blob: 66b1ebc21ce4f10b7178e4964d35f2414952d6f2 [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec0741702017-04-12 18:23:11 +0200189/*
Paolo Valented5801082018-08-16 18:51:17 +0200190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
198 *
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec0741702017-04-12 18:23:11 +0200207 */
Paolo Valented5801082018-08-16 18:51:17 +0200208static const int bfq_async_charge_factor = 3;
Paolo Valentec0741702017-04-12 18:23:11 +0200209
Paolo Valenteaee69d72017-04-19 08:29:02 -0600210/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600211const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600212
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100213/*
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
218 *
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
224 */
225static const unsigned long bfq_merge_time_limit = HZ/10;
226
Paolo Valenteaee69d72017-04-19 08:29:02 -0600227static struct kmem_cache *bfq_pool;
228
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200229/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600230#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
231
232/* hw_tag detection: parallel requests threshold and min samples needed. */
233#define BFQ_HW_QUEUE_THRESHOLD 4
234#define BFQ_HW_QUEUE_SAMPLES 32
235
236#define BFQQ_SEEK_THR (sector_t)(8 * 100)
237#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
238#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100239#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600240
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200241/* Min number of samples required to perform peak-rate update */
242#define BFQ_RATE_MIN_SAMPLES 32
243/* Min observation time interval required to perform a peak-rate update (ns) */
244#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
245/* Target observation time interval for a peak-rate update (ns) */
246#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600247
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200248/*
249 * Shift used for peak-rate fixed precision calculations.
250 * With
251 * - the current shift: 16 positions
252 * - the current type used to store rate: u32
253 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255 * the range of rates that can be stored is
256 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258 * [15, 65G] sectors/sec
259 * Which, assuming a sector size of 512B, corresponds to a range of
260 * [7.5K, 33T] B/sec
261 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600262#define BFQ_RATE_SHIFT 16
263
Paolo Valente44e44a12017-04-12 18:23:12 +0200264/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200265 * When configured for computing the duration of the weight-raising
266 * for interactive queues automatically (see the comments at the
267 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200268 * duration = (ref_rate / r) * ref_wr_duration,
269 * where r is the peak rate of the device, and ref_rate and
270 * ref_wr_duration are two reference parameters. In particular,
271 * ref_rate is the peak rate of the reference storage device (see
272 * below), and ref_wr_duration is about the maximum time needed, with
273 * BFQ and while reading two files in parallel, to load typical large
274 * applications on the reference device (see the comments on
275 * max_service_from_wr below, for more details on how ref_wr_duration
276 * is obtained). In practice, the slower/faster the device at hand
277 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200278 * reference device. Accordingly, the longer/shorter BFQ grants
279 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200280 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200283 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200284 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285 * are the reference values for a rotational device, whereas
286 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287 * non-rotational device. The reference rates are not the actual peak
288 * rates of the devices used as a reference, but slightly lower
289 * values. The reason for using slightly lower values is that the
290 * peak-rate estimator tends to yield slightly lower values than the
291 * actual peak rate (it can yield the actual peak rate only if there
292 * is only one process doing I/O, and the process does sequential
293 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200294 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200295 * The reference peak rates are measured in sectors/usec, left-shifted
296 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200297 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200298static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200299/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200300 * To improve readability, a conversion function is used to initialize
301 * the following array, which entails that the array can be
302 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200303 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200304static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200305
Paolo Valente8a8747d2018-01-13 12:05:18 +0100306/*
307 * BFQ uses the above-detailed, time-based weight-raising mechanism to
308 * privilege interactive tasks. This mechanism is vulnerable to the
309 * following false positives: I/O-bound applications that will go on
310 * doing I/O for much longer than the duration of weight
311 * raising. These applications have basically no benefit from being
312 * weight-raised at the beginning of their I/O. On the opposite end,
313 * while being weight-raised, these applications
314 * a) unjustly steal throughput to applications that may actually need
315 * low latency;
316 * b) make BFQ uselessly perform device idling; device idling results
317 * in loss of device throughput with most flash-based storage, and may
318 * increase latencies when used purposelessly.
319 *
320 * BFQ tries to reduce these problems, by adopting the following
321 * countermeasure. To introduce this countermeasure, we need first to
322 * finish explaining how the duration of weight-raising for
323 * interactive tasks is computed.
324 *
325 * For a bfq_queue deemed as interactive, the duration of weight
326 * raising is dynamically adjusted, as a function of the estimated
327 * peak rate of the device, so as to be equal to the time needed to
328 * execute the 'largest' interactive task we benchmarked so far. By
329 * largest task, we mean the task for which each involved process has
330 * to do more I/O than for any of the other tasks we benchmarked. This
331 * reference interactive task is the start-up of LibreOffice Writer,
332 * and in this task each process/bfq_queue needs to have at most ~110K
333 * sectors transferred.
334 *
335 * This last piece of information enables BFQ to reduce the actual
336 * duration of weight-raising for at least one class of I/O-bound
337 * applications: those doing sequential or quasi-sequential I/O. An
338 * example is file copy. In fact, once started, the main I/O-bound
339 * processes of these applications usually consume the above 110K
340 * sectors in much less time than the processes of an application that
341 * is starting, because these I/O-bound processes will greedily devote
342 * almost all their CPU cycles only to their target,
343 * throughput-friendly I/O operations. This is even more true if BFQ
344 * happens to be underestimating the device peak rate, and thus
345 * overestimating the duration of weight raising. But, according to
346 * our measurements, once transferred 110K sectors, these processes
347 * have no right to be weight-raised any longer.
348 *
349 * Basing on the last consideration, BFQ ends weight-raising for a
350 * bfq_queue if the latter happens to have received an amount of
351 * service at least equal to the following constant. The constant is
352 * set to slightly more than 110K, to have a minimum safety margin.
353 *
354 * This early ending of weight-raising reduces the amount of time
355 * during which interactive false positives cause the two problems
356 * described at the beginning of these comments.
357 */
358static const unsigned long max_service_from_wr = 120000;
359
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700360#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600361#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
362
Paolo Valenteea25da42017-04-19 08:48:24 -0600363struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
364{
365 return bic->bfqq[is_sync];
366}
367
368void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
369{
370 bic->bfqq[is_sync] = bfqq;
371}
372
373struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
374{
375 return bic->icq.q->elevator->elevator_data;
376}
377
Paolo Valenteaee69d72017-04-19 08:29:02 -0600378/**
379 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380 * @icq: the iocontext queue.
381 */
382static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
383{
384 /* bic->icq is the first member, %NULL will convert to %NULL */
385 return container_of(icq, struct bfq_io_cq, icq);
386}
387
388/**
389 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390 * @bfqd: the lookup key.
391 * @ioc: the io_context of the process doing I/O.
392 * @q: the request queue.
393 */
394static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 struct io_context *ioc,
396 struct request_queue *q)
397{
398 if (ioc) {
399 unsigned long flags;
400 struct bfq_io_cq *icq;
401
402 spin_lock_irqsave(q->queue_lock, flags);
403 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 spin_unlock_irqrestore(q->queue_lock, flags);
405
406 return icq;
407 }
408
409 return NULL;
410}
411
412/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200413 * Scheduler run of queue, if there are requests pending and no one in the
414 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600415 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600416void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600417{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200418 if (bfqd->queued != 0) {
419 bfq_log(bfqd, "schedule dispatch");
420 blk_mq_run_hw_queues(bfqd->queue, true);
421 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600422}
423
Paolo Valenteaee69d72017-04-19 08:29:02 -0600424#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426
427#define bfq_sample_valid(samples) ((samples) > 80)
428
429/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600430 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431 * We choose the request that is closesr to the head right now. Distance
432 * behind the head is penalized and only allowed to a certain extent.
433 */
434static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 struct request *rq1,
436 struct request *rq2,
437 sector_t last)
438{
439 sector_t s1, s2, d1 = 0, d2 = 0;
440 unsigned long back_max;
441#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
442#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
443 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444
445 if (!rq1 || rq1 == rq2)
446 return rq2;
447 if (!rq2)
448 return rq1;
449
450 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 return rq1;
452 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 return rq2;
454 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 return rq1;
456 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 return rq2;
458
459 s1 = blk_rq_pos(rq1);
460 s2 = blk_rq_pos(rq2);
461
462 /*
463 * By definition, 1KiB is 2 sectors.
464 */
465 back_max = bfqd->bfq_back_max * 2;
466
467 /*
468 * Strict one way elevator _except_ in the case where we allow
469 * short backward seeks which are biased as twice the cost of a
470 * similar forward seek.
471 */
472 if (s1 >= last)
473 d1 = s1 - last;
474 else if (s1 + back_max >= last)
475 d1 = (last - s1) * bfqd->bfq_back_penalty;
476 else
477 wrap |= BFQ_RQ1_WRAP;
478
479 if (s2 >= last)
480 d2 = s2 - last;
481 else if (s2 + back_max >= last)
482 d2 = (last - s2) * bfqd->bfq_back_penalty;
483 else
484 wrap |= BFQ_RQ2_WRAP;
485
486 /* Found required data */
487
488 /*
489 * By doing switch() on the bit mask "wrap" we avoid having to
490 * check two variables for all permutations: --> faster!
491 */
492 switch (wrap) {
493 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 if (d1 < d2)
495 return rq1;
496 else if (d2 < d1)
497 return rq2;
498
499 if (s1 >= s2)
500 return rq1;
501 else
502 return rq2;
503
504 case BFQ_RQ2_WRAP:
505 return rq1;
506 case BFQ_RQ1_WRAP:
507 return rq2;
508 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 default:
510 /*
511 * Since both rqs are wrapped,
512 * start with the one that's further behind head
513 * (--> only *one* back seek required),
514 * since back seek takes more time than forward.
515 */
516 if (s1 <= s2)
517 return rq1;
518 else
519 return rq2;
520 }
521}
522
Paolo Valentea52a69e2018-01-13 12:05:17 +0100523/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100524 * Async I/O can easily starve sync I/O (both sync reads and sync
525 * writes), by consuming all tags. Similarly, storms of sync writes,
526 * such as those that sync(2) may trigger, can starve sync reads.
527 * Limit depths of async I/O and sync writes so as to counter both
528 * problems.
529 */
530static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100532 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100533
534 if (op_is_sync(op) && !op_is_write(op))
535 return;
536
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 data->shallow_depth =
538 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539
540 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 __func__, bfqd->wr_busy_queues, op_is_sync(op),
542 data->shallow_depth);
543}
544
Arianna Avanzini36eca892017-04-12 18:23:16 +0200545static struct bfq_queue *
546bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 sector_t sector, struct rb_node **ret_parent,
548 struct rb_node ***rb_link)
549{
550 struct rb_node **p, *parent;
551 struct bfq_queue *bfqq = NULL;
552
553 parent = NULL;
554 p = &root->rb_node;
555 while (*p) {
556 struct rb_node **n;
557
558 parent = *p;
559 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560
561 /*
562 * Sort strictly based on sector. Smallest to the left,
563 * largest to the right.
564 */
565 if (sector > blk_rq_pos(bfqq->next_rq))
566 n = &(*p)->rb_right;
567 else if (sector < blk_rq_pos(bfqq->next_rq))
568 n = &(*p)->rb_left;
569 else
570 break;
571 p = n;
572 bfqq = NULL;
573 }
574
575 *ret_parent = parent;
576 if (rb_link)
577 *rb_link = p;
578
579 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 (unsigned long long)sector,
581 bfqq ? bfqq->pid : 0);
582
583 return bfqq;
584}
585
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100586static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587{
588 return bfqq->service_from_backlogged > 0 &&
589 time_is_before_jiffies(bfqq->first_IO_time +
590 bfq_merge_time_limit);
591}
592
Paolo Valenteea25da42017-04-19 08:48:24 -0600593void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200594{
595 struct rb_node **p, *parent;
596 struct bfq_queue *__bfqq;
597
598 if (bfqq->pos_root) {
599 rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 bfqq->pos_root = NULL;
601 }
602
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100603 /*
604 * bfqq cannot be merged any longer (see comments in
605 * bfq_setup_cooperator): no point in adding bfqq into the
606 * position tree.
607 */
608 if (bfq_too_late_for_merging(bfqq))
609 return;
610
Arianna Avanzini36eca892017-04-12 18:23:16 +0200611 if (bfq_class_idle(bfqq))
612 return;
613 if (!bfqq->next_rq)
614 return;
615
616 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 blk_rq_pos(bfqq->next_rq), &parent, &p);
619 if (!__bfqq) {
620 rb_link_node(&bfqq->pos_node, parent, p);
621 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 } else
623 bfqq->pos_root = NULL;
624}
625
Paolo Valenteaee69d72017-04-19 08:29:02 -0600626/*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200627 * Tell whether there are active queues or groups with differentiated weights.
628 */
629static bool bfq_differentiated_weights(struct bfq_data *bfqd)
630{
631 /*
632 * For weights to differ, at least one of the trees must contain
633 * at least two nodes.
634 */
635 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
636 (bfqd->queue_weights_tree.rb_node->rb_left ||
637 bfqd->queue_weights_tree.rb_node->rb_right)
638#ifdef CONFIG_BFQ_GROUP_IOSCHED
639 ) ||
640 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
641 (bfqd->group_weights_tree.rb_node->rb_left ||
642 bfqd->group_weights_tree.rb_node->rb_right)
643#endif
644 );
645}
646
647/*
648 * The following function returns true if every queue must receive the
649 * same share of the throughput (this condition is used when deciding
650 * whether idling may be disabled, see the comments in the function
Paolo Valente277a4a92018-06-25 21:55:37 +0200651 * bfq_better_to_idle()).
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200652 *
653 * Such a scenario occurs when:
654 * 1) all active queues have the same weight,
655 * 2) all active groups at the same level in the groups tree have the same
656 * weight,
657 * 3) all active groups at the same level in the groups tree have the same
658 * number of children.
659 *
660 * Unfortunately, keeping the necessary state for evaluating exactly the
661 * above symmetry conditions would be quite complex and time-consuming.
662 * Therefore this function evaluates, instead, the following stronger
663 * sub-conditions, for which it is much easier to maintain the needed
664 * state:
665 * 1) all active queues have the same weight,
666 * 2) all active groups have the same weight,
667 * 3) all active groups have at most one active child each.
668 * In particular, the last two conditions are always true if hierarchical
669 * support and the cgroups interface are not enabled, thus no state needs
670 * to be maintained in this case.
671 */
672static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
673{
674 return !bfq_differentiated_weights(bfqd);
675}
676
677/*
678 * If the weight-counter tree passed as input contains no counter for
679 * the weight of the input entity, then add that counter; otherwise just
680 * increment the existing counter.
681 *
682 * Note that weight-counter trees contain few nodes in mostly symmetric
683 * scenarios. For example, if all queues have the same weight, then the
684 * weight-counter tree for the queues may contain at most one node.
685 * This holds even if low_latency is on, because weight-raised queues
686 * are not inserted in the tree.
687 * In most scenarios, the rate at which nodes are created/destroyed
688 * should be low too.
689 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600690void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
691 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200692{
693 struct rb_node **new = &(root->rb_node), *parent = NULL;
694
695 /*
696 * Do not insert if the entity is already associated with a
697 * counter, which happens if:
698 * 1) the entity is associated with a queue,
699 * 2) a request arrival has caused the queue to become both
700 * non-weight-raised, and hence change its weight, and
701 * backlogged; in this respect, each of the two events
702 * causes an invocation of this function,
703 * 3) this is the invocation of this function caused by the
704 * second event. This second invocation is actually useless,
705 * and we handle this fact by exiting immediately. More
706 * efficient or clearer solutions might possibly be adopted.
707 */
708 if (entity->weight_counter)
709 return;
710
711 while (*new) {
712 struct bfq_weight_counter *__counter = container_of(*new,
713 struct bfq_weight_counter,
714 weights_node);
715 parent = *new;
716
717 if (entity->weight == __counter->weight) {
718 entity->weight_counter = __counter;
719 goto inc_counter;
720 }
721 if (entity->weight < __counter->weight)
722 new = &((*new)->rb_left);
723 else
724 new = &((*new)->rb_right);
725 }
726
727 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
728 GFP_ATOMIC);
729
730 /*
731 * In the unlucky event of an allocation failure, we just
732 * exit. This will cause the weight of entity to not be
733 * considered in bfq_differentiated_weights, which, in its
734 * turn, causes the scenario to be deemed wrongly symmetric in
735 * case entity's weight would have been the only weight making
736 * the scenario asymmetric. On the bright side, no unbalance
737 * will however occur when entity becomes inactive again (the
738 * invocation of this function is triggered by an activation
739 * of entity). In fact, bfq_weights_tree_remove does nothing
740 * if !entity->weight_counter.
741 */
742 if (unlikely(!entity->weight_counter))
743 return;
744
745 entity->weight_counter->weight = entity->weight;
746 rb_link_node(&entity->weight_counter->weights_node, parent, new);
747 rb_insert_color(&entity->weight_counter->weights_node, root);
748
749inc_counter:
750 entity->weight_counter->num_active++;
751}
752
753/*
754 * Decrement the weight counter associated with the entity, and, if the
755 * counter reaches 0, remove the counter from the tree.
756 * See the comments to the function bfq_weights_tree_add() for considerations
757 * about overhead.
758 */
Paolo Valente04715592018-06-25 21:55:34 +0200759void __bfq_weights_tree_remove(struct bfq_data *bfqd,
760 struct bfq_entity *entity,
761 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200762{
763 if (!entity->weight_counter)
764 return;
765
766 entity->weight_counter->num_active--;
767 if (entity->weight_counter->num_active > 0)
768 goto reset_entity_pointer;
769
770 rb_erase(&entity->weight_counter->weights_node, root);
771 kfree(entity->weight_counter);
772
773reset_entity_pointer:
774 entity->weight_counter = NULL;
775}
776
777/*
Paolo Valente04715592018-06-25 21:55:34 +0200778 * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
779 * parent entities.
780 */
781void bfq_weights_tree_remove(struct bfq_data *bfqd,
782 struct bfq_queue *bfqq)
783{
784 struct bfq_entity *entity = bfqq->entity.parent;
785
786 __bfq_weights_tree_remove(bfqd, &bfqq->entity,
787 &bfqd->queue_weights_tree);
788
789 for_each_entity(entity) {
790 struct bfq_sched_data *sd = entity->my_sched_data;
791
792 if (sd->next_in_service || sd->in_service_entity) {
793 /*
794 * entity is still active, because either
795 * next_in_service or in_service_entity is not
796 * NULL (see the comments on the definition of
797 * next_in_service for details on why
798 * in_service_entity must be checked too).
799 *
800 * As a consequence, the weight of entity is
801 * not to be removed. In addition, if entity
802 * is active, then its parent entities are
803 * active as well, and thus their weights are
804 * not to be removed either. In the end, this
805 * loop must stop here.
806 */
807 break;
808 }
809 __bfq_weights_tree_remove(bfqd, entity,
810 &bfqd->group_weights_tree);
811 }
812}
813
814/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600815 * Return expired entry, or NULL to just start from scratch in rbtree.
816 */
817static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
818 struct request *last)
819{
820 struct request *rq;
821
822 if (bfq_bfqq_fifo_expire(bfqq))
823 return NULL;
824
825 bfq_mark_bfqq_fifo_expire(bfqq);
826
827 rq = rq_entry_fifo(bfqq->fifo.next);
828
829 if (rq == last || ktime_get_ns() < rq->fifo_time)
830 return NULL;
831
832 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
833 return rq;
834}
835
836static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
837 struct bfq_queue *bfqq,
838 struct request *last)
839{
840 struct rb_node *rbnext = rb_next(&last->rb_node);
841 struct rb_node *rbprev = rb_prev(&last->rb_node);
842 struct request *next, *prev = NULL;
843
844 /* Follow expired path, else get first next available. */
845 next = bfq_check_fifo(bfqq, last);
846 if (next)
847 return next;
848
849 if (rbprev)
850 prev = rb_entry_rq(rbprev);
851
852 if (rbnext)
853 next = rb_entry_rq(rbnext);
854 else {
855 rbnext = rb_first(&bfqq->sort_list);
856 if (rbnext && rbnext != &last->rb_node)
857 next = rb_entry_rq(rbnext);
858 }
859
860 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
861}
862
Paolo Valentec0741702017-04-12 18:23:11 +0200863/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600864static unsigned long bfq_serv_to_charge(struct request *rq,
865 struct bfq_queue *bfqq)
866{
Paolo Valente44e44a12017-04-12 18:23:12 +0200867 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
Paolo Valentec0741702017-04-12 18:23:11 +0200868 return blk_rq_sectors(rq);
869
Paolo Valented5801082018-08-16 18:51:17 +0200870 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600871}
872
873/**
874 * bfq_updated_next_req - update the queue after a new next_rq selection.
875 * @bfqd: the device data the queue belongs to.
876 * @bfqq: the queue to update.
877 *
878 * If the first request of a queue changes we make sure that the queue
879 * has enough budget to serve at least its first request (if the
880 * request has grown). We do this because if the queue has not enough
881 * budget for its first request, it has to go through two dispatch
882 * rounds to actually get it dispatched.
883 */
884static void bfq_updated_next_req(struct bfq_data *bfqd,
885 struct bfq_queue *bfqq)
886{
887 struct bfq_entity *entity = &bfqq->entity;
888 struct request *next_rq = bfqq->next_rq;
889 unsigned long new_budget;
890
891 if (!next_rq)
892 return;
893
894 if (bfqq == bfqd->in_service_queue)
895 /*
896 * In order not to break guarantees, budgets cannot be
897 * changed after an entity has been selected.
898 */
899 return;
900
901 new_budget = max_t(unsigned long, bfqq->max_budget,
902 bfq_serv_to_charge(next_rq, bfqq));
903 if (entity->budget != new_budget) {
904 entity->budget = new_budget;
905 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
906 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200907 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600908 }
909}
910
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200911static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
912{
913 u64 dur;
914
915 if (bfqd->bfq_wr_max_time > 0)
916 return bfqd->bfq_wr_max_time;
917
Paolo Valentee24f1c22018-05-31 16:45:06 +0200918 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200919 do_div(dur, bfqd->peak_rate);
920
921 /*
Davide Sapienzad4505422018-05-31 16:45:07 +0200922 * Limit duration between 3 and 25 seconds. The upper limit
923 * has been conservatively set after the following worst case:
924 * on a QEMU/KVM virtual machine
925 * - running in a slow PC
926 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
927 * - serving a heavy I/O workload, such as the sequential reading
928 * of several files
929 * mplayer took 23 seconds to start, if constantly weight-raised.
930 *
931 * As for higher values than that accomodating the above bad
932 * scenario, tests show that higher values would often yield
933 * the opposite of the desired result, i.e., would worsen
934 * responsiveness by allowing non-interactive applications to
935 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200936 *
937 * On the other end, lower values than 3 seconds make it
938 * difficult for most interactive tasks to complete their jobs
939 * before weight-raising finishes.
940 */
Davide Sapienzad4505422018-05-31 16:45:07 +0200941 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200942}
943
944/* switch back from soft real-time to interactive weight raising */
945static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
946 struct bfq_data *bfqd)
947{
948 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
949 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
950 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
951}
952
Arianna Avanzini36eca892017-04-12 18:23:16 +0200953static void
Paolo Valente13c931b2017-06-27 12:30:47 -0600954bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
955 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200956{
Paolo Valente13c931b2017-06-27 12:30:47 -0600957 unsigned int old_wr_coeff = bfqq->wr_coeff;
958 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
959
Paolo Valented5be3fe2017-08-04 07:35:10 +0200960 if (bic->saved_has_short_ttime)
961 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200962 else
Paolo Valented5be3fe2017-08-04 07:35:10 +0200963 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200964
965 if (bic->saved_IO_bound)
966 bfq_mark_bfqq_IO_bound(bfqq);
967 else
968 bfq_clear_bfqq_IO_bound(bfqq);
969
970 bfqq->ttime = bic->saved_ttime;
971 bfqq->wr_coeff = bic->saved_wr_coeff;
972 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
973 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
974 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
975
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200976 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +0200977 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200978 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200979 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
980 !bfq_bfqq_in_large_burst(bfqq) &&
981 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
982 bfq_wr_duration(bfqd))) {
983 switch_back_to_interactive_wr(bfqq, bfqd);
984 } else {
985 bfqq->wr_coeff = 1;
986 bfq_log_bfqq(bfqq->bfqd, bfqq,
987 "resume state: switching off wr");
988 }
Arianna Avanzini36eca892017-04-12 18:23:16 +0200989 }
990
991 /* make sure weight will be updated, however we got here */
992 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -0600993
994 if (likely(!busy))
995 return;
996
997 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
998 bfqd->wr_busy_queues++;
999 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1000 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001001}
1002
1003static int bfqq_process_refs(struct bfq_queue *bfqq)
1004{
1005 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1006}
1007
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001008/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1009static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1010{
1011 struct bfq_queue *item;
1012 struct hlist_node *n;
1013
1014 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1015 hlist_del_init(&item->burst_list_node);
1016 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1017 bfqd->burst_size = 1;
1018 bfqd->burst_parent_entity = bfqq->entity.parent;
1019}
1020
1021/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1022static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1023{
1024 /* Increment burst size to take into account also bfqq */
1025 bfqd->burst_size++;
1026
1027 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1028 struct bfq_queue *pos, *bfqq_item;
1029 struct hlist_node *n;
1030
1031 /*
1032 * Enough queues have been activated shortly after each
1033 * other to consider this burst as large.
1034 */
1035 bfqd->large_burst = true;
1036
1037 /*
1038 * We can now mark all queues in the burst list as
1039 * belonging to a large burst.
1040 */
1041 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1042 burst_list_node)
1043 bfq_mark_bfqq_in_large_burst(bfqq_item);
1044 bfq_mark_bfqq_in_large_burst(bfqq);
1045
1046 /*
1047 * From now on, and until the current burst finishes, any
1048 * new queue being activated shortly after the last queue
1049 * was inserted in the burst can be immediately marked as
1050 * belonging to a large burst. So the burst list is not
1051 * needed any more. Remove it.
1052 */
1053 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1054 burst_list_node)
1055 hlist_del_init(&pos->burst_list_node);
1056 } else /*
1057 * Burst not yet large: add bfqq to the burst list. Do
1058 * not increment the ref counter for bfqq, because bfqq
1059 * is removed from the burst list before freeing bfqq
1060 * in put_queue.
1061 */
1062 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1063}
1064
1065/*
1066 * If many queues belonging to the same group happen to be created
1067 * shortly after each other, then the processes associated with these
1068 * queues have typically a common goal. In particular, bursts of queue
1069 * creations are usually caused by services or applications that spawn
1070 * many parallel threads/processes. Examples are systemd during boot,
1071 * or git grep. To help these processes get their job done as soon as
1072 * possible, it is usually better to not grant either weight-raising
1073 * or device idling to their queues.
1074 *
1075 * In this comment we describe, firstly, the reasons why this fact
1076 * holds, and, secondly, the next function, which implements the main
1077 * steps needed to properly mark these queues so that they can then be
1078 * treated in a different way.
1079 *
1080 * The above services or applications benefit mostly from a high
1081 * throughput: the quicker the requests of the activated queues are
1082 * cumulatively served, the sooner the target job of these queues gets
1083 * completed. As a consequence, weight-raising any of these queues,
1084 * which also implies idling the device for it, is almost always
1085 * counterproductive. In most cases it just lowers throughput.
1086 *
1087 * On the other hand, a burst of queue creations may be caused also by
1088 * the start of an application that does not consist of a lot of
1089 * parallel I/O-bound threads. In fact, with a complex application,
1090 * several short processes may need to be executed to start-up the
1091 * application. In this respect, to start an application as quickly as
1092 * possible, the best thing to do is in any case to privilege the I/O
1093 * related to the application with respect to all other
1094 * I/O. Therefore, the best strategy to start as quickly as possible
1095 * an application that causes a burst of queue creations is to
1096 * weight-raise all the queues created during the burst. This is the
1097 * exact opposite of the best strategy for the other type of bursts.
1098 *
1099 * In the end, to take the best action for each of the two cases, the
1100 * two types of bursts need to be distinguished. Fortunately, this
1101 * seems relatively easy, by looking at the sizes of the bursts. In
1102 * particular, we found a threshold such that only bursts with a
1103 * larger size than that threshold are apparently caused by
1104 * services or commands such as systemd or git grep. For brevity,
1105 * hereafter we call just 'large' these bursts. BFQ *does not*
1106 * weight-raise queues whose creation occurs in a large burst. In
1107 * addition, for each of these queues BFQ performs or does not perform
1108 * idling depending on which choice boosts the throughput more. The
1109 * exact choice depends on the device and request pattern at
1110 * hand.
1111 *
1112 * Unfortunately, false positives may occur while an interactive task
1113 * is starting (e.g., an application is being started). The
1114 * consequence is that the queues associated with the task do not
1115 * enjoy weight raising as expected. Fortunately these false positives
1116 * are very rare. They typically occur if some service happens to
1117 * start doing I/O exactly when the interactive task starts.
1118 *
1119 * Turning back to the next function, it implements all the steps
1120 * needed to detect the occurrence of a large burst and to properly
1121 * mark all the queues belonging to it (so that they can then be
1122 * treated in a different way). This goal is achieved by maintaining a
1123 * "burst list" that holds, temporarily, the queues that belong to the
1124 * burst in progress. The list is then used to mark these queues as
1125 * belonging to a large burst if the burst does become large. The main
1126 * steps are the following.
1127 *
1128 * . when the very first queue is created, the queue is inserted into the
1129 * list (as it could be the first queue in a possible burst)
1130 *
1131 * . if the current burst has not yet become large, and a queue Q that does
1132 * not yet belong to the burst is activated shortly after the last time
1133 * at which a new queue entered the burst list, then the function appends
1134 * Q to the burst list
1135 *
1136 * . if, as a consequence of the previous step, the burst size reaches
1137 * the large-burst threshold, then
1138 *
1139 * . all the queues in the burst list are marked as belonging to a
1140 * large burst
1141 *
1142 * . the burst list is deleted; in fact, the burst list already served
1143 * its purpose (keeping temporarily track of the queues in a burst,
1144 * so as to be able to mark them as belonging to a large burst in the
1145 * previous sub-step), and now is not needed any more
1146 *
1147 * . the device enters a large-burst mode
1148 *
1149 * . if a queue Q that does not belong to the burst is created while
1150 * the device is in large-burst mode and shortly after the last time
1151 * at which a queue either entered the burst list or was marked as
1152 * belonging to the current large burst, then Q is immediately marked
1153 * as belonging to a large burst.
1154 *
1155 * . if a queue Q that does not belong to the burst is created a while
1156 * later, i.e., not shortly after, than the last time at which a queue
1157 * either entered the burst list or was marked as belonging to the
1158 * current large burst, then the current burst is deemed as finished and:
1159 *
1160 * . the large-burst mode is reset if set
1161 *
1162 * . the burst list is emptied
1163 *
1164 * . Q is inserted in the burst list, as Q may be the first queue
1165 * in a possible new burst (then the burst list contains just Q
1166 * after this step).
1167 */
1168static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1169{
1170 /*
1171 * If bfqq is already in the burst list or is part of a large
1172 * burst, or finally has just been split, then there is
1173 * nothing else to do.
1174 */
1175 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1176 bfq_bfqq_in_large_burst(bfqq) ||
1177 time_is_after_eq_jiffies(bfqq->split_time +
1178 msecs_to_jiffies(10)))
1179 return;
1180
1181 /*
1182 * If bfqq's creation happens late enough, or bfqq belongs to
1183 * a different group than the burst group, then the current
1184 * burst is finished, and related data structures must be
1185 * reset.
1186 *
1187 * In this respect, consider the special case where bfqq is
1188 * the very first queue created after BFQ is selected for this
1189 * device. In this case, last_ins_in_burst and
1190 * burst_parent_entity are not yet significant when we get
1191 * here. But it is easy to verify that, whether or not the
1192 * following condition is true, bfqq will end up being
1193 * inserted into the burst list. In particular the list will
1194 * happen to contain only bfqq. And this is exactly what has
1195 * to happen, as bfqq may be the first queue of the first
1196 * burst.
1197 */
1198 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1199 bfqd->bfq_burst_interval) ||
1200 bfqq->entity.parent != bfqd->burst_parent_entity) {
1201 bfqd->large_burst = false;
1202 bfq_reset_burst_list(bfqd, bfqq);
1203 goto end;
1204 }
1205
1206 /*
1207 * If we get here, then bfqq is being activated shortly after the
1208 * last queue. So, if the current burst is also large, we can mark
1209 * bfqq as belonging to this large burst immediately.
1210 */
1211 if (bfqd->large_burst) {
1212 bfq_mark_bfqq_in_large_burst(bfqq);
1213 goto end;
1214 }
1215
1216 /*
1217 * If we get here, then a large-burst state has not yet been
1218 * reached, but bfqq is being activated shortly after the last
1219 * queue. Then we add bfqq to the burst.
1220 */
1221 bfq_add_to_burst(bfqd, bfqq);
1222end:
1223 /*
1224 * At this point, bfqq either has been added to the current
1225 * burst or has caused the current burst to terminate and a
1226 * possible new burst to start. In particular, in the second
1227 * case, bfqq has become the first queue in the possible new
1228 * burst. In both cases last_ins_in_burst needs to be moved
1229 * forward.
1230 */
1231 bfqd->last_ins_in_burst = jiffies;
1232}
1233
Paolo Valenteaee69d72017-04-19 08:29:02 -06001234static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1235{
1236 struct bfq_entity *entity = &bfqq->entity;
1237
1238 return entity->budget - entity->service;
1239}
1240
1241/*
1242 * If enough samples have been computed, return the current max budget
1243 * stored in bfqd, which is dynamically updated according to the
1244 * estimated disk peak rate; otherwise return the default max budget
1245 */
1246static int bfq_max_budget(struct bfq_data *bfqd)
1247{
1248 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1249 return bfq_default_max_budget;
1250 else
1251 return bfqd->bfq_max_budget;
1252}
1253
1254/*
1255 * Return min budget, which is a fraction of the current or default
1256 * max budget (trying with 1/32)
1257 */
1258static int bfq_min_budget(struct bfq_data *bfqd)
1259{
1260 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1261 return bfq_default_max_budget / 32;
1262 else
1263 return bfqd->bfq_max_budget / 32;
1264}
1265
Paolo Valenteaee69d72017-04-19 08:29:02 -06001266/*
1267 * The next function, invoked after the input queue bfqq switches from
1268 * idle to busy, updates the budget of bfqq. The function also tells
1269 * whether the in-service queue should be expired, by returning
1270 * true. The purpose of expiring the in-service queue is to give bfqq
1271 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001272 * for preempting the in-service queue is to achieve one of the two
1273 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001274 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001275 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1276 * expired because it has remained idle. In particular, bfqq may have
1277 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001278 *
1279 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1280 * and did not make it to issue a new request before its last
1281 * request was served;
1282 *
1283 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1284 * a new request before the expiration of the idling-time.
1285 *
1286 * Even if bfqq has expired for one of the above reasons, the process
1287 * associated with the queue may be however issuing requests greedily,
1288 * and thus be sensitive to the bandwidth it receives (bfqq may have
1289 * remained idle for other reasons: CPU high load, bfqq not enjoying
1290 * idling, I/O throttling somewhere in the path from the process to
1291 * the I/O scheduler, ...). But if, after every expiration for one of
1292 * the above two reasons, bfqq has to wait for the service of at least
1293 * one full budget of another queue before being served again, then
1294 * bfqq is likely to get a much lower bandwidth or resource time than
1295 * its reserved ones. To address this issue, two countermeasures need
1296 * to be taken.
1297 *
1298 * First, the budget and the timestamps of bfqq need to be updated in
1299 * a special way on bfqq reactivation: they need to be updated as if
1300 * bfqq did not remain idle and did not expire. In fact, if they are
1301 * computed as if bfqq expired and remained idle until reactivation,
1302 * then the process associated with bfqq is treated as if, instead of
1303 * being greedy, it stopped issuing requests when bfqq remained idle,
1304 * and restarts issuing requests only on this reactivation. In other
1305 * words, the scheduler does not help the process recover the "service
1306 * hole" between bfqq expiration and reactivation. As a consequence,
1307 * the process receives a lower bandwidth than its reserved one. In
1308 * contrast, to recover this hole, the budget must be updated as if
1309 * bfqq was not expired at all before this reactivation, i.e., it must
1310 * be set to the value of the remaining budget when bfqq was
1311 * expired. Along the same line, timestamps need to be assigned the
1312 * value they had the last time bfqq was selected for service, i.e.,
1313 * before last expiration. Thus timestamps need to be back-shifted
1314 * with respect to their normal computation (see [1] for more details
1315 * on this tricky aspect).
1316 *
1317 * Secondly, to allow the process to recover the hole, the in-service
1318 * queue must be expired too, to give bfqq the chance to preempt it
1319 * immediately. In fact, if bfqq has to wait for a full budget of the
1320 * in-service queue to be completed, then it may become impossible to
1321 * let the process recover the hole, even if the back-shifted
1322 * timestamps of bfqq are lower than those of the in-service queue. If
1323 * this happens for most or all of the holes, then the process may not
1324 * receive its reserved bandwidth. In this respect, it is worth noting
1325 * that, being the service of outstanding requests unpreemptible, a
1326 * little fraction of the holes may however be unrecoverable, thereby
1327 * causing a little loss of bandwidth.
1328 *
1329 * The last important point is detecting whether bfqq does need this
1330 * bandwidth recovery. In this respect, the next function deems the
1331 * process associated with bfqq greedy, and thus allows it to recover
1332 * the hole, if: 1) the process is waiting for the arrival of a new
1333 * request (which implies that bfqq expired for one of the above two
1334 * reasons), and 2) such a request has arrived soon. The first
1335 * condition is controlled through the flag non_blocking_wait_rq,
1336 * while the second through the flag arrived_in_time. If both
1337 * conditions hold, then the function computes the budget in the
1338 * above-described special way, and signals that the in-service queue
1339 * should be expired. Timestamp back-shifting is done later in
1340 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001341 *
1342 * 2. Reduce latency. Even if timestamps are not backshifted to let
1343 * the process associated with bfqq recover a service hole, bfqq may
1344 * however happen to have, after being (re)activated, a lower finish
1345 * timestamp than the in-service queue. That is, the next budget of
1346 * bfqq may have to be completed before the one of the in-service
1347 * queue. If this is the case, then preempting the in-service queue
1348 * allows this goal to be achieved, apart from the unpreemptible,
1349 * outstanding requests mentioned above.
1350 *
1351 * Unfortunately, regardless of which of the above two goals one wants
1352 * to achieve, service trees need first to be updated to know whether
1353 * the in-service queue must be preempted. To have service trees
1354 * correctly updated, the in-service queue must be expired and
1355 * rescheduled, and bfqq must be scheduled too. This is one of the
1356 * most costly operations (in future versions, the scheduling
1357 * mechanism may be re-designed in such a way to make it possible to
1358 * know whether preemption is needed without needing to update service
1359 * trees). In addition, queue preemptions almost always cause random
1360 * I/O, and thus loss of throughput. Because of these facts, the next
1361 * function adopts the following simple scheme to avoid both costly
1362 * operations and too frequent preemptions: it requests the expiration
1363 * of the in-service queue (unconditionally) only for queues that need
1364 * to recover a hole, or that either are weight-raised or deserve to
1365 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001366 */
1367static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1368 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001369 bool arrived_in_time,
1370 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001371{
1372 struct bfq_entity *entity = &bfqq->entity;
1373
1374 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1375 /*
1376 * We do not clear the flag non_blocking_wait_rq here, as
1377 * the latter is used in bfq_activate_bfqq to signal
1378 * that timestamps need to be back-shifted (and is
1379 * cleared right after).
1380 */
1381
1382 /*
1383 * In next assignment we rely on that either
1384 * entity->service or entity->budget are not updated
1385 * on expiration if bfqq is empty (see
1386 * __bfq_bfqq_recalc_budget). Thus both quantities
1387 * remain unchanged after such an expiration, and the
1388 * following statement therefore assigns to
1389 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001390 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001391 */
1392 entity->budget = min_t(unsigned long,
1393 bfq_bfqq_budget_left(bfqq),
1394 bfqq->max_budget);
1395
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001396 /*
1397 * At this point, we have used entity->service to get
1398 * the budget left (needed for updating
1399 * entity->budget). Thus we finally can, and have to,
1400 * reset entity->service. The latter must be reset
1401 * because bfqq would otherwise be charged again for
1402 * the service it has received during its previous
1403 * service slot(s).
1404 */
1405 entity->service = 0;
1406
Paolo Valenteaee69d72017-04-19 08:29:02 -06001407 return true;
1408 }
1409
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001410 /*
1411 * We can finally complete expiration, by setting service to 0.
1412 */
1413 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001414 entity->budget = max_t(unsigned long, bfqq->max_budget,
1415 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1416 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001417 return wr_or_deserves_wr;
1418}
1419
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001420/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001421 * Return the farthest past time instant according to jiffies
1422 * macros.
1423 */
1424static unsigned long bfq_smallest_from_now(void)
1425{
1426 return jiffies - MAX_JIFFY_OFFSET;
1427}
1428
Paolo Valente44e44a12017-04-12 18:23:12 +02001429static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1430 struct bfq_queue *bfqq,
1431 unsigned int old_wr_coeff,
1432 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001433 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001434 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001435 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001436{
1437 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1438 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001439 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001440 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001441 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1442 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1443 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001444 /*
1445 * No interactive weight raising in progress
1446 * here: assign minus infinity to
1447 * wr_start_at_switch_to_srt, to make sure
1448 * that, at the end of the soft-real-time
1449 * weight raising periods that is starting
1450 * now, no interactive weight-raising period
1451 * may be wrongly considered as still in
1452 * progress (and thus actually started by
1453 * mistake).
1454 */
1455 bfqq->wr_start_at_switch_to_srt =
1456 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001457 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1458 BFQ_SOFTRT_WEIGHT_FACTOR;
1459 bfqq->wr_cur_max_time =
1460 bfqd->bfq_wr_rt_max_time;
1461 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001462
1463 /*
1464 * If needed, further reduce budget to make sure it is
1465 * close to bfqq's backlog, so as to reduce the
1466 * scheduling-error component due to a too large
1467 * budget. Do not care about throughput consequences,
1468 * but only about latency. Finally, do not assign a
1469 * too small budget either, to avoid increasing
1470 * latency by causing too frequent expirations.
1471 */
1472 bfqq->entity.budget = min_t(unsigned long,
1473 bfqq->entity.budget,
1474 2 * bfq_min_budget(bfqd));
1475 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001476 if (interactive) { /* update wr coeff and duration */
1477 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1478 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001479 } else if (in_burst)
1480 bfqq->wr_coeff = 1;
1481 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001482 /*
1483 * The application is now or still meeting the
1484 * requirements for being deemed soft rt. We
1485 * can then correctly and safely (re)charge
1486 * the weight-raising duration for the
1487 * application with the weight-raising
1488 * duration for soft rt applications.
1489 *
1490 * In particular, doing this recharge now, i.e.,
1491 * before the weight-raising period for the
1492 * application finishes, reduces the probability
1493 * of the following negative scenario:
1494 * 1) the weight of a soft rt application is
1495 * raised at startup (as for any newly
1496 * created application),
1497 * 2) since the application is not interactive,
1498 * at a certain time weight-raising is
1499 * stopped for the application,
1500 * 3) at that time the application happens to
1501 * still have pending requests, and hence
1502 * is destined to not have a chance to be
1503 * deemed soft rt before these requests are
1504 * completed (see the comments to the
1505 * function bfq_bfqq_softrt_next_start()
1506 * for details on soft rt detection),
1507 * 4) these pending requests experience a high
1508 * latency because the application is not
1509 * weight-raised while they are pending.
1510 */
1511 if (bfqq->wr_cur_max_time !=
1512 bfqd->bfq_wr_rt_max_time) {
1513 bfqq->wr_start_at_switch_to_srt =
1514 bfqq->last_wr_start_finish;
1515
1516 bfqq->wr_cur_max_time =
1517 bfqd->bfq_wr_rt_max_time;
1518 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1519 BFQ_SOFTRT_WEIGHT_FACTOR;
1520 }
1521 bfqq->last_wr_start_finish = jiffies;
1522 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001523 }
1524}
1525
1526static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1527 struct bfq_queue *bfqq)
1528{
1529 return bfqq->dispatched == 0 &&
1530 time_is_before_jiffies(
1531 bfqq->budget_timeout +
1532 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001533}
1534
1535static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1536 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001537 int old_wr_coeff,
1538 struct request *rq,
1539 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001540{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001541 bool soft_rt, in_burst, wr_or_deserves_wr,
1542 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001543 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001544 /*
1545 * See the comments on
1546 * bfq_bfqq_update_budg_for_activation for
1547 * details on the usage of the next variable.
1548 */
1549 arrived_in_time = ktime_get_ns() <=
1550 bfqq->ttime.last_end_request +
1551 bfqd->bfq_slice_idle * 3;
1552
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001553
Paolo Valenteaee69d72017-04-19 08:29:02 -06001554 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001555 * bfqq deserves to be weight-raised if:
1556 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001557 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001558 * - it has been idle for enough time or is soft real-time,
1559 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001560 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001561 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001562 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001563 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001564 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1565 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001566 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001567 wr_or_deserves_wr = bfqd->low_latency &&
1568 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001569 (bfq_bfqq_sync(bfqq) &&
1570 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001571
1572 /*
1573 * Using the last flag, update budget and check whether bfqq
1574 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001575 */
1576 bfqq_wants_to_preempt =
1577 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001578 arrived_in_time,
1579 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001580
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001581 /*
1582 * If bfqq happened to be activated in a burst, but has been
1583 * idle for much more than an interactive queue, then we
1584 * assume that, in the overall I/O initiated in the burst, the
1585 * I/O associated with bfqq is finished. So bfqq does not need
1586 * to be treated as a queue belonging to a burst
1587 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1588 * if set, and remove bfqq from the burst list if it's
1589 * there. We do not decrement burst_size, because the fact
1590 * that bfqq does not need to belong to the burst list any
1591 * more does not invalidate the fact that bfqq was created in
1592 * a burst.
1593 */
1594 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1595 idle_for_long_time &&
1596 time_is_before_jiffies(
1597 bfqq->budget_timeout +
1598 msecs_to_jiffies(10000))) {
1599 hlist_del_init(&bfqq->burst_list_node);
1600 bfq_clear_bfqq_in_large_burst(bfqq);
1601 }
1602
1603 bfq_clear_bfqq_just_created(bfqq);
1604
1605
Paolo Valenteaee69d72017-04-19 08:29:02 -06001606 if (!bfq_bfqq_IO_bound(bfqq)) {
1607 if (arrived_in_time) {
1608 bfqq->requests_within_timer++;
1609 if (bfqq->requests_within_timer >=
1610 bfqd->bfq_requests_within_timer)
1611 bfq_mark_bfqq_IO_bound(bfqq);
1612 } else
1613 bfqq->requests_within_timer = 0;
1614 }
1615
Paolo Valente44e44a12017-04-12 18:23:12 +02001616 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001617 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1618 /* wraparound */
1619 bfqq->split_time =
1620 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001621
Arianna Avanzini36eca892017-04-12 18:23:16 +02001622 if (time_is_before_jiffies(bfqq->split_time +
1623 bfqd->bfq_wr_min_idle_time)) {
1624 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1625 old_wr_coeff,
1626 wr_or_deserves_wr,
1627 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001628 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001629 soft_rt);
1630
1631 if (old_wr_coeff != bfqq->wr_coeff)
1632 bfqq->entity.prio_changed = 1;
1633 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001634 }
1635
Paolo Valente77b7dce2017-04-12 18:23:13 +02001636 bfqq->last_idle_bklogged = jiffies;
1637 bfqq->service_from_backlogged = 0;
1638 bfq_clear_bfqq_softrt_update(bfqq);
1639
Paolo Valenteaee69d72017-04-19 08:29:02 -06001640 bfq_add_bfqq_busy(bfqd, bfqq);
1641
1642 /*
1643 * Expire in-service queue only if preemption may be needed
1644 * for guarantees. In this respect, the function
1645 * next_queue_may_preempt just checks a simple, necessary
1646 * condition, and not a sufficient condition based on
1647 * timestamps. In fact, for the latter condition to be
1648 * evaluated, timestamps would need first to be updated, and
1649 * this operation is quite costly (see the comments on the
1650 * function bfq_bfqq_update_budg_for_activation).
1651 */
1652 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001653 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001654 next_queue_may_preempt(bfqd))
1655 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1656 false, BFQQE_PREEMPTED);
1657}
1658
1659static void bfq_add_request(struct request *rq)
1660{
1661 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1662 struct bfq_data *bfqd = bfqq->bfqd;
1663 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001664 unsigned int old_wr_coeff = bfqq->wr_coeff;
1665 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001666
1667 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1668 bfqq->queued[rq_is_sync(rq)]++;
1669 bfqd->queued++;
1670
1671 elv_rb_add(&bfqq->sort_list, rq);
1672
1673 /*
1674 * Check if this request is a better next-serve candidate.
1675 */
1676 prev = bfqq->next_rq;
1677 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1678 bfqq->next_rq = next_rq;
1679
Arianna Avanzini36eca892017-04-12 18:23:16 +02001680 /*
1681 * Adjust priority tree position, if next_rq changes.
1682 */
1683 if (prev != bfqq->next_rq)
1684 bfq_pos_tree_add_move(bfqd, bfqq);
1685
Paolo Valenteaee69d72017-04-19 08:29:02 -06001686 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001687 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1688 rq, &interactive);
1689 else {
1690 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1691 time_is_before_jiffies(
1692 bfqq->last_wr_start_finish +
1693 bfqd->bfq_wr_min_inter_arr_async)) {
1694 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1695 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1696
Paolo Valentecfd69712017-04-12 18:23:15 +02001697 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001698 bfqq->entity.prio_changed = 1;
1699 }
1700 if (prev != bfqq->next_rq)
1701 bfq_updated_next_req(bfqd, bfqq);
1702 }
1703
1704 /*
1705 * Assign jiffies to last_wr_start_finish in the following
1706 * cases:
1707 *
1708 * . if bfqq is not going to be weight-raised, because, for
1709 * non weight-raised queues, last_wr_start_finish stores the
1710 * arrival time of the last request; as of now, this piece
1711 * of information is used only for deciding whether to
1712 * weight-raise async queues
1713 *
1714 * . if bfqq is not weight-raised, because, if bfqq is now
1715 * switching to weight-raised, then last_wr_start_finish
1716 * stores the time when weight-raising starts
1717 *
1718 * . if bfqq is interactive, because, regardless of whether
1719 * bfqq is currently weight-raised, the weight-raising
1720 * period must start or restart (this case is considered
1721 * separately because it is not detected by the above
1722 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001723 *
1724 * last_wr_start_finish has to be updated also if bfqq is soft
1725 * real-time, because the weight-raising period is constantly
1726 * restarted on idle-to-busy transitions for these queues, but
1727 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1728 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001729 */
1730 if (bfqd->low_latency &&
1731 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1732 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001733}
1734
1735static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1736 struct bio *bio,
1737 struct request_queue *q)
1738{
1739 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1740
1741
1742 if (bfqq)
1743 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1744
1745 return NULL;
1746}
1747
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001748static sector_t get_sdist(sector_t last_pos, struct request *rq)
1749{
1750 if (last_pos)
1751 return abs(blk_rq_pos(rq) - last_pos);
1752
1753 return 0;
1754}
1755
Paolo Valenteaee69d72017-04-19 08:29:02 -06001756#if 0 /* Still not clear if we can do without next two functions */
1757static void bfq_activate_request(struct request_queue *q, struct request *rq)
1758{
1759 struct bfq_data *bfqd = q->elevator->elevator_data;
1760
1761 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001762}
1763
1764static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1765{
1766 struct bfq_data *bfqd = q->elevator->elevator_data;
1767
1768 bfqd->rq_in_driver--;
1769}
1770#endif
1771
1772static void bfq_remove_request(struct request_queue *q,
1773 struct request *rq)
1774{
1775 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1776 struct bfq_data *bfqd = bfqq->bfqd;
1777 const int sync = rq_is_sync(rq);
1778
1779 if (bfqq->next_rq == rq) {
1780 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1781 bfq_updated_next_req(bfqd, bfqq);
1782 }
1783
1784 if (rq->queuelist.prev != &rq->queuelist)
1785 list_del_init(&rq->queuelist);
1786 bfqq->queued[sync]--;
1787 bfqd->queued--;
1788 elv_rb_del(&bfqq->sort_list, rq);
1789
1790 elv_rqhash_del(q, rq);
1791 if (q->last_merge == rq)
1792 q->last_merge = NULL;
1793
1794 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1795 bfqq->next_rq = NULL;
1796
1797 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001798 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001799 /*
1800 * bfqq emptied. In normal operation, when
1801 * bfqq is empty, bfqq->entity.service and
1802 * bfqq->entity.budget must contain,
1803 * respectively, the service received and the
1804 * budget used last time bfqq emptied. These
1805 * facts do not hold in this case, as at least
1806 * this last removal occurred while bfqq is
1807 * not in service. To avoid inconsistencies,
1808 * reset both bfqq->entity.service and
1809 * bfqq->entity.budget, if bfqq has still a
1810 * process that may issue I/O requests to it.
1811 */
1812 bfqq->entity.budget = bfqq->entity.service = 0;
1813 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001814
1815 /*
1816 * Remove queue from request-position tree as it is empty.
1817 */
1818 if (bfqq->pos_root) {
1819 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1820 bfqq->pos_root = NULL;
1821 }
Paolo Valente05e90282017-12-20 12:38:31 +01001822 } else {
1823 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001824 }
1825
1826 if (rq->cmd_flags & REQ_META)
1827 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001828
Paolo Valenteaee69d72017-04-19 08:29:02 -06001829}
1830
1831static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1832{
1833 struct request_queue *q = hctx->queue;
1834 struct bfq_data *bfqd = q->elevator->elevator_data;
1835 struct request *free = NULL;
1836 /*
1837 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1838 * store its return value for later use, to avoid nesting
1839 * queue_lock inside the bfqd->lock. We assume that the bic
1840 * returned by bfq_bic_lookup does not go away before
1841 * bfqd->lock is taken.
1842 */
1843 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1844 bool ret;
1845
1846 spin_lock_irq(&bfqd->lock);
1847
1848 if (bic)
1849 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1850 else
1851 bfqd->bio_bfqq = NULL;
1852 bfqd->bio_bic = bic;
1853
1854 ret = blk_mq_sched_try_merge(q, bio, &free);
1855
1856 if (free)
1857 blk_mq_free_request(free);
1858 spin_unlock_irq(&bfqd->lock);
1859
1860 return ret;
1861}
1862
1863static int bfq_request_merge(struct request_queue *q, struct request **req,
1864 struct bio *bio)
1865{
1866 struct bfq_data *bfqd = q->elevator->elevator_data;
1867 struct request *__rq;
1868
1869 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1870 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1871 *req = __rq;
1872 return ELEVATOR_FRONT_MERGE;
1873 }
1874
1875 return ELEVATOR_NO_MERGE;
1876}
1877
Paolo Valente18e5a572018-05-04 19:17:01 +02001878static struct bfq_queue *bfq_init_rq(struct request *rq);
1879
Paolo Valenteaee69d72017-04-19 08:29:02 -06001880static void bfq_request_merged(struct request_queue *q, struct request *req,
1881 enum elv_merge type)
1882{
1883 if (type == ELEVATOR_FRONT_MERGE &&
1884 rb_prev(&req->rb_node) &&
1885 blk_rq_pos(req) <
1886 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1887 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02001888 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valente7aa8dfa42019-08-07 19:21:11 +02001889 struct bfq_data *bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001890 struct request *prev, *next_rq;
1891
Paolo Valente7aa8dfa42019-08-07 19:21:11 +02001892 if (!bfqq)
1893 return;
1894
1895 bfqd = bfqq->bfqd;
1896
Paolo Valenteaee69d72017-04-19 08:29:02 -06001897 /* Reposition request in its sort_list */
1898 elv_rb_del(&bfqq->sort_list, req);
1899 elv_rb_add(&bfqq->sort_list, req);
1900
1901 /* Choose next request to be served for bfqq */
1902 prev = bfqq->next_rq;
1903 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1904 bfqd->last_position);
1905 bfqq->next_rq = next_rq;
1906 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02001907 * If next_rq changes, update both the queue's budget to
1908 * fit the new request and the queue's position in its
1909 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001910 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02001911 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001912 bfq_updated_next_req(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001913 bfq_pos_tree_add_move(bfqd, bfqq);
1914 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06001915 }
1916}
1917
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001918/*
1919 * This function is called to notify the scheduler that the requests
1920 * rq and 'next' have been merged, with 'next' going away. BFQ
1921 * exploits this hook to address the following issue: if 'next' has a
1922 * fifo_time lower that rq, then the fifo_time of rq must be set to
1923 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001924 *
1925 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1926 * on that rq is picked from the hash table q->elevator->hash, which,
1927 * in its turn, is filled only with I/O requests present in
1928 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1929 * the function that fills this hash table (elv_rqhash_add) is called
1930 * only by bfq_insert_request.
1931 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001932static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1933 struct request *next)
1934{
Paolo Valente18e5a572018-05-04 19:17:01 +02001935 struct bfq_queue *bfqq = bfq_init_rq(rq),
1936 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001937
Paolo Valente7aa8dfa42019-08-07 19:21:11 +02001938 if (!bfqq)
1939 return;
1940
Paolo Valenteaee69d72017-04-19 08:29:02 -06001941 /*
1942 * If next and rq belong to the same bfq_queue and next is older
1943 * than rq, then reposition rq in the fifo (by substituting next
1944 * with rq). Otherwise, if next and rq belong to different
1945 * bfq_queues, never reposition rq: in fact, we would have to
1946 * reposition it with respect to next's position in its own fifo,
1947 * which would most certainly be too expensive with respect to
1948 * the benefits.
1949 */
1950 if (bfqq == next_bfqq &&
1951 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1952 next->fifo_time < rq->fifo_time) {
1953 list_del_init(&rq->queuelist);
1954 list_replace_init(&next->queuelist, &rq->queuelist);
1955 rq->fifo_time = next->fifo_time;
1956 }
1957
1958 if (bfqq->next_rq == next)
1959 bfqq->next_rq = rq;
1960
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001961 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001962}
1963
Paolo Valente44e44a12017-04-12 18:23:12 +02001964/* Must be called with bfqq != NULL */
1965static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1966{
Paolo Valentecfd69712017-04-12 18:23:15 +02001967 if (bfq_bfqq_busy(bfqq))
1968 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02001969 bfqq->wr_coeff = 1;
1970 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001971 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02001972 /*
1973 * Trigger a weight change on the next invocation of
1974 * __bfq_entity_update_weight_prio.
1975 */
1976 bfqq->entity.prio_changed = 1;
1977}
1978
Paolo Valenteea25da42017-04-19 08:48:24 -06001979void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1980 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02001981{
1982 int i, j;
1983
1984 for (i = 0; i < 2; i++)
1985 for (j = 0; j < IOPRIO_BE_NR; j++)
1986 if (bfqg->async_bfqq[i][j])
1987 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1988 if (bfqg->async_idle_bfqq)
1989 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1990}
1991
1992static void bfq_end_wr(struct bfq_data *bfqd)
1993{
1994 struct bfq_queue *bfqq;
1995
1996 spin_lock_irq(&bfqd->lock);
1997
1998 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1999 bfq_bfqq_end_wr(bfqq);
2000 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2001 bfq_bfqq_end_wr(bfqq);
2002 bfq_end_wr_async(bfqd);
2003
2004 spin_unlock_irq(&bfqd->lock);
2005}
2006
Arianna Avanzini36eca892017-04-12 18:23:16 +02002007static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2008{
2009 if (request)
2010 return blk_rq_pos(io_struct);
2011 else
2012 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2013}
2014
2015static int bfq_rq_close_to_sector(void *io_struct, bool request,
2016 sector_t sector)
2017{
2018 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2019 BFQQ_CLOSE_THR;
2020}
2021
2022static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2023 struct bfq_queue *bfqq,
2024 sector_t sector)
2025{
2026 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2027 struct rb_node *parent, *node;
2028 struct bfq_queue *__bfqq;
2029
2030 if (RB_EMPTY_ROOT(root))
2031 return NULL;
2032
2033 /*
2034 * First, if we find a request starting at the end of the last
2035 * request, choose it.
2036 */
2037 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2038 if (__bfqq)
2039 return __bfqq;
2040
2041 /*
2042 * If the exact sector wasn't found, the parent of the NULL leaf
2043 * will contain the closest sector (rq_pos_tree sorted by
2044 * next_request position).
2045 */
2046 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2047 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2048 return __bfqq;
2049
2050 if (blk_rq_pos(__bfqq->next_rq) < sector)
2051 node = rb_next(&__bfqq->pos_node);
2052 else
2053 node = rb_prev(&__bfqq->pos_node);
2054 if (!node)
2055 return NULL;
2056
2057 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2058 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2059 return __bfqq;
2060
2061 return NULL;
2062}
2063
2064static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2065 struct bfq_queue *cur_bfqq,
2066 sector_t sector)
2067{
2068 struct bfq_queue *bfqq;
2069
2070 /*
2071 * We shall notice if some of the queues are cooperating,
2072 * e.g., working closely on the same area of the device. In
2073 * that case, we can group them together and: 1) don't waste
2074 * time idling, and 2) serve the union of their requests in
2075 * the best possible order for throughput.
2076 */
2077 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2078 if (!bfqq || bfqq == cur_bfqq)
2079 return NULL;
2080
2081 return bfqq;
2082}
2083
2084static struct bfq_queue *
2085bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2086{
2087 int process_refs, new_process_refs;
2088 struct bfq_queue *__bfqq;
2089
2090 /*
2091 * If there are no process references on the new_bfqq, then it is
2092 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2093 * may have dropped their last reference (not just their last process
2094 * reference).
2095 */
2096 if (!bfqq_process_refs(new_bfqq))
2097 return NULL;
2098
2099 /* Avoid a circular list and skip interim queue merges. */
2100 while ((__bfqq = new_bfqq->new_bfqq)) {
2101 if (__bfqq == bfqq)
2102 return NULL;
2103 new_bfqq = __bfqq;
2104 }
2105
2106 process_refs = bfqq_process_refs(bfqq);
2107 new_process_refs = bfqq_process_refs(new_bfqq);
2108 /*
2109 * If the process for the bfqq has gone away, there is no
2110 * sense in merging the queues.
2111 */
2112 if (process_refs == 0 || new_process_refs == 0)
2113 return NULL;
2114
2115 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2116 new_bfqq->pid);
2117
2118 /*
2119 * Merging is just a redirection: the requests of the process
2120 * owning one of the two queues are redirected to the other queue.
2121 * The latter queue, in its turn, is set as shared if this is the
2122 * first time that the requests of some process are redirected to
2123 * it.
2124 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002125 * We redirect bfqq to new_bfqq and not the opposite, because
2126 * we are in the context of the process owning bfqq, thus we
2127 * have the io_cq of this process. So we can immediately
2128 * configure this io_cq to redirect the requests of the
2129 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2130 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002131 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002132 * Anyway, even in case new_bfqq coincides with the in-service
2133 * queue, redirecting requests the in-service queue is the
2134 * best option, as we feed the in-service queue with new
2135 * requests close to the last request served and, by doing so,
2136 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002137 */
2138 bfqq->new_bfqq = new_bfqq;
2139 new_bfqq->ref += process_refs;
2140 return new_bfqq;
2141}
2142
2143static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2144 struct bfq_queue *new_bfqq)
2145{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002146 if (bfq_too_late_for_merging(new_bfqq))
2147 return false;
2148
Arianna Avanzini36eca892017-04-12 18:23:16 +02002149 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2150 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2151 return false;
2152
2153 /*
2154 * If either of the queues has already been detected as seeky,
2155 * then merging it with the other queue is unlikely to lead to
2156 * sequential I/O.
2157 */
2158 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2159 return false;
2160
2161 /*
2162 * Interleaved I/O is known to be done by (some) applications
2163 * only for reads, so it does not make sense to merge async
2164 * queues.
2165 */
2166 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2167 return false;
2168
2169 return true;
2170}
2171
2172/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002173 * Attempt to schedule a merge of bfqq with the currently in-service
2174 * queue or with a close queue among the scheduled queues. Return
2175 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2176 * structure otherwise.
2177 *
2178 * The OOM queue is not allowed to participate to cooperation: in fact, since
2179 * the requests temporarily redirected to the OOM queue could be redirected
2180 * again to dedicated queues at any time, the state needed to correctly
2181 * handle merging with the OOM queue would be quite complex and expensive
2182 * to maintain. Besides, in such a critical condition as an out of memory,
2183 * the benefits of queue merging may be little relevant, or even negligible.
2184 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002185 * WARNING: queue merging may impair fairness among non-weight raised
2186 * queues, for at least two reasons: 1) the original weight of a
2187 * merged queue may change during the merged state, 2) even being the
2188 * weight the same, a merged queue may be bloated with many more
2189 * requests than the ones produced by its originally-associated
2190 * process.
2191 */
2192static struct bfq_queue *
2193bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2194 void *io_struct, bool request)
2195{
2196 struct bfq_queue *in_service_bfqq, *new_bfqq;
2197
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002198 /*
2199 * Prevent bfqq from being merged if it has been created too
2200 * long ago. The idea is that true cooperating processes, and
2201 * thus their associated bfq_queues, are supposed to be
2202 * created shortly after each other. This is the case, e.g.,
2203 * for KVM/QEMU and dump I/O threads. Basing on this
2204 * assumption, the following filtering greatly reduces the
2205 * probability that two non-cooperating processes, which just
2206 * happen to do close I/O for some short time interval, have
2207 * their queues merged by mistake.
2208 */
2209 if (bfq_too_late_for_merging(bfqq))
2210 return NULL;
2211
Arianna Avanzini36eca892017-04-12 18:23:16 +02002212 if (bfqq->new_bfqq)
2213 return bfqq->new_bfqq;
2214
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002215 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002216 return NULL;
2217
2218 /* If there is only one backlogged queue, don't search. */
2219 if (bfqd->busy_queues == 1)
2220 return NULL;
2221
2222 in_service_bfqq = bfqd->in_service_queue;
2223
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002224 if (in_service_bfqq && in_service_bfqq != bfqq &&
2225 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente06666a12019-01-29 12:06:38 +01002226 bfq_rq_close_to_sector(io_struct, request,
2227 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002228 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2229 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2230 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2231 if (new_bfqq)
2232 return new_bfqq;
2233 }
2234 /*
2235 * Check whether there is a cooperator among currently scheduled
2236 * queues. The only thing we need is that the bio/request is not
2237 * NULL, as we need it to establish whether a cooperator exists.
2238 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002239 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2240 bfq_io_struct_pos(io_struct, request));
2241
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002242 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002243 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2244 return bfq_setup_merge(bfqq, new_bfqq);
2245
2246 return NULL;
2247}
2248
2249static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2250{
2251 struct bfq_io_cq *bic = bfqq->bic;
2252
2253 /*
2254 * If !bfqq->bic, the queue is already shared or its requests
2255 * have already been redirected to a shared queue; both idle window
2256 * and weight raising state have already been saved. Do nothing.
2257 */
2258 if (!bic)
2259 return;
2260
2261 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002262 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002263 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002264 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2265 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002266 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002267 !bfq_bfqq_in_large_burst(bfqq) &&
2268 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002269 /*
2270 * bfqq being merged right after being created: bfqq
2271 * would have deserved interactive weight raising, but
2272 * did not make it to be set in a weight-raised state,
2273 * because of this early merge. Store directly the
2274 * weight-raising state that would have been assigned
2275 * to bfqq, so that to avoid that bfqq unjustly fails
2276 * to enjoy weight raising if split soon.
2277 */
2278 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2279 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2280 bic->saved_last_wr_start_finish = jiffies;
2281 } else {
2282 bic->saved_wr_coeff = bfqq->wr_coeff;
2283 bic->saved_wr_start_at_switch_to_srt =
2284 bfqq->wr_start_at_switch_to_srt;
2285 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2286 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2287 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002288}
2289
Arianna Avanzini36eca892017-04-12 18:23:16 +02002290static void
2291bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2292 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2293{
2294 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2295 (unsigned long)new_bfqq->pid);
2296 /* Save weight raising and idle window of the merged queues */
2297 bfq_bfqq_save_state(bfqq);
2298 bfq_bfqq_save_state(new_bfqq);
2299 if (bfq_bfqq_IO_bound(bfqq))
2300 bfq_mark_bfqq_IO_bound(new_bfqq);
2301 bfq_clear_bfqq_IO_bound(bfqq);
2302
2303 /*
2304 * If bfqq is weight-raised, then let new_bfqq inherit
2305 * weight-raising. To reduce false positives, neglect the case
2306 * where bfqq has just been created, but has not yet made it
2307 * to be weight-raised (which may happen because EQM may merge
2308 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002309 * time for bfqq). Handling this case would however be very
2310 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002311 */
2312 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2313 new_bfqq->wr_coeff = bfqq->wr_coeff;
2314 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2315 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2316 new_bfqq->wr_start_at_switch_to_srt =
2317 bfqq->wr_start_at_switch_to_srt;
2318 if (bfq_bfqq_busy(new_bfqq))
2319 bfqd->wr_busy_queues++;
2320 new_bfqq->entity.prio_changed = 1;
2321 }
2322
2323 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2324 bfqq->wr_coeff = 1;
2325 bfqq->entity.prio_changed = 1;
2326 if (bfq_bfqq_busy(bfqq))
2327 bfqd->wr_busy_queues--;
2328 }
2329
2330 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2331 bfqd->wr_busy_queues);
2332
2333 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002334 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2335 */
2336 bic_set_bfqq(bic, new_bfqq, 1);
2337 bfq_mark_bfqq_coop(new_bfqq);
2338 /*
2339 * new_bfqq now belongs to at least two bics (it is a shared queue):
2340 * set new_bfqq->bic to NULL. bfqq either:
2341 * - does not belong to any bic any more, and hence bfqq->bic must
2342 * be set to NULL, or
2343 * - is a queue whose owning bics have already been redirected to a
2344 * different queue, hence the queue is destined to not belong to
2345 * any bic soon and bfqq->bic is already NULL (therefore the next
2346 * assignment causes no harm).
2347 */
2348 new_bfqq->bic = NULL;
2349 bfqq->bic = NULL;
2350 /* release process reference to bfqq */
2351 bfq_put_queue(bfqq);
2352}
2353
Paolo Valenteaee69d72017-04-19 08:29:02 -06002354static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2355 struct bio *bio)
2356{
2357 struct bfq_data *bfqd = q->elevator->elevator_data;
2358 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002359 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002360
2361 /*
2362 * Disallow merge of a sync bio into an async request.
2363 */
2364 if (is_sync && !rq_is_sync(rq))
2365 return false;
2366
2367 /*
2368 * Lookup the bfqq that this bio will be queued with. Allow
2369 * merge only if rq is queued there.
2370 */
2371 if (!bfqq)
2372 return false;
2373
Arianna Avanzini36eca892017-04-12 18:23:16 +02002374 /*
2375 * We take advantage of this function to perform an early merge
2376 * of the queues of possible cooperating processes.
2377 */
2378 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2379 if (new_bfqq) {
2380 /*
2381 * bic still points to bfqq, then it has not yet been
2382 * redirected to some other bfq_queue, and a queue
2383 * merge beween bfqq and new_bfqq can be safely
2384 * fulfillled, i.e., bic can be redirected to new_bfqq
2385 * and bfqq can be put.
2386 */
2387 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2388 new_bfqq);
2389 /*
2390 * If we get here, bio will be queued into new_queue,
2391 * so use new_bfqq to decide whether bio and rq can be
2392 * merged.
2393 */
2394 bfqq = new_bfqq;
2395
2396 /*
2397 * Change also bqfd->bio_bfqq, as
2398 * bfqd->bio_bic now points to new_bfqq, and
2399 * this function may be invoked again (and then may
2400 * use again bqfd->bio_bfqq).
2401 */
2402 bfqd->bio_bfqq = bfqq;
2403 }
2404
Paolo Valenteaee69d72017-04-19 08:29:02 -06002405 return bfqq == RQ_BFQQ(rq);
2406}
2407
Paolo Valente44e44a12017-04-12 18:23:12 +02002408/*
2409 * Set the maximum time for the in-service queue to consume its
2410 * budget. This prevents seeky processes from lowering the throughput.
2411 * In practice, a time-slice service scheme is used with seeky
2412 * processes.
2413 */
2414static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2415 struct bfq_queue *bfqq)
2416{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002417 unsigned int timeout_coeff;
2418
2419 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2420 timeout_coeff = 1;
2421 else
2422 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2423
Paolo Valente44e44a12017-04-12 18:23:12 +02002424 bfqd->last_budget_start = ktime_get();
2425
2426 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002427 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002428}
2429
Paolo Valenteaee69d72017-04-19 08:29:02 -06002430static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2431 struct bfq_queue *bfqq)
2432{
2433 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002434 bfq_clear_bfqq_fifo_expire(bfqq);
2435
2436 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2437
Paolo Valente77b7dce2017-04-12 18:23:13 +02002438 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2439 bfqq->wr_coeff > 1 &&
2440 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2441 time_is_before_jiffies(bfqq->budget_timeout)) {
2442 /*
2443 * For soft real-time queues, move the start
2444 * of the weight-raising period forward by the
2445 * time the queue has not received any
2446 * service. Otherwise, a relatively long
2447 * service delay is likely to cause the
2448 * weight-raising period of the queue to end,
2449 * because of the short duration of the
2450 * weight-raising period of a soft real-time
2451 * queue. It is worth noting that this move
2452 * is not so dangerous for the other queues,
2453 * because soft real-time queues are not
2454 * greedy.
2455 *
2456 * To not add a further variable, we use the
2457 * overloaded field budget_timeout to
2458 * determine for how long the queue has not
2459 * received service, i.e., how much time has
2460 * elapsed since the queue expired. However,
2461 * this is a little imprecise, because
2462 * budget_timeout is set to jiffies if bfqq
2463 * not only expires, but also remains with no
2464 * request.
2465 */
2466 if (time_after(bfqq->budget_timeout,
2467 bfqq->last_wr_start_finish))
2468 bfqq->last_wr_start_finish +=
2469 jiffies - bfqq->budget_timeout;
2470 else
2471 bfqq->last_wr_start_finish = jiffies;
2472 }
2473
Paolo Valente44e44a12017-04-12 18:23:12 +02002474 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002475 bfq_log_bfqq(bfqd, bfqq,
2476 "set_in_service_queue, cur-budget = %d",
2477 bfqq->entity.budget);
2478 }
2479
2480 bfqd->in_service_queue = bfqq;
2481}
2482
2483/*
2484 * Get and set a new queue for service.
2485 */
2486static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2487{
2488 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2489
2490 __bfq_set_in_service_queue(bfqd, bfqq);
2491 return bfqq;
2492}
2493
Paolo Valenteaee69d72017-04-19 08:29:02 -06002494static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2495{
2496 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002497 u32 sl;
2498
Paolo Valenteaee69d72017-04-19 08:29:02 -06002499 bfq_mark_bfqq_wait_request(bfqq);
2500
2501 /*
2502 * We don't want to idle for seeks, but we do want to allow
2503 * fair distribution of slice time for a process doing back-to-back
2504 * seeks. So allow a little bit of time for him to submit a new rq.
2505 */
2506 sl = bfqd->bfq_slice_idle;
2507 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002508 * Unless the queue is being weight-raised or the scenario is
2509 * asymmetric, grant only minimum idle time if the queue
2510 * is seeky. A long idling is preserved for a weight-raised
2511 * queue, or, more in general, in an asymmetric scenario,
2512 * because a long idling is needed for guaranteeing to a queue
2513 * its reserved share of the throughput (in particular, it is
2514 * needed if the queue has a higher weight than some other
2515 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002516 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002517 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2518 bfq_symmetric_scenario(bfqd))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002519 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valenteb5a185e2019-03-12 09:59:27 +01002520 else if (bfqq->wr_coeff > 1)
2521 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002522
2523 bfqd->last_idling_start = ktime_get();
2524 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2525 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002526 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002527}
2528
2529/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002530 * In autotuning mode, max_budget is dynamically recomputed as the
2531 * amount of sectors transferred in timeout at the estimated peak
2532 * rate. This enables BFQ to utilize a full timeslice with a full
2533 * budget, even if the in-service queue is served at peak rate. And
2534 * this maximises throughput with sequential workloads.
2535 */
2536static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2537{
2538 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2539 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2540}
2541
Paolo Valente44e44a12017-04-12 18:23:12 +02002542/*
2543 * Update parameters related to throughput and responsiveness, as a
2544 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002545 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002546 */
2547static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2548{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002549 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002550 bfqd->bfq_max_budget =
2551 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002552 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002553 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002554}
2555
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002556static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2557 struct request *rq)
2558{
2559 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2560 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2561 bfqd->peak_rate_samples = 1;
2562 bfqd->sequential_samples = 0;
2563 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2564 blk_rq_sectors(rq);
2565 } else /* no new rq dispatched, just reset the number of samples */
2566 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2567
2568 bfq_log(bfqd,
2569 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2570 bfqd->peak_rate_samples, bfqd->sequential_samples,
2571 bfqd->tot_sectors_dispatched);
2572}
2573
2574static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2575{
2576 u32 rate, weight, divisor;
2577
2578 /*
2579 * For the convergence property to hold (see comments on
2580 * bfq_update_peak_rate()) and for the assessment to be
2581 * reliable, a minimum number of samples must be present, and
2582 * a minimum amount of time must have elapsed. If not so, do
2583 * not compute new rate. Just reset parameters, to get ready
2584 * for a new evaluation attempt.
2585 */
2586 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2587 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2588 goto reset_computation;
2589
2590 /*
2591 * If a new request completion has occurred after last
2592 * dispatch, then, to approximate the rate at which requests
2593 * have been served by the device, it is more precise to
2594 * extend the observation interval to the last completion.
2595 */
2596 bfqd->delta_from_first =
2597 max_t(u64, bfqd->delta_from_first,
2598 bfqd->last_completion - bfqd->first_dispatch);
2599
2600 /*
2601 * Rate computed in sects/usec, and not sects/nsec, for
2602 * precision issues.
2603 */
2604 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2605 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2606
2607 /*
2608 * Peak rate not updated if:
2609 * - the percentage of sequential dispatches is below 3/4 of the
2610 * total, and rate is below the current estimated peak rate
2611 * - rate is unreasonably high (> 20M sectors/sec)
2612 */
2613 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2614 rate <= bfqd->peak_rate) ||
2615 rate > 20<<BFQ_RATE_SHIFT)
2616 goto reset_computation;
2617
2618 /*
2619 * We have to update the peak rate, at last! To this purpose,
2620 * we use a low-pass filter. We compute the smoothing constant
2621 * of the filter as a function of the 'weight' of the new
2622 * measured rate.
2623 *
2624 * As can be seen in next formulas, we define this weight as a
2625 * quantity proportional to how sequential the workload is,
2626 * and to how long the observation time interval is.
2627 *
2628 * The weight runs from 0 to 8. The maximum value of the
2629 * weight, 8, yields the minimum value for the smoothing
2630 * constant. At this minimum value for the smoothing constant,
2631 * the measured rate contributes for half of the next value of
2632 * the estimated peak rate.
2633 *
2634 * So, the first step is to compute the weight as a function
2635 * of how sequential the workload is. Note that the weight
2636 * cannot reach 9, because bfqd->sequential_samples cannot
2637 * become equal to bfqd->peak_rate_samples, which, in its
2638 * turn, holds true because bfqd->sequential_samples is not
2639 * incremented for the first sample.
2640 */
2641 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2642
2643 /*
2644 * Second step: further refine the weight as a function of the
2645 * duration of the observation interval.
2646 */
2647 weight = min_t(u32, 8,
2648 div_u64(weight * bfqd->delta_from_first,
2649 BFQ_RATE_REF_INTERVAL));
2650
2651 /*
2652 * Divisor ranging from 10, for minimum weight, to 2, for
2653 * maximum weight.
2654 */
2655 divisor = 10 - weight;
2656
2657 /*
2658 * Finally, update peak rate:
2659 *
2660 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2661 */
2662 bfqd->peak_rate *= divisor-1;
2663 bfqd->peak_rate /= divisor;
2664 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2665
2666 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002667
2668 /*
2669 * For a very slow device, bfqd->peak_rate can reach 0 (see
2670 * the minimum representable values reported in the comments
2671 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2672 * divisions by zero where bfqd->peak_rate is used as a
2673 * divisor.
2674 */
2675 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2676
Paolo Valente44e44a12017-04-12 18:23:12 +02002677 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002678
2679reset_computation:
2680 bfq_reset_rate_computation(bfqd, rq);
2681}
2682
2683/*
2684 * Update the read/write peak rate (the main quantity used for
2685 * auto-tuning, see update_thr_responsiveness_params()).
2686 *
2687 * It is not trivial to estimate the peak rate (correctly): because of
2688 * the presence of sw and hw queues between the scheduler and the
2689 * device components that finally serve I/O requests, it is hard to
2690 * say exactly when a given dispatched request is served inside the
2691 * device, and for how long. As a consequence, it is hard to know
2692 * precisely at what rate a given set of requests is actually served
2693 * by the device.
2694 *
2695 * On the opposite end, the dispatch time of any request is trivially
2696 * available, and, from this piece of information, the "dispatch rate"
2697 * of requests can be immediately computed. So, the idea in the next
2698 * function is to use what is known, namely request dispatch times
2699 * (plus, when useful, request completion times), to estimate what is
2700 * unknown, namely in-device request service rate.
2701 *
2702 * The main issue is that, because of the above facts, the rate at
2703 * which a certain set of requests is dispatched over a certain time
2704 * interval can vary greatly with respect to the rate at which the
2705 * same requests are then served. But, since the size of any
2706 * intermediate queue is limited, and the service scheme is lossless
2707 * (no request is silently dropped), the following obvious convergence
2708 * property holds: the number of requests dispatched MUST become
2709 * closer and closer to the number of requests completed as the
2710 * observation interval grows. This is the key property used in
2711 * the next function to estimate the peak service rate as a function
2712 * of the observed dispatch rate. The function assumes to be invoked
2713 * on every request dispatch.
2714 */
2715static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2716{
2717 u64 now_ns = ktime_get_ns();
2718
2719 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2720 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2721 bfqd->peak_rate_samples);
2722 bfq_reset_rate_computation(bfqd, rq);
2723 goto update_last_values; /* will add one sample */
2724 }
2725
2726 /*
2727 * Device idle for very long: the observation interval lasting
2728 * up to this dispatch cannot be a valid observation interval
2729 * for computing a new peak rate (similarly to the late-
2730 * completion event in bfq_completed_request()). Go to
2731 * update_rate_and_reset to have the following three steps
2732 * taken:
2733 * - close the observation interval at the last (previous)
2734 * request dispatch or completion
2735 * - compute rate, if possible, for that observation interval
2736 * - start a new observation interval with this dispatch
2737 */
2738 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2739 bfqd->rq_in_driver == 0)
2740 goto update_rate_and_reset;
2741
2742 /* Update sampling information */
2743 bfqd->peak_rate_samples++;
2744
2745 if ((bfqd->rq_in_driver > 0 ||
2746 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2747 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2748 bfqd->sequential_samples++;
2749
2750 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2751
2752 /* Reset max observed rq size every 32 dispatches */
2753 if (likely(bfqd->peak_rate_samples % 32))
2754 bfqd->last_rq_max_size =
2755 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2756 else
2757 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2758
2759 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2760
2761 /* Target observation interval not yet reached, go on sampling */
2762 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2763 goto update_last_values;
2764
2765update_rate_and_reset:
2766 bfq_update_rate_reset(bfqd, rq);
2767update_last_values:
2768 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente06666a12019-01-29 12:06:38 +01002769 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
2770 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002771 bfqd->last_dispatch = now_ns;
2772}
2773
2774/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002775 * Remove request from internal lists.
2776 */
2777static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2778{
2779 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2780
2781 /*
2782 * For consistency, the next instruction should have been
2783 * executed after removing the request from the queue and
2784 * dispatching it. We execute instead this instruction before
2785 * bfq_remove_request() (and hence introduce a temporary
2786 * inconsistency), for efficiency. In fact, should this
2787 * dispatch occur for a non in-service bfqq, this anticipated
2788 * increment prevents two counters related to bfqq->dispatched
2789 * from risking to be, first, uselessly decremented, and then
2790 * incremented again when the (new) value of bfqq->dispatched
2791 * happens to be taken into account.
2792 */
2793 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002794 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002795
2796 bfq_remove_request(q, rq);
2797}
2798
2799static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2800{
Arianna Avanzini36eca892017-04-12 18:23:16 +02002801 /*
2802 * If this bfqq is shared between multiple processes, check
2803 * to make sure that those processes are still issuing I/Os
2804 * within the mean seek distance. If not, it may be time to
2805 * break the queues apart again.
2806 */
2807 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2808 bfq_mark_bfqq_split_coop(bfqq);
2809
Paolo Valente44e44a12017-04-12 18:23:12 +02002810 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2811 if (bfqq->dispatched == 0)
2812 /*
2813 * Overloading budget_timeout field to store
2814 * the time at which the queue remains with no
2815 * backlog and no outstanding request; used by
2816 * the weight-raising mechanism.
2817 */
2818 bfqq->budget_timeout = jiffies;
2819
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002820 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002821 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02002822 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002823 /*
2824 * Resort priority tree of potential close cooperators.
2825 */
2826 bfq_pos_tree_add_move(bfqd, bfqq);
2827 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002828
2829 /*
2830 * All in-service entities must have been properly deactivated
2831 * or requeued before executing the next function, which
2832 * resets all in-service entites as no more in service.
2833 */
2834 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002835}
2836
2837/**
2838 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2839 * @bfqd: device data.
2840 * @bfqq: queue to update.
2841 * @reason: reason for expiration.
2842 *
2843 * Handle the feedback on @bfqq budget at queue expiration.
2844 * See the body for detailed comments.
2845 */
2846static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2847 struct bfq_queue *bfqq,
2848 enum bfqq_expiration reason)
2849{
2850 struct request *next_rq;
2851 int budget, min_budget;
2852
Paolo Valenteaee69d72017-04-19 08:29:02 -06002853 min_budget = bfq_min_budget(bfqd);
2854
Paolo Valente44e44a12017-04-12 18:23:12 +02002855 if (bfqq->wr_coeff == 1)
2856 budget = bfqq->max_budget;
2857 else /*
2858 * Use a constant, low budget for weight-raised queues,
2859 * to help achieve a low latency. Keep it slightly higher
2860 * than the minimum possible budget, to cause a little
2861 * bit fewer expirations.
2862 */
2863 budget = 2 * min_budget;
2864
Paolo Valenteaee69d72017-04-19 08:29:02 -06002865 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2866 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2867 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2868 budget, bfq_min_budget(bfqd));
2869 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2870 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2871
Paolo Valente44e44a12017-04-12 18:23:12 +02002872 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002873 switch (reason) {
2874 /*
2875 * Caveat: in all the following cases we trade latency
2876 * for throughput.
2877 */
2878 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02002879 /*
2880 * This is the only case where we may reduce
2881 * the budget: if there is no request of the
2882 * process still waiting for completion, then
2883 * we assume (tentatively) that the timer has
2884 * expired because the batch of requests of
2885 * the process could have been served with a
2886 * smaller budget. Hence, betting that
2887 * process will behave in the same way when it
2888 * becomes backlogged again, we reduce its
2889 * next budget. As long as we guess right,
2890 * this budget cut reduces the latency
2891 * experienced by the process.
2892 *
2893 * However, if there are still outstanding
2894 * requests, then the process may have not yet
2895 * issued its next request just because it is
2896 * still waiting for the completion of some of
2897 * the still outstanding ones. So in this
2898 * subcase we do not reduce its budget, on the
2899 * contrary we increase it to possibly boost
2900 * the throughput, as discussed in the
2901 * comments to the BUDGET_TIMEOUT case.
2902 */
2903 if (bfqq->dispatched > 0) /* still outstanding reqs */
2904 budget = min(budget * 2, bfqd->bfq_max_budget);
2905 else {
2906 if (budget > 5 * min_budget)
2907 budget -= 4 * min_budget;
2908 else
2909 budget = min_budget;
2910 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002911 break;
2912 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02002913 /*
2914 * We double the budget here because it gives
2915 * the chance to boost the throughput if this
2916 * is not a seeky process (and has bumped into
2917 * this timeout because of, e.g., ZBR).
2918 */
2919 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002920 break;
2921 case BFQQE_BUDGET_EXHAUSTED:
2922 /*
2923 * The process still has backlog, and did not
2924 * let either the budget timeout or the disk
2925 * idling timeout expire. Hence it is not
2926 * seeky, has a short thinktime and may be
2927 * happy with a higher budget too. So
2928 * definitely increase the budget of this good
2929 * candidate to boost the disk throughput.
2930 */
Paolo Valente54b60452017-04-12 18:23:09 +02002931 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002932 break;
2933 case BFQQE_NO_MORE_REQUESTS:
2934 /*
2935 * For queues that expire for this reason, it
2936 * is particularly important to keep the
2937 * budget close to the actual service they
2938 * need. Doing so reduces the timestamp
2939 * misalignment problem described in the
2940 * comments in the body of
2941 * __bfq_activate_entity. In fact, suppose
2942 * that a queue systematically expires for
2943 * BFQQE_NO_MORE_REQUESTS and presents a
2944 * new request in time to enjoy timestamp
2945 * back-shifting. The larger the budget of the
2946 * queue is with respect to the service the
2947 * queue actually requests in each service
2948 * slot, the more times the queue can be
2949 * reactivated with the same virtual finish
2950 * time. It follows that, even if this finish
2951 * time is pushed to the system virtual time
2952 * to reduce the consequent timestamp
2953 * misalignment, the queue unjustly enjoys for
2954 * many re-activations a lower finish time
2955 * than all newly activated queues.
2956 *
2957 * The service needed by bfqq is measured
2958 * quite precisely by bfqq->entity.service.
2959 * Since bfqq does not enjoy device idling,
2960 * bfqq->entity.service is equal to the number
2961 * of sectors that the process associated with
2962 * bfqq requested to read/write before waiting
2963 * for request completions, or blocking for
2964 * other reasons.
2965 */
2966 budget = max_t(int, bfqq->entity.service, min_budget);
2967 break;
2968 default:
2969 return;
2970 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002971 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002972 /*
2973 * Async queues get always the maximum possible
2974 * budget, as for them we do not care about latency
2975 * (in addition, their ability to dispatch is limited
2976 * by the charging factor).
2977 */
2978 budget = bfqd->bfq_max_budget;
2979 }
2980
2981 bfqq->max_budget = budget;
2982
2983 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2984 !bfqd->bfq_user_max_budget)
2985 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2986
2987 /*
2988 * If there is still backlog, then assign a new budget, making
2989 * sure that it is large enough for the next request. Since
2990 * the finish time of bfqq must be kept in sync with the
2991 * budget, be sure to call __bfq_bfqq_expire() *after* this
2992 * update.
2993 *
2994 * If there is no backlog, then no need to update the budget;
2995 * it will be updated on the arrival of a new request.
2996 */
2997 next_rq = bfqq->next_rq;
2998 if (next_rq)
2999 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3000 bfq_serv_to_charge(next_rq, bfqq));
3001
3002 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3003 next_rq ? blk_rq_sectors(next_rq) : 0,
3004 bfqq->entity.budget);
3005}
3006
Paolo Valenteaee69d72017-04-19 08:29:02 -06003007/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003008 * Return true if the process associated with bfqq is "slow". The slow
3009 * flag is used, in addition to the budget timeout, to reduce the
3010 * amount of service provided to seeky processes, and thus reduce
3011 * their chances to lower the throughput. More details in the comments
3012 * on the function bfq_bfqq_expire().
3013 *
3014 * An important observation is in order: as discussed in the comments
3015 * on the function bfq_update_peak_rate(), with devices with internal
3016 * queues, it is hard if ever possible to know when and for how long
3017 * an I/O request is processed by the device (apart from the trivial
3018 * I/O pattern where a new request is dispatched only after the
3019 * previous one has been completed). This makes it hard to evaluate
3020 * the real rate at which the I/O requests of each bfq_queue are
3021 * served. In fact, for an I/O scheduler like BFQ, serving a
3022 * bfq_queue means just dispatching its requests during its service
3023 * slot (i.e., until the budget of the queue is exhausted, or the
3024 * queue remains idle, or, finally, a timeout fires). But, during the
3025 * service slot of a bfq_queue, around 100 ms at most, the device may
3026 * be even still processing requests of bfq_queues served in previous
3027 * service slots. On the opposite end, the requests of the in-service
3028 * bfq_queue may be completed after the service slot of the queue
3029 * finishes.
3030 *
3031 * Anyway, unless more sophisticated solutions are used
3032 * (where possible), the sum of the sizes of the requests dispatched
3033 * during the service slot of a bfq_queue is probably the only
3034 * approximation available for the service received by the bfq_queue
3035 * during its service slot. And this sum is the quantity used in this
3036 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003037 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003038static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3039 bool compensate, enum bfqq_expiration reason,
3040 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003041{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003042 ktime_t delta_ktime;
3043 u32 delta_usecs;
3044 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003045
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003046 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003047 return false;
3048
3049 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003050 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003051 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003052 delta_ktime = ktime_get();
3053 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3054 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003055
3056 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003057 if (delta_usecs < 1000) {
3058 if (blk_queue_nonrot(bfqd->queue))
3059 /*
3060 * give same worst-case guarantees as idling
3061 * for seeky
3062 */
3063 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3064 else /* charge at least one seek */
3065 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003066
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003067 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003068 }
3069
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003070 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003071
3072 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003073 * Use only long (> 20ms) intervals to filter out excessive
3074 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003075 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003076 if (delta_usecs > 20000) {
3077 /*
3078 * Caveat for rotational devices: processes doing I/O
3079 * in the slower disk zones tend to be slow(er) even
3080 * if not seeky. In this respect, the estimated peak
3081 * rate is likely to be an average over the disk
3082 * surface. Accordingly, to not be too harsh with
3083 * unlucky processes, a process is deemed slow only if
3084 * its rate has been lower than half of the estimated
3085 * peak rate.
3086 */
3087 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3088 }
3089
3090 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3091
3092 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003093}
3094
3095/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003096 * To be deemed as soft real-time, an application must meet two
3097 * requirements. First, the application must not require an average
3098 * bandwidth higher than the approximate bandwidth required to playback or
3099 * record a compressed high-definition video.
3100 * The next function is invoked on the completion of the last request of a
3101 * batch, to compute the next-start time instant, soft_rt_next_start, such
3102 * that, if the next request of the application does not arrive before
3103 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3104 *
3105 * The second requirement is that the request pattern of the application is
3106 * isochronous, i.e., that, after issuing a request or a batch of requests,
3107 * the application stops issuing new requests until all its pending requests
3108 * have been completed. After that, the application may issue a new batch,
3109 * and so on.
3110 * For this reason the next function is invoked to compute
3111 * soft_rt_next_start only for applications that meet this requirement,
3112 * whereas soft_rt_next_start is set to infinity for applications that do
3113 * not.
3114 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003115 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3116 * happen to meet, occasionally or systematically, both the above
3117 * bandwidth and isochrony requirements. This may happen at least in
3118 * the following circumstances. First, if the CPU load is high. The
3119 * application may stop issuing requests while the CPUs are busy
3120 * serving other processes, then restart, then stop again for a while,
3121 * and so on. The other circumstances are related to the storage
3122 * device: the storage device is highly loaded or reaches a low-enough
3123 * throughput with the I/O of the application (e.g., because the I/O
3124 * is random and/or the device is slow). In all these cases, the
3125 * I/O of the application may be simply slowed down enough to meet
3126 * the bandwidth and isochrony requirements. To reduce the probability
3127 * that greedy applications are deemed as soft real-time in these
3128 * corner cases, a further rule is used in the computation of
3129 * soft_rt_next_start: the return value of this function is forced to
3130 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003131 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003132 * (a) Current time plus: (1) the maximum time for which the arrival
3133 * of a request is waited for when a sync queue becomes idle,
3134 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3135 * postpone for a moment the reason for adding a few extra
3136 * jiffies; we get back to it after next item (b). Lower-bounding
3137 * the return value of this function with the current time plus
3138 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3139 * because the latter issue their next request as soon as possible
3140 * after the last one has been completed. In contrast, a soft
3141 * real-time application spends some time processing data, after a
3142 * batch of its requests has been completed.
3143 *
3144 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3145 * above, greedy applications may happen to meet both the
3146 * bandwidth and isochrony requirements under heavy CPU or
3147 * storage-device load. In more detail, in these scenarios, these
3148 * applications happen, only for limited time periods, to do I/O
3149 * slowly enough to meet all the requirements described so far,
3150 * including the filtering in above item (a). These slow-speed
3151 * time intervals are usually interspersed between other time
3152 * intervals during which these applications do I/O at a very high
3153 * speed. Fortunately, exactly because of the high speed of the
3154 * I/O in the high-speed intervals, the values returned by this
3155 * function happen to be so high, near the end of any such
3156 * high-speed interval, to be likely to fall *after* the end of
3157 * the low-speed time interval that follows. These high values are
3158 * stored in bfqq->soft_rt_next_start after each invocation of
3159 * this function. As a consequence, if the last value of
3160 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3161 * next value that this function may return, then, from the very
3162 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3163 * likely to be constantly kept so high that any I/O request
3164 * issued during the low-speed interval is considered as arriving
3165 * to soon for the application to be deemed as soft
3166 * real-time. Then, in the high-speed interval that follows, the
3167 * application will not be deemed as soft real-time, just because
3168 * it will do I/O at a high speed. And so on.
3169 *
3170 * Getting back to the filtering in item (a), in the following two
3171 * cases this filtering might be easily passed by a greedy
3172 * application, if the reference quantity was just
3173 * bfqd->bfq_slice_idle:
3174 * 1) HZ is so low that the duration of a jiffy is comparable to or
3175 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3176 * devices with HZ=100. The time granularity may be so coarse
3177 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3178 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003179 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3180 * for a while, then suddenly 'jump' by several units to recover the lost
3181 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003182 * To address this issue, in the filtering in (a) we do not use as a
3183 * reference time interval just bfqd->bfq_slice_idle, but
3184 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3185 * minimum number of jiffies for which the filter seems to be quite
3186 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003187 */
3188static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3189 struct bfq_queue *bfqq)
3190{
Paolo Valentea34b0242017-12-15 07:23:12 +01003191 return max3(bfqq->soft_rt_next_start,
3192 bfqq->last_idle_bklogged +
3193 HZ * bfqq->service_from_backlogged /
3194 bfqd->bfq_wr_max_softrt_rate,
3195 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003196}
3197
Paolo Valente6c9a7962018-09-14 16:23:08 +02003198static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3199{
3200 return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3201 blk_queue_nonrot(bfqq->bfqd->queue) &&
3202 bfqq->bfqd->hw_tag;
3203}
3204
Paolo Valenteaee69d72017-04-19 08:29:02 -06003205/**
3206 * bfq_bfqq_expire - expire a queue.
3207 * @bfqd: device owning the queue.
3208 * @bfqq: the queue to expire.
3209 * @compensate: if true, compensate for the time spent idling.
3210 * @reason: the reason causing the expiration.
3211 *
Paolo Valentec0741702017-04-12 18:23:11 +02003212 * If the process associated with bfqq does slow I/O (e.g., because it
3213 * issues random requests), we charge bfqq with the time it has been
3214 * in service instead of the service it has received (see
3215 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3216 * a consequence, bfqq will typically get higher timestamps upon
3217 * reactivation, and hence it will be rescheduled as if it had
3218 * received more service than what it has actually received. In the
3219 * end, bfqq receives less service in proportion to how slowly its
3220 * associated process consumes its budgets (and hence how seriously it
3221 * tends to lower the throughput). In addition, this time-charging
3222 * strategy guarantees time fairness among slow processes. In
3223 * contrast, if the process associated with bfqq is not slow, we
3224 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003225 *
Paolo Valentec0741702017-04-12 18:23:11 +02003226 * Charging time to the first type of queues and the exact service to
3227 * the other has the effect of using the WF2Q+ policy to schedule the
3228 * former on a timeslice basis, without violating service domain
3229 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003230 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003231void bfq_bfqq_expire(struct bfq_data *bfqd,
3232 struct bfq_queue *bfqq,
3233 bool compensate,
3234 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003235{
3236 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003237 unsigned long delta = 0;
3238 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003239 int ref;
3240
3241 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003242 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003243 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003244 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003245
3246 /*
Paolo Valentec0741702017-04-12 18:23:11 +02003247 * As above explained, charge slow (typically seeky) and
3248 * timed-out queues with the time and not the service
3249 * received, to favor sequential workloads.
3250 *
3251 * Processes doing I/O in the slower disk zones will tend to
3252 * be slow(er) even if not seeky. Therefore, since the
3253 * estimated peak rate is actually an average over the disk
3254 * surface, these processes may timeout just for bad luck. To
3255 * avoid punishing them, do not charge time to processes that
3256 * succeeded in consuming at least 2/3 of their budget. This
3257 * allows BFQ to preserve enough elasticity to still perform
3258 * bandwidth, and not time, distribution with little unlucky
3259 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003260 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003261 if (bfqq->wr_coeff == 1 &&
3262 (slow ||
3263 (reason == BFQQE_BUDGET_TIMEOUT &&
3264 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec0741702017-04-12 18:23:11 +02003265 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003266
3267 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003268 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003269 bfq_clear_bfqq_IO_bound(bfqq);
3270
Paolo Valente44e44a12017-04-12 18:23:12 +02003271 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3272 bfqq->last_wr_start_finish = jiffies;
3273
Paolo Valente77b7dce2017-04-12 18:23:13 +02003274 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3275 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3276 /*
3277 * If we get here, and there are no outstanding
3278 * requests, then the request pattern is isochronous
3279 * (see the comments on the function
3280 * bfq_bfqq_softrt_next_start()). Thus we can compute
3281 * soft_rt_next_start. If, instead, the queue still
3282 * has outstanding requests, then we have to wait for
3283 * the completion of all the outstanding requests to
3284 * discover whether the request pattern is actually
3285 * isochronous.
3286 */
3287 if (bfqq->dispatched == 0)
3288 bfqq->soft_rt_next_start =
3289 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3290 else {
3291 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003292 * Schedule an update of soft_rt_next_start to when
3293 * the task may be discovered to be isochronous.
3294 */
3295 bfq_mark_bfqq_softrt_update(bfqq);
3296 }
3297 }
3298
Paolo Valenteaee69d72017-04-19 08:29:02 -06003299 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003300 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3301 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003302
3303 /*
3304 * Increase, decrease or leave budget unchanged according to
3305 * reason.
3306 */
3307 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3308 ref = bfqq->ref;
3309 __bfq_bfqq_expire(bfqd, bfqq);
3310
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003311 if (ref == 1) /* bfqq is gone, no more actions on it */
3312 return;
3313
Paolo Valente6c9a7962018-09-14 16:23:08 +02003314 bfqq->injected_service = 0;
3315
Paolo Valenteaee69d72017-04-19 08:29:02 -06003316 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003317 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003318 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003319 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003320 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003321 /*
3322 * Not setting service to 0, because, if the next rq
3323 * arrives in time, the queue will go on receiving
3324 * service with this same budget (as if it never expired)
3325 */
3326 } else
3327 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003328
3329 /*
3330 * Reset the received-service counter for every parent entity.
3331 * Differently from what happens with bfqq->entity.service,
3332 * the resetting of this counter never needs to be postponed
3333 * for parent entities. In fact, in case bfqq may have a
3334 * chance to go on being served using the last, partially
3335 * consumed budget, bfqq->entity.service needs to be kept,
3336 * because if bfqq then actually goes on being served using
3337 * the same budget, the last value of bfqq->entity.service is
3338 * needed to properly decrement bfqq->entity.budget by the
3339 * portion already consumed. In contrast, it is not necessary
3340 * to keep entity->service for parent entities too, because
3341 * the bubble up of the new value of bfqq->entity.budget will
3342 * make sure that the budgets of parent entities are correct,
3343 * even in case bfqq and thus parent entities go on receiving
3344 * service with the same budget.
3345 */
3346 entity = entity->parent;
3347 for_each_entity(entity)
3348 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003349}
3350
3351/*
3352 * Budget timeout is not implemented through a dedicated timer, but
3353 * just checked on request arrivals and completions, as well as on
3354 * idle timer expirations.
3355 */
3356static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3357{
Paolo Valente44e44a12017-04-12 18:23:12 +02003358 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003359}
3360
3361/*
3362 * If we expire a queue that is actively waiting (i.e., with the
3363 * device idled) for the arrival of a new request, then we may incur
3364 * the timestamp misalignment problem described in the body of the
3365 * function __bfq_activate_entity. Hence we return true only if this
3366 * condition does not hold, or if the queue is slow enough to deserve
3367 * only to be kicked off for preserving a high throughput.
3368 */
3369static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3370{
3371 bfq_log_bfqq(bfqq->bfqd, bfqq,
3372 "may_budget_timeout: wait_request %d left %d timeout %d",
3373 bfq_bfqq_wait_request(bfqq),
3374 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3375 bfq_bfqq_budget_timeout(bfqq));
3376
3377 return (!bfq_bfqq_wait_request(bfqq) ||
3378 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3379 &&
3380 bfq_bfqq_budget_timeout(bfqq);
3381}
3382
3383/*
3384 * For a queue that becomes empty, device idling is allowed only if
Paolo Valente44e44a12017-04-12 18:23:12 +02003385 * this function returns true for the queue. As a consequence, since
3386 * device idling plays a critical role in both throughput boosting and
3387 * service guarantees, the return value of this function plays a
3388 * critical role in both these aspects as well.
3389 *
3390 * In a nutshell, this function returns true only if idling is
3391 * beneficial for throughput or, even if detrimental for throughput,
3392 * idling is however necessary to preserve service guarantees (low
3393 * latency, desired throughput distribution, ...). In particular, on
3394 * NCQ-capable devices, this function tries to return false, so as to
3395 * help keep the drives' internal queues full, whenever this helps the
3396 * device boost the throughput without causing any service-guarantee
3397 * issue.
3398 *
3399 * In more detail, the return value of this function is obtained by,
3400 * first, computing a number of boolean variables that take into
3401 * account throughput and service-guarantee issues, and, then,
3402 * combining these variables in a logical expression. Most of the
3403 * issues taken into account are not trivial. We discuss these issues
3404 * individually while introducing the variables.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003405 */
Paolo Valente277a4a92018-06-25 21:55:37 +02003406static bool bfq_better_to_idle(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003407{
3408 struct bfq_data *bfqd = bfqq->bfqd;
Paolo Valenteedaf9422017-08-04 07:35:11 +02003409 bool rot_without_queueing =
3410 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3411 bfqq_sequential_and_IO_bound,
3412 idling_boosts_thr, idling_boosts_thr_without_issues,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003413 idling_needed_for_service_guarantees,
Paolo Valentecfd69712017-04-12 18:23:15 +02003414 asymmetric_scenario;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003415
3416 if (bfqd->strict_guarantees)
3417 return true;
3418
3419 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003420 * Idling is performed only if slice_idle > 0. In addition, we
3421 * do not idle if
3422 * (a) bfqq is async
3423 * (b) bfqq is in the idle io prio class: in this case we do
3424 * not idle because we want to minimize the bandwidth that
3425 * queues in this class can steal to higher-priority queues
3426 */
3427 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3428 bfq_class_idle(bfqq))
3429 return false;
3430
Paolo Valenteedaf9422017-08-04 07:35:11 +02003431 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3432 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3433
Paolo Valented5be3fe2017-08-04 07:35:10 +02003434 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003435 * The next variable takes into account the cases where idling
3436 * boosts the throughput.
3437 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003438 * The value of the variable is computed considering, first, that
3439 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003440 * (a) the device is not NCQ-capable and rotational, or
3441 * (b) regardless of the presence of NCQ, the device is rotational and
3442 * the request pattern for bfqq is I/O-bound and sequential, or
3443 * (c) regardless of whether it is rotational, the device is
3444 * not NCQ-capable and the request pattern for bfqq is
3445 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003446 *
3447 * Secondly, and in contrast to the above item (b), idling an
3448 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003449 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003450 * the throughput in proportion to how fast the device
3451 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003452 * above conditions (a), (b) or (c) is true, and, in
3453 * particular, happens to be false if bfqd is an NCQ-capable
3454 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003455 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003456 idling_boosts_thr = rot_without_queueing ||
3457 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3458 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003459
3460 /*
Paolo Valentecfd69712017-04-12 18:23:15 +02003461 * The value of the next variable,
3462 * idling_boosts_thr_without_issues, is equal to that of
3463 * idling_boosts_thr, unless a special case holds. In this
3464 * special case, described below, idling may cause problems to
3465 * weight-raised queues.
3466 *
3467 * When the request pool is saturated (e.g., in the presence
3468 * of write hogs), if the processes associated with
3469 * non-weight-raised queues ask for requests at a lower rate,
3470 * then processes associated with weight-raised queues have a
3471 * higher probability to get a request from the pool
3472 * immediately (or at least soon) when they need one. Thus
3473 * they have a higher probability to actually get a fraction
3474 * of the device throughput proportional to their high
3475 * weight. This is especially true with NCQ-capable drives,
3476 * which enqueue several requests in advance, and further
3477 * reorder internally-queued requests.
3478 *
3479 * For this reason, we force to false the value of
3480 * idling_boosts_thr_without_issues if there are weight-raised
3481 * busy queues. In this case, and if bfqq is not weight-raised,
3482 * this guarantees that the device is not idled for bfqq (if,
3483 * instead, bfqq is weight-raised, then idling will be
3484 * guaranteed by another variable, see below). Combined with
3485 * the timestamping rules of BFQ (see [1] for details), this
3486 * behavior causes bfqq, and hence any sync non-weight-raised
3487 * queue, to get a lower number of requests served, and thus
3488 * to ask for a lower number of requests from the request
3489 * pool, before the busy weight-raised queues get served
3490 * again. This often mitigates starvation problems in the
3491 * presence of heavy write workloads and NCQ, thereby
3492 * guaranteeing a higher application and system responsiveness
3493 * in these hostile scenarios.
3494 */
3495 idling_boosts_thr_without_issues = idling_boosts_thr &&
3496 bfqd->wr_busy_queues == 0;
3497
3498 /*
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003499 * There is then a case where idling must be performed not
3500 * for throughput concerns, but to preserve service
3501 * guarantees.
3502 *
3503 * To introduce this case, we can note that allowing the drive
3504 * to enqueue more than one request at a time, and hence
Paolo Valente44e44a12017-04-12 18:23:12 +02003505 * delegating de facto final scheduling decisions to the
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003506 * drive's internal scheduler, entails loss of control on the
Paolo Valente44e44a12017-04-12 18:23:12 +02003507 * actual request service order. In particular, the critical
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003508 * situation is when requests from different processes happen
Paolo Valente44e44a12017-04-12 18:23:12 +02003509 * to be present, at the same time, in the internal queue(s)
3510 * of the drive. In such a situation, the drive, by deciding
3511 * the service order of the internally-queued requests, does
3512 * determine also the actual throughput distribution among
3513 * these processes. But the drive typically has no notion or
3514 * concern about per-process throughput distribution, and
3515 * makes its decisions only on a per-request basis. Therefore,
3516 * the service distribution enforced by the drive's internal
3517 * scheduler is likely to coincide with the desired
3518 * device-throughput distribution only in a completely
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003519 * symmetric scenario where:
3520 * (i) each of these processes must get the same throughput as
3521 * the others;
3522 * (ii) all these processes have the same I/O pattern
3523 (either sequential or random).
3524 * In fact, in such a scenario, the drive will tend to treat
3525 * the requests of each of these processes in about the same
3526 * way as the requests of the others, and thus to provide
3527 * each of these processes with about the same throughput
3528 * (which is exactly the desired throughput distribution). In
3529 * contrast, in any asymmetric scenario, device idling is
3530 * certainly needed to guarantee that bfqq receives its
3531 * assigned fraction of the device throughput (see [1] for
3532 * details).
Paolo Valente44e44a12017-04-12 18:23:12 +02003533 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003534 * We address this issue by controlling, actually, only the
3535 * symmetry sub-condition (i), i.e., provided that
3536 * sub-condition (i) holds, idling is not performed,
3537 * regardless of whether sub-condition (ii) holds. In other
3538 * words, only if sub-condition (i) holds, then idling is
3539 * allowed, and the device tends to be prevented from queueing
3540 * many requests, possibly of several processes. The reason
3541 * for not controlling also sub-condition (ii) is that we
3542 * exploit preemption to preserve guarantees in case of
3543 * symmetric scenarios, even if (ii) does not hold, as
3544 * explained in the next two paragraphs.
Paolo Valente44e44a12017-04-12 18:23:12 +02003545 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003546 * Even if a queue, say Q, is expired when it remains idle, Q
3547 * can still preempt the new in-service queue if the next
3548 * request of Q arrives soon (see the comments on
3549 * bfq_bfqq_update_budg_for_activation). If all queues and
3550 * groups have the same weight, this form of preemption,
3551 * combined with the hole-recovery heuristic described in the
3552 * comments on function bfq_bfqq_update_budg_for_activation,
3553 * are enough to preserve a correct bandwidth distribution in
3554 * the mid term, even without idling. In fact, even if not
3555 * idling allows the internal queues of the device to contain
3556 * many requests, and thus to reorder requests, we can rather
3557 * safely assume that the internal scheduler still preserves a
3558 * minimum of mid-term fairness. The motivation for using
3559 * preemption instead of idling is that, by not idling,
3560 * service guarantees are preserved without minimally
3561 * sacrificing throughput. In other words, both a high
3562 * throughput and its desired distribution are obtained.
3563 *
3564 * More precisely, this preemption-based, idleless approach
3565 * provides fairness in terms of IOPS, and not sectors per
3566 * second. This can be seen with a simple example. Suppose
3567 * that there are two queues with the same weight, but that
3568 * the first queue receives requests of 8 sectors, while the
3569 * second queue receives requests of 1024 sectors. In
3570 * addition, suppose that each of the two queues contains at
3571 * most one request at a time, which implies that each queue
3572 * always remains idle after it is served. Finally, after
3573 * remaining idle, each queue receives very quickly a new
3574 * request. It follows that the two queues are served
3575 * alternatively, preempting each other if needed. This
3576 * implies that, although both queues have the same weight,
3577 * the queue with large requests receives a service that is
3578 * 1024/8 times as high as the service received by the other
3579 * queue.
3580 *
3581 * On the other hand, device idling is performed, and thus
3582 * pure sector-domain guarantees are provided, for the
3583 * following queues, which are likely to need stronger
3584 * throughput guarantees: weight-raised queues, and queues
3585 * with a higher weight than other queues. When such queues
3586 * are active, sub-condition (i) is false, which triggers
3587 * device idling.
3588 *
3589 * According to the above considerations, the next variable is
3590 * true (only) if sub-condition (i) holds. To compute the
3591 * value of this variable, we not only use the return value of
3592 * the function bfq_symmetric_scenario(), but also check
3593 * whether bfqq is being weight-raised, because
3594 * bfq_symmetric_scenario() does not take into account also
3595 * weight-raised queues (see comments on
Paolo Valente89f4d272018-09-14 16:23:09 +02003596 * bfq_weights_tree_add()). In particular, if bfqq is being
3597 * weight-raised, it is important to idle only if there are
3598 * other, non-weight-raised queues that may steal throughput
3599 * to bfqq. Actually, we should be even more precise, and
3600 * differentiate between interactive weight raising and
3601 * soft real-time weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003602 *
3603 * As a side note, it is worth considering that the above
3604 * device-idling countermeasures may however fail in the
3605 * following unlucky scenario: if idling is (correctly)
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003606 * disabled in a time period during which all symmetry
3607 * sub-conditions hold, and hence the device is allowed to
Paolo Valente44e44a12017-04-12 18:23:12 +02003608 * enqueue many requests, but at some later point in time some
3609 * sub-condition stops to hold, then it may become impossible
3610 * to let requests be served in the desired order until all
3611 * the requests already queued in the device have been served.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003612 */
Paolo Valente89f4d272018-09-14 16:23:09 +02003613 asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3614 bfqd->wr_busy_queues < bfqd->busy_queues) ||
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003615 !bfq_symmetric_scenario(bfqd);
Paolo Valente44e44a12017-04-12 18:23:12 +02003616
3617 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003618 * Finally, there is a case where maximizing throughput is the
3619 * best choice even if it may cause unfairness toward
3620 * bfqq. Such a case is when bfqq became active in a burst of
3621 * queue activations. Queues that became active during a large
3622 * burst benefit only from throughput, as discussed in the
3623 * comments on bfq_handle_burst. Thus, if bfqq became active
3624 * in a burst and not idling the device maximizes throughput,
3625 * then the device must no be idled, because not idling the
3626 * device provides bfqq and all other queues in the burst with
3627 * maximum benefit. Combining this and the above case, we can
3628 * now establish when idling is actually needed to preserve
3629 * service guarantees.
3630 */
3631 idling_needed_for_service_guarantees =
3632 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3633
3634 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003635 * We have now all the components we need to compute the
3636 * return value of the function, which is true only if idling
3637 * either boosts the throughput (without issues), or is
3638 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003639 */
Paolo Valented5be3fe2017-08-04 07:35:10 +02003640 return idling_boosts_thr_without_issues ||
3641 idling_needed_for_service_guarantees;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003642}
3643
3644/*
Paolo Valente277a4a92018-06-25 21:55:37 +02003645 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06003646 * returns true, then:
3647 * 1) the queue must remain in service and cannot be expired, and
3648 * 2) the device must be idled to wait for the possible arrival of a new
3649 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02003650 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06003651 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02003652 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06003653 * returns true.
3654 */
3655static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3656{
Paolo Valente277a4a92018-06-25 21:55:37 +02003657 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003658}
3659
Paolo Valente6c9a7962018-09-14 16:23:08 +02003660static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3661{
3662 struct bfq_queue *bfqq;
3663
3664 /*
3665 * A linear search; but, with a high probability, very few
3666 * steps are needed to find a candidate queue, i.e., a queue
3667 * with enough budget left for its next request. In fact:
3668 * - BFQ dynamically updates the budget of every queue so as
3669 * to accommodate the expected backlog of the queue;
3670 * - if a queue gets all its requests dispatched as injected
3671 * service, then the queue is removed from the active list
3672 * (and re-added only if it gets new requests, but with
3673 * enough budget for its new backlog).
3674 */
3675 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3676 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3677 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3678 bfq_bfqq_budget_left(bfqq))
3679 return bfqq;
3680
3681 return NULL;
3682}
3683
Paolo Valenteaee69d72017-04-19 08:29:02 -06003684/*
3685 * Select a queue for service. If we have a current queue in service,
3686 * check whether to continue servicing it, or retrieve and set a new one.
3687 */
3688static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3689{
3690 struct bfq_queue *bfqq;
3691 struct request *next_rq;
3692 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3693
3694 bfqq = bfqd->in_service_queue;
3695 if (!bfqq)
3696 goto new_queue;
3697
3698 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3699
Paolo Valente4420b092018-06-25 21:55:35 +02003700 /*
3701 * Do not expire bfqq for budget timeout if bfqq may be about
3702 * to enjoy device idling. The reason why, in this case, we
3703 * prevent bfqq from expiring is the same as in the comments
3704 * on the case where bfq_bfqq_must_idle() returns true, in
3705 * bfq_completed_request().
3706 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003707 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003708 !bfq_bfqq_must_idle(bfqq))
3709 goto expire;
3710
3711check_queue:
3712 /*
3713 * This loop is rarely executed more than once. Even when it
3714 * happens, it is much more convenient to re-execute this loop
3715 * than to return NULL and trigger a new dispatch to get a
3716 * request served.
3717 */
3718 next_rq = bfqq->next_rq;
3719 /*
3720 * If bfqq has requests queued and it has enough budget left to
3721 * serve them, keep the queue, otherwise expire it.
3722 */
3723 if (next_rq) {
3724 if (bfq_serv_to_charge(next_rq, bfqq) >
3725 bfq_bfqq_budget_left(bfqq)) {
3726 /*
3727 * Expire the queue for budget exhaustion,
3728 * which makes sure that the next budget is
3729 * enough to serve the next request, even if
3730 * it comes from the fifo expired path.
3731 */
3732 reason = BFQQE_BUDGET_EXHAUSTED;
3733 goto expire;
3734 } else {
3735 /*
3736 * The idle timer may be pending because we may
3737 * not disable disk idling even when a new request
3738 * arrives.
3739 */
3740 if (bfq_bfqq_wait_request(bfqq)) {
3741 /*
3742 * If we get here: 1) at least a new request
3743 * has arrived but we have not disabled the
3744 * timer because the request was too small,
3745 * 2) then the block layer has unplugged
3746 * the device, causing the dispatch to be
3747 * invoked.
3748 *
3749 * Since the device is unplugged, now the
3750 * requests are probably large enough to
3751 * provide a reasonable throughput.
3752 * So we disable idling.
3753 */
3754 bfq_clear_bfqq_wait_request(bfqq);
3755 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3756 }
3757 goto keep_queue;
3758 }
3759 }
3760
3761 /*
3762 * No requests pending. However, if the in-service queue is idling
3763 * for a new request, or has requests waiting for a completion and
3764 * may idle after their completion, then keep it anyway.
Paolo Valente6c9a7962018-09-14 16:23:08 +02003765 *
3766 * Yet, to boost throughput, inject service from other queues if
3767 * possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003768 */
3769 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02003770 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente6c9a7962018-09-14 16:23:08 +02003771 if (bfq_bfqq_injectable(bfqq) &&
3772 bfqq->injected_service * bfqq->inject_coeff <
3773 bfqq->entity.service * 10)
3774 bfqq = bfq_choose_bfqq_for_injection(bfqd);
3775 else
3776 bfqq = NULL;
3777
Paolo Valenteaee69d72017-04-19 08:29:02 -06003778 goto keep_queue;
3779 }
3780
3781 reason = BFQQE_NO_MORE_REQUESTS;
3782expire:
3783 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3784new_queue:
3785 bfqq = bfq_set_in_service_queue(bfqd);
3786 if (bfqq) {
3787 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3788 goto check_queue;
3789 }
3790keep_queue:
3791 if (bfqq)
3792 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3793 else
3794 bfq_log(bfqd, "select_queue: no queue returned");
3795
3796 return bfqq;
3797}
3798
Paolo Valente44e44a12017-04-12 18:23:12 +02003799static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3800{
3801 struct bfq_entity *entity = &bfqq->entity;
3802
3803 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3804 bfq_log_bfqq(bfqd, bfqq,
3805 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3806 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3807 jiffies_to_msecs(bfqq->wr_cur_max_time),
3808 bfqq->wr_coeff,
3809 bfqq->entity.weight, bfqq->entity.orig_weight);
3810
3811 if (entity->prio_changed)
3812 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3813
3814 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003815 * If the queue was activated in a burst, or too much
3816 * time has elapsed from the beginning of this
3817 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003818 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003819 if (bfq_bfqq_in_large_burst(bfqq))
3820 bfq_bfqq_end_wr(bfqq);
3821 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3822 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003823 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3824 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003825 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02003826 bfq_bfqq_end_wr(bfqq);
3827 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02003828 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003829 bfqq->entity.prio_changed = 1;
3830 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003831 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01003832 if (bfqq->wr_coeff > 1 &&
3833 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3834 bfqq->service_from_wr > max_service_from_wr) {
3835 /* see comments on max_service_from_wr */
3836 bfq_bfqq_end_wr(bfqq);
3837 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003838 }
Paolo Valente431b17f2017-07-03 10:00:10 +02003839 /*
3840 * To improve latency (for this or other queues), immediately
3841 * update weight both if it must be raised and if it must be
3842 * lowered. Since, entity may be on some active tree here, and
3843 * might have a pending change of its ioprio class, invoke
3844 * next function with the last parameter unset (see the
3845 * comments on the function).
3846 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003847 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02003848 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3849 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02003850}
3851
Paolo Valenteaee69d72017-04-19 08:29:02 -06003852/*
3853 * Dispatch next request from bfqq.
3854 */
3855static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3856 struct bfq_queue *bfqq)
3857{
3858 struct request *rq = bfqq->next_rq;
3859 unsigned long service_to_charge;
3860
3861 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3862
3863 bfq_bfqq_served(bfqq, service_to_charge);
3864
3865 bfq_dispatch_remove(bfqd->queue, rq);
3866
Paolo Valente6c9a7962018-09-14 16:23:08 +02003867 if (bfqq != bfqd->in_service_queue) {
3868 if (likely(bfqd->in_service_queue))
3869 bfqd->in_service_queue->injected_service +=
3870 bfq_serv_to_charge(rq, bfqq);
3871
3872 goto return_rq;
3873 }
3874
Paolo Valente44e44a12017-04-12 18:23:12 +02003875 /*
3876 * If weight raising has to terminate for bfqq, then next
3877 * function causes an immediate update of bfqq's weight,
3878 * without waiting for next activation. As a consequence, on
3879 * expiration, bfqq will be timestamped as if has never been
3880 * weight-raised during this service slot, even if it has
3881 * received part or even most of the service as a
3882 * weight-raised queue. This inflates bfqq's timestamps, which
3883 * is beneficial, as bfqq is then more willing to leave the
3884 * device immediately to possible other weight-raised queues.
3885 */
3886 bfq_update_wr_data(bfqd, bfqq);
3887
Paolo Valenteaee69d72017-04-19 08:29:02 -06003888 /*
3889 * Expire bfqq, pretending that its budget expired, if bfqq
3890 * belongs to CLASS_IDLE and other queues are waiting for
3891 * service.
3892 */
Paolo Valente6c9a7962018-09-14 16:23:08 +02003893 if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3894 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003895
Paolo Valenteaee69d72017-04-19 08:29:02 -06003896 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valente6c9a7962018-09-14 16:23:08 +02003897
3898return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06003899 return rq;
3900}
3901
3902static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3903{
3904 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3905
3906 /*
3907 * Avoiding lock: a race on bfqd->busy_queues should cause at
3908 * most a call to dispatch for nothing
3909 */
3910 return !list_empty_careful(&bfqd->dispatch) ||
3911 bfqd->busy_queues > 0;
3912}
3913
3914static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3915{
3916 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3917 struct request *rq = NULL;
3918 struct bfq_queue *bfqq = NULL;
3919
3920 if (!list_empty(&bfqd->dispatch)) {
3921 rq = list_first_entry(&bfqd->dispatch, struct request,
3922 queuelist);
3923 list_del_init(&rq->queuelist);
3924
3925 bfqq = RQ_BFQQ(rq);
3926
3927 if (bfqq) {
3928 /*
3929 * Increment counters here, because this
3930 * dispatch does not follow the standard
3931 * dispatch flow (where counters are
3932 * incremented)
3933 */
3934 bfqq->dispatched++;
3935
3936 goto inc_in_driver_start_rq;
3937 }
3938
3939 /*
Paolo Valentea7877392018-02-07 22:19:20 +01003940 * We exploit the bfq_finish_requeue_request hook to
3941 * decrement rq_in_driver, but
3942 * bfq_finish_requeue_request will not be invoked on
3943 * this request. So, to avoid unbalance, just start
3944 * this request, without incrementing rq_in_driver. As
3945 * a negative consequence, rq_in_driver is deceptively
3946 * lower than it should be while this request is in
3947 * service. This may cause bfq_schedule_dispatch to be
3948 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003949 *
3950 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01003951 * bfq_finish_requeue_request hook, if defined, is
3952 * probably invoked also on this request. So, by
3953 * exploiting this hook, we could 1) increment
3954 * rq_in_driver here, and 2) decrement it in
3955 * bfq_finish_requeue_request. Such a solution would
3956 * let the value of the counter be always accurate,
3957 * but it would entail using an extra interface
3958 * function. This cost seems higher than the benefit,
3959 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06003960 * requests very low.
3961 */
3962 goto start_rq;
3963 }
3964
3965 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3966
3967 if (bfqd->busy_queues == 0)
3968 goto exit;
3969
3970 /*
3971 * Force device to serve one request at a time if
3972 * strict_guarantees is true. Forcing this service scheme is
3973 * currently the ONLY way to guarantee that the request
3974 * service order enforced by the scheduler is respected by a
3975 * queueing device. Otherwise the device is free even to make
3976 * some unlucky request wait for as long as the device
3977 * wishes.
3978 *
3979 * Of course, serving one request at at time may cause loss of
3980 * throughput.
3981 */
3982 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3983 goto exit;
3984
3985 bfqq = bfq_select_queue(bfqd);
3986 if (!bfqq)
3987 goto exit;
3988
3989 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3990
3991 if (rq) {
3992inc_in_driver_start_rq:
3993 bfqd->rq_in_driver++;
3994start_rq:
3995 rq->rq_flags |= RQF_STARTED;
3996 }
3997exit:
3998 return rq;
3999}
4000
Paolo Valente9b25bd02017-12-04 11:42:05 +01004001#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4002static void bfq_update_dispatch_stats(struct request_queue *q,
4003 struct request *rq,
4004 struct bfq_queue *in_serv_queue,
4005 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004006{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004007 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004008
Paolo Valente24bfd192017-11-13 07:34:09 +01004009 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004010 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004011
4012 /*
4013 * rq and bfqq are guaranteed to exist until this function
4014 * ends, for the following reasons. First, rq can be
4015 * dispatched to the device, and then can be completed and
4016 * freed, only after this function ends. Second, rq cannot be
4017 * merged (and thus freed because of a merge) any longer,
4018 * because it has already started. Thus rq cannot be freed
4019 * before this function ends, and, since rq has a reference to
4020 * bfqq, the same guarantee holds for bfqq too.
4021 *
4022 * In addition, the following queue lock guarantees that
4023 * bfqq_group(bfqq) exists as well.
4024 */
Paolo Valente9b25bd02017-12-04 11:42:05 +01004025 spin_lock_irq(q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004026 if (idle_timer_disabled)
4027 /*
4028 * Since the idle timer has been disabled,
4029 * in_serv_queue contained some request when
4030 * __bfq_dispatch_request was invoked above, which
4031 * implies that rq was picked exactly from
4032 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4033 * therefore guaranteed to exist because of the above
4034 * arguments.
4035 */
4036 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4037 if (bfqq) {
4038 struct bfq_group *bfqg = bfqq_group(bfqq);
4039
4040 bfqg_stats_update_avg_queue_size(bfqg);
4041 bfqg_stats_set_start_empty_time(bfqg);
4042 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4043 }
Paolo Valente9b25bd02017-12-04 11:42:05 +01004044 spin_unlock_irq(q->queue_lock);
4045}
4046#else
4047static inline void bfq_update_dispatch_stats(struct request_queue *q,
4048 struct request *rq,
4049 struct bfq_queue *in_serv_queue,
4050 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01004051#endif
4052
Paolo Valente9b25bd02017-12-04 11:42:05 +01004053static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4054{
4055 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4056 struct request *rq;
4057 struct bfq_queue *in_serv_queue;
4058 bool waiting_rq, idle_timer_disabled;
4059
4060 spin_lock_irq(&bfqd->lock);
4061
4062 in_serv_queue = bfqd->in_service_queue;
4063 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4064
4065 rq = __bfq_dispatch_request(hctx);
4066
4067 idle_timer_disabled =
4068 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4069
4070 spin_unlock_irq(&bfqd->lock);
4071
4072 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4073 idle_timer_disabled);
4074
Paolo Valenteaee69d72017-04-19 08:29:02 -06004075 return rq;
4076}
4077
4078/*
4079 * Task holds one reference to the queue, dropped when task exits. Each rq
4080 * in-flight on this queue also holds a reference, dropped when rq is freed.
4081 *
4082 * Scheduler lock must be held here. Recall not to use bfqq after calling
4083 * this function on it.
4084 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004085void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004086{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004087#ifdef CONFIG_BFQ_GROUP_IOSCHED
4088 struct bfq_group *bfqg = bfqq_group(bfqq);
4089#endif
4090
Paolo Valenteaee69d72017-04-19 08:29:02 -06004091 if (bfqq->bfqd)
4092 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4093 bfqq, bfqq->ref);
4094
4095 bfqq->ref--;
4096 if (bfqq->ref)
4097 return;
4098
Paolo Valente99fead82017-10-09 13:11:23 +02004099 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004100 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004101 /*
4102 * Decrement also burst size after the removal, if the
4103 * process associated with bfqq is exiting, and thus
4104 * does not contribute to the burst any longer. This
4105 * decrement helps filter out false positives of large
4106 * bursts, when some short-lived process (often due to
4107 * the execution of commands by some service) happens
4108 * to start and exit while a complex application is
4109 * starting, and thus spawning several processes that
4110 * do I/O (and that *must not* be treated as a large
4111 * burst, see comments on bfq_handle_burst).
4112 *
4113 * In particular, the decrement is performed only if:
4114 * 1) bfqq is not a merged queue, because, if it is,
4115 * then this free of bfqq is not triggered by the exit
4116 * of the process bfqq is associated with, but exactly
4117 * by the fact that bfqq has just been merged.
4118 * 2) burst_size is greater than 0, to handle
4119 * unbalanced decrements. Unbalanced decrements may
4120 * happen in te following case: bfqq is inserted into
4121 * the current burst list--without incrementing
4122 * bust_size--because of a split, but the current
4123 * burst list is not the burst list bfqq belonged to
4124 * (see comments on the case of a split in
4125 * bfq_set_request).
4126 */
4127 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4128 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004129 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004130
Paolo Valenteaee69d72017-04-19 08:29:02 -06004131 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004132#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004133 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004134#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004135}
4136
Arianna Avanzini36eca892017-04-12 18:23:16 +02004137static void bfq_put_cooperator(struct bfq_queue *bfqq)
4138{
4139 struct bfq_queue *__bfqq, *next;
4140
4141 /*
4142 * If this queue was scheduled to merge with another queue, be
4143 * sure to drop the reference taken on that queue (and others in
4144 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4145 */
4146 __bfqq = bfqq->new_bfqq;
4147 while (__bfqq) {
4148 if (__bfqq == bfqq)
4149 break;
4150 next = __bfqq->new_bfqq;
4151 bfq_put_queue(__bfqq);
4152 __bfqq = next;
4153 }
4154}
4155
Paolo Valenteaee69d72017-04-19 08:29:02 -06004156static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4157{
4158 if (bfqq == bfqd->in_service_queue) {
4159 __bfq_bfqq_expire(bfqd, bfqq);
4160 bfq_schedule_dispatch(bfqd);
4161 }
4162
4163 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4164
Arianna Avanzini36eca892017-04-12 18:23:16 +02004165 bfq_put_cooperator(bfqq);
4166
Paolo Valenteaee69d72017-04-19 08:29:02 -06004167 bfq_put_queue(bfqq); /* release process reference */
4168}
4169
4170static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4171{
4172 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4173 struct bfq_data *bfqd;
4174
4175 if (bfqq)
4176 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4177
4178 if (bfqq && bfqd) {
4179 unsigned long flags;
4180
4181 spin_lock_irqsave(&bfqd->lock, flags);
Douglas Anderson018524b72019-06-27 21:44:09 -07004182 bfqq->bic = NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004183 bfq_exit_bfqq(bfqd, bfqq);
4184 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004185 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004186 }
4187}
4188
4189static void bfq_exit_icq(struct io_cq *icq)
4190{
4191 struct bfq_io_cq *bic = icq_to_bic(icq);
4192
4193 bfq_exit_icq_bfqq(bic, true);
4194 bfq_exit_icq_bfqq(bic, false);
4195}
4196
4197/*
4198 * Update the entity prio values; note that the new values will not
4199 * be used until the next (re)activation.
4200 */
4201static void
4202bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4203{
4204 struct task_struct *tsk = current;
4205 int ioprio_class;
4206 struct bfq_data *bfqd = bfqq->bfqd;
4207
4208 if (!bfqd)
4209 return;
4210
4211 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4212 switch (ioprio_class) {
4213 default:
4214 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4215 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004216 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004217 case IOPRIO_CLASS_NONE:
4218 /*
4219 * No prio set, inherit CPU scheduling settings.
4220 */
4221 bfqq->new_ioprio = task_nice_ioprio(tsk);
4222 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4223 break;
4224 case IOPRIO_CLASS_RT:
4225 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4226 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4227 break;
4228 case IOPRIO_CLASS_BE:
4229 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4230 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4231 break;
4232 case IOPRIO_CLASS_IDLE:
4233 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4234 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004235 break;
4236 }
4237
4238 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4239 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4240 bfqq->new_ioprio);
4241 bfqq->new_ioprio = IOPRIO_BE_NR;
4242 }
4243
4244 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4245 bfqq->entity.prio_changed = 1;
4246}
4247
Paolo Valenteea25da42017-04-19 08:48:24 -06004248static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4249 struct bio *bio, bool is_sync,
4250 struct bfq_io_cq *bic);
4251
Paolo Valenteaee69d72017-04-19 08:29:02 -06004252static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4253{
4254 struct bfq_data *bfqd = bic_to_bfqd(bic);
4255 struct bfq_queue *bfqq;
4256 int ioprio = bic->icq.ioc->ioprio;
4257
4258 /*
4259 * This condition may trigger on a newly created bic, be sure to
4260 * drop the lock before returning.
4261 */
4262 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4263 return;
4264
4265 bic->ioprio = ioprio;
4266
4267 bfqq = bic_to_bfqq(bic, false);
4268 if (bfqq) {
4269 /* release process reference on this queue */
4270 bfq_put_queue(bfqq);
4271 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4272 bic_set_bfqq(bic, bfqq, false);
4273 }
4274
4275 bfqq = bic_to_bfqq(bic, true);
4276 if (bfqq)
4277 bfq_set_next_ioprio_data(bfqq, bic);
4278}
4279
4280static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4281 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4282{
4283 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4284 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004285 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004286
4287 bfqq->ref = 0;
4288 bfqq->bfqd = bfqd;
4289
4290 if (bic)
4291 bfq_set_next_ioprio_data(bfqq, bic);
4292
4293 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004294 /*
4295 * No need to mark as has_short_ttime if in
4296 * idle_class, because no device idling is performed
4297 * for queues in idle class
4298 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004299 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004300 /* tentatively mark as has_short_ttime */
4301 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004302 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004303 bfq_mark_bfqq_just_created(bfqq);
Paolo Valente6c9a7962018-09-14 16:23:08 +02004304 /*
4305 * Aggressively inject a lot of service: up to 90%.
4306 * This coefficient remains constant during bfqq life,
4307 * but this behavior might be changed, after enough
4308 * testing and tuning.
4309 */
4310 bfqq->inject_coeff = 1;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004311 } else
4312 bfq_clear_bfqq_sync(bfqq);
4313
4314 /* set end request to minus infinity from now */
4315 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4316
4317 bfq_mark_bfqq_IO_bound(bfqq);
4318
4319 bfqq->pid = pid;
4320
4321 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004322 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004323 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004324
Paolo Valente44e44a12017-04-12 18:23:12 +02004325 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004326 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004327 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004328 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004329
4330 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004331 * To not forget the possibly high bandwidth consumed by a
4332 * process/queue in the recent past,
4333 * bfq_bfqq_softrt_next_start() returns a value at least equal
4334 * to the current value of bfqq->soft_rt_next_start (see
4335 * comments on bfq_bfqq_softrt_next_start). Set
4336 * soft_rt_next_start to now, to mean that bfqq has consumed
4337 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004338 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004339 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004340
Paolo Valenteaee69d72017-04-19 08:29:02 -06004341 /* first request is almost certainly seeky */
4342 bfqq->seek_history = 1;
4343}
4344
4345static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004346 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004347 int ioprio_class, int ioprio)
4348{
4349 switch (ioprio_class) {
4350 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004351 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004352 case IOPRIO_CLASS_NONE:
4353 ioprio = IOPRIO_NORM;
4354 /* fall through */
4355 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004356 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004357 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004358 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004359 default:
4360 return NULL;
4361 }
4362}
4363
4364static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4365 struct bio *bio, bool is_sync,
4366 struct bfq_io_cq *bic)
4367{
4368 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4369 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4370 struct bfq_queue **async_bfqq = NULL;
4371 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004372 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004373
4374 rcu_read_lock();
4375
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004376 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4377 if (!bfqg) {
4378 bfqq = &bfqd->oom_bfqq;
4379 goto out;
4380 }
4381
Paolo Valenteaee69d72017-04-19 08:29:02 -06004382 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004383 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004384 ioprio);
4385 bfqq = *async_bfqq;
4386 if (bfqq)
4387 goto out;
4388 }
4389
4390 bfqq = kmem_cache_alloc_node(bfq_pool,
4391 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4392 bfqd->queue->node);
4393
4394 if (bfqq) {
4395 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4396 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004397 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004398 bfq_log_bfqq(bfqd, bfqq, "allocated");
4399 } else {
4400 bfqq = &bfqd->oom_bfqq;
4401 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4402 goto out;
4403 }
4404
4405 /*
4406 * Pin the queue now that it's allocated, scheduler exit will
4407 * prune it.
4408 */
4409 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004410 bfqq->ref++; /*
4411 * Extra group reference, w.r.t. sync
4412 * queue. This extra reference is removed
4413 * only if bfqq->bfqg disappears, to
4414 * guarantee that this queue is not freed
4415 * until its group goes away.
4416 */
4417 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004418 bfqq, bfqq->ref);
4419 *async_bfqq = bfqq;
4420 }
4421
4422out:
4423 bfqq->ref++; /* get a process reference to this queue */
4424 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4425 rcu_read_unlock();
4426 return bfqq;
4427}
4428
4429static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4430 struct bfq_queue *bfqq)
4431{
4432 struct bfq_ttime *ttime = &bfqq->ttime;
4433 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4434
4435 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4436
4437 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4438 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4439 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4440 ttime->ttime_samples);
4441}
4442
4443static void
4444bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4445 struct request *rq)
4446{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004447 bfqq->seek_history <<= 1;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004448 bfqq->seek_history |=
4449 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004450 (!blk_queue_nonrot(bfqd->queue) ||
4451 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4452}
4453
Paolo Valented5be3fe2017-08-04 07:35:10 +02004454static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4455 struct bfq_queue *bfqq,
4456 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004457{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004458 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004459
Paolo Valented5be3fe2017-08-04 07:35:10 +02004460 /*
4461 * No need to update has_short_ttime if bfqq is async or in
4462 * idle io prio class, or if bfq_slice_idle is zero, because
4463 * no device idling is performed for bfqq in this case.
4464 */
4465 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4466 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004467 return;
4468
Arianna Avanzini36eca892017-04-12 18:23:16 +02004469 /* Idle window just restored, statistics are meaningless. */
4470 if (time_is_after_eq_jiffies(bfqq->split_time +
4471 bfqd->bfq_wr_min_idle_time))
4472 return;
4473
Paolo Valented5be3fe2017-08-04 07:35:10 +02004474 /* Think time is infinite if no process is linked to
4475 * bfqq. Otherwise check average think time to
4476 * decide whether to mark as has_short_ttime
4477 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004478 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004479 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4480 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4481 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004482
Paolo Valented5be3fe2017-08-04 07:35:10 +02004483 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4484 has_short_ttime);
4485
4486 if (has_short_ttime)
4487 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004488 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004489 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004490}
4491
4492/*
4493 * Called when a new fs request (rq) is added to bfqq. Check if there's
4494 * something we should do about it.
4495 */
4496static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4497 struct request *rq)
4498{
4499 struct bfq_io_cq *bic = RQ_BIC(rq);
4500
4501 if (rq->cmd_flags & REQ_META)
4502 bfqq->meta_pending++;
4503
4504 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004505 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004506 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004507
4508 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004509 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4510 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004511
4512 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4513
4514 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4515 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4516 blk_rq_sectors(rq) < 32;
4517 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4518
4519 /*
4520 * There is just this request queued: if the request
4521 * is small and the queue is not to be expired, then
4522 * just exit.
4523 *
4524 * In this way, if the device is being idled to wait
4525 * for a new request from the in-service queue, we
4526 * avoid unplugging the device and committing the
4527 * device to serve just a small request. On the
4528 * contrary, we wait for the block layer to decide
4529 * when to unplug the device: hopefully, new requests
4530 * will be merged to this one quickly, then the device
4531 * will be unplugged and larger requests will be
4532 * dispatched.
4533 */
4534 if (small_req && !budget_timeout)
4535 return;
4536
4537 /*
4538 * A large enough request arrived, or the queue is to
4539 * be expired: in both cases disk idling is to be
4540 * stopped, so clear wait_request flag and reset
4541 * timer.
4542 */
4543 bfq_clear_bfqq_wait_request(bfqq);
4544 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4545
4546 /*
4547 * The queue is not empty, because a new request just
4548 * arrived. Hence we can safely expire the queue, in
4549 * case of budget timeout, without risking that the
4550 * timestamps of the queue are not updated correctly.
4551 * See [1] for more details.
4552 */
4553 if (budget_timeout)
4554 bfq_bfqq_expire(bfqd, bfqq, false,
4555 BFQQE_BUDGET_TIMEOUT);
4556 }
4557}
4558
Paolo Valente24bfd192017-11-13 07:34:09 +01004559/* returns true if it causes the idle timer to be disabled */
4560static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004561{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004562 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4563 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004564 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004565
4566 if (new_bfqq) {
4567 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4568 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4569 /*
4570 * Release the request's reference to the old bfqq
4571 * and make sure one is taken to the shared queue.
4572 */
4573 new_bfqq->allocated++;
4574 bfqq->allocated--;
4575 new_bfqq->ref++;
4576 /*
4577 * If the bic associated with the process
4578 * issuing this request still points to bfqq
4579 * (and thus has not been already redirected
4580 * to new_bfqq or even some other bfq_queue),
4581 * then complete the merge and redirect it to
4582 * new_bfqq.
4583 */
4584 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4585 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4586 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004587
4588 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004589 /*
4590 * rq is about to be enqueued into new_bfqq,
4591 * release rq reference on bfqq
4592 */
4593 bfq_put_queue(bfqq);
4594 rq->elv.priv[1] = new_bfqq;
4595 bfqq = new_bfqq;
4596 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004597
Paolo Valente24bfd192017-11-13 07:34:09 +01004598 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004599 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004600 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004601
4602 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4603 list_add_tail(&rq->queuelist, &bfqq->fifo);
4604
4605 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004606
4607 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004608}
4609
Paolo Valente9b25bd02017-12-04 11:42:05 +01004610#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4611static void bfq_update_insert_stats(struct request_queue *q,
4612 struct bfq_queue *bfqq,
4613 bool idle_timer_disabled,
4614 unsigned int cmd_flags)
4615{
4616 if (!bfqq)
4617 return;
4618
4619 /*
4620 * bfqq still exists, because it can disappear only after
4621 * either it is merged with another queue, or the process it
4622 * is associated with exits. But both actions must be taken by
4623 * the same process currently executing this flow of
4624 * instructions.
4625 *
4626 * In addition, the following queue lock guarantees that
4627 * bfqq_group(bfqq) exists as well.
4628 */
4629 spin_lock_irq(q->queue_lock);
4630 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4631 if (idle_timer_disabled)
4632 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4633 spin_unlock_irq(q->queue_lock);
4634}
4635#else
4636static inline void bfq_update_insert_stats(struct request_queue *q,
4637 struct bfq_queue *bfqq,
4638 bool idle_timer_disabled,
4639 unsigned int cmd_flags) {}
4640#endif
4641
Paolo Valenteaee69d72017-04-19 08:29:02 -06004642static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4643 bool at_head)
4644{
4645 struct request_queue *q = hctx->queue;
4646 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02004647 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01004648 bool idle_timer_disabled = false;
4649 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004650
4651 spin_lock_irq(&bfqd->lock);
4652 if (blk_mq_sched_try_insert_merge(q, rq)) {
4653 spin_unlock_irq(&bfqd->lock);
4654 return;
4655 }
4656
4657 spin_unlock_irq(&bfqd->lock);
4658
4659 blk_mq_sched_request_inserted(rq);
4660
4661 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02004662 bfqq = bfq_init_rq(rq);
Paolo Valente7aa8dfa42019-08-07 19:21:11 +02004663 if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004664 if (at_head)
4665 list_add(&rq->queuelist, &bfqd->dispatch);
4666 else
4667 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente7aa8dfa42019-08-07 19:21:11 +02004668 } else {
Paolo Valente24bfd192017-11-13 07:34:09 +01004669 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004670 /*
4671 * Update bfqq, because, if a queue merge has occurred
4672 * in __bfq_insert_request, then rq has been
4673 * redirected into a new queue.
4674 */
4675 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004676
4677 if (rq_mergeable(rq)) {
4678 elv_rqhash_add(q, rq);
4679 if (!q->last_merge)
4680 q->last_merge = rq;
4681 }
4682 }
4683
Paolo Valente24bfd192017-11-13 07:34:09 +01004684 /*
4685 * Cache cmd_flags before releasing scheduler lock, because rq
4686 * may disappear afterwards (for example, because of a request
4687 * merge).
4688 */
4689 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01004690
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004691 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004692
Paolo Valente9b25bd02017-12-04 11:42:05 +01004693 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4694 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004695}
4696
4697static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4698 struct list_head *list, bool at_head)
4699{
4700 while (!list_empty(list)) {
4701 struct request *rq;
4702
4703 rq = list_first_entry(list, struct request, queuelist);
4704 list_del_init(&rq->queuelist);
4705 bfq_insert_request(hctx, rq, at_head);
4706 }
4707}
4708
4709static void bfq_update_hw_tag(struct bfq_data *bfqd)
4710{
4711 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4712 bfqd->rq_in_driver);
4713
4714 if (bfqd->hw_tag == 1)
4715 return;
4716
4717 /*
4718 * This sample is valid if the number of outstanding requests
4719 * is large enough to allow a queueing behavior. Note that the
4720 * sum is not exact, as it's not taking into account deactivated
4721 * requests.
4722 */
4723 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4724 return;
4725
4726 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4727 return;
4728
4729 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4730 bfqd->max_rq_in_driver = 0;
4731 bfqd->hw_tag_samples = 0;
4732}
4733
4734static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4735{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004736 u64 now_ns;
4737 u32 delta_us;
4738
Paolo Valenteaee69d72017-04-19 08:29:02 -06004739 bfq_update_hw_tag(bfqd);
4740
4741 bfqd->rq_in_driver--;
4742 bfqq->dispatched--;
4743
Paolo Valente44e44a12017-04-12 18:23:12 +02004744 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4745 /*
4746 * Set budget_timeout (which we overload to store the
4747 * time at which the queue remains with no backlog and
4748 * no outstanding request; used by the weight-raising
4749 * mechanism).
4750 */
4751 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02004752
Paolo Valente04715592018-06-25 21:55:34 +02004753 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02004754 }
4755
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004756 now_ns = ktime_get_ns();
4757
4758 bfqq->ttime.last_end_request = now_ns;
4759
4760 /*
4761 * Using us instead of ns, to get a reasonable precision in
4762 * computing rate in next check.
4763 */
4764 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4765
4766 /*
4767 * If the request took rather long to complete, and, according
4768 * to the maximum request size recorded, this completion latency
4769 * implies that the request was certainly served at a very low
4770 * rate (less than 1M sectors/sec), then the whole observation
4771 * interval that lasts up to this time instant cannot be a
4772 * valid time interval for computing a new peak rate. Invoke
4773 * bfq_update_rate_reset to have the following three steps
4774 * taken:
4775 * - close the observation interval at the last (previous)
4776 * request dispatch or completion
4777 * - compute rate, if possible, for that observation interval
4778 * - reset to zero samples, which will trigger a proper
4779 * re-initialization of the observation interval on next
4780 * dispatch
4781 */
4782 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4783 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4784 1UL<<(BFQ_RATE_SHIFT - 10))
4785 bfq_update_rate_reset(bfqd, NULL);
4786 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004787
4788 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004789 * If we are waiting to discover whether the request pattern
4790 * of the task associated with the queue is actually
4791 * isochronous, and both requisites for this condition to hold
4792 * are now satisfied, then compute soft_rt_next_start (see the
4793 * comments on the function bfq_bfqq_softrt_next_start()). We
4794 * schedule this delayed check when bfqq expires, if it still
4795 * has in-flight requests.
4796 */
4797 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4798 RB_EMPTY_ROOT(&bfqq->sort_list))
4799 bfqq->soft_rt_next_start =
4800 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4801
4802 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004803 * If this is the in-service queue, check if it needs to be expired,
4804 * or if we want to idle in case it has no pending requests.
4805 */
4806 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02004807 if (bfq_bfqq_must_idle(bfqq)) {
4808 if (bfqq->dispatched == 0)
4809 bfq_arm_slice_timer(bfqd);
4810 /*
4811 * If we get here, we do not expire bfqq, even
4812 * if bfqq was in budget timeout or had no
4813 * more requests (as controlled in the next
4814 * conditional instructions). The reason for
4815 * not expiring bfqq is as follows.
4816 *
4817 * Here bfqq->dispatched > 0 holds, but
4818 * bfq_bfqq_must_idle() returned true. This
4819 * implies that, even if no request arrives
4820 * for bfqq before bfqq->dispatched reaches 0,
4821 * bfqq will, however, not be expired on the
4822 * completion event that causes bfqq->dispatch
4823 * to reach zero. In contrast, on this event,
4824 * bfqq will start enjoying device idling
4825 * (I/O-dispatch plugging).
4826 *
4827 * But, if we expired bfqq here, bfqq would
4828 * not have the chance to enjoy device idling
4829 * when bfqq->dispatched finally reaches
4830 * zero. This would expose bfqq to violation
4831 * of its reserved service guarantees.
4832 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004833 return;
4834 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4835 bfq_bfqq_expire(bfqd, bfqq, false,
4836 BFQQE_BUDGET_TIMEOUT);
4837 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4838 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004839 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06004840 bfq_bfqq_expire(bfqd, bfqq, false,
4841 BFQQE_NO_MORE_REQUESTS);
4842 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08004843
4844 if (!bfqd->rq_in_driver)
4845 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004846}
4847
Paolo Valentea7877392018-02-07 22:19:20 +01004848static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004849{
4850 bfqq->allocated--;
4851
4852 bfq_put_queue(bfqq);
4853}
4854
Paolo Valentea7877392018-02-07 22:19:20 +01004855/*
4856 * Handle either a requeue or a finish for rq. The things to do are
4857 * the same in both cases: all references to rq are to be dropped. In
4858 * particular, rq is considered completed from the point of view of
4859 * the scheduler.
4860 */
4861static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004862{
Paolo Valentea7877392018-02-07 22:19:20 +01004863 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004864 struct bfq_data *bfqd;
4865
Paolo Valentea7877392018-02-07 22:19:20 +01004866 /*
4867 * Requeue and finish hooks are invoked in blk-mq without
4868 * checking whether the involved request is actually still
4869 * referenced in the scheduler. To handle this fact, the
4870 * following two checks make this function exit in case of
4871 * spurious invocations, for which there is nothing to do.
4872 *
4873 * First, check whether rq has nothing to do with an elevator.
4874 */
4875 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004876 return;
4877
Paolo Valentea7877392018-02-07 22:19:20 +01004878 /*
4879 * rq either is not associated with any icq, or is an already
4880 * requeued request that has not (yet) been re-inserted into
4881 * a bfq_queue.
4882 */
4883 if (!rq->elv.icq || !bfqq)
4884 return;
4885
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004886 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004887
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004888 if (rq->rq_flags & RQF_STARTED)
4889 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07004890 rq->start_time_ns,
4891 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004892 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004893
4894 if (likely(rq->rq_flags & RQF_STARTED)) {
4895 unsigned long flags;
4896
4897 spin_lock_irqsave(&bfqd->lock, flags);
4898
4899 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01004900 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004901
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004902 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004903 } else {
4904 /*
4905 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01004906 * in which case we need to remove it (this should
4907 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06004908 * defer such a check and removal, to avoid
4909 * inconsistencies in the time interval from the end
4910 * of this function to the start of the deferred work.
4911 * This situation seems to occur only in process
4912 * context, as a consequence of a merge. In the
4913 * current version of the code, this implies that the
4914 * lock is held.
4915 */
4916
Luca Miccio614822f2017-11-13 07:34:08 +01004917 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02004918 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004919 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4920 rq->cmd_flags);
4921 }
Paolo Valentea7877392018-02-07 22:19:20 +01004922 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004923 }
4924
Paolo Valentea7877392018-02-07 22:19:20 +01004925 /*
4926 * Reset private fields. In case of a requeue, this allows
4927 * this function to correctly do nothing if it is spuriously
4928 * invoked again on this same request (see the check at the
4929 * beginning of the function). Probably, a better general
4930 * design would be to prevent blk-mq from invoking the requeue
4931 * or finish hooks of an elevator, for a request that is not
4932 * referred by that elevator.
4933 *
4934 * Resetting the following fields would break the
4935 * request-insertion logic if rq is re-inserted into a bfq
4936 * internal queue, without a re-preparation. Here we assume
4937 * that re-insertions of requeued requests, without
4938 * re-preparation, can happen only for pass_through or at_head
4939 * requests (which are not re-inserted into bfq internal
4940 * queues).
4941 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004942 rq->elv.priv[0] = NULL;
4943 rq->elv.priv[1] = NULL;
4944}
4945
4946/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02004947 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4948 * was the last process referring to that bfqq.
4949 */
4950static struct bfq_queue *
4951bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4952{
4953 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4954
4955 if (bfqq_process_refs(bfqq) == 1) {
4956 bfqq->pid = current->pid;
4957 bfq_clear_bfqq_coop(bfqq);
4958 bfq_clear_bfqq_split_coop(bfqq);
4959 return bfqq;
4960 }
4961
4962 bic_set_bfqq(bic, NULL, 1);
4963
4964 bfq_put_cooperator(bfqq);
4965
4966 bfq_put_queue(bfqq);
4967 return NULL;
4968}
4969
4970static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4971 struct bfq_io_cq *bic,
4972 struct bio *bio,
4973 bool split, bool is_sync,
4974 bool *new_queue)
4975{
4976 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4977
4978 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4979 return bfqq;
4980
4981 if (new_queue)
4982 *new_queue = true;
4983
4984 if (bfqq)
4985 bfq_put_queue(bfqq);
4986 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4987
4988 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004989 if (split && is_sync) {
4990 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4991 bic->saved_in_large_burst)
4992 bfq_mark_bfqq_in_large_burst(bfqq);
4993 else {
4994 bfq_clear_bfqq_in_large_burst(bfqq);
4995 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02004996 /*
4997 * If bfqq was in the current
4998 * burst list before being
4999 * merged, then we have to add
5000 * it back. And we do not need
5001 * to increase burst_size, as
5002 * we did not decrement
5003 * burst_size when we removed
5004 * bfqq from the burst list as
5005 * a consequence of a merge
5006 * (see comments in
5007 * bfq_put_queue). In this
5008 * respect, it would be rather
5009 * costly to know whether the
5010 * current burst list is still
5011 * the same burst list from
5012 * which bfqq was removed on
5013 * the merge. To avoid this
5014 * cost, if bfqq was in a
5015 * burst list, then we add
5016 * bfqq to the current burst
5017 * list without any further
5018 * check. This can cause
5019 * inappropriate insertions,
5020 * but rarely enough to not
5021 * harm the detection of large
5022 * bursts significantly.
5023 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005024 hlist_add_head(&bfqq->burst_list_node,
5025 &bfqd->burst_list);
5026 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005027 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005028 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005029
5030 return bfqq;
5031}
5032
5033/*
Paolo Valente18e5a572018-05-04 19:17:01 +02005034 * Only reset private fields. The actual request preparation will be
5035 * performed by bfq_init_rq, when rq is either inserted or merged. See
5036 * comments on bfq_init_rq for the reason behind this delayed
5037 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005038 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005039static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005040{
Paolo Valente18e5a572018-05-04 19:17:01 +02005041 /*
5042 * Regardless of whether we have an icq attached, we have to
5043 * clear the scheduler pointers, as they might point to
5044 * previously allocated bic/bfqq structs.
5045 */
5046 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5047}
5048
5049/*
5050 * If needed, init rq, allocate bfq data structures associated with
5051 * rq, and increment reference counters in the destination bfq_queue
5052 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5053 * not associated with any bfq_queue.
5054 *
5055 * This function is invoked by the functions that perform rq insertion
5056 * or merging. One may have expected the above preparation operations
5057 * to be performed in bfq_prepare_request, and not delayed to when rq
5058 * is inserted or merged. The rationale behind this delayed
5059 * preparation is that, after the prepare_request hook is invoked for
5060 * rq, rq may still be transformed into a request with no icq, i.e., a
5061 * request not associated with any queue. No bfq hook is invoked to
5062 * signal this tranformation. As a consequence, should these
5063 * preparation operations be performed when the prepare_request hook
5064 * is invoked, and should rq be transformed one moment later, bfq
5065 * would end up in an inconsistent state, because it would have
5066 * incremented some queue counters for an rq destined to
5067 * transformation, without any chance to correctly lower these
5068 * counters back. In contrast, no transformation can still happen for
5069 * rq after rq has been inserted or merged. So, it is safe to execute
5070 * these preparation operations when rq is finally inserted or merged.
5071 */
5072static struct bfq_queue *bfq_init_rq(struct request *rq)
5073{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005074 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02005075 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005076 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02005077 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005078 const int is_sync = rq_is_sync(rq);
5079 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005080 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06005081 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005082
Paolo Valente18e5a572018-05-04 19:17:01 +02005083 if (unlikely(!rq->elv.icq))
5084 return NULL;
5085
Jens Axboe72961c42018-04-17 17:08:52 -06005086 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02005087 * Assuming that elv.priv[1] is set only if everything is set
5088 * for this rq. This holds true, because this function is
5089 * invoked only for insertion or merging, and, after such
5090 * events, a request cannot be manipulated any longer before
5091 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06005092 */
Paolo Valente18e5a572018-05-04 19:17:01 +02005093 if (rq->elv.priv[1])
5094 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06005095
Christoph Hellwig9f210732017-06-16 18:15:24 +02005096 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005097
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01005098 bfq_check_ioprio_change(bic, bio);
5099
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005100 bfq_bic_update_cgroup(bic, bio);
5101
Arianna Avanzini36eca892017-04-12 18:23:16 +02005102 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5103 &new_queue);
5104
5105 if (likely(!new_queue)) {
5106 /* If the queue was seeky for too long, break it apart. */
5107 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5108 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005109
5110 /* Update bic before losing reference to bfqq */
5111 if (bfq_bfqq_in_large_burst(bfqq))
5112 bic->saved_in_large_burst = true;
5113
Arianna Avanzini36eca892017-04-12 18:23:16 +02005114 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005115 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005116
5117 if (!bfqq)
5118 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5119 true, is_sync,
5120 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06005121 else
5122 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005123 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005124 }
5125
5126 bfqq->allocated++;
5127 bfqq->ref++;
5128 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5129 rq, bfqq, bfqq->ref);
5130
5131 rq->elv.priv[0] = bic;
5132 rq->elv.priv[1] = bfqq;
5133
Arianna Avanzini36eca892017-04-12 18:23:16 +02005134 /*
5135 * If a bfq_queue has only one process reference, it is owned
5136 * by only this bic: we can then set bfqq->bic = bic. in
5137 * addition, if the queue has also just been split, we have to
5138 * resume its state.
5139 */
5140 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5141 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005142 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005143 /*
5144 * The queue has just been split from a shared
5145 * queue: restore the idle window and the
5146 * possible weight raising period.
5147 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005148 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5149 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005150 }
5151 }
5152
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005153 if (unlikely(bfq_bfqq_just_created(bfqq)))
5154 bfq_handle_burst(bfqd, bfqq);
5155
Paolo Valente18e5a572018-05-04 19:17:01 +02005156 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005157}
5158
5159static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5160{
5161 struct bfq_data *bfqd = bfqq->bfqd;
5162 enum bfqq_expiration reason;
5163 unsigned long flags;
5164
5165 spin_lock_irqsave(&bfqd->lock, flags);
5166 bfq_clear_bfqq_wait_request(bfqq);
5167
5168 if (bfqq != bfqd->in_service_queue) {
5169 spin_unlock_irqrestore(&bfqd->lock, flags);
5170 return;
5171 }
5172
5173 if (bfq_bfqq_budget_timeout(bfqq))
5174 /*
5175 * Also here the queue can be safely expired
5176 * for budget timeout without wasting
5177 * guarantees
5178 */
5179 reason = BFQQE_BUDGET_TIMEOUT;
5180 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5181 /*
5182 * The queue may not be empty upon timer expiration,
5183 * because we may not disable the timer when the
5184 * first request of the in-service queue arrives
5185 * during disk idling.
5186 */
5187 reason = BFQQE_TOO_IDLE;
5188 else
5189 goto schedule_dispatch;
5190
5191 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5192
5193schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005194 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005195 bfq_schedule_dispatch(bfqd);
5196}
5197
5198/*
5199 * Handler of the expiration of the timer running if the in-service queue
5200 * is idling inside its time slice.
5201 */
5202static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5203{
5204 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5205 idle_slice_timer);
5206 struct bfq_queue *bfqq = bfqd->in_service_queue;
5207
5208 /*
5209 * Theoretical race here: the in-service queue can be NULL or
5210 * different from the queue that was idling if a new request
5211 * arrives for the current queue and there is a full dispatch
5212 * cycle that changes the in-service queue. This can hardly
5213 * happen, but in the worst case we just expire a queue too
5214 * early.
5215 */
5216 if (bfqq)
5217 bfq_idle_slice_timer_body(bfqq);
5218
5219 return HRTIMER_NORESTART;
5220}
5221
5222static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5223 struct bfq_queue **bfqq_ptr)
5224{
5225 struct bfq_queue *bfqq = *bfqq_ptr;
5226
5227 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5228 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005229 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5230
Paolo Valenteaee69d72017-04-19 08:29:02 -06005231 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5232 bfqq, bfqq->ref);
5233 bfq_put_queue(bfqq);
5234 *bfqq_ptr = NULL;
5235 }
5236}
5237
5238/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005239 * Release all the bfqg references to its async queues. If we are
5240 * deallocating the group these queues may still contain requests, so
5241 * we reparent them to the root cgroup (i.e., the only one that will
5242 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005243 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005244void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005245{
5246 int i, j;
5247
5248 for (i = 0; i < 2; i++)
5249 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005250 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005251
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005252 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005253}
5254
Jens Axboef0635b82018-05-09 13:27:21 -06005255/*
5256 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005257 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005258 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005259static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5260 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005261{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005262 unsigned int i, j, min_shallow = UINT_MAX;
5263
Jens Axboef0635b82018-05-09 13:27:21 -06005264 /*
5265 * In-word depths if no bfq_queue is being weight-raised:
5266 * leaving 25% of tags only for sync reads.
5267 *
5268 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005269 * (1U<<bt->sb.shift), instead of computing directly
5270 * (1U<<(bt->sb.shift - something)), to be robust against
5271 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005272 * limit 'something'.
5273 */
5274 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005275 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005276 /*
5277 * no more than 75% of tags for sync writes (25% extra tags
5278 * w.r.t. async I/O, to prevent async I/O from starving sync
5279 * writes)
5280 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005281 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005282
5283 /*
5284 * In-word depths in case some bfq_queue is being weight-
5285 * raised: leaving ~63% of tags for sync reads. This is the
5286 * highest percentage for which, in our tests, application
5287 * start-up times didn't suffer from any regression due to tag
5288 * shortage.
5289 */
5290 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005291 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005292 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005293 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005294
5295 for (i = 0; i < 2; i++)
5296 for (j = 0; j < 2; j++)
5297 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5298
5299 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005300}
5301
Jens Axboe824c2122019-05-10 10:56:32 -07005302static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
Jens Axboef0635b82018-05-09 13:27:21 -06005303{
5304 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5305 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005306 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005307
Jens Axboe483b7bf2018-05-09 15:26:55 -06005308 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5309 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboe824c2122019-05-10 10:56:32 -07005310}
5311
5312static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5313{
5314 bfq_depth_updated(hctx);
Jens Axboef0635b82018-05-09 13:27:21 -06005315 return 0;
5316}
5317
Paolo Valenteaee69d72017-04-19 08:29:02 -06005318static void bfq_exit_queue(struct elevator_queue *e)
5319{
5320 struct bfq_data *bfqd = e->elevator_data;
5321 struct bfq_queue *bfqq, *n;
5322
5323 hrtimer_cancel(&bfqd->idle_slice_timer);
5324
5325 spin_lock_irq(&bfqd->lock);
5326 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005327 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005328 spin_unlock_irq(&bfqd->lock);
5329
5330 hrtimer_cancel(&bfqd->idle_slice_timer);
5331
Jens Axboe8abef102018-01-09 12:20:51 -07005332#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005333 /* release oom-queue reference to root group */
5334 bfqg_and_blkg_put(bfqd->root_group);
5335
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005336 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5337#else
5338 spin_lock_irq(&bfqd->lock);
5339 bfq_put_async_queues(bfqd, bfqd->root_group);
5340 kfree(bfqd->root_group);
5341 spin_unlock_irq(&bfqd->lock);
5342#endif
5343
Paolo Valenteaee69d72017-04-19 08:29:02 -06005344 kfree(bfqd);
5345}
5346
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005347static void bfq_init_root_group(struct bfq_group *root_group,
5348 struct bfq_data *bfqd)
5349{
5350 int i;
5351
5352#ifdef CONFIG_BFQ_GROUP_IOSCHED
5353 root_group->entity.parent = NULL;
5354 root_group->my_entity = NULL;
5355 root_group->bfqd = bfqd;
5356#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005357 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005358 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5359 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5360 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5361}
5362
Paolo Valenteaee69d72017-04-19 08:29:02 -06005363static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5364{
5365 struct bfq_data *bfqd;
5366 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005367
5368 eq = elevator_alloc(q, e);
5369 if (!eq)
5370 return -ENOMEM;
5371
5372 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5373 if (!bfqd) {
5374 kobject_put(&eq->kobj);
5375 return -ENOMEM;
5376 }
5377 eq->elevator_data = bfqd;
5378
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005379 spin_lock_irq(q->queue_lock);
5380 q->elevator = eq;
5381 spin_unlock_irq(q->queue_lock);
5382
Paolo Valenteaee69d72017-04-19 08:29:02 -06005383 /*
5384 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5385 * Grab a permanent reference to it, so that the normal code flow
5386 * will not attempt to free it.
5387 */
5388 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5389 bfqd->oom_bfqq.ref++;
5390 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5391 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5392 bfqd->oom_bfqq.entity.new_weight =
5393 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005394
5395 /* oom_bfqq does not participate to bursts */
5396 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5397
Paolo Valenteaee69d72017-04-19 08:29:02 -06005398 /*
5399 * Trigger weight initialization, according to ioprio, at the
5400 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5401 * class won't be changed any more.
5402 */
5403 bfqd->oom_bfqq.entity.prio_changed = 1;
5404
5405 bfqd->queue = q;
5406
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005407 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005408
5409 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5410 HRTIMER_MODE_REL);
5411 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5412
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005413 bfqd->queue_weights_tree = RB_ROOT;
5414 bfqd->group_weights_tree = RB_ROOT;
5415
Paolo Valenteaee69d72017-04-19 08:29:02 -06005416 INIT_LIST_HEAD(&bfqd->active_list);
5417 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005418 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005419
5420 bfqd->hw_tag = -1;
5421
5422 bfqd->bfq_max_budget = bfq_default_max_budget;
5423
5424 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5425 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5426 bfqd->bfq_back_max = bfq_back_max;
5427 bfqd->bfq_back_penalty = bfq_back_penalty;
5428 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005429 bfqd->bfq_timeout = bfq_timeout;
5430
5431 bfqd->bfq_requests_within_timer = 120;
5432
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005433 bfqd->bfq_large_burst_thresh = 8;
5434 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5435
Paolo Valente44e44a12017-04-12 18:23:12 +02005436 bfqd->low_latency = true;
5437
5438 /*
5439 * Trade-off between responsiveness and fairness.
5440 */
5441 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005442 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005443 bfqd->bfq_wr_max_time = 0;
5444 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5445 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005446 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5447 * Approximate rate required
5448 * to playback or record a
5449 * high-definition compressed
5450 * video.
5451 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005452 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005453
5454 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005455 * Begin by assuming, optimistically, that the device peak
5456 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005457 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005458 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5459 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5460 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005461
Paolo Valenteaee69d72017-04-19 08:29:02 -06005462 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005463
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005464 /*
5465 * The invocation of the next bfq_create_group_hierarchy
5466 * function is the head of a chain of function calls
5467 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5468 * blk_mq_freeze_queue) that may lead to the invocation of the
5469 * has_work hook function. For this reason,
5470 * bfq_create_group_hierarchy is invoked only after all
5471 * scheduler data has been initialized, apart from the fields
5472 * that can be initialized only after invoking
5473 * bfq_create_group_hierarchy. This, in particular, enables
5474 * has_work to correctly return false. Of course, to avoid
5475 * other inconsistencies, the blk-mq stack must then refrain
5476 * from invoking further scheduler hooks before this init
5477 * function is finished.
5478 */
5479 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5480 if (!bfqd->root_group)
5481 goto out_free;
5482 bfq_init_root_group(bfqd->root_group, bfqd);
5483 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5484
Luca Micciob5dc5d42017-10-09 16:27:21 +02005485 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005486 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005487
5488out_free:
5489 kfree(bfqd);
5490 kobject_put(&eq->kobj);
5491 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005492}
5493
5494static void bfq_slab_kill(void)
5495{
5496 kmem_cache_destroy(bfq_pool);
5497}
5498
5499static int __init bfq_slab_setup(void)
5500{
5501 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5502 if (!bfq_pool)
5503 return -ENOMEM;
5504 return 0;
5505}
5506
5507static ssize_t bfq_var_show(unsigned int var, char *page)
5508{
5509 return sprintf(page, "%u\n", var);
5510}
5511
Bart Van Assche2f791362017-08-30 11:42:09 -07005512static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005513{
5514 unsigned long new_val;
5515 int ret = kstrtoul(page, 10, &new_val);
5516
Bart Van Assche2f791362017-08-30 11:42:09 -07005517 if (ret)
5518 return ret;
5519 *var = new_val;
5520 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005521}
5522
5523#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5524static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5525{ \
5526 struct bfq_data *bfqd = e->elevator_data; \
5527 u64 __data = __VAR; \
5528 if (__CONV == 1) \
5529 __data = jiffies_to_msecs(__data); \
5530 else if (__CONV == 2) \
5531 __data = div_u64(__data, NSEC_PER_MSEC); \
5532 return bfq_var_show(__data, (page)); \
5533}
5534SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5535SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5536SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5537SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5538SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5539SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5540SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5541SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02005542SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005543#undef SHOW_FUNCTION
5544
5545#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5546static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5547{ \
5548 struct bfq_data *bfqd = e->elevator_data; \
5549 u64 __data = __VAR; \
5550 __data = div_u64(__data, NSEC_PER_USEC); \
5551 return bfq_var_show(__data, (page)); \
5552}
5553USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5554#undef USEC_SHOW_FUNCTION
5555
5556#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5557static ssize_t \
5558__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5559{ \
5560 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005561 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005562 int ret; \
5563 \
5564 ret = bfq_var_store(&__data, (page)); \
5565 if (ret) \
5566 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005567 if (__data < __min) \
5568 __data = __min; \
5569 else if (__data > __max) \
5570 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005571 if (__CONV == 1) \
5572 *(__PTR) = msecs_to_jiffies(__data); \
5573 else if (__CONV == 2) \
5574 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5575 else \
5576 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08005577 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005578}
5579STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5580 INT_MAX, 2);
5581STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5582 INT_MAX, 2);
5583STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5584STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5585 INT_MAX, 0);
5586STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5587#undef STORE_FUNCTION
5588
5589#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5590static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5591{ \
5592 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005593 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005594 int ret; \
5595 \
5596 ret = bfq_var_store(&__data, (page)); \
5597 if (ret) \
5598 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005599 if (__data < __min) \
5600 __data = __min; \
5601 else if (__data > __max) \
5602 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005603 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08005604 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005605}
5606USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5607 UINT_MAX);
5608#undef USEC_STORE_FUNCTION
5609
Paolo Valenteaee69d72017-04-19 08:29:02 -06005610static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5611 const char *page, size_t count)
5612{
5613 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005614 unsigned long __data;
5615 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005616
Bart Van Assche2f791362017-08-30 11:42:09 -07005617 ret = bfq_var_store(&__data, (page));
5618 if (ret)
5619 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005620
5621 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005622 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005623 else {
5624 if (__data > INT_MAX)
5625 __data = INT_MAX;
5626 bfqd->bfq_max_budget = __data;
5627 }
5628
5629 bfqd->bfq_user_max_budget = __data;
5630
weiping zhang235f8da2017-08-25 01:11:33 +08005631 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005632}
5633
5634/*
5635 * Leaving this name to preserve name compatibility with cfq
5636 * parameters, but this timeout is used for both sync and async.
5637 */
5638static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5639 const char *page, size_t count)
5640{
5641 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005642 unsigned long __data;
5643 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005644
Bart Van Assche2f791362017-08-30 11:42:09 -07005645 ret = bfq_var_store(&__data, (page));
5646 if (ret)
5647 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005648
5649 if (__data < 1)
5650 __data = 1;
5651 else if (__data > INT_MAX)
5652 __data = INT_MAX;
5653
5654 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5655 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005656 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005657
weiping zhang235f8da2017-08-25 01:11:33 +08005658 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005659}
5660
5661static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5662 const char *page, size_t count)
5663{
5664 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005665 unsigned long __data;
5666 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005667
Bart Van Assche2f791362017-08-30 11:42:09 -07005668 ret = bfq_var_store(&__data, (page));
5669 if (ret)
5670 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005671
5672 if (__data > 1)
5673 __data = 1;
5674 if (!bfqd->strict_guarantees && __data == 1
5675 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5676 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5677
5678 bfqd->strict_guarantees = __data;
5679
weiping zhang235f8da2017-08-25 01:11:33 +08005680 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005681}
5682
Paolo Valente44e44a12017-04-12 18:23:12 +02005683static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5684 const char *page, size_t count)
5685{
5686 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005687 unsigned long __data;
5688 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005689
Bart Van Assche2f791362017-08-30 11:42:09 -07005690 ret = bfq_var_store(&__data, (page));
5691 if (ret)
5692 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02005693
5694 if (__data > 1)
5695 __data = 1;
5696 if (__data == 0 && bfqd->low_latency != 0)
5697 bfq_end_wr(bfqd);
5698 bfqd->low_latency = __data;
5699
weiping zhang235f8da2017-08-25 01:11:33 +08005700 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02005701}
5702
Paolo Valenteaee69d72017-04-19 08:29:02 -06005703#define BFQ_ATTR(name) \
5704 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5705
5706static struct elv_fs_entry bfq_attrs[] = {
5707 BFQ_ATTR(fifo_expire_sync),
5708 BFQ_ATTR(fifo_expire_async),
5709 BFQ_ATTR(back_seek_max),
5710 BFQ_ATTR(back_seek_penalty),
5711 BFQ_ATTR(slice_idle),
5712 BFQ_ATTR(slice_idle_us),
5713 BFQ_ATTR(max_budget),
5714 BFQ_ATTR(timeout_sync),
5715 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02005716 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06005717 __ATTR_NULL
5718};
5719
5720static struct elevator_type iosched_bfq_mq = {
5721 .ops.mq = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01005722 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005723 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01005724 .requeue_request = bfq_finish_requeue_request,
5725 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005726 .exit_icq = bfq_exit_icq,
5727 .insert_requests = bfq_insert_requests,
5728 .dispatch_request = bfq_dispatch_request,
5729 .next_request = elv_rb_latter_request,
5730 .former_request = elv_rb_former_request,
5731 .allow_merge = bfq_allow_bio_merge,
5732 .bio_merge = bfq_bio_merge,
5733 .request_merge = bfq_request_merge,
5734 .requests_merged = bfq_requests_merged,
5735 .request_merged = bfq_request_merged,
5736 .has_work = bfq_has_work,
Jens Axboe824c2122019-05-10 10:56:32 -07005737 .depth_updated = bfq_depth_updated,
Jens Axboef0635b82018-05-09 13:27:21 -06005738 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005739 .init_sched = bfq_init_queue,
5740 .exit_sched = bfq_exit_queue,
5741 },
5742
5743 .uses_mq = true,
5744 .icq_size = sizeof(struct bfq_io_cq),
5745 .icq_align = __alignof__(struct bfq_io_cq),
5746 .elevator_attrs = bfq_attrs,
5747 .elevator_name = "bfq",
5748 .elevator_owner = THIS_MODULE,
5749};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01005750MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06005751
5752static int __init bfq_init(void)
5753{
5754 int ret;
5755
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005756#ifdef CONFIG_BFQ_GROUP_IOSCHED
5757 ret = blkcg_policy_register(&blkcg_policy_bfq);
5758 if (ret)
5759 return ret;
5760#endif
5761
Paolo Valenteaee69d72017-04-19 08:29:02 -06005762 ret = -ENOMEM;
5763 if (bfq_slab_setup())
5764 goto err_pol_unreg;
5765
Paolo Valente44e44a12017-04-12 18:23:12 +02005766 /*
5767 * Times to load large popular applications for the typical
5768 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02005769 * comments before the definition of the next
5770 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02005771 * estimated peak rate tends to be smaller than the actual
5772 * peak rate. The reason for this last fact is that estimates
5773 * are computed over much shorter time intervals than the long
5774 * intervals typically used for benchmarking. Why? First, to
5775 * adapt more quickly to variations. Second, because an I/O
5776 * scheduler cannot rely on a peak-rate-evaluation workload to
5777 * be run for a long time.
5778 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005779 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5780 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02005781
Paolo Valenteaee69d72017-04-19 08:29:02 -06005782 ret = elv_register(&iosched_bfq_mq);
5783 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08005784 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005785
5786 return 0;
5787
weiping zhang37dcd652017-08-19 00:37:20 +08005788slab_kill:
5789 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005790err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005791#ifdef CONFIG_BFQ_GROUP_IOSCHED
5792 blkcg_policy_unregister(&blkcg_policy_bfq);
5793#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005794 return ret;
5795}
5796
5797static void __exit bfq_exit(void)
5798{
5799 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005800#ifdef CONFIG_BFQ_GROUP_IOSCHED
5801 blkcg_policy_unregister(&blkcg_policy_bfq);
5802#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005803 bfq_slab_kill();
5804}
5805
5806module_init(bfq_init);
5807module_exit(bfq_exit);
5808
5809MODULE_AUTHOR("Paolo Valente");
5810MODULE_LICENSE("GPL");
5811MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");