blob: 3276140c25067c7fe56ed742aa807087b5bfa35d [file] [log] [blame]
Neal Cardwell0f8782e2016-09-19 23:39:23 -04001/* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
Neal Cardwell9b9375b2016-10-27 13:26:37 -040017 * Here is a state transition diagram for BBR:
18 *
19 * |
20 * V
21 * +---> STARTUP ----+
22 * | | |
23 * | V |
24 * | DRAIN ----+
25 * | | |
26 * | V |
27 * +---> PROBE_BW ----+
28 * | ^ | |
29 * | | | |
30 * | +----+ |
31 * | |
32 * +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
Neal Cardwell0f8782e2016-09-19 23:39:23 -040047 * BBR is described in detail in:
48 * "BBR: Congestion-Based Congestion Control",
49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 * https://groups.google.com/forum/#!forum/bbr-dev
54 *
Eric Dumazet218af592017-05-16 04:24:36 -070055 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
Neal Cardwell0f8782e2016-09-19 23:39:23 -040058 */
59#include <linux/module.h>
60#include <net/tcp.h>
61#include <linux/inet_diag.h>
62#include <linux/inet.h>
63#include <linux/random.h>
64#include <linux/win_minmax.h>
65
66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72#define BW_SCALE 24
73#define BW_UNIT (1 << BW_SCALE)
74
75#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
76#define BBR_UNIT (1 << BBR_SCALE)
77
78/* BBR has the following modes for deciding how fast to send: */
79enum bbr_mode {
80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
81 BBR_DRAIN, /* drain any queue created during startup */
82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
Neal Cardwell9b9375b2016-10-27 13:26:37 -040083 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
Neal Cardwell0f8782e2016-09-19 23:39:23 -040084};
85
86/* BBR congestion control block */
87struct bbr {
88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
Eric Dumazet9a568de2017-05-16 14:00:14 -070094 u64 cycle_mstamp; /* time of this cycle phase start */
Neal Cardwell0f8782e2016-09-19 23:39:23 -040095 u32 mode:3, /* current bbr_mode in state machine */
96 prev_ca_state:3, /* CA state on previous ACK */
97 packet_conservation:1, /* use packet conservation? */
98 restore_cwnd:1, /* decided to revert cwnd to old value */
99 round_start:1, /* start of packet-timed tx->ack round? */
100 tso_segs_goal:7, /* segments we want in each skb we send */
101 idle_restart:1, /* restarting after idle? */
102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
103 unused:5,
104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
105 lt_rtt_cnt:7, /* round trips in long-term interval */
106 lt_use_bw:1; /* use lt_bw as our bw estimate? */
107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
110 u32 lt_last_lost; /* LT intvl start: tp->lost */
111 u32 pacing_gain:10, /* current gain for setting pacing rate */
112 cwnd_gain:10, /* current gain for setting cwnd */
113 full_bw_cnt:3, /* number of rounds without large bw gains */
114 cycle_idx:3, /* current index in pacing_gain cycle array */
115 unused_b:6;
116 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
117 u32 full_bw; /* recent bw, to estimate if pipe is full */
118};
119
120#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
121
122/* Window length of bw filter (in rounds): */
123static const int bbr_bw_rtts = CYCLE_LEN + 2;
124/* Window length of min_rtt filter (in sec): */
125static const u32 bbr_min_rtt_win_sec = 10;
126/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
127static const u32 bbr_probe_rtt_mode_ms = 200;
128/* Skip TSO below the following bandwidth (bits/sec): */
129static const int bbr_min_tso_rate = 1200000;
130
131/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
132 * that will allow a smoothly increasing pacing rate that will double each RTT
133 * and send the same number of packets per RTT that an un-paced, slow-starting
134 * Reno or CUBIC flow would:
135 */
136static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
137/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
138 * the queue created in BBR_STARTUP in a single round:
139 */
140static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
141/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
142static const int bbr_cwnd_gain = BBR_UNIT * 2;
143/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
144static const int bbr_pacing_gain[] = {
145 BBR_UNIT * 5 / 4, /* probe for more available bw */
146 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
147 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
148 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
149};
150/* Randomize the starting gain cycling phase over N phases: */
151static const u32 bbr_cycle_rand = 7;
152
153/* Try to keep at least this many packets in flight, if things go smoothly. For
154 * smooth functioning, a sliding window protocol ACKing every other packet
155 * needs at least 4 packets in flight:
156 */
157static const u32 bbr_cwnd_min_target = 4;
158
159/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
160/* If bw has increased significantly (1.25x), there may be more bw available: */
161static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
162/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
163static const u32 bbr_full_bw_cnt = 3;
164
165/* "long-term" ("LT") bandwidth estimator parameters... */
166/* The minimum number of rounds in an LT bw sampling interval: */
167static const u32 bbr_lt_intvl_min_rtts = 4;
168/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
169static const u32 bbr_lt_loss_thresh = 50;
170/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
171static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
172/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
173static const u32 bbr_lt_bw_diff = 4000 / 8;
174/* If we estimate we're policed, use lt_bw for this many round trips: */
175static const u32 bbr_lt_bw_max_rtts = 48;
176
177/* Do we estimate that STARTUP filled the pipe? */
178static bool bbr_full_bw_reached(const struct sock *sk)
179{
180 const struct bbr *bbr = inet_csk_ca(sk);
181
182 return bbr->full_bw_cnt >= bbr_full_bw_cnt;
183}
184
185/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
186static u32 bbr_max_bw(const struct sock *sk)
187{
188 struct bbr *bbr = inet_csk_ca(sk);
189
190 return minmax_get(&bbr->bw);
191}
192
193/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
194static u32 bbr_bw(const struct sock *sk)
195{
196 struct bbr *bbr = inet_csk_ca(sk);
197
198 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
199}
200
201/* Return rate in bytes per second, optionally with a gain.
202 * The order here is chosen carefully to avoid overflow of u64. This should
203 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
204 */
205static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
206{
207 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
208 rate *= gain;
209 rate >>= BBR_SCALE;
210 rate *= USEC_PER_SEC;
211 return rate >> BW_SCALE;
212}
213
Neal Cardwellf19fd622017-07-14 17:49:22 -0400214/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
215static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
216{
217 u64 rate = bw;
218
219 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
220 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
221 return rate;
222}
223
Neal Cardwell79135b82017-07-14 17:49:23 -0400224/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
225static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
226{
227 struct tcp_sock *tp = tcp_sk(sk);
228 u64 bw;
229 u32 rtt_us;
230
231 if (tp->srtt_us) { /* any RTT sample yet? */
232 rtt_us = max(tp->srtt_us >> 3, 1U);
233 } else { /* no RTT sample yet */
234 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
235 }
236 bw = (u64)tp->snd_cwnd * BW_UNIT;
237 do_div(bw, rtt_us);
238 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
239}
240
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400241/* Pace using current bw estimate and a gain factor. In order to help drive the
242 * network toward lower queues while maintaining high utilization and low
243 * latency, the average pacing rate aims to be slightly (~1%) lower than the
244 * estimated bandwidth. This is an important aspect of the design. In this
245 * implementation this slightly lower pacing rate is achieved implicitly by not
246 * including link-layer headers in the packet size used for the pacing rate.
247 */
248static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
249{
Neal Cardwellf19fd622017-07-14 17:49:22 -0400250 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400251
Neal Cardwell4aea2872017-07-14 17:49:21 -0400252 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400253 sk->sk_pacing_rate = rate;
254}
255
256/* Return count of segments we want in the skbs we send, or 0 for default. */
257static u32 bbr_tso_segs_goal(struct sock *sk)
258{
259 struct bbr *bbr = inet_csk_ca(sk);
260
261 return bbr->tso_segs_goal;
262}
263
264static void bbr_set_tso_segs_goal(struct sock *sk)
265{
266 struct tcp_sock *tp = tcp_sk(sk);
267 struct bbr *bbr = inet_csk_ca(sk);
268 u32 min_segs;
269
270 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
271 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
272 0x7FU);
273}
274
275/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
276static void bbr_save_cwnd(struct sock *sk)
277{
278 struct tcp_sock *tp = tcp_sk(sk);
279 struct bbr *bbr = inet_csk_ca(sk);
280
281 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
282 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
283 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
284 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
285}
286
287static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
288{
289 struct tcp_sock *tp = tcp_sk(sk);
290 struct bbr *bbr = inet_csk_ca(sk);
291
292 if (event == CA_EVENT_TX_START && tp->app_limited) {
293 bbr->idle_restart = 1;
294 /* Avoid pointless buffer overflows: pace at est. bw if we don't
295 * need more speed (we're restarting from idle and app-limited).
296 */
297 if (bbr->mode == BBR_PROBE_BW)
298 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
299 }
300}
301
302/* Find target cwnd. Right-size the cwnd based on min RTT and the
303 * estimated bottleneck bandwidth:
304 *
305 * cwnd = bw * min_rtt * gain = BDP * gain
306 *
307 * The key factor, gain, controls the amount of queue. While a small gain
308 * builds a smaller queue, it becomes more vulnerable to noise in RTT
309 * measurements (e.g., delayed ACKs or other ACK compression effects). This
310 * noise may cause BBR to under-estimate the rate.
311 *
312 * To achieve full performance in high-speed paths, we budget enough cwnd to
313 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
314 * - one skb in sending host Qdisc,
315 * - one skb in sending host TSO/GSO engine
316 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
317 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
318 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
319 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
320 * full even with ACK-every-other-packet delayed ACKs.
321 */
322static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
323{
324 struct bbr *bbr = inet_csk_ca(sk);
325 u32 cwnd;
326 u64 w;
327
328 /* If we've never had a valid RTT sample, cap cwnd at the initial
329 * default. This should only happen when the connection is not using TCP
330 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
331 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
332 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
333 */
334 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
335 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
336
337 w = (u64)bw * bbr->min_rtt_us;
338
339 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
340 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
341
342 /* Allow enough full-sized skbs in flight to utilize end systems. */
343 cwnd += 3 * bbr->tso_segs_goal;
344
345 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
346 cwnd = (cwnd + 1) & ~1U;
347
348 return cwnd;
349}
350
351/* An optimization in BBR to reduce losses: On the first round of recovery, we
352 * follow the packet conservation principle: send P packets per P packets acked.
353 * After that, we slow-start and send at most 2*P packets per P packets acked.
354 * After recovery finishes, or upon undo, we restore the cwnd we had when
355 * recovery started (capped by the target cwnd based on estimated BDP).
356 *
357 * TODO(ycheng/ncardwell): implement a rate-based approach.
358 */
359static bool bbr_set_cwnd_to_recover_or_restore(
360 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
361{
362 struct tcp_sock *tp = tcp_sk(sk);
363 struct bbr *bbr = inet_csk_ca(sk);
364 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
365 u32 cwnd = tp->snd_cwnd;
366
367 /* An ACK for P pkts should release at most 2*P packets. We do this
368 * in two steps. First, here we deduct the number of lost packets.
369 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
370 */
371 if (rs->losses > 0)
372 cwnd = max_t(s32, cwnd - rs->losses, 1);
373
374 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
375 /* Starting 1st round of Recovery, so do packet conservation. */
376 bbr->packet_conservation = 1;
377 bbr->next_rtt_delivered = tp->delivered; /* start round now */
378 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
379 cwnd = tcp_packets_in_flight(tp) + acked;
380 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
381 /* Exiting loss recovery; restore cwnd saved before recovery. */
382 bbr->restore_cwnd = 1;
383 bbr->packet_conservation = 0;
384 }
385 bbr->prev_ca_state = state;
386
387 if (bbr->restore_cwnd) {
388 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
389 cwnd = max(cwnd, bbr->prior_cwnd);
390 bbr->restore_cwnd = 0;
391 }
392
393 if (bbr->packet_conservation) {
394 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
395 return true; /* yes, using packet conservation */
396 }
397 *new_cwnd = cwnd;
398 return false;
399}
400
401/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
402 * has drawn us down below target), or snap down to target if we're above it.
403 */
404static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
405 u32 acked, u32 bw, int gain)
406{
407 struct tcp_sock *tp = tcp_sk(sk);
408 struct bbr *bbr = inet_csk_ca(sk);
409 u32 cwnd = 0, target_cwnd = 0;
410
411 if (!acked)
412 return;
413
414 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
415 goto done;
416
417 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
418 target_cwnd = bbr_target_cwnd(sk, bw, gain);
419 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
420 cwnd = min(cwnd + acked, target_cwnd);
421 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
422 cwnd = cwnd + acked;
423 cwnd = max(cwnd, bbr_cwnd_min_target);
424
425done:
426 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
427 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
428 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
429}
430
431/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
432static bool bbr_is_next_cycle_phase(struct sock *sk,
433 const struct rate_sample *rs)
434{
435 struct tcp_sock *tp = tcp_sk(sk);
436 struct bbr *bbr = inet_csk_ca(sk);
437 bool is_full_length =
Eric Dumazet9a568de2017-05-16 14:00:14 -0700438 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400439 bbr->min_rtt_us;
440 u32 inflight, bw;
441
442 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
443 * use the pipe without increasing the queue.
444 */
445 if (bbr->pacing_gain == BBR_UNIT)
446 return is_full_length; /* just use wall clock time */
447
448 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
449 bw = bbr_max_bw(sk);
450
451 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
452 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
453 * small (e.g. on a LAN). We do not persist if packets are lost, since
454 * a path with small buffers may not hold that much.
455 */
456 if (bbr->pacing_gain > BBR_UNIT)
457 return is_full_length &&
458 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
459 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
460
461 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
462 * probing didn't find more bw. If inflight falls to match BDP then we
463 * estimate queue is drained; persisting would underutilize the pipe.
464 */
465 return is_full_length ||
466 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
467}
468
469static void bbr_advance_cycle_phase(struct sock *sk)
470{
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct bbr *bbr = inet_csk_ca(sk);
473
474 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
475 bbr->cycle_mstamp = tp->delivered_mstamp;
476 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
477}
478
479/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
480static void bbr_update_cycle_phase(struct sock *sk,
481 const struct rate_sample *rs)
482{
483 struct bbr *bbr = inet_csk_ca(sk);
484
485 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
486 bbr_is_next_cycle_phase(sk, rs))
487 bbr_advance_cycle_phase(sk);
488}
489
490static void bbr_reset_startup_mode(struct sock *sk)
491{
492 struct bbr *bbr = inet_csk_ca(sk);
493
494 bbr->mode = BBR_STARTUP;
495 bbr->pacing_gain = bbr_high_gain;
496 bbr->cwnd_gain = bbr_high_gain;
497}
498
499static void bbr_reset_probe_bw_mode(struct sock *sk)
500{
501 struct bbr *bbr = inet_csk_ca(sk);
502
503 bbr->mode = BBR_PROBE_BW;
504 bbr->pacing_gain = BBR_UNIT;
505 bbr->cwnd_gain = bbr_cwnd_gain;
506 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
507 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
508}
509
510static void bbr_reset_mode(struct sock *sk)
511{
512 if (!bbr_full_bw_reached(sk))
513 bbr_reset_startup_mode(sk);
514 else
515 bbr_reset_probe_bw_mode(sk);
516}
517
518/* Start a new long-term sampling interval. */
519static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
520{
521 struct tcp_sock *tp = tcp_sk(sk);
522 struct bbr *bbr = inet_csk_ca(sk);
523
Eric Dumazet9a568de2017-05-16 14:00:14 -0700524 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400525 bbr->lt_last_delivered = tp->delivered;
526 bbr->lt_last_lost = tp->lost;
527 bbr->lt_rtt_cnt = 0;
528}
529
530/* Completely reset long-term bandwidth sampling. */
531static void bbr_reset_lt_bw_sampling(struct sock *sk)
532{
533 struct bbr *bbr = inet_csk_ca(sk);
534
535 bbr->lt_bw = 0;
536 bbr->lt_use_bw = 0;
537 bbr->lt_is_sampling = false;
538 bbr_reset_lt_bw_sampling_interval(sk);
539}
540
541/* Long-term bw sampling interval is done. Estimate whether we're policed. */
542static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
543{
544 struct bbr *bbr = inet_csk_ca(sk);
545 u32 diff;
546
547 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
548 /* Is new bw close to the lt_bw from the previous interval? */
549 diff = abs(bw - bbr->lt_bw);
550 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
551 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
552 bbr_lt_bw_diff)) {
553 /* All criteria are met; estimate we're policed. */
554 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
555 bbr->lt_use_bw = 1;
556 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
557 bbr->lt_rtt_cnt = 0;
558 return;
559 }
560 }
561 bbr->lt_bw = bw;
562 bbr_reset_lt_bw_sampling_interval(sk);
563}
564
565/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
566 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
567 * explicitly models their policed rate, to reduce unnecessary losses. We
568 * estimate that we're policed if we see 2 consecutive sampling intervals with
569 * consistent throughput and high packet loss. If we think we're being policed,
570 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
571 */
572static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
573{
574 struct tcp_sock *tp = tcp_sk(sk);
575 struct bbr *bbr = inet_csk_ca(sk);
576 u32 lost, delivered;
577 u64 bw;
Eric Dumazet9a568de2017-05-16 14:00:14 -0700578 u32 t;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400579
580 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
581 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
582 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
583 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
584 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
585 }
586 return;
587 }
588
589 /* Wait for the first loss before sampling, to let the policer exhaust
590 * its tokens and estimate the steady-state rate allowed by the policer.
591 * Starting samples earlier includes bursts that over-estimate the bw.
592 */
593 if (!bbr->lt_is_sampling) {
594 if (!rs->losses)
595 return;
596 bbr_reset_lt_bw_sampling_interval(sk);
597 bbr->lt_is_sampling = true;
598 }
599
600 /* To avoid underestimates, reset sampling if we run out of data. */
601 if (rs->is_app_limited) {
602 bbr_reset_lt_bw_sampling(sk);
603 return;
604 }
605
606 if (bbr->round_start)
607 bbr->lt_rtt_cnt++; /* count round trips in this interval */
608 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
609 return; /* sampling interval needs to be longer */
610 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
611 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
612 return;
613 }
614
615 /* End sampling interval when a packet is lost, so we estimate the
616 * policer tokens were exhausted. Stopping the sampling before the
617 * tokens are exhausted under-estimates the policed rate.
618 */
619 if (!rs->losses)
620 return;
621
622 /* Calculate packets lost and delivered in sampling interval. */
623 lost = tp->lost - bbr->lt_last_lost;
624 delivered = tp->delivered - bbr->lt_last_delivered;
625 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
626 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
627 return;
628
629 /* Find average delivery rate in this sampling interval. */
Eric Dumazet9a568de2017-05-16 14:00:14 -0700630 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
631 if ((s32)t < 1)
632 return; /* interval is less than one ms, so wait */
633 /* Check if can multiply without overflow */
634 if (t >= ~0U / USEC_PER_MSEC) {
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400635 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
636 return;
637 }
Eric Dumazet9a568de2017-05-16 14:00:14 -0700638 t *= USEC_PER_MSEC;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400639 bw = (u64)delivered * BW_UNIT;
640 do_div(bw, t);
641 bbr_lt_bw_interval_done(sk, bw);
642}
643
644/* Estimate the bandwidth based on how fast packets are delivered */
645static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
646{
647 struct tcp_sock *tp = tcp_sk(sk);
648 struct bbr *bbr = inet_csk_ca(sk);
649 u64 bw;
650
651 bbr->round_start = 0;
652 if (rs->delivered < 0 || rs->interval_us <= 0)
653 return; /* Not a valid observation */
654
655 /* See if we've reached the next RTT */
656 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
657 bbr->next_rtt_delivered = tp->delivered;
658 bbr->rtt_cnt++;
659 bbr->round_start = 1;
660 bbr->packet_conservation = 0;
661 }
662
663 bbr_lt_bw_sampling(sk, rs);
664
665 /* Divide delivered by the interval to find a (lower bound) bottleneck
666 * bandwidth sample. Delivered is in packets and interval_us in uS and
667 * ratio will be <<1 for most connections. So delivered is first scaled.
668 */
669 bw = (u64)rs->delivered * BW_UNIT;
670 do_div(bw, rs->interval_us);
671
672 /* If this sample is application-limited, it is likely to have a very
673 * low delivered count that represents application behavior rather than
674 * the available network rate. Such a sample could drag down estimated
675 * bw, causing needless slow-down. Thus, to continue to send at the
676 * last measured network rate, we filter out app-limited samples unless
677 * they describe the path bw at least as well as our bw model.
678 *
679 * So the goal during app-limited phase is to proceed with the best
680 * network rate no matter how long. We automatically leave this
681 * phase when app writes faster than the network can deliver :)
682 */
683 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
684 /* Incorporate new sample into our max bw filter. */
685 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
686 }
687}
688
689/* Estimate when the pipe is full, using the change in delivery rate: BBR
690 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
691 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
692 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
693 * higher rwin, 3: we get higher delivery rate samples. Or transient
694 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
695 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
696 */
697static void bbr_check_full_bw_reached(struct sock *sk,
698 const struct rate_sample *rs)
699{
700 struct bbr *bbr = inet_csk_ca(sk);
701 u32 bw_thresh;
702
703 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
704 return;
705
706 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
707 if (bbr_max_bw(sk) >= bw_thresh) {
708 bbr->full_bw = bbr_max_bw(sk);
709 bbr->full_bw_cnt = 0;
710 return;
711 }
712 ++bbr->full_bw_cnt;
713}
714
715/* If pipe is probably full, drain the queue and then enter steady-state. */
716static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
717{
718 struct bbr *bbr = inet_csk_ca(sk);
719
720 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
721 bbr->mode = BBR_DRAIN; /* drain queue we created */
722 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
723 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
724 } /* fall through to check if in-flight is already small: */
725 if (bbr->mode == BBR_DRAIN &&
726 tcp_packets_in_flight(tcp_sk(sk)) <=
727 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
728 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
729}
730
731/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
732 * periodically drain the bottleneck queue, to converge to measure the true
733 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
734 * small (reducing queuing delay and packet loss) and achieve fairness among
735 * BBR flows.
736 *
737 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
738 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
739 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
740 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
741 * re-enter the previous mode. BBR uses 200ms to approximately bound the
742 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
743 *
744 * Note that flows need only pay 2% if they are busy sending over the last 10
745 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
746 * natural silences or low-rate periods within 10 seconds where the rate is low
747 * enough for long enough to drain its queue in the bottleneck. We pick up
748 * these min RTT measurements opportunistically with our min_rtt filter. :-)
749 */
750static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
751{
752 struct tcp_sock *tp = tcp_sk(sk);
753 struct bbr *bbr = inet_csk_ca(sk);
754 bool filter_expired;
755
756 /* Track min RTT seen in the min_rtt_win_sec filter window: */
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700757 filter_expired = after(tcp_jiffies32,
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400758 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
759 if (rs->rtt_us >= 0 &&
760 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
761 bbr->min_rtt_us = rs->rtt_us;
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700762 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400763 }
764
765 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
766 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
767 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
768 bbr->pacing_gain = BBR_UNIT;
769 bbr->cwnd_gain = BBR_UNIT;
770 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
771 bbr->probe_rtt_done_stamp = 0;
772 }
773
774 if (bbr->mode == BBR_PROBE_RTT) {
775 /* Ignore low rate samples during this mode. */
776 tp->app_limited =
777 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
778 /* Maintain min packets in flight for max(200 ms, 1 round). */
779 if (!bbr->probe_rtt_done_stamp &&
780 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700781 bbr->probe_rtt_done_stamp = tcp_jiffies32 +
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400782 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
783 bbr->probe_rtt_round_done = 0;
784 bbr->next_rtt_delivered = tp->delivered;
785 } else if (bbr->probe_rtt_done_stamp) {
786 if (bbr->round_start)
787 bbr->probe_rtt_round_done = 1;
788 if (bbr->probe_rtt_round_done &&
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700789 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
790 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400791 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
792 bbr_reset_mode(sk);
793 }
794 }
795 }
796 bbr->idle_restart = 0;
797}
798
799static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
800{
801 bbr_update_bw(sk, rs);
802 bbr_update_cycle_phase(sk, rs);
803 bbr_check_full_bw_reached(sk, rs);
804 bbr_check_drain(sk, rs);
805 bbr_update_min_rtt(sk, rs);
806}
807
808static void bbr_main(struct sock *sk, const struct rate_sample *rs)
809{
810 struct bbr *bbr = inet_csk_ca(sk);
811 u32 bw;
812
813 bbr_update_model(sk, rs);
814
815 bw = bbr_bw(sk);
816 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
817 bbr_set_tso_segs_goal(sk);
818 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
819}
820
821static void bbr_init(struct sock *sk)
822{
823 struct tcp_sock *tp = tcp_sk(sk);
824 struct bbr *bbr = inet_csk_ca(sk);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400825
826 bbr->prior_cwnd = 0;
827 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
828 bbr->rtt_cnt = 0;
829 bbr->next_rtt_delivered = 0;
830 bbr->prev_ca_state = TCP_CA_Open;
831 bbr->packet_conservation = 0;
832
833 bbr->probe_rtt_done_stamp = 0;
834 bbr->probe_rtt_round_done = 0;
835 bbr->min_rtt_us = tcp_min_rtt(tp);
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700836 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400837
838 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
839
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400840 sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */
Neal Cardwell79135b82017-07-14 17:49:23 -0400841 bbr_init_pacing_rate_from_rtt(sk);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400842
843 bbr->restore_cwnd = 0;
844 bbr->round_start = 0;
845 bbr->idle_restart = 0;
846 bbr->full_bw = 0;
847 bbr->full_bw_cnt = 0;
Eric Dumazet9a568de2017-05-16 14:00:14 -0700848 bbr->cycle_mstamp = 0;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400849 bbr->cycle_idx = 0;
850 bbr_reset_lt_bw_sampling(sk);
851 bbr_reset_startup_mode(sk);
Eric Dumazet218af592017-05-16 04:24:36 -0700852
853 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400854}
855
856static u32 bbr_sndbuf_expand(struct sock *sk)
857{
858 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
859 return 3;
860}
861
862/* In theory BBR does not need to undo the cwnd since it does not
863 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
864 */
865static u32 bbr_undo_cwnd(struct sock *sk)
866{
867 return tcp_sk(sk)->snd_cwnd;
868}
869
870/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
871static u32 bbr_ssthresh(struct sock *sk)
872{
873 bbr_save_cwnd(sk);
874 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
875}
876
877static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
878 union tcp_cc_info *info)
879{
880 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
881 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct bbr *bbr = inet_csk_ca(sk);
884 u64 bw = bbr_bw(sk);
885
886 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
887 memset(&info->bbr, 0, sizeof(info->bbr));
888 info->bbr.bbr_bw_lo = (u32)bw;
889 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
890 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
891 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
892 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
893 *attr = INET_DIAG_BBRINFO;
894 return sizeof(info->bbr);
895 }
896 return 0;
897}
898
899static void bbr_set_state(struct sock *sk, u8 new_state)
900{
901 struct bbr *bbr = inet_csk_ca(sk);
902
903 if (new_state == TCP_CA_Loss) {
904 struct rate_sample rs = { .losses = 1 };
905
906 bbr->prev_ca_state = TCP_CA_Loss;
907 bbr->full_bw = 0;
908 bbr->round_start = 1; /* treat RTO like end of a round */
909 bbr_lt_bw_sampling(sk, &rs);
910 }
911}
912
913static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
914 .flags = TCP_CONG_NON_RESTRICTED,
915 .name = "bbr",
916 .owner = THIS_MODULE,
917 .init = bbr_init,
918 .cong_control = bbr_main,
919 .sndbuf_expand = bbr_sndbuf_expand,
920 .undo_cwnd = bbr_undo_cwnd,
921 .cwnd_event = bbr_cwnd_event,
922 .ssthresh = bbr_ssthresh,
923 .tso_segs_goal = bbr_tso_segs_goal,
924 .get_info = bbr_get_info,
925 .set_state = bbr_set_state,
926};
927
928static int __init bbr_register(void)
929{
930 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
931 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
932}
933
934static void __exit bbr_unregister(void)
935{
936 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
937}
938
939module_init(bbr_register);
940module_exit(bbr_unregister);
941
942MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
943MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
944MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
945MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
946MODULE_LICENSE("Dual BSD/GPL");
947MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");