Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 1 | /* |
| 2 | * AMD Cryptographic Coprocessor (CCP) driver |
| 3 | * |
| 4 | * Copyright (C) 2013 Advanced Micro Devices, Inc. |
| 5 | * |
| 6 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/pci.h> |
| 16 | #include <linux/pci_ids.h> |
| 17 | #include <linux/kthread.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/interrupt.h> |
| 20 | #include <linux/spinlock.h> |
| 21 | #include <linux/mutex.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/ccp.h> |
| 24 | #include <linux/scatterlist.h> |
| 25 | #include <crypto/scatterwalk.h> |
| 26 | |
| 27 | #include "ccp-dev.h" |
| 28 | |
| 29 | |
| 30 | enum ccp_memtype { |
| 31 | CCP_MEMTYPE_SYSTEM = 0, |
| 32 | CCP_MEMTYPE_KSB, |
| 33 | CCP_MEMTYPE_LOCAL, |
| 34 | CCP_MEMTYPE__LAST, |
| 35 | }; |
| 36 | |
| 37 | struct ccp_dma_info { |
| 38 | dma_addr_t address; |
| 39 | unsigned int offset; |
| 40 | unsigned int length; |
| 41 | enum dma_data_direction dir; |
| 42 | }; |
| 43 | |
| 44 | struct ccp_dm_workarea { |
| 45 | struct device *dev; |
| 46 | struct dma_pool *dma_pool; |
| 47 | unsigned int length; |
| 48 | |
| 49 | u8 *address; |
| 50 | struct ccp_dma_info dma; |
| 51 | }; |
| 52 | |
| 53 | struct ccp_sg_workarea { |
| 54 | struct scatterlist *sg; |
| 55 | unsigned int nents; |
| 56 | unsigned int length; |
| 57 | |
| 58 | struct scatterlist *dma_sg; |
| 59 | struct device *dma_dev; |
| 60 | unsigned int dma_count; |
| 61 | enum dma_data_direction dma_dir; |
| 62 | |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 63 | unsigned int sg_used; |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 64 | |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 65 | u64 bytes_left; |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 66 | }; |
| 67 | |
| 68 | struct ccp_data { |
| 69 | struct ccp_sg_workarea sg_wa; |
| 70 | struct ccp_dm_workarea dm_wa; |
| 71 | }; |
| 72 | |
| 73 | struct ccp_mem { |
| 74 | enum ccp_memtype type; |
| 75 | union { |
| 76 | struct ccp_dma_info dma; |
| 77 | u32 ksb; |
| 78 | } u; |
| 79 | }; |
| 80 | |
| 81 | struct ccp_aes_op { |
| 82 | enum ccp_aes_type type; |
| 83 | enum ccp_aes_mode mode; |
| 84 | enum ccp_aes_action action; |
| 85 | }; |
| 86 | |
| 87 | struct ccp_xts_aes_op { |
| 88 | enum ccp_aes_action action; |
| 89 | enum ccp_xts_aes_unit_size unit_size; |
| 90 | }; |
| 91 | |
| 92 | struct ccp_sha_op { |
| 93 | enum ccp_sha_type type; |
| 94 | u64 msg_bits; |
| 95 | }; |
| 96 | |
| 97 | struct ccp_rsa_op { |
| 98 | u32 mod_size; |
| 99 | u32 input_len; |
| 100 | }; |
| 101 | |
| 102 | struct ccp_passthru_op { |
| 103 | enum ccp_passthru_bitwise bit_mod; |
| 104 | enum ccp_passthru_byteswap byte_swap; |
| 105 | }; |
| 106 | |
| 107 | struct ccp_ecc_op { |
| 108 | enum ccp_ecc_function function; |
| 109 | }; |
| 110 | |
| 111 | struct ccp_op { |
| 112 | struct ccp_cmd_queue *cmd_q; |
| 113 | |
| 114 | u32 jobid; |
| 115 | u32 ioc; |
| 116 | u32 soc; |
| 117 | u32 ksb_key; |
| 118 | u32 ksb_ctx; |
| 119 | u32 init; |
| 120 | u32 eom; |
| 121 | |
| 122 | struct ccp_mem src; |
| 123 | struct ccp_mem dst; |
| 124 | |
| 125 | union { |
| 126 | struct ccp_aes_op aes; |
| 127 | struct ccp_xts_aes_op xts; |
| 128 | struct ccp_sha_op sha; |
| 129 | struct ccp_rsa_op rsa; |
| 130 | struct ccp_passthru_op passthru; |
| 131 | struct ccp_ecc_op ecc; |
| 132 | } u; |
| 133 | }; |
| 134 | |
| 135 | /* The CCP cannot perform zero-length sha operations so the caller |
| 136 | * is required to buffer data for the final operation. However, a |
| 137 | * sha operation for a message with a total length of zero is valid |
| 138 | * so known values are required to supply the result. |
| 139 | */ |
| 140 | static const u8 ccp_sha1_zero[CCP_SHA_CTXSIZE] = { |
| 141 | 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, |
| 142 | 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, |
| 143 | 0xaf, 0xd8, 0x07, 0x09, 0x00, 0x00, 0x00, 0x00, |
| 144 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 145 | }; |
| 146 | |
| 147 | static const u8 ccp_sha224_zero[CCP_SHA_CTXSIZE] = { |
| 148 | 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, |
| 149 | 0x47, 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, |
| 150 | 0x15, 0xa2, 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, |
| 151 | 0xc5, 0xb3, 0xe4, 0x2f, 0x00, 0x00, 0x00, 0x00, |
| 152 | }; |
| 153 | |
| 154 | static const u8 ccp_sha256_zero[CCP_SHA_CTXSIZE] = { |
| 155 | 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, |
| 156 | 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, |
| 157 | 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, |
| 158 | 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, |
| 159 | }; |
| 160 | |
| 161 | static u32 ccp_addr_lo(struct ccp_dma_info *info) |
| 162 | { |
| 163 | return lower_32_bits(info->address + info->offset); |
| 164 | } |
| 165 | |
| 166 | static u32 ccp_addr_hi(struct ccp_dma_info *info) |
| 167 | { |
| 168 | return upper_32_bits(info->address + info->offset) & 0x0000ffff; |
| 169 | } |
| 170 | |
| 171 | static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count) |
| 172 | { |
| 173 | struct ccp_cmd_queue *cmd_q = op->cmd_q; |
| 174 | struct ccp_device *ccp = cmd_q->ccp; |
| 175 | void __iomem *cr_addr; |
| 176 | u32 cr0, cmd; |
| 177 | unsigned int i; |
| 178 | int ret = 0; |
| 179 | |
| 180 | /* We could read a status register to see how many free slots |
| 181 | * are actually available, but reading that register resets it |
| 182 | * and you could lose some error information. |
| 183 | */ |
| 184 | cmd_q->free_slots--; |
| 185 | |
| 186 | cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT) |
| 187 | | (op->jobid << REQ0_JOBID_SHIFT) |
| 188 | | REQ0_WAIT_FOR_WRITE; |
| 189 | |
| 190 | if (op->soc) |
| 191 | cr0 |= REQ0_STOP_ON_COMPLETE |
| 192 | | REQ0_INT_ON_COMPLETE; |
| 193 | |
| 194 | if (op->ioc || !cmd_q->free_slots) |
| 195 | cr0 |= REQ0_INT_ON_COMPLETE; |
| 196 | |
| 197 | /* Start at CMD_REQ1 */ |
| 198 | cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR; |
| 199 | |
| 200 | mutex_lock(&ccp->req_mutex); |
| 201 | |
| 202 | /* Write CMD_REQ1 through CMD_REQx first */ |
| 203 | for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR) |
| 204 | iowrite32(*(cr + i), cr_addr); |
| 205 | |
| 206 | /* Tell the CCP to start */ |
| 207 | wmb(); |
| 208 | iowrite32(cr0, ccp->io_regs + CMD_REQ0); |
| 209 | |
| 210 | mutex_unlock(&ccp->req_mutex); |
| 211 | |
| 212 | if (cr0 & REQ0_INT_ON_COMPLETE) { |
| 213 | /* Wait for the job to complete */ |
| 214 | ret = wait_event_interruptible(cmd_q->int_queue, |
| 215 | cmd_q->int_rcvd); |
| 216 | if (ret || cmd_q->cmd_error) { |
| 217 | /* On error delete all related jobs from the queue */ |
| 218 | cmd = (cmd_q->id << DEL_Q_ID_SHIFT) |
| 219 | | op->jobid; |
| 220 | |
| 221 | iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB); |
| 222 | |
| 223 | if (!ret) |
| 224 | ret = -EIO; |
| 225 | } else if (op->soc) { |
| 226 | /* Delete just head job from the queue on SoC */ |
| 227 | cmd = DEL_Q_ACTIVE |
| 228 | | (cmd_q->id << DEL_Q_ID_SHIFT) |
| 229 | | op->jobid; |
| 230 | |
| 231 | iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB); |
| 232 | } |
| 233 | |
| 234 | cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status); |
| 235 | |
| 236 | cmd_q->int_rcvd = 0; |
| 237 | } |
| 238 | |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | static int ccp_perform_aes(struct ccp_op *op) |
| 243 | { |
| 244 | u32 cr[6]; |
| 245 | |
| 246 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 247 | cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT) |
| 248 | | (op->u.aes.type << REQ1_AES_TYPE_SHIFT) |
| 249 | | (op->u.aes.mode << REQ1_AES_MODE_SHIFT) |
| 250 | | (op->u.aes.action << REQ1_AES_ACTION_SHIFT) |
| 251 | | (op->ksb_key << REQ1_KEY_KSB_SHIFT); |
| 252 | cr[1] = op->src.u.dma.length - 1; |
| 253 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 254 | cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT) |
| 255 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 256 | | ccp_addr_hi(&op->src.u.dma); |
| 257 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 258 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 259 | | ccp_addr_hi(&op->dst.u.dma); |
| 260 | |
| 261 | if (op->u.aes.mode == CCP_AES_MODE_CFB) |
| 262 | cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT); |
| 263 | |
| 264 | if (op->eom) |
| 265 | cr[0] |= REQ1_EOM; |
| 266 | |
| 267 | if (op->init) |
| 268 | cr[0] |= REQ1_INIT; |
| 269 | |
| 270 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 271 | } |
| 272 | |
| 273 | static int ccp_perform_xts_aes(struct ccp_op *op) |
| 274 | { |
| 275 | u32 cr[6]; |
| 276 | |
| 277 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 278 | cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT) |
| 279 | | (op->u.xts.action << REQ1_AES_ACTION_SHIFT) |
| 280 | | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT) |
| 281 | | (op->ksb_key << REQ1_KEY_KSB_SHIFT); |
| 282 | cr[1] = op->src.u.dma.length - 1; |
| 283 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 284 | cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT) |
| 285 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 286 | | ccp_addr_hi(&op->src.u.dma); |
| 287 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 288 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 289 | | ccp_addr_hi(&op->dst.u.dma); |
| 290 | |
| 291 | if (op->eom) |
| 292 | cr[0] |= REQ1_EOM; |
| 293 | |
| 294 | if (op->init) |
| 295 | cr[0] |= REQ1_INIT; |
| 296 | |
| 297 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 298 | } |
| 299 | |
| 300 | static int ccp_perform_sha(struct ccp_op *op) |
| 301 | { |
| 302 | u32 cr[6]; |
| 303 | |
| 304 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 305 | cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT) |
| 306 | | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT) |
| 307 | | REQ1_INIT; |
| 308 | cr[1] = op->src.u.dma.length - 1; |
| 309 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 310 | cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT) |
| 311 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 312 | | ccp_addr_hi(&op->src.u.dma); |
| 313 | |
| 314 | if (op->eom) { |
| 315 | cr[0] |= REQ1_EOM; |
| 316 | cr[4] = lower_32_bits(op->u.sha.msg_bits); |
| 317 | cr[5] = upper_32_bits(op->u.sha.msg_bits); |
| 318 | } else { |
| 319 | cr[4] = 0; |
| 320 | cr[5] = 0; |
| 321 | } |
| 322 | |
| 323 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 324 | } |
| 325 | |
| 326 | static int ccp_perform_rsa(struct ccp_op *op) |
| 327 | { |
| 328 | u32 cr[6]; |
| 329 | |
| 330 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 331 | cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT) |
| 332 | | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT) |
| 333 | | (op->ksb_key << REQ1_KEY_KSB_SHIFT) |
| 334 | | REQ1_EOM; |
| 335 | cr[1] = op->u.rsa.input_len - 1; |
| 336 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 337 | cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT) |
| 338 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 339 | | ccp_addr_hi(&op->src.u.dma); |
| 340 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 341 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 342 | | ccp_addr_hi(&op->dst.u.dma); |
| 343 | |
| 344 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 345 | } |
| 346 | |
| 347 | static int ccp_perform_passthru(struct ccp_op *op) |
| 348 | { |
| 349 | u32 cr[6]; |
| 350 | |
| 351 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 352 | cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT) |
| 353 | | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT) |
| 354 | | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT); |
| 355 | |
| 356 | if (op->src.type == CCP_MEMTYPE_SYSTEM) |
| 357 | cr[1] = op->src.u.dma.length - 1; |
| 358 | else |
| 359 | cr[1] = op->dst.u.dma.length - 1; |
| 360 | |
| 361 | if (op->src.type == CCP_MEMTYPE_SYSTEM) { |
| 362 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 363 | cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 364 | | ccp_addr_hi(&op->src.u.dma); |
| 365 | |
| 366 | if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| 367 | cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT); |
| 368 | } else { |
| 369 | cr[2] = op->src.u.ksb * CCP_KSB_BYTES; |
| 370 | cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT); |
| 371 | } |
| 372 | |
| 373 | if (op->dst.type == CCP_MEMTYPE_SYSTEM) { |
| 374 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 375 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 376 | | ccp_addr_hi(&op->dst.u.dma); |
| 377 | } else { |
| 378 | cr[4] = op->dst.u.ksb * CCP_KSB_BYTES; |
| 379 | cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT); |
| 380 | } |
| 381 | |
| 382 | if (op->eom) |
| 383 | cr[0] |= REQ1_EOM; |
| 384 | |
| 385 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 386 | } |
| 387 | |
| 388 | static int ccp_perform_ecc(struct ccp_op *op) |
| 389 | { |
| 390 | u32 cr[6]; |
| 391 | |
| 392 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 393 | cr[0] = REQ1_ECC_AFFINE_CONVERT |
| 394 | | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT) |
| 395 | | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT) |
| 396 | | REQ1_EOM; |
| 397 | cr[1] = op->src.u.dma.length - 1; |
| 398 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 399 | cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 400 | | ccp_addr_hi(&op->src.u.dma); |
| 401 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 402 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 403 | | ccp_addr_hi(&op->dst.u.dma); |
| 404 | |
| 405 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 406 | } |
| 407 | |
| 408 | static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count) |
| 409 | { |
| 410 | int start; |
| 411 | |
| 412 | for (;;) { |
| 413 | mutex_lock(&ccp->ksb_mutex); |
| 414 | |
| 415 | start = (u32)bitmap_find_next_zero_area(ccp->ksb, |
| 416 | ccp->ksb_count, |
| 417 | ccp->ksb_start, |
| 418 | count, 0); |
| 419 | if (start <= ccp->ksb_count) { |
| 420 | bitmap_set(ccp->ksb, start, count); |
| 421 | |
| 422 | mutex_unlock(&ccp->ksb_mutex); |
| 423 | break; |
| 424 | } |
| 425 | |
| 426 | ccp->ksb_avail = 0; |
| 427 | |
| 428 | mutex_unlock(&ccp->ksb_mutex); |
| 429 | |
| 430 | /* Wait for KSB entries to become available */ |
| 431 | if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail)) |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | return KSB_START + start; |
| 436 | } |
| 437 | |
| 438 | static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start, |
| 439 | unsigned int count) |
| 440 | { |
| 441 | if (!start) |
| 442 | return; |
| 443 | |
| 444 | mutex_lock(&ccp->ksb_mutex); |
| 445 | |
| 446 | bitmap_clear(ccp->ksb, start - KSB_START, count); |
| 447 | |
| 448 | ccp->ksb_avail = 1; |
| 449 | |
| 450 | mutex_unlock(&ccp->ksb_mutex); |
| 451 | |
| 452 | wake_up_interruptible_all(&ccp->ksb_queue); |
| 453 | } |
| 454 | |
| 455 | static u32 ccp_gen_jobid(struct ccp_device *ccp) |
| 456 | { |
| 457 | return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; |
| 458 | } |
| 459 | |
| 460 | static void ccp_sg_free(struct ccp_sg_workarea *wa) |
| 461 | { |
| 462 | if (wa->dma_count) |
| 463 | dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir); |
| 464 | |
| 465 | wa->dma_count = 0; |
| 466 | } |
| 467 | |
| 468 | static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 469 | struct scatterlist *sg, u64 len, |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 470 | enum dma_data_direction dma_dir) |
| 471 | { |
| 472 | memset(wa, 0, sizeof(*wa)); |
| 473 | |
| 474 | wa->sg = sg; |
| 475 | if (!sg) |
| 476 | return 0; |
| 477 | |
| 478 | wa->nents = sg_nents(sg); |
| 479 | wa->length = sg->length; |
| 480 | wa->bytes_left = len; |
| 481 | wa->sg_used = 0; |
| 482 | |
| 483 | if (len == 0) |
| 484 | return 0; |
| 485 | |
| 486 | if (dma_dir == DMA_NONE) |
| 487 | return 0; |
| 488 | |
| 489 | wa->dma_sg = sg; |
| 490 | wa->dma_dev = dev; |
| 491 | wa->dma_dir = dma_dir; |
| 492 | wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); |
| 493 | if (!wa->dma_count) |
| 494 | return -ENOMEM; |
| 495 | |
| 496 | |
| 497 | return 0; |
| 498 | } |
| 499 | |
| 500 | static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) |
| 501 | { |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 502 | unsigned int nbytes = min_t(u64, len, wa->bytes_left); |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 503 | |
| 504 | if (!wa->sg) |
| 505 | return; |
| 506 | |
| 507 | wa->sg_used += nbytes; |
| 508 | wa->bytes_left -= nbytes; |
| 509 | if (wa->sg_used == wa->sg->length) { |
| 510 | wa->sg = sg_next(wa->sg); |
| 511 | wa->sg_used = 0; |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | static void ccp_dm_free(struct ccp_dm_workarea *wa) |
| 516 | { |
| 517 | if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { |
| 518 | if (wa->address) |
| 519 | dma_pool_free(wa->dma_pool, wa->address, |
| 520 | wa->dma.address); |
| 521 | } else { |
| 522 | if (wa->dma.address) |
| 523 | dma_unmap_single(wa->dev, wa->dma.address, wa->length, |
| 524 | wa->dma.dir); |
| 525 | kfree(wa->address); |
| 526 | } |
| 527 | |
| 528 | wa->address = NULL; |
| 529 | wa->dma.address = 0; |
| 530 | } |
| 531 | |
| 532 | static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, |
| 533 | struct ccp_cmd_queue *cmd_q, |
| 534 | unsigned int len, |
| 535 | enum dma_data_direction dir) |
| 536 | { |
| 537 | memset(wa, 0, sizeof(*wa)); |
| 538 | |
| 539 | if (!len) |
| 540 | return 0; |
| 541 | |
| 542 | wa->dev = cmd_q->ccp->dev; |
| 543 | wa->length = len; |
| 544 | |
| 545 | if (len <= CCP_DMAPOOL_MAX_SIZE) { |
| 546 | wa->dma_pool = cmd_q->dma_pool; |
| 547 | |
| 548 | wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL, |
| 549 | &wa->dma.address); |
| 550 | if (!wa->address) |
| 551 | return -ENOMEM; |
| 552 | |
| 553 | wa->dma.length = CCP_DMAPOOL_MAX_SIZE; |
| 554 | |
| 555 | memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE); |
| 556 | } else { |
| 557 | wa->address = kzalloc(len, GFP_KERNEL); |
| 558 | if (!wa->address) |
| 559 | return -ENOMEM; |
| 560 | |
| 561 | wa->dma.address = dma_map_single(wa->dev, wa->address, len, |
| 562 | dir); |
| 563 | if (!wa->dma.address) |
| 564 | return -ENOMEM; |
| 565 | |
| 566 | wa->dma.length = len; |
| 567 | } |
| 568 | wa->dma.dir = dir; |
| 569 | |
| 570 | return 0; |
| 571 | } |
| 572 | |
| 573 | static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 574 | struct scatterlist *sg, unsigned int sg_offset, |
| 575 | unsigned int len) |
| 576 | { |
| 577 | WARN_ON(!wa->address); |
| 578 | |
| 579 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 580 | 0); |
| 581 | } |
| 582 | |
| 583 | static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| 584 | struct scatterlist *sg, unsigned int sg_offset, |
| 585 | unsigned int len) |
| 586 | { |
| 587 | WARN_ON(!wa->address); |
| 588 | |
| 589 | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 590 | 1); |
| 591 | } |
| 592 | |
| 593 | static void ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, |
| 594 | struct scatterlist *sg, |
| 595 | unsigned int len, unsigned int se_len, |
| 596 | bool sign_extend) |
| 597 | { |
| 598 | unsigned int nbytes, sg_offset, dm_offset, ksb_len, i; |
| 599 | u8 buffer[CCP_REVERSE_BUF_SIZE]; |
| 600 | |
| 601 | BUG_ON(se_len > sizeof(buffer)); |
| 602 | |
| 603 | sg_offset = len; |
| 604 | dm_offset = 0; |
| 605 | nbytes = len; |
| 606 | while (nbytes) { |
| 607 | ksb_len = min_t(unsigned int, nbytes, se_len); |
| 608 | sg_offset -= ksb_len; |
| 609 | |
| 610 | scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0); |
| 611 | for (i = 0; i < ksb_len; i++) |
| 612 | wa->address[dm_offset + i] = buffer[ksb_len - i - 1]; |
| 613 | |
| 614 | dm_offset += ksb_len; |
| 615 | nbytes -= ksb_len; |
| 616 | |
| 617 | if ((ksb_len != se_len) && sign_extend) { |
| 618 | /* Must sign-extend to nearest sign-extend length */ |
| 619 | if (wa->address[dm_offset - 1] & 0x80) |
| 620 | memset(wa->address + dm_offset, 0xff, |
| 621 | se_len - ksb_len); |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, |
| 627 | struct scatterlist *sg, |
| 628 | unsigned int len) |
| 629 | { |
| 630 | unsigned int nbytes, sg_offset, dm_offset, ksb_len, i; |
| 631 | u8 buffer[CCP_REVERSE_BUF_SIZE]; |
| 632 | |
| 633 | sg_offset = 0; |
| 634 | dm_offset = len; |
| 635 | nbytes = len; |
| 636 | while (nbytes) { |
| 637 | ksb_len = min_t(unsigned int, nbytes, sizeof(buffer)); |
| 638 | dm_offset -= ksb_len; |
| 639 | |
| 640 | for (i = 0; i < ksb_len; i++) |
| 641 | buffer[ksb_len - i - 1] = wa->address[dm_offset + i]; |
| 642 | scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1); |
| 643 | |
| 644 | sg_offset += ksb_len; |
| 645 | nbytes -= ksb_len; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) |
| 650 | { |
| 651 | ccp_dm_free(&data->dm_wa); |
| 652 | ccp_sg_free(&data->sg_wa); |
| 653 | } |
| 654 | |
| 655 | static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 656 | struct scatterlist *sg, u64 sg_len, |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 657 | unsigned int dm_len, |
| 658 | enum dma_data_direction dir) |
| 659 | { |
| 660 | int ret; |
| 661 | |
| 662 | memset(data, 0, sizeof(*data)); |
| 663 | |
| 664 | ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, |
| 665 | dir); |
| 666 | if (ret) |
| 667 | goto e_err; |
| 668 | |
| 669 | ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); |
| 670 | if (ret) |
| 671 | goto e_err; |
| 672 | |
| 673 | return 0; |
| 674 | |
| 675 | e_err: |
| 676 | ccp_free_data(data, cmd_q); |
| 677 | |
| 678 | return ret; |
| 679 | } |
| 680 | |
| 681 | static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) |
| 682 | { |
| 683 | struct ccp_sg_workarea *sg_wa = &data->sg_wa; |
| 684 | struct ccp_dm_workarea *dm_wa = &data->dm_wa; |
| 685 | unsigned int buf_count, nbytes; |
| 686 | |
| 687 | /* Clear the buffer if setting it */ |
| 688 | if (!from) |
| 689 | memset(dm_wa->address, 0, dm_wa->length); |
| 690 | |
| 691 | if (!sg_wa->sg) |
| 692 | return 0; |
| 693 | |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 694 | /* Perform the copy operation |
| 695 | * nbytes will always be <= UINT_MAX because dm_wa->length is |
| 696 | * an unsigned int |
| 697 | */ |
| 698 | nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 699 | scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, |
| 700 | nbytes, from); |
| 701 | |
| 702 | /* Update the structures and generate the count */ |
| 703 | buf_count = 0; |
| 704 | while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 705 | nbytes = min(sg_wa->sg->length - sg_wa->sg_used, |
| 706 | dm_wa->length - buf_count); |
| 707 | nbytes = min_t(u64, sg_wa->bytes_left, nbytes); |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 708 | |
| 709 | buf_count += nbytes; |
| 710 | ccp_update_sg_workarea(sg_wa, nbytes); |
| 711 | } |
| 712 | |
| 713 | return buf_count; |
| 714 | } |
| 715 | |
| 716 | static unsigned int ccp_fill_queue_buf(struct ccp_data *data) |
| 717 | { |
| 718 | return ccp_queue_buf(data, 0); |
| 719 | } |
| 720 | |
| 721 | static unsigned int ccp_empty_queue_buf(struct ccp_data *data) |
| 722 | { |
| 723 | return ccp_queue_buf(data, 1); |
| 724 | } |
| 725 | |
| 726 | static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, |
| 727 | struct ccp_op *op, unsigned int block_size, |
| 728 | bool blocksize_op) |
| 729 | { |
| 730 | unsigned int sg_src_len, sg_dst_len, op_len; |
| 731 | |
| 732 | /* The CCP can only DMA from/to one address each per operation. This |
| 733 | * requires that we find the smallest DMA area between the source |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 734 | * and destination. The resulting len values will always be <= UINT_MAX |
| 735 | * because the dma length is an unsigned int. |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 736 | */ |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 737 | sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used; |
| 738 | sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 739 | |
| 740 | if (dst) { |
Tom Lendacky | 81a59f0 | 2014-01-06 13:34:17 -0600 | [diff] [blame^] | 741 | sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used; |
| 742 | sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); |
Tom Lendacky | 63b9450 | 2013-11-12 11:46:16 -0600 | [diff] [blame] | 743 | op_len = min(sg_src_len, sg_dst_len); |
| 744 | } else |
| 745 | op_len = sg_src_len; |
| 746 | |
| 747 | /* The data operation length will be at least block_size in length |
| 748 | * or the smaller of available sg room remaining for the source or |
| 749 | * the destination |
| 750 | */ |
| 751 | op_len = max(op_len, block_size); |
| 752 | |
| 753 | /* Unless we have to buffer data, there's no reason to wait */ |
| 754 | op->soc = 0; |
| 755 | |
| 756 | if (sg_src_len < block_size) { |
| 757 | /* Not enough data in the sg element, so it |
| 758 | * needs to be buffered into a blocksize chunk |
| 759 | */ |
| 760 | int cp_len = ccp_fill_queue_buf(src); |
| 761 | |
| 762 | op->soc = 1; |
| 763 | op->src.u.dma.address = src->dm_wa.dma.address; |
| 764 | op->src.u.dma.offset = 0; |
| 765 | op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; |
| 766 | } else { |
| 767 | /* Enough data in the sg element, but we need to |
| 768 | * adjust for any previously copied data |
| 769 | */ |
| 770 | op->src.u.dma.address = sg_dma_address(src->sg_wa.sg); |
| 771 | op->src.u.dma.offset = src->sg_wa.sg_used; |
| 772 | op->src.u.dma.length = op_len & ~(block_size - 1); |
| 773 | |
| 774 | ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); |
| 775 | } |
| 776 | |
| 777 | if (dst) { |
| 778 | if (sg_dst_len < block_size) { |
| 779 | /* Not enough room in the sg element or we're on the |
| 780 | * last piece of data (when using padding), so the |
| 781 | * output needs to be buffered into a blocksize chunk |
| 782 | */ |
| 783 | op->soc = 1; |
| 784 | op->dst.u.dma.address = dst->dm_wa.dma.address; |
| 785 | op->dst.u.dma.offset = 0; |
| 786 | op->dst.u.dma.length = op->src.u.dma.length; |
| 787 | } else { |
| 788 | /* Enough room in the sg element, but we need to |
| 789 | * adjust for any previously used area |
| 790 | */ |
| 791 | op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg); |
| 792 | op->dst.u.dma.offset = dst->sg_wa.sg_used; |
| 793 | op->dst.u.dma.length = op->src.u.dma.length; |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, |
| 799 | struct ccp_op *op) |
| 800 | { |
| 801 | op->init = 0; |
| 802 | |
| 803 | if (dst) { |
| 804 | if (op->dst.u.dma.address == dst->dm_wa.dma.address) |
| 805 | ccp_empty_queue_buf(dst); |
| 806 | else |
| 807 | ccp_update_sg_workarea(&dst->sg_wa, |
| 808 | op->dst.u.dma.length); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q, |
| 813 | struct ccp_dm_workarea *wa, u32 jobid, u32 ksb, |
| 814 | u32 byte_swap, bool from) |
| 815 | { |
| 816 | struct ccp_op op; |
| 817 | |
| 818 | memset(&op, 0, sizeof(op)); |
| 819 | |
| 820 | op.cmd_q = cmd_q; |
| 821 | op.jobid = jobid; |
| 822 | op.eom = 1; |
| 823 | |
| 824 | if (from) { |
| 825 | op.soc = 1; |
| 826 | op.src.type = CCP_MEMTYPE_KSB; |
| 827 | op.src.u.ksb = ksb; |
| 828 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 829 | op.dst.u.dma.address = wa->dma.address; |
| 830 | op.dst.u.dma.length = wa->length; |
| 831 | } else { |
| 832 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 833 | op.src.u.dma.address = wa->dma.address; |
| 834 | op.src.u.dma.length = wa->length; |
| 835 | op.dst.type = CCP_MEMTYPE_KSB; |
| 836 | op.dst.u.ksb = ksb; |
| 837 | } |
| 838 | |
| 839 | op.u.passthru.byte_swap = byte_swap; |
| 840 | |
| 841 | return ccp_perform_passthru(&op); |
| 842 | } |
| 843 | |
| 844 | static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q, |
| 845 | struct ccp_dm_workarea *wa, u32 jobid, u32 ksb, |
| 846 | u32 byte_swap) |
| 847 | { |
| 848 | return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false); |
| 849 | } |
| 850 | |
| 851 | static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q, |
| 852 | struct ccp_dm_workarea *wa, u32 jobid, u32 ksb, |
| 853 | u32 byte_swap) |
| 854 | { |
| 855 | return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true); |
| 856 | } |
| 857 | |
| 858 | static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, |
| 859 | struct ccp_cmd *cmd) |
| 860 | { |
| 861 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 862 | struct ccp_dm_workarea key, ctx; |
| 863 | struct ccp_data src; |
| 864 | struct ccp_op op; |
| 865 | unsigned int dm_offset; |
| 866 | int ret; |
| 867 | |
| 868 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 869 | (aes->key_len == AES_KEYSIZE_192) || |
| 870 | (aes->key_len == AES_KEYSIZE_256))) |
| 871 | return -EINVAL; |
| 872 | |
| 873 | if (aes->src_len & (AES_BLOCK_SIZE - 1)) |
| 874 | return -EINVAL; |
| 875 | |
| 876 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 877 | return -EINVAL; |
| 878 | |
| 879 | if (!aes->key || !aes->iv || !aes->src) |
| 880 | return -EINVAL; |
| 881 | |
| 882 | if (aes->cmac_final) { |
| 883 | if (aes->cmac_key_len != AES_BLOCK_SIZE) |
| 884 | return -EINVAL; |
| 885 | |
| 886 | if (!aes->cmac_key) |
| 887 | return -EINVAL; |
| 888 | } |
| 889 | |
| 890 | BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1); |
| 891 | BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1); |
| 892 | |
| 893 | ret = -EIO; |
| 894 | memset(&op, 0, sizeof(op)); |
| 895 | op.cmd_q = cmd_q; |
| 896 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 897 | op.ksb_key = cmd_q->ksb_key; |
| 898 | op.ksb_ctx = cmd_q->ksb_ctx; |
| 899 | op.init = 1; |
| 900 | op.u.aes.type = aes->type; |
| 901 | op.u.aes.mode = aes->mode; |
| 902 | op.u.aes.action = aes->action; |
| 903 | |
| 904 | /* All supported key sizes fit in a single (32-byte) KSB entry |
| 905 | * and must be in little endian format. Use the 256-bit byte |
| 906 | * swap passthru option to convert from big endian to little |
| 907 | * endian. |
| 908 | */ |
| 909 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 910 | CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES, |
| 911 | DMA_TO_DEVICE); |
| 912 | if (ret) |
| 913 | return ret; |
| 914 | |
| 915 | dm_offset = CCP_KSB_BYTES - aes->key_len; |
| 916 | ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 917 | ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key, |
| 918 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 919 | if (ret) { |
| 920 | cmd->engine_error = cmd_q->cmd_error; |
| 921 | goto e_key; |
| 922 | } |
| 923 | |
| 924 | /* The AES context fits in a single (32-byte) KSB entry and |
| 925 | * must be in little endian format. Use the 256-bit byte swap |
| 926 | * passthru option to convert from big endian to little endian. |
| 927 | */ |
| 928 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 929 | CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES, |
| 930 | DMA_BIDIRECTIONAL); |
| 931 | if (ret) |
| 932 | goto e_key; |
| 933 | |
| 934 | dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE; |
| 935 | ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 936 | ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 937 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 938 | if (ret) { |
| 939 | cmd->engine_error = cmd_q->cmd_error; |
| 940 | goto e_ctx; |
| 941 | } |
| 942 | |
| 943 | /* Send data to the CCP AES engine */ |
| 944 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 945 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 946 | if (ret) |
| 947 | goto e_ctx; |
| 948 | |
| 949 | while (src.sg_wa.bytes_left) { |
| 950 | ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); |
| 951 | if (aes->cmac_final && !src.sg_wa.bytes_left) { |
| 952 | op.eom = 1; |
| 953 | |
| 954 | /* Push the K1/K2 key to the CCP now */ |
| 955 | ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, |
| 956 | op.ksb_ctx, |
| 957 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 958 | if (ret) { |
| 959 | cmd->engine_error = cmd_q->cmd_error; |
| 960 | goto e_src; |
| 961 | } |
| 962 | |
| 963 | ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, |
| 964 | aes->cmac_key_len); |
| 965 | ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 966 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 967 | if (ret) { |
| 968 | cmd->engine_error = cmd_q->cmd_error; |
| 969 | goto e_src; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | ret = ccp_perform_aes(&op); |
| 974 | if (ret) { |
| 975 | cmd->engine_error = cmd_q->cmd_error; |
| 976 | goto e_src; |
| 977 | } |
| 978 | |
| 979 | ccp_process_data(&src, NULL, &op); |
| 980 | } |
| 981 | |
| 982 | /* Retrieve the AES context - convert from LE to BE using |
| 983 | * 32-byte (256-bit) byteswapping |
| 984 | */ |
| 985 | ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 986 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 987 | if (ret) { |
| 988 | cmd->engine_error = cmd_q->cmd_error; |
| 989 | goto e_src; |
| 990 | } |
| 991 | |
| 992 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 993 | dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE; |
| 994 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 995 | |
| 996 | e_src: |
| 997 | ccp_free_data(&src, cmd_q); |
| 998 | |
| 999 | e_ctx: |
| 1000 | ccp_dm_free(&ctx); |
| 1001 | |
| 1002 | e_key: |
| 1003 | ccp_dm_free(&key); |
| 1004 | |
| 1005 | return ret; |
| 1006 | } |
| 1007 | |
| 1008 | static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1009 | { |
| 1010 | struct ccp_aes_engine *aes = &cmd->u.aes; |
| 1011 | struct ccp_dm_workarea key, ctx; |
| 1012 | struct ccp_data src, dst; |
| 1013 | struct ccp_op op; |
| 1014 | unsigned int dm_offset; |
| 1015 | bool in_place = false; |
| 1016 | int ret; |
| 1017 | |
| 1018 | if (aes->mode == CCP_AES_MODE_CMAC) |
| 1019 | return ccp_run_aes_cmac_cmd(cmd_q, cmd); |
| 1020 | |
| 1021 | if (!((aes->key_len == AES_KEYSIZE_128) || |
| 1022 | (aes->key_len == AES_KEYSIZE_192) || |
| 1023 | (aes->key_len == AES_KEYSIZE_256))) |
| 1024 | return -EINVAL; |
| 1025 | |
| 1026 | if (((aes->mode == CCP_AES_MODE_ECB) || |
| 1027 | (aes->mode == CCP_AES_MODE_CBC) || |
| 1028 | (aes->mode == CCP_AES_MODE_CFB)) && |
| 1029 | (aes->src_len & (AES_BLOCK_SIZE - 1))) |
| 1030 | return -EINVAL; |
| 1031 | |
| 1032 | if (!aes->key || !aes->src || !aes->dst) |
| 1033 | return -EINVAL; |
| 1034 | |
| 1035 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 1036 | if (aes->iv_len != AES_BLOCK_SIZE) |
| 1037 | return -EINVAL; |
| 1038 | |
| 1039 | if (!aes->iv) |
| 1040 | return -EINVAL; |
| 1041 | } |
| 1042 | |
| 1043 | BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1); |
| 1044 | BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1); |
| 1045 | |
| 1046 | ret = -EIO; |
| 1047 | memset(&op, 0, sizeof(op)); |
| 1048 | op.cmd_q = cmd_q; |
| 1049 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1050 | op.ksb_key = cmd_q->ksb_key; |
| 1051 | op.ksb_ctx = cmd_q->ksb_ctx; |
| 1052 | op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; |
| 1053 | op.u.aes.type = aes->type; |
| 1054 | op.u.aes.mode = aes->mode; |
| 1055 | op.u.aes.action = aes->action; |
| 1056 | |
| 1057 | /* All supported key sizes fit in a single (32-byte) KSB entry |
| 1058 | * and must be in little endian format. Use the 256-bit byte |
| 1059 | * swap passthru option to convert from big endian to little |
| 1060 | * endian. |
| 1061 | */ |
| 1062 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1063 | CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES, |
| 1064 | DMA_TO_DEVICE); |
| 1065 | if (ret) |
| 1066 | return ret; |
| 1067 | |
| 1068 | dm_offset = CCP_KSB_BYTES - aes->key_len; |
| 1069 | ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| 1070 | ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key, |
| 1071 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1072 | if (ret) { |
| 1073 | cmd->engine_error = cmd_q->cmd_error; |
| 1074 | goto e_key; |
| 1075 | } |
| 1076 | |
| 1077 | /* The AES context fits in a single (32-byte) KSB entry and |
| 1078 | * must be in little endian format. Use the 256-bit byte swap |
| 1079 | * passthru option to convert from big endian to little endian. |
| 1080 | */ |
| 1081 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1082 | CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES, |
| 1083 | DMA_BIDIRECTIONAL); |
| 1084 | if (ret) |
| 1085 | goto e_key; |
| 1086 | |
| 1087 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 1088 | /* Load the AES context - conver to LE */ |
| 1089 | dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE; |
| 1090 | ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 1091 | ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1092 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1093 | if (ret) { |
| 1094 | cmd->engine_error = cmd_q->cmd_error; |
| 1095 | goto e_ctx; |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | /* Prepare the input and output data workareas. For in-place |
| 1100 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1101 | * and copy the src workarea to the dst workarea. |
| 1102 | */ |
| 1103 | if (sg_virt(aes->src) == sg_virt(aes->dst)) |
| 1104 | in_place = true; |
| 1105 | |
| 1106 | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| 1107 | AES_BLOCK_SIZE, |
| 1108 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1109 | if (ret) |
| 1110 | goto e_ctx; |
| 1111 | |
| 1112 | if (in_place) |
| 1113 | dst = src; |
| 1114 | else { |
| 1115 | ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, |
| 1116 | AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| 1117 | if (ret) |
| 1118 | goto e_src; |
| 1119 | } |
| 1120 | |
| 1121 | /* Send data to the CCP AES engine */ |
| 1122 | while (src.sg_wa.bytes_left) { |
| 1123 | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| 1124 | if (!src.sg_wa.bytes_left) { |
| 1125 | op.eom = 1; |
| 1126 | |
| 1127 | /* Since we don't retrieve the AES context in ECB |
| 1128 | * mode we have to wait for the operation to complete |
| 1129 | * on the last piece of data |
| 1130 | */ |
| 1131 | if (aes->mode == CCP_AES_MODE_ECB) |
| 1132 | op.soc = 1; |
| 1133 | } |
| 1134 | |
| 1135 | ret = ccp_perform_aes(&op); |
| 1136 | if (ret) { |
| 1137 | cmd->engine_error = cmd_q->cmd_error; |
| 1138 | goto e_dst; |
| 1139 | } |
| 1140 | |
| 1141 | ccp_process_data(&src, &dst, &op); |
| 1142 | } |
| 1143 | |
| 1144 | if (aes->mode != CCP_AES_MODE_ECB) { |
| 1145 | /* Retrieve the AES context - convert from LE to BE using |
| 1146 | * 32-byte (256-bit) byteswapping |
| 1147 | */ |
| 1148 | ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1149 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1150 | if (ret) { |
| 1151 | cmd->engine_error = cmd_q->cmd_error; |
| 1152 | goto e_dst; |
| 1153 | } |
| 1154 | |
| 1155 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1156 | dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE; |
| 1157 | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| 1158 | } |
| 1159 | |
| 1160 | e_dst: |
| 1161 | if (!in_place) |
| 1162 | ccp_free_data(&dst, cmd_q); |
| 1163 | |
| 1164 | e_src: |
| 1165 | ccp_free_data(&src, cmd_q); |
| 1166 | |
| 1167 | e_ctx: |
| 1168 | ccp_dm_free(&ctx); |
| 1169 | |
| 1170 | e_key: |
| 1171 | ccp_dm_free(&key); |
| 1172 | |
| 1173 | return ret; |
| 1174 | } |
| 1175 | |
| 1176 | static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, |
| 1177 | struct ccp_cmd *cmd) |
| 1178 | { |
| 1179 | struct ccp_xts_aes_engine *xts = &cmd->u.xts; |
| 1180 | struct ccp_dm_workarea key, ctx; |
| 1181 | struct ccp_data src, dst; |
| 1182 | struct ccp_op op; |
| 1183 | unsigned int unit_size, dm_offset; |
| 1184 | bool in_place = false; |
| 1185 | int ret; |
| 1186 | |
| 1187 | switch (xts->unit_size) { |
| 1188 | case CCP_XTS_AES_UNIT_SIZE_16: |
| 1189 | unit_size = 16; |
| 1190 | break; |
| 1191 | case CCP_XTS_AES_UNIT_SIZE_512: |
| 1192 | unit_size = 512; |
| 1193 | break; |
| 1194 | case CCP_XTS_AES_UNIT_SIZE_1024: |
| 1195 | unit_size = 1024; |
| 1196 | break; |
| 1197 | case CCP_XTS_AES_UNIT_SIZE_2048: |
| 1198 | unit_size = 2048; |
| 1199 | break; |
| 1200 | case CCP_XTS_AES_UNIT_SIZE_4096: |
| 1201 | unit_size = 4096; |
| 1202 | break; |
| 1203 | |
| 1204 | default: |
| 1205 | return -EINVAL; |
| 1206 | } |
| 1207 | |
| 1208 | if (xts->key_len != AES_KEYSIZE_128) |
| 1209 | return -EINVAL; |
| 1210 | |
| 1211 | if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) |
| 1212 | return -EINVAL; |
| 1213 | |
| 1214 | if (xts->iv_len != AES_BLOCK_SIZE) |
| 1215 | return -EINVAL; |
| 1216 | |
| 1217 | if (!xts->key || !xts->iv || !xts->src || !xts->dst) |
| 1218 | return -EINVAL; |
| 1219 | |
| 1220 | BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1); |
| 1221 | BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1); |
| 1222 | |
| 1223 | ret = -EIO; |
| 1224 | memset(&op, 0, sizeof(op)); |
| 1225 | op.cmd_q = cmd_q; |
| 1226 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1227 | op.ksb_key = cmd_q->ksb_key; |
| 1228 | op.ksb_ctx = cmd_q->ksb_ctx; |
| 1229 | op.init = 1; |
| 1230 | op.u.xts.action = xts->action; |
| 1231 | op.u.xts.unit_size = xts->unit_size; |
| 1232 | |
| 1233 | /* All supported key sizes fit in a single (32-byte) KSB entry |
| 1234 | * and must be in little endian format. Use the 256-bit byte |
| 1235 | * swap passthru option to convert from big endian to little |
| 1236 | * endian. |
| 1237 | */ |
| 1238 | ret = ccp_init_dm_workarea(&key, cmd_q, |
| 1239 | CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES, |
| 1240 | DMA_TO_DEVICE); |
| 1241 | if (ret) |
| 1242 | return ret; |
| 1243 | |
| 1244 | dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128; |
| 1245 | ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); |
| 1246 | ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len); |
| 1247 | ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key, |
| 1248 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1249 | if (ret) { |
| 1250 | cmd->engine_error = cmd_q->cmd_error; |
| 1251 | goto e_key; |
| 1252 | } |
| 1253 | |
| 1254 | /* The AES context fits in a single (32-byte) KSB entry and |
| 1255 | * for XTS is already in little endian format so no byte swapping |
| 1256 | * is needed. |
| 1257 | */ |
| 1258 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1259 | CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES, |
| 1260 | DMA_BIDIRECTIONAL); |
| 1261 | if (ret) |
| 1262 | goto e_key; |
| 1263 | |
| 1264 | ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); |
| 1265 | ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1266 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1267 | if (ret) { |
| 1268 | cmd->engine_error = cmd_q->cmd_error; |
| 1269 | goto e_ctx; |
| 1270 | } |
| 1271 | |
| 1272 | /* Prepare the input and output data workareas. For in-place |
| 1273 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1274 | * and copy the src workarea to the dst workarea. |
| 1275 | */ |
| 1276 | if (sg_virt(xts->src) == sg_virt(xts->dst)) |
| 1277 | in_place = true; |
| 1278 | |
| 1279 | ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, |
| 1280 | unit_size, |
| 1281 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1282 | if (ret) |
| 1283 | goto e_ctx; |
| 1284 | |
| 1285 | if (in_place) |
| 1286 | dst = src; |
| 1287 | else { |
| 1288 | ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, |
| 1289 | unit_size, DMA_FROM_DEVICE); |
| 1290 | if (ret) |
| 1291 | goto e_src; |
| 1292 | } |
| 1293 | |
| 1294 | /* Send data to the CCP AES engine */ |
| 1295 | while (src.sg_wa.bytes_left) { |
| 1296 | ccp_prepare_data(&src, &dst, &op, unit_size, true); |
| 1297 | if (!src.sg_wa.bytes_left) |
| 1298 | op.eom = 1; |
| 1299 | |
| 1300 | ret = ccp_perform_xts_aes(&op); |
| 1301 | if (ret) { |
| 1302 | cmd->engine_error = cmd_q->cmd_error; |
| 1303 | goto e_dst; |
| 1304 | } |
| 1305 | |
| 1306 | ccp_process_data(&src, &dst, &op); |
| 1307 | } |
| 1308 | |
| 1309 | /* Retrieve the AES context - convert from LE to BE using |
| 1310 | * 32-byte (256-bit) byteswapping |
| 1311 | */ |
| 1312 | ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1313 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1314 | if (ret) { |
| 1315 | cmd->engine_error = cmd_q->cmd_error; |
| 1316 | goto e_dst; |
| 1317 | } |
| 1318 | |
| 1319 | /* ...but we only need AES_BLOCK_SIZE bytes */ |
| 1320 | dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE; |
| 1321 | ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); |
| 1322 | |
| 1323 | e_dst: |
| 1324 | if (!in_place) |
| 1325 | ccp_free_data(&dst, cmd_q); |
| 1326 | |
| 1327 | e_src: |
| 1328 | ccp_free_data(&src, cmd_q); |
| 1329 | |
| 1330 | e_ctx: |
| 1331 | ccp_dm_free(&ctx); |
| 1332 | |
| 1333 | e_key: |
| 1334 | ccp_dm_free(&key); |
| 1335 | |
| 1336 | return ret; |
| 1337 | } |
| 1338 | |
| 1339 | static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1340 | { |
| 1341 | struct ccp_sha_engine *sha = &cmd->u.sha; |
| 1342 | struct ccp_dm_workarea ctx; |
| 1343 | struct ccp_data src; |
| 1344 | struct ccp_op op; |
| 1345 | int ret; |
| 1346 | |
| 1347 | if (sha->ctx_len != CCP_SHA_CTXSIZE) |
| 1348 | return -EINVAL; |
| 1349 | |
| 1350 | if (!sha->ctx) |
| 1351 | return -EINVAL; |
| 1352 | |
| 1353 | if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1))) |
| 1354 | return -EINVAL; |
| 1355 | |
| 1356 | if (!sha->src_len) { |
| 1357 | const u8 *sha_zero; |
| 1358 | |
| 1359 | /* Not final, just return */ |
| 1360 | if (!sha->final) |
| 1361 | return 0; |
| 1362 | |
| 1363 | /* CCP can't do a zero length sha operation so the caller |
| 1364 | * must buffer the data. |
| 1365 | */ |
| 1366 | if (sha->msg_bits) |
| 1367 | return -EINVAL; |
| 1368 | |
| 1369 | /* A sha operation for a message with a total length of zero, |
| 1370 | * return known result. |
| 1371 | */ |
| 1372 | switch (sha->type) { |
| 1373 | case CCP_SHA_TYPE_1: |
| 1374 | sha_zero = ccp_sha1_zero; |
| 1375 | break; |
| 1376 | case CCP_SHA_TYPE_224: |
| 1377 | sha_zero = ccp_sha224_zero; |
| 1378 | break; |
| 1379 | case CCP_SHA_TYPE_256: |
| 1380 | sha_zero = ccp_sha256_zero; |
| 1381 | break; |
| 1382 | default: |
| 1383 | return -EINVAL; |
| 1384 | } |
| 1385 | |
| 1386 | scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, |
| 1387 | sha->ctx_len, 1); |
| 1388 | |
| 1389 | return 0; |
| 1390 | } |
| 1391 | |
| 1392 | if (!sha->src) |
| 1393 | return -EINVAL; |
| 1394 | |
| 1395 | BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1); |
| 1396 | |
| 1397 | memset(&op, 0, sizeof(op)); |
| 1398 | op.cmd_q = cmd_q; |
| 1399 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1400 | op.ksb_ctx = cmd_q->ksb_ctx; |
| 1401 | op.u.sha.type = sha->type; |
| 1402 | op.u.sha.msg_bits = sha->msg_bits; |
| 1403 | |
| 1404 | /* The SHA context fits in a single (32-byte) KSB entry and |
| 1405 | * must be in little endian format. Use the 256-bit byte swap |
| 1406 | * passthru option to convert from big endian to little endian. |
| 1407 | */ |
| 1408 | ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| 1409 | CCP_SHA_KSB_COUNT * CCP_KSB_BYTES, |
| 1410 | DMA_BIDIRECTIONAL); |
| 1411 | if (ret) |
| 1412 | return ret; |
| 1413 | |
| 1414 | ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len); |
| 1415 | ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1416 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1417 | if (ret) { |
| 1418 | cmd->engine_error = cmd_q->cmd_error; |
| 1419 | goto e_ctx; |
| 1420 | } |
| 1421 | |
| 1422 | /* Send data to the CCP SHA engine */ |
| 1423 | ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, |
| 1424 | CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE); |
| 1425 | if (ret) |
| 1426 | goto e_ctx; |
| 1427 | |
| 1428 | while (src.sg_wa.bytes_left) { |
| 1429 | ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false); |
| 1430 | if (sha->final && !src.sg_wa.bytes_left) |
| 1431 | op.eom = 1; |
| 1432 | |
| 1433 | ret = ccp_perform_sha(&op); |
| 1434 | if (ret) { |
| 1435 | cmd->engine_error = cmd_q->cmd_error; |
| 1436 | goto e_data; |
| 1437 | } |
| 1438 | |
| 1439 | ccp_process_data(&src, NULL, &op); |
| 1440 | } |
| 1441 | |
| 1442 | /* Retrieve the SHA context - convert from LE to BE using |
| 1443 | * 32-byte (256-bit) byteswapping to BE |
| 1444 | */ |
| 1445 | ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx, |
| 1446 | CCP_PASSTHRU_BYTESWAP_256BIT); |
| 1447 | if (ret) { |
| 1448 | cmd->engine_error = cmd_q->cmd_error; |
| 1449 | goto e_data; |
| 1450 | } |
| 1451 | |
| 1452 | ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len); |
| 1453 | |
| 1454 | e_data: |
| 1455 | ccp_free_data(&src, cmd_q); |
| 1456 | |
| 1457 | e_ctx: |
| 1458 | ccp_dm_free(&ctx); |
| 1459 | |
| 1460 | return ret; |
| 1461 | } |
| 1462 | |
| 1463 | static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1464 | { |
| 1465 | struct ccp_rsa_engine *rsa = &cmd->u.rsa; |
| 1466 | struct ccp_dm_workarea exp, src; |
| 1467 | struct ccp_data dst; |
| 1468 | struct ccp_op op; |
| 1469 | unsigned int ksb_count, i_len, o_len; |
| 1470 | int ret; |
| 1471 | |
| 1472 | if (rsa->key_size > CCP_RSA_MAX_WIDTH) |
| 1473 | return -EINVAL; |
| 1474 | |
| 1475 | if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) |
| 1476 | return -EINVAL; |
| 1477 | |
| 1478 | /* The RSA modulus must precede the message being acted upon, so |
| 1479 | * it must be copied to a DMA area where the message and the |
| 1480 | * modulus can be concatenated. Therefore the input buffer |
| 1481 | * length required is twice the output buffer length (which |
| 1482 | * must be a multiple of 256-bits). |
| 1483 | */ |
| 1484 | o_len = ((rsa->key_size + 255) / 256) * 32; |
| 1485 | i_len = o_len * 2; |
| 1486 | |
| 1487 | ksb_count = o_len / CCP_KSB_BYTES; |
| 1488 | |
| 1489 | memset(&op, 0, sizeof(op)); |
| 1490 | op.cmd_q = cmd_q; |
| 1491 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1492 | op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count); |
| 1493 | if (!op.ksb_key) |
| 1494 | return -EIO; |
| 1495 | |
| 1496 | /* The RSA exponent may span multiple (32-byte) KSB entries and must |
| 1497 | * be in little endian format. Reverse copy each 32-byte chunk |
| 1498 | * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk) |
| 1499 | * and each byte within that chunk and do not perform any byte swap |
| 1500 | * operations on the passthru operation. |
| 1501 | */ |
| 1502 | ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); |
| 1503 | if (ret) |
| 1504 | goto e_ksb; |
| 1505 | |
| 1506 | ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len, CCP_KSB_BYTES, |
| 1507 | true); |
| 1508 | ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key, |
| 1509 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1510 | if (ret) { |
| 1511 | cmd->engine_error = cmd_q->cmd_error; |
| 1512 | goto e_exp; |
| 1513 | } |
| 1514 | |
| 1515 | /* Concatenate the modulus and the message. Both the modulus and |
| 1516 | * the operands must be in little endian format. Since the input |
| 1517 | * is in big endian format it must be converted. |
| 1518 | */ |
| 1519 | ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); |
| 1520 | if (ret) |
| 1521 | goto e_exp; |
| 1522 | |
| 1523 | ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len, CCP_KSB_BYTES, |
| 1524 | true); |
| 1525 | src.address += o_len; /* Adjust the address for the copy operation */ |
| 1526 | ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len, CCP_KSB_BYTES, |
| 1527 | true); |
| 1528 | src.address -= o_len; /* Reset the address to original value */ |
| 1529 | |
| 1530 | /* Prepare the output area for the operation */ |
| 1531 | ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len, |
| 1532 | o_len, DMA_FROM_DEVICE); |
| 1533 | if (ret) |
| 1534 | goto e_src; |
| 1535 | |
| 1536 | op.soc = 1; |
| 1537 | op.src.u.dma.address = src.dma.address; |
| 1538 | op.src.u.dma.offset = 0; |
| 1539 | op.src.u.dma.length = i_len; |
| 1540 | op.dst.u.dma.address = dst.dm_wa.dma.address; |
| 1541 | op.dst.u.dma.offset = 0; |
| 1542 | op.dst.u.dma.length = o_len; |
| 1543 | |
| 1544 | op.u.rsa.mod_size = rsa->key_size; |
| 1545 | op.u.rsa.input_len = i_len; |
| 1546 | |
| 1547 | ret = ccp_perform_rsa(&op); |
| 1548 | if (ret) { |
| 1549 | cmd->engine_error = cmd_q->cmd_error; |
| 1550 | goto e_dst; |
| 1551 | } |
| 1552 | |
| 1553 | ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len); |
| 1554 | |
| 1555 | e_dst: |
| 1556 | ccp_free_data(&dst, cmd_q); |
| 1557 | |
| 1558 | e_src: |
| 1559 | ccp_dm_free(&src); |
| 1560 | |
| 1561 | e_exp: |
| 1562 | ccp_dm_free(&exp); |
| 1563 | |
| 1564 | e_ksb: |
| 1565 | ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count); |
| 1566 | |
| 1567 | return ret; |
| 1568 | } |
| 1569 | |
| 1570 | static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, |
| 1571 | struct ccp_cmd *cmd) |
| 1572 | { |
| 1573 | struct ccp_passthru_engine *pt = &cmd->u.passthru; |
| 1574 | struct ccp_dm_workarea mask; |
| 1575 | struct ccp_data src, dst; |
| 1576 | struct ccp_op op; |
| 1577 | bool in_place = false; |
| 1578 | unsigned int i; |
| 1579 | int ret; |
| 1580 | |
| 1581 | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| 1582 | return -EINVAL; |
| 1583 | |
| 1584 | if (!pt->src || !pt->dst) |
| 1585 | return -EINVAL; |
| 1586 | |
| 1587 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1588 | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| 1589 | return -EINVAL; |
| 1590 | if (!pt->mask) |
| 1591 | return -EINVAL; |
| 1592 | } |
| 1593 | |
| 1594 | BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1); |
| 1595 | |
| 1596 | memset(&op, 0, sizeof(op)); |
| 1597 | op.cmd_q = cmd_q; |
| 1598 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1599 | |
| 1600 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| 1601 | /* Load the mask */ |
| 1602 | op.ksb_key = cmd_q->ksb_key; |
| 1603 | |
| 1604 | ret = ccp_init_dm_workarea(&mask, cmd_q, |
| 1605 | CCP_PASSTHRU_KSB_COUNT * |
| 1606 | CCP_KSB_BYTES, |
| 1607 | DMA_TO_DEVICE); |
| 1608 | if (ret) |
| 1609 | return ret; |
| 1610 | |
| 1611 | ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); |
| 1612 | ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key, |
| 1613 | CCP_PASSTHRU_BYTESWAP_NOOP); |
| 1614 | if (ret) { |
| 1615 | cmd->engine_error = cmd_q->cmd_error; |
| 1616 | goto e_mask; |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | /* Prepare the input and output data workareas. For in-place |
| 1621 | * operations we need to set the dma direction to BIDIRECTIONAL |
| 1622 | * and copy the src workarea to the dst workarea. |
| 1623 | */ |
| 1624 | if (sg_virt(pt->src) == sg_virt(pt->dst)) |
| 1625 | in_place = true; |
| 1626 | |
| 1627 | ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, |
| 1628 | CCP_PASSTHRU_MASKSIZE, |
| 1629 | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 1630 | if (ret) |
| 1631 | goto e_mask; |
| 1632 | |
| 1633 | if (in_place) |
| 1634 | dst = src; |
| 1635 | else { |
| 1636 | ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, |
| 1637 | CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); |
| 1638 | if (ret) |
| 1639 | goto e_src; |
| 1640 | } |
| 1641 | |
| 1642 | /* Send data to the CCP Passthru engine |
| 1643 | * Because the CCP engine works on a single source and destination |
| 1644 | * dma address at a time, each entry in the source scatterlist |
| 1645 | * (after the dma_map_sg call) must be less than or equal to the |
| 1646 | * (remaining) length in the destination scatterlist entry and the |
| 1647 | * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE |
| 1648 | */ |
| 1649 | dst.sg_wa.sg_used = 0; |
| 1650 | for (i = 1; i <= src.sg_wa.dma_count; i++) { |
| 1651 | if (!dst.sg_wa.sg || |
| 1652 | (dst.sg_wa.sg->length < src.sg_wa.sg->length)) { |
| 1653 | ret = -EINVAL; |
| 1654 | goto e_dst; |
| 1655 | } |
| 1656 | |
| 1657 | if (i == src.sg_wa.dma_count) { |
| 1658 | op.eom = 1; |
| 1659 | op.soc = 1; |
| 1660 | } |
| 1661 | |
| 1662 | op.src.type = CCP_MEMTYPE_SYSTEM; |
| 1663 | op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); |
| 1664 | op.src.u.dma.offset = 0; |
| 1665 | op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); |
| 1666 | |
| 1667 | op.dst.type = CCP_MEMTYPE_SYSTEM; |
| 1668 | op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); |
| 1669 | op.src.u.dma.offset = dst.sg_wa.sg_used; |
| 1670 | op.src.u.dma.length = op.src.u.dma.length; |
| 1671 | |
| 1672 | ret = ccp_perform_passthru(&op); |
| 1673 | if (ret) { |
| 1674 | cmd->engine_error = cmd_q->cmd_error; |
| 1675 | goto e_dst; |
| 1676 | } |
| 1677 | |
| 1678 | dst.sg_wa.sg_used += src.sg_wa.sg->length; |
| 1679 | if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) { |
| 1680 | dst.sg_wa.sg = sg_next(dst.sg_wa.sg); |
| 1681 | dst.sg_wa.sg_used = 0; |
| 1682 | } |
| 1683 | src.sg_wa.sg = sg_next(src.sg_wa.sg); |
| 1684 | } |
| 1685 | |
| 1686 | e_dst: |
| 1687 | if (!in_place) |
| 1688 | ccp_free_data(&dst, cmd_q); |
| 1689 | |
| 1690 | e_src: |
| 1691 | ccp_free_data(&src, cmd_q); |
| 1692 | |
| 1693 | e_mask: |
| 1694 | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| 1695 | ccp_dm_free(&mask); |
| 1696 | |
| 1697 | return ret; |
| 1698 | } |
| 1699 | |
| 1700 | static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1701 | { |
| 1702 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 1703 | struct ccp_dm_workarea src, dst; |
| 1704 | struct ccp_op op; |
| 1705 | int ret; |
| 1706 | u8 *save; |
| 1707 | |
| 1708 | if (!ecc->u.mm.operand_1 || |
| 1709 | (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) |
| 1710 | return -EINVAL; |
| 1711 | |
| 1712 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) |
| 1713 | if (!ecc->u.mm.operand_2 || |
| 1714 | (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) |
| 1715 | return -EINVAL; |
| 1716 | |
| 1717 | if (!ecc->u.mm.result || |
| 1718 | (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) |
| 1719 | return -EINVAL; |
| 1720 | |
| 1721 | memset(&op, 0, sizeof(op)); |
| 1722 | op.cmd_q = cmd_q; |
| 1723 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1724 | |
| 1725 | /* Concatenate the modulus and the operands. Both the modulus and |
| 1726 | * the operands must be in little endian format. Since the input |
| 1727 | * is in big endian format it must be converted and placed in a |
| 1728 | * fixed length buffer. |
| 1729 | */ |
| 1730 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 1731 | DMA_TO_DEVICE); |
| 1732 | if (ret) |
| 1733 | return ret; |
| 1734 | |
| 1735 | /* Save the workarea address since it is updated in order to perform |
| 1736 | * the concatenation |
| 1737 | */ |
| 1738 | save = src.address; |
| 1739 | |
| 1740 | /* Copy the ECC modulus */ |
| 1741 | ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len, |
| 1742 | CCP_ECC_OPERAND_SIZE, true); |
| 1743 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1744 | |
| 1745 | /* Copy the first operand */ |
| 1746 | ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1, |
| 1747 | ecc->u.mm.operand_1_len, |
| 1748 | CCP_ECC_OPERAND_SIZE, true); |
| 1749 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1750 | |
| 1751 | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { |
| 1752 | /* Copy the second operand */ |
| 1753 | ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2, |
| 1754 | ecc->u.mm.operand_2_len, |
| 1755 | CCP_ECC_OPERAND_SIZE, true); |
| 1756 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1757 | } |
| 1758 | |
| 1759 | /* Restore the workarea address */ |
| 1760 | src.address = save; |
| 1761 | |
| 1762 | /* Prepare the output area for the operation */ |
| 1763 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 1764 | DMA_FROM_DEVICE); |
| 1765 | if (ret) |
| 1766 | goto e_src; |
| 1767 | |
| 1768 | op.soc = 1; |
| 1769 | op.src.u.dma.address = src.dma.address; |
| 1770 | op.src.u.dma.offset = 0; |
| 1771 | op.src.u.dma.length = src.length; |
| 1772 | op.dst.u.dma.address = dst.dma.address; |
| 1773 | op.dst.u.dma.offset = 0; |
| 1774 | op.dst.u.dma.length = dst.length; |
| 1775 | |
| 1776 | op.u.ecc.function = cmd->u.ecc.function; |
| 1777 | |
| 1778 | ret = ccp_perform_ecc(&op); |
| 1779 | if (ret) { |
| 1780 | cmd->engine_error = cmd_q->cmd_error; |
| 1781 | goto e_dst; |
| 1782 | } |
| 1783 | |
| 1784 | ecc->ecc_result = le16_to_cpup( |
| 1785 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 1786 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 1787 | ret = -EIO; |
| 1788 | goto e_dst; |
| 1789 | } |
| 1790 | |
| 1791 | /* Save the ECC result */ |
| 1792 | ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES); |
| 1793 | |
| 1794 | e_dst: |
| 1795 | ccp_dm_free(&dst); |
| 1796 | |
| 1797 | e_src: |
| 1798 | ccp_dm_free(&src); |
| 1799 | |
| 1800 | return ret; |
| 1801 | } |
| 1802 | |
| 1803 | static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1804 | { |
| 1805 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 1806 | struct ccp_dm_workarea src, dst; |
| 1807 | struct ccp_op op; |
| 1808 | int ret; |
| 1809 | u8 *save; |
| 1810 | |
| 1811 | if (!ecc->u.pm.point_1.x || |
| 1812 | (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || |
| 1813 | !ecc->u.pm.point_1.y || |
| 1814 | (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) |
| 1815 | return -EINVAL; |
| 1816 | |
| 1817 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 1818 | if (!ecc->u.pm.point_2.x || |
| 1819 | (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || |
| 1820 | !ecc->u.pm.point_2.y || |
| 1821 | (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) |
| 1822 | return -EINVAL; |
| 1823 | } else { |
| 1824 | if (!ecc->u.pm.domain_a || |
| 1825 | (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) |
| 1826 | return -EINVAL; |
| 1827 | |
| 1828 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) |
| 1829 | if (!ecc->u.pm.scalar || |
| 1830 | (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) |
| 1831 | return -EINVAL; |
| 1832 | } |
| 1833 | |
| 1834 | if (!ecc->u.pm.result.x || |
| 1835 | (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || |
| 1836 | !ecc->u.pm.result.y || |
| 1837 | (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) |
| 1838 | return -EINVAL; |
| 1839 | |
| 1840 | memset(&op, 0, sizeof(op)); |
| 1841 | op.cmd_q = cmd_q; |
| 1842 | op.jobid = ccp_gen_jobid(cmd_q->ccp); |
| 1843 | |
| 1844 | /* Concatenate the modulus and the operands. Both the modulus and |
| 1845 | * the operands must be in little endian format. Since the input |
| 1846 | * is in big endian format it must be converted and placed in a |
| 1847 | * fixed length buffer. |
| 1848 | */ |
| 1849 | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| 1850 | DMA_TO_DEVICE); |
| 1851 | if (ret) |
| 1852 | return ret; |
| 1853 | |
| 1854 | /* Save the workarea address since it is updated in order to perform |
| 1855 | * the concatenation |
| 1856 | */ |
| 1857 | save = src.address; |
| 1858 | |
| 1859 | /* Copy the ECC modulus */ |
| 1860 | ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len, |
| 1861 | CCP_ECC_OPERAND_SIZE, true); |
| 1862 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1863 | |
| 1864 | /* Copy the first point X and Y coordinate */ |
| 1865 | ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x, |
| 1866 | ecc->u.pm.point_1.x_len, |
| 1867 | CCP_ECC_OPERAND_SIZE, true); |
| 1868 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1869 | ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y, |
| 1870 | ecc->u.pm.point_1.y_len, |
| 1871 | CCP_ECC_OPERAND_SIZE, true); |
| 1872 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1873 | |
| 1874 | /* Set the first point Z coordianate to 1 */ |
| 1875 | *(src.address) = 0x01; |
| 1876 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1877 | |
| 1878 | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| 1879 | /* Copy the second point X and Y coordinate */ |
| 1880 | ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x, |
| 1881 | ecc->u.pm.point_2.x_len, |
| 1882 | CCP_ECC_OPERAND_SIZE, true); |
| 1883 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1884 | ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y, |
| 1885 | ecc->u.pm.point_2.y_len, |
| 1886 | CCP_ECC_OPERAND_SIZE, true); |
| 1887 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1888 | |
| 1889 | /* Set the second point Z coordianate to 1 */ |
| 1890 | *(src.address) = 0x01; |
| 1891 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1892 | } else { |
| 1893 | /* Copy the Domain "a" parameter */ |
| 1894 | ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a, |
| 1895 | ecc->u.pm.domain_a_len, |
| 1896 | CCP_ECC_OPERAND_SIZE, true); |
| 1897 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1898 | |
| 1899 | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { |
| 1900 | /* Copy the scalar value */ |
| 1901 | ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar, |
| 1902 | ecc->u.pm.scalar_len, |
| 1903 | CCP_ECC_OPERAND_SIZE, true); |
| 1904 | src.address += CCP_ECC_OPERAND_SIZE; |
| 1905 | } |
| 1906 | } |
| 1907 | |
| 1908 | /* Restore the workarea address */ |
| 1909 | src.address = save; |
| 1910 | |
| 1911 | /* Prepare the output area for the operation */ |
| 1912 | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| 1913 | DMA_FROM_DEVICE); |
| 1914 | if (ret) |
| 1915 | goto e_src; |
| 1916 | |
| 1917 | op.soc = 1; |
| 1918 | op.src.u.dma.address = src.dma.address; |
| 1919 | op.src.u.dma.offset = 0; |
| 1920 | op.src.u.dma.length = src.length; |
| 1921 | op.dst.u.dma.address = dst.dma.address; |
| 1922 | op.dst.u.dma.offset = 0; |
| 1923 | op.dst.u.dma.length = dst.length; |
| 1924 | |
| 1925 | op.u.ecc.function = cmd->u.ecc.function; |
| 1926 | |
| 1927 | ret = ccp_perform_ecc(&op); |
| 1928 | if (ret) { |
| 1929 | cmd->engine_error = cmd_q->cmd_error; |
| 1930 | goto e_dst; |
| 1931 | } |
| 1932 | |
| 1933 | ecc->ecc_result = le16_to_cpup( |
| 1934 | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| 1935 | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| 1936 | ret = -EIO; |
| 1937 | goto e_dst; |
| 1938 | } |
| 1939 | |
| 1940 | /* Save the workarea address since it is updated as we walk through |
| 1941 | * to copy the point math result |
| 1942 | */ |
| 1943 | save = dst.address; |
| 1944 | |
| 1945 | /* Save the ECC result X and Y coordinates */ |
| 1946 | ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x, |
| 1947 | CCP_ECC_MODULUS_BYTES); |
| 1948 | dst.address += CCP_ECC_OUTPUT_SIZE; |
| 1949 | ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y, |
| 1950 | CCP_ECC_MODULUS_BYTES); |
| 1951 | dst.address += CCP_ECC_OUTPUT_SIZE; |
| 1952 | |
| 1953 | /* Restore the workarea address */ |
| 1954 | dst.address = save; |
| 1955 | |
| 1956 | e_dst: |
| 1957 | ccp_dm_free(&dst); |
| 1958 | |
| 1959 | e_src: |
| 1960 | ccp_dm_free(&src); |
| 1961 | |
| 1962 | return ret; |
| 1963 | } |
| 1964 | |
| 1965 | static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1966 | { |
| 1967 | struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| 1968 | |
| 1969 | ecc->ecc_result = 0; |
| 1970 | |
| 1971 | if (!ecc->mod || |
| 1972 | (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) |
| 1973 | return -EINVAL; |
| 1974 | |
| 1975 | switch (ecc->function) { |
| 1976 | case CCP_ECC_FUNCTION_MMUL_384BIT: |
| 1977 | case CCP_ECC_FUNCTION_MADD_384BIT: |
| 1978 | case CCP_ECC_FUNCTION_MINV_384BIT: |
| 1979 | return ccp_run_ecc_mm_cmd(cmd_q, cmd); |
| 1980 | |
| 1981 | case CCP_ECC_FUNCTION_PADD_384BIT: |
| 1982 | case CCP_ECC_FUNCTION_PMUL_384BIT: |
| 1983 | case CCP_ECC_FUNCTION_PDBL_384BIT: |
| 1984 | return ccp_run_ecc_pm_cmd(cmd_q, cmd); |
| 1985 | |
| 1986 | default: |
| 1987 | return -EINVAL; |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| 1992 | { |
| 1993 | int ret; |
| 1994 | |
| 1995 | cmd->engine_error = 0; |
| 1996 | cmd_q->cmd_error = 0; |
| 1997 | cmd_q->int_rcvd = 0; |
| 1998 | cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status)); |
| 1999 | |
| 2000 | switch (cmd->engine) { |
| 2001 | case CCP_ENGINE_AES: |
| 2002 | ret = ccp_run_aes_cmd(cmd_q, cmd); |
| 2003 | break; |
| 2004 | case CCP_ENGINE_XTS_AES_128: |
| 2005 | ret = ccp_run_xts_aes_cmd(cmd_q, cmd); |
| 2006 | break; |
| 2007 | case CCP_ENGINE_SHA: |
| 2008 | ret = ccp_run_sha_cmd(cmd_q, cmd); |
| 2009 | break; |
| 2010 | case CCP_ENGINE_RSA: |
| 2011 | ret = ccp_run_rsa_cmd(cmd_q, cmd); |
| 2012 | break; |
| 2013 | case CCP_ENGINE_PASSTHRU: |
| 2014 | ret = ccp_run_passthru_cmd(cmd_q, cmd); |
| 2015 | break; |
| 2016 | case CCP_ENGINE_ECC: |
| 2017 | ret = ccp_run_ecc_cmd(cmd_q, cmd); |
| 2018 | break; |
| 2019 | default: |
| 2020 | ret = -EINVAL; |
| 2021 | } |
| 2022 | |
| 2023 | return ret; |
| 2024 | } |