blob: 33a93b41739612cafe1fe3d918c39a3915f86a78 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:010
2 * A hypervisor allows multiple Operating Systems to run on a single machine.
3 * To quote David Wheeler: "Any problem in computer science can be solved with
4 * another layer of indirection."
Rusty Russell07ad1572007-07-19 01:49:22 -07005 *
Rusty Russellf938d2c2007-07-26 10:41:02 -07006 * We keep things simple in two ways. First, we start with a normal Linux
7 * kernel and insert a module (lg.ko) which allows us to run other Linux
8 * kernels the same way we'd run processes. We call the first kernel the Host,
9 * and the others the Guests. The program which sets up and configures Guests
10 * (such as the example in Documentation/lguest/lguest.c) is called the
11 * Launcher.
12 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050013 * Secondly, we only run specially modified Guests, not normal kernels: setting
14 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
15 * how to be a Guest at boot time. This means that you can use the same kernel
16 * you boot normally (ie. as a Host) as a Guest.
Rusty Russellf938d2c2007-07-26 10:41:02 -070017 *
18 * These Guests know that they cannot do privileged operations, such as disable
19 * interrupts, and that they have to ask the Host to do such things explicitly.
20 * This file consists of all the replacements for such low-level native
21 * hardware operations: these special Guest versions call the Host.
22 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050023 * So how does the kernel know it's a Guest? We'll see that later, but let's
24 * just say that we end up here where we replace the native functions various
25 * "paravirt" structures with our Guest versions, then boot like normal. :*/
Rusty Russellf938d2c2007-07-26 10:41:02 -070026
27/*
Rusty Russell07ad1572007-07-19 01:49:22 -070028 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * This program is distributed in the hope that it will be useful, but
36 * WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38 * NON INFRINGEMENT. See the GNU General Public License for more
39 * details.
40 *
41 * You should have received a copy of the GNU General Public License
42 * along with this program; if not, write to the Free Software
43 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45#include <linux/kernel.h>
46#include <linux/start_kernel.h>
47#include <linux/string.h>
48#include <linux/console.h>
49#include <linux/screen_info.h>
50#include <linux/irq.h>
51#include <linux/interrupt.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070052#include <linux/clocksource.h>
53#include <linux/clockchips.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070054#include <linux/lguest.h>
55#include <linux/lguest_launcher.h>
Rusty Russell19f15372007-10-22 11:24:21 +100056#include <linux/virtio_console.h>
Jeff Garzik4cfe6c32007-10-25 14:15:09 +100057#include <linux/pm.h>
Ingo Molnar7b6aa332009-02-17 13:58:15 +010058#include <asm/apic.h>
Harvey Harrisoncbc34972008-02-13 13:14:35 -080059#include <asm/lguest.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070060#include <asm/paravirt.h>
61#include <asm/param.h>
62#include <asm/page.h>
63#include <asm/pgtable.h>
64#include <asm/desc.h>
65#include <asm/setup.h>
66#include <asm/e820.h>
67#include <asm/mce.h>
68#include <asm/io.h>
Jes Sorensen625efab2007-10-22 11:03:28 +100069#include <asm/i387.h>
Rusty Russell2cb78782009-06-03 14:52:24 +093070#include <asm/stackprotector.h>
Balaji Raoec04b132007-12-28 14:26:24 +053071#include <asm/reboot.h> /* for struct machine_ops */
Rusty Russell07ad1572007-07-19 01:49:22 -070072
Rusty Russellb2b47c22007-07-26 10:41:02 -070073/*G:010 Welcome to the Guest!
74 *
75 * The Guest in our tale is a simple creature: identical to the Host but
76 * behaving in simplified but equivalent ways. In particular, the Guest is the
77 * same kernel as the Host (or at least, built from the same source code). :*/
78
Rusty Russell07ad1572007-07-19 01:49:22 -070079struct lguest_data lguest_data = {
80 .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
81 .noirq_start = (u32)lguest_noirq_start,
82 .noirq_end = (u32)lguest_noirq_end,
Rusty Russell47436aa2007-10-22 11:03:36 +100083 .kernel_address = PAGE_OFFSET,
Rusty Russell07ad1572007-07-19 01:49:22 -070084 .blocked_interrupts = { 1 }, /* Block timer interrupts */
Rusty Russellc18acd72007-10-22 11:03:35 +100085 .syscall_vec = SYSCALL_VECTOR,
Rusty Russell07ad1572007-07-19 01:49:22 -070086};
Rusty Russell07ad1572007-07-19 01:49:22 -070087
Rusty Russell633872b2007-11-05 21:55:57 +110088/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
Rusty Russellb2b47c22007-07-26 10:41:02 -070089 * ring buffer of stored hypercalls which the Host will run though next time we
90 * do a normal hypercall. Each entry in the ring has 4 slots for the hypercall
91 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
92 * and 255 once the Host has finished with it.
93 *
94 * If we come around to a slot which hasn't been finished, then the table is
95 * full and we just make the hypercall directly. This has the nice side
96 * effect of causing the Host to run all the stored calls in the ring buffer
97 * which empties it for next time! */
Adrian Bunk9b56fdb2007-11-02 16:43:10 +010098static void async_hcall(unsigned long call, unsigned long arg1,
99 unsigned long arg2, unsigned long arg3)
Rusty Russell07ad1572007-07-19 01:49:22 -0700100{
101 /* Note: This code assumes we're uniprocessor. */
102 static unsigned int next_call;
103 unsigned long flags;
104
Rusty Russellb2b47c22007-07-26 10:41:02 -0700105 /* Disable interrupts if not already disabled: we don't want an
106 * interrupt handler making a hypercall while we're already doing
107 * one! */
Rusty Russell07ad1572007-07-19 01:49:22 -0700108 local_irq_save(flags);
109 if (lguest_data.hcall_status[next_call] != 0xFF) {
110 /* Table full, so do normal hcall which will flush table. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200111 kvm_hypercall3(call, arg1, arg2, arg3);
Rusty Russell07ad1572007-07-19 01:49:22 -0700112 } else {
Jes Sorensenb410e7b2007-10-22 11:03:31 +1000113 lguest_data.hcalls[next_call].arg0 = call;
114 lguest_data.hcalls[next_call].arg1 = arg1;
115 lguest_data.hcalls[next_call].arg2 = arg2;
116 lguest_data.hcalls[next_call].arg3 = arg3;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700117 /* Arguments must all be written before we mark it to go */
Rusty Russell07ad1572007-07-19 01:49:22 -0700118 wmb();
119 lguest_data.hcall_status[next_call] = 0;
120 if (++next_call == LHCALL_RING_SIZE)
121 next_call = 0;
122 }
123 local_irq_restore(flags);
124}
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100125
Rusty Russell633872b2007-11-05 21:55:57 +1100126/*G:035 Notice the lazy_hcall() above, rather than hcall(). This is our first
127 * real optimization trick!
128 *
129 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
130 * them as a batch when lazy_mode is eventually turned off. Because hypercalls
131 * are reasonably expensive, batching them up makes sense. For example, a
132 * large munmap might update dozens of page table entries: that code calls
133 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
134 * lguest_leave_lazy_mode().
135 *
136 * So, when we're in lazy mode, we call async_hcall() to store the call for
Rusty Russella6bd8e12008-03-28 11:05:53 -0500137 * future processing: */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200138static void lazy_hcall1(unsigned long call,
139 unsigned long arg1)
140{
141 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
142 kvm_hypercall1(call, arg1);
143 else
144 async_hcall(call, arg1, 0, 0);
145}
146
147static void lazy_hcall2(unsigned long call,
148 unsigned long arg1,
149 unsigned long arg2)
150{
151 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
152 kvm_hypercall2(call, arg1, arg2);
153 else
154 async_hcall(call, arg1, arg2, 0);
155}
156
157static void lazy_hcall3(unsigned long call,
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100158 unsigned long arg1,
159 unsigned long arg2,
160 unsigned long arg3)
161{
162 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200163 kvm_hypercall3(call, arg1, arg2, arg3);
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100164 else
165 async_hcall(call, arg1, arg2, arg3);
166}
Rusty Russell633872b2007-11-05 21:55:57 +1100167
168/* When lazy mode is turned off reset the per-cpu lazy mode variable and then
Rusty Russella6bd8e12008-03-28 11:05:53 -0500169 * issue the do-nothing hypercall to flush any stored calls. */
Rusty Russell633872b2007-11-05 21:55:57 +1100170static void lguest_leave_lazy_mode(void)
171{
172 paravirt_leave_lazy(paravirt_get_lazy_mode());
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200173 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Rusty Russell633872b2007-11-05 21:55:57 +1100174}
Rusty Russell07ad1572007-07-19 01:49:22 -0700175
Rusty Russellb2b47c22007-07-26 10:41:02 -0700176/*G:033
Rusty Russelle1e72962007-10-25 15:02:50 +1000177 * After that diversion we return to our first native-instruction
178 * replacements: four functions for interrupt control.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700179 *
180 * The simplest way of implementing these would be to have "turn interrupts
181 * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
182 * these are by far the most commonly called functions of those we override.
183 *
184 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
185 * which the Guest can update with a single instruction. The Host knows to
Rusty Russella6bd8e12008-03-28 11:05:53 -0500186 * check there before it tries to deliver an interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700187 */
188
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100189/* save_flags() is expected to return the processor state (ie. "flags"). The
190 * flags word contains all kind of stuff, but in practice Linux only cares
Rusty Russellb2b47c22007-07-26 10:41:02 -0700191 * about the interrupt flag. Our "save_flags()" just returns that. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700192static unsigned long save_fl(void)
193{
194 return lguest_data.irq_enabled;
195}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800196PV_CALLEE_SAVE_REGS_THUNK(save_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700197
Rusty Russelle1e72962007-10-25 15:02:50 +1000198/* restore_flags() just sets the flags back to the value given. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700199static void restore_fl(unsigned long flags)
200{
Rusty Russell07ad1572007-07-19 01:49:22 -0700201 lguest_data.irq_enabled = flags;
202}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800203PV_CALLEE_SAVE_REGS_THUNK(restore_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700204
Rusty Russellb2b47c22007-07-26 10:41:02 -0700205/* Interrupts go off... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700206static void irq_disable(void)
207{
208 lguest_data.irq_enabled = 0;
209}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800210PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
Rusty Russell07ad1572007-07-19 01:49:22 -0700211
Rusty Russellb2b47c22007-07-26 10:41:02 -0700212/* Interrupts go on... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700213static void irq_enable(void)
214{
Rusty Russell07ad1572007-07-19 01:49:22 -0700215 lguest_data.irq_enabled = X86_EFLAGS_IF;
216}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800217PV_CALLEE_SAVE_REGS_THUNK(irq_enable);
218
Rusty Russellf56a3842007-07-26 10:41:05 -0700219/*:*/
220/*M:003 Note that we don't check for outstanding interrupts when we re-enable
221 * them (or when we unmask an interrupt). This seems to work for the moment,
222 * since interrupts are rare and we'll just get the interrupt on the next timer
Rusty Russella6bd8e12008-03-28 11:05:53 -0500223 * tick, but now we can run with CONFIG_NO_HZ, we should revisit this. One way
Rusty Russellf56a3842007-07-26 10:41:05 -0700224 * would be to put the "irq_enabled" field in a page by itself, and have the
225 * Host write-protect it when an interrupt comes in when irqs are disabled.
Rusty Russella6bd8e12008-03-28 11:05:53 -0500226 * There will then be a page fault as soon as interrupts are re-enabled.
227 *
228 * A better method is to implement soft interrupt disable generally for x86:
229 * instead of disabling interrupts, we set a flag. If an interrupt does come
230 * in, we then disable them for real. This is uncommon, so we could simply use
231 * a hypercall for interrupt control and not worry about efficiency. :*/
Rusty Russell07ad1572007-07-19 01:49:22 -0700232
Rusty Russellb2b47c22007-07-26 10:41:02 -0700233/*G:034
234 * The Interrupt Descriptor Table (IDT).
235 *
236 * The IDT tells the processor what to do when an interrupt comes in. Each
237 * entry in the table is a 64-bit descriptor: this holds the privilege level,
238 * address of the handler, and... well, who cares? The Guest just asks the
239 * Host to make the change anyway, because the Host controls the real IDT.
240 */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100241static void lguest_write_idt_entry(gate_desc *dt,
242 int entrynum, const gate_desc *g)
Rusty Russell07ad1572007-07-19 01:49:22 -0700243{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500244 /* The gate_desc structure is 8 bytes long: we hand it to the Host in
245 * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
246 * around like this; typesafety wasn't a big concern in Linux's early
247 * years. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100248 u32 *desc = (u32 *)g;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700249 /* Keep the local copy up to date. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100250 native_write_idt_entry(dt, entrynum, g);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700251 /* Tell Host about this new entry. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200252 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700253}
254
Rusty Russellb2b47c22007-07-26 10:41:02 -0700255/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
256 * time it is written, so we can simply loop through all entries and tell the
257 * Host about them. */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100258static void lguest_load_idt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700259{
260 unsigned int i;
261 struct desc_struct *idt = (void *)desc->address;
262
263 for (i = 0; i < (desc->size+1)/8; i++)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200264 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700265}
266
Rusty Russellb2b47c22007-07-26 10:41:02 -0700267/*
268 * The Global Descriptor Table.
269 *
270 * The Intel architecture defines another table, called the Global Descriptor
271 * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
272 * instruction, and then several other instructions refer to entries in the
273 * table. There are three entries which the Switcher needs, so the Host simply
274 * controls the entire thing and the Guest asks it to make changes using the
275 * LOAD_GDT hypercall.
276 *
Rusty Russella489f0b2009-04-19 23:14:00 -0600277 * This is the exactly like the IDT code.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700278 */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100279static void lguest_load_gdt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700280{
Rusty Russella489f0b2009-04-19 23:14:00 -0600281 unsigned int i;
282 struct desc_struct *gdt = (void *)desc->address;
283
284 for (i = 0; i < (desc->size+1)/8; i++)
285 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700286}
287
Rusty Russellb2b47c22007-07-26 10:41:02 -0700288/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
289 * then tell the Host to reload the entire thing. This operation is so rare
290 * that this naive implementation is reasonable. */
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100291static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
292 const void *desc, int type)
Rusty Russell07ad1572007-07-19 01:49:22 -0700293{
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100294 native_write_gdt_entry(dt, entrynum, desc, type);
Rusty Russella489f0b2009-04-19 23:14:00 -0600295 /* Tell Host about this new entry. */
296 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, entrynum,
297 dt[entrynum].a, dt[entrynum].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700298}
299
Rusty Russellb2b47c22007-07-26 10:41:02 -0700300/* OK, I lied. There are three "thread local storage" GDT entries which change
301 * on every context switch (these three entries are how glibc implements
302 * __thread variables). So we have a hypercall specifically for this case. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700303static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
304{
Rusty Russell0d027c02007-08-09 20:57:13 +1000305 /* There's one problem which normal hardware doesn't have: the Host
306 * can't handle us removing entries we're currently using. So we clear
307 * the GS register here: if it's needed it'll be reloaded anyway. */
Tejun Heoccbeed32009-02-09 22:17:40 +0900308 lazy_load_gs(0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200309 lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
Rusty Russell07ad1572007-07-19 01:49:22 -0700310}
311
Rusty Russellb2b47c22007-07-26 10:41:02 -0700312/*G:038 That's enough excitement for now, back to ploughing through each of
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700313 * the different pv_ops structures (we're about 1/3 of the way through).
Rusty Russellb2b47c22007-07-26 10:41:02 -0700314 *
315 * This is the Local Descriptor Table, another weird Intel thingy. Linux only
316 * uses this for some strange applications like Wine. We don't do anything
317 * here, so they'll get an informative and friendly Segmentation Fault. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700318static void lguest_set_ldt(const void *addr, unsigned entries)
319{
320}
321
Rusty Russellb2b47c22007-07-26 10:41:02 -0700322/* This loads a GDT entry into the "Task Register": that entry points to a
323 * structure called the Task State Segment. Some comments scattered though the
324 * kernel code indicate that this used for task switching in ages past, along
325 * with blood sacrifice and astrology.
326 *
327 * Now there's nothing interesting in here that we don't get told elsewhere.
328 * But the native version uses the "ltr" instruction, which makes the Host
329 * complain to the Guest about a Segmentation Fault and it'll oops. So we
330 * override the native version with a do-nothing version. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700331static void lguest_load_tr_desc(void)
332{
333}
334
Rusty Russellb2b47c22007-07-26 10:41:02 -0700335/* The "cpuid" instruction is a way of querying both the CPU identity
336 * (manufacturer, model, etc) and its features. It was introduced before the
Rusty Russella6bd8e12008-03-28 11:05:53 -0500337 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
338 * As you might imagine, after a decade and a half this treatment, it is now a
339 * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700340 *
341 * This instruction even it has its own Wikipedia entry. The Wikipedia entry
342 * has been translated into 4 languages. I am not making this up!
343 *
344 * We could get funky here and identify ourselves as "GenuineLguest", but
345 * instead we just use the real "cpuid" instruction. Then I pretty much turned
346 * off feature bits until the Guest booted. (Don't say that: you'll damage
347 * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
348 * hardly future proof.) Noone's listening! They don't like you anyway,
349 * parenthetic weirdo!
350 *
351 * Replacing the cpuid so we can turn features off is great for the kernel, but
352 * anyone (including userspace) can just use the raw "cpuid" instruction and
353 * the Host won't even notice since it isn't privileged. So we try not to get
354 * too worked up about it. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100355static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
356 unsigned int *cx, unsigned int *dx)
Rusty Russell07ad1572007-07-19 01:49:22 -0700357{
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100358 int function = *ax;
Rusty Russell07ad1572007-07-19 01:49:22 -0700359
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100360 native_cpuid(ax, bx, cx, dx);
Rusty Russell07ad1572007-07-19 01:49:22 -0700361 switch (function) {
362 case 1: /* Basic feature request. */
363 /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100364 *cx &= 0x00002201;
Rusty Russell3fabc552008-03-11 09:35:56 -0500365 /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */
366 *dx &= 0x07808111;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700367 /* The Host can do a nice optimization if it knows that the
368 * kernel mappings (addresses above 0xC0000000 or whatever
369 * PAGE_OFFSET is set to) haven't changed. But Linux calls
370 * flush_tlb_user() for both user and kernel mappings unless
371 * the Page Global Enable (PGE) feature bit is set. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100372 *dx |= 0x00002000;
Rusty Russellcbd88c82009-03-09 10:06:22 -0600373 /* We also lie, and say we're family id 5. 6 or greater
374 * leads to a rdmsr in early_init_intel which we can't handle.
375 * Family ID is returned as bits 8-12 in ax. */
376 *ax &= 0xFFFFF0FF;
377 *ax |= 0x00000500;
Rusty Russell07ad1572007-07-19 01:49:22 -0700378 break;
379 case 0x80000000:
380 /* Futureproof this a little: if they ask how much extended
Rusty Russellb2b47c22007-07-26 10:41:02 -0700381 * processor information there is, limit it to known fields. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100382 if (*ax > 0x80000008)
383 *ax = 0x80000008;
Rusty Russell07ad1572007-07-19 01:49:22 -0700384 break;
385 }
386}
387
Rusty Russellb2b47c22007-07-26 10:41:02 -0700388/* Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
389 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
390 * it. The Host needs to know when the Guest wants to change them, so we have
391 * a whole series of functions like read_cr0() and write_cr0().
392 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000393 * We start with cr0. cr0 allows you to turn on and off all kinds of basic
Rusty Russellb2b47c22007-07-26 10:41:02 -0700394 * features, but Linux only really cares about one: the horrifically-named Task
395 * Switched (TS) bit at bit 3 (ie. 8)
396 *
397 * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
398 * the floating point unit is used. Which allows us to restore FPU state
399 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
400 * name like "FPUTRAP bit" be a little less cryptic?
401 *
Rusty Russellad5173f2008-10-31 11:24:27 -0500402 * We store cr0 locally because the Host never changes it. The Guest sometimes
403 * wants to read it and we'd prefer not to bother the Host unnecessarily. */
404static unsigned long current_cr0;
Rusty Russell07ad1572007-07-19 01:49:22 -0700405static void lguest_write_cr0(unsigned long val)
406{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200407 lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
Rusty Russell07ad1572007-07-19 01:49:22 -0700408 current_cr0 = val;
409}
410
411static unsigned long lguest_read_cr0(void)
412{
413 return current_cr0;
414}
415
Rusty Russellb2b47c22007-07-26 10:41:02 -0700416/* Intel provided a special instruction to clear the TS bit for people too cool
417 * to use write_cr0() to do it. This "clts" instruction is faster, because all
418 * the vowels have been optimized out. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700419static void lguest_clts(void)
420{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200421 lazy_hcall1(LHCALL_TS, 0);
Rusty Russell25c47bb2007-10-25 14:09:53 +1000422 current_cr0 &= ~X86_CR0_TS;
Rusty Russell07ad1572007-07-19 01:49:22 -0700423}
424
Rusty Russelle1e72962007-10-25 15:02:50 +1000425/* cr2 is the virtual address of the last page fault, which the Guest only ever
Rusty Russellb2b47c22007-07-26 10:41:02 -0700426 * reads. The Host kindly writes this into our "struct lguest_data", so we
427 * just read it out of there. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700428static unsigned long lguest_read_cr2(void)
429{
430 return lguest_data.cr2;
431}
432
Rusty Russellad5173f2008-10-31 11:24:27 -0500433/* See lguest_set_pte() below. */
434static bool cr3_changed = false;
435
Rusty Russelle1e72962007-10-25 15:02:50 +1000436/* cr3 is the current toplevel pagetable page: the principle is the same as
Rusty Russellad5173f2008-10-31 11:24:27 -0500437 * cr0. Keep a local copy, and tell the Host when it changes. The only
438 * difference is that our local copy is in lguest_data because the Host needs
439 * to set it upon our initial hypercall. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700440static void lguest_write_cr3(unsigned long cr3)
441{
Rusty Russellad5173f2008-10-31 11:24:27 -0500442 lguest_data.pgdir = cr3;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200443 lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
Rusty Russellad5173f2008-10-31 11:24:27 -0500444 cr3_changed = true;
Rusty Russell07ad1572007-07-19 01:49:22 -0700445}
446
447static unsigned long lguest_read_cr3(void)
448{
Rusty Russellad5173f2008-10-31 11:24:27 -0500449 return lguest_data.pgdir;
Rusty Russell07ad1572007-07-19 01:49:22 -0700450}
451
Rusty Russelle1e72962007-10-25 15:02:50 +1000452/* cr4 is used to enable and disable PGE, but we don't care. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700453static unsigned long lguest_read_cr4(void)
454{
455 return 0;
456}
457
458static void lguest_write_cr4(unsigned long val)
459{
460}
461
Rusty Russellb2b47c22007-07-26 10:41:02 -0700462/*
463 * Page Table Handling.
464 *
465 * Now would be a good time to take a rest and grab a coffee or similarly
466 * relaxing stimulant. The easy parts are behind us, and the trek gradually
467 * winds uphill from here.
468 *
469 * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
470 * maps virtual addresses to physical addresses using "page tables". We could
471 * use one huge index of 1 million entries: each address is 4 bytes, so that's
472 * 1024 pages just to hold the page tables. But since most virtual addresses
Rusty Russelle1e72962007-10-25 15:02:50 +1000473 * are unused, we use a two level index which saves space. The cr3 register
Rusty Russellb2b47c22007-07-26 10:41:02 -0700474 * contains the physical address of the top level "page directory" page, which
475 * contains physical addresses of up to 1024 second-level pages. Each of these
476 * second level pages contains up to 1024 physical addresses of actual pages,
477 * or Page Table Entries (PTEs).
478 *
479 * Here's a diagram, where arrows indicate physical addresses:
480 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000481 * cr3 ---> +---------+
Rusty Russellb2b47c22007-07-26 10:41:02 -0700482 * | --------->+---------+
483 * | | | PADDR1 |
484 * Top-level | | PADDR2 |
485 * (PMD) page | | |
486 * | | Lower-level |
487 * | | (PTE) page |
488 * | | | |
489 * .... ....
490 *
491 * So to convert a virtual address to a physical address, we look up the top
492 * level, which points us to the second level, which gives us the physical
493 * address of that page. If the top level entry was not present, or the second
494 * level entry was not present, then the virtual address is invalid (we
495 * say "the page was not mapped").
496 *
497 * Put another way, a 32-bit virtual address is divided up like so:
498 *
499 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
500 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
501 * Index into top Index into second Offset within page
502 * page directory page pagetable page
503 *
504 * The kernel spends a lot of time changing both the top-level page directory
505 * and lower-level pagetable pages. The Guest doesn't know physical addresses,
506 * so while it maintains these page tables exactly like normal, it also needs
507 * to keep the Host informed whenever it makes a change: the Host will create
508 * the real page tables based on the Guests'.
509 */
510
511/* The Guest calls this to set a second-level entry (pte), ie. to map a page
512 * into a process' address space. We set the entry then tell the Host the
513 * toplevel and address this corresponds to. The Guest uses one pagetable per
514 * process, so we need to tell the Host which one we're changing (mm->pgd). */
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600515static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
516 pte_t *ptep)
517{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200518 lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600519}
520
Rusty Russell07ad1572007-07-19 01:49:22 -0700521static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
522 pte_t *ptep, pte_t pteval)
523{
524 *ptep = pteval;
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600525 lguest_pte_update(mm, addr, ptep);
Rusty Russell07ad1572007-07-19 01:49:22 -0700526}
527
Rusty Russellb2b47c22007-07-26 10:41:02 -0700528/* The Guest calls this to set a top-level entry. Again, we set the entry then
529 * tell the Host which top-level page we changed, and the index of the entry we
530 * changed. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700531static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
532{
533 *pmdp = pmdval;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200534 lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
535 (__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
Rusty Russell07ad1572007-07-19 01:49:22 -0700536}
537
Rusty Russellb2b47c22007-07-26 10:41:02 -0700538/* There are a couple of legacy places where the kernel sets a PTE, but we
539 * don't know the top level any more. This is useless for us, since we don't
540 * know which pagetable is changing or what address, so we just tell the Host
541 * to forget all of them. Fortunately, this is very rare.
542 *
543 * ... except in early boot when the kernel sets up the initial pagetables,
Rusty Russellad5173f2008-10-31 11:24:27 -0500544 * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
545 * the Host anything changed until we've done the first page table switch,
546 * which brings boot back to 0.25 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700547static void lguest_set_pte(pte_t *ptep, pte_t pteval)
548{
549 *ptep = pteval;
Rusty Russellad5173f2008-10-31 11:24:27 -0500550 if (cr3_changed)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200551 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700552}
553
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700554/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
Rusty Russellb2b47c22007-07-26 10:41:02 -0700555 * native page table operations. On native hardware you can set a new page
556 * table entry whenever you want, but if you want to remove one you have to do
557 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
558 *
559 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
560 * called when a valid entry is written, not when it's removed (ie. marked not
561 * present). Instead, this is where we come when the Guest wants to remove a
562 * page table entry: we tell the Host to set that entry to 0 (ie. the present
563 * bit is zero). */
Rusty Russell07ad1572007-07-19 01:49:22 -0700564static void lguest_flush_tlb_single(unsigned long addr)
565{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700566 /* Simply set it to zero: if it was not, it will fault back in. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200567 lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700568}
569
Rusty Russellb2b47c22007-07-26 10:41:02 -0700570/* This is what happens after the Guest has removed a large number of entries.
571 * This tells the Host that any of the page table entries for userspace might
572 * have changed, ie. virtual addresses below PAGE_OFFSET. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700573static void lguest_flush_tlb_user(void)
574{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200575 lazy_hcall1(LHCALL_FLUSH_TLB, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700576}
577
Rusty Russellb2b47c22007-07-26 10:41:02 -0700578/* This is called when the kernel page tables have changed. That's not very
579 * common (unless the Guest is using highmem, which makes the Guest extremely
580 * slow), so it's worth separating this from the user flushing above. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700581static void lguest_flush_tlb_kernel(void)
582{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200583 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700584}
585
Rusty Russellb2b47c22007-07-26 10:41:02 -0700586/*
587 * The Unadvanced Programmable Interrupt Controller.
588 *
589 * This is an attempt to implement the simplest possible interrupt controller.
590 * I spent some time looking though routines like set_irq_chip_and_handler,
591 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
592 * I *think* this is as simple as it gets.
593 *
594 * We can tell the Host what interrupts we want blocked ready for using the
595 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
596 * simple as setting a bit. We don't actually "ack" interrupts as such, we
597 * just mask and unmask them. I wonder if we should be cleverer?
598 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700599static void disable_lguest_irq(unsigned int irq)
600{
601 set_bit(irq, lguest_data.blocked_interrupts);
602}
603
604static void enable_lguest_irq(unsigned int irq)
605{
606 clear_bit(irq, lguest_data.blocked_interrupts);
Rusty Russell07ad1572007-07-19 01:49:22 -0700607}
608
Rusty Russellb2b47c22007-07-26 10:41:02 -0700609/* This structure describes the lguest IRQ controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700610static struct irq_chip lguest_irq_controller = {
611 .name = "lguest",
612 .mask = disable_lguest_irq,
613 .mask_ack = disable_lguest_irq,
614 .unmask = enable_lguest_irq,
615};
616
Rusty Russellb2b47c22007-07-26 10:41:02 -0700617/* This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
618 * interrupt (except 128, which is used for system calls), and then tells the
619 * Linux infrastructure that each interrupt is controlled by our level-based
620 * lguest interrupt controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700621static void __init lguest_init_IRQ(void)
622{
623 unsigned int i;
624
625 for (i = 0; i < LGUEST_IRQS; i++) {
626 int vector = FIRST_EXTERNAL_VECTOR + i;
Rusty Russell526e5ab2008-10-31 11:24:27 -0500627 /* Some systems map "vectors" to interrupts weirdly. Lguest has
628 * a straightforward 1 to 1 mapping, so force that here. */
629 __get_cpu_var(vector_irq)[vector] = i;
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600630 if (vector != SYSCALL_VECTOR)
631 set_intr_gate(vector, interrupt[i]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700632 }
Rusty Russellb2b47c22007-07-26 10:41:02 -0700633 /* This call is required to set up for 4k stacks, where we have
634 * separate stacks for hard and soft interrupts. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700635 irq_ctx_init(smp_processor_id());
636}
637
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600638void lguest_setup_irq(unsigned int irq)
639{
640 irq_to_desc_alloc_cpu(irq, 0);
641 set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
642 handle_level_irq, "level");
643}
644
Rusty Russellb2b47c22007-07-26 10:41:02 -0700645/*
646 * Time.
647 *
648 * It would be far better for everyone if the Guest had its own clock, but
Rusty Russell6c8dca52007-07-27 13:42:52 +1000649 * until then the Host gives us the time on every interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700650 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700651static unsigned long lguest_get_wallclock(void)
652{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000653 return lguest_data.time.tv_sec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700654}
655
Rusty Russella6bd8e12008-03-28 11:05:53 -0500656/* The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
657 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
658 * This matches what we want here: if we return 0 from this function, the x86
659 * TSC clock will give up and not register itself. */
Alok Katariae93ef942008-07-01 11:43:36 -0700660static unsigned long lguest_tsc_khz(void)
Rusty Russell3fabc552008-03-11 09:35:56 -0500661{
662 return lguest_data.tsc_khz;
663}
664
Rusty Russella6bd8e12008-03-28 11:05:53 -0500665/* If we can't use the TSC, the kernel falls back to our lower-priority
666 * "lguest_clock", where we read the time value given to us by the Host. */
Magnus Damm8e196082009-04-21 12:24:00 -0700667static cycle_t lguest_clock_read(struct clocksource *cs)
Rusty Russell07ad1572007-07-19 01:49:22 -0700668{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000669 unsigned long sec, nsec;
670
Rusty Russell3fabc552008-03-11 09:35:56 -0500671 /* Since the time is in two parts (seconds and nanoseconds), we risk
672 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
673 * and getting 99 and 0. As Linux tends to come apart under the stress
674 * of time travel, we must be careful: */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000675 do {
676 /* First we read the seconds part. */
677 sec = lguest_data.time.tv_sec;
678 /* This read memory barrier tells the compiler and the CPU that
679 * this can't be reordered: we have to complete the above
680 * before going on. */
681 rmb();
682 /* Now we read the nanoseconds part. */
683 nsec = lguest_data.time.tv_nsec;
684 /* Make sure we've done that. */
685 rmb();
686 /* Now if the seconds part has changed, try again. */
687 } while (unlikely(lguest_data.time.tv_sec != sec));
688
Rusty Russell3fabc552008-03-11 09:35:56 -0500689 /* Our lguest clock is in real nanoseconds. */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000690 return sec*1000000000ULL + nsec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700691}
692
Rusty Russell3fabc552008-03-11 09:35:56 -0500693/* This is the fallback clocksource: lower priority than the TSC clocksource. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700694static struct clocksource lguest_clock = {
695 .name = "lguest",
Rusty Russell3fabc552008-03-11 09:35:56 -0500696 .rating = 200,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700697 .read = lguest_clock_read,
Rusty Russell6c8dca52007-07-27 13:42:52 +1000698 .mask = CLOCKSOURCE_MASK(64),
Rusty Russell37250092007-08-09 20:52:35 +1000699 .mult = 1 << 22,
700 .shift = 22,
Tony Breeds05aa0262007-10-22 10:56:25 +1000701 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700702};
703
704/* We also need a "struct clock_event_device": Linux asks us to set it to go
705 * off some time in the future. Actually, James Morris figured all this out, I
706 * just applied the patch. */
707static int lguest_clockevent_set_next_event(unsigned long delta,
708 struct clock_event_device *evt)
709{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500710 /* FIXME: I don't think this can ever happen, but James tells me he had
711 * to put this code in. Maybe we should remove it now. Anyone? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700712 if (delta < LG_CLOCK_MIN_DELTA) {
713 if (printk_ratelimit())
714 printk(KERN_DEBUG "%s: small delta %lu ns\n",
Harvey Harrison77bf90e2008-03-03 11:37:23 -0800715 __func__, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700716 return -ETIME;
717 }
Rusty Russella6bd8e12008-03-28 11:05:53 -0500718
719 /* Please wake us this far in the future. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200720 kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700721 return 0;
722}
723
724static void lguest_clockevent_set_mode(enum clock_event_mode mode,
725 struct clock_event_device *evt)
726{
727 switch (mode) {
728 case CLOCK_EVT_MODE_UNUSED:
729 case CLOCK_EVT_MODE_SHUTDOWN:
730 /* A 0 argument shuts the clock down. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200731 kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700732 break;
733 case CLOCK_EVT_MODE_ONESHOT:
734 /* This is what we expect. */
735 break;
736 case CLOCK_EVT_MODE_PERIODIC:
737 BUG();
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700738 case CLOCK_EVT_MODE_RESUME:
739 break;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700740 }
741}
742
743/* This describes our primitive timer chip. */
744static struct clock_event_device lguest_clockevent = {
745 .name = "lguest",
746 .features = CLOCK_EVT_FEAT_ONESHOT,
747 .set_next_event = lguest_clockevent_set_next_event,
748 .set_mode = lguest_clockevent_set_mode,
749 .rating = INT_MAX,
750 .mult = 1,
751 .shift = 0,
752 .min_delta_ns = LG_CLOCK_MIN_DELTA,
753 .max_delta_ns = LG_CLOCK_MAX_DELTA,
754};
755
756/* This is the Guest timer interrupt handler (hardware interrupt 0). We just
757 * call the clockevent infrastructure and it does whatever needs doing. */
758static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
759{
760 unsigned long flags;
761
762 /* Don't interrupt us while this is running. */
763 local_irq_save(flags);
764 lguest_clockevent.event_handler(&lguest_clockevent);
765 local_irq_restore(flags);
766}
767
Rusty Russellb2b47c22007-07-26 10:41:02 -0700768/* At some point in the boot process, we get asked to set up our timing
769 * infrastructure. The kernel doesn't expect timer interrupts before this, but
770 * we cleverly initialized the "blocked_interrupts" field of "struct
771 * lguest_data" so that timer interrupts were blocked until now. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700772static void lguest_time_init(void)
773{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700774 /* Set up the timer interrupt (0) to go to our simple timer routine */
Rusty Russell07ad1572007-07-19 01:49:22 -0700775 set_irq_handler(0, lguest_time_irq);
Rusty Russell07ad1572007-07-19 01:49:22 -0700776
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700777 clocksource_register(&lguest_clock);
778
Rusty Russellb2b47c22007-07-26 10:41:02 -0700779 /* We can't set cpumask in the initializer: damn C limitations! Set it
780 * here and register our timer device. */
Rusty Russell320ab2b2008-12-13 21:20:26 +1030781 lguest_clockevent.cpumask = cpumask_of(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700782 clockevents_register_device(&lguest_clockevent);
783
Rusty Russellb2b47c22007-07-26 10:41:02 -0700784 /* Finally, we unblock the timer interrupt. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700785 enable_lguest_irq(0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700786}
787
Rusty Russellb2b47c22007-07-26 10:41:02 -0700788/*
789 * Miscellaneous bits and pieces.
790 *
791 * Here is an oddball collection of functions which the Guest needs for things
792 * to work. They're pretty simple.
793 */
794
Rusty Russelle1e72962007-10-25 15:02:50 +1000795/* The Guest needs to tell the Host what stack it expects traps to use. For
Rusty Russellb2b47c22007-07-26 10:41:02 -0700796 * native hardware, this is part of the Task State Segment mentioned above in
797 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
798 *
799 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
800 * segment), the privilege level (we're privilege level 1, the Host is 0 and
801 * will not tolerate us trying to use that), the stack pointer, and the number
802 * of pages in the stack. */
H. Peter Anvinfaca6222008-01-30 13:31:02 +0100803static void lguest_load_sp0(struct tss_struct *tss,
Rusty Russella6bd8e12008-03-28 11:05:53 -0500804 struct thread_struct *thread)
Rusty Russell07ad1572007-07-19 01:49:22 -0700805{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200806 lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
807 THREAD_SIZE / PAGE_SIZE);
Rusty Russell07ad1572007-07-19 01:49:22 -0700808}
809
Rusty Russellb2b47c22007-07-26 10:41:02 -0700810/* Let's just say, I wouldn't do debugging under a Guest. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700811static void lguest_set_debugreg(int regno, unsigned long value)
812{
813 /* FIXME: Implement */
814}
815
Rusty Russellb2b47c22007-07-26 10:41:02 -0700816/* There are times when the kernel wants to make sure that no memory writes are
817 * caught in the cache (that they've all reached real hardware devices). This
818 * doesn't matter for the Guest which has virtual hardware.
819 *
820 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
821 * (clflush) instruction is available and the kernel uses that. Otherwise, it
822 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
823 * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
824 * ignore clflush, but replace wbinvd.
825 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700826static void lguest_wbinvd(void)
827{
828}
829
Rusty Russellb2b47c22007-07-26 10:41:02 -0700830/* If the Guest expects to have an Advanced Programmable Interrupt Controller,
831 * we play dumb by ignoring writes and returning 0 for reads. So it's no
832 * longer Programmable nor Controlling anything, and I don't think 8 lines of
833 * code qualifies for Advanced. It will also never interrupt anything. It
834 * does, however, allow us to get through the Linux boot code. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700835#ifdef CONFIG_X86_LOCAL_APIC
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700836static void lguest_apic_write(u32 reg, u32 v)
Rusty Russell07ad1572007-07-19 01:49:22 -0700837{
838}
839
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700840static u32 lguest_apic_read(u32 reg)
Rusty Russell07ad1572007-07-19 01:49:22 -0700841{
842 return 0;
843}
Suresh Siddha511d9d32008-07-14 09:49:14 -0700844
845static u64 lguest_apic_icr_read(void)
846{
847 return 0;
848}
849
850static void lguest_apic_icr_write(u32 low, u32 id)
851{
852 /* Warn to see if there's any stray references */
853 WARN_ON(1);
854}
855
856static void lguest_apic_wait_icr_idle(void)
857{
858 return;
859}
860
861static u32 lguest_apic_safe_wait_icr_idle(void)
862{
863 return 0;
864}
865
Yinghai Luc1eeb2d2009-02-16 23:02:14 -0800866static void set_lguest_basic_apic_ops(void)
867{
868 apic->read = lguest_apic_read;
869 apic->write = lguest_apic_write;
870 apic->icr_read = lguest_apic_icr_read;
871 apic->icr_write = lguest_apic_icr_write;
872 apic->wait_icr_idle = lguest_apic_wait_icr_idle;
873 apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
Suresh Siddha511d9d32008-07-14 09:49:14 -0700874};
Rusty Russell07ad1572007-07-19 01:49:22 -0700875#endif
876
Rusty Russellb2b47c22007-07-26 10:41:02 -0700877/* STOP! Until an interrupt comes in. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700878static void lguest_safe_halt(void)
879{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200880 kvm_hypercall0(LHCALL_HALT);
Rusty Russell07ad1572007-07-19 01:49:22 -0700881}
882
Rusty Russella6bd8e12008-03-28 11:05:53 -0500883/* The SHUTDOWN hypercall takes a string to describe what's happening, and
884 * an argument which says whether this to restart (reboot) the Guest or not.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700885 *
886 * Note that the Host always prefers that the Guest speak in physical addresses
887 * rather than virtual addresses, so we use __pa() here. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700888static void lguest_power_off(void)
889{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200890 kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
891 LGUEST_SHUTDOWN_POWEROFF);
Rusty Russell07ad1572007-07-19 01:49:22 -0700892}
893
Rusty Russellb2b47c22007-07-26 10:41:02 -0700894/*
895 * Panicing.
896 *
897 * Don't. But if you did, this is what happens.
898 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700899static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
900{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200901 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700902 /* The hcall won't return, but to keep gcc happy, we're "done". */
Rusty Russell07ad1572007-07-19 01:49:22 -0700903 return NOTIFY_DONE;
904}
905
906static struct notifier_block paniced = {
907 .notifier_call = lguest_panic
908};
909
Rusty Russellb2b47c22007-07-26 10:41:02 -0700910/* Setting up memory is fairly easy. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700911static __init char *lguest_memory_setup(void)
912{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500913 /* We do this here and not earlier because lockcheck used to barf if we
914 * did it before start_kernel(). I think we fixed that, so it'd be
915 * nice to move it back to lguest_init. Patch welcome... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700916 atomic_notifier_chain_register(&panic_notifier_list, &paniced);
917
Rusty Russellb2b47c22007-07-26 10:41:02 -0700918 /* The Linux bootloader header contains an "e820" memory map: the
919 * Launcher populated the first entry with our memory limit. */
Yinghai Lud0be6bd2008-06-15 18:58:51 -0700920 e820_add_region(boot_params.e820_map[0].addr,
H. Peter Anvin30c82642007-10-15 17:13:22 -0700921 boot_params.e820_map[0].size,
922 boot_params.e820_map[0].type);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700923
924 /* This string is for the boot messages. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700925 return "LGUEST";
926}
927
Rusty Russelle1e72962007-10-25 15:02:50 +1000928/* We will eventually use the virtio console device to produce console output,
929 * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
930 * console output. */
Rusty Russell19f15372007-10-22 11:24:21 +1000931static __init int early_put_chars(u32 vtermno, const char *buf, int count)
932{
933 char scratch[17];
934 unsigned int len = count;
935
Rusty Russelle1e72962007-10-25 15:02:50 +1000936 /* We use a nul-terminated string, so we have to make a copy. Icky,
937 * huh? */
Rusty Russell19f15372007-10-22 11:24:21 +1000938 if (len > sizeof(scratch) - 1)
939 len = sizeof(scratch) - 1;
940 scratch[len] = '\0';
941 memcpy(scratch, buf, len);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200942 kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
Rusty Russell19f15372007-10-22 11:24:21 +1000943
944 /* This routine returns the number of bytes actually written. */
945 return len;
946}
947
Rusty Russella6bd8e12008-03-28 11:05:53 -0500948/* Rebooting also tells the Host we're finished, but the RESTART flag tells the
949 * Launcher to reboot us. */
950static void lguest_restart(char *reason)
951{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200952 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
Rusty Russella6bd8e12008-03-28 11:05:53 -0500953}
954
Rusty Russellb2b47c22007-07-26 10:41:02 -0700955/*G:050
956 * Patching (Powerfully Placating Performance Pedants)
957 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500958 * We have already seen that pv_ops structures let us replace simple native
959 * instructions with calls to the appropriate back end all throughout the
960 * kernel. This allows the same kernel to run as a Guest and as a native
Rusty Russellb2b47c22007-07-26 10:41:02 -0700961 * kernel, but it's slow because of all the indirect branches.
962 *
963 * Remember that David Wheeler quote about "Any problem in computer science can
964 * be solved with another layer of indirection"? The rest of that quote is
965 * "... But that usually will create another problem." This is the first of
966 * those problems.
967 *
968 * Our current solution is to allow the paravirt back end to optionally patch
969 * over the indirect calls to replace them with something more efficient. We
970 * patch the four most commonly called functions: disable interrupts, enable
Rusty Russelle1e72962007-10-25 15:02:50 +1000971 * interrupts, restore interrupts and save interrupts. We usually have 6 or 10
Rusty Russellb2b47c22007-07-26 10:41:02 -0700972 * bytes to patch into: the Guest versions of these operations are small enough
973 * that we can fit comfortably.
974 *
975 * First we need assembly templates of each of the patchable Guest operations,
Atsushi SAKAI72410af2009-01-16 20:39:14 +0900976 * and these are in i386_head.S. */
Rusty Russellb2b47c22007-07-26 10:41:02 -0700977
978/*G:060 We construct a table from the assembler templates: */
Rusty Russell07ad1572007-07-19 01:49:22 -0700979static const struct lguest_insns
980{
981 const char *start, *end;
982} lguest_insns[] = {
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700983 [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
984 [PARAVIRT_PATCH(pv_irq_ops.irq_enable)] = { lgstart_sti, lgend_sti },
985 [PARAVIRT_PATCH(pv_irq_ops.restore_fl)] = { lgstart_popf, lgend_popf },
986 [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
Rusty Russell07ad1572007-07-19 01:49:22 -0700987};
Rusty Russellb2b47c22007-07-26 10:41:02 -0700988
989/* Now our patch routine is fairly simple (based on the native one in
990 * paravirt.c). If we have a replacement, we copy it in and return how much of
991 * the available space we used. */
Andi Kleenab144f52007-08-10 22:31:03 +0200992static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
993 unsigned long addr, unsigned len)
Rusty Russell07ad1572007-07-19 01:49:22 -0700994{
995 unsigned int insn_len;
996
Rusty Russellb2b47c22007-07-26 10:41:02 -0700997 /* Don't do anything special if we don't have a replacement */
Rusty Russell07ad1572007-07-19 01:49:22 -0700998 if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
Andi Kleenab144f52007-08-10 22:31:03 +0200999 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001000
1001 insn_len = lguest_insns[type].end - lguest_insns[type].start;
1002
Rusty Russellb2b47c22007-07-26 10:41:02 -07001003 /* Similarly if we can't fit replacement (shouldn't happen, but let's
1004 * be thorough). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001005 if (len < insn_len)
Andi Kleenab144f52007-08-10 22:31:03 +02001006 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001007
Rusty Russellb2b47c22007-07-26 10:41:02 -07001008 /* Copy in our instructions. */
Andi Kleenab144f52007-08-10 22:31:03 +02001009 memcpy(ibuf, lguest_insns[type].start, insn_len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001010 return insn_len;
1011}
1012
Rusty Russella6bd8e12008-03-28 11:05:53 -05001013/*G:030 Once we get to lguest_init(), we know we're a Guest. The various
1014 * pv_ops structures in the kernel provide points for (almost) every routine we
1015 * have to override to avoid privileged instructions. */
Rusty Russell814a0e52007-10-22 11:29:44 +10001016__init void lguest_init(void)
Rusty Russell07ad1572007-07-19 01:49:22 -07001017{
Rusty Russellb2b47c22007-07-26 10:41:02 -07001018 /* We're under lguest, paravirt is enabled, and we're running at
1019 * privilege level 1, not 0 as normal. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001020 pv_info.name = "lguest";
1021 pv_info.paravirt_enabled = 1;
1022 pv_info.kernel_rpl = 1;
Rusty Russell07ad1572007-07-19 01:49:22 -07001023
Rusty Russellb2b47c22007-07-26 10:41:02 -07001024 /* We set up all the lguest overrides for sensitive operations. These
1025 * are detailed with the operations themselves. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001026
1027 /* interrupt-related operations */
1028 pv_irq_ops.init_IRQ = lguest_init_IRQ;
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -08001029 pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
1030 pv_irq_ops.restore_fl = PV_CALLEE_SAVE(restore_fl);
1031 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
1032 pv_irq_ops.irq_enable = PV_CALLEE_SAVE(irq_enable);
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001033 pv_irq_ops.safe_halt = lguest_safe_halt;
1034
1035 /* init-time operations */
1036 pv_init_ops.memory_setup = lguest_memory_setup;
1037 pv_init_ops.patch = lguest_patch;
1038
1039 /* Intercepts of various cpu instructions */
1040 pv_cpu_ops.load_gdt = lguest_load_gdt;
1041 pv_cpu_ops.cpuid = lguest_cpuid;
1042 pv_cpu_ops.load_idt = lguest_load_idt;
1043 pv_cpu_ops.iret = lguest_iret;
H. Peter Anvinfaca6222008-01-30 13:31:02 +01001044 pv_cpu_ops.load_sp0 = lguest_load_sp0;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001045 pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1046 pv_cpu_ops.set_ldt = lguest_set_ldt;
1047 pv_cpu_ops.load_tls = lguest_load_tls;
1048 pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1049 pv_cpu_ops.clts = lguest_clts;
1050 pv_cpu_ops.read_cr0 = lguest_read_cr0;
1051 pv_cpu_ops.write_cr0 = lguest_write_cr0;
1052 pv_cpu_ops.read_cr4 = lguest_read_cr4;
1053 pv_cpu_ops.write_cr4 = lguest_write_cr4;
1054 pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1055 pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1056 pv_cpu_ops.wbinvd = lguest_wbinvd;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001057 pv_cpu_ops.lazy_mode.enter = paravirt_enter_lazy_cpu;
1058 pv_cpu_ops.lazy_mode.leave = lguest_leave_lazy_mode;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001059
1060 /* pagetable management */
1061 pv_mmu_ops.write_cr3 = lguest_write_cr3;
1062 pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1063 pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1064 pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1065 pv_mmu_ops.set_pte = lguest_set_pte;
1066 pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1067 pv_mmu_ops.set_pmd = lguest_set_pmd;
1068 pv_mmu_ops.read_cr2 = lguest_read_cr2;
1069 pv_mmu_ops.read_cr3 = lguest_read_cr3;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001070 pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
1071 pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mode;
Rusty Russellb7ff99e2009-03-30 21:55:23 -06001072 pv_mmu_ops.pte_update = lguest_pte_update;
1073 pv_mmu_ops.pte_update_defer = lguest_pte_update;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001074
Rusty Russell07ad1572007-07-19 01:49:22 -07001075#ifdef CONFIG_X86_LOCAL_APIC
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001076 /* apic read/write intercepts */
Yinghai Luc1eeb2d2009-02-16 23:02:14 -08001077 set_lguest_basic_apic_ops();
Rusty Russell07ad1572007-07-19 01:49:22 -07001078#endif
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001079
1080 /* time operations */
1081 pv_time_ops.get_wallclock = lguest_get_wallclock;
1082 pv_time_ops.time_init = lguest_time_init;
Alok Katariae93ef942008-07-01 11:43:36 -07001083 pv_time_ops.get_tsc_khz = lguest_tsc_khz;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001084
Rusty Russellb2b47c22007-07-26 10:41:02 -07001085 /* Now is a good time to look at the implementations of these functions
1086 * before returning to the rest of lguest_init(). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001087
Rusty Russellb2b47c22007-07-26 10:41:02 -07001088 /*G:070 Now we've seen all the paravirt_ops, we return to
1089 * lguest_init() where the rest of the fairly chaotic boot setup
Rusty Russell47436aa2007-10-22 11:03:36 +10001090 * occurs. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001091
Rusty Russell2cb78782009-06-03 14:52:24 +09301092 /* The stack protector is a weird thing where gcc places a canary
1093 * value on the stack and then checks it on return. This file is
1094 * compiled with -fno-stack-protector it, so we got this far without
1095 * problems. The value of the canary is kept at offset 20 from the
1096 * %gs register, so we need to set that up before calling C functions
1097 * in other files. */
1098 setup_stack_canary_segment(0);
1099 /* We could just call load_stack_canary_segment(), but we might as
1100 * call switch_to_new_gdt() which loads the whole table and sets up
1101 * the per-cpu segment descriptor register %fs as well. */
1102 switch_to_new_gdt(0);
1103
Rusty Russell5d006d82008-07-29 09:58:29 -05001104 /* As described in head_32.S, we map the first 128M of memory. */
1105 max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
1106
Rusty Russella6bd8e12008-03-28 11:05:53 -05001107 /* The Host<->Guest Switcher lives at the top of our address space, and
1108 * the Host told us how big it is when we made LGUEST_INIT hypercall:
1109 * it put the answer in lguest_data.reserve_mem */
Rusty Russell07ad1572007-07-19 01:49:22 -07001110 reserve_top_address(lguest_data.reserve_mem);
1111
Rusty Russellb2b47c22007-07-26 10:41:02 -07001112 /* If we don't initialize the lock dependency checker now, it crashes
1113 * paravirt_disable_iospace. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001114 lockdep_init();
1115
Rusty Russellb2b47c22007-07-26 10:41:02 -07001116 /* The IDE code spends about 3 seconds probing for disks: if we reserve
1117 * all the I/O ports up front it can't get them and so doesn't probe.
1118 * Other device drivers are similar (but less severe). This cuts the
1119 * kernel boot time on my machine from 4.1 seconds to 0.45 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001120 paravirt_disable_iospace();
1121
Rusty Russellb2b47c22007-07-26 10:41:02 -07001122 /* This is messy CPU setup stuff which the native boot code does before
1123 * start_kernel, so we have to do, too: */
Rusty Russell07ad1572007-07-19 01:49:22 -07001124 cpu_detect(&new_cpu_data);
1125 /* head.S usually sets up the first capability word, so do it here. */
1126 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1127
1128 /* Math is always hard! */
1129 new_cpu_data.hard_math = 1;
1130
Rusty Russella6bd8e12008-03-28 11:05:53 -05001131 /* We don't have features. We have puppies! Puppies! */
Rusty Russell07ad1572007-07-19 01:49:22 -07001132#ifdef CONFIG_X86_MCE
1133 mce_disabled = 1;
1134#endif
Rusty Russell07ad1572007-07-19 01:49:22 -07001135#ifdef CONFIG_ACPI
1136 acpi_disabled = 1;
1137 acpi_ht = 0;
1138#endif
1139
Atsushi SAKAI72410af2009-01-16 20:39:14 +09001140 /* We set the preferred console to "hvc". This is the "hypervisor
Rusty Russellb2b47c22007-07-26 10:41:02 -07001141 * virtual console" driver written by the PowerPC people, which we also
1142 * adapted for lguest's use. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001143 add_preferred_console("hvc", 0, NULL);
1144
Rusty Russell19f15372007-10-22 11:24:21 +10001145 /* Register our very early console. */
1146 virtio_cons_early_init(early_put_chars);
1147
Rusty Russellb2b47c22007-07-26 10:41:02 -07001148 /* Last of all, we set the power management poweroff hook to point to
Rusty Russella6bd8e12008-03-28 11:05:53 -05001149 * the Guest routine to power off, and the reboot hook to our restart
1150 * routine. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001151 pm_power_off = lguest_power_off;
Balaji Raoec04b132007-12-28 14:26:24 +05301152 machine_ops.restart = lguest_restart;
Rusty Russella6bd8e12008-03-28 11:05:53 -05001153
Yinghai Luf0d43102008-05-29 12:56:36 -07001154 /* Now we're set up, call i386_start_kernel() in head32.c and we proceed
Rusty Russellb2b47c22007-07-26 10:41:02 -07001155 * to boot as normal. It never returns. */
Yinghai Luf0d43102008-05-29 12:56:36 -07001156 i386_start_kernel();
Rusty Russell07ad1572007-07-19 01:49:22 -07001157}
Rusty Russellb2b47c22007-07-26 10:41:02 -07001158/*
1159 * This marks the end of stage II of our journey, The Guest.
1160 *
Rusty Russelle1e72962007-10-25 15:02:50 +10001161 * It is now time for us to explore the layer of virtual drivers and complete
1162 * our understanding of the Guest in "make Drivers".
Rusty Russellb2b47c22007-07-26 10:41:02 -07001163 */