blob: 02089b64e42c55f6672cd178790c7ba6a9bb63f2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/10GbE Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok0abb6eb2006-09-27 12:53:14 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ixgb_hw.c
30 * Shared functions for accessing and configuring the adapter
31 */
32
33#include "ixgb_hw.h"
34#include "ixgb_ids.h"
35
36/* Local function prototypes */
37
38static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr);
39
40static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value);
41
42static void ixgb_get_bus_info(struct ixgb_hw *hw);
43
44static boolean_t ixgb_link_reset(struct ixgb_hw *hw);
45
46static void ixgb_optics_reset(struct ixgb_hw *hw);
47
48static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
49
Adrian Bunke9ab1d12005-10-30 16:53:30 +010050static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070051
Adrian Bunke9ab1d12005-10-30 16:53:30 +010052static void ixgb_clear_vfta(struct ixgb_hw *hw);
53
54static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
55
56static uint16_t ixgb_read_phy_reg(struct ixgb_hw *hw,
57 uint32_t reg_address,
58 uint32_t phy_address,
59 uint32_t device_type);
60
61static boolean_t ixgb_setup_fc(struct ixgb_hw *hw);
62
63static boolean_t mac_addr_valid(uint8_t *mac_addr);
64
65static uint32_t ixgb_mac_reset(struct ixgb_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -070066{
67 uint32_t ctrl_reg;
68
69 ctrl_reg = IXGB_CTRL0_RST |
70 IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */
71 IXGB_CTRL0_SDP2_DIR |
72 IXGB_CTRL0_SDP1_DIR |
73 IXGB_CTRL0_SDP0_DIR |
74 IXGB_CTRL0_SDP3 | /* Initial value 1101 */
75 IXGB_CTRL0_SDP2 |
76 IXGB_CTRL0_SDP0;
77
78#ifdef HP_ZX1
79 /* Workaround for 82597EX reset errata */
80 IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
81#else
82 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
83#endif
84
85 /* Delay a few ms just to allow the reset to complete */
Jeff Garzikf8ec4732006-09-19 15:27:07 -040086 msleep(IXGB_DELAY_AFTER_RESET);
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
88#ifdef DBG
89 /* Make sure the self-clearing global reset bit did self clear */
90 ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
91#endif
92
93 if (hw->phy_type == ixgb_phy_type_txn17401) {
94 ixgb_optics_reset(hw);
95 }
96
97 return ctrl_reg;
98}
99
100/******************************************************************************
101 * Reset the transmit and receive units; mask and clear all interrupts.
102 *
103 * hw - Struct containing variables accessed by shared code
104 *****************************************************************************/
105boolean_t
106ixgb_adapter_stop(struct ixgb_hw *hw)
107{
108 uint32_t ctrl_reg;
109 uint32_t icr_reg;
110
111 DEBUGFUNC("ixgb_adapter_stop");
112
113 /* If we are stopped or resetting exit gracefully and wait to be
114 * started again before accessing the hardware.
115 */
116 if(hw->adapter_stopped) {
117 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
118 return FALSE;
119 }
120
121 /* Set the Adapter Stopped flag so other driver functions stop
122 * touching the Hardware.
123 */
124 hw->adapter_stopped = TRUE;
125
126 /* Clear interrupt mask to stop board from generating interrupts */
127 DEBUGOUT("Masking off all interrupts\n");
128 IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
129
130 /* Disable the Transmit and Receive units. Then delay to allow
131 * any pending transactions to complete before we hit the MAC with
132 * the global reset.
133 */
134 IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
135 IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400136 msleep(IXGB_DELAY_BEFORE_RESET);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137
138 /* Issue a global reset to the MAC. This will reset the chip's
139 * transmit, receive, DMA, and link units. It will not effect
140 * the current PCI configuration. The global reset bit is self-
141 * clearing, and should clear within a microsecond.
142 */
143 DEBUGOUT("Issuing a global reset to MAC\n");
144
145 ctrl_reg = ixgb_mac_reset(hw);
146
147 /* Clear interrupt mask to stop board from generating interrupts */
148 DEBUGOUT("Masking off all interrupts\n");
149 IXGB_WRITE_REG(hw, IMC, 0xffffffff);
150
151 /* Clear any pending interrupt events. */
152 icr_reg = IXGB_READ_REG(hw, ICR);
153
154 return (ctrl_reg & IXGB_CTRL0_RST);
155}
156
157
158/******************************************************************************
159 * Identifies the vendor of the optics module on the adapter. The SR adapters
160 * support two different types of XPAK optics, so it is necessary to determine
161 * which optics are present before applying any optics-specific workarounds.
162 *
163 * hw - Struct containing variables accessed by shared code.
164 *
165 * Returns: the vendor of the XPAK optics module.
166 *****************************************************************************/
167static ixgb_xpak_vendor
168ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
169{
170 uint32_t i;
171 uint16_t vendor_name[5];
172 ixgb_xpak_vendor xpak_vendor;
173
174 DEBUGFUNC("ixgb_identify_xpak_vendor");
175
176 /* Read the first few bytes of the vendor string from the XPAK NVR
177 * registers. These are standard XENPAK/XPAK registers, so all XPAK
178 * devices should implement them. */
179 for (i = 0; i < 5; i++) {
180 vendor_name[i] = ixgb_read_phy_reg(hw,
181 MDIO_PMA_PMD_XPAK_VENDOR_NAME
182 + i, IXGB_PHY_ADDRESS,
183 MDIO_PMA_PMD_DID);
184 }
185
186 /* Determine the actual vendor */
187 if (vendor_name[0] == 'I' &&
188 vendor_name[1] == 'N' &&
189 vendor_name[2] == 'T' &&
190 vendor_name[3] == 'E' && vendor_name[4] == 'L') {
191 xpak_vendor = ixgb_xpak_vendor_intel;
192 } else {
193 xpak_vendor = ixgb_xpak_vendor_infineon;
194 }
195
196 return (xpak_vendor);
197}
198
199/******************************************************************************
200 * Determine the physical layer module on the adapter.
201 *
202 * hw - Struct containing variables accessed by shared code. The device_id
203 * field must be (correctly) populated before calling this routine.
204 *
205 * Returns: the phy type of the adapter.
206 *****************************************************************************/
207static ixgb_phy_type
208ixgb_identify_phy(struct ixgb_hw *hw)
209{
210 ixgb_phy_type phy_type;
211 ixgb_xpak_vendor xpak_vendor;
212
213 DEBUGFUNC("ixgb_identify_phy");
214
215 /* Infer the transceiver/phy type from the device id */
216 switch (hw->device_id) {
217 case IXGB_DEVICE_ID_82597EX:
218 DEBUGOUT("Identified TXN17401 optics\n");
219 phy_type = ixgb_phy_type_txn17401;
220 break;
221
222 case IXGB_DEVICE_ID_82597EX_SR:
223 /* The SR adapters carry two different types of XPAK optics
224 * modules; read the vendor identifier to determine the exact
225 * type of optics. */
226 xpak_vendor = ixgb_identify_xpak_vendor(hw);
227 if (xpak_vendor == ixgb_xpak_vendor_intel) {
228 DEBUGOUT("Identified TXN17201 optics\n");
229 phy_type = ixgb_phy_type_txn17201;
230 } else {
231 DEBUGOUT("Identified G6005 optics\n");
232 phy_type = ixgb_phy_type_g6005;
233 }
234 break;
235 case IXGB_DEVICE_ID_82597EX_LR:
236 DEBUGOUT("Identified G6104 optics\n");
237 phy_type = ixgb_phy_type_g6104;
238 break;
Manasi Deval0fe198a2006-08-16 13:47:20 -0700239 case IXGB_DEVICE_ID_82597EX_CX4:
240 DEBUGOUT("Identified CX4\n");
241 xpak_vendor = ixgb_identify_xpak_vendor(hw);
242 if (xpak_vendor == ixgb_xpak_vendor_intel) {
243 DEBUGOUT("Identified TXN17201 optics\n");
244 phy_type = ixgb_phy_type_txn17201;
245 } else {
246 DEBUGOUT("Identified G6005 optics\n");
247 phy_type = ixgb_phy_type_g6005;
248 }
249 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 default:
251 DEBUGOUT("Unknown physical layer module\n");
252 phy_type = ixgb_phy_type_unknown;
253 break;
254 }
255
256 return (phy_type);
257}
258
259/******************************************************************************
260 * Performs basic configuration of the adapter.
261 *
262 * hw - Struct containing variables accessed by shared code
263 *
264 * Resets the controller.
265 * Reads and validates the EEPROM.
266 * Initializes the receive address registers.
267 * Initializes the multicast table.
268 * Clears all on-chip counters.
269 * Calls routine to setup flow control settings.
270 * Leaves the transmit and receive units disabled and uninitialized.
271 *
272 * Returns:
273 * TRUE if successful,
274 * FALSE if unrecoverable problems were encountered.
275 *****************************************************************************/
276boolean_t
277ixgb_init_hw(struct ixgb_hw *hw)
278{
279 uint32_t i;
280 uint32_t ctrl_reg;
281 boolean_t status;
282
283 DEBUGFUNC("ixgb_init_hw");
284
285 /* Issue a global reset to the MAC. This will reset the chip's
286 * transmit, receive, DMA, and link units. It will not effect
287 * the current PCI configuration. The global reset bit is self-
288 * clearing, and should clear within a microsecond.
289 */
290 DEBUGOUT("Issuing a global reset to MAC\n");
291
292 ctrl_reg = ixgb_mac_reset(hw);
293
294 DEBUGOUT("Issuing an EE reset to MAC\n");
295#ifdef HP_ZX1
296 /* Workaround for 82597EX reset errata */
297 IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
298#else
299 IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
300#endif
301
302 /* Delay a few ms just to allow the reset to complete */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400303 msleep(IXGB_DELAY_AFTER_EE_RESET);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304
305 if (ixgb_get_eeprom_data(hw) == FALSE) {
306 return(FALSE);
307 }
308
309 /* Use the device id to determine the type of phy/transceiver. */
310 hw->device_id = ixgb_get_ee_device_id(hw);
311 hw->phy_type = ixgb_identify_phy(hw);
312
313 /* Setup the receive addresses.
314 * Receive Address Registers (RARs 0 - 15).
315 */
316 ixgb_init_rx_addrs(hw);
317
318 /*
319 * Check that a valid MAC address has been set.
320 * If it is not valid, we fail hardware init.
321 */
322 if (!mac_addr_valid(hw->curr_mac_addr)) {
323 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
324 return(FALSE);
325 }
326
327 /* tell the routines in this file they can access hardware again */
328 hw->adapter_stopped = FALSE;
329
330 /* Fill in the bus_info structure */
331 ixgb_get_bus_info(hw);
332
333 /* Zero out the Multicast HASH table */
334 DEBUGOUT("Zeroing the MTA\n");
335 for(i = 0; i < IXGB_MC_TBL_SIZE; i++)
336 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
337
338 /* Zero out the VLAN Filter Table Array */
339 ixgb_clear_vfta(hw);
340
341 /* Zero all of the hardware counters */
342 ixgb_clear_hw_cntrs(hw);
343
344 /* Call a subroutine to setup flow control. */
345 status = ixgb_setup_fc(hw);
346
347 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
348 ixgb_check_for_link(hw);
349
350 return (status);
351}
352
353/******************************************************************************
354 * Initializes receive address filters.
355 *
356 * hw - Struct containing variables accessed by shared code
357 *
358 * Places the MAC address in receive address register 0 and clears the rest
359 * of the receive addresss registers. Clears the multicast table. Assumes
360 * the receiver is in reset when the routine is called.
361 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100362static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363ixgb_init_rx_addrs(struct ixgb_hw *hw)
364{
365 uint32_t i;
366
367 DEBUGFUNC("ixgb_init_rx_addrs");
368
369 /*
370 * If the current mac address is valid, assume it is a software override
371 * to the permanent address.
372 * Otherwise, use the permanent address from the eeprom.
373 */
374 if (!mac_addr_valid(hw->curr_mac_addr)) {
375
376 /* Get the MAC address from the eeprom for later reference */
377 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
378
379 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
380 hw->curr_mac_addr[0],
381 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
382 DEBUGOUT3("%.2X %.2X %.2X\n",
383 hw->curr_mac_addr[3],
384 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
385 } else {
386
387 /* Setup the receive address. */
388 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
389 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
390 hw->curr_mac_addr[0],
391 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
392 DEBUGOUT3("%.2X %.2X %.2X\n",
393 hw->curr_mac_addr[3],
394 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
395
396 ixgb_rar_set(hw, hw->curr_mac_addr, 0);
397 }
398
399 /* Zero out the other 15 receive addresses. */
400 DEBUGOUT("Clearing RAR[1-15]\n");
401 for(i = 1; i < IXGB_RAR_ENTRIES; i++) {
402 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
403 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
404 }
405
406 return;
407}
408
409/******************************************************************************
410 * Updates the MAC's list of multicast addresses.
411 *
412 * hw - Struct containing variables accessed by shared code
413 * mc_addr_list - the list of new multicast addresses
414 * mc_addr_count - number of addresses
415 * pad - number of bytes between addresses in the list
416 *
417 * The given list replaces any existing list. Clears the last 15 receive
418 * address registers and the multicast table. Uses receive address registers
419 * for the first 15 multicast addresses, and hashes the rest into the
420 * multicast table.
421 *****************************************************************************/
422void
423ixgb_mc_addr_list_update(struct ixgb_hw *hw,
424 uint8_t *mc_addr_list,
425 uint32_t mc_addr_count,
426 uint32_t pad)
427{
428 uint32_t hash_value;
429 uint32_t i;
430 uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
431
432 DEBUGFUNC("ixgb_mc_addr_list_update");
433
434 /* Set the new number of MC addresses that we are being requested to use. */
435 hw->num_mc_addrs = mc_addr_count;
436
437 /* Clear RAR[1-15] */
438 DEBUGOUT(" Clearing RAR[1-15]\n");
439 for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
440 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
441 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
442 }
443
444 /* Clear the MTA */
445 DEBUGOUT(" Clearing MTA\n");
446 for(i = 0; i < IXGB_MC_TBL_SIZE; i++) {
447 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
448 }
449
450 /* Add the new addresses */
451 for(i = 0; i < mc_addr_count; i++) {
452 DEBUGOUT(" Adding the multicast addresses:\n");
453 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
454 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
455 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
456 1],
457 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
458 2],
459 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
460 3],
461 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
462 4],
463 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
464 5]);
465
466 /* Place this multicast address in the RAR if there is room, *
467 * else put it in the MTA
468 */
469 if(rar_used_count < IXGB_RAR_ENTRIES) {
470 ixgb_rar_set(hw,
471 mc_addr_list +
472 (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
473 rar_used_count);
474 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
475 rar_used_count++;
476 } else {
477 hash_value = ixgb_hash_mc_addr(hw,
478 mc_addr_list +
479 (i *
480 (IXGB_ETH_LENGTH_OF_ADDRESS
481 + pad)));
482
483 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
484
485 ixgb_mta_set(hw, hash_value);
486 }
487 }
488
489 DEBUGOUT("MC Update Complete\n");
490 return;
491}
492
493/******************************************************************************
494 * Hashes an address to determine its location in the multicast table
495 *
496 * hw - Struct containing variables accessed by shared code
497 * mc_addr - the multicast address to hash
498 *
499 * Returns:
500 * The hash value
501 *****************************************************************************/
502static uint32_t
503ixgb_hash_mc_addr(struct ixgb_hw *hw,
504 uint8_t *mc_addr)
505{
506 uint32_t hash_value = 0;
507
508 DEBUGFUNC("ixgb_hash_mc_addr");
509
510 /* The portion of the address that is used for the hash table is
511 * determined by the mc_filter_type setting.
512 */
513 switch (hw->mc_filter_type) {
514 /* [0] [1] [2] [3] [4] [5]
515 * 01 AA 00 12 34 56
516 * LSB MSB - According to H/W docs */
517 case 0:
518 /* [47:36] i.e. 0x563 for above example address */
519 hash_value =
520 ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
521 break;
522 case 1: /* [46:35] i.e. 0xAC6 for above example address */
523 hash_value =
524 ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
525 break;
526 case 2: /* [45:34] i.e. 0x5D8 for above example address */
527 hash_value =
528 ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
529 break;
530 case 3: /* [43:32] i.e. 0x634 for above example address */
531 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
532 break;
533 default:
534 /* Invalid mc_filter_type, what should we do? */
535 DEBUGOUT("MC filter type param set incorrectly\n");
536 ASSERT(0);
537 break;
538 }
539
540 hash_value &= 0xFFF;
541 return (hash_value);
542}
543
544/******************************************************************************
545 * Sets the bit in the multicast table corresponding to the hash value.
546 *
547 * hw - Struct containing variables accessed by shared code
548 * hash_value - Multicast address hash value
549 *****************************************************************************/
550static void
551ixgb_mta_set(struct ixgb_hw *hw,
552 uint32_t hash_value)
553{
554 uint32_t hash_bit, hash_reg;
555 uint32_t mta_reg;
556
557 /* The MTA is a register array of 128 32-bit registers.
558 * It is treated like an array of 4096 bits. We want to set
559 * bit BitArray[hash_value]. So we figure out what register
560 * the bit is in, read it, OR in the new bit, then write
561 * back the new value. The register is determined by the
562 * upper 7 bits of the hash value and the bit within that
563 * register are determined by the lower 5 bits of the value.
564 */
565 hash_reg = (hash_value >> 5) & 0x7F;
566 hash_bit = hash_value & 0x1F;
567
568 mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
569
570 mta_reg |= (1 << hash_bit);
571
572 IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
573
574 return;
575}
576
577/******************************************************************************
578 * Puts an ethernet address into a receive address register.
579 *
580 * hw - Struct containing variables accessed by shared code
581 * addr - Address to put into receive address register
582 * index - Receive address register to write
583 *****************************************************************************/
584void
585ixgb_rar_set(struct ixgb_hw *hw,
586 uint8_t *addr,
587 uint32_t index)
588{
589 uint32_t rar_low, rar_high;
590
591 DEBUGFUNC("ixgb_rar_set");
592
593 /* HW expects these in little endian so we reverse the byte order
594 * from network order (big endian) to little endian
595 */
596 rar_low = ((uint32_t) addr[0] |
597 ((uint32_t)addr[1] << 8) |
598 ((uint32_t)addr[2] << 16) |
599 ((uint32_t)addr[3] << 24));
600
601 rar_high = ((uint32_t) addr[4] |
602 ((uint32_t)addr[5] << 8) |
603 IXGB_RAH_AV);
604
605 IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
606 IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
607 return;
608}
609
610/******************************************************************************
611 * Writes a value to the specified offset in the VLAN filter table.
612 *
613 * hw - Struct containing variables accessed by shared code
614 * offset - Offset in VLAN filer table to write
615 * value - Value to write into VLAN filter table
616 *****************************************************************************/
617void
618ixgb_write_vfta(struct ixgb_hw *hw,
619 uint32_t offset,
620 uint32_t value)
621{
622 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
623 return;
624}
625
626/******************************************************************************
627 * Clears the VLAN filer table
628 *
629 * hw - Struct containing variables accessed by shared code
630 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100631static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632ixgb_clear_vfta(struct ixgb_hw *hw)
633{
634 uint32_t offset;
635
636 for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
637 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
638 return;
639}
640
641/******************************************************************************
642 * Configures the flow control settings based on SW configuration.
643 *
644 * hw - Struct containing variables accessed by shared code
645 *****************************************************************************/
646
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100647static boolean_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648ixgb_setup_fc(struct ixgb_hw *hw)
649{
650 uint32_t ctrl_reg;
651 uint32_t pap_reg = 0; /* by default, assume no pause time */
652 boolean_t status = TRUE;
653
654 DEBUGFUNC("ixgb_setup_fc");
655
656 /* Get the current control reg 0 settings */
657 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
658
659 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
660 ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
661
662 /* The possible values of the "flow_control" parameter are:
663 * 0: Flow control is completely disabled
664 * 1: Rx flow control is enabled (we can receive pause frames
665 * but not send pause frames).
666 * 2: Tx flow control is enabled (we can send pause frames
667 * but we do not support receiving pause frames).
668 * 3: Both Rx and TX flow control (symmetric) are enabled.
669 * other: Invalid.
670 */
671 switch (hw->fc.type) {
672 case ixgb_fc_none: /* 0 */
673 /* Set CMDC bit to disable Rx Flow control */
674 ctrl_reg |= (IXGB_CTRL0_CMDC);
675 break;
676 case ixgb_fc_rx_pause: /* 1 */
677 /* RX Flow control is enabled, and TX Flow control is
678 * disabled.
679 */
680 ctrl_reg |= (IXGB_CTRL0_RPE);
681 break;
682 case ixgb_fc_tx_pause: /* 2 */
683 /* TX Flow control is enabled, and RX Flow control is
684 * disabled, by a software over-ride.
685 */
686 ctrl_reg |= (IXGB_CTRL0_TPE);
687 pap_reg = hw->fc.pause_time;
688 break;
689 case ixgb_fc_full: /* 3 */
690 /* Flow control (both RX and TX) is enabled by a software
691 * over-ride.
692 */
693 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
694 pap_reg = hw->fc.pause_time;
695 break;
696 default:
697 /* We should never get here. The value should be 0-3. */
698 DEBUGOUT("Flow control param set incorrectly\n");
699 ASSERT(0);
700 break;
701 }
702
703 /* Write the new settings */
704 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
705
706 if (pap_reg != 0) {
707 IXGB_WRITE_REG(hw, PAP, pap_reg);
708 }
709
710 /* Set the flow control receive threshold registers. Normally,
711 * these registers will be set to a default threshold that may be
712 * adjusted later by the driver's runtime code. However, if the
713 * ability to transmit pause frames in not enabled, then these
714 * registers will be set to 0.
715 */
716 if(!(hw->fc.type & ixgb_fc_tx_pause)) {
717 IXGB_WRITE_REG(hw, FCRTL, 0);
718 IXGB_WRITE_REG(hw, FCRTH, 0);
719 } else {
720 /* We need to set up the Receive Threshold high and low water
721 * marks as well as (optionally) enabling the transmission of XON
722 * frames. */
723 if(hw->fc.send_xon) {
724 IXGB_WRITE_REG(hw, FCRTL,
725 (hw->fc.low_water | IXGB_FCRTL_XONE));
726 } else {
727 IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
728 }
729 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
730 }
731 return (status);
732}
733
734/******************************************************************************
735 * Reads a word from a device over the Management Data Interface (MDI) bus.
736 * This interface is used to manage Physical layer devices.
737 *
738 * hw - Struct containing variables accessed by hw code
739 * reg_address - Offset of device register being read.
740 * phy_address - Address of device on MDI.
741 *
742 * Returns: Data word (16 bits) from MDI device.
743 *
744 * The 82597EX has support for several MDI access methods. This routine
745 * uses the new protocol MDI Single Command and Address Operation.
746 * This requires that first an address cycle command is sent, followed by a
747 * read command.
748 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100749static uint16_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700750ixgb_read_phy_reg(struct ixgb_hw *hw,
751 uint32_t reg_address,
752 uint32_t phy_address,
753 uint32_t device_type)
754{
755 uint32_t i;
756 uint32_t data;
757 uint32_t command = 0;
758
759 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
760 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
761 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
762
763 /* Setup and write the address cycle command */
764 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
765 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
766 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
767 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
768
769 IXGB_WRITE_REG(hw, MSCA, command);
770
771 /**************************************************************
772 ** Check every 10 usec to see if the address cycle completed
773 ** The COMMAND bit will clear when the operation is complete.
774 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
775 ** from the CPU Write to the Ready bit assertion.
776 **************************************************************/
777
778 for(i = 0; i < 10; i++)
779 {
780 udelay(10);
781
782 command = IXGB_READ_REG(hw, MSCA);
783
784 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
785 break;
786 }
787
788 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
789
790 /* Address cycle complete, setup and write the read command */
791 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
792 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
793 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
794 (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
795
796 IXGB_WRITE_REG(hw, MSCA, command);
797
798 /**************************************************************
799 ** Check every 10 usec to see if the read command completed
800 ** The COMMAND bit will clear when the operation is complete.
801 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
802 ** from the CPU Write to the Ready bit assertion.
803 **************************************************************/
804
805 for(i = 0; i < 10; i++)
806 {
807 udelay(10);
808
809 command = IXGB_READ_REG(hw, MSCA);
810
811 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
812 break;
813 }
814
815 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
816
817 /* Operation is complete, get the data from the MDIO Read/Write Data
818 * register and return.
819 */
820 data = IXGB_READ_REG(hw, MSRWD);
821 data >>= IXGB_MSRWD_READ_DATA_SHIFT;
822 return((uint16_t) data);
823}
824
825/******************************************************************************
826 * Writes a word to a device over the Management Data Interface (MDI) bus.
827 * This interface is used to manage Physical layer devices.
828 *
829 * hw - Struct containing variables accessed by hw code
830 * reg_address - Offset of device register being read.
831 * phy_address - Address of device on MDI.
832 * device_type - Also known as the Device ID or DID.
833 * data - 16-bit value to be written
834 *
835 * Returns: void.
836 *
837 * The 82597EX has support for several MDI access methods. This routine
838 * uses the new protocol MDI Single Command and Address Operation.
839 * This requires that first an address cycle command is sent, followed by a
840 * write command.
841 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100842static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843ixgb_write_phy_reg(struct ixgb_hw *hw,
844 uint32_t reg_address,
845 uint32_t phy_address,
846 uint32_t device_type,
847 uint16_t data)
848{
849 uint32_t i;
850 uint32_t command = 0;
851
852 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
853 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
854 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
855
856 /* Put the data in the MDIO Read/Write Data register */
857 IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data);
858
859 /* Setup and write the address cycle command */
860 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
861 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
862 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
863 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
864
865 IXGB_WRITE_REG(hw, MSCA, command);
866
867 /**************************************************************
868 ** Check every 10 usec to see if the address cycle completed
869 ** The COMMAND bit will clear when the operation is complete.
870 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
871 ** from the CPU Write to the Ready bit assertion.
872 **************************************************************/
873
874 for(i = 0; i < 10; i++)
875 {
876 udelay(10);
877
878 command = IXGB_READ_REG(hw, MSCA);
879
880 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
881 break;
882 }
883
884 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
885
886 /* Address cycle complete, setup and write the write command */
887 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
888 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
889 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
890 (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
891
892 IXGB_WRITE_REG(hw, MSCA, command);
893
894 /**************************************************************
895 ** Check every 10 usec to see if the read command completed
896 ** The COMMAND bit will clear when the operation is complete.
897 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
898 ** from the CPU Write to the Ready bit assertion.
899 **************************************************************/
900
901 for(i = 0; i < 10; i++)
902 {
903 udelay(10);
904
905 command = IXGB_READ_REG(hw, MSCA);
906
907 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
908 break;
909 }
910
911 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
912
913 /* Operation is complete, return. */
914}
915
916/******************************************************************************
917 * Checks to see if the link status of the hardware has changed.
918 *
919 * hw - Struct containing variables accessed by hw code
920 *
921 * Called by any function that needs to check the link status of the adapter.
922 *****************************************************************************/
923void
924ixgb_check_for_link(struct ixgb_hw *hw)
925{
926 uint32_t status_reg;
927 uint32_t xpcss_reg;
928
929 DEBUGFUNC("ixgb_check_for_link");
930
931 xpcss_reg = IXGB_READ_REG(hw, XPCSS);
932 status_reg = IXGB_READ_REG(hw, STATUS);
933
934 if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
935 (status_reg & IXGB_STATUS_LU)) {
936 hw->link_up = TRUE;
937 } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
938 (status_reg & IXGB_STATUS_LU)) {
939 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
940 hw->link_up = ixgb_link_reset(hw);
941 } else {
942 /*
943 * 82597EX errata. Since the lane deskew problem may prevent
944 * link, reset the link before reporting link down.
945 */
946 hw->link_up = ixgb_link_reset(hw);
947 }
948 /* Anything else for 10 Gig?? */
949}
950
951/******************************************************************************
952 * Check for a bad link condition that may have occured.
953 * The indication is that the RFC / LFC registers may be incrementing
954 * continually. A full adapter reset is required to recover.
955 *
956 * hw - Struct containing variables accessed by hw code
957 *
958 * Called by any function that needs to check the link status of the adapter.
959 *****************************************************************************/
960boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw)
961{
962 uint32_t newLFC, newRFC;
963 boolean_t bad_link_returncode = FALSE;
964
965 if (hw->phy_type == ixgb_phy_type_txn17401) {
966 newLFC = IXGB_READ_REG(hw, LFC);
967 newRFC = IXGB_READ_REG(hw, RFC);
968 if ((hw->lastLFC + 250 < newLFC)
969 || (hw->lastRFC + 250 < newRFC)) {
970 DEBUGOUT
971 ("BAD LINK! too many LFC/RFC since last check\n");
972 bad_link_returncode = TRUE;
973 }
974 hw->lastLFC = newLFC;
975 hw->lastRFC = newRFC;
976 }
977
978 return bad_link_returncode;
979}
980
981/******************************************************************************
982 * Clears all hardware statistics counters.
983 *
984 * hw - Struct containing variables accessed by shared code
985 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100986static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
988{
989 volatile uint32_t temp_reg;
990
991 DEBUGFUNC("ixgb_clear_hw_cntrs");
992
993 /* if we are stopped or resetting exit gracefully */
994 if(hw->adapter_stopped) {
995 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
996 return;
997 }
998
999 temp_reg = IXGB_READ_REG(hw, TPRL);
1000 temp_reg = IXGB_READ_REG(hw, TPRH);
1001 temp_reg = IXGB_READ_REG(hw, GPRCL);
1002 temp_reg = IXGB_READ_REG(hw, GPRCH);
1003 temp_reg = IXGB_READ_REG(hw, BPRCL);
1004 temp_reg = IXGB_READ_REG(hw, BPRCH);
1005 temp_reg = IXGB_READ_REG(hw, MPRCL);
1006 temp_reg = IXGB_READ_REG(hw, MPRCH);
1007 temp_reg = IXGB_READ_REG(hw, UPRCL);
1008 temp_reg = IXGB_READ_REG(hw, UPRCH);
1009 temp_reg = IXGB_READ_REG(hw, VPRCL);
1010 temp_reg = IXGB_READ_REG(hw, VPRCH);
1011 temp_reg = IXGB_READ_REG(hw, JPRCL);
1012 temp_reg = IXGB_READ_REG(hw, JPRCH);
1013 temp_reg = IXGB_READ_REG(hw, GORCL);
1014 temp_reg = IXGB_READ_REG(hw, GORCH);
1015 temp_reg = IXGB_READ_REG(hw, TORL);
1016 temp_reg = IXGB_READ_REG(hw, TORH);
1017 temp_reg = IXGB_READ_REG(hw, RNBC);
1018 temp_reg = IXGB_READ_REG(hw, RUC);
1019 temp_reg = IXGB_READ_REG(hw, ROC);
1020 temp_reg = IXGB_READ_REG(hw, RLEC);
1021 temp_reg = IXGB_READ_REG(hw, CRCERRS);
1022 temp_reg = IXGB_READ_REG(hw, ICBC);
1023 temp_reg = IXGB_READ_REG(hw, ECBC);
1024 temp_reg = IXGB_READ_REG(hw, MPC);
1025 temp_reg = IXGB_READ_REG(hw, TPTL);
1026 temp_reg = IXGB_READ_REG(hw, TPTH);
1027 temp_reg = IXGB_READ_REG(hw, GPTCL);
1028 temp_reg = IXGB_READ_REG(hw, GPTCH);
1029 temp_reg = IXGB_READ_REG(hw, BPTCL);
1030 temp_reg = IXGB_READ_REG(hw, BPTCH);
1031 temp_reg = IXGB_READ_REG(hw, MPTCL);
1032 temp_reg = IXGB_READ_REG(hw, MPTCH);
1033 temp_reg = IXGB_READ_REG(hw, UPTCL);
1034 temp_reg = IXGB_READ_REG(hw, UPTCH);
1035 temp_reg = IXGB_READ_REG(hw, VPTCL);
1036 temp_reg = IXGB_READ_REG(hw, VPTCH);
1037 temp_reg = IXGB_READ_REG(hw, JPTCL);
1038 temp_reg = IXGB_READ_REG(hw, JPTCH);
1039 temp_reg = IXGB_READ_REG(hw, GOTCL);
1040 temp_reg = IXGB_READ_REG(hw, GOTCH);
1041 temp_reg = IXGB_READ_REG(hw, TOTL);
1042 temp_reg = IXGB_READ_REG(hw, TOTH);
1043 temp_reg = IXGB_READ_REG(hw, DC);
1044 temp_reg = IXGB_READ_REG(hw, PLT64C);
1045 temp_reg = IXGB_READ_REG(hw, TSCTC);
1046 temp_reg = IXGB_READ_REG(hw, TSCTFC);
1047 temp_reg = IXGB_READ_REG(hw, IBIC);
1048 temp_reg = IXGB_READ_REG(hw, RFC);
1049 temp_reg = IXGB_READ_REG(hw, LFC);
1050 temp_reg = IXGB_READ_REG(hw, PFRC);
1051 temp_reg = IXGB_READ_REG(hw, PFTC);
1052 temp_reg = IXGB_READ_REG(hw, MCFRC);
1053 temp_reg = IXGB_READ_REG(hw, MCFTC);
1054 temp_reg = IXGB_READ_REG(hw, XONRXC);
1055 temp_reg = IXGB_READ_REG(hw, XONTXC);
1056 temp_reg = IXGB_READ_REG(hw, XOFFRXC);
1057 temp_reg = IXGB_READ_REG(hw, XOFFTXC);
1058 temp_reg = IXGB_READ_REG(hw, RJC);
1059 return;
1060}
1061
1062/******************************************************************************
1063 * Turns on the software controllable LED
1064 *
1065 * hw - Struct containing variables accessed by shared code
1066 *****************************************************************************/
1067void
1068ixgb_led_on(struct ixgb_hw *hw)
1069{
1070 uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1071
1072 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1073 ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1074 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1075 return;
1076}
1077
1078/******************************************************************************
1079 * Turns off the software controllable LED
1080 *
1081 * hw - Struct containing variables accessed by shared code
1082 *****************************************************************************/
1083void
1084ixgb_led_off(struct ixgb_hw *hw)
1085{
1086 uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1087
1088 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1089 ctrl0_reg |= IXGB_CTRL0_SDP0;
1090 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1091 return;
1092}
1093
1094/******************************************************************************
1095 * Gets the current PCI bus type, speed, and width of the hardware
1096 *
1097 * hw - Struct containing variables accessed by shared code
1098 *****************************************************************************/
1099static void
1100ixgb_get_bus_info(struct ixgb_hw *hw)
1101{
1102 uint32_t status_reg;
1103
1104 status_reg = IXGB_READ_REG(hw, STATUS);
1105
1106 hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1107 ixgb_bus_type_pcix : ixgb_bus_type_pci;
1108
1109 if (hw->bus.type == ixgb_bus_type_pci) {
1110 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1111 ixgb_bus_speed_66 : ixgb_bus_speed_33;
1112 } else {
1113 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1114 case IXGB_STATUS_PCIX_SPD_66:
1115 hw->bus.speed = ixgb_bus_speed_66;
1116 break;
1117 case IXGB_STATUS_PCIX_SPD_100:
1118 hw->bus.speed = ixgb_bus_speed_100;
1119 break;
1120 case IXGB_STATUS_PCIX_SPD_133:
1121 hw->bus.speed = ixgb_bus_speed_133;
1122 break;
1123 default:
1124 hw->bus.speed = ixgb_bus_speed_reserved;
1125 break;
1126 }
1127 }
1128
1129 hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1130 ixgb_bus_width_64 : ixgb_bus_width_32;
1131
1132 return;
1133}
1134
1135/******************************************************************************
1136 * Tests a MAC address to ensure it is a valid Individual Address
1137 *
1138 * mac_addr - pointer to MAC address.
1139 *
1140 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +01001141static boolean_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142mac_addr_valid(uint8_t *mac_addr)
1143{
1144 boolean_t is_valid = TRUE;
1145 DEBUGFUNC("mac_addr_valid");
1146
1147 /* Make sure it is not a multicast address */
1148 if (IS_MULTICAST(mac_addr)) {
1149 DEBUGOUT("MAC address is multicast\n");
1150 is_valid = FALSE;
1151 }
1152 /* Not a broadcast address */
1153 else if (IS_BROADCAST(mac_addr)) {
1154 DEBUGOUT("MAC address is broadcast\n");
1155 is_valid = FALSE;
1156 }
1157 /* Reject the zero address */
1158 else if (mac_addr[0] == 0 &&
1159 mac_addr[1] == 0 &&
1160 mac_addr[2] == 0 &&
1161 mac_addr[3] == 0 &&
1162 mac_addr[4] == 0 &&
1163 mac_addr[5] == 0) {
1164 DEBUGOUT("MAC address is all zeros\n");
1165 is_valid = FALSE;
1166 }
1167 return (is_valid);
1168}
1169
1170/******************************************************************************
1171 * Resets the 10GbE link. Waits the settle time and returns the state of
1172 * the link.
1173 *
1174 * hw - Struct containing variables accessed by shared code
1175 *****************************************************************************/
1176boolean_t
1177ixgb_link_reset(struct ixgb_hw *hw)
1178{
1179 boolean_t link_status = FALSE;
1180 uint8_t wait_retries = MAX_RESET_ITERATIONS;
1181 uint8_t lrst_retries = MAX_RESET_ITERATIONS;
1182
1183 do {
1184 /* Reset the link */
1185 IXGB_WRITE_REG(hw, CTRL0,
1186 IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1187
1188 /* Wait for link-up and lane re-alignment */
1189 do {
1190 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1191 link_status =
1192 ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1193 && (IXGB_READ_REG(hw, XPCSS) &
1194 IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE;
1195 } while (!link_status && --wait_retries);
1196
1197 } while (!link_status && --lrst_retries);
1198
1199 return link_status;
1200}
1201
1202/******************************************************************************
1203 * Resets the 10GbE optics module.
1204 *
1205 * hw - Struct containing variables accessed by shared code
1206 *****************************************************************************/
1207void
1208ixgb_optics_reset(struct ixgb_hw *hw)
1209{
1210 if (hw->phy_type == ixgb_phy_type_txn17401) {
1211 uint16_t mdio_reg;
1212
1213 ixgb_write_phy_reg(hw,
1214 MDIO_PMA_PMD_CR1,
1215 IXGB_PHY_ADDRESS,
1216 MDIO_PMA_PMD_DID,
1217 MDIO_PMA_PMD_CR1_RESET);
1218
1219 mdio_reg = ixgb_read_phy_reg( hw,
1220 MDIO_PMA_PMD_CR1,
1221 IXGB_PHY_ADDRESS,
1222 MDIO_PMA_PMD_DID);
1223 }
1224
1225 return;
1226}