blob: f3b3b23c5330566bee587ce93e8cd5a267b25241 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
Corey Minyardea940272005-11-07 00:59:59 -080054#include <linux/notifier.h>
Corey Minyardb0defcdb2006-03-26 01:37:20 -080055#include <linux/mutex.h>
Matt Domsche9a705a2005-11-07 01:00:04 -080056#include <linux/kthread.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <asm/irq.h>
58#ifdef CONFIG_HIGH_RES_TIMERS
59#include <linux/hrtime.h>
60# if defined(schedule_next_int)
61/* Old high-res timer code, do translations. */
62# define get_arch_cycles(a) quick_update_jiffies_sub(a)
63# define arch_cycles_per_jiffy cycles_per_jiffies
64# endif
65static inline void add_usec_to_timer(struct timer_list *t, long v)
66{
Corey Minyard75b07682005-09-06 15:18:38 -070067 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
Linus Torvalds1da177e2005-04-16 15:20:36 -070069 {
70 t->expires++;
Corey Minyard75b07682005-09-06 15:18:38 -070071 t->arch_cycle_expires -= arch_cycles_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 }
73}
74#endif
75#include <linux/interrupt.h>
76#include <linux/rcupdate.h>
77#include <linux/ipmi_smi.h>
78#include <asm/io.h>
79#include "ipmi_si_sm.h"
80#include <linux/init.h>
Andrey Paninb224cd32005-09-06 15:18:37 -070081#include <linux/dmi.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070082
83/* Measure times between events in the driver. */
84#undef DEBUG_TIMING
85
86/* Call every 10 ms. */
87#define SI_TIMEOUT_TIME_USEC 10000
88#define SI_USEC_PER_JIFFY (1000000/HZ)
89#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 short timeout */
92
93enum si_intf_state {
94 SI_NORMAL,
95 SI_GETTING_FLAGS,
96 SI_GETTING_EVENTS,
97 SI_CLEARING_FLAGS,
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
99 SI_GETTING_MESSAGES,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103};
104
Corey Minyard9dbf68f2005-05-01 08:59:11 -0700105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800113static char *si_to_str[] = { "KCS", "SMIC", "BT" };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700115struct ipmi_device_id {
116 unsigned char device_id;
117 unsigned char device_revision;
118 unsigned char firmware_revision_1;
119 unsigned char firmware_revision_2;
120 unsigned char ipmi_version;
121 unsigned char additional_device_support;
122 unsigned char manufacturer_id[3];
123 unsigned char product_id[2];
124 unsigned char aux_firmware_revision[4];
125} __attribute__((packed));
126
127#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
128#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
129
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130struct smi_info
131{
Corey Minyarda9a2c442005-11-07 01:00:03 -0800132 int intf_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133 ipmi_smi_t intf;
134 struct si_sm_data *si_sm;
135 struct si_sm_handlers *handlers;
136 enum si_type si_type;
137 spinlock_t si_lock;
138 spinlock_t msg_lock;
139 struct list_head xmit_msgs;
140 struct list_head hp_xmit_msgs;
141 struct ipmi_smi_msg *curr_msg;
142 enum si_intf_state si_state;
143
144 /* Used to handle the various types of I/O that can occur with
145 IPMI */
146 struct si_sm_io io;
147 int (*io_setup)(struct smi_info *info);
148 void (*io_cleanup)(struct smi_info *info);
149 int (*irq_setup)(struct smi_info *info);
150 void (*irq_cleanup)(struct smi_info *info);
151 unsigned int io_size;
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800152 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
153 void (*addr_source_cleanup)(struct smi_info *info);
154 void *addr_source_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700156 /* Per-OEM handler, called from handle_flags().
157 Returns 1 when handle_flags() needs to be re-run
158 or 0 indicating it set si_state itself.
159 */
160 int (*oem_data_avail_handler)(struct smi_info *smi_info);
161
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
163 is set to hold the flags until we are done handling everything
164 from the flags. */
165#define RECEIVE_MSG_AVAIL 0x01
166#define EVENT_MSG_BUFFER_FULL 0x02
167#define WDT_PRE_TIMEOUT_INT 0x08
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700168#define OEM0_DATA_AVAIL 0x20
169#define OEM1_DATA_AVAIL 0x40
170#define OEM2_DATA_AVAIL 0x80
171#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
172 OEM1_DATA_AVAIL | \
173 OEM2_DATA_AVAIL)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174 unsigned char msg_flags;
175
176 /* If set to true, this will request events the next time the
177 state machine is idle. */
178 atomic_t req_events;
179
180 /* If true, run the state machine to completion on every send
181 call. Generally used after a panic to make sure stuff goes
182 out. */
183 int run_to_completion;
184
185 /* The I/O port of an SI interface. */
186 int port;
187
188 /* The space between start addresses of the two ports. For
189 instance, if the first port is 0xca2 and the spacing is 4, then
190 the second port is 0xca6. */
191 unsigned int spacing;
192
193 /* zero if no irq; */
194 int irq;
195
196 /* The timer for this si. */
197 struct timer_list si_timer;
198
199 /* The time (in jiffies) the last timeout occurred at. */
200 unsigned long last_timeout_jiffies;
201
202 /* Used to gracefully stop the timer without race conditions. */
Corey Minyarda9a2c442005-11-07 01:00:03 -0800203 atomic_t stop_operation;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204
205 /* The driver will disable interrupts when it gets into a
206 situation where it cannot handle messages due to lack of
207 memory. Once that situation clears up, it will re-enable
208 interrupts. */
209 int interrupt_disabled;
210
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700211 struct ipmi_device_id device_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
213 /* Slave address, could be reported from DMI. */
214 unsigned char slave_addr;
215
216 /* Counters and things for the proc filesystem. */
217 spinlock_t count_lock;
218 unsigned long short_timeouts;
219 unsigned long long_timeouts;
220 unsigned long timeout_restarts;
221 unsigned long idles;
222 unsigned long interrupts;
223 unsigned long attentions;
224 unsigned long flag_fetches;
225 unsigned long hosed_count;
226 unsigned long complete_transactions;
227 unsigned long events;
228 unsigned long watchdog_pretimeouts;
229 unsigned long incoming_messages;
Corey Minyarda9a2c442005-11-07 01:00:03 -0800230
Matt Domsche9a705a2005-11-07 01:00:04 -0800231 struct task_struct *thread;
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800232
233 struct list_head link;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234};
235
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800236static int try_smi_init(struct smi_info *smi);
237
Corey Minyardea940272005-11-07 00:59:59 -0800238static struct notifier_block *xaction_notifier_list;
239static int register_xaction_notifier(struct notifier_block * nb)
240{
241 return notifier_chain_register(&xaction_notifier_list, nb);
242}
243
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244static void si_restart_short_timer(struct smi_info *smi_info);
245
246static void deliver_recv_msg(struct smi_info *smi_info,
247 struct ipmi_smi_msg *msg)
248{
249 /* Deliver the message to the upper layer with the lock
250 released. */
251 spin_unlock(&(smi_info->si_lock));
252 ipmi_smi_msg_received(smi_info->intf, msg);
253 spin_lock(&(smi_info->si_lock));
254}
255
256static void return_hosed_msg(struct smi_info *smi_info)
257{
258 struct ipmi_smi_msg *msg = smi_info->curr_msg;
259
260 /* Make it a reponse */
261 msg->rsp[0] = msg->data[0] | 4;
262 msg->rsp[1] = msg->data[1];
263 msg->rsp[2] = 0xFF; /* Unknown error. */
264 msg->rsp_size = 3;
265
266 smi_info->curr_msg = NULL;
267 deliver_recv_msg(smi_info, msg);
268}
269
270static enum si_sm_result start_next_msg(struct smi_info *smi_info)
271{
272 int rv;
273 struct list_head *entry = NULL;
274#ifdef DEBUG_TIMING
275 struct timeval t;
276#endif
277
278 /* No need to save flags, we aleady have interrupts off and we
279 already hold the SMI lock. */
280 spin_lock(&(smi_info->msg_lock));
281
282 /* Pick the high priority queue first. */
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800283 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284 entry = smi_info->hp_xmit_msgs.next;
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800285 } else if (!list_empty(&(smi_info->xmit_msgs))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 entry = smi_info->xmit_msgs.next;
287 }
288
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800289 if (!entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700290 smi_info->curr_msg = NULL;
291 rv = SI_SM_IDLE;
292 } else {
293 int err;
294
295 list_del(entry);
296 smi_info->curr_msg = list_entry(entry,
297 struct ipmi_smi_msg,
298 link);
299#ifdef DEBUG_TIMING
300 do_gettimeofday(&t);
301 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
302#endif
Corey Minyardea940272005-11-07 00:59:59 -0800303 err = notifier_call_chain(&xaction_notifier_list, 0, smi_info);
304 if (err & NOTIFY_STOP_MASK) {
305 rv = SI_SM_CALL_WITHOUT_DELAY;
306 goto out;
307 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308 err = smi_info->handlers->start_transaction(
309 smi_info->si_sm,
310 smi_info->curr_msg->data,
311 smi_info->curr_msg->data_size);
312 if (err) {
313 return_hosed_msg(smi_info);
314 }
315
316 rv = SI_SM_CALL_WITHOUT_DELAY;
317 }
Corey Minyardea940272005-11-07 00:59:59 -0800318 out:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700319 spin_unlock(&(smi_info->msg_lock));
320
321 return rv;
322}
323
324static void start_enable_irq(struct smi_info *smi_info)
325{
326 unsigned char msg[2];
327
328 /* If we are enabling interrupts, we have to tell the
329 BMC to use them. */
330 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
331 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
332
333 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
334 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
335}
336
337static void start_clear_flags(struct smi_info *smi_info)
338{
339 unsigned char msg[3];
340
341 /* Make sure the watchdog pre-timeout flag is not set at startup. */
342 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
343 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
344 msg[2] = WDT_PRE_TIMEOUT_INT;
345
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
347 smi_info->si_state = SI_CLEARING_FLAGS;
348}
349
350/* When we have a situtaion where we run out of memory and cannot
351 allocate messages, we just leave them in the BMC and run the system
352 polled until we can allocate some memory. Once we have some
353 memory, we will re-enable the interrupt. */
354static inline void disable_si_irq(struct smi_info *smi_info)
355{
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800356 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357 disable_irq_nosync(smi_info->irq);
358 smi_info->interrupt_disabled = 1;
359 }
360}
361
362static inline void enable_si_irq(struct smi_info *smi_info)
363{
364 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
365 enable_irq(smi_info->irq);
366 smi_info->interrupt_disabled = 0;
367 }
368}
369
370static void handle_flags(struct smi_info *smi_info)
371{
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700372 retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
374 /* Watchdog pre-timeout */
375 spin_lock(&smi_info->count_lock);
376 smi_info->watchdog_pretimeouts++;
377 spin_unlock(&smi_info->count_lock);
378
379 start_clear_flags(smi_info);
380 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
381 spin_unlock(&(smi_info->si_lock));
382 ipmi_smi_watchdog_pretimeout(smi_info->intf);
383 spin_lock(&(smi_info->si_lock));
384 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
385 /* Messages available. */
386 smi_info->curr_msg = ipmi_alloc_smi_msg();
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800387 if (!smi_info->curr_msg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388 disable_si_irq(smi_info);
389 smi_info->si_state = SI_NORMAL;
390 return;
391 }
392 enable_si_irq(smi_info);
393
394 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
395 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
396 smi_info->curr_msg->data_size = 2;
397
398 smi_info->handlers->start_transaction(
399 smi_info->si_sm,
400 smi_info->curr_msg->data,
401 smi_info->curr_msg->data_size);
402 smi_info->si_state = SI_GETTING_MESSAGES;
403 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
404 /* Events available. */
405 smi_info->curr_msg = ipmi_alloc_smi_msg();
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800406 if (!smi_info->curr_msg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407 disable_si_irq(smi_info);
408 smi_info->si_state = SI_NORMAL;
409 return;
410 }
411 enable_si_irq(smi_info);
412
413 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
415 smi_info->curr_msg->data_size = 2;
416
417 smi_info->handlers->start_transaction(
418 smi_info->si_sm,
419 smi_info->curr_msg->data,
420 smi_info->curr_msg->data_size);
421 smi_info->si_state = SI_GETTING_EVENTS;
Corey Minyard3ae0e0f2005-09-06 15:18:41 -0700422 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
423 if (smi_info->oem_data_avail_handler)
424 if (smi_info->oem_data_avail_handler(smi_info))
425 goto retry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426 } else {
427 smi_info->si_state = SI_NORMAL;
428 }
429}
430
431static void handle_transaction_done(struct smi_info *smi_info)
432{
433 struct ipmi_smi_msg *msg;
434#ifdef DEBUG_TIMING
435 struct timeval t;
436
437 do_gettimeofday(&t);
438 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
439#endif
440 switch (smi_info->si_state) {
441 case SI_NORMAL:
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800442 if (!smi_info->curr_msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700443 break;
444
445 smi_info->curr_msg->rsp_size
446 = smi_info->handlers->get_result(
447 smi_info->si_sm,
448 smi_info->curr_msg->rsp,
449 IPMI_MAX_MSG_LENGTH);
450
451 /* Do this here becase deliver_recv_msg() releases the
452 lock, and a new message can be put in during the
453 time the lock is released. */
454 msg = smi_info->curr_msg;
455 smi_info->curr_msg = NULL;
456 deliver_recv_msg(smi_info, msg);
457 break;
458
459 case SI_GETTING_FLAGS:
460 {
461 unsigned char msg[4];
462 unsigned int len;
463
464 /* We got the flags from the SMI, now handle them. */
465 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
466 if (msg[2] != 0) {
467 /* Error fetching flags, just give up for
468 now. */
469 smi_info->si_state = SI_NORMAL;
470 } else if (len < 4) {
471 /* Hmm, no flags. That's technically illegal, but
472 don't use uninitialized data. */
473 smi_info->si_state = SI_NORMAL;
474 } else {
475 smi_info->msg_flags = msg[3];
476 handle_flags(smi_info);
477 }
478 break;
479 }
480
481 case SI_CLEARING_FLAGS:
482 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
483 {
484 unsigned char msg[3];
485
486 /* We cleared the flags. */
487 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
488 if (msg[2] != 0) {
489 /* Error clearing flags */
490 printk(KERN_WARNING
491 "ipmi_si: Error clearing flags: %2.2x\n",
492 msg[2]);
493 }
494 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
495 start_enable_irq(smi_info);
496 else
497 smi_info->si_state = SI_NORMAL;
498 break;
499 }
500
501 case SI_GETTING_EVENTS:
502 {
503 smi_info->curr_msg->rsp_size
504 = smi_info->handlers->get_result(
505 smi_info->si_sm,
506 smi_info->curr_msg->rsp,
507 IPMI_MAX_MSG_LENGTH);
508
509 /* Do this here becase deliver_recv_msg() releases the
510 lock, and a new message can be put in during the
511 time the lock is released. */
512 msg = smi_info->curr_msg;
513 smi_info->curr_msg = NULL;
514 if (msg->rsp[2] != 0) {
515 /* Error getting event, probably done. */
516 msg->done(msg);
517
518 /* Take off the event flag. */
519 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
520 handle_flags(smi_info);
521 } else {
522 spin_lock(&smi_info->count_lock);
523 smi_info->events++;
524 spin_unlock(&smi_info->count_lock);
525
526 /* Do this before we deliver the message
527 because delivering the message releases the
528 lock and something else can mess with the
529 state. */
530 handle_flags(smi_info);
531
532 deliver_recv_msg(smi_info, msg);
533 }
534 break;
535 }
536
537 case SI_GETTING_MESSAGES:
538 {
539 smi_info->curr_msg->rsp_size
540 = smi_info->handlers->get_result(
541 smi_info->si_sm,
542 smi_info->curr_msg->rsp,
543 IPMI_MAX_MSG_LENGTH);
544
545 /* Do this here becase deliver_recv_msg() releases the
546 lock, and a new message can be put in during the
547 time the lock is released. */
548 msg = smi_info->curr_msg;
549 smi_info->curr_msg = NULL;
550 if (msg->rsp[2] != 0) {
551 /* Error getting event, probably done. */
552 msg->done(msg);
553
554 /* Take off the msg flag. */
555 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
556 handle_flags(smi_info);
557 } else {
558 spin_lock(&smi_info->count_lock);
559 smi_info->incoming_messages++;
560 spin_unlock(&smi_info->count_lock);
561
562 /* Do this before we deliver the message
563 because delivering the message releases the
564 lock and something else can mess with the
565 state. */
566 handle_flags(smi_info);
567
568 deliver_recv_msg(smi_info, msg);
569 }
570 break;
571 }
572
573 case SI_ENABLE_INTERRUPTS1:
574 {
575 unsigned char msg[4];
576
577 /* We got the flags from the SMI, now handle them. */
578 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
579 if (msg[2] != 0) {
580 printk(KERN_WARNING
581 "ipmi_si: Could not enable interrupts"
582 ", failed get, using polled mode.\n");
583 smi_info->si_state = SI_NORMAL;
584 } else {
585 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
586 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
587 msg[2] = msg[3] | 1; /* enable msg queue int */
588 smi_info->handlers->start_transaction(
589 smi_info->si_sm, msg, 3);
590 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
591 }
592 break;
593 }
594
595 case SI_ENABLE_INTERRUPTS2:
596 {
597 unsigned char msg[4];
598
599 /* We got the flags from the SMI, now handle them. */
600 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
601 if (msg[2] != 0) {
602 printk(KERN_WARNING
603 "ipmi_si: Could not enable interrupts"
604 ", failed set, using polled mode.\n");
605 }
606 smi_info->si_state = SI_NORMAL;
607 break;
608 }
609 }
610}
611
612/* Called on timeouts and events. Timeouts should pass the elapsed
613 time, interrupts should pass in zero. */
614static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
615 int time)
616{
617 enum si_sm_result si_sm_result;
618
619 restart:
620 /* There used to be a loop here that waited a little while
621 (around 25us) before giving up. That turned out to be
622 pointless, the minimum delays I was seeing were in the 300us
623 range, which is far too long to wait in an interrupt. So
624 we just run until the state machine tells us something
625 happened or it needs a delay. */
626 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
627 time = 0;
628 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
629 {
630 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
631 }
632
633 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
634 {
635 spin_lock(&smi_info->count_lock);
636 smi_info->complete_transactions++;
637 spin_unlock(&smi_info->count_lock);
638
639 handle_transaction_done(smi_info);
640 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
641 }
642 else if (si_sm_result == SI_SM_HOSED)
643 {
644 spin_lock(&smi_info->count_lock);
645 smi_info->hosed_count++;
646 spin_unlock(&smi_info->count_lock);
647
648 /* Do the before return_hosed_msg, because that
649 releases the lock. */
650 smi_info->si_state = SI_NORMAL;
651 if (smi_info->curr_msg != NULL) {
652 /* If we were handling a user message, format
653 a response to send to the upper layer to
654 tell it about the error. */
655 return_hosed_msg(smi_info);
656 }
657 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
658 }
659
660 /* We prefer handling attn over new messages. */
661 if (si_sm_result == SI_SM_ATTN)
662 {
663 unsigned char msg[2];
664
665 spin_lock(&smi_info->count_lock);
666 smi_info->attentions++;
667 spin_unlock(&smi_info->count_lock);
668
669 /* Got a attn, send down a get message flags to see
670 what's causing it. It would be better to handle
671 this in the upper layer, but due to the way
672 interrupts work with the SMI, that's not really
673 possible. */
674 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
676
677 smi_info->handlers->start_transaction(
678 smi_info->si_sm, msg, 2);
679 smi_info->si_state = SI_GETTING_FLAGS;
680 goto restart;
681 }
682
683 /* If we are currently idle, try to start the next message. */
684 if (si_sm_result == SI_SM_IDLE) {
685 spin_lock(&smi_info->count_lock);
686 smi_info->idles++;
687 spin_unlock(&smi_info->count_lock);
688
689 si_sm_result = start_next_msg(smi_info);
690 if (si_sm_result != SI_SM_IDLE)
691 goto restart;
692 }
693
694 if ((si_sm_result == SI_SM_IDLE)
695 && (atomic_read(&smi_info->req_events)))
696 {
697 /* We are idle and the upper layer requested that I fetch
698 events, so do so. */
699 unsigned char msg[2];
700
701 spin_lock(&smi_info->count_lock);
702 smi_info->flag_fetches++;
703 spin_unlock(&smi_info->count_lock);
704
705 atomic_set(&smi_info->req_events, 0);
706 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
707 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
708
709 smi_info->handlers->start_transaction(
710 smi_info->si_sm, msg, 2);
711 smi_info->si_state = SI_GETTING_FLAGS;
712 goto restart;
713 }
714
715 return si_sm_result;
716}
717
718static void sender(void *send_info,
719 struct ipmi_smi_msg *msg,
720 int priority)
721{
722 struct smi_info *smi_info = send_info;
723 enum si_sm_result result;
724 unsigned long flags;
725#ifdef DEBUG_TIMING
726 struct timeval t;
727#endif
728
729 spin_lock_irqsave(&(smi_info->msg_lock), flags);
730#ifdef DEBUG_TIMING
731 do_gettimeofday(&t);
732 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
733#endif
734
735 if (smi_info->run_to_completion) {
736 /* If we are running to completion, then throw it in
737 the list and run transactions until everything is
738 clear. Priority doesn't matter here. */
739 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
740
741 /* We have to release the msg lock and claim the smi
742 lock in this case, because of race conditions. */
743 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
744
745 spin_lock_irqsave(&(smi_info->si_lock), flags);
746 result = smi_event_handler(smi_info, 0);
747 while (result != SI_SM_IDLE) {
748 udelay(SI_SHORT_TIMEOUT_USEC);
749 result = smi_event_handler(smi_info,
750 SI_SHORT_TIMEOUT_USEC);
751 }
752 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
753 return;
754 } else {
755 if (priority > 0) {
756 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
757 } else {
758 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
759 }
760 }
761 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
762
763 spin_lock_irqsave(&(smi_info->si_lock), flags);
764 if ((smi_info->si_state == SI_NORMAL)
765 && (smi_info->curr_msg == NULL))
766 {
767 start_next_msg(smi_info);
768 si_restart_short_timer(smi_info);
769 }
770 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
771}
772
773static void set_run_to_completion(void *send_info, int i_run_to_completion)
774{
775 struct smi_info *smi_info = send_info;
776 enum si_sm_result result;
777 unsigned long flags;
778
779 spin_lock_irqsave(&(smi_info->si_lock), flags);
780
781 smi_info->run_to_completion = i_run_to_completion;
782 if (i_run_to_completion) {
783 result = smi_event_handler(smi_info, 0);
784 while (result != SI_SM_IDLE) {
785 udelay(SI_SHORT_TIMEOUT_USEC);
786 result = smi_event_handler(smi_info,
787 SI_SHORT_TIMEOUT_USEC);
788 }
789 }
790
791 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
792}
793
Corey Minyarda9a2c442005-11-07 01:00:03 -0800794static int ipmi_thread(void *data)
795{
796 struct smi_info *smi_info = data;
Matt Domsche9a705a2005-11-07 01:00:04 -0800797 unsigned long flags;
Corey Minyarda9a2c442005-11-07 01:00:03 -0800798 enum si_sm_result smi_result;
799
Corey Minyarda9a2c442005-11-07 01:00:03 -0800800 set_user_nice(current, 19);
Matt Domsche9a705a2005-11-07 01:00:04 -0800801 while (!kthread_should_stop()) {
Corey Minyarda9a2c442005-11-07 01:00:03 -0800802 spin_lock_irqsave(&(smi_info->si_lock), flags);
803 smi_result=smi_event_handler(smi_info, 0);
804 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
Matt Domsche9a705a2005-11-07 01:00:04 -0800805 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
806 /* do nothing */
807 }
808 else if (smi_result == SI_SM_CALL_WITH_DELAY)
Corey Minyarda9a2c442005-11-07 01:00:03 -0800809 udelay(1);
Matt Domsche9a705a2005-11-07 01:00:04 -0800810 else
811 schedule_timeout_interruptible(1);
Corey Minyarda9a2c442005-11-07 01:00:03 -0800812 }
Corey Minyarda9a2c442005-11-07 01:00:03 -0800813 return 0;
814}
815
816
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817static void poll(void *send_info)
818{
819 struct smi_info *smi_info = send_info;
820
821 smi_event_handler(smi_info, 0);
822}
823
824static void request_events(void *send_info)
825{
826 struct smi_info *smi_info = send_info;
827
828 atomic_set(&smi_info->req_events, 1);
829}
830
831static int initialized = 0;
832
833/* Must be called with interrupts off and with the si_lock held. */
834static void si_restart_short_timer(struct smi_info *smi_info)
835{
836#if defined(CONFIG_HIGH_RES_TIMERS)
837 unsigned long flags;
838 unsigned long jiffies_now;
Corey Minyard75b07682005-09-06 15:18:38 -0700839 unsigned long seq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840
841 if (del_timer(&(smi_info->si_timer))) {
842 /* If we don't delete the timer, then it will go off
843 immediately, anyway. So we only process if we
844 actually delete the timer. */
845
Corey Minyard75b07682005-09-06 15:18:38 -0700846 do {
847 seq = read_seqbegin_irqsave(&xtime_lock, flags);
848 jiffies_now = jiffies;
849 smi_info->si_timer.expires = jiffies_now;
850 smi_info->si_timer.arch_cycle_expires
851 = get_arch_cycles(jiffies_now);
852 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853
854 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
855
856 add_timer(&(smi_info->si_timer));
857 spin_lock_irqsave(&smi_info->count_lock, flags);
858 smi_info->timeout_restarts++;
859 spin_unlock_irqrestore(&smi_info->count_lock, flags);
860 }
861#endif
862}
863
864static void smi_timeout(unsigned long data)
865{
866 struct smi_info *smi_info = (struct smi_info *) data;
867 enum si_sm_result smi_result;
868 unsigned long flags;
869 unsigned long jiffies_now;
Corey Minyardc4edff12005-11-07 00:59:56 -0800870 long time_diff;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700871#ifdef DEBUG_TIMING
872 struct timeval t;
873#endif
874
Corey Minyarda9a2c442005-11-07 01:00:03 -0800875 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877
878 spin_lock_irqsave(&(smi_info->si_lock), flags);
879#ifdef DEBUG_TIMING
880 do_gettimeofday(&t);
881 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
882#endif
883 jiffies_now = jiffies;
Corey Minyardc4edff12005-11-07 00:59:56 -0800884 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 * SI_USEC_PER_JIFFY);
886 smi_result = smi_event_handler(smi_info, time_diff);
887
888 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
889
890 smi_info->last_timeout_jiffies = jiffies_now;
891
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800892 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 /* Running with interrupts, only do long timeouts. */
894 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
895 spin_lock_irqsave(&smi_info->count_lock, flags);
896 smi_info->long_timeouts++;
897 spin_unlock_irqrestore(&smi_info->count_lock, flags);
898 goto do_add_timer;
899 }
900
901 /* If the state machine asks for a short delay, then shorten
902 the timer timeout. */
903 if (smi_result == SI_SM_CALL_WITH_DELAY) {
Corey Minyard75b07682005-09-06 15:18:38 -0700904#if defined(CONFIG_HIGH_RES_TIMERS)
905 unsigned long seq;
906#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907 spin_lock_irqsave(&smi_info->count_lock, flags);
908 smi_info->short_timeouts++;
909 spin_unlock_irqrestore(&smi_info->count_lock, flags);
910#if defined(CONFIG_HIGH_RES_TIMERS)
Corey Minyard75b07682005-09-06 15:18:38 -0700911 do {
912 seq = read_seqbegin_irqsave(&xtime_lock, flags);
913 smi_info->si_timer.expires = jiffies;
914 smi_info->si_timer.arch_cycle_expires
915 = get_arch_cycles(smi_info->si_timer.expires);
916 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
918#else
919 smi_info->si_timer.expires = jiffies + 1;
920#endif
921 } else {
922 spin_lock_irqsave(&smi_info->count_lock, flags);
923 smi_info->long_timeouts++;
924 spin_unlock_irqrestore(&smi_info->count_lock, flags);
925 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
926#if defined(CONFIG_HIGH_RES_TIMERS)
Corey Minyard75b07682005-09-06 15:18:38 -0700927 smi_info->si_timer.arch_cycle_expires = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928#endif
929 }
930
931 do_add_timer:
932 add_timer(&(smi_info->si_timer));
933}
934
935static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
936{
937 struct smi_info *smi_info = data;
938 unsigned long flags;
939#ifdef DEBUG_TIMING
940 struct timeval t;
941#endif
942
943 spin_lock_irqsave(&(smi_info->si_lock), flags);
944
945 spin_lock(&smi_info->count_lock);
946 smi_info->interrupts++;
947 spin_unlock(&smi_info->count_lock);
948
Corey Minyarda9a2c442005-11-07 01:00:03 -0800949 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950 goto out;
951
952#ifdef DEBUG_TIMING
953 do_gettimeofday(&t);
954 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
955#endif
956 smi_event_handler(smi_info, 0);
957 out:
958 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
959 return IRQ_HANDLED;
960}
961
Corey Minyard9dbf68f2005-05-01 08:59:11 -0700962static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
963{
964 struct smi_info *smi_info = data;
965 /* We need to clear the IRQ flag for the BT interface. */
966 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
967 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
968 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
969 return si_irq_handler(irq, data, regs);
970}
971
972
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973static struct ipmi_smi_handlers handlers =
974{
975 .owner = THIS_MODULE,
976 .sender = sender,
977 .request_events = request_events,
978 .set_run_to_completion = set_run_to_completion,
979 .poll = poll,
980};
981
982/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
983 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
984
985#define SI_MAX_PARMS 4
Corey Minyardb0defcdb2006-03-26 01:37:20 -0800986static LIST_HEAD(smi_infos);
987static DECLARE_MUTEX(smi_infos_lock);
988static int smi_num; /* Used to sequence the SMIs */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989
990#define DEVICE_NAME "ipmi_si"
991
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992#define DEFAULT_REGSPACING 1
993
994static int si_trydefaults = 1;
995static char *si_type[SI_MAX_PARMS];
996#define MAX_SI_TYPE_STR 30
997static char si_type_str[MAX_SI_TYPE_STR];
998static unsigned long addrs[SI_MAX_PARMS];
999static int num_addrs;
1000static unsigned int ports[SI_MAX_PARMS];
1001static int num_ports;
1002static int irqs[SI_MAX_PARMS];
1003static int num_irqs;
1004static int regspacings[SI_MAX_PARMS];
1005static int num_regspacings = 0;
1006static int regsizes[SI_MAX_PARMS];
1007static int num_regsizes = 0;
1008static int regshifts[SI_MAX_PARMS];
1009static int num_regshifts = 0;
1010static int slave_addrs[SI_MAX_PARMS];
1011static int num_slave_addrs = 0;
1012
1013
1014module_param_named(trydefaults, si_trydefaults, bool, 0);
1015MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1016 " default scan of the KCS and SMIC interface at the standard"
1017 " address");
1018module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1019MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1020 " interface separated by commas. The types are 'kcs',"
1021 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1022 " the first interface to kcs and the second to bt");
1023module_param_array(addrs, long, &num_addrs, 0);
1024MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1025 " addresses separated by commas. Only use if an interface"
1026 " is in memory. Otherwise, set it to zero or leave"
1027 " it blank.");
1028module_param_array(ports, int, &num_ports, 0);
1029MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1030 " addresses separated by commas. Only use if an interface"
1031 " is a port. Otherwise, set it to zero or leave"
1032 " it blank.");
1033module_param_array(irqs, int, &num_irqs, 0);
1034MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1035 " addresses separated by commas. Only use if an interface"
1036 " has an interrupt. Otherwise, set it to zero or leave"
1037 " it blank.");
1038module_param_array(regspacings, int, &num_regspacings, 0);
1039MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1040 " and each successive register used by the interface. For"
1041 " instance, if the start address is 0xca2 and the spacing"
1042 " is 2, then the second address is at 0xca4. Defaults"
1043 " to 1.");
1044module_param_array(regsizes, int, &num_regsizes, 0);
1045MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1046 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1047 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1048 " the 8-bit IPMI register has to be read from a larger"
1049 " register.");
1050module_param_array(regshifts, int, &num_regshifts, 0);
1051MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1052 " IPMI register, in bits. For instance, if the data"
1053 " is read from a 32-bit word and the IPMI data is in"
1054 " bit 8-15, then the shift would be 8");
1055module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1056MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1057 " the controller. Normally this is 0x20, but can be"
1058 " overridden by this parm. This is an array indexed"
1059 " by interface number.");
1060
1061
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001062#define IPMI_IO_ADDR_SPACE 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063#define IPMI_MEM_ADDR_SPACE 1
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001064static char *addr_space_to_str[] = { "I/O", "memory" };
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001066static void std_irq_cleanup(struct smi_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001068 if (info->si_type == SI_BT)
1069 /* Disable the interrupt in the BT interface. */
1070 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1071 free_irq(info->irq, info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001073
1074static int std_irq_setup(struct smi_info *info)
1075{
1076 int rv;
1077
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001078 if (!info->irq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079 return 0;
1080
Corey Minyard9dbf68f2005-05-01 08:59:11 -07001081 if (info->si_type == SI_BT) {
1082 rv = request_irq(info->irq,
1083 si_bt_irq_handler,
1084 SA_INTERRUPT,
1085 DEVICE_NAME,
1086 info);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001087 if (!rv)
Corey Minyard9dbf68f2005-05-01 08:59:11 -07001088 /* Enable the interrupt in the BT interface. */
1089 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1090 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1091 } else
1092 rv = request_irq(info->irq,
1093 si_irq_handler,
1094 SA_INTERRUPT,
1095 DEVICE_NAME,
1096 info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097 if (rv) {
1098 printk(KERN_WARNING
1099 "ipmi_si: %s unable to claim interrupt %d,"
1100 " running polled\n",
1101 DEVICE_NAME, info->irq);
1102 info->irq = 0;
1103 } else {
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001104 info->irq_cleanup = std_irq_cleanup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105 printk(" Using irq %d\n", info->irq);
1106 }
1107
1108 return rv;
1109}
1110
Linus Torvalds1da177e2005-04-16 15:20:36 -07001111static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1112{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001113 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001115 return inb(addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116}
1117
1118static void port_outb(struct si_sm_io *io, unsigned int offset,
1119 unsigned char b)
1120{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001121 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001123 outb(b, addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124}
1125
1126static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1127{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001128 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001130 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131}
1132
1133static void port_outw(struct si_sm_io *io, unsigned int offset,
1134 unsigned char b)
1135{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001136 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001138 outw(b << io->regshift, addr + (offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001139}
1140
1141static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1142{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001143 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001144
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001145 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146}
1147
1148static void port_outl(struct si_sm_io *io, unsigned int offset,
1149 unsigned char b)
1150{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001151 unsigned int addr = io->addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001153 outl(b << io->regshift, addr+(offset * io->regspacing));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154}
1155
1156static void port_cleanup(struct smi_info *info)
1157{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001158 unsigned int addr = info->io.addr_data;
1159 int mapsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001161 if (addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 mapsize = ((info->io_size * info->io.regspacing)
1163 - (info->io.regspacing - info->io.regsize));
1164
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001165 release_region (addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 }
1167 kfree(info);
1168}
1169
1170static int port_setup(struct smi_info *info)
1171{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001172 unsigned int addr = info->io.addr_data;
1173 int mapsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001175 if (!addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 return -ENODEV;
1177
1178 info->io_cleanup = port_cleanup;
1179
1180 /* Figure out the actual inb/inw/inl/etc routine to use based
1181 upon the register size. */
1182 switch (info->io.regsize) {
1183 case 1:
1184 info->io.inputb = port_inb;
1185 info->io.outputb = port_outb;
1186 break;
1187 case 2:
1188 info->io.inputb = port_inw;
1189 info->io.outputb = port_outw;
1190 break;
1191 case 4:
1192 info->io.inputb = port_inl;
1193 info->io.outputb = port_outl;
1194 break;
1195 default:
1196 printk("ipmi_si: Invalid register size: %d\n",
1197 info->io.regsize);
1198 return -EINVAL;
1199 }
1200
1201 /* Calculate the total amount of memory to claim. This is an
1202 * unusual looking calculation, but it avoids claiming any
1203 * more memory than it has to. It will claim everything
1204 * between the first address to the end of the last full
1205 * register. */
1206 mapsize = ((info->io_size * info->io.regspacing)
1207 - (info->io.regspacing - info->io.regsize));
1208
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001209 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210 return -EIO;
1211 return 0;
1212}
1213
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001214static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215{
1216 return readb((io->addr)+(offset * io->regspacing));
1217}
1218
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001219static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 unsigned char b)
1221{
1222 writeb(b, (io->addr)+(offset * io->regspacing));
1223}
1224
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001225static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226{
1227 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1228 && 0xff;
1229}
1230
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001231static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232 unsigned char b)
1233{
1234 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1235}
1236
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001237static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238{
1239 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1240 && 0xff;
1241}
1242
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001243static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 unsigned char b)
1245{
1246 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1247}
1248
1249#ifdef readq
1250static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1251{
1252 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1253 && 0xff;
1254}
1255
1256static void mem_outq(struct si_sm_io *io, unsigned int offset,
1257 unsigned char b)
1258{
1259 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1260}
1261#endif
1262
1263static void mem_cleanup(struct smi_info *info)
1264{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001265 unsigned long addr = info->io.addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266 int mapsize;
1267
1268 if (info->io.addr) {
1269 iounmap(info->io.addr);
1270
1271 mapsize = ((info->io_size * info->io.regspacing)
1272 - (info->io.regspacing - info->io.regsize));
1273
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001274 release_mem_region(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 }
1276 kfree(info);
1277}
1278
1279static int mem_setup(struct smi_info *info)
1280{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001281 unsigned long addr = info->io.addr_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282 int mapsize;
1283
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001284 if (!addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 return -ENODEV;
1286
1287 info->io_cleanup = mem_cleanup;
1288
1289 /* Figure out the actual readb/readw/readl/etc routine to use based
1290 upon the register size. */
1291 switch (info->io.regsize) {
1292 case 1:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001293 info->io.inputb = intf_mem_inb;
1294 info->io.outputb = intf_mem_outb;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 break;
1296 case 2:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001297 info->io.inputb = intf_mem_inw;
1298 info->io.outputb = intf_mem_outw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 break;
1300 case 4:
Alexey Dobriyan546cfdf2006-02-03 03:04:40 -08001301 info->io.inputb = intf_mem_inl;
1302 info->io.outputb = intf_mem_outl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303 break;
1304#ifdef readq
1305 case 8:
1306 info->io.inputb = mem_inq;
1307 info->io.outputb = mem_outq;
1308 break;
1309#endif
1310 default:
1311 printk("ipmi_si: Invalid register size: %d\n",
1312 info->io.regsize);
1313 return -EINVAL;
1314 }
1315
1316 /* Calculate the total amount of memory to claim. This is an
1317 * unusual looking calculation, but it avoids claiming any
1318 * more memory than it has to. It will claim everything
1319 * between the first address to the end of the last full
1320 * register. */
1321 mapsize = ((info->io_size * info->io.regspacing)
1322 - (info->io.regspacing - info->io.regsize));
1323
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001324 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001325 return -EIO;
1326
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001327 info->io.addr = ioremap(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328 if (info->io.addr == NULL) {
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001329 release_mem_region(addr, mapsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330 return -EIO;
1331 }
1332 return 0;
1333}
1334
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001335
1336static __devinit void hardcode_find_bmc(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001338 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339 struct smi_info *info;
1340
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001341 for (i = 0; i < SI_MAX_PARMS; i++) {
1342 if (!ports[i] && !addrs[i])
1343 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001345 info = kzalloc(sizeof(*info), GFP_KERNEL);
1346 if (!info)
1347 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001349 info->addr_source = "hardcoded";
1350
1351 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1352 info->si_type = SI_KCS;
1353 } else if (strcmp(si_type[i], "smic") == 0) {
1354 info->si_type = SI_SMIC;
1355 } else if (strcmp(si_type[i], "bt") == 0) {
1356 info->si_type = SI_BT;
1357 } else {
1358 printk(KERN_WARNING
1359 "ipmi_si: Interface type specified "
1360 "for interface %d, was invalid: %s\n",
1361 i, si_type[i]);
1362 kfree(info);
1363 continue;
1364 }
1365
1366 if (ports[i]) {
1367 /* An I/O port */
1368 info->io_setup = port_setup;
1369 info->io.addr_data = ports[i];
1370 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1371 } else if (addrs[i]) {
1372 /* A memory port */
1373 info->io_setup = mem_setup;
1374 info->io.addr_data = addrs[i];
1375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1376 } else {
1377 printk(KERN_WARNING
1378 "ipmi_si: Interface type specified "
1379 "for interface %d, "
1380 "but port and address were not set or "
1381 "set to zero.\n", i);
1382 kfree(info);
1383 continue;
1384 }
1385
1386 info->io.addr = NULL;
1387 info->io.regspacing = regspacings[i];
1388 if (!info->io.regspacing)
1389 info->io.regspacing = DEFAULT_REGSPACING;
1390 info->io.regsize = regsizes[i];
1391 if (!info->io.regsize)
1392 info->io.regsize = DEFAULT_REGSPACING;
1393 info->io.regshift = regshifts[i];
1394 info->irq = irqs[i];
1395 if (info->irq)
1396 info->irq_setup = std_irq_setup;
1397
1398 try_smi_init(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400}
1401
Len Brown84663612005-08-24 12:09:07 -04001402#ifdef CONFIG_ACPI
Linus Torvalds1da177e2005-04-16 15:20:36 -07001403
1404#include <linux/acpi.h>
1405
1406/* Once we get an ACPI failure, we don't try any more, because we go
1407 through the tables sequentially. Once we don't find a table, there
1408 are no more. */
1409static int acpi_failure = 0;
1410
1411/* For GPE-type interrupts. */
1412static u32 ipmi_acpi_gpe(void *context)
1413{
1414 struct smi_info *smi_info = context;
1415 unsigned long flags;
1416#ifdef DEBUG_TIMING
1417 struct timeval t;
1418#endif
1419
1420 spin_lock_irqsave(&(smi_info->si_lock), flags);
1421
1422 spin_lock(&smi_info->count_lock);
1423 smi_info->interrupts++;
1424 spin_unlock(&smi_info->count_lock);
1425
Corey Minyarda9a2c442005-11-07 01:00:03 -08001426 if (atomic_read(&smi_info->stop_operation))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 goto out;
1428
1429#ifdef DEBUG_TIMING
1430 do_gettimeofday(&t);
1431 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1432#endif
1433 smi_event_handler(smi_info, 0);
1434 out:
1435 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1436
1437 return ACPI_INTERRUPT_HANDLED;
1438}
1439
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001440static void acpi_gpe_irq_cleanup(struct smi_info *info)
1441{
1442 if (!info->irq)
1443 return;
1444
1445 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1446}
1447
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448static int acpi_gpe_irq_setup(struct smi_info *info)
1449{
1450 acpi_status status;
1451
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001452 if (!info->irq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453 return 0;
1454
1455 /* FIXME - is level triggered right? */
1456 status = acpi_install_gpe_handler(NULL,
1457 info->irq,
1458 ACPI_GPE_LEVEL_TRIGGERED,
1459 &ipmi_acpi_gpe,
1460 info);
1461 if (status != AE_OK) {
1462 printk(KERN_WARNING
1463 "ipmi_si: %s unable to claim ACPI GPE %d,"
1464 " running polled\n",
1465 DEVICE_NAME, info->irq);
1466 info->irq = 0;
1467 return -EINVAL;
1468 } else {
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001469 info->irq_cleanup = acpi_gpe_irq_cleanup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 printk(" Using ACPI GPE %d\n", info->irq);
1471 return 0;
1472 }
1473}
1474
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475/*
1476 * Defined at
1477 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1478 */
1479struct SPMITable {
1480 s8 Signature[4];
1481 u32 Length;
1482 u8 Revision;
1483 u8 Checksum;
1484 s8 OEMID[6];
1485 s8 OEMTableID[8];
1486 s8 OEMRevision[4];
1487 s8 CreatorID[4];
1488 s8 CreatorRevision[4];
1489 u8 InterfaceType;
1490 u8 IPMIlegacy;
1491 s16 SpecificationRevision;
1492
1493 /*
1494 * Bit 0 - SCI interrupt supported
1495 * Bit 1 - I/O APIC/SAPIC
1496 */
1497 u8 InterruptType;
1498
1499 /* If bit 0 of InterruptType is set, then this is the SCI
1500 interrupt in the GPEx_STS register. */
1501 u8 GPE;
1502
1503 s16 Reserved;
1504
1505 /* If bit 1 of InterruptType is set, then this is the I/O
1506 APIC/SAPIC interrupt. */
1507 u32 GlobalSystemInterrupt;
1508
1509 /* The actual register address. */
1510 struct acpi_generic_address addr;
1511
1512 u8 UID[4];
1513
1514 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1515};
1516
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001517static __devinit int try_init_acpi(struct SPMITable *spmi)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518{
1519 struct smi_info *info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 char *io_type;
1521 u8 addr_space;
1522
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 if (spmi->IPMIlegacy != 1) {
1524 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1525 return -ENODEV;
1526 }
1527
1528 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1529 addr_space = IPMI_MEM_ADDR_SPACE;
1530 else
1531 addr_space = IPMI_IO_ADDR_SPACE;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001532
1533 info = kzalloc(sizeof(*info), GFP_KERNEL);
1534 if (!info) {
1535 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1536 return -ENOMEM;
1537 }
1538
1539 info->addr_source = "ACPI";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541 /* Figure out the interface type. */
1542 switch (spmi->InterfaceType)
1543 {
1544 case 1: /* KCS */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001545 info->si_type = SI_KCS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001547 case 2: /* SMIC */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001548 info->si_type = SI_SMIC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550 case 3: /* BT */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001551 info->si_type = SI_BT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553 default:
1554 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1555 spmi->InterfaceType);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001556 kfree(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 return -EIO;
1558 }
1559
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560 if (spmi->InterruptType & 1) {
1561 /* We've got a GPE interrupt. */
1562 info->irq = spmi->GPE;
1563 info->irq_setup = acpi_gpe_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 } else if (spmi->InterruptType & 2) {
1565 /* We've got an APIC/SAPIC interrupt. */
1566 info->irq = spmi->GlobalSystemInterrupt;
1567 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568 } else {
1569 /* Use the default interrupt setting. */
1570 info->irq = 0;
1571 info->irq_setup = NULL;
1572 }
1573
Corey Minyard35bc37a2005-05-01 08:59:10 -07001574 if (spmi->addr.register_bit_width) {
1575 /* A (hopefully) properly formed register bit width. */
Corey Minyard35bc37a2005-05-01 08:59:10 -07001576 info->io.regspacing = spmi->addr.register_bit_width / 8;
1577 } else {
Corey Minyard35bc37a2005-05-01 08:59:10 -07001578 info->io.regspacing = DEFAULT_REGSPACING;
1579 }
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001580 info->io.regsize = info->io.regspacing;
1581 info->io.regshift = spmi->addr.register_bit_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001582
1583 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1584 io_type = "memory";
1585 info->io_setup = mem_setup;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001586 info->io.addr_type = IPMI_IO_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1588 io_type = "I/O";
1589 info->io_setup = port_setup;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001590 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591 } else {
1592 kfree(info);
1593 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1594 return -EIO;
1595 }
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001596 info->io.addr_data = spmi->addr.address;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001598 try_smi_init(info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 return 0;
1601}
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001602
1603static __devinit void acpi_find_bmc(void)
1604{
1605 acpi_status status;
1606 struct SPMITable *spmi;
1607 int i;
1608
1609 if (acpi_disabled)
1610 return;
1611
1612 if (acpi_failure)
1613 return;
1614
1615 for (i = 0; ; i++) {
1616 status = acpi_get_firmware_table("SPMI", i+1,
1617 ACPI_LOGICAL_ADDRESSING,
1618 (struct acpi_table_header **)
1619 &spmi);
1620 if (status != AE_OK)
1621 return;
1622
1623 try_init_acpi(spmi);
1624 }
1625}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626#endif
1627
Matt Domscha9fad4c2006-01-11 12:17:44 -08001628#ifdef CONFIG_DMI
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001629struct dmi_ipmi_data
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630{
1631 u8 type;
1632 u8 addr_space;
1633 unsigned long base_addr;
1634 u8 irq;
1635 u8 offset;
1636 u8 slave_addr;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001637};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001638
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001639static int __devinit decode_dmi(struct dmi_header *dm,
1640 struct dmi_ipmi_data *dmi)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641{
Corey Minyarde8b33612005-09-06 15:18:45 -07001642 u8 *data = (u8 *)dm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001643 unsigned long base_addr;
1644 u8 reg_spacing;
Andrey Paninb224cd32005-09-06 15:18:37 -07001645 u8 len = dm->length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001647 dmi->type = data[4];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648
1649 memcpy(&base_addr, data+8, sizeof(unsigned long));
1650 if (len >= 0x11) {
1651 if (base_addr & 1) {
1652 /* I/O */
1653 base_addr &= 0xFFFE;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001654 dmi->addr_space = IPMI_IO_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655 }
1656 else {
1657 /* Memory */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001658 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 }
1660 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1661 is odd. */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001662 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001664 dmi->irq = data[0x11];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665
1666 /* The top two bits of byte 0x10 hold the register spacing. */
Andrey Paninb224cd32005-09-06 15:18:37 -07001667 reg_spacing = (data[0x10] & 0xC0) >> 6;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001668 switch(reg_spacing){
1669 case 0x00: /* Byte boundaries */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001670 dmi->offset = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 break;
1672 case 0x01: /* 32-bit boundaries */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001673 dmi->offset = 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001674 break;
1675 case 0x02: /* 16-byte boundaries */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001676 dmi->offset = 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 break;
1678 default:
1679 /* Some other interface, just ignore it. */
1680 return -EIO;
1681 }
1682 } else {
1683 /* Old DMI spec. */
Corey Minyard92068802005-05-01 08:59:10 -07001684 /* Note that technically, the lower bit of the base
1685 * address should be 1 if the address is I/O and 0 if
1686 * the address is in memory. So many systems get that
1687 * wrong (and all that I have seen are I/O) so we just
1688 * ignore that bit and assume I/O. Systems that use
1689 * memory should use the newer spec, anyway. */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001690 dmi->base_addr = base_addr & 0xfffe;
1691 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1692 dmi->offset = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 }
1694
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001695 dmi->slave_addr = data[6];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001696
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001697 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698}
1699
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001700static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701{
Corey Minyarde8b33612005-09-06 15:18:45 -07001702 struct smi_info *info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001704 info = kzalloc(sizeof(*info), GFP_KERNEL);
1705 if (!info) {
1706 printk(KERN_ERR
1707 "ipmi_si: Could not allocate SI data\n");
1708 return;
1709 }
1710
1711 info->addr_source = "SMBIOS";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712
Corey Minyarde8b33612005-09-06 15:18:45 -07001713 switch (ipmi_data->type) {
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001714 case 0x01: /* KCS */
1715 info->si_type = SI_KCS;
1716 break;
1717 case 0x02: /* SMIC */
1718 info->si_type = SI_SMIC;
1719 break;
1720 case 0x03: /* BT */
1721 info->si_type = SI_BT;
1722 break;
1723 default:
1724 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725 }
1726
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001727 switch (ipmi_data->addr_space) {
1728 case IPMI_MEM_ADDR_SPACE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729 info->io_setup = mem_setup;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001730 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1731 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001733 case IPMI_IO_ADDR_SPACE:
1734 info->io_setup = port_setup;
1735 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1736 break;
1737
1738 default:
1739 kfree(info);
1740 printk(KERN_WARNING
1741 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1742 ipmi_data->addr_space);
1743 return;
1744 }
1745 info->io.addr_data = ipmi_data->base_addr;
1746
1747 info->io.regspacing = ipmi_data->offset;
1748 if (!info->io.regspacing)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749 info->io.regspacing = DEFAULT_REGSPACING;
1750 info->io.regsize = DEFAULT_REGSPACING;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001751 info->io.regshift = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752
1753 info->slave_addr = ipmi_data->slave_addr;
1754
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001755 info->irq = ipmi_data->irq;
1756 if (info->irq)
1757 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001759 try_smi_init(info);
1760}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001762static void __devinit dmi_find_bmc(void)
1763{
1764 struct dmi_device *dev = NULL;
1765 struct dmi_ipmi_data data;
1766 int rv;
1767
1768 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1769 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1770 if (!rv)
1771 try_init_dmi(&data);
1772 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773}
Matt Domscha9fad4c2006-01-11 12:17:44 -08001774#endif /* CONFIG_DMI */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775
1776#ifdef CONFIG_PCI
1777
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001778#define PCI_ERMC_CLASSCODE 0x0C0700
1779#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1780#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1781#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1782#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1783#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1784
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785#define PCI_HP_VENDOR_ID 0x103C
1786#define PCI_MMC_DEVICE_ID 0x121A
1787#define PCI_MMC_ADDR_CW 0x10
1788
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001789static void ipmi_pci_cleanup(struct smi_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001791 struct pci_dev *pdev = info->addr_source_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001793 pci_disable_device(pdev);
1794}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001796static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1797 const struct pci_device_id *ent)
1798{
1799 int rv;
1800 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1801 struct smi_info *info;
1802 int first_reg_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001804 info = kzalloc(sizeof(*info), GFP_KERNEL);
1805 if (!info)
1806 return ENOMEM;
1807
1808 info->addr_source = "PCI";
1809
1810 switch (class_type) {
1811 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1812 info->si_type = SI_SMIC;
1813 break;
1814
1815 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1816 info->si_type = SI_KCS;
1817 break;
1818
1819 case PCI_ERMC_CLASSCODE_TYPE_BT:
1820 info->si_type = SI_BT;
1821 break;
1822
1823 default:
1824 kfree(info);
1825 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1826 pci_name(pdev), class_type);
1827 return ENOMEM;
Corey Minyarde8b33612005-09-06 15:18:45 -07001828 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001830 rv = pci_enable_device(pdev);
1831 if (rv) {
1832 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1833 pci_name(pdev));
1834 kfree(info);
1835 return rv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 }
1837
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001838 info->addr_source_cleanup = ipmi_pci_cleanup;
1839 info->addr_source_data = pdev;
1840
1841 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1842 first_reg_offset = 1;
1843
1844 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1845 info->io_setup = port_setup;
1846 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1847 } else {
1848 info->io_setup = mem_setup;
1849 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001850 }
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001851 info->io.addr_data = pci_resource_start(pdev, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001853 info->io.regspacing = DEFAULT_REGSPACING;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001854 info->io.regsize = DEFAULT_REGSPACING;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001855 info->io.regshift = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001857 info->irq = pdev->irq;
1858 if (info->irq)
1859 info->irq_setup = std_irq_setup;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001861 return try_smi_init(info);
1862}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001864static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1865{
1866}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001868#ifdef CONFIG_PM
1869static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1870{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 return 0;
1872}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001874static int ipmi_pci_resume(struct pci_dev *pdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001876 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877}
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001878#endif
1879
1880static struct pci_device_id ipmi_pci_devices[] = {
1881 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1882 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1883};
1884MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1885
1886static struct pci_driver ipmi_pci_driver = {
1887 .name = DEVICE_NAME,
1888 .id_table = ipmi_pci_devices,
1889 .probe = ipmi_pci_probe,
1890 .remove = __devexit_p(ipmi_pci_remove),
1891#ifdef CONFIG_PM
1892 .suspend = ipmi_pci_suspend,
1893 .resume = ipmi_pci_resume,
1894#endif
1895};
1896#endif /* CONFIG_PCI */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001897
1898
1899static int try_get_dev_id(struct smi_info *smi_info)
1900{
1901 unsigned char msg[2];
1902 unsigned char *resp;
1903 unsigned long resp_len;
1904 enum si_sm_result smi_result;
1905 int rv = 0;
1906
1907 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001908 if (!resp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 return -ENOMEM;
1910
1911 /* Do a Get Device ID command, since it comes back with some
1912 useful info. */
1913 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1914 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1915 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1916
1917 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1918 for (;;)
1919 {
Corey Minyardc3e7e792005-11-07 01:00:02 -08001920 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1921 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
Nishanth Aravamudanda4cd8d2005-09-10 00:27:30 -07001922 schedule_timeout_uninterruptible(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001923 smi_result = smi_info->handlers->event(
1924 smi_info->si_sm, 100);
1925 }
1926 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1927 {
1928 smi_result = smi_info->handlers->event(
1929 smi_info->si_sm, 0);
1930 }
1931 else
1932 break;
1933 }
1934 if (smi_result == SI_SM_HOSED) {
1935 /* We couldn't get the state machine to run, so whatever's at
1936 the port is probably not an IPMI SMI interface. */
1937 rv = -ENODEV;
1938 goto out;
1939 }
1940
1941 /* Otherwise, we got some data. */
1942 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1943 resp, IPMI_MAX_MSG_LENGTH);
1944 if (resp_len < 6) {
1945 /* That's odd, it should be longer. */
1946 rv = -EINVAL;
1947 goto out;
1948 }
1949
1950 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1951 /* That's odd, it shouldn't be able to fail. */
1952 rv = -EINVAL;
1953 goto out;
1954 }
1955
1956 /* Record info from the get device id, in case we need it. */
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07001957 memcpy(&smi_info->device_id, &resp[3],
1958 min_t(unsigned long, resp_len-3, sizeof(smi_info->device_id)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001959
1960 out:
1961 kfree(resp);
1962 return rv;
1963}
1964
1965static int type_file_read_proc(char *page, char **start, off_t off,
1966 int count, int *eof, void *data)
1967{
1968 char *out = (char *) page;
1969 struct smi_info *smi = data;
1970
1971 switch (smi->si_type) {
1972 case SI_KCS:
1973 return sprintf(out, "kcs\n");
1974 case SI_SMIC:
1975 return sprintf(out, "smic\n");
1976 case SI_BT:
1977 return sprintf(out, "bt\n");
1978 default:
1979 return 0;
1980 }
1981}
1982
1983static int stat_file_read_proc(char *page, char **start, off_t off,
1984 int count, int *eof, void *data)
1985{
1986 char *out = (char *) page;
1987 struct smi_info *smi = data;
1988
1989 out += sprintf(out, "interrupts_enabled: %d\n",
Corey Minyardb0defcdb2006-03-26 01:37:20 -08001990 smi->irq && !smi->interrupt_disabled);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 out += sprintf(out, "short_timeouts: %ld\n",
1992 smi->short_timeouts);
1993 out += sprintf(out, "long_timeouts: %ld\n",
1994 smi->long_timeouts);
1995 out += sprintf(out, "timeout_restarts: %ld\n",
1996 smi->timeout_restarts);
1997 out += sprintf(out, "idles: %ld\n",
1998 smi->idles);
1999 out += sprintf(out, "interrupts: %ld\n",
2000 smi->interrupts);
2001 out += sprintf(out, "attentions: %ld\n",
2002 smi->attentions);
2003 out += sprintf(out, "flag_fetches: %ld\n",
2004 smi->flag_fetches);
2005 out += sprintf(out, "hosed_count: %ld\n",
2006 smi->hosed_count);
2007 out += sprintf(out, "complete_transactions: %ld\n",
2008 smi->complete_transactions);
2009 out += sprintf(out, "events: %ld\n",
2010 smi->events);
2011 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2012 smi->watchdog_pretimeouts);
2013 out += sprintf(out, "incoming_messages: %ld\n",
2014 smi->incoming_messages);
2015
2016 return (out - ((char *) page));
2017}
2018
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002019/*
2020 * oem_data_avail_to_receive_msg_avail
2021 * @info - smi_info structure with msg_flags set
2022 *
2023 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2024 * Returns 1 indicating need to re-run handle_flags().
2025 */
2026static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2027{
Corey Minyarde8b33612005-09-06 15:18:45 -07002028 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2029 RECEIVE_MSG_AVAIL);
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002030 return 1;
2031}
2032
2033/*
2034 * setup_dell_poweredge_oem_data_handler
2035 * @info - smi_info.device_id must be populated
2036 *
2037 * Systems that match, but have firmware version < 1.40 may assert
2038 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2039 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2040 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2041 * as RECEIVE_MSG_AVAIL instead.
2042 *
2043 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2044 * assert the OEM[012] bits, and if it did, the driver would have to
2045 * change to handle that properly, we don't actually check for the
2046 * firmware version.
2047 * Device ID = 0x20 BMC on PowerEdge 8G servers
2048 * Device Revision = 0x80
2049 * Firmware Revision1 = 0x01 BMC version 1.40
2050 * Firmware Revision2 = 0x40 BCD encoded
2051 * IPMI Version = 0x51 IPMI 1.5
2052 * Manufacturer ID = A2 02 00 Dell IANA
2053 *
Corey Minyardd5a2b892005-11-07 00:59:58 -08002054 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2055 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2056 *
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002057 */
2058#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2059#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2060#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2061#define DELL_IANA_MFR_ID {0xA2, 0x02, 0x00}
2062static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2063{
2064 struct ipmi_device_id *id = &smi_info->device_id;
2065 const char mfr[3]=DELL_IANA_MFR_ID;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002066 if (!memcmp(mfr, id->manufacturer_id, sizeof(mfr))) {
Corey Minyardd5a2b892005-11-07 00:59:58 -08002067 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2068 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2069 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2070 smi_info->oem_data_avail_handler =
2071 oem_data_avail_to_receive_msg_avail;
2072 }
2073 else if (ipmi_version_major(id) < 1 ||
2074 (ipmi_version_major(id) == 1 &&
2075 ipmi_version_minor(id) < 5)) {
2076 smi_info->oem_data_avail_handler =
2077 oem_data_avail_to_receive_msg_avail;
2078 }
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002079 }
2080}
2081
Corey Minyardea940272005-11-07 00:59:59 -08002082#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2083static void return_hosed_msg_badsize(struct smi_info *smi_info)
2084{
2085 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2086
2087 /* Make it a reponse */
2088 msg->rsp[0] = msg->data[0] | 4;
2089 msg->rsp[1] = msg->data[1];
2090 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2091 msg->rsp_size = 3;
2092 smi_info->curr_msg = NULL;
2093 deliver_recv_msg(smi_info, msg);
2094}
2095
2096/*
2097 * dell_poweredge_bt_xaction_handler
2098 * @info - smi_info.device_id must be populated
2099 *
2100 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2101 * not respond to a Get SDR command if the length of the data
2102 * requested is exactly 0x3A, which leads to command timeouts and no
2103 * data returned. This intercepts such commands, and causes userspace
2104 * callers to try again with a different-sized buffer, which succeeds.
2105 */
2106
2107#define STORAGE_NETFN 0x0A
2108#define STORAGE_CMD_GET_SDR 0x23
2109static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2110 unsigned long unused,
2111 void *in)
2112{
2113 struct smi_info *smi_info = in;
2114 unsigned char *data = smi_info->curr_msg->data;
2115 unsigned int size = smi_info->curr_msg->data_size;
2116 if (size >= 8 &&
2117 (data[0]>>2) == STORAGE_NETFN &&
2118 data[1] == STORAGE_CMD_GET_SDR &&
2119 data[7] == 0x3A) {
2120 return_hosed_msg_badsize(smi_info);
2121 return NOTIFY_STOP;
2122 }
2123 return NOTIFY_DONE;
2124}
2125
2126static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2127 .notifier_call = dell_poweredge_bt_xaction_handler,
2128};
2129
2130/*
2131 * setup_dell_poweredge_bt_xaction_handler
2132 * @info - smi_info.device_id must be filled in already
2133 *
2134 * Fills in smi_info.device_id.start_transaction_pre_hook
2135 * when we know what function to use there.
2136 */
2137static void
2138setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2139{
2140 struct ipmi_device_id *id = &smi_info->device_id;
2141 const char mfr[3]=DELL_IANA_MFR_ID;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002142 if (!memcmp(mfr, id->manufacturer_id, sizeof(mfr)) &&
Corey Minyardea940272005-11-07 00:59:59 -08002143 smi_info->si_type == SI_BT)
2144 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2145}
2146
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002147/*
2148 * setup_oem_data_handler
2149 * @info - smi_info.device_id must be filled in already
2150 *
2151 * Fills in smi_info.device_id.oem_data_available_handler
2152 * when we know what function to use there.
2153 */
2154
2155static void setup_oem_data_handler(struct smi_info *smi_info)
2156{
2157 setup_dell_poweredge_oem_data_handler(smi_info);
2158}
2159
Corey Minyardea940272005-11-07 00:59:59 -08002160static void setup_xaction_handlers(struct smi_info *smi_info)
2161{
2162 setup_dell_poweredge_bt_xaction_handler(smi_info);
2163}
2164
Corey Minyarda9a2c442005-11-07 01:00:03 -08002165static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2166{
Matt Domsch44f080c2005-11-18 01:10:54 -08002167 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM))
Matt Domsche9a705a2005-11-07 01:00:04 -08002168 kthread_stop(smi_info->thread);
Corey Minyarda9a2c442005-11-07 01:00:03 -08002169 del_timer_sync(&smi_info->si_timer);
2170}
2171
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002172static struct ipmi_default_vals
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002174 int type;
2175 int port;
2176} __devinit ipmi_defaults[] =
2177{
2178 { .type = SI_KCS, .port = 0xca2 },
2179 { .type = SI_SMIC, .port = 0xca9 },
2180 { .type = SI_BT, .port = 0xe4 },
2181 { .port = 0 }
2182};
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002184static __devinit void default_find_bmc(void)
2185{
2186 struct smi_info *info;
2187 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002189 for (i = 0; ; i++) {
2190 if (!ipmi_defaults[i].port)
2191 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002193 info = kzalloc(sizeof(*info), GFP_KERNEL);
2194 if (!info)
2195 return;
2196
2197 info->addr_source = NULL;
2198
2199 info->si_type = ipmi_defaults[i].type;
2200 info->io_setup = port_setup;
2201 info->io.addr_data = ipmi_defaults[i].port;
2202 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2203
2204 info->io.addr = NULL;
2205 info->io.regspacing = DEFAULT_REGSPACING;
2206 info->io.regsize = DEFAULT_REGSPACING;
2207 info->io.regshift = 0;
2208
2209 if (try_smi_init(info) == 0) {
2210 /* Found one... */
2211 printk(KERN_INFO "ipmi_si: Found default %s state"
2212 " machine at %s address 0x%lx\n",
2213 si_to_str[info->si_type],
2214 addr_space_to_str[info->io.addr_type],
2215 info->io.addr_data);
2216 return;
2217 }
2218 }
2219}
2220
2221static int is_new_interface(struct smi_info *info)
2222{
2223 struct smi_info *e;
2224
2225 list_for_each_entry(e, &smi_infos, link) {
2226 if (e->io.addr_type != info->io.addr_type)
2227 continue;
2228 if (e->io.addr_data == info->io.addr_data)
2229 return 0;
2230 }
2231
2232 return 1;
2233}
2234
2235static int try_smi_init(struct smi_info *new_smi)
2236{
2237 int rv;
2238
2239 if (new_smi->addr_source) {
2240 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2241 " machine at %s address 0x%lx, slave address 0x%x,"
2242 " irq %d\n",
2243 new_smi->addr_source,
2244 si_to_str[new_smi->si_type],
2245 addr_space_to_str[new_smi->io.addr_type],
2246 new_smi->io.addr_data,
2247 new_smi->slave_addr, new_smi->irq);
2248 }
2249
2250 down(&smi_infos_lock);
2251 if (!is_new_interface(new_smi)) {
2252 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2253 rv = -EBUSY;
2254 goto out_err;
2255 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256
2257 /* So we know not to free it unless we have allocated one. */
2258 new_smi->intf = NULL;
2259 new_smi->si_sm = NULL;
2260 new_smi->handlers = NULL;
2261
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002262 switch (new_smi->si_type) {
2263 case SI_KCS:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264 new_smi->handlers = &kcs_smi_handlers;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002265 break;
2266
2267 case SI_SMIC:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 new_smi->handlers = &smic_smi_handlers;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002269 break;
2270
2271 case SI_BT:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 new_smi->handlers = &bt_smi_handlers;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002273 break;
2274
2275 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002276 /* No support for anything else yet. */
2277 rv = -EIO;
2278 goto out_err;
2279 }
2280
2281 /* Allocate the state machine's data and initialize it. */
2282 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002283 if (!new_smi->si_sm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 printk(" Could not allocate state machine memory\n");
2285 rv = -ENOMEM;
2286 goto out_err;
2287 }
2288 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2289 &new_smi->io);
2290
2291 /* Now that we know the I/O size, we can set up the I/O. */
2292 rv = new_smi->io_setup(new_smi);
2293 if (rv) {
2294 printk(" Could not set up I/O space\n");
2295 goto out_err;
2296 }
2297
2298 spin_lock_init(&(new_smi->si_lock));
2299 spin_lock_init(&(new_smi->msg_lock));
2300 spin_lock_init(&(new_smi->count_lock));
2301
2302 /* Do low-level detection first. */
2303 if (new_smi->handlers->detect(new_smi->si_sm)) {
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002304 if (new_smi->addr_source)
2305 printk(KERN_INFO "ipmi_si: Interface detection"
2306 " failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307 rv = -ENODEV;
2308 goto out_err;
2309 }
2310
2311 /* Attempt a get device id command. If it fails, we probably
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002312 don't have a BMC here. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313 rv = try_get_dev_id(new_smi);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002314 if (rv) {
2315 if (new_smi->addr_source)
2316 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2317 " at this location\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 goto out_err;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002319 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002320
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002321 setup_oem_data_handler(new_smi);
Corey Minyardea940272005-11-07 00:59:59 -08002322 setup_xaction_handlers(new_smi);
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002323
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324 /* Try to claim any interrupts. */
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002325 if (new_smi->irq_setup)
2326 new_smi->irq_setup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327
2328 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2329 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2330 new_smi->curr_msg = NULL;
2331 atomic_set(&new_smi->req_events, 0);
2332 new_smi->run_to_completion = 0;
2333
2334 new_smi->interrupt_disabled = 0;
Corey Minyarda9a2c442005-11-07 01:00:03 -08002335 atomic_set(&new_smi->stop_operation, 0);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002336 new_smi->intf_num = smi_num;
2337 smi_num++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002338
2339 /* Start clearing the flags before we enable interrupts or the
2340 timer to avoid racing with the timer. */
2341 start_clear_flags(new_smi);
2342 /* IRQ is defined to be set when non-zero. */
2343 if (new_smi->irq)
2344 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2345
2346 /* The ipmi_register_smi() code does some operations to
2347 determine the channel information, so we must be ready to
2348 handle operations before it is called. This means we have
2349 to stop the timer if we get an error after this point. */
2350 init_timer(&(new_smi->si_timer));
2351 new_smi->si_timer.data = (long) new_smi;
2352 new_smi->si_timer.function = smi_timeout;
2353 new_smi->last_timeout_jiffies = jiffies;
2354 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
Corey Minyarda9a2c442005-11-07 01:00:03 -08002355
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 add_timer(&(new_smi->si_timer));
Matt Domsche9a705a2005-11-07 01:00:04 -08002357 if (new_smi->si_type != SI_BT)
2358 new_smi->thread = kthread_run(ipmi_thread, new_smi,
2359 "kipmi%d", new_smi->intf_num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360
2361 rv = ipmi_register_smi(&handlers,
2362 new_smi,
Corey Minyard3ae0e0f2005-09-06 15:18:41 -07002363 ipmi_version_major(&new_smi->device_id),
2364 ipmi_version_minor(&new_smi->device_id),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 new_smi->slave_addr,
2366 &(new_smi->intf));
2367 if (rv) {
2368 printk(KERN_ERR
2369 "ipmi_si: Unable to register device: error %d\n",
2370 rv);
2371 goto out_err_stop_timer;
2372 }
2373
2374 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2375 type_file_read_proc, NULL,
2376 new_smi, THIS_MODULE);
2377 if (rv) {
2378 printk(KERN_ERR
2379 "ipmi_si: Unable to create proc entry: %d\n",
2380 rv);
2381 goto out_err_stop_timer;
2382 }
2383
2384 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2385 stat_file_read_proc, NULL,
2386 new_smi, THIS_MODULE);
2387 if (rv) {
2388 printk(KERN_ERR
2389 "ipmi_si: Unable to create proc entry: %d\n",
2390 rv);
2391 goto out_err_stop_timer;
2392 }
2393
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002394 list_add_tail(&new_smi->link, &smi_infos);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002396 up(&smi_infos_lock);
2397
2398 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399
2400 return 0;
2401
2402 out_err_stop_timer:
Corey Minyarda9a2c442005-11-07 01:00:03 -08002403 atomic_inc(&new_smi->stop_operation);
2404 wait_for_timer_and_thread(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405
2406 out_err:
2407 if (new_smi->intf)
2408 ipmi_unregister_smi(new_smi->intf);
2409
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002410 if (new_smi->irq_cleanup)
2411 new_smi->irq_cleanup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002412
2413 /* Wait until we know that we are out of any interrupt
2414 handlers might have been running before we freed the
2415 interrupt. */
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002416 synchronize_sched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002417
2418 if (new_smi->si_sm) {
2419 if (new_smi->handlers)
2420 new_smi->handlers->cleanup(new_smi->si_sm);
2421 kfree(new_smi->si_sm);
2422 }
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002423 if (new_smi->addr_source_cleanup)
2424 new_smi->addr_source_cleanup(new_smi);
Paolo Galtieri7767e122005-12-15 12:34:28 -08002425 if (new_smi->io_cleanup)
2426 new_smi->io_cleanup(new_smi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002428 up(&smi_infos_lock);
2429
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 return rv;
2431}
2432
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002433static __devinit int init_ipmi_si(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435 int i;
2436 char *str;
2437
2438 if (initialized)
2439 return 0;
2440 initialized = 1;
2441
2442 /* Parse out the si_type string into its components. */
2443 str = si_type_str;
2444 if (*str != '\0') {
Corey Minyarde8b33612005-09-06 15:18:45 -07002445 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446 si_type[i] = str;
2447 str = strchr(str, ',');
2448 if (str) {
2449 *str = '\0';
2450 str++;
2451 } else {
2452 break;
2453 }
2454 }
2455 }
2456
Corey Minyard1fdd75b2005-09-06 15:18:42 -07002457 printk(KERN_INFO "IPMI System Interface driver.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002459 hardcode_find_bmc();
2460
Matt Domscha9fad4c2006-01-11 12:17:44 -08002461#ifdef CONFIG_DMI
Andrey Paninb224cd32005-09-06 15:18:37 -07002462 dmi_find_bmc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463#endif
2464
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002465#ifdef CONFIG_ACPI
2466 if (si_trydefaults)
2467 acpi_find_bmc();
2468#endif
2469
2470#ifdef CONFIG_PCI
2471 pci_module_init(&ipmi_pci_driver);
2472#endif
2473
2474 if (si_trydefaults) {
2475 down(&smi_infos_lock);
2476 if (list_empty(&smi_infos)) {
2477 /* No BMC was found, try defaults. */
2478 up(&smi_infos_lock);
2479 default_find_bmc();
2480 } else {
2481 up(&smi_infos_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 }
2483 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002484
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002485 down(&smi_infos_lock);
2486 if (list_empty(&smi_infos)) {
2487 up(&smi_infos_lock);
2488#ifdef CONFIG_PCI
2489 pci_unregister_driver(&ipmi_pci_driver);
2490#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 printk("ipmi_si: Unable to find any System Interface(s)\n");
2492 return -ENODEV;
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002493 } else {
2494 up(&smi_infos_lock);
2495 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002496 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497}
2498module_init(init_ipmi_si);
2499
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002500static void __devexit cleanup_one_si(struct smi_info *to_clean)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002501{
2502 int rv;
2503 unsigned long flags;
2504
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002505 if (!to_clean)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506 return;
2507
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002508 list_del(&to_clean->link);
2509
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510 /* Tell the timer and interrupt handlers that we are shutting
2511 down. */
2512 spin_lock_irqsave(&(to_clean->si_lock), flags);
2513 spin_lock(&(to_clean->msg_lock));
2514
Corey Minyarda9a2c442005-11-07 01:00:03 -08002515 atomic_inc(&to_clean->stop_operation);
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002516
2517 if (to_clean->irq_cleanup)
2518 to_clean->irq_cleanup(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519
2520 spin_unlock(&(to_clean->msg_lock));
2521 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2522
2523 /* Wait until we know that we are out of any interrupt
2524 handlers might have been running before we freed the
2525 interrupt. */
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002526 synchronize_sched();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002527
Corey Minyarda9a2c442005-11-07 01:00:03 -08002528 wait_for_timer_and_thread(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529
2530 /* Interrupts and timeouts are stopped, now make sure the
2531 interface is in a clean state. */
Corey Minyarde8b33612005-09-06 15:18:45 -07002532 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 poll(to_clean);
Nishanth Aravamudanda4cd8d2005-09-10 00:27:30 -07002534 schedule_timeout_uninterruptible(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002535 }
2536
2537 rv = ipmi_unregister_smi(to_clean->intf);
2538 if (rv) {
2539 printk(KERN_ERR
2540 "ipmi_si: Unable to unregister device: errno=%d\n",
2541 rv);
2542 }
2543
2544 to_clean->handlers->cleanup(to_clean->si_sm);
2545
2546 kfree(to_clean->si_sm);
2547
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002548 if (to_clean->addr_source_cleanup)
2549 to_clean->addr_source_cleanup(to_clean);
Paolo Galtieri7767e122005-12-15 12:34:28 -08002550 if (to_clean->io_cleanup)
2551 to_clean->io_cleanup(to_clean);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552}
2553
2554static __exit void cleanup_ipmi_si(void)
2555{
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002556 struct smi_info *e, *tmp_e;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002558 if (!initialized)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 return;
2560
Corey Minyardb0defcdb2006-03-26 01:37:20 -08002561#ifdef CONFIG_PCI
2562 pci_unregister_driver(&ipmi_pci_driver);
2563#endif
2564
2565 down(&smi_infos_lock);
2566 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2567 cleanup_one_si(e);
2568 up(&smi_infos_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002569}
2570module_exit(cleanup_ipmi_si);
2571
2572MODULE_LICENSE("GPL");
Corey Minyard1fdd75b2005-09-06 15:18:42 -07002573MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2574MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");