blob: f33eef4ebd12b55645365732135638855ef313cd [file] [log] [blame]
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001/*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14#include <linux/cpu.h>
15#include <linux/kernel.h>
16#include <linux/init.h>
17#include <linux/smp.h>
18#include <linux/preempt.h>
19#include <linux/hardirq.h>
20#include <linux/percpu.h>
21#include <linux/delay.h>
22#include <linux/start_kernel.h>
23#include <linux/sched.h>
24#include <linux/kprobes.h>
25#include <linux/bootmem.h>
26#include <linux/export.h>
27#include <linux/mm.h>
28#include <linux/page-flags.h>
29#include <linux/highmem.h>
30#include <linux/console.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/memblock.h>
34#include <linux/edd.h>
35#include <linux/frame.h>
36
37#include <xen/xen.h>
38#include <xen/events.h>
39#include <xen/interface/xen.h>
40#include <xen/interface/version.h>
41#include <xen/interface/physdev.h>
42#include <xen/interface/vcpu.h>
43#include <xen/interface/memory.h>
44#include <xen/interface/nmi.h>
45#include <xen/interface/xen-mca.h>
46#include <xen/features.h>
47#include <xen/page.h>
48#include <xen/hvc-console.h>
49#include <xen/acpi.h>
50
51#include <asm/paravirt.h>
52#include <asm/apic.h>
53#include <asm/page.h>
54#include <asm/xen/pci.h>
55#include <asm/xen/hypercall.h>
56#include <asm/xen/hypervisor.h>
57#include <asm/xen/cpuid.h>
58#include <asm/fixmap.h>
59#include <asm/processor.h>
60#include <asm/proto.h>
61#include <asm/msr-index.h>
62#include <asm/traps.h>
63#include <asm/setup.h>
64#include <asm/desc.h>
65#include <asm/pgalloc.h>
66#include <asm/pgtable.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/stackprotector.h>
70#include <asm/hypervisor.h>
71#include <asm/mach_traps.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75
76#ifdef CONFIG_ACPI
77#include <linux/acpi.h>
78#include <asm/acpi.h>
79#include <acpi/pdc_intel.h>
80#include <acpi/processor.h>
81#include <xen/interface/platform.h>
82#endif
83
84#include "xen-ops.h"
85#include "mmu.h"
86#include "smp.h"
87#include "multicalls.h"
88#include "pmu.h"
89
90void *xen_initial_gdt;
91
92RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
93
94static int xen_cpu_up_prepare_pv(unsigned int cpu);
95static int xen_cpu_dead_pv(unsigned int cpu);
96
97struct tls_descs {
98 struct desc_struct desc[3];
99};
100
101/*
102 * Updating the 3 TLS descriptors in the GDT on every task switch is
103 * surprisingly expensive so we avoid updating them if they haven't
104 * changed. Since Xen writes different descriptors than the one
105 * passed in the update_descriptor hypercall we keep shadow copies to
106 * compare against.
107 */
108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
109
110/*
111 * On restore, set the vcpu placement up again.
112 * If it fails, then we're in a bad state, since
113 * we can't back out from using it...
114 */
115void xen_vcpu_restore(void)
116{
117 int cpu;
118
119 for_each_possible_cpu(cpu) {
120 bool other_cpu = (cpu != smp_processor_id());
121 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
122 NULL);
123
124 if (other_cpu && is_up &&
125 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
126 BUG();
127
128 xen_setup_runstate_info(cpu);
129
130 if (xen_have_vcpu_info_placement)
131 xen_vcpu_setup(cpu);
132
133 if (other_cpu && is_up &&
134 HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
135 BUG();
136 }
137}
138
139static void __init xen_banner(void)
140{
141 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
142 struct xen_extraversion extra;
143 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
144
Juergen Gross989513a2017-05-16 09:41:06 +0200145 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100146 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
147 version >> 16, version & 0xffff, extra.extraversion,
148 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
149}
150/* Check if running on Xen version (major, minor) or later */
151bool
152xen_running_on_version_or_later(unsigned int major, unsigned int minor)
153{
154 unsigned int version;
155
156 if (!xen_domain())
157 return false;
158
159 version = HYPERVISOR_xen_version(XENVER_version, NULL);
160 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
161 ((version >> 16) > major))
162 return true;
163 return false;
164}
165
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100166static __read_mostly unsigned int cpuid_leaf5_ecx_val;
167static __read_mostly unsigned int cpuid_leaf5_edx_val;
168
169static void xen_cpuid(unsigned int *ax, unsigned int *bx,
170 unsigned int *cx, unsigned int *dx)
171{
172 unsigned maskebx = ~0;
Juergen Gross6807cf62017-04-12 15:12:09 +0200173
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100174 /*
175 * Mask out inconvenient features, to try and disable as many
176 * unsupported kernel subsystems as possible.
177 */
178 switch (*ax) {
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100179 case CPUID_MWAIT_LEAF:
180 /* Synthesize the values.. */
181 *ax = 0;
182 *bx = 0;
183 *cx = cpuid_leaf5_ecx_val;
184 *dx = cpuid_leaf5_edx_val;
185 return;
186
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100187 case 0xb:
188 /* Suppress extended topology stuff */
189 maskebx = 0;
190 break;
191 }
192
193 asm(XEN_EMULATE_PREFIX "cpuid"
194 : "=a" (*ax),
195 "=b" (*bx),
196 "=c" (*cx),
197 "=d" (*dx)
198 : "0" (*ax), "2" (*cx));
199
200 *bx &= maskebx;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100201}
202STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
203
204static bool __init xen_check_mwait(void)
205{
206#ifdef CONFIG_ACPI
207 struct xen_platform_op op = {
208 .cmd = XENPF_set_processor_pminfo,
209 .u.set_pminfo.id = -1,
210 .u.set_pminfo.type = XEN_PM_PDC,
211 };
212 uint32_t buf[3];
213 unsigned int ax, bx, cx, dx;
214 unsigned int mwait_mask;
215
216 /* We need to determine whether it is OK to expose the MWAIT
217 * capability to the kernel to harvest deeper than C3 states from ACPI
218 * _CST using the processor_harvest_xen.c module. For this to work, we
219 * need to gather the MWAIT_LEAF values (which the cstate.c code
220 * checks against). The hypervisor won't expose the MWAIT flag because
221 * it would break backwards compatibility; so we will find out directly
222 * from the hardware and hypercall.
223 */
224 if (!xen_initial_domain())
225 return false;
226
227 /*
228 * When running under platform earlier than Xen4.2, do not expose
229 * mwait, to avoid the risk of loading native acpi pad driver
230 */
231 if (!xen_running_on_version_or_later(4, 2))
232 return false;
233
234 ax = 1;
235 cx = 0;
236
237 native_cpuid(&ax, &bx, &cx, &dx);
238
239 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
240 (1 << (X86_FEATURE_MWAIT % 32));
241
242 if ((cx & mwait_mask) != mwait_mask)
243 return false;
244
245 /* We need to emulate the MWAIT_LEAF and for that we need both
246 * ecx and edx. The hypercall provides only partial information.
247 */
248
249 ax = CPUID_MWAIT_LEAF;
250 bx = 0;
251 cx = 0;
252 dx = 0;
253
254 native_cpuid(&ax, &bx, &cx, &dx);
255
256 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
257 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
258 */
259 buf[0] = ACPI_PDC_REVISION_ID;
260 buf[1] = 1;
261 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
262
263 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
264
265 if ((HYPERVISOR_platform_op(&op) == 0) &&
266 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
267 cpuid_leaf5_ecx_val = cx;
268 cpuid_leaf5_edx_val = dx;
269 }
270 return true;
271#else
272 return false;
273#endif
274}
Juergen Gross6807cf62017-04-12 15:12:09 +0200275
276static bool __init xen_check_xsave(void)
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100277{
Juergen Gross40f4ac02017-04-25 08:47:40 +0200278 unsigned int cx, xsave_mask;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100279
Juergen Gross40f4ac02017-04-25 08:47:40 +0200280 cx = cpuid_ecx(1);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100281
Juergen Gross40f4ac02017-04-25 08:47:40 +0200282 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
283 (1 << (X86_FEATURE_OSXSAVE % 32));
284
285 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
286 return (cx & xsave_mask) == xsave_mask;
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100287}
288
Juergen Gross0808e802017-04-13 08:55:41 +0200289static void __init xen_init_capabilities(void)
290{
Juergen Gross0808e802017-04-13 08:55:41 +0200291 setup_force_cpu_cap(X86_FEATURE_XENPV);
Juergen Gross3ee99df2017-04-12 08:20:29 +0200292 setup_clear_cpu_cap(X86_FEATURE_DCA);
Juergen Grossfd9145f2017-04-12 08:27:07 +0200293 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
Juergen Gross88f32562017-04-12 09:21:05 +0200294 setup_clear_cpu_cap(X86_FEATURE_MTRR);
Juergen Grossaa107152017-04-12 09:24:01 +0200295 setup_clear_cpu_cap(X86_FEATURE_ACC);
Juergen Grosse657fcc2017-04-12 12:45:57 +0200296 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
Juergen Grossb778d6bf2017-04-12 09:27:47 +0200297
298 if (!xen_initial_domain())
299 setup_clear_cpu_cap(X86_FEATURE_ACPI);
Juergen Grossea015982017-04-12 12:37:00 +0200300
301 if (xen_check_mwait())
302 setup_force_cpu_cap(X86_FEATURE_MWAIT);
303 else
304 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
Juergen Gross6807cf62017-04-12 15:12:09 +0200305
Juergen Gross40f4ac02017-04-25 08:47:40 +0200306 if (!xen_check_xsave()) {
Juergen Gross6807cf62017-04-12 15:12:09 +0200307 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
308 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
309 }
Juergen Gross0808e802017-04-13 08:55:41 +0200310}
311
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100312static void xen_set_debugreg(int reg, unsigned long val)
313{
314 HYPERVISOR_set_debugreg(reg, val);
315}
316
317static unsigned long xen_get_debugreg(int reg)
318{
319 return HYPERVISOR_get_debugreg(reg);
320}
321
322static void xen_end_context_switch(struct task_struct *next)
323{
324 xen_mc_flush();
325 paravirt_end_context_switch(next);
326}
327
328static unsigned long xen_store_tr(void)
329{
330 return 0;
331}
332
333/*
334 * Set the page permissions for a particular virtual address. If the
335 * address is a vmalloc mapping (or other non-linear mapping), then
336 * find the linear mapping of the page and also set its protections to
337 * match.
338 */
339static void set_aliased_prot(void *v, pgprot_t prot)
340{
341 int level;
342 pte_t *ptep;
343 pte_t pte;
344 unsigned long pfn;
345 struct page *page;
346 unsigned char dummy;
347
348 ptep = lookup_address((unsigned long)v, &level);
349 BUG_ON(ptep == NULL);
350
351 pfn = pte_pfn(*ptep);
352 page = pfn_to_page(pfn);
353
354 pte = pfn_pte(pfn, prot);
355
356 /*
357 * Careful: update_va_mapping() will fail if the virtual address
358 * we're poking isn't populated in the page tables. We don't
359 * need to worry about the direct map (that's always in the page
360 * tables), but we need to be careful about vmap space. In
361 * particular, the top level page table can lazily propagate
362 * entries between processes, so if we've switched mms since we
363 * vmapped the target in the first place, we might not have the
364 * top-level page table entry populated.
365 *
366 * We disable preemption because we want the same mm active when
367 * we probe the target and when we issue the hypercall. We'll
368 * have the same nominal mm, but if we're a kernel thread, lazy
369 * mm dropping could change our pgd.
370 *
371 * Out of an abundance of caution, this uses __get_user() to fault
372 * in the target address just in case there's some obscure case
373 * in which the target address isn't readable.
374 */
375
376 preempt_disable();
377
378 probe_kernel_read(&dummy, v, 1);
379
380 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
381 BUG();
382
383 if (!PageHighMem(page)) {
384 void *av = __va(PFN_PHYS(pfn));
385
386 if (av != v)
387 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
388 BUG();
389 } else
390 kmap_flush_unused();
391
392 preempt_enable();
393}
394
395static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
396{
397 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
398 int i;
399
400 /*
401 * We need to mark the all aliases of the LDT pages RO. We
402 * don't need to call vm_flush_aliases(), though, since that's
403 * only responsible for flushing aliases out the TLBs, not the
404 * page tables, and Xen will flush the TLB for us if needed.
405 *
406 * To avoid confusing future readers: none of this is necessary
407 * to load the LDT. The hypervisor only checks this when the
408 * LDT is faulted in due to subsequent descriptor access.
409 */
410
411 for (i = 0; i < entries; i += entries_per_page)
412 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
413}
414
415static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
416{
417 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
418 int i;
419
420 for (i = 0; i < entries; i += entries_per_page)
421 set_aliased_prot(ldt + i, PAGE_KERNEL);
422}
423
424static void xen_set_ldt(const void *addr, unsigned entries)
425{
426 struct mmuext_op *op;
427 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
428
429 trace_xen_cpu_set_ldt(addr, entries);
430
431 op = mcs.args;
432 op->cmd = MMUEXT_SET_LDT;
433 op->arg1.linear_addr = (unsigned long)addr;
434 op->arg2.nr_ents = entries;
435
436 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
437
438 xen_mc_issue(PARAVIRT_LAZY_CPU);
439}
440
441static void xen_load_gdt(const struct desc_ptr *dtr)
442{
443 unsigned long va = dtr->address;
444 unsigned int size = dtr->size + 1;
445 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
446 unsigned long frames[pages];
447 int f;
448
449 /*
450 * A GDT can be up to 64k in size, which corresponds to 8192
451 * 8-byte entries, or 16 4k pages..
452 */
453
454 BUG_ON(size > 65536);
455 BUG_ON(va & ~PAGE_MASK);
456
457 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
458 int level;
459 pte_t *ptep;
460 unsigned long pfn, mfn;
461 void *virt;
462
463 /*
464 * The GDT is per-cpu and is in the percpu data area.
465 * That can be virtually mapped, so we need to do a
466 * page-walk to get the underlying MFN for the
467 * hypercall. The page can also be in the kernel's
468 * linear range, so we need to RO that mapping too.
469 */
470 ptep = lookup_address(va, &level);
471 BUG_ON(ptep == NULL);
472
473 pfn = pte_pfn(*ptep);
474 mfn = pfn_to_mfn(pfn);
475 virt = __va(PFN_PHYS(pfn));
476
477 frames[f] = mfn;
478
479 make_lowmem_page_readonly((void *)va);
480 make_lowmem_page_readonly(virt);
481 }
482
483 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
484 BUG();
485}
486
487/*
488 * load_gdt for early boot, when the gdt is only mapped once
489 */
490static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
491{
492 unsigned long va = dtr->address;
493 unsigned int size = dtr->size + 1;
494 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
495 unsigned long frames[pages];
496 int f;
497
498 /*
499 * A GDT can be up to 64k in size, which corresponds to 8192
500 * 8-byte entries, or 16 4k pages..
501 */
502
503 BUG_ON(size > 65536);
504 BUG_ON(va & ~PAGE_MASK);
505
506 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
507 pte_t pte;
508 unsigned long pfn, mfn;
509
510 pfn = virt_to_pfn(va);
511 mfn = pfn_to_mfn(pfn);
512
513 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
514
515 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
516 BUG();
517
518 frames[f] = mfn;
519 }
520
521 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
522 BUG();
523}
524
525static inline bool desc_equal(const struct desc_struct *d1,
526 const struct desc_struct *d2)
527{
528 return d1->a == d2->a && d1->b == d2->b;
529}
530
531static void load_TLS_descriptor(struct thread_struct *t,
532 unsigned int cpu, unsigned int i)
533{
534 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
535 struct desc_struct *gdt;
536 xmaddr_t maddr;
537 struct multicall_space mc;
538
539 if (desc_equal(shadow, &t->tls_array[i]))
540 return;
541
542 *shadow = t->tls_array[i];
543
544 gdt = get_cpu_gdt_rw(cpu);
545 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
546 mc = __xen_mc_entry(0);
547
548 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
549}
550
551static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
552{
553 /*
554 * XXX sleazy hack: If we're being called in a lazy-cpu zone
555 * and lazy gs handling is enabled, it means we're in a
556 * context switch, and %gs has just been saved. This means we
557 * can zero it out to prevent faults on exit from the
558 * hypervisor if the next process has no %gs. Either way, it
559 * has been saved, and the new value will get loaded properly.
560 * This will go away as soon as Xen has been modified to not
561 * save/restore %gs for normal hypercalls.
562 *
563 * On x86_64, this hack is not used for %gs, because gs points
564 * to KERNEL_GS_BASE (and uses it for PDA references), so we
565 * must not zero %gs on x86_64
566 *
567 * For x86_64, we need to zero %fs, otherwise we may get an
568 * exception between the new %fs descriptor being loaded and
569 * %fs being effectively cleared at __switch_to().
570 */
571 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
572#ifdef CONFIG_X86_32
573 lazy_load_gs(0);
574#else
575 loadsegment(fs, 0);
576#endif
577 }
578
579 xen_mc_batch();
580
581 load_TLS_descriptor(t, cpu, 0);
582 load_TLS_descriptor(t, cpu, 1);
583 load_TLS_descriptor(t, cpu, 2);
584
585 xen_mc_issue(PARAVIRT_LAZY_CPU);
586}
587
588#ifdef CONFIG_X86_64
589static void xen_load_gs_index(unsigned int idx)
590{
591 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
592 BUG();
593}
594#endif
595
596static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
597 const void *ptr)
598{
599 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
600 u64 entry = *(u64 *)ptr;
601
602 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
603
604 preempt_disable();
605
606 xen_mc_flush();
607 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
608 BUG();
609
610 preempt_enable();
611}
612
613static int cvt_gate_to_trap(int vector, const gate_desc *val,
614 struct trap_info *info)
615{
616 unsigned long addr;
617
618 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
619 return 0;
620
621 info->vector = vector;
622
623 addr = gate_offset(*val);
624#ifdef CONFIG_X86_64
625 /*
626 * Look for known traps using IST, and substitute them
627 * appropriately. The debugger ones are the only ones we care
628 * about. Xen will handle faults like double_fault,
629 * so we should never see them. Warn if
630 * there's an unexpected IST-using fault handler.
631 */
632 if (addr == (unsigned long)debug)
633 addr = (unsigned long)xen_debug;
634 else if (addr == (unsigned long)int3)
635 addr = (unsigned long)xen_int3;
636 else if (addr == (unsigned long)stack_segment)
637 addr = (unsigned long)xen_stack_segment;
638 else if (addr == (unsigned long)double_fault) {
639 /* Don't need to handle these */
640 return 0;
641#ifdef CONFIG_X86_MCE
642 } else if (addr == (unsigned long)machine_check) {
643 /*
644 * when xen hypervisor inject vMCE to guest,
645 * use native mce handler to handle it
646 */
647 ;
648#endif
649 } else if (addr == (unsigned long)nmi)
650 /*
651 * Use the native version as well.
652 */
653 ;
654 else {
655 /* Some other trap using IST? */
656 if (WARN_ON(val->ist != 0))
657 return 0;
658 }
659#endif /* CONFIG_X86_64 */
660 info->address = addr;
661
662 info->cs = gate_segment(*val);
663 info->flags = val->dpl;
664 /* interrupt gates clear IF */
665 if (val->type == GATE_INTERRUPT)
666 info->flags |= 1 << 2;
667
668 return 1;
669}
670
671/* Locations of each CPU's IDT */
672static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
673
674/* Set an IDT entry. If the entry is part of the current IDT, then
675 also update Xen. */
676static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
677{
678 unsigned long p = (unsigned long)&dt[entrynum];
679 unsigned long start, end;
680
681 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
682
683 preempt_disable();
684
685 start = __this_cpu_read(idt_desc.address);
686 end = start + __this_cpu_read(idt_desc.size) + 1;
687
688 xen_mc_flush();
689
690 native_write_idt_entry(dt, entrynum, g);
691
692 if (p >= start && (p + 8) <= end) {
693 struct trap_info info[2];
694
695 info[1].address = 0;
696
697 if (cvt_gate_to_trap(entrynum, g, &info[0]))
698 if (HYPERVISOR_set_trap_table(info))
699 BUG();
700 }
701
702 preempt_enable();
703}
704
705static void xen_convert_trap_info(const struct desc_ptr *desc,
706 struct trap_info *traps)
707{
708 unsigned in, out, count;
709
710 count = (desc->size+1) / sizeof(gate_desc);
711 BUG_ON(count > 256);
712
713 for (in = out = 0; in < count; in++) {
714 gate_desc *entry = (gate_desc *)(desc->address) + in;
715
716 if (cvt_gate_to_trap(in, entry, &traps[out]))
717 out++;
718 }
719 traps[out].address = 0;
720}
721
722void xen_copy_trap_info(struct trap_info *traps)
723{
724 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
725
726 xen_convert_trap_info(desc, traps);
727}
728
729/* Load a new IDT into Xen. In principle this can be per-CPU, so we
730 hold a spinlock to protect the static traps[] array (static because
731 it avoids allocation, and saves stack space). */
732static void xen_load_idt(const struct desc_ptr *desc)
733{
734 static DEFINE_SPINLOCK(lock);
735 static struct trap_info traps[257];
736
737 trace_xen_cpu_load_idt(desc);
738
739 spin_lock(&lock);
740
741 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
742
743 xen_convert_trap_info(desc, traps);
744
745 xen_mc_flush();
746 if (HYPERVISOR_set_trap_table(traps))
747 BUG();
748
749 spin_unlock(&lock);
750}
751
752/* Write a GDT descriptor entry. Ignore LDT descriptors, since
753 they're handled differently. */
754static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
755 const void *desc, int type)
756{
757 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
758
759 preempt_disable();
760
761 switch (type) {
762 case DESC_LDT:
763 case DESC_TSS:
764 /* ignore */
765 break;
766
767 default: {
768 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
769
770 xen_mc_flush();
771 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
772 BUG();
773 }
774
775 }
776
777 preempt_enable();
778}
779
780/*
781 * Version of write_gdt_entry for use at early boot-time needed to
782 * update an entry as simply as possible.
783 */
784static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
785 const void *desc, int type)
786{
787 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
788
789 switch (type) {
790 case DESC_LDT:
791 case DESC_TSS:
792 /* ignore */
793 break;
794
795 default: {
796 xmaddr_t maddr = virt_to_machine(&dt[entry]);
797
798 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
799 dt[entry] = *(struct desc_struct *)desc;
800 }
801
802 }
803}
804
805static void xen_load_sp0(struct tss_struct *tss,
806 struct thread_struct *thread)
807{
808 struct multicall_space mcs;
809
810 mcs = xen_mc_entry(0);
811 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
812 xen_mc_issue(PARAVIRT_LAZY_CPU);
813 tss->x86_tss.sp0 = thread->sp0;
814}
815
816void xen_set_iopl_mask(unsigned mask)
817{
818 struct physdev_set_iopl set_iopl;
819
820 /* Force the change at ring 0. */
821 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
822 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
823}
824
825static void xen_io_delay(void)
826{
827}
828
829static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
830
831static unsigned long xen_read_cr0(void)
832{
833 unsigned long cr0 = this_cpu_read(xen_cr0_value);
834
835 if (unlikely(cr0 == 0)) {
836 cr0 = native_read_cr0();
837 this_cpu_write(xen_cr0_value, cr0);
838 }
839
840 return cr0;
841}
842
843static void xen_write_cr0(unsigned long cr0)
844{
845 struct multicall_space mcs;
846
847 this_cpu_write(xen_cr0_value, cr0);
848
849 /* Only pay attention to cr0.TS; everything else is
850 ignored. */
851 mcs = xen_mc_entry(0);
852
853 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
854
855 xen_mc_issue(PARAVIRT_LAZY_CPU);
856}
857
858static void xen_write_cr4(unsigned long cr4)
859{
860 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
861
862 native_write_cr4(cr4);
863}
864#ifdef CONFIG_X86_64
865static inline unsigned long xen_read_cr8(void)
866{
867 return 0;
868}
869static inline void xen_write_cr8(unsigned long val)
870{
871 BUG_ON(val);
872}
873#endif
874
875static u64 xen_read_msr_safe(unsigned int msr, int *err)
876{
877 u64 val;
878
879 if (pmu_msr_read(msr, &val, err))
880 return val;
881
882 val = native_read_msr_safe(msr, err);
883 switch (msr) {
884 case MSR_IA32_APICBASE:
885#ifdef CONFIG_X86_X2APIC
886 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
887#endif
888 val &= ~X2APIC_ENABLE;
889 break;
890 }
891 return val;
892}
893
894static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
895{
896 int ret;
897
898 ret = 0;
899
900 switch (msr) {
901#ifdef CONFIG_X86_64
902 unsigned which;
903 u64 base;
904
905 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
906 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
907 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
908
909 set:
910 base = ((u64)high << 32) | low;
911 if (HYPERVISOR_set_segment_base(which, base) != 0)
912 ret = -EIO;
913 break;
914#endif
915
916 case MSR_STAR:
917 case MSR_CSTAR:
918 case MSR_LSTAR:
919 case MSR_SYSCALL_MASK:
920 case MSR_IA32_SYSENTER_CS:
921 case MSR_IA32_SYSENTER_ESP:
922 case MSR_IA32_SYSENTER_EIP:
923 /* Fast syscall setup is all done in hypercalls, so
924 these are all ignored. Stub them out here to stop
925 Xen console noise. */
926 break;
927
928 default:
929 if (!pmu_msr_write(msr, low, high, &ret))
930 ret = native_write_msr_safe(msr, low, high);
931 }
932
933 return ret;
934}
935
936static u64 xen_read_msr(unsigned int msr)
937{
938 /*
939 * This will silently swallow a #GP from RDMSR. It may be worth
940 * changing that.
941 */
942 int err;
943
944 return xen_read_msr_safe(msr, &err);
945}
946
947static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
948{
949 /*
950 * This will silently swallow a #GP from WRMSR. It may be worth
951 * changing that.
952 */
953 xen_write_msr_safe(msr, low, high);
954}
955
956void xen_setup_shared_info(void)
957{
Juergen Gross989513a2017-05-16 09:41:06 +0200958 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100959
Juergen Gross989513a2017-05-16 09:41:06 +0200960 HYPERVISOR_shared_info =
961 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100962
963#ifndef CONFIG_SMP
964 /* In UP this is as good a place as any to set up shared info */
965 xen_setup_vcpu_info_placement();
966#endif
967
968 xen_setup_mfn_list_list();
Boris Ostrovskyd1628092017-05-03 16:20:51 -0400969
970 /*
971 * Now that shared info is set up we can start using routines that
972 * point to pvclock area.
973 */
974 if (system_state == SYSTEM_BOOTING)
975 xen_init_time_ops();
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +0100976}
977
978/* This is called once we have the cpu_possible_mask */
979void xen_setup_vcpu_info_placement(void)
980{
981 int cpu;
982
983 for_each_possible_cpu(cpu) {
984 /* Set up direct vCPU id mapping for PV guests. */
985 per_cpu(xen_vcpu_id, cpu) = cpu;
986 xen_vcpu_setup(cpu);
987 }
988
989 /*
990 * xen_vcpu_setup managed to place the vcpu_info within the
991 * percpu area for all cpus, so make use of it.
992 */
993 if (xen_have_vcpu_info_placement) {
994 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
995 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
996 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
997 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
998 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
999 }
1000}
1001
1002static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1003 unsigned long addr, unsigned len)
1004{
1005 char *start, *end, *reloc;
1006 unsigned ret;
1007
1008 start = end = reloc = NULL;
1009
1010#define SITE(op, x) \
1011 case PARAVIRT_PATCH(op.x): \
1012 if (xen_have_vcpu_info_placement) { \
1013 start = (char *)xen_##x##_direct; \
1014 end = xen_##x##_direct_end; \
1015 reloc = xen_##x##_direct_reloc; \
1016 } \
1017 goto patch_site
1018
1019 switch (type) {
1020 SITE(pv_irq_ops, irq_enable);
1021 SITE(pv_irq_ops, irq_disable);
1022 SITE(pv_irq_ops, save_fl);
1023 SITE(pv_irq_ops, restore_fl);
1024#undef SITE
1025
1026 patch_site:
1027 if (start == NULL || (end-start) > len)
1028 goto default_patch;
1029
1030 ret = paravirt_patch_insns(insnbuf, len, start, end);
1031
1032 /* Note: because reloc is assigned from something that
1033 appears to be an array, gcc assumes it's non-null,
1034 but doesn't know its relationship with start and
1035 end. */
1036 if (reloc > start && reloc < end) {
1037 int reloc_off = reloc - start;
1038 long *relocp = (long *)(insnbuf + reloc_off);
1039 long delta = start - (char *)addr;
1040
1041 *relocp += delta;
1042 }
1043 break;
1044
1045 default_patch:
1046 default:
1047 ret = paravirt_patch_default(type, clobbers, insnbuf,
1048 addr, len);
1049 break;
1050 }
1051
1052 return ret;
1053}
1054
1055static const struct pv_info xen_info __initconst = {
1056 .shared_kernel_pmd = 0,
1057
1058#ifdef CONFIG_X86_64
1059 .extra_user_64bit_cs = FLAT_USER_CS64,
1060#endif
1061 .name = "Xen",
1062};
1063
1064static const struct pv_init_ops xen_init_ops __initconst = {
1065 .patch = xen_patch,
1066};
1067
1068static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1069 .cpuid = xen_cpuid,
1070
1071 .set_debugreg = xen_set_debugreg,
1072 .get_debugreg = xen_get_debugreg,
1073
1074 .read_cr0 = xen_read_cr0,
1075 .write_cr0 = xen_write_cr0,
1076
1077 .read_cr4 = native_read_cr4,
1078 .write_cr4 = xen_write_cr4,
1079
1080#ifdef CONFIG_X86_64
1081 .read_cr8 = xen_read_cr8,
1082 .write_cr8 = xen_write_cr8,
1083#endif
1084
1085 .wbinvd = native_wbinvd,
1086
1087 .read_msr = xen_read_msr,
1088 .write_msr = xen_write_msr,
1089
1090 .read_msr_safe = xen_read_msr_safe,
1091 .write_msr_safe = xen_write_msr_safe,
1092
1093 .read_pmc = xen_read_pmc,
1094
1095 .iret = xen_iret,
1096#ifdef CONFIG_X86_64
1097 .usergs_sysret64 = xen_sysret64,
1098#endif
1099
1100 .load_tr_desc = paravirt_nop,
1101 .set_ldt = xen_set_ldt,
1102 .load_gdt = xen_load_gdt,
1103 .load_idt = xen_load_idt,
1104 .load_tls = xen_load_tls,
1105#ifdef CONFIG_X86_64
1106 .load_gs_index = xen_load_gs_index,
1107#endif
1108
1109 .alloc_ldt = xen_alloc_ldt,
1110 .free_ldt = xen_free_ldt,
1111
1112 .store_idt = native_store_idt,
1113 .store_tr = xen_store_tr,
1114
1115 .write_ldt_entry = xen_write_ldt_entry,
1116 .write_gdt_entry = xen_write_gdt_entry,
1117 .write_idt_entry = xen_write_idt_entry,
1118 .load_sp0 = xen_load_sp0,
1119
1120 .set_iopl_mask = xen_set_iopl_mask,
1121 .io_delay = xen_io_delay,
1122
1123 /* Xen takes care of %gs when switching to usermode for us */
1124 .swapgs = paravirt_nop,
1125
1126 .start_context_switch = paravirt_start_context_switch,
1127 .end_context_switch = xen_end_context_switch,
1128};
1129
1130static void xen_restart(char *msg)
1131{
1132 xen_reboot(SHUTDOWN_reboot);
1133}
1134
1135static void xen_machine_halt(void)
1136{
1137 xen_reboot(SHUTDOWN_poweroff);
1138}
1139
1140static void xen_machine_power_off(void)
1141{
1142 if (pm_power_off)
1143 pm_power_off();
1144 xen_reboot(SHUTDOWN_poweroff);
1145}
1146
1147static void xen_crash_shutdown(struct pt_regs *regs)
1148{
1149 xen_reboot(SHUTDOWN_crash);
1150}
1151
1152static const struct machine_ops xen_machine_ops __initconst = {
1153 .restart = xen_restart,
1154 .halt = xen_machine_halt,
1155 .power_off = xen_machine_power_off,
1156 .shutdown = xen_machine_halt,
1157 .crash_shutdown = xen_crash_shutdown,
1158 .emergency_restart = xen_emergency_restart,
1159};
1160
1161static unsigned char xen_get_nmi_reason(void)
1162{
1163 unsigned char reason = 0;
1164
1165 /* Construct a value which looks like it came from port 0x61. */
1166 if (test_bit(_XEN_NMIREASON_io_error,
1167 &HYPERVISOR_shared_info->arch.nmi_reason))
1168 reason |= NMI_REASON_IOCHK;
1169 if (test_bit(_XEN_NMIREASON_pci_serr,
1170 &HYPERVISOR_shared_info->arch.nmi_reason))
1171 reason |= NMI_REASON_SERR;
1172
1173 return reason;
1174}
1175
1176static void __init xen_boot_params_init_edd(void)
1177{
1178#if IS_ENABLED(CONFIG_EDD)
1179 struct xen_platform_op op;
1180 struct edd_info *edd_info;
1181 u32 *mbr_signature;
1182 unsigned nr;
1183 int ret;
1184
1185 edd_info = boot_params.eddbuf;
1186 mbr_signature = boot_params.edd_mbr_sig_buffer;
1187
1188 op.cmd = XENPF_firmware_info;
1189
1190 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1191 for (nr = 0; nr < EDDMAXNR; nr++) {
1192 struct edd_info *info = edd_info + nr;
1193
1194 op.u.firmware_info.index = nr;
1195 info->params.length = sizeof(info->params);
1196 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1197 &info->params);
1198 ret = HYPERVISOR_platform_op(&op);
1199 if (ret)
1200 break;
1201
1202#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1203 C(device);
1204 C(version);
1205 C(interface_support);
1206 C(legacy_max_cylinder);
1207 C(legacy_max_head);
1208 C(legacy_sectors_per_track);
1209#undef C
1210 }
1211 boot_params.eddbuf_entries = nr;
1212
1213 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1214 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1215 op.u.firmware_info.index = nr;
1216 ret = HYPERVISOR_platform_op(&op);
1217 if (ret)
1218 break;
1219 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1220 }
1221 boot_params.edd_mbr_sig_buf_entries = nr;
1222#endif
1223}
1224
1225/*
1226 * Set up the GDT and segment registers for -fstack-protector. Until
1227 * we do this, we have to be careful not to call any stack-protected
1228 * function, which is most of the kernel.
1229 */
1230static void xen_setup_gdt(int cpu)
1231{
1232 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1233 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1234
1235 setup_stack_canary_segment(0);
1236 switch_to_new_gdt(0);
1237
1238 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1239 pv_cpu_ops.load_gdt = xen_load_gdt;
1240}
1241
1242static void __init xen_dom0_set_legacy_features(void)
1243{
1244 x86_platform.legacy.rtc = 1;
1245}
1246
1247/* First C function to be called on Xen boot */
1248asmlinkage __visible void __init xen_start_kernel(void)
1249{
1250 struct physdev_set_iopl set_iopl;
1251 unsigned long initrd_start = 0;
1252 int rc;
1253
1254 if (!xen_start_info)
1255 return;
1256
1257 xen_domain_type = XEN_PV_DOMAIN;
1258
1259 xen_setup_features();
1260
1261 xen_setup_machphys_mapping();
1262
1263 /* Install Xen paravirt ops */
1264 pv_info = xen_info;
1265 pv_init_ops = xen_init_ops;
1266 pv_cpu_ops = xen_cpu_ops;
1267
1268 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1269
1270 x86_init.resources.memory_setup = xen_memory_setup;
1271 x86_init.oem.arch_setup = xen_arch_setup;
1272 x86_init.oem.banner = xen_banner;
1273
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001274 /*
1275 * Set up some pagetable state before starting to set any ptes.
1276 */
1277
1278 xen_init_mmu_ops();
1279
1280 /* Prevent unwanted bits from being set in PTEs. */
1281 __supported_pte_mask &= ~_PAGE_GLOBAL;
1282
1283 /*
1284 * Prevent page tables from being allocated in highmem, even
1285 * if CONFIG_HIGHPTE is enabled.
1286 */
1287 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1288
1289 /* Work out if we support NX */
1290 x86_configure_nx();
1291
1292 /* Get mfn list */
1293 xen_build_dynamic_phys_to_machine();
1294
1295 /*
1296 * Set up kernel GDT and segment registers, mainly so that
1297 * -fstack-protector code can be executed.
1298 */
1299 xen_setup_gdt(0);
1300
1301 xen_init_irq_ops();
Juergen Gross0808e802017-04-13 08:55:41 +02001302 xen_init_capabilities();
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001303
1304#ifdef CONFIG_X86_LOCAL_APIC
1305 /*
1306 * set up the basic apic ops.
1307 */
1308 xen_init_apic();
1309#endif
1310
1311 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1312 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1313 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1314 }
1315
1316 machine_ops = xen_machine_ops;
1317
1318 /*
1319 * The only reliable way to retain the initial address of the
1320 * percpu gdt_page is to remember it here, so we can go and
1321 * mark it RW later, when the initial percpu area is freed.
1322 */
1323 xen_initial_gdt = &per_cpu(gdt_page, 0);
1324
1325 xen_smp_init();
1326
1327#ifdef CONFIG_ACPI_NUMA
1328 /*
1329 * The pages we from Xen are not related to machine pages, so
1330 * any NUMA information the kernel tries to get from ACPI will
1331 * be meaningless. Prevent it from trying.
1332 */
1333 acpi_numa = -1;
1334#endif
1335 /* Don't do the full vcpu_info placement stuff until we have a
1336 possible map and a non-dummy shared_info. */
1337 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1338
1339 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1340
1341 local_irq_disable();
1342 early_boot_irqs_disabled = true;
1343
1344 xen_raw_console_write("mapping kernel into physical memory\n");
1345 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1346 xen_start_info->nr_pages);
1347 xen_reserve_special_pages();
1348
1349 /* keep using Xen gdt for now; no urgent need to change it */
1350
1351#ifdef CONFIG_X86_32
1352 pv_info.kernel_rpl = 1;
1353 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1354 pv_info.kernel_rpl = 0;
1355#else
1356 pv_info.kernel_rpl = 0;
1357#endif
1358 /* set the limit of our address space */
1359 xen_reserve_top();
1360
1361 /*
1362 * We used to do this in xen_arch_setup, but that is too late
1363 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1364 * early_amd_init which pokes 0xcf8 port.
1365 */
1366 set_iopl.iopl = 1;
1367 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1368 if (rc != 0)
1369 xen_raw_printk("physdev_op failed %d\n", rc);
1370
1371#ifdef CONFIG_X86_32
1372 /* set up basic CPUID stuff */
1373 cpu_detect(&new_cpu_data);
1374 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1375 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1376#endif
1377
1378 if (xen_start_info->mod_start) {
1379 if (xen_start_info->flags & SIF_MOD_START_PFN)
1380 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1381 else
1382 initrd_start = __pa(xen_start_info->mod_start);
1383 }
1384
1385 /* Poke various useful things into boot_params */
1386 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1387 boot_params.hdr.ramdisk_image = initrd_start;
1388 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1389 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1390 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1391
1392 if (!xen_initial_domain()) {
1393 add_preferred_console("xenboot", 0, NULL);
1394 add_preferred_console("tty", 0, NULL);
1395 add_preferred_console("hvc", 0, NULL);
1396 if (pci_xen)
1397 x86_init.pci.arch_init = pci_xen_init;
1398 } else {
1399 const struct dom0_vga_console_info *info =
1400 (void *)((char *)xen_start_info +
1401 xen_start_info->console.dom0.info_off);
1402 struct xen_platform_op op = {
1403 .cmd = XENPF_firmware_info,
1404 .interface_version = XENPF_INTERFACE_VERSION,
1405 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1406 };
1407
1408 x86_platform.set_legacy_features =
1409 xen_dom0_set_legacy_features;
1410 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1411 xen_start_info->console.domU.mfn = 0;
1412 xen_start_info->console.domU.evtchn = 0;
1413
1414 if (HYPERVISOR_platform_op(&op) == 0)
1415 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1416
1417 /* Make sure ACS will be enabled */
1418 pci_request_acs();
1419
1420 xen_acpi_sleep_register();
1421
1422 /* Avoid searching for BIOS MP tables */
1423 x86_init.mpparse.find_smp_config = x86_init_noop;
1424 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1425
1426 xen_boot_params_init_edd();
1427 }
1428#ifdef CONFIG_PCI
1429 /* PCI BIOS service won't work from a PV guest. */
1430 pci_probe &= ~PCI_PROBE_BIOS;
1431#endif
1432 xen_raw_console_write("about to get started...\n");
1433
1434 /* Let's presume PV guests always boot on vCPU with id 0. */
1435 per_cpu(xen_vcpu_id, 0) = 0;
1436
1437 xen_setup_runstate_info(0);
1438
1439 xen_efi_init();
1440
1441 /* Start the world */
1442#ifdef CONFIG_X86_32
1443 i386_start_kernel();
1444#else
1445 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1446 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1447#endif
1448}
1449
1450static int xen_cpu_up_prepare_pv(unsigned int cpu)
1451{
1452 int rc;
1453
1454 xen_setup_timer(cpu);
1455
1456 rc = xen_smp_intr_init(cpu);
1457 if (rc) {
1458 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1459 cpu, rc);
1460 return rc;
1461 }
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001462
1463 rc = xen_smp_intr_init_pv(cpu);
1464 if (rc) {
1465 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1466 cpu, rc);
1467 return rc;
1468 }
1469
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001470 return 0;
1471}
1472
1473static int xen_cpu_dead_pv(unsigned int cpu)
1474{
1475 xen_smp_intr_free(cpu);
Vitaly Kuznetsov04e95762017-03-14 18:35:42 +01001476 xen_smp_intr_free_pv(cpu);
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001477
1478 xen_teardown_timer(cpu);
1479
1480 return 0;
1481}
1482
1483static uint32_t __init xen_platform_pv(void)
1484{
1485 if (xen_pv_domain())
1486 return xen_cpuid_base();
1487
1488 return 0;
1489}
1490
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001491const struct hypervisor_x86 x86_hyper_xen_pv = {
1492 .name = "Xen PV",
1493 .detect = xen_platform_pv,
Vitaly Kuznetsove1dab142017-03-14 18:35:41 +01001494 .pin_vcpu = xen_pin_vcpu,
1495};
1496EXPORT_SYMBOL(x86_hyper_xen_pv);