from SCRIPTS.
4524 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4525 * RESIDUE messages that haven't been anticipated by
4526 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4527 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4528 */
4529 case M_IGN_RESIDUE:
4530 if (DEBUG_FLAGS & DEBUG_POINTER)
Matthew Wilcox92d578b2006-03-28 11:03:44 -05004531 sym_print_msg(cp, NULL, np->msgin);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004532 if (cp->host_flags & HF_SENSE)
4533 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4534 else
4535 sym_modify_dp(np, tp, cp, -1);
4536 return;
4537 case M_REJECT:
4538 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4539 sym_nego_rejected(np, tp, cp);
4540 else {
4541 sym_print_addr(cp->cmd,
4542 "M_REJECT received (%x:%x).\n",
4543 scr_to_cpu(np->lastmsg), np->msgout[0]);
4544 }
4545 goto out_clrack;
4546 break;
4547 default:
4548 goto out_reject;
4549 }
4550 break;
4551 /*
4552 * We received an unknown message.
4553 * Ignore all MSG IN phases and reject it.
4554 */
4555 case SIR_MSG_WEIRD:
4556 sym_print_msg(cp, "WEIRD message received", np->msgin);
4557 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4558 return;
4559 /*
4560 * Negotiation failed.
4561 * Target does not send us the reply.
4562 * Remove the HS_NEGOTIATE status.
4563 */
4564 case SIR_NEGO_FAILED:
4565 OUTB(np, HS_PRT, HS_BUSY);
4566 /*
4567 * Negotiation failed.
4568 * Target does not want answer message.
4569 */
4570 case SIR_NEGO_PROTO:
4571 sym_nego_default(np, tp, cp);
4572 goto out;
4573 }
4574
4575out:
4576 OUTONB_STD();
4577 return;
4578out_reject:
4579 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4580 return;
4581out_clrack:
4582 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4583 return;
4584out_stuck:
4585 return;
4586}
4587
4588/*
4589 * Acquire a control block
4590 */
4591struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4592{
4593 u_char tn = cmd->device->id;
4594 u_char ln = cmd->device->lun;
4595 struct sym_tcb *tp = &np->target[tn];
4596 struct sym_lcb *lp = sym_lp(tp, ln);
4597 u_short tag = NO_TAG;
4598 SYM_QUEHEAD *qp;
4599 struct sym_ccb *cp = NULL;
4600
4601 /*
4602 * Look for a free CCB
4603 */
4604 if (sym_que_empty(&np->free_ccbq))
4605 sym_alloc_ccb(np);
4606 qp = sym_remque_head(&np->free_ccbq);
4607 if (!qp)
4608 goto out;
4609 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4610
Matthew Wilcox84e203a2005-11-29 23:08:31 -05004611 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612 /*
4613 * If we have been asked for a tagged command.
4614 */
4615 if (tag_order) {
4616 /*
4617 * Debugging purpose.
4618 */
4619#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
Matthew Wilcox3bea15a2006-03-28 11:03:44 -05004620 if (lp->busy_itl != 0)
4621 goto out_free;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004622#endif
4623 /*
4624 * Allocate resources for tags if not yet.
4625 */
4626 if (!lp->cb_tags) {
4627 sym_alloc_lcb_tags(np, tn, ln);
4628 if (!lp->cb_tags)
4629 goto out_free;
4630 }
4631 /*
4632 * Get a tag for this SCSI IO and set up
4633 * the CCB bus address for reselection,
4634 * and count it for this LUN.
4635 * Toggle reselect path to tagged.
4636 */
4637 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4638 tag = lp->cb_tags[lp->ia_tag];
4639 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4640 lp->ia_tag = 0;
4641 ++lp->busy_itlq;
4642#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4643 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4644 lp->head.resel_sa =
4645 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4646#endif
4647#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4648 cp->tags_si = lp->tags_si;
4649 ++lp->tags_sum[cp->tags_si];
4650 ++lp->tags_since;
4651#endif
4652 }
4653 else
4654 goto out_free;
4655 }
4656 /*
4657 * This command will not be tagged.
4658 * If we already have either a tagged or untagged
4659 * one, refuse to overlap this untagged one.
4660 */
4661 else {
4662 /*
4663 * Debugging purpose.
4664 */
4665#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
Matthew Wilcox3bea15a2006-03-28 11:03:44 -05004666 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4667 goto out_free;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004668#endif
4669 /*
4670 * Count this nexus for this LUN.
4671 * Set up the CCB bus address for reselection.
4672 * Toggle reselect path to untagged.
4673 */
4674 ++lp->busy_itl;
4675#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4676 if (lp->busy_itl == 1) {
4677 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4678 lp->head.resel_sa =
4679 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4680 }
4681 else
4682 goto out_free;
4683#endif
4684 }
4685 }
4686 /*
4687 * Put the CCB into the busy queue.
4688 */
4689 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4690#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4691 if (lp) {
4692 sym_remque(&cp->link2_ccbq);
4693 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4694 }
4695
4696#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697 cp->to_abort = 0;
Matthew Wilcox 53222b92005-05-20 19:15:43 +01004698 cp->odd_byte_adjustment = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004699 cp->tag = tag;
4700 cp->order = tag_order;
4701 cp->target = tn;
4702 cp->lun = ln;
4703
4704 if (DEBUG_FLAGS & DEBUG_TAGS) {
4705 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4706 }
4707
4708out:
4709 return cp;
4710out_free:
4711 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4712 return NULL;
4713}
4714
4715/*
4716 * Release one control block
4717 */
4718void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4719{
4720 struct sym_tcb *tp = &np->target[cp->target];
4721 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4722
4723 if (DEBUG_FLAGS & DEBUG_TAGS) {
4724 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4725 cp, cp->tag);
4726 }
4727
4728 /*
4729 * If LCB available,
4730 */
4731 if (lp) {
4732 /*
4733 * If tagged, release the tag, set the relect path
4734 */
4735 if (cp->tag != NO_TAG) {
4736#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4737 --lp->tags_sum[cp->tags_si];
4738#endif
4739 /*
4740 * Free the tag value.
4741 */
4742 lp->cb_tags[lp->if_tag] = cp->tag;
4743 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4744 lp->if_tag = 0;
4745 /*
4746 * Make the reselect path invalid,
4747 * and uncount this CCB.
4748 */
4749 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4750 --lp->busy_itlq;
4751 } else { /* Untagged */
4752 /*
4753 * Make the reselect path invalid,
4754 * and uncount this CCB.
4755 */
4756 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4757 --lp->busy_itl;
4758 }
4759 /*
4760 * If no JOB active, make the LUN reselect path invalid.
4761 */
4762 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4763 lp->head.resel_sa =
4764 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004766
4767 /*
4768 * We donnot queue more than 1 ccb per target
4769 * with negotiation at any time. If this ccb was
4770 * used for negotiation, clear this info in the tcb.
4771 */
4772 if (cp == tp->nego_cp)
4773 tp->nego_cp = NULL;
4774
4775#ifdef SYM_CONF_IARB_SUPPORT
4776 /*
4777 * If we just complete the last queued CCB,
4778 * clear this info that is no longer relevant.
4779 */
4780 if (cp == np->last_cp)
4781 np->last_cp = 0;
4782#endif
4783
4784 /*
4785 * Make this CCB available.
4786 */
4787 cp->cmd = NULL;
4788 cp->host_status = HS_IDLE;
4789 sym_remque(&cp->link_ccbq);
4790 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4791
4792#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4793 if (lp) {
4794 sym_remque(&cp->link2_ccbq);
4795 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4796 if (cp->started) {
4797 if (cp->tag != NO_TAG)
4798 --lp->started_tags;
4799 else
4800 --lp->started_no_tag;
4801 }
4802 }
4803 cp->started = 0;
4804#endif
4805}
4806
4807/*
4808 * Allocate a CCB from memory and initialize its fixed part.
4809 */
4810static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4811{
4812 struct sym_ccb *cp = NULL;
4813 int hcode;
4814
4815 /*
4816 * Prevent from allocating more CCBs than we can
4817 * queue to the controller.
4818 */
4819 if (np->actccbs >= SYM_CONF_MAX_START)
4820 return NULL;
4821
4822 /*
4823 * Allocate memory for this CCB.
4824 */
4825 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4826 if (!cp)
4827 goto out_free;
4828
4829 /*
4830 * Count it.
4831 */
4832 np->actccbs++;
4833
4834 /*
4835 * Compute the bus address of this ccb.
4836 */
4837 cp->ccb_ba = vtobus(cp);
4838
4839 /*
4840 * Insert this ccb into the hashed list.
4841 */
4842 hcode = CCB_HASH_CODE(cp->ccb_ba);
4843 cp->link_ccbh = np->ccbh[hcode];
4844 np->ccbh[hcode] = cp;
4845
4846 /*
4847 * Initialyze the start and restart actions.
4848 */
4849 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4850 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4851
4852 /*
4853 * Initilialyze some other fields.
4854 */
4855 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4856
4857 /*
4858 * Chain into free ccb queue.
4859 */
4860 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4861
4862 /*
4863 * Chain into optionnal lists.
4864 */
4865#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4866 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4867#endif
4868 return cp;
4869out_free:
4870 if (cp)
4871 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4872 return NULL;
4873}
4874
4875/*
4876 * Look up a CCB from a DSA value.
4877 */
4878static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4879{
4880 int hcode;
4881 struct sym_ccb *cp;
4882
4883 hcode = CCB_HASH_CODE(dsa);
4884 cp = np->ccbh[hcode];
4885 while (cp) {
4886 if (cp->ccb_ba == dsa)
4887 break;
4888 cp = cp->link_ccbh;
4889 }
4890
4891 return cp;
4892}
4893
4894/*
4895 * Target control block initialisation.
4896 * Nothing important to do at the moment.
4897 */
4898static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4899{
4900#if 0 /* Hmmm... this checking looks paranoid. */
4901 /*
4902 * Check some alignments required by the chip.
4903 */
4904 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4905 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4906 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4907 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4908#endif
4909}
4910
4911/*
4912 * Lun control block allocation and initialization.
4913 */
4914struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4915{
4916 struct sym_tcb *tp = &np->target[tn];
Matthew Wilcox84e203a2005-11-29 23:08:31 -05004917 struct sym_lcb *lp = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004918
4919 /*
4920 * Initialize the target control block if not yet.
4921 */
4922 sym_init_tcb (np, tn);
4923
4924 /*
4925 * Allocate the LCB bus address array.
4926 * Compute the bus address of this table.
4927 */
4928 if (ln && !tp->luntbl) {
4929 int i;
4930
4931 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4932 if (!tp->luntbl)
4933 goto fail;
4934 for (i = 0 ; i < 64 ; i++)
4935 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4936 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4937 }
4938
4939 /*
4940 * Allocate the table of pointers for LUN(s) > 0, if needed.
4941 */
4942 if (ln && !tp->lunmp) {
4943 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4944 GFP_KERNEL);
4945 if (!tp->lunmp)
4946 goto fail;
4947 }
4948
4949 /*
4950 * Allocate the lcb.
4951 * Make it available to the chip.
4952 */
4953 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4954 if (!lp)
4955 goto fail;
4956 if (ln) {
4957 tp->lunmp[ln] = lp;
4958 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4959 }
4960 else {
4961 tp->lun0p = lp;
4962 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4963 }
4964
4965 /*
4966 * Let the itl task point to error handling.
4967 */
4968 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4969
4970 /*
4971 * Set the reselect pattern to our default. :)
4972 */
4973 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4974
4975 /*
4976 * Set user capabilities.
4977 */
4978 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4979
4980#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4981 /*
4982 * Initialize device queueing.
4983 */
4984 sym_que_init(&lp->waiting_ccbq);
4985 sym_que_init(&lp->started_ccbq);
4986 lp->started_max = SYM_CONF_MAX_TASK;
4987 lp->started_limit = SYM_CONF_MAX_TASK;
4988#endif
Matthew Wilcox84e203a2005-11-29 23:08:31 -05004989
Linus Torvalds1da177e2005-04-16 15:20:36 -07004990fail:
4991 return lp;
4992}
4993
4994/*
4995 * Allocate LCB resources for tagged command queuing.
4996 */
4997static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
4998{
4999 struct sym_tcb *tp = &np->target[tn];
5000 struct sym_lcb *lp = sym_lp(tp, ln);
5001 int i;
5002
5003 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07005004 * Allocate the task table and and the tag allocation
5005 * circular buffer. We want both or none.
5006 */
5007 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5008 if (!lp->itlq_tbl)
5009 goto fail;
Matthew Wilcox 53222b92005-05-20 19:15:43 +01005010 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005011 if (!lp->cb_tags) {
5012 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5013 lp->itlq_tbl = NULL;
5014 goto fail;
5015 }
5016
5017 /*
5018 * Initialize the task table with invalid entries.
5019 */
5020 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5021 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5022
5023 /*
5024 * Fill up the tag buffer with tag numbers.
5025 */
5026 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5027 lp->cb_tags[i] = i;
5028
5029 /*
5030 * Make the task table available to SCRIPTS,
5031 * And accept tagged commands now.
5032 */
5033 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5034
5035 return;
5036fail:
5037 return;
5038}
5039
5040/*
5041 * Queue a SCSI IO to the controller.
5042 */
5043int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5044{
5045 struct scsi_device *sdev = cmd->device;
5046 struct sym_tcb *tp;
5047 struct sym_lcb *lp;
5048 u_char *msgptr;
5049 u_int msglen;
5050 int can_disconnect;
5051
5052 /*
5053 * Keep track of the IO in our CCB.
5054 */
5055 cp->cmd = cmd;
5056
5057 /*
5058 * Retrieve the target descriptor.
5059 */
5060 tp = &np->target[cp->target];
5061
5062 /*
5063 * Retrieve the lun descriptor.
5064 */
5065 lp = sym_lp(tp, sdev->lun);
5066
5067 can_disconnect = (cp->tag != NO_TAG) ||
5068 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5069
5070 msgptr = cp->scsi_smsg;
5071 msglen = 0;
5072 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5073
5074 /*
5075 * Build the tag message if present.
5076 */
5077 if (cp->tag != NO_TAG) {
5078 u_char order = cp->order;
5079
5080 switch(order) {
5081 case M_ORDERED_TAG:
5082 break;
5083 case M_HEAD_TAG:
5084 break;
5085 default:
5086 order = M_SIMPLE_TAG;
5087 }
5088#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5089 /*
5090 * Avoid too much reordering of SCSI commands.
5091 * The algorithm tries to prevent completion of any
5092 * tagged command from being delayed against more
5093 * than 3 times the max number of queued commands.
5094 */
5095 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5096 lp->tags_si = !(lp->tags_si);
5097 if (lp->tags_sum[lp->tags_si]) {
5098 order = M_ORDERED_TAG;
5099 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5100 sym_print_addr(cmd,
5101 "ordered tag forced.\n");
5102 }
5103 }
5104 lp->tags_since = 0;
5105 }
5106#endif
5107 msgptr[msglen++] = order;
5108
5109 /*
5110 * For less than 128 tags, actual tags are numbered
5111 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5112 * with devices that have problems with #TAG 0 or too
5113 * great #TAG numbers. For more tags (up to 256),
5114 * we use directly our tag number.
5115 */
5116#if SYM_CONF_MAX_TASK > (512/4)
5117 msgptr[msglen++] = cp->tag;
5118#else
5119 msgptr[msglen++] = (cp->tag << 1) + 1;
5120#endif
5121 }
5122
5123 /*
5124 * Build a negotiation message if needed.
5125 * (nego_status is filled by sym_prepare_nego())
5126 */
5127 cp->nego_status = 0;
5128 if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5129 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5130 }
5131
5132 /*
5133 * Startqueue
5134 */
5135 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5136 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5137
5138 /*
5139 * select
5140 */
5141 cp->phys.select.sel_id = cp->target;
5142 cp->phys.select.sel_scntl3 = tp->head.wval;
5143 cp->phys.select.sel_sxfer = tp->head.sval;
5144 cp->phys.select.sel_scntl4 = tp->head.uval;
5145
5146 /*
5147 * message
5148 */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01005149 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150 cp->phys.smsg.size = cpu_to_scr(msglen);
5151
5152 /*
5153 * status
5154 */
5155 cp->host_xflags = 0;
5156 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5157 cp->ssss_status = S_ILLEGAL;
5158 cp->xerr_status = 0;
5159 cp->host_flags = 0;
5160 cp->extra_bytes = 0;
5161
5162 /*
5163 * extreme data pointer.
5164 * shall be positive, so -1 is lower than lowest.:)
5165 */
5166 cp->ext_sg = -1;
5167 cp->ext_ofs = 0;
5168
5169 /*
5170 * Build the CDB and DATA descriptor block
5171 * and start the IO.
5172 */
5173 return sym_setup_data_and_start(np, cmd, cp);
5174}
5175
5176/*
5177 * Reset a SCSI target (all LUNs of this target).
5178 */
5179int sym_reset_scsi_target(struct sym_hcb *np, int target)
5180{
5181 struct sym_tcb *tp;
5182
5183 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5184 return -1;
5185
5186 tp = &np->target[target];
5187 tp->to_reset = 1;
5188
5189 np->istat_sem = SEM;
5190 OUTB(np, nc_istat, SIGP|SEM);
5191
5192 return 0;
5193}
5194
5195/*
5196 * Abort a SCSI IO.
5197 */
5198static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5199{
5200 /*
5201 * Check that the IO is active.
5202 */
5203 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5204 return -1;
5205
5206 /*
5207 * If a previous abort didn't succeed in time,
5208 * perform a BUS reset.
5209 */
5210 if (cp->to_abort) {
5211 sym_reset_scsi_bus(np, 1);
5212 return 0;
5213 }
5214
5215 /*
5216 * Mark the CCB for abort and allow time for.
5217 */
5218 cp->to_abort = timed_out ? 2 : 1;
5219
5220 /*
5221 * Tell the SCRIPTS processor to stop and synchronize with us.
5222 */
5223 np->istat_sem = SEM;
5224 OUTB(np, nc_istat, SIGP|SEM);
5225 return 0;
5226}
5227
5228int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5229{
5230 struct sym_ccb *cp;
5231 SYM_QUEHEAD *qp;
5232
5233 /*
5234 * Look up our CCB control block.
5235 */
5236 cp = NULL;
5237 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5238 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5239 if (cp2->cmd == cmd) {
5240 cp = cp2;
5241 break;
5242 }
5243 }
5244
5245 return sym_abort_ccb(np, cp, timed_out);
5246}
5247
5248/*
Matthew Wilcox 53222b92005-05-20 19:15:43 +01005249 * Complete execution of a SCSI command with extended
Linus Torvalds1da177e2005-04-16 15:20:36 -07005250 * error, SCSI status error, or having been auto-sensed.
5251 *
5252 * The SCRIPTS processor is not running there, so we
5253 * can safely access IO registers and remove JOBs from
5254 * the START queue.
5255 * SCRATCHA is assumed to have been loaded with STARTPOS
5256 * before the SCRIPTS called the C code.
5257 */
5258void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5259{
5260 struct scsi_device *sdev;
5261 struct scsi_cmnd *cmd;
5262 struct sym_tcb *tp;
5263 struct sym_lcb *lp;
5264 int resid;
5265 int i;
5266
5267 /*
5268 * Paranoid check. :)
5269 */
5270 if (!cp || !cp->cmd)
5271 return;
5272
5273 cmd = cp->cmd;
5274 sdev = cmd->device;
5275 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5276 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5277 cp->host_status, cp->ssss_status, cp->host_flags);
5278 }
5279
5280 /*
5281 * Get target and lun pointers.
5282 */
5283 tp = &np->target[cp->target];
5284 lp = sym_lp(tp, sdev->lun);
5285
5286 /*
5287 * Check for extended errors.
5288 */
5289 if (cp->xerr_status) {
5290 if (sym_verbose)
5291 sym_print_xerr(cmd, cp->xerr_status);
5292 if (cp->host_status == HS_COMPLETE)
5293 cp->host_status = HS_COMP_ERR;
5294 }
5295
5296 /*
5297 * Calculate the residual.
5298 */
5299 resid = sym_compute_residual(np, cp);
5300
5301 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5302 resid = 0; /* throw them away. :) */
5303 cp->sv_resid = 0;
5304 }
5305#ifdef DEBUG_2_0_X
5306if (resid)
5307 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5308#endif
5309
5310 /*
5311 * Dequeue all queued CCBs for that device
5312 * not yet started by SCRIPTS.
5313 */
5314 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5315 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5316
5317 /*
5318 * Restart the SCRIPTS processor.
5319 */
5320 OUTL_DSP(np, SCRIPTA_BA(np, start));
5321
5322#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5323 if (cp->host_status == HS_COMPLETE &&
5324 cp->ssss_status == S_QUEUE_FULL) {
5325 if (!lp || lp->started_tags - i < 2)
5326 goto weirdness;
5327 /*
5328 * Decrease queue depth as needed.
5329 */
5330 lp->started_max = lp->started_tags - i - 1;
5331 lp->num_sgood = 0;
5332
5333 if (sym_verbose >= 2) {
5334 sym_print_addr(cmd, " queue depth is now %d\n",
5335 lp->started_max);
5336 }
5337
5338 /*
5339 * Repair the CCB.
5340 */
5341 cp->host_status = HS_BUSY;
5342 cp->ssss_status = S_ILLEGAL;
5343
5344 /*
5345 * Let's requeue it to device.
5346 */
Matthew Wilcox 53222b92005-05-20 19:15:43 +01005347 sym_set_cam_status(cmd, DID_SOFT_ERROR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005348 goto finish;
5349 }
5350weirdness:
5351#endif
5352 /*
5353 * Build result in CAM ccb.
5354 */
5355 sym_set_cam_result_error(np, cp, resid);
5356
5357#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5358finish:
5359#endif
5360 /*
5361 * Add this one to the COMP queue.
5362 */
5363 sym_remque(&cp->link_ccbq);
5364 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5365
5366 /*
5367 * Complete all those commands with either error
5368 * or requeue condition.
5369 */
5370 sym_flush_comp_queue(np, 0);
5371
5372#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5373 /*
5374 * Donnot start more than 1 command after an error.
5375 */
Matthew Wilcox84e203a2005-11-29 23:08:31 -05005376 sym_start_next_ccbs(np, lp, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005377#endif
5378}
5379
5380/*
5381 * Complete execution of a successful SCSI command.
5382 *
5383 * Only successful commands go to the DONE queue,
5384 * since we need to have the SCRIPTS processor
5385 * stopped on any error condition.
5386 * The SCRIPTS processor is running while we are
5387 * completing successful commands.
5388 */
5389void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5390{
5391 struct sym_tcb *tp;
5392 struct sym_lcb *lp;
5393 struct scsi_cmnd *cmd;
5394 int resid;
5395
5396 /*
5397 * Paranoid check. :)
5398 */
5399 if (!cp || !cp->cmd)
5400 return;
5401 assert (cp->host_status == HS_COMPLETE);
5402
5403 /*
5404 * Get user command.
5405 */
5406 cmd = cp->cmd;
5407
5408 /*
5409 * Get target and lun pointers.
5410 */
5411 tp = &np->target[cp->target];
5412 lp = sym_lp(tp, cp->lun);
5413
5414 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07005415 * If all data have been transferred, given than no
5416 * extended error did occur, there is no residual.
5417 */
5418 resid = 0;
Matthew Wilcox44f30b0f2005-11-29 23:08:33 -05005419 if (cp->phys.head.lastp != cp->goalp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005420 resid = sym_compute_residual(np, cp);
5421
5422 /*
5423 * Wrong transfer residuals may be worse than just always
5424 * returning zero. User can disable this feature in
5425 * sym53c8xx.h. Residual support is enabled by default.
5426 */
5427 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5428 resid = 0;
5429#ifdef DEBUG_2_0_X
5430if (resid)
5431 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5432#endif
5433
5434 /*
5435 * Build result in CAM ccb.
5436 */
5437 sym_set_cam_result_ok(cp, cmd, resid);
5438
Linus Torvalds1da177e2005-04-16 15:20:36 -07005439#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5440 /*
5441 * If max number of started ccbs had been reduced,
5442 * increase it if 200 good status received.
5443 */
5444 if (lp && lp->started_max < lp->started_limit) {
5445 ++lp->num_sgood;
5446 if (lp->num_sgood >= 200) {
5447 lp->num_sgood = 0;
5448 ++lp->started_max;
5449 if (sym_verbose >= 2) {
5450 sym_print_addr(cmd, " queue depth is now %d\n",
5451 lp->started_max);
5452 }
5453 }
5454 }
5455#endif
5456
5457 /*
5458 * Free our CCB.
5459 */
5460 sym_free_ccb (np, cp);
5461
5462#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5463 /*
5464 * Requeue a couple of awaiting scsi commands.
5465 */
Matthew Wilcox84e203a2005-11-29 23:08:31 -05005466 if (!sym_que_empty(&lp->waiting_ccbq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005467 sym_start_next_ccbs(np, lp, 2);
5468#endif
5469 /*
5470 * Complete the command.
5471 */
5472 sym_xpt_done(np, cmd);
5473}
5474
5475/*
5476 * Soft-attach the controller.
5477 */
5478int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5479{
5480 struct sym_hcb *np = sym_get_hcb(shost);
5481 int i;
5482
5483 /*
5484 * Get some info about the firmware.
5485 */
5486 np->scripta_sz = fw->a_size;
5487 np->scriptb_sz = fw->b_size;
5488 np->scriptz_sz = fw->z_size;
5489 np->fw_setup = fw->setup;
5490 np->fw_patch = fw->patch;
5491 np->fw_name = fw->name;
5492
5493 /*
5494 * Save setting of some IO registers, so we will
5495 * be able to probe specific implementations.
5496 */
5497 sym_save_initial_setting (np);
5498
5499 /*
5500 * Reset the chip now, since it has been reported
5501 * that SCSI clock calibration may not work properly
5502 * if the chip is currently active.
5503 */
5504 sym_chip_reset(np);
5505
5506 /*
5507 * Prepare controller and devices settings, according
5508 * to chip features, user set-up and driver set-up.
5509 */
5510 sym_prepare_setting(shost, np, nvram);
5511
5512 /*
5513 * Check the PCI clock frequency.
5514 * Must be performed after prepare_setting since it destroys
5515 * STEST1 that is used to probe for the clock doubler.
5516 */
5517 i = sym_getpciclock(np);
5518 if (i > 37000 && !(np->features & FE_66MHZ))
5519 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5520 sym_name(np), i);
5521
5522 /*
5523 * Allocate the start queue.
5524 */
5525 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5526 if (!np->squeue)
5527 goto attach_failed;
5528 np->squeue_ba = vtobus(np->squeue);
5529
5530 /*
5531 * Allocate the done queue.
5532 */
5533 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5534 if (!np->dqueue)
5535 goto attach_failed;
5536 np->dqueue_ba = vtobus(np->dqueue);
5537
5538 /*
5539 * Allocate the target bus address array.
5540 */
5541 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5542 if (!np->targtbl)
5543 goto attach_failed;
5544 np->targtbl_ba = vtobus(np->targtbl);
5545
5546 /*
5547 * Allocate SCRIPTS areas.
5548 */
5549 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5550 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5551 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5552 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5553 goto attach_failed;
5554
5555 /*
5556 * Allocate the array of lists of CCBs hashed by DSA.
5557 */
Robert P. J. Daycd861282006-12-13 00:34:52 -08005558 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005559 if (!np->ccbh)
5560 goto attach_failed;
5561
5562 /*
5563 * Initialyze the CCB free and busy queues.
5564 */
5565 sym_que_init(&np->free_ccbq);
5566 sym_que_init(&np->busy_ccbq);
5567 sym_que_init(&np->comp_ccbq);
5568
5569 /*
5570 * Initialization for optional handling
5571 * of device queueing.
5572 */
5573#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5574 sym_que_init(&np->dummy_ccbq);
5575#endif
5576 /*
5577 * Allocate some CCB. We need at least ONE.
5578 */
5579 if (!sym_alloc_ccb(np))
5580 goto attach_failed;
5581
5582 /*
5583 * Calculate BUS addresses where we are going
5584 * to load the SCRIPTS.
5585 */
5586 np->scripta_ba = vtobus(np->scripta0);
5587 np->scriptb_ba = vtobus(np->scriptb0);
5588 np->scriptz_ba = vtobus(np->scriptz0);
5589
5590 if (np->ram_ba) {
Matthew Wilcox8637baa2007-10-05 15:55:07 -04005591 np->scripta_ba = np->ram_ba;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005592 if (np->features & FE_RAM8K) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005593 np->scriptb_ba = np->scripta_ba + 4096;
5594#if 0 /* May get useful for 64 BIT PCI addressing */
5595 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5596#endif
5597 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005598 }
5599
5600 /*
5601 * Copy scripts to controller instance.
5602 */
5603 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5604 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5605 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5606
5607 /*
5608 * Setup variable parts in scripts and compute
5609 * scripts bus addresses used from the C code.
5610 */
5611 np->fw_setup(np, fw);
5612
5613 /*
5614 * Bind SCRIPTS with physical addresses usable by the
5615 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5616 */
5617 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5618 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5619 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5620
5621#ifdef SYM_CONF_IARB_SUPPORT
5622 /*
5623 * If user wants IARB to be set when we win arbitration
5624 * and have other jobs, compute the max number of consecutive
5625 * settings of IARB hints before we leave devices a chance to
5626 * arbitrate for reselection.
5627 */
5628#ifdef SYM_SETUP_IARB_MAX
5629 np->iarb_max = SYM_SETUP_IARB_MAX;
5630#else
5631 np->iarb_max = 4;
5632#endif
5633#endif
5634
5635 /*
5636 * Prepare the idle and invalid task actions.
5637 */
5638 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5639 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5640 np->idletask_ba = vtobus(&np->idletask);
5641
5642 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5643 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5644 np->notask_ba = vtobus(&np->notask);
5645
5646 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5647 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5648 np->bad_itl_ba = vtobus(&np->bad_itl);
5649
5650 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5651 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5652 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5653
5654 /*
5655 * Allocate and prepare the lun JUMP table that is used
5656 * for a target prior the probing of devices (bad lun table).
5657 * A private table will be allocated for the target on the
5658 * first INQUIRY response received.
5659 */
5660 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5661 if (!np->badluntbl)
5662 goto attach_failed;
5663
5664 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5665 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5666 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5667
5668 /*
5669 * Prepare the bus address array that contains the bus
5670 * address of each target control block.
5671 * For now, assume all logical units are wrong. :)
5672 */
5673 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5674 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5675 np->target[i].head.luntbl_sa =
5676 cpu_to_scr(vtobus(np->badluntbl));
5677 np->target[i].head.lun0_sa =
5678 cpu_to_scr(vtobus(&np->badlun_sa));
5679 }
5680
5681 /*
5682 * Now check the cache handling of the pci chipset.
5683 */
5684 if (sym_snooptest (np)) {
5685 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5686 goto attach_failed;
5687 }
5688
5689 /*
5690 * Sigh! we are done.
5691 */
5692 return 0;
5693
5694attach_failed:
5695 return -ENXIO;
5696}
5697
5698/*
5699 * Free everything that has been allocated for this device.
5700 */
5701void sym_hcb_free(struct sym_hcb *np)
5702{
5703 SYM_QUEHEAD *qp;
5704 struct sym_ccb *cp;
5705 struct sym_tcb *tp;
Matthew Wilcox84e203a2005-11-29 23:08:31 -05005706 int target;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005707
5708 if (np->scriptz0)
5709 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5710 if (np->scriptb0)
5711 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5712 if (np->scripta0)
5713 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5714 if (np->squeue)
5715 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5716 if (np->dqueue)
5717 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5718
5719 if (np->actccbs) {
5720 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5721 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5722 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5723 }
5724 }
5725 kfree(np->ccbh);
5726
5727 if (np->badluntbl)
5728 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5729
5730 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5731 tp = &np->target[target];
Linus Torvalds1da177e2005-04-16 15:20:36 -07005732#if SYM_CONF_MAX_LUN > 1
5733 kfree(tp->lunmp);
5734#endif
5735 }
5736 if (np->targtbl)
5737 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5738}