Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
Auke Kok | 0abb6eb | 2006-09-27 12:53:14 -0700 | [diff] [blame] | 3 | Intel PRO/10GbE Linux driver |
| 4 | Copyright(c) 1999 - 2006 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 | more details. |
Auke Kok | 0abb6eb | 2006-09-27 12:53:14 -0700 | [diff] [blame] | 14 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 15 | You should have received a copy of the GNU General Public License along with |
Auke Kok | 0abb6eb | 2006-09-27 12:53:14 -0700 | [diff] [blame] | 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
Auke Kok | 0abb6eb | 2006-09-27 12:53:14 -0700 | [diff] [blame] | 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* ixgb_hw.c |
| 30 | * Shared functions for accessing and configuring the adapter |
| 31 | */ |
| 32 | |
| 33 | #include "ixgb_hw.h" |
| 34 | #include "ixgb_ids.h" |
| 35 | |
| 36 | /* Local function prototypes */ |
| 37 | |
| 38 | static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr); |
| 39 | |
| 40 | static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value); |
| 41 | |
| 42 | static void ixgb_get_bus_info(struct ixgb_hw *hw); |
| 43 | |
| 44 | static boolean_t ixgb_link_reset(struct ixgb_hw *hw); |
| 45 | |
| 46 | static void ixgb_optics_reset(struct ixgb_hw *hw); |
| 47 | |
| 48 | static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw); |
| 49 | |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 50 | static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 51 | |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 52 | static void ixgb_clear_vfta(struct ixgb_hw *hw); |
| 53 | |
| 54 | static void ixgb_init_rx_addrs(struct ixgb_hw *hw); |
| 55 | |
| 56 | static uint16_t ixgb_read_phy_reg(struct ixgb_hw *hw, |
| 57 | uint32_t reg_address, |
| 58 | uint32_t phy_address, |
| 59 | uint32_t device_type); |
| 60 | |
| 61 | static boolean_t ixgb_setup_fc(struct ixgb_hw *hw); |
| 62 | |
| 63 | static boolean_t mac_addr_valid(uint8_t *mac_addr); |
| 64 | |
| 65 | static uint32_t ixgb_mac_reset(struct ixgb_hw *hw) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | { |
| 67 | uint32_t ctrl_reg; |
| 68 | |
| 69 | ctrl_reg = IXGB_CTRL0_RST | |
| 70 | IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */ |
| 71 | IXGB_CTRL0_SDP2_DIR | |
| 72 | IXGB_CTRL0_SDP1_DIR | |
| 73 | IXGB_CTRL0_SDP0_DIR | |
| 74 | IXGB_CTRL0_SDP3 | /* Initial value 1101 */ |
| 75 | IXGB_CTRL0_SDP2 | |
| 76 | IXGB_CTRL0_SDP0; |
| 77 | |
| 78 | #ifdef HP_ZX1 |
| 79 | /* Workaround for 82597EX reset errata */ |
| 80 | IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg); |
| 81 | #else |
| 82 | IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); |
| 83 | #endif |
| 84 | |
| 85 | /* Delay a few ms just to allow the reset to complete */ |
Jeff Garzik | f8ec473 | 2006-09-19 15:27:07 -0400 | [diff] [blame] | 86 | msleep(IXGB_DELAY_AFTER_RESET); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 87 | ctrl_reg = IXGB_READ_REG(hw, CTRL0); |
| 88 | #ifdef DBG |
| 89 | /* Make sure the self-clearing global reset bit did self clear */ |
| 90 | ASSERT(!(ctrl_reg & IXGB_CTRL0_RST)); |
| 91 | #endif |
| 92 | |
| 93 | if (hw->phy_type == ixgb_phy_type_txn17401) { |
| 94 | ixgb_optics_reset(hw); |
| 95 | } |
| 96 | |
| 97 | return ctrl_reg; |
| 98 | } |
| 99 | |
| 100 | /****************************************************************************** |
| 101 | * Reset the transmit and receive units; mask and clear all interrupts. |
| 102 | * |
| 103 | * hw - Struct containing variables accessed by shared code |
| 104 | *****************************************************************************/ |
| 105 | boolean_t |
| 106 | ixgb_adapter_stop(struct ixgb_hw *hw) |
| 107 | { |
| 108 | uint32_t ctrl_reg; |
| 109 | uint32_t icr_reg; |
| 110 | |
| 111 | DEBUGFUNC("ixgb_adapter_stop"); |
| 112 | |
| 113 | /* If we are stopped or resetting exit gracefully and wait to be |
| 114 | * started again before accessing the hardware. |
| 115 | */ |
| 116 | if(hw->adapter_stopped) { |
| 117 | DEBUGOUT("Exiting because the adapter is already stopped!!!\n"); |
| 118 | return FALSE; |
| 119 | } |
| 120 | |
| 121 | /* Set the Adapter Stopped flag so other driver functions stop |
| 122 | * touching the Hardware. |
| 123 | */ |
| 124 | hw->adapter_stopped = TRUE; |
| 125 | |
| 126 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 127 | DEBUGOUT("Masking off all interrupts\n"); |
| 128 | IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF); |
| 129 | |
| 130 | /* Disable the Transmit and Receive units. Then delay to allow |
| 131 | * any pending transactions to complete before we hit the MAC with |
| 132 | * the global reset. |
| 133 | */ |
| 134 | IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN); |
| 135 | IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN); |
Jeff Garzik | f8ec473 | 2006-09-19 15:27:07 -0400 | [diff] [blame] | 136 | msleep(IXGB_DELAY_BEFORE_RESET); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 137 | |
| 138 | /* Issue a global reset to the MAC. This will reset the chip's |
| 139 | * transmit, receive, DMA, and link units. It will not effect |
| 140 | * the current PCI configuration. The global reset bit is self- |
| 141 | * clearing, and should clear within a microsecond. |
| 142 | */ |
| 143 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 144 | |
| 145 | ctrl_reg = ixgb_mac_reset(hw); |
| 146 | |
| 147 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 148 | DEBUGOUT("Masking off all interrupts\n"); |
| 149 | IXGB_WRITE_REG(hw, IMC, 0xffffffff); |
| 150 | |
| 151 | /* Clear any pending interrupt events. */ |
| 152 | icr_reg = IXGB_READ_REG(hw, ICR); |
| 153 | |
| 154 | return (ctrl_reg & IXGB_CTRL0_RST); |
| 155 | } |
| 156 | |
| 157 | |
| 158 | /****************************************************************************** |
| 159 | * Identifies the vendor of the optics module on the adapter. The SR adapters |
| 160 | * support two different types of XPAK optics, so it is necessary to determine |
| 161 | * which optics are present before applying any optics-specific workarounds. |
| 162 | * |
| 163 | * hw - Struct containing variables accessed by shared code. |
| 164 | * |
| 165 | * Returns: the vendor of the XPAK optics module. |
| 166 | *****************************************************************************/ |
| 167 | static ixgb_xpak_vendor |
| 168 | ixgb_identify_xpak_vendor(struct ixgb_hw *hw) |
| 169 | { |
| 170 | uint32_t i; |
| 171 | uint16_t vendor_name[5]; |
| 172 | ixgb_xpak_vendor xpak_vendor; |
| 173 | |
| 174 | DEBUGFUNC("ixgb_identify_xpak_vendor"); |
| 175 | |
| 176 | /* Read the first few bytes of the vendor string from the XPAK NVR |
| 177 | * registers. These are standard XENPAK/XPAK registers, so all XPAK |
| 178 | * devices should implement them. */ |
| 179 | for (i = 0; i < 5; i++) { |
| 180 | vendor_name[i] = ixgb_read_phy_reg(hw, |
| 181 | MDIO_PMA_PMD_XPAK_VENDOR_NAME |
| 182 | + i, IXGB_PHY_ADDRESS, |
| 183 | MDIO_PMA_PMD_DID); |
| 184 | } |
| 185 | |
| 186 | /* Determine the actual vendor */ |
| 187 | if (vendor_name[0] == 'I' && |
| 188 | vendor_name[1] == 'N' && |
| 189 | vendor_name[2] == 'T' && |
| 190 | vendor_name[3] == 'E' && vendor_name[4] == 'L') { |
| 191 | xpak_vendor = ixgb_xpak_vendor_intel; |
| 192 | } else { |
| 193 | xpak_vendor = ixgb_xpak_vendor_infineon; |
| 194 | } |
| 195 | |
| 196 | return (xpak_vendor); |
| 197 | } |
| 198 | |
| 199 | /****************************************************************************** |
| 200 | * Determine the physical layer module on the adapter. |
| 201 | * |
| 202 | * hw - Struct containing variables accessed by shared code. The device_id |
| 203 | * field must be (correctly) populated before calling this routine. |
| 204 | * |
| 205 | * Returns: the phy type of the adapter. |
| 206 | *****************************************************************************/ |
| 207 | static ixgb_phy_type |
| 208 | ixgb_identify_phy(struct ixgb_hw *hw) |
| 209 | { |
| 210 | ixgb_phy_type phy_type; |
| 211 | ixgb_xpak_vendor xpak_vendor; |
| 212 | |
| 213 | DEBUGFUNC("ixgb_identify_phy"); |
| 214 | |
| 215 | /* Infer the transceiver/phy type from the device id */ |
| 216 | switch (hw->device_id) { |
| 217 | case IXGB_DEVICE_ID_82597EX: |
| 218 | DEBUGOUT("Identified TXN17401 optics\n"); |
| 219 | phy_type = ixgb_phy_type_txn17401; |
| 220 | break; |
| 221 | |
| 222 | case IXGB_DEVICE_ID_82597EX_SR: |
| 223 | /* The SR adapters carry two different types of XPAK optics |
| 224 | * modules; read the vendor identifier to determine the exact |
| 225 | * type of optics. */ |
| 226 | xpak_vendor = ixgb_identify_xpak_vendor(hw); |
| 227 | if (xpak_vendor == ixgb_xpak_vendor_intel) { |
| 228 | DEBUGOUT("Identified TXN17201 optics\n"); |
| 229 | phy_type = ixgb_phy_type_txn17201; |
| 230 | } else { |
| 231 | DEBUGOUT("Identified G6005 optics\n"); |
| 232 | phy_type = ixgb_phy_type_g6005; |
| 233 | } |
| 234 | break; |
| 235 | case IXGB_DEVICE_ID_82597EX_LR: |
| 236 | DEBUGOUT("Identified G6104 optics\n"); |
| 237 | phy_type = ixgb_phy_type_g6104; |
| 238 | break; |
Manasi Deval | 0fe198a | 2006-08-16 13:47:20 -0700 | [diff] [blame] | 239 | case IXGB_DEVICE_ID_82597EX_CX4: |
| 240 | DEBUGOUT("Identified CX4\n"); |
| 241 | xpak_vendor = ixgb_identify_xpak_vendor(hw); |
| 242 | if (xpak_vendor == ixgb_xpak_vendor_intel) { |
| 243 | DEBUGOUT("Identified TXN17201 optics\n"); |
| 244 | phy_type = ixgb_phy_type_txn17201; |
| 245 | } else { |
| 246 | DEBUGOUT("Identified G6005 optics\n"); |
| 247 | phy_type = ixgb_phy_type_g6005; |
| 248 | } |
| 249 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 250 | default: |
| 251 | DEBUGOUT("Unknown physical layer module\n"); |
| 252 | phy_type = ixgb_phy_type_unknown; |
| 253 | break; |
| 254 | } |
| 255 | |
| 256 | return (phy_type); |
| 257 | } |
| 258 | |
| 259 | /****************************************************************************** |
| 260 | * Performs basic configuration of the adapter. |
| 261 | * |
| 262 | * hw - Struct containing variables accessed by shared code |
| 263 | * |
| 264 | * Resets the controller. |
| 265 | * Reads and validates the EEPROM. |
| 266 | * Initializes the receive address registers. |
| 267 | * Initializes the multicast table. |
| 268 | * Clears all on-chip counters. |
| 269 | * Calls routine to setup flow control settings. |
| 270 | * Leaves the transmit and receive units disabled and uninitialized. |
| 271 | * |
| 272 | * Returns: |
| 273 | * TRUE if successful, |
| 274 | * FALSE if unrecoverable problems were encountered. |
| 275 | *****************************************************************************/ |
| 276 | boolean_t |
| 277 | ixgb_init_hw(struct ixgb_hw *hw) |
| 278 | { |
| 279 | uint32_t i; |
| 280 | uint32_t ctrl_reg; |
| 281 | boolean_t status; |
| 282 | |
| 283 | DEBUGFUNC("ixgb_init_hw"); |
| 284 | |
| 285 | /* Issue a global reset to the MAC. This will reset the chip's |
| 286 | * transmit, receive, DMA, and link units. It will not effect |
| 287 | * the current PCI configuration. The global reset bit is self- |
| 288 | * clearing, and should clear within a microsecond. |
| 289 | */ |
| 290 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 291 | |
| 292 | ctrl_reg = ixgb_mac_reset(hw); |
| 293 | |
| 294 | DEBUGOUT("Issuing an EE reset to MAC\n"); |
| 295 | #ifdef HP_ZX1 |
| 296 | /* Workaround for 82597EX reset errata */ |
| 297 | IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST); |
| 298 | #else |
| 299 | IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST); |
| 300 | #endif |
| 301 | |
| 302 | /* Delay a few ms just to allow the reset to complete */ |
Jeff Garzik | f8ec473 | 2006-09-19 15:27:07 -0400 | [diff] [blame] | 303 | msleep(IXGB_DELAY_AFTER_EE_RESET); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 304 | |
| 305 | if (ixgb_get_eeprom_data(hw) == FALSE) { |
| 306 | return(FALSE); |
| 307 | } |
| 308 | |
| 309 | /* Use the device id to determine the type of phy/transceiver. */ |
| 310 | hw->device_id = ixgb_get_ee_device_id(hw); |
| 311 | hw->phy_type = ixgb_identify_phy(hw); |
| 312 | |
| 313 | /* Setup the receive addresses. |
| 314 | * Receive Address Registers (RARs 0 - 15). |
| 315 | */ |
| 316 | ixgb_init_rx_addrs(hw); |
| 317 | |
| 318 | /* |
| 319 | * Check that a valid MAC address has been set. |
| 320 | * If it is not valid, we fail hardware init. |
| 321 | */ |
| 322 | if (!mac_addr_valid(hw->curr_mac_addr)) { |
| 323 | DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n"); |
| 324 | return(FALSE); |
| 325 | } |
| 326 | |
| 327 | /* tell the routines in this file they can access hardware again */ |
| 328 | hw->adapter_stopped = FALSE; |
| 329 | |
| 330 | /* Fill in the bus_info structure */ |
| 331 | ixgb_get_bus_info(hw); |
| 332 | |
| 333 | /* Zero out the Multicast HASH table */ |
| 334 | DEBUGOUT("Zeroing the MTA\n"); |
| 335 | for(i = 0; i < IXGB_MC_TBL_SIZE; i++) |
| 336 | IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 337 | |
| 338 | /* Zero out the VLAN Filter Table Array */ |
| 339 | ixgb_clear_vfta(hw); |
| 340 | |
| 341 | /* Zero all of the hardware counters */ |
| 342 | ixgb_clear_hw_cntrs(hw); |
| 343 | |
| 344 | /* Call a subroutine to setup flow control. */ |
| 345 | status = ixgb_setup_fc(hw); |
| 346 | |
| 347 | /* 82597EX errata: Call check-for-link in case lane deskew is locked */ |
| 348 | ixgb_check_for_link(hw); |
| 349 | |
| 350 | return (status); |
| 351 | } |
| 352 | |
| 353 | /****************************************************************************** |
| 354 | * Initializes receive address filters. |
| 355 | * |
| 356 | * hw - Struct containing variables accessed by shared code |
| 357 | * |
| 358 | * Places the MAC address in receive address register 0 and clears the rest |
| 359 | * of the receive addresss registers. Clears the multicast table. Assumes |
| 360 | * the receiver is in reset when the routine is called. |
| 361 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 362 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 363 | ixgb_init_rx_addrs(struct ixgb_hw *hw) |
| 364 | { |
| 365 | uint32_t i; |
| 366 | |
| 367 | DEBUGFUNC("ixgb_init_rx_addrs"); |
| 368 | |
| 369 | /* |
| 370 | * If the current mac address is valid, assume it is a software override |
| 371 | * to the permanent address. |
| 372 | * Otherwise, use the permanent address from the eeprom. |
| 373 | */ |
| 374 | if (!mac_addr_valid(hw->curr_mac_addr)) { |
| 375 | |
| 376 | /* Get the MAC address from the eeprom for later reference */ |
| 377 | ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr); |
| 378 | |
| 379 | DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ", |
| 380 | hw->curr_mac_addr[0], |
| 381 | hw->curr_mac_addr[1], hw->curr_mac_addr[2]); |
| 382 | DEBUGOUT3("%.2X %.2X %.2X\n", |
| 383 | hw->curr_mac_addr[3], |
| 384 | hw->curr_mac_addr[4], hw->curr_mac_addr[5]); |
| 385 | } else { |
| 386 | |
| 387 | /* Setup the receive address. */ |
| 388 | DEBUGOUT("Overriding MAC Address in RAR[0]\n"); |
| 389 | DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", |
| 390 | hw->curr_mac_addr[0], |
| 391 | hw->curr_mac_addr[1], hw->curr_mac_addr[2]); |
| 392 | DEBUGOUT3("%.2X %.2X %.2X\n", |
| 393 | hw->curr_mac_addr[3], |
| 394 | hw->curr_mac_addr[4], hw->curr_mac_addr[5]); |
| 395 | |
| 396 | ixgb_rar_set(hw, hw->curr_mac_addr, 0); |
| 397 | } |
| 398 | |
| 399 | /* Zero out the other 15 receive addresses. */ |
| 400 | DEBUGOUT("Clearing RAR[1-15]\n"); |
| 401 | for(i = 1; i < IXGB_RAR_ENTRIES; i++) { |
| 402 | IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 403 | IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 404 | } |
| 405 | |
| 406 | return; |
| 407 | } |
| 408 | |
| 409 | /****************************************************************************** |
| 410 | * Updates the MAC's list of multicast addresses. |
| 411 | * |
| 412 | * hw - Struct containing variables accessed by shared code |
| 413 | * mc_addr_list - the list of new multicast addresses |
| 414 | * mc_addr_count - number of addresses |
| 415 | * pad - number of bytes between addresses in the list |
| 416 | * |
| 417 | * The given list replaces any existing list. Clears the last 15 receive |
| 418 | * address registers and the multicast table. Uses receive address registers |
| 419 | * for the first 15 multicast addresses, and hashes the rest into the |
| 420 | * multicast table. |
| 421 | *****************************************************************************/ |
| 422 | void |
| 423 | ixgb_mc_addr_list_update(struct ixgb_hw *hw, |
| 424 | uint8_t *mc_addr_list, |
| 425 | uint32_t mc_addr_count, |
| 426 | uint32_t pad) |
| 427 | { |
| 428 | uint32_t hash_value; |
| 429 | uint32_t i; |
| 430 | uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */ |
| 431 | |
| 432 | DEBUGFUNC("ixgb_mc_addr_list_update"); |
| 433 | |
| 434 | /* Set the new number of MC addresses that we are being requested to use. */ |
| 435 | hw->num_mc_addrs = mc_addr_count; |
| 436 | |
| 437 | /* Clear RAR[1-15] */ |
| 438 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
| 439 | for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) { |
| 440 | IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 441 | IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 442 | } |
| 443 | |
| 444 | /* Clear the MTA */ |
| 445 | DEBUGOUT(" Clearing MTA\n"); |
| 446 | for(i = 0; i < IXGB_MC_TBL_SIZE; i++) { |
| 447 | IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 448 | } |
| 449 | |
| 450 | /* Add the new addresses */ |
| 451 | for(i = 0; i < mc_addr_count; i++) { |
| 452 | DEBUGOUT(" Adding the multicast addresses:\n"); |
| 453 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, |
| 454 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)], |
| 455 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 456 | 1], |
| 457 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 458 | 2], |
| 459 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 460 | 3], |
| 461 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 462 | 4], |
| 463 | mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 464 | 5]); |
| 465 | |
| 466 | /* Place this multicast address in the RAR if there is room, * |
| 467 | * else put it in the MTA |
| 468 | */ |
| 469 | if(rar_used_count < IXGB_RAR_ENTRIES) { |
| 470 | ixgb_rar_set(hw, |
| 471 | mc_addr_list + |
| 472 | (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)), |
| 473 | rar_used_count); |
| 474 | DEBUGOUT1("Added a multicast address to RAR[%d]\n", i); |
| 475 | rar_used_count++; |
| 476 | } else { |
| 477 | hash_value = ixgb_hash_mc_addr(hw, |
| 478 | mc_addr_list + |
| 479 | (i * |
| 480 | (IXGB_ETH_LENGTH_OF_ADDRESS |
| 481 | + pad))); |
| 482 | |
| 483 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); |
| 484 | |
| 485 | ixgb_mta_set(hw, hash_value); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | DEBUGOUT("MC Update Complete\n"); |
| 490 | return; |
| 491 | } |
| 492 | |
| 493 | /****************************************************************************** |
| 494 | * Hashes an address to determine its location in the multicast table |
| 495 | * |
| 496 | * hw - Struct containing variables accessed by shared code |
| 497 | * mc_addr - the multicast address to hash |
| 498 | * |
| 499 | * Returns: |
| 500 | * The hash value |
| 501 | *****************************************************************************/ |
| 502 | static uint32_t |
| 503 | ixgb_hash_mc_addr(struct ixgb_hw *hw, |
| 504 | uint8_t *mc_addr) |
| 505 | { |
| 506 | uint32_t hash_value = 0; |
| 507 | |
| 508 | DEBUGFUNC("ixgb_hash_mc_addr"); |
| 509 | |
| 510 | /* The portion of the address that is used for the hash table is |
| 511 | * determined by the mc_filter_type setting. |
| 512 | */ |
| 513 | switch (hw->mc_filter_type) { |
| 514 | /* [0] [1] [2] [3] [4] [5] |
| 515 | * 01 AA 00 12 34 56 |
| 516 | * LSB MSB - According to H/W docs */ |
| 517 | case 0: |
| 518 | /* [47:36] i.e. 0x563 for above example address */ |
| 519 | hash_value = |
| 520 | ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); |
| 521 | break; |
| 522 | case 1: /* [46:35] i.e. 0xAC6 for above example address */ |
| 523 | hash_value = |
| 524 | ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); |
| 525 | break; |
| 526 | case 2: /* [45:34] i.e. 0x5D8 for above example address */ |
| 527 | hash_value = |
| 528 | ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); |
| 529 | break; |
| 530 | case 3: /* [43:32] i.e. 0x634 for above example address */ |
| 531 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); |
| 532 | break; |
| 533 | default: |
| 534 | /* Invalid mc_filter_type, what should we do? */ |
| 535 | DEBUGOUT("MC filter type param set incorrectly\n"); |
| 536 | ASSERT(0); |
| 537 | break; |
| 538 | } |
| 539 | |
| 540 | hash_value &= 0xFFF; |
| 541 | return (hash_value); |
| 542 | } |
| 543 | |
| 544 | /****************************************************************************** |
| 545 | * Sets the bit in the multicast table corresponding to the hash value. |
| 546 | * |
| 547 | * hw - Struct containing variables accessed by shared code |
| 548 | * hash_value - Multicast address hash value |
| 549 | *****************************************************************************/ |
| 550 | static void |
| 551 | ixgb_mta_set(struct ixgb_hw *hw, |
| 552 | uint32_t hash_value) |
| 553 | { |
| 554 | uint32_t hash_bit, hash_reg; |
| 555 | uint32_t mta_reg; |
| 556 | |
| 557 | /* The MTA is a register array of 128 32-bit registers. |
| 558 | * It is treated like an array of 4096 bits. We want to set |
| 559 | * bit BitArray[hash_value]. So we figure out what register |
| 560 | * the bit is in, read it, OR in the new bit, then write |
| 561 | * back the new value. The register is determined by the |
| 562 | * upper 7 bits of the hash value and the bit within that |
| 563 | * register are determined by the lower 5 bits of the value. |
| 564 | */ |
| 565 | hash_reg = (hash_value >> 5) & 0x7F; |
| 566 | hash_bit = hash_value & 0x1F; |
| 567 | |
| 568 | mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg); |
| 569 | |
| 570 | mta_reg |= (1 << hash_bit); |
| 571 | |
| 572 | IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg); |
| 573 | |
| 574 | return; |
| 575 | } |
| 576 | |
| 577 | /****************************************************************************** |
| 578 | * Puts an ethernet address into a receive address register. |
| 579 | * |
| 580 | * hw - Struct containing variables accessed by shared code |
| 581 | * addr - Address to put into receive address register |
| 582 | * index - Receive address register to write |
| 583 | *****************************************************************************/ |
| 584 | void |
| 585 | ixgb_rar_set(struct ixgb_hw *hw, |
| 586 | uint8_t *addr, |
| 587 | uint32_t index) |
| 588 | { |
| 589 | uint32_t rar_low, rar_high; |
| 590 | |
| 591 | DEBUGFUNC("ixgb_rar_set"); |
| 592 | |
| 593 | /* HW expects these in little endian so we reverse the byte order |
| 594 | * from network order (big endian) to little endian |
| 595 | */ |
| 596 | rar_low = ((uint32_t) addr[0] | |
| 597 | ((uint32_t)addr[1] << 8) | |
| 598 | ((uint32_t)addr[2] << 16) | |
| 599 | ((uint32_t)addr[3] << 24)); |
| 600 | |
| 601 | rar_high = ((uint32_t) addr[4] | |
| 602 | ((uint32_t)addr[5] << 8) | |
| 603 | IXGB_RAH_AV); |
| 604 | |
| 605 | IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| 606 | IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | /****************************************************************************** |
| 611 | * Writes a value to the specified offset in the VLAN filter table. |
| 612 | * |
| 613 | * hw - Struct containing variables accessed by shared code |
| 614 | * offset - Offset in VLAN filer table to write |
| 615 | * value - Value to write into VLAN filter table |
| 616 | *****************************************************************************/ |
| 617 | void |
| 618 | ixgb_write_vfta(struct ixgb_hw *hw, |
| 619 | uint32_t offset, |
| 620 | uint32_t value) |
| 621 | { |
| 622 | IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| 623 | return; |
| 624 | } |
| 625 | |
| 626 | /****************************************************************************** |
| 627 | * Clears the VLAN filer table |
| 628 | * |
| 629 | * hw - Struct containing variables accessed by shared code |
| 630 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 631 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 632 | ixgb_clear_vfta(struct ixgb_hw *hw) |
| 633 | { |
| 634 | uint32_t offset; |
| 635 | |
| 636 | for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++) |
| 637 | IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | /****************************************************************************** |
| 642 | * Configures the flow control settings based on SW configuration. |
| 643 | * |
| 644 | * hw - Struct containing variables accessed by shared code |
| 645 | *****************************************************************************/ |
| 646 | |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 647 | static boolean_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 648 | ixgb_setup_fc(struct ixgb_hw *hw) |
| 649 | { |
| 650 | uint32_t ctrl_reg; |
| 651 | uint32_t pap_reg = 0; /* by default, assume no pause time */ |
| 652 | boolean_t status = TRUE; |
| 653 | |
| 654 | DEBUGFUNC("ixgb_setup_fc"); |
| 655 | |
| 656 | /* Get the current control reg 0 settings */ |
| 657 | ctrl_reg = IXGB_READ_REG(hw, CTRL0); |
| 658 | |
| 659 | /* Clear the Receive Pause Enable and Transmit Pause Enable bits */ |
| 660 | ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); |
| 661 | |
| 662 | /* The possible values of the "flow_control" parameter are: |
| 663 | * 0: Flow control is completely disabled |
| 664 | * 1: Rx flow control is enabled (we can receive pause frames |
| 665 | * but not send pause frames). |
| 666 | * 2: Tx flow control is enabled (we can send pause frames |
| 667 | * but we do not support receiving pause frames). |
| 668 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 669 | * other: Invalid. |
| 670 | */ |
| 671 | switch (hw->fc.type) { |
| 672 | case ixgb_fc_none: /* 0 */ |
| 673 | /* Set CMDC bit to disable Rx Flow control */ |
| 674 | ctrl_reg |= (IXGB_CTRL0_CMDC); |
| 675 | break; |
| 676 | case ixgb_fc_rx_pause: /* 1 */ |
| 677 | /* RX Flow control is enabled, and TX Flow control is |
| 678 | * disabled. |
| 679 | */ |
| 680 | ctrl_reg |= (IXGB_CTRL0_RPE); |
| 681 | break; |
| 682 | case ixgb_fc_tx_pause: /* 2 */ |
| 683 | /* TX Flow control is enabled, and RX Flow control is |
| 684 | * disabled, by a software over-ride. |
| 685 | */ |
| 686 | ctrl_reg |= (IXGB_CTRL0_TPE); |
| 687 | pap_reg = hw->fc.pause_time; |
| 688 | break; |
| 689 | case ixgb_fc_full: /* 3 */ |
| 690 | /* Flow control (both RX and TX) is enabled by a software |
| 691 | * over-ride. |
| 692 | */ |
| 693 | ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); |
| 694 | pap_reg = hw->fc.pause_time; |
| 695 | break; |
| 696 | default: |
| 697 | /* We should never get here. The value should be 0-3. */ |
| 698 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 699 | ASSERT(0); |
| 700 | break; |
| 701 | } |
| 702 | |
| 703 | /* Write the new settings */ |
| 704 | IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); |
| 705 | |
| 706 | if (pap_reg != 0) { |
| 707 | IXGB_WRITE_REG(hw, PAP, pap_reg); |
| 708 | } |
| 709 | |
| 710 | /* Set the flow control receive threshold registers. Normally, |
| 711 | * these registers will be set to a default threshold that may be |
| 712 | * adjusted later by the driver's runtime code. However, if the |
| 713 | * ability to transmit pause frames in not enabled, then these |
| 714 | * registers will be set to 0. |
| 715 | */ |
| 716 | if(!(hw->fc.type & ixgb_fc_tx_pause)) { |
| 717 | IXGB_WRITE_REG(hw, FCRTL, 0); |
| 718 | IXGB_WRITE_REG(hw, FCRTH, 0); |
| 719 | } else { |
| 720 | /* We need to set up the Receive Threshold high and low water |
| 721 | * marks as well as (optionally) enabling the transmission of XON |
| 722 | * frames. */ |
| 723 | if(hw->fc.send_xon) { |
| 724 | IXGB_WRITE_REG(hw, FCRTL, |
| 725 | (hw->fc.low_water | IXGB_FCRTL_XONE)); |
| 726 | } else { |
| 727 | IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water); |
| 728 | } |
| 729 | IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water); |
| 730 | } |
| 731 | return (status); |
| 732 | } |
| 733 | |
| 734 | /****************************************************************************** |
| 735 | * Reads a word from a device over the Management Data Interface (MDI) bus. |
| 736 | * This interface is used to manage Physical layer devices. |
| 737 | * |
| 738 | * hw - Struct containing variables accessed by hw code |
| 739 | * reg_address - Offset of device register being read. |
| 740 | * phy_address - Address of device on MDI. |
| 741 | * |
| 742 | * Returns: Data word (16 bits) from MDI device. |
| 743 | * |
| 744 | * The 82597EX has support for several MDI access methods. This routine |
| 745 | * uses the new protocol MDI Single Command and Address Operation. |
| 746 | * This requires that first an address cycle command is sent, followed by a |
| 747 | * read command. |
| 748 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 749 | static uint16_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 750 | ixgb_read_phy_reg(struct ixgb_hw *hw, |
| 751 | uint32_t reg_address, |
| 752 | uint32_t phy_address, |
| 753 | uint32_t device_type) |
| 754 | { |
| 755 | uint32_t i; |
| 756 | uint32_t data; |
| 757 | uint32_t command = 0; |
| 758 | |
| 759 | ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); |
| 760 | ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); |
| 761 | ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); |
| 762 | |
| 763 | /* Setup and write the address cycle command */ |
| 764 | command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| 765 | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| 766 | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| 767 | (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); |
| 768 | |
| 769 | IXGB_WRITE_REG(hw, MSCA, command); |
| 770 | |
| 771 | /************************************************************** |
| 772 | ** Check every 10 usec to see if the address cycle completed |
| 773 | ** The COMMAND bit will clear when the operation is complete. |
| 774 | ** This may take as long as 64 usecs (we'll wait 100 usecs max) |
| 775 | ** from the CPU Write to the Ready bit assertion. |
| 776 | **************************************************************/ |
| 777 | |
| 778 | for(i = 0; i < 10; i++) |
| 779 | { |
| 780 | udelay(10); |
| 781 | |
| 782 | command = IXGB_READ_REG(hw, MSCA); |
| 783 | |
| 784 | if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| 785 | break; |
| 786 | } |
| 787 | |
| 788 | ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| 789 | |
| 790 | /* Address cycle complete, setup and write the read command */ |
| 791 | command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| 792 | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| 793 | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| 794 | (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND)); |
| 795 | |
| 796 | IXGB_WRITE_REG(hw, MSCA, command); |
| 797 | |
| 798 | /************************************************************** |
| 799 | ** Check every 10 usec to see if the read command completed |
| 800 | ** The COMMAND bit will clear when the operation is complete. |
| 801 | ** The read may take as long as 64 usecs (we'll wait 100 usecs max) |
| 802 | ** from the CPU Write to the Ready bit assertion. |
| 803 | **************************************************************/ |
| 804 | |
| 805 | for(i = 0; i < 10; i++) |
| 806 | { |
| 807 | udelay(10); |
| 808 | |
| 809 | command = IXGB_READ_REG(hw, MSCA); |
| 810 | |
| 811 | if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| 812 | break; |
| 813 | } |
| 814 | |
| 815 | ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| 816 | |
| 817 | /* Operation is complete, get the data from the MDIO Read/Write Data |
| 818 | * register and return. |
| 819 | */ |
| 820 | data = IXGB_READ_REG(hw, MSRWD); |
| 821 | data >>= IXGB_MSRWD_READ_DATA_SHIFT; |
| 822 | return((uint16_t) data); |
| 823 | } |
| 824 | |
| 825 | /****************************************************************************** |
| 826 | * Writes a word to a device over the Management Data Interface (MDI) bus. |
| 827 | * This interface is used to manage Physical layer devices. |
| 828 | * |
| 829 | * hw - Struct containing variables accessed by hw code |
| 830 | * reg_address - Offset of device register being read. |
| 831 | * phy_address - Address of device on MDI. |
| 832 | * device_type - Also known as the Device ID or DID. |
| 833 | * data - 16-bit value to be written |
| 834 | * |
| 835 | * Returns: void. |
| 836 | * |
| 837 | * The 82597EX has support for several MDI access methods. This routine |
| 838 | * uses the new protocol MDI Single Command and Address Operation. |
| 839 | * This requires that first an address cycle command is sent, followed by a |
| 840 | * write command. |
| 841 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 842 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 843 | ixgb_write_phy_reg(struct ixgb_hw *hw, |
| 844 | uint32_t reg_address, |
| 845 | uint32_t phy_address, |
| 846 | uint32_t device_type, |
| 847 | uint16_t data) |
| 848 | { |
| 849 | uint32_t i; |
| 850 | uint32_t command = 0; |
| 851 | |
| 852 | ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); |
| 853 | ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); |
| 854 | ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); |
| 855 | |
| 856 | /* Put the data in the MDIO Read/Write Data register */ |
| 857 | IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data); |
| 858 | |
| 859 | /* Setup and write the address cycle command */ |
| 860 | command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| 861 | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| 862 | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| 863 | (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); |
| 864 | |
| 865 | IXGB_WRITE_REG(hw, MSCA, command); |
| 866 | |
| 867 | /************************************************************** |
| 868 | ** Check every 10 usec to see if the address cycle completed |
| 869 | ** The COMMAND bit will clear when the operation is complete. |
| 870 | ** This may take as long as 64 usecs (we'll wait 100 usecs max) |
| 871 | ** from the CPU Write to the Ready bit assertion. |
| 872 | **************************************************************/ |
| 873 | |
| 874 | for(i = 0; i < 10; i++) |
| 875 | { |
| 876 | udelay(10); |
| 877 | |
| 878 | command = IXGB_READ_REG(hw, MSCA); |
| 879 | |
| 880 | if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| 881 | break; |
| 882 | } |
| 883 | |
| 884 | ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| 885 | |
| 886 | /* Address cycle complete, setup and write the write command */ |
| 887 | command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| 888 | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| 889 | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| 890 | (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND)); |
| 891 | |
| 892 | IXGB_WRITE_REG(hw, MSCA, command); |
| 893 | |
| 894 | /************************************************************** |
| 895 | ** Check every 10 usec to see if the read command completed |
| 896 | ** The COMMAND bit will clear when the operation is complete. |
| 897 | ** The write may take as long as 64 usecs (we'll wait 100 usecs max) |
| 898 | ** from the CPU Write to the Ready bit assertion. |
| 899 | **************************************************************/ |
| 900 | |
| 901 | for(i = 0; i < 10; i++) |
| 902 | { |
| 903 | udelay(10); |
| 904 | |
| 905 | command = IXGB_READ_REG(hw, MSCA); |
| 906 | |
| 907 | if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| 908 | break; |
| 909 | } |
| 910 | |
| 911 | ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| 912 | |
| 913 | /* Operation is complete, return. */ |
| 914 | } |
| 915 | |
| 916 | /****************************************************************************** |
| 917 | * Checks to see if the link status of the hardware has changed. |
| 918 | * |
| 919 | * hw - Struct containing variables accessed by hw code |
| 920 | * |
| 921 | * Called by any function that needs to check the link status of the adapter. |
| 922 | *****************************************************************************/ |
| 923 | void |
| 924 | ixgb_check_for_link(struct ixgb_hw *hw) |
| 925 | { |
| 926 | uint32_t status_reg; |
| 927 | uint32_t xpcss_reg; |
| 928 | |
| 929 | DEBUGFUNC("ixgb_check_for_link"); |
| 930 | |
| 931 | xpcss_reg = IXGB_READ_REG(hw, XPCSS); |
| 932 | status_reg = IXGB_READ_REG(hw, STATUS); |
| 933 | |
| 934 | if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && |
| 935 | (status_reg & IXGB_STATUS_LU)) { |
| 936 | hw->link_up = TRUE; |
| 937 | } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && |
| 938 | (status_reg & IXGB_STATUS_LU)) { |
| 939 | DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n"); |
| 940 | hw->link_up = ixgb_link_reset(hw); |
| 941 | } else { |
| 942 | /* |
| 943 | * 82597EX errata. Since the lane deskew problem may prevent |
| 944 | * link, reset the link before reporting link down. |
| 945 | */ |
| 946 | hw->link_up = ixgb_link_reset(hw); |
| 947 | } |
| 948 | /* Anything else for 10 Gig?? */ |
| 949 | } |
| 950 | |
| 951 | /****************************************************************************** |
| 952 | * Check for a bad link condition that may have occured. |
| 953 | * The indication is that the RFC / LFC registers may be incrementing |
| 954 | * continually. A full adapter reset is required to recover. |
| 955 | * |
| 956 | * hw - Struct containing variables accessed by hw code |
| 957 | * |
| 958 | * Called by any function that needs to check the link status of the adapter. |
| 959 | *****************************************************************************/ |
| 960 | boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw) |
| 961 | { |
| 962 | uint32_t newLFC, newRFC; |
| 963 | boolean_t bad_link_returncode = FALSE; |
| 964 | |
| 965 | if (hw->phy_type == ixgb_phy_type_txn17401) { |
| 966 | newLFC = IXGB_READ_REG(hw, LFC); |
| 967 | newRFC = IXGB_READ_REG(hw, RFC); |
| 968 | if ((hw->lastLFC + 250 < newLFC) |
| 969 | || (hw->lastRFC + 250 < newRFC)) { |
| 970 | DEBUGOUT |
| 971 | ("BAD LINK! too many LFC/RFC since last check\n"); |
| 972 | bad_link_returncode = TRUE; |
| 973 | } |
| 974 | hw->lastLFC = newLFC; |
| 975 | hw->lastRFC = newRFC; |
| 976 | } |
| 977 | |
| 978 | return bad_link_returncode; |
| 979 | } |
| 980 | |
| 981 | /****************************************************************************** |
| 982 | * Clears all hardware statistics counters. |
| 983 | * |
| 984 | * hw - Struct containing variables accessed by shared code |
| 985 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 986 | static void |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 987 | ixgb_clear_hw_cntrs(struct ixgb_hw *hw) |
| 988 | { |
| 989 | volatile uint32_t temp_reg; |
| 990 | |
| 991 | DEBUGFUNC("ixgb_clear_hw_cntrs"); |
| 992 | |
| 993 | /* if we are stopped or resetting exit gracefully */ |
| 994 | if(hw->adapter_stopped) { |
| 995 | DEBUGOUT("Exiting because the adapter is stopped!!!\n"); |
| 996 | return; |
| 997 | } |
| 998 | |
| 999 | temp_reg = IXGB_READ_REG(hw, TPRL); |
| 1000 | temp_reg = IXGB_READ_REG(hw, TPRH); |
| 1001 | temp_reg = IXGB_READ_REG(hw, GPRCL); |
| 1002 | temp_reg = IXGB_READ_REG(hw, GPRCH); |
| 1003 | temp_reg = IXGB_READ_REG(hw, BPRCL); |
| 1004 | temp_reg = IXGB_READ_REG(hw, BPRCH); |
| 1005 | temp_reg = IXGB_READ_REG(hw, MPRCL); |
| 1006 | temp_reg = IXGB_READ_REG(hw, MPRCH); |
| 1007 | temp_reg = IXGB_READ_REG(hw, UPRCL); |
| 1008 | temp_reg = IXGB_READ_REG(hw, UPRCH); |
| 1009 | temp_reg = IXGB_READ_REG(hw, VPRCL); |
| 1010 | temp_reg = IXGB_READ_REG(hw, VPRCH); |
| 1011 | temp_reg = IXGB_READ_REG(hw, JPRCL); |
| 1012 | temp_reg = IXGB_READ_REG(hw, JPRCH); |
| 1013 | temp_reg = IXGB_READ_REG(hw, GORCL); |
| 1014 | temp_reg = IXGB_READ_REG(hw, GORCH); |
| 1015 | temp_reg = IXGB_READ_REG(hw, TORL); |
| 1016 | temp_reg = IXGB_READ_REG(hw, TORH); |
| 1017 | temp_reg = IXGB_READ_REG(hw, RNBC); |
| 1018 | temp_reg = IXGB_READ_REG(hw, RUC); |
| 1019 | temp_reg = IXGB_READ_REG(hw, ROC); |
| 1020 | temp_reg = IXGB_READ_REG(hw, RLEC); |
| 1021 | temp_reg = IXGB_READ_REG(hw, CRCERRS); |
| 1022 | temp_reg = IXGB_READ_REG(hw, ICBC); |
| 1023 | temp_reg = IXGB_READ_REG(hw, ECBC); |
| 1024 | temp_reg = IXGB_READ_REG(hw, MPC); |
| 1025 | temp_reg = IXGB_READ_REG(hw, TPTL); |
| 1026 | temp_reg = IXGB_READ_REG(hw, TPTH); |
| 1027 | temp_reg = IXGB_READ_REG(hw, GPTCL); |
| 1028 | temp_reg = IXGB_READ_REG(hw, GPTCH); |
| 1029 | temp_reg = IXGB_READ_REG(hw, BPTCL); |
| 1030 | temp_reg = IXGB_READ_REG(hw, BPTCH); |
| 1031 | temp_reg = IXGB_READ_REG(hw, MPTCL); |
| 1032 | temp_reg = IXGB_READ_REG(hw, MPTCH); |
| 1033 | temp_reg = IXGB_READ_REG(hw, UPTCL); |
| 1034 | temp_reg = IXGB_READ_REG(hw, UPTCH); |
| 1035 | temp_reg = IXGB_READ_REG(hw, VPTCL); |
| 1036 | temp_reg = IXGB_READ_REG(hw, VPTCH); |
| 1037 | temp_reg = IXGB_READ_REG(hw, JPTCL); |
| 1038 | temp_reg = IXGB_READ_REG(hw, JPTCH); |
| 1039 | temp_reg = IXGB_READ_REG(hw, GOTCL); |
| 1040 | temp_reg = IXGB_READ_REG(hw, GOTCH); |
| 1041 | temp_reg = IXGB_READ_REG(hw, TOTL); |
| 1042 | temp_reg = IXGB_READ_REG(hw, TOTH); |
| 1043 | temp_reg = IXGB_READ_REG(hw, DC); |
| 1044 | temp_reg = IXGB_READ_REG(hw, PLT64C); |
| 1045 | temp_reg = IXGB_READ_REG(hw, TSCTC); |
| 1046 | temp_reg = IXGB_READ_REG(hw, TSCTFC); |
| 1047 | temp_reg = IXGB_READ_REG(hw, IBIC); |
| 1048 | temp_reg = IXGB_READ_REG(hw, RFC); |
| 1049 | temp_reg = IXGB_READ_REG(hw, LFC); |
| 1050 | temp_reg = IXGB_READ_REG(hw, PFRC); |
| 1051 | temp_reg = IXGB_READ_REG(hw, PFTC); |
| 1052 | temp_reg = IXGB_READ_REG(hw, MCFRC); |
| 1053 | temp_reg = IXGB_READ_REG(hw, MCFTC); |
| 1054 | temp_reg = IXGB_READ_REG(hw, XONRXC); |
| 1055 | temp_reg = IXGB_READ_REG(hw, XONTXC); |
| 1056 | temp_reg = IXGB_READ_REG(hw, XOFFRXC); |
| 1057 | temp_reg = IXGB_READ_REG(hw, XOFFTXC); |
| 1058 | temp_reg = IXGB_READ_REG(hw, RJC); |
| 1059 | return; |
| 1060 | } |
| 1061 | |
| 1062 | /****************************************************************************** |
| 1063 | * Turns on the software controllable LED |
| 1064 | * |
| 1065 | * hw - Struct containing variables accessed by shared code |
| 1066 | *****************************************************************************/ |
| 1067 | void |
| 1068 | ixgb_led_on(struct ixgb_hw *hw) |
| 1069 | { |
| 1070 | uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0); |
| 1071 | |
| 1072 | /* To turn on the LED, clear software-definable pin 0 (SDP0). */ |
| 1073 | ctrl0_reg &= ~IXGB_CTRL0_SDP0; |
| 1074 | IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); |
| 1075 | return; |
| 1076 | } |
| 1077 | |
| 1078 | /****************************************************************************** |
| 1079 | * Turns off the software controllable LED |
| 1080 | * |
| 1081 | * hw - Struct containing variables accessed by shared code |
| 1082 | *****************************************************************************/ |
| 1083 | void |
| 1084 | ixgb_led_off(struct ixgb_hw *hw) |
| 1085 | { |
| 1086 | uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0); |
| 1087 | |
| 1088 | /* To turn off the LED, set software-definable pin 0 (SDP0). */ |
| 1089 | ctrl0_reg |= IXGB_CTRL0_SDP0; |
| 1090 | IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); |
| 1091 | return; |
| 1092 | } |
| 1093 | |
| 1094 | /****************************************************************************** |
| 1095 | * Gets the current PCI bus type, speed, and width of the hardware |
| 1096 | * |
| 1097 | * hw - Struct containing variables accessed by shared code |
| 1098 | *****************************************************************************/ |
| 1099 | static void |
| 1100 | ixgb_get_bus_info(struct ixgb_hw *hw) |
| 1101 | { |
| 1102 | uint32_t status_reg; |
| 1103 | |
| 1104 | status_reg = IXGB_READ_REG(hw, STATUS); |
| 1105 | |
| 1106 | hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ? |
| 1107 | ixgb_bus_type_pcix : ixgb_bus_type_pci; |
| 1108 | |
| 1109 | if (hw->bus.type == ixgb_bus_type_pci) { |
| 1110 | hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ? |
| 1111 | ixgb_bus_speed_66 : ixgb_bus_speed_33; |
| 1112 | } else { |
| 1113 | switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) { |
| 1114 | case IXGB_STATUS_PCIX_SPD_66: |
| 1115 | hw->bus.speed = ixgb_bus_speed_66; |
| 1116 | break; |
| 1117 | case IXGB_STATUS_PCIX_SPD_100: |
| 1118 | hw->bus.speed = ixgb_bus_speed_100; |
| 1119 | break; |
| 1120 | case IXGB_STATUS_PCIX_SPD_133: |
| 1121 | hw->bus.speed = ixgb_bus_speed_133; |
| 1122 | break; |
| 1123 | default: |
| 1124 | hw->bus.speed = ixgb_bus_speed_reserved; |
| 1125 | break; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ? |
| 1130 | ixgb_bus_width_64 : ixgb_bus_width_32; |
| 1131 | |
| 1132 | return; |
| 1133 | } |
| 1134 | |
| 1135 | /****************************************************************************** |
| 1136 | * Tests a MAC address to ensure it is a valid Individual Address |
| 1137 | * |
| 1138 | * mac_addr - pointer to MAC address. |
| 1139 | * |
| 1140 | *****************************************************************************/ |
Adrian Bunk | e9ab1d1 | 2005-10-30 16:53:30 +0100 | [diff] [blame] | 1141 | static boolean_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1142 | mac_addr_valid(uint8_t *mac_addr) |
| 1143 | { |
| 1144 | boolean_t is_valid = TRUE; |
| 1145 | DEBUGFUNC("mac_addr_valid"); |
| 1146 | |
| 1147 | /* Make sure it is not a multicast address */ |
| 1148 | if (IS_MULTICAST(mac_addr)) { |
| 1149 | DEBUGOUT("MAC address is multicast\n"); |
| 1150 | is_valid = FALSE; |
| 1151 | } |
| 1152 | /* Not a broadcast address */ |
| 1153 | else if (IS_BROADCAST(mac_addr)) { |
| 1154 | DEBUGOUT("MAC address is broadcast\n"); |
| 1155 | is_valid = FALSE; |
| 1156 | } |
| 1157 | /* Reject the zero address */ |
| 1158 | else if (mac_addr[0] == 0 && |
| 1159 | mac_addr[1] == 0 && |
| 1160 | mac_addr[2] == 0 && |
| 1161 | mac_addr[3] == 0 && |
| 1162 | mac_addr[4] == 0 && |
| 1163 | mac_addr[5] == 0) { |
| 1164 | DEBUGOUT("MAC address is all zeros\n"); |
| 1165 | is_valid = FALSE; |
| 1166 | } |
| 1167 | return (is_valid); |
| 1168 | } |
| 1169 | |
| 1170 | /****************************************************************************** |
| 1171 | * Resets the 10GbE link. Waits the settle time and returns the state of |
| 1172 | * the link. |
| 1173 | * |
| 1174 | * hw - Struct containing variables accessed by shared code |
| 1175 | *****************************************************************************/ |
| 1176 | boolean_t |
| 1177 | ixgb_link_reset(struct ixgb_hw *hw) |
| 1178 | { |
| 1179 | boolean_t link_status = FALSE; |
| 1180 | uint8_t wait_retries = MAX_RESET_ITERATIONS; |
| 1181 | uint8_t lrst_retries = MAX_RESET_ITERATIONS; |
| 1182 | |
| 1183 | do { |
| 1184 | /* Reset the link */ |
| 1185 | IXGB_WRITE_REG(hw, CTRL0, |
| 1186 | IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST); |
| 1187 | |
| 1188 | /* Wait for link-up and lane re-alignment */ |
| 1189 | do { |
| 1190 | udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET); |
| 1191 | link_status = |
| 1192 | ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU) |
| 1193 | && (IXGB_READ_REG(hw, XPCSS) & |
| 1194 | IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE; |
| 1195 | } while (!link_status && --wait_retries); |
| 1196 | |
| 1197 | } while (!link_status && --lrst_retries); |
| 1198 | |
| 1199 | return link_status; |
| 1200 | } |
| 1201 | |
| 1202 | /****************************************************************************** |
| 1203 | * Resets the 10GbE optics module. |
| 1204 | * |
| 1205 | * hw - Struct containing variables accessed by shared code |
| 1206 | *****************************************************************************/ |
| 1207 | void |
| 1208 | ixgb_optics_reset(struct ixgb_hw *hw) |
| 1209 | { |
| 1210 | if (hw->phy_type == ixgb_phy_type_txn17401) { |
| 1211 | uint16_t mdio_reg; |
| 1212 | |
| 1213 | ixgb_write_phy_reg(hw, |
| 1214 | MDIO_PMA_PMD_CR1, |
| 1215 | IXGB_PHY_ADDRESS, |
| 1216 | MDIO_PMA_PMD_DID, |
| 1217 | MDIO_PMA_PMD_CR1_RESET); |
| 1218 | |
| 1219 | mdio_reg = ixgb_read_phy_reg( hw, |
| 1220 | MDIO_PMA_PMD_CR1, |
| 1221 | IXGB_PHY_ADDRESS, |
| 1222 | MDIO_PMA_PMD_DID); |
| 1223 | } |
| 1224 | |
| 1225 | return; |
| 1226 | } |