Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2006-2011 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/pci.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/seq_file.h> |
Ben Hutchings | 964e613 | 2012-11-19 23:08:22 +0000 | [diff] [blame] | 17 | #include <linux/crc32.h> |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 18 | #include "net_driver.h" |
| 19 | #include "bitfield.h" |
| 20 | #include "efx.h" |
| 21 | #include "nic.h" |
| 22 | #include "farch_regs.h" |
| 23 | #include "io.h" |
| 24 | #include "workarounds.h" |
| 25 | |
| 26 | /* Falcon-architecture (SFC4000 and SFC9000-family) support */ |
| 27 | |
| 28 | /************************************************************************** |
| 29 | * |
| 30 | * Configurable values |
| 31 | * |
| 32 | ************************************************************************** |
| 33 | */ |
| 34 | |
| 35 | /* This is set to 16 for a good reason. In summary, if larger than |
| 36 | * 16, the descriptor cache holds more than a default socket |
| 37 | * buffer's worth of packets (for UDP we can only have at most one |
| 38 | * socket buffer's worth outstanding). This combined with the fact |
| 39 | * that we only get 1 TX event per descriptor cache means the NIC |
| 40 | * goes idle. |
| 41 | */ |
| 42 | #define TX_DC_ENTRIES 16 |
| 43 | #define TX_DC_ENTRIES_ORDER 1 |
| 44 | |
| 45 | #define RX_DC_ENTRIES 64 |
| 46 | #define RX_DC_ENTRIES_ORDER 3 |
| 47 | |
| 48 | /* If EFX_MAX_INT_ERRORS internal errors occur within |
| 49 | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| 50 | * disable it. |
| 51 | */ |
| 52 | #define EFX_INT_ERROR_EXPIRE 3600 |
| 53 | #define EFX_MAX_INT_ERRORS 5 |
| 54 | |
| 55 | /* Depth of RX flush request fifo */ |
| 56 | #define EFX_RX_FLUSH_COUNT 4 |
| 57 | |
| 58 | /* Driver generated events */ |
| 59 | #define _EFX_CHANNEL_MAGIC_TEST 0x000101 |
| 60 | #define _EFX_CHANNEL_MAGIC_FILL 0x000102 |
| 61 | #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 |
| 62 | #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 |
| 63 | |
| 64 | #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) |
| 65 | #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) |
| 66 | |
| 67 | #define EFX_CHANNEL_MAGIC_TEST(_channel) \ |
| 68 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) |
| 69 | #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ |
| 70 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ |
| 71 | efx_rx_queue_index(_rx_queue)) |
| 72 | #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ |
| 73 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ |
| 74 | efx_rx_queue_index(_rx_queue)) |
| 75 | #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ |
| 76 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ |
| 77 | (_tx_queue)->queue) |
| 78 | |
| 79 | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic); |
| 80 | |
| 81 | /************************************************************************** |
| 82 | * |
| 83 | * Hardware access |
| 84 | * |
| 85 | **************************************************************************/ |
| 86 | |
| 87 | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, |
| 88 | unsigned int index) |
| 89 | { |
| 90 | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, |
| 91 | value, index); |
| 92 | } |
| 93 | |
| 94 | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| 95 | const efx_oword_t *mask) |
| 96 | { |
| 97 | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| 98 | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| 99 | } |
| 100 | |
| 101 | int efx_farch_test_registers(struct efx_nic *efx, |
| 102 | const struct efx_farch_register_test *regs, |
| 103 | size_t n_regs) |
| 104 | { |
| 105 | unsigned address = 0, i, j; |
| 106 | efx_oword_t mask, imask, original, reg, buf; |
| 107 | |
| 108 | for (i = 0; i < n_regs; ++i) { |
| 109 | address = regs[i].address; |
| 110 | mask = imask = regs[i].mask; |
| 111 | EFX_INVERT_OWORD(imask); |
| 112 | |
| 113 | efx_reado(efx, &original, address); |
| 114 | |
| 115 | /* bit sweep on and off */ |
| 116 | for (j = 0; j < 128; j++) { |
| 117 | if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| 118 | continue; |
| 119 | |
| 120 | /* Test this testable bit can be set in isolation */ |
| 121 | EFX_AND_OWORD(reg, original, mask); |
| 122 | EFX_SET_OWORD32(reg, j, j, 1); |
| 123 | |
| 124 | efx_writeo(efx, ®, address); |
| 125 | efx_reado(efx, &buf, address); |
| 126 | |
| 127 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 128 | goto fail; |
| 129 | |
| 130 | /* Test this testable bit can be cleared in isolation */ |
| 131 | EFX_OR_OWORD(reg, original, mask); |
| 132 | EFX_SET_OWORD32(reg, j, j, 0); |
| 133 | |
| 134 | efx_writeo(efx, ®, address); |
| 135 | efx_reado(efx, &buf, address); |
| 136 | |
| 137 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 138 | goto fail; |
| 139 | } |
| 140 | |
| 141 | efx_writeo(efx, &original, address); |
| 142 | } |
| 143 | |
| 144 | return 0; |
| 145 | |
| 146 | fail: |
| 147 | netif_err(efx, hw, efx->net_dev, |
| 148 | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| 149 | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| 150 | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| 151 | return -EIO; |
| 152 | } |
| 153 | |
| 154 | /************************************************************************** |
| 155 | * |
| 156 | * Special buffer handling |
| 157 | * Special buffers are used for event queues and the TX and RX |
| 158 | * descriptor rings. |
| 159 | * |
| 160 | *************************************************************************/ |
| 161 | |
| 162 | /* |
| 163 | * Initialise a special buffer |
| 164 | * |
| 165 | * This will define a buffer (previously allocated via |
| 166 | * efx_alloc_special_buffer()) in the buffer table, allowing |
| 167 | * it to be used for event queues, descriptor rings etc. |
| 168 | */ |
| 169 | static void |
| 170 | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 171 | { |
| 172 | efx_qword_t buf_desc; |
| 173 | unsigned int index; |
| 174 | dma_addr_t dma_addr; |
| 175 | int i; |
| 176 | |
| 177 | EFX_BUG_ON_PARANOID(!buffer->buf.addr); |
| 178 | |
| 179 | /* Write buffer descriptors to NIC */ |
| 180 | for (i = 0; i < buffer->entries; i++) { |
| 181 | index = buffer->index + i; |
| 182 | dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE); |
| 183 | netif_dbg(efx, probe, efx->net_dev, |
| 184 | "mapping special buffer %d at %llx\n", |
| 185 | index, (unsigned long long)dma_addr); |
| 186 | EFX_POPULATE_QWORD_3(buf_desc, |
| 187 | FRF_AZ_BUF_ADR_REGION, 0, |
| 188 | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, |
| 189 | FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| 190 | efx_write_buf_tbl(efx, &buf_desc, index); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /* Unmaps a buffer and clears the buffer table entries */ |
| 195 | static void |
| 196 | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 197 | { |
| 198 | efx_oword_t buf_tbl_upd; |
| 199 | unsigned int start = buffer->index; |
| 200 | unsigned int end = (buffer->index + buffer->entries - 1); |
| 201 | |
| 202 | if (!buffer->entries) |
| 203 | return; |
| 204 | |
| 205 | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", |
| 206 | buffer->index, buffer->index + buffer->entries - 1); |
| 207 | |
| 208 | EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| 209 | FRF_AZ_BUF_UPD_CMD, 0, |
| 210 | FRF_AZ_BUF_CLR_CMD, 1, |
| 211 | FRF_AZ_BUF_CLR_END_ID, end, |
| 212 | FRF_AZ_BUF_CLR_START_ID, start); |
| 213 | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Allocate a new special buffer |
| 218 | * |
| 219 | * This allocates memory for a new buffer, clears it and allocates a |
| 220 | * new buffer ID range. It does not write into the buffer table. |
| 221 | * |
| 222 | * This call will allocate 4KB buffers, since 8KB buffers can't be |
| 223 | * used for event queues and descriptor rings. |
| 224 | */ |
| 225 | static int efx_alloc_special_buffer(struct efx_nic *efx, |
| 226 | struct efx_special_buffer *buffer, |
| 227 | unsigned int len) |
| 228 | { |
| 229 | len = ALIGN(len, EFX_BUF_SIZE); |
| 230 | |
| 231 | if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) |
| 232 | return -ENOMEM; |
| 233 | buffer->entries = len / EFX_BUF_SIZE; |
| 234 | BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1)); |
| 235 | |
| 236 | /* Select new buffer ID */ |
| 237 | buffer->index = efx->next_buffer_table; |
| 238 | efx->next_buffer_table += buffer->entries; |
| 239 | #ifdef CONFIG_SFC_SRIOV |
| 240 | BUG_ON(efx_sriov_enabled(efx) && |
| 241 | efx->vf_buftbl_base < efx->next_buffer_table); |
| 242 | #endif |
| 243 | |
| 244 | netif_dbg(efx, probe, efx->net_dev, |
| 245 | "allocating special buffers %d-%d at %llx+%x " |
| 246 | "(virt %p phys %llx)\n", buffer->index, |
| 247 | buffer->index + buffer->entries - 1, |
| 248 | (u64)buffer->buf.dma_addr, len, |
| 249 | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| 250 | |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | static void |
| 255 | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 256 | { |
| 257 | if (!buffer->buf.addr) |
| 258 | return; |
| 259 | |
| 260 | netif_dbg(efx, hw, efx->net_dev, |
| 261 | "deallocating special buffers %d-%d at %llx+%x " |
| 262 | "(virt %p phys %llx)\n", buffer->index, |
| 263 | buffer->index + buffer->entries - 1, |
| 264 | (u64)buffer->buf.dma_addr, buffer->buf.len, |
| 265 | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| 266 | |
| 267 | efx_nic_free_buffer(efx, &buffer->buf); |
| 268 | buffer->entries = 0; |
| 269 | } |
| 270 | |
| 271 | /************************************************************************** |
| 272 | * |
| 273 | * TX path |
| 274 | * |
| 275 | **************************************************************************/ |
| 276 | |
| 277 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| 278 | static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| 279 | { |
| 280 | unsigned write_ptr; |
| 281 | efx_dword_t reg; |
| 282 | |
| 283 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 284 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); |
| 285 | efx_writed_page(tx_queue->efx, ®, |
| 286 | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); |
| 287 | } |
| 288 | |
| 289 | /* Write pointer and first descriptor for TX descriptor ring */ |
| 290 | static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue, |
| 291 | const efx_qword_t *txd) |
| 292 | { |
| 293 | unsigned write_ptr; |
| 294 | efx_oword_t reg; |
| 295 | |
| 296 | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); |
| 297 | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); |
| 298 | |
| 299 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 300 | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, |
| 301 | FRF_AZ_TX_DESC_WPTR, write_ptr); |
| 302 | reg.qword[0] = *txd; |
| 303 | efx_writeo_page(tx_queue->efx, ®, |
| 304 | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); |
| 305 | } |
| 306 | |
| 307 | |
| 308 | /* For each entry inserted into the software descriptor ring, create a |
| 309 | * descriptor in the hardware TX descriptor ring (in host memory), and |
| 310 | * write a doorbell. |
| 311 | */ |
| 312 | void efx_farch_tx_write(struct efx_tx_queue *tx_queue) |
| 313 | { |
| 314 | |
| 315 | struct efx_tx_buffer *buffer; |
| 316 | efx_qword_t *txd; |
| 317 | unsigned write_ptr; |
| 318 | unsigned old_write_count = tx_queue->write_count; |
| 319 | |
| 320 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| 321 | |
| 322 | do { |
| 323 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 324 | buffer = &tx_queue->buffer[write_ptr]; |
| 325 | txd = efx_tx_desc(tx_queue, write_ptr); |
| 326 | ++tx_queue->write_count; |
| 327 | |
Ben Hutchings | ba8977b | 2013-01-08 23:43:19 +0000 | [diff] [blame^] | 328 | EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION); |
| 329 | |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 330 | /* Create TX descriptor ring entry */ |
| 331 | BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); |
| 332 | EFX_POPULATE_QWORD_4(*txd, |
| 333 | FSF_AZ_TX_KER_CONT, |
| 334 | buffer->flags & EFX_TX_BUF_CONT, |
| 335 | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, |
| 336 | FSF_AZ_TX_KER_BUF_REGION, 0, |
| 337 | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| 338 | } while (tx_queue->write_count != tx_queue->insert_count); |
| 339 | |
| 340 | wmb(); /* Ensure descriptors are written before they are fetched */ |
| 341 | |
| 342 | if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { |
| 343 | txd = efx_tx_desc(tx_queue, |
| 344 | old_write_count & tx_queue->ptr_mask); |
| 345 | efx_farch_push_tx_desc(tx_queue, txd); |
| 346 | ++tx_queue->pushes; |
| 347 | } else { |
| 348 | efx_farch_notify_tx_desc(tx_queue); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /* Allocate hardware resources for a TX queue */ |
| 353 | int efx_farch_tx_probe(struct efx_tx_queue *tx_queue) |
| 354 | { |
| 355 | struct efx_nic *efx = tx_queue->efx; |
| 356 | unsigned entries; |
| 357 | |
| 358 | entries = tx_queue->ptr_mask + 1; |
| 359 | return efx_alloc_special_buffer(efx, &tx_queue->txd, |
| 360 | entries * sizeof(efx_qword_t)); |
| 361 | } |
| 362 | |
| 363 | void efx_farch_tx_init(struct efx_tx_queue *tx_queue) |
| 364 | { |
| 365 | struct efx_nic *efx = tx_queue->efx; |
| 366 | efx_oword_t reg; |
| 367 | |
| 368 | /* Pin TX descriptor ring */ |
| 369 | efx_init_special_buffer(efx, &tx_queue->txd); |
| 370 | |
| 371 | /* Push TX descriptor ring to card */ |
| 372 | EFX_POPULATE_OWORD_10(reg, |
| 373 | FRF_AZ_TX_DESCQ_EN, 1, |
| 374 | FRF_AZ_TX_ISCSI_DDIG_EN, 0, |
| 375 | FRF_AZ_TX_ISCSI_HDIG_EN, 0, |
| 376 | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| 377 | FRF_AZ_TX_DESCQ_EVQ_ID, |
| 378 | tx_queue->channel->channel, |
| 379 | FRF_AZ_TX_DESCQ_OWNER_ID, 0, |
| 380 | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, |
| 381 | FRF_AZ_TX_DESCQ_SIZE, |
| 382 | __ffs(tx_queue->txd.entries), |
| 383 | FRF_AZ_TX_DESCQ_TYPE, 0, |
| 384 | FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| 385 | |
| 386 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 387 | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; |
| 388 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); |
| 389 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, |
| 390 | !csum); |
| 391 | } |
| 392 | |
| 393 | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, |
| 394 | tx_queue->queue); |
| 395 | |
| 396 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| 397 | /* Only 128 bits in this register */ |
| 398 | BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); |
| 399 | |
| 400 | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 401 | if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) |
| 402 | __clear_bit_le(tx_queue->queue, ®); |
| 403 | else |
| 404 | __set_bit_le(tx_queue->queue, ®); |
| 405 | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 406 | } |
| 407 | |
| 408 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 409 | EFX_POPULATE_OWORD_1(reg, |
| 410 | FRF_BZ_TX_PACE, |
| 411 | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| 412 | FFE_BZ_TX_PACE_OFF : |
| 413 | FFE_BZ_TX_PACE_RESERVED); |
| 414 | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, |
| 415 | tx_queue->queue); |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| 420 | { |
| 421 | struct efx_nic *efx = tx_queue->efx; |
| 422 | efx_oword_t tx_flush_descq; |
| 423 | |
| 424 | WARN_ON(atomic_read(&tx_queue->flush_outstanding)); |
| 425 | atomic_set(&tx_queue->flush_outstanding, 1); |
| 426 | |
| 427 | EFX_POPULATE_OWORD_2(tx_flush_descq, |
| 428 | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| 429 | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); |
| 430 | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); |
| 431 | } |
| 432 | |
| 433 | void efx_farch_tx_fini(struct efx_tx_queue *tx_queue) |
| 434 | { |
| 435 | struct efx_nic *efx = tx_queue->efx; |
| 436 | efx_oword_t tx_desc_ptr; |
| 437 | |
| 438 | /* Remove TX descriptor ring from card */ |
| 439 | EFX_ZERO_OWORD(tx_desc_ptr); |
| 440 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 441 | tx_queue->queue); |
| 442 | |
| 443 | /* Unpin TX descriptor ring */ |
| 444 | efx_fini_special_buffer(efx, &tx_queue->txd); |
| 445 | } |
| 446 | |
| 447 | /* Free buffers backing TX queue */ |
| 448 | void efx_farch_tx_remove(struct efx_tx_queue *tx_queue) |
| 449 | { |
| 450 | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| 451 | } |
| 452 | |
| 453 | /************************************************************************** |
| 454 | * |
| 455 | * RX path |
| 456 | * |
| 457 | **************************************************************************/ |
| 458 | |
| 459 | /* This creates an entry in the RX descriptor queue */ |
| 460 | static inline void |
| 461 | efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) |
| 462 | { |
| 463 | struct efx_rx_buffer *rx_buf; |
| 464 | efx_qword_t *rxd; |
| 465 | |
| 466 | rxd = efx_rx_desc(rx_queue, index); |
| 467 | rx_buf = efx_rx_buffer(rx_queue, index); |
| 468 | EFX_POPULATE_QWORD_3(*rxd, |
| 469 | FSF_AZ_RX_KER_BUF_SIZE, |
| 470 | rx_buf->len - |
| 471 | rx_queue->efx->type->rx_buffer_padding, |
| 472 | FSF_AZ_RX_KER_BUF_REGION, 0, |
| 473 | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| 474 | } |
| 475 | |
| 476 | /* This writes to the RX_DESC_WPTR register for the specified receive |
| 477 | * descriptor ring. |
| 478 | */ |
| 479 | void efx_farch_rx_write(struct efx_rx_queue *rx_queue) |
| 480 | { |
| 481 | struct efx_nic *efx = rx_queue->efx; |
| 482 | efx_dword_t reg; |
| 483 | unsigned write_ptr; |
| 484 | |
| 485 | while (rx_queue->notified_count != rx_queue->added_count) { |
| 486 | efx_farch_build_rx_desc( |
| 487 | rx_queue, |
| 488 | rx_queue->notified_count & rx_queue->ptr_mask); |
| 489 | ++rx_queue->notified_count; |
| 490 | } |
| 491 | |
| 492 | wmb(); |
| 493 | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; |
| 494 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); |
| 495 | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, |
| 496 | efx_rx_queue_index(rx_queue)); |
| 497 | } |
| 498 | |
| 499 | int efx_farch_rx_probe(struct efx_rx_queue *rx_queue) |
| 500 | { |
| 501 | struct efx_nic *efx = rx_queue->efx; |
| 502 | unsigned entries; |
| 503 | |
| 504 | entries = rx_queue->ptr_mask + 1; |
| 505 | return efx_alloc_special_buffer(efx, &rx_queue->rxd, |
| 506 | entries * sizeof(efx_qword_t)); |
| 507 | } |
| 508 | |
| 509 | void efx_farch_rx_init(struct efx_rx_queue *rx_queue) |
| 510 | { |
| 511 | efx_oword_t rx_desc_ptr; |
| 512 | struct efx_nic *efx = rx_queue->efx; |
| 513 | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; |
| 514 | bool iscsi_digest_en = is_b0; |
| 515 | bool jumbo_en; |
| 516 | |
| 517 | /* For kernel-mode queues in Falcon A1, the JUMBO flag enables |
| 518 | * DMA to continue after a PCIe page boundary (and scattering |
| 519 | * is not possible). In Falcon B0 and Siena, it enables |
| 520 | * scatter. |
| 521 | */ |
| 522 | jumbo_en = !is_b0 || efx->rx_scatter; |
| 523 | |
| 524 | netif_dbg(efx, hw, efx->net_dev, |
| 525 | "RX queue %d ring in special buffers %d-%d\n", |
| 526 | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, |
| 527 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| 528 | |
| 529 | rx_queue->scatter_n = 0; |
| 530 | |
| 531 | /* Pin RX descriptor ring */ |
| 532 | efx_init_special_buffer(efx, &rx_queue->rxd); |
| 533 | |
| 534 | /* Push RX descriptor ring to card */ |
| 535 | EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| 536 | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| 537 | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| 538 | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| 539 | FRF_AZ_RX_DESCQ_EVQ_ID, |
| 540 | efx_rx_queue_channel(rx_queue)->channel, |
| 541 | FRF_AZ_RX_DESCQ_OWNER_ID, 0, |
| 542 | FRF_AZ_RX_DESCQ_LABEL, |
| 543 | efx_rx_queue_index(rx_queue), |
| 544 | FRF_AZ_RX_DESCQ_SIZE, |
| 545 | __ffs(rx_queue->rxd.entries), |
| 546 | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| 547 | FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, |
| 548 | FRF_AZ_RX_DESCQ_EN, 1); |
| 549 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 550 | efx_rx_queue_index(rx_queue)); |
| 551 | } |
| 552 | |
| 553 | static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| 554 | { |
| 555 | struct efx_nic *efx = rx_queue->efx; |
| 556 | efx_oword_t rx_flush_descq; |
| 557 | |
| 558 | EFX_POPULATE_OWORD_2(rx_flush_descq, |
| 559 | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, |
| 560 | FRF_AZ_RX_FLUSH_DESCQ, |
| 561 | efx_rx_queue_index(rx_queue)); |
| 562 | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); |
| 563 | } |
| 564 | |
| 565 | void efx_farch_rx_fini(struct efx_rx_queue *rx_queue) |
| 566 | { |
| 567 | efx_oword_t rx_desc_ptr; |
| 568 | struct efx_nic *efx = rx_queue->efx; |
| 569 | |
| 570 | /* Remove RX descriptor ring from card */ |
| 571 | EFX_ZERO_OWORD(rx_desc_ptr); |
| 572 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 573 | efx_rx_queue_index(rx_queue)); |
| 574 | |
| 575 | /* Unpin RX descriptor ring */ |
| 576 | efx_fini_special_buffer(efx, &rx_queue->rxd); |
| 577 | } |
| 578 | |
| 579 | /* Free buffers backing RX queue */ |
| 580 | void efx_farch_rx_remove(struct efx_rx_queue *rx_queue) |
| 581 | { |
| 582 | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| 583 | } |
| 584 | |
| 585 | /************************************************************************** |
| 586 | * |
| 587 | * Flush handling |
| 588 | * |
| 589 | **************************************************************************/ |
| 590 | |
| 591 | /* efx_farch_flush_queues() must be woken up when all flushes are completed, |
| 592 | * or more RX flushes can be kicked off. |
| 593 | */ |
| 594 | static bool efx_farch_flush_wake(struct efx_nic *efx) |
| 595 | { |
| 596 | /* Ensure that all updates are visible to efx_farch_flush_queues() */ |
| 597 | smp_mb(); |
| 598 | |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 599 | return (atomic_read(&efx->active_queues) == 0 || |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 600 | (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT |
| 601 | && atomic_read(&efx->rxq_flush_pending) > 0)); |
| 602 | } |
| 603 | |
| 604 | static bool efx_check_tx_flush_complete(struct efx_nic *efx) |
| 605 | { |
| 606 | bool i = true; |
| 607 | efx_oword_t txd_ptr_tbl; |
| 608 | struct efx_channel *channel; |
| 609 | struct efx_tx_queue *tx_queue; |
| 610 | |
| 611 | efx_for_each_channel(channel, efx) { |
| 612 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 613 | efx_reado_table(efx, &txd_ptr_tbl, |
| 614 | FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); |
| 615 | if (EFX_OWORD_FIELD(txd_ptr_tbl, |
| 616 | FRF_AZ_TX_DESCQ_FLUSH) || |
| 617 | EFX_OWORD_FIELD(txd_ptr_tbl, |
| 618 | FRF_AZ_TX_DESCQ_EN)) { |
| 619 | netif_dbg(efx, hw, efx->net_dev, |
| 620 | "flush did not complete on TXQ %d\n", |
| 621 | tx_queue->queue); |
| 622 | i = false; |
| 623 | } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, |
| 624 | 1, 0)) { |
| 625 | /* The flush is complete, but we didn't |
| 626 | * receive a flush completion event |
| 627 | */ |
| 628 | netif_dbg(efx, hw, efx->net_dev, |
| 629 | "flush complete on TXQ %d, so drain " |
| 630 | "the queue\n", tx_queue->queue); |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 631 | /* Don't need to increment active_queues as it |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 632 | * has already been incremented for the queues |
| 633 | * which did not drain |
| 634 | */ |
| 635 | efx_farch_magic_event(channel, |
| 636 | EFX_CHANNEL_MAGIC_TX_DRAIN( |
| 637 | tx_queue)); |
| 638 | } |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | return i; |
| 643 | } |
| 644 | |
| 645 | /* Flush all the transmit queues, and continue flushing receive queues until |
| 646 | * they're all flushed. Wait for the DRAIN events to be recieved so that there |
| 647 | * are no more RX and TX events left on any channel. */ |
| 648 | static int efx_farch_do_flush(struct efx_nic *efx) |
| 649 | { |
| 650 | unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ |
| 651 | struct efx_channel *channel; |
| 652 | struct efx_rx_queue *rx_queue; |
| 653 | struct efx_tx_queue *tx_queue; |
| 654 | int rc = 0; |
| 655 | |
| 656 | efx_for_each_channel(channel, efx) { |
| 657 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 658 | efx_farch_flush_tx_queue(tx_queue); |
| 659 | } |
| 660 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 661 | rx_queue->flush_pending = true; |
| 662 | atomic_inc(&efx->rxq_flush_pending); |
| 663 | } |
| 664 | } |
| 665 | |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 666 | while (timeout && atomic_read(&efx->active_queues) > 0) { |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 667 | /* If SRIOV is enabled, then offload receive queue flushing to |
| 668 | * the firmware (though we will still have to poll for |
| 669 | * completion). If that fails, fall back to the old scheme. |
| 670 | */ |
| 671 | if (efx_sriov_enabled(efx)) { |
| 672 | rc = efx_mcdi_flush_rxqs(efx); |
| 673 | if (!rc) |
| 674 | goto wait; |
| 675 | } |
| 676 | |
| 677 | /* The hardware supports four concurrent rx flushes, each of |
| 678 | * which may need to be retried if there is an outstanding |
| 679 | * descriptor fetch |
| 680 | */ |
| 681 | efx_for_each_channel(channel, efx) { |
| 682 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 683 | if (atomic_read(&efx->rxq_flush_outstanding) >= |
| 684 | EFX_RX_FLUSH_COUNT) |
| 685 | break; |
| 686 | |
| 687 | if (rx_queue->flush_pending) { |
| 688 | rx_queue->flush_pending = false; |
| 689 | atomic_dec(&efx->rxq_flush_pending); |
| 690 | atomic_inc(&efx->rxq_flush_outstanding); |
| 691 | efx_farch_flush_rx_queue(rx_queue); |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | wait: |
| 697 | timeout = wait_event_timeout(efx->flush_wq, |
| 698 | efx_farch_flush_wake(efx), |
| 699 | timeout); |
| 700 | } |
| 701 | |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 702 | if (atomic_read(&efx->active_queues) && |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 703 | !efx_check_tx_flush_complete(efx)) { |
| 704 | netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 705 | "(rx %d+%d)\n", atomic_read(&efx->active_queues), |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 706 | atomic_read(&efx->rxq_flush_outstanding), |
| 707 | atomic_read(&efx->rxq_flush_pending)); |
| 708 | rc = -ETIMEDOUT; |
| 709 | |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 710 | atomic_set(&efx->active_queues, 0); |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 711 | atomic_set(&efx->rxq_flush_pending, 0); |
| 712 | atomic_set(&efx->rxq_flush_outstanding, 0); |
| 713 | } |
| 714 | |
| 715 | return rc; |
| 716 | } |
| 717 | |
| 718 | int efx_farch_fini_dmaq(struct efx_nic *efx) |
| 719 | { |
| 720 | struct efx_channel *channel; |
| 721 | struct efx_tx_queue *tx_queue; |
| 722 | struct efx_rx_queue *rx_queue; |
| 723 | int rc = 0; |
| 724 | |
| 725 | /* Do not attempt to write to the NIC during EEH recovery */ |
| 726 | if (efx->state != STATE_RECOVERY) { |
| 727 | /* Only perform flush if DMA is enabled */ |
| 728 | if (efx->pci_dev->is_busmaster) { |
| 729 | efx->type->prepare_flush(efx); |
| 730 | rc = efx_farch_do_flush(efx); |
| 731 | efx->type->finish_flush(efx); |
| 732 | } |
| 733 | |
| 734 | efx_for_each_channel(channel, efx) { |
| 735 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 736 | efx_farch_rx_fini(rx_queue); |
| 737 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 738 | efx_farch_tx_fini(tx_queue); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | return rc; |
| 743 | } |
| 744 | |
| 745 | /************************************************************************** |
| 746 | * |
| 747 | * Event queue processing |
| 748 | * Event queues are processed by per-channel tasklets. |
| 749 | * |
| 750 | **************************************************************************/ |
| 751 | |
| 752 | /* Update a channel's event queue's read pointer (RPTR) register |
| 753 | * |
| 754 | * This writes the EVQ_RPTR_REG register for the specified channel's |
| 755 | * event queue. |
| 756 | */ |
| 757 | void efx_farch_ev_read_ack(struct efx_channel *channel) |
| 758 | { |
| 759 | efx_dword_t reg; |
| 760 | struct efx_nic *efx = channel->efx; |
| 761 | |
| 762 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, |
| 763 | channel->eventq_read_ptr & channel->eventq_mask); |
| 764 | |
| 765 | /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size |
| 766 | * of 4 bytes, but it is really 16 bytes just like later revisions. |
| 767 | */ |
| 768 | efx_writed(efx, ®, |
| 769 | efx->type->evq_rptr_tbl_base + |
| 770 | FR_BZ_EVQ_RPTR_STEP * channel->channel); |
| 771 | } |
| 772 | |
| 773 | /* Use HW to insert a SW defined event */ |
| 774 | void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, |
| 775 | efx_qword_t *event) |
| 776 | { |
| 777 | efx_oword_t drv_ev_reg; |
| 778 | |
| 779 | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || |
| 780 | FRF_AZ_DRV_EV_DATA_WIDTH != 64); |
| 781 | drv_ev_reg.u32[0] = event->u32[0]; |
| 782 | drv_ev_reg.u32[1] = event->u32[1]; |
| 783 | drv_ev_reg.u32[2] = 0; |
| 784 | drv_ev_reg.u32[3] = 0; |
| 785 | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); |
| 786 | efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); |
| 787 | } |
| 788 | |
| 789 | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic) |
| 790 | { |
| 791 | efx_qword_t event; |
| 792 | |
| 793 | EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, |
| 794 | FSE_AZ_EV_CODE_DRV_GEN_EV, |
| 795 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| 796 | efx_farch_generate_event(channel->efx, channel->channel, &event); |
| 797 | } |
| 798 | |
| 799 | /* Handle a transmit completion event |
| 800 | * |
| 801 | * The NIC batches TX completion events; the message we receive is of |
| 802 | * the form "complete all TX events up to this index". |
| 803 | */ |
| 804 | static int |
| 805 | efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| 806 | { |
| 807 | unsigned int tx_ev_desc_ptr; |
| 808 | unsigned int tx_ev_q_label; |
| 809 | struct efx_tx_queue *tx_queue; |
| 810 | struct efx_nic *efx = channel->efx; |
| 811 | int tx_packets = 0; |
| 812 | |
| 813 | if (unlikely(ACCESS_ONCE(efx->reset_pending))) |
| 814 | return 0; |
| 815 | |
| 816 | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { |
| 817 | /* Transmit completion */ |
| 818 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); |
| 819 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 820 | tx_queue = efx_channel_get_tx_queue( |
| 821 | channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| 822 | tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & |
| 823 | tx_queue->ptr_mask); |
| 824 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| 825 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { |
| 826 | /* Rewrite the FIFO write pointer */ |
| 827 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 828 | tx_queue = efx_channel_get_tx_queue( |
| 829 | channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| 830 | |
| 831 | netif_tx_lock(efx->net_dev); |
| 832 | efx_farch_notify_tx_desc(tx_queue); |
| 833 | netif_tx_unlock(efx->net_dev); |
Ben Hutchings | ab3b825 | 2012-10-05 19:31:02 +0100 | [diff] [blame] | 834 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { |
Alexandre Rames | 3de82b9 | 2013-06-13 11:36:15 +0100 | [diff] [blame] | 835 | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 836 | } else { |
| 837 | netif_err(efx, tx_err, efx->net_dev, |
| 838 | "channel %d unexpected TX event " |
| 839 | EFX_QWORD_FMT"\n", channel->channel, |
| 840 | EFX_QWORD_VAL(*event)); |
| 841 | } |
| 842 | |
| 843 | return tx_packets; |
| 844 | } |
| 845 | |
| 846 | /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| 847 | static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| 848 | const efx_qword_t *event) |
| 849 | { |
| 850 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| 851 | struct efx_nic *efx = rx_queue->efx; |
| 852 | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| 853 | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| 854 | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| 855 | bool rx_ev_other_err, rx_ev_pause_frm; |
| 856 | bool rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 857 | unsigned rx_ev_pkt_type; |
| 858 | |
| 859 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 860 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 861 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); |
| 862 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); |
| 863 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| 864 | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); |
| 865 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| 866 | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); |
| 867 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| 868 | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); |
| 869 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); |
| 870 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); |
| 871 | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? |
| 872 | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); |
| 873 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); |
| 874 | |
| 875 | /* Every error apart from tobe_disc and pause_frm */ |
| 876 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| 877 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| 878 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| 879 | |
| 880 | /* Count errors that are not in MAC stats. Ignore expected |
| 881 | * checksum errors during self-test. */ |
| 882 | if (rx_ev_frm_trunc) |
| 883 | ++channel->n_rx_frm_trunc; |
| 884 | else if (rx_ev_tobe_disc) |
| 885 | ++channel->n_rx_tobe_disc; |
| 886 | else if (!efx->loopback_selftest) { |
| 887 | if (rx_ev_ip_hdr_chksum_err) |
| 888 | ++channel->n_rx_ip_hdr_chksum_err; |
| 889 | else if (rx_ev_tcp_udp_chksum_err) |
| 890 | ++channel->n_rx_tcp_udp_chksum_err; |
| 891 | } |
| 892 | |
| 893 | /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| 894 | * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| 895 | * to a FIFO overflow. |
| 896 | */ |
| 897 | #ifdef DEBUG |
| 898 | if (rx_ev_other_err && net_ratelimit()) { |
| 899 | netif_dbg(efx, rx_err, efx->net_dev, |
| 900 | " RX queue %d unexpected RX event " |
| 901 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", |
| 902 | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), |
| 903 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| 904 | rx_ev_ip_hdr_chksum_err ? |
| 905 | " [IP_HDR_CHKSUM_ERR]" : "", |
| 906 | rx_ev_tcp_udp_chksum_err ? |
| 907 | " [TCP_UDP_CHKSUM_ERR]" : "", |
| 908 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| 909 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| 910 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| 911 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| 912 | rx_ev_pause_frm ? " [PAUSE]" : ""); |
| 913 | } |
| 914 | #endif |
| 915 | |
| 916 | /* The frame must be discarded if any of these are true. */ |
| 917 | return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| 918 | rx_ev_tobe_disc | rx_ev_pause_frm) ? |
| 919 | EFX_RX_PKT_DISCARD : 0; |
| 920 | } |
| 921 | |
| 922 | /* Handle receive events that are not in-order. Return true if this |
| 923 | * can be handled as a partial packet discard, false if it's more |
| 924 | * serious. |
| 925 | */ |
| 926 | static bool |
| 927 | efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) |
| 928 | { |
| 929 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| 930 | struct efx_nic *efx = rx_queue->efx; |
| 931 | unsigned expected, dropped; |
| 932 | |
| 933 | if (rx_queue->scatter_n && |
| 934 | index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & |
| 935 | rx_queue->ptr_mask)) { |
| 936 | ++channel->n_rx_nodesc_trunc; |
| 937 | return true; |
| 938 | } |
| 939 | |
| 940 | expected = rx_queue->removed_count & rx_queue->ptr_mask; |
| 941 | dropped = (index - expected) & rx_queue->ptr_mask; |
| 942 | netif_info(efx, rx_err, efx->net_dev, |
| 943 | "dropped %d events (index=%d expected=%d)\n", |
| 944 | dropped, index, expected); |
| 945 | |
| 946 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| 947 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | /* Handle a packet received event |
| 952 | * |
| 953 | * The NIC gives a "discard" flag if it's a unicast packet with the |
| 954 | * wrong destination address |
| 955 | * Also "is multicast" and "matches multicast filter" flags can be used to |
| 956 | * discard non-matching multicast packets. |
| 957 | */ |
| 958 | static void |
| 959 | efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) |
| 960 | { |
| 961 | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| 962 | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 963 | unsigned expected_ptr; |
| 964 | bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; |
| 965 | u16 flags; |
| 966 | struct efx_rx_queue *rx_queue; |
| 967 | struct efx_nic *efx = channel->efx; |
| 968 | |
| 969 | if (unlikely(ACCESS_ONCE(efx->reset_pending))) |
| 970 | return; |
| 971 | |
| 972 | rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); |
| 973 | rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); |
| 974 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != |
| 975 | channel->channel); |
| 976 | |
| 977 | rx_queue = efx_channel_get_rx_queue(channel); |
| 978 | |
| 979 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); |
| 980 | expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & |
| 981 | rx_queue->ptr_mask); |
| 982 | |
| 983 | /* Check for partial drops and other errors */ |
| 984 | if (unlikely(rx_ev_desc_ptr != expected_ptr) || |
| 985 | unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { |
| 986 | if (rx_ev_desc_ptr != expected_ptr && |
| 987 | !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) |
| 988 | return; |
| 989 | |
| 990 | /* Discard all pending fragments */ |
| 991 | if (rx_queue->scatter_n) { |
| 992 | efx_rx_packet( |
| 993 | rx_queue, |
| 994 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 995 | rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); |
| 996 | rx_queue->removed_count += rx_queue->scatter_n; |
| 997 | rx_queue->scatter_n = 0; |
| 998 | } |
| 999 | |
| 1000 | /* Return if there is no new fragment */ |
| 1001 | if (rx_ev_desc_ptr != expected_ptr) |
| 1002 | return; |
| 1003 | |
| 1004 | /* Discard new fragment if not SOP */ |
| 1005 | if (!rx_ev_sop) { |
| 1006 | efx_rx_packet( |
| 1007 | rx_queue, |
| 1008 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 1009 | 1, 0, EFX_RX_PKT_DISCARD); |
| 1010 | ++rx_queue->removed_count; |
| 1011 | return; |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | ++rx_queue->scatter_n; |
| 1016 | if (rx_ev_cont) |
| 1017 | return; |
| 1018 | |
| 1019 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); |
| 1020 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); |
| 1021 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 1022 | |
| 1023 | if (likely(rx_ev_pkt_ok)) { |
| 1024 | /* If packet is marked as OK then we can rely on the |
| 1025 | * hardware checksum and classification. |
| 1026 | */ |
| 1027 | flags = 0; |
| 1028 | switch (rx_ev_hdr_type) { |
| 1029 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: |
| 1030 | flags |= EFX_RX_PKT_TCP; |
| 1031 | /* fall through */ |
| 1032 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: |
| 1033 | flags |= EFX_RX_PKT_CSUMMED; |
| 1034 | /* fall through */ |
| 1035 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: |
| 1036 | case FSE_AZ_RX_EV_HDR_TYPE_OTHER: |
| 1037 | break; |
| 1038 | } |
| 1039 | } else { |
| 1040 | flags = efx_farch_handle_rx_not_ok(rx_queue, event); |
| 1041 | } |
| 1042 | |
| 1043 | /* Detect multicast packets that didn't match the filter */ |
| 1044 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 1045 | if (rx_ev_mcast_pkt) { |
| 1046 | unsigned int rx_ev_mcast_hash_match = |
| 1047 | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); |
| 1048 | |
| 1049 | if (unlikely(!rx_ev_mcast_hash_match)) { |
| 1050 | ++channel->n_rx_mcast_mismatch; |
| 1051 | flags |= EFX_RX_PKT_DISCARD; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | channel->irq_mod_score += 2; |
| 1056 | |
| 1057 | /* Handle received packet */ |
| 1058 | efx_rx_packet(rx_queue, |
| 1059 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 1060 | rx_queue->scatter_n, rx_ev_byte_cnt, flags); |
| 1061 | rx_queue->removed_count += rx_queue->scatter_n; |
| 1062 | rx_queue->scatter_n = 0; |
| 1063 | } |
| 1064 | |
| 1065 | /* If this flush done event corresponds to a &struct efx_tx_queue, then |
| 1066 | * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue |
| 1067 | * of all transmit completions. |
| 1068 | */ |
| 1069 | static void |
| 1070 | efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| 1071 | { |
| 1072 | struct efx_tx_queue *tx_queue; |
| 1073 | int qid; |
| 1074 | |
| 1075 | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| 1076 | if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) { |
| 1077 | tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, |
| 1078 | qid % EFX_TXQ_TYPES); |
| 1079 | if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { |
| 1080 | efx_farch_magic_event(tx_queue->channel, |
| 1081 | EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush |
| 1087 | * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add |
| 1088 | * the RX queue back to the mask of RX queues in need of flushing. |
| 1089 | */ |
| 1090 | static void |
| 1091 | efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| 1092 | { |
| 1093 | struct efx_channel *channel; |
| 1094 | struct efx_rx_queue *rx_queue; |
| 1095 | int qid; |
| 1096 | bool failed; |
| 1097 | |
| 1098 | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| 1099 | failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| 1100 | if (qid >= efx->n_channels) |
| 1101 | return; |
| 1102 | channel = efx_get_channel(efx, qid); |
| 1103 | if (!efx_channel_has_rx_queue(channel)) |
| 1104 | return; |
| 1105 | rx_queue = efx_channel_get_rx_queue(channel); |
| 1106 | |
| 1107 | if (failed) { |
| 1108 | netif_info(efx, hw, efx->net_dev, |
| 1109 | "RXQ %d flush retry\n", qid); |
| 1110 | rx_queue->flush_pending = true; |
| 1111 | atomic_inc(&efx->rxq_flush_pending); |
| 1112 | } else { |
| 1113 | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| 1114 | EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); |
| 1115 | } |
| 1116 | atomic_dec(&efx->rxq_flush_outstanding); |
| 1117 | if (efx_farch_flush_wake(efx)) |
| 1118 | wake_up(&efx->flush_wq); |
| 1119 | } |
| 1120 | |
| 1121 | static void |
| 1122 | efx_farch_handle_drain_event(struct efx_channel *channel) |
| 1123 | { |
| 1124 | struct efx_nic *efx = channel->efx; |
| 1125 | |
Alexandre Rames | 3881d8a | 2013-06-10 11:03:21 +0100 | [diff] [blame] | 1126 | WARN_ON(atomic_read(&efx->active_queues) == 0); |
| 1127 | atomic_dec(&efx->active_queues); |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1128 | if (efx_farch_flush_wake(efx)) |
| 1129 | wake_up(&efx->flush_wq); |
| 1130 | } |
| 1131 | |
| 1132 | static void efx_farch_handle_generated_event(struct efx_channel *channel, |
| 1133 | efx_qword_t *event) |
| 1134 | { |
| 1135 | struct efx_nic *efx = channel->efx; |
| 1136 | struct efx_rx_queue *rx_queue = |
| 1137 | efx_channel_has_rx_queue(channel) ? |
| 1138 | efx_channel_get_rx_queue(channel) : NULL; |
| 1139 | unsigned magic, code; |
| 1140 | |
| 1141 | magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); |
| 1142 | code = _EFX_CHANNEL_MAGIC_CODE(magic); |
| 1143 | |
| 1144 | if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { |
| 1145 | channel->event_test_cpu = raw_smp_processor_id(); |
| 1146 | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { |
| 1147 | /* The queue must be empty, so we won't receive any rx |
| 1148 | * events, so efx_process_channel() won't refill the |
| 1149 | * queue. Refill it here */ |
| 1150 | efx_fast_push_rx_descriptors(rx_queue); |
| 1151 | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { |
| 1152 | efx_farch_handle_drain_event(channel); |
| 1153 | } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { |
| 1154 | efx_farch_handle_drain_event(channel); |
| 1155 | } else { |
| 1156 | netif_dbg(efx, hw, efx->net_dev, "channel %d received " |
| 1157 | "generated event "EFX_QWORD_FMT"\n", |
| 1158 | channel->channel, EFX_QWORD_VAL(*event)); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | static void |
| 1163 | efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| 1164 | { |
| 1165 | struct efx_nic *efx = channel->efx; |
| 1166 | unsigned int ev_sub_code; |
| 1167 | unsigned int ev_sub_data; |
| 1168 | |
| 1169 | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); |
| 1170 | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| 1171 | |
| 1172 | switch (ev_sub_code) { |
| 1173 | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: |
| 1174 | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", |
| 1175 | channel->channel, ev_sub_data); |
| 1176 | efx_farch_handle_tx_flush_done(efx, event); |
| 1177 | efx_sriov_tx_flush_done(efx, event); |
| 1178 | break; |
| 1179 | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: |
| 1180 | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", |
| 1181 | channel->channel, ev_sub_data); |
| 1182 | efx_farch_handle_rx_flush_done(efx, event); |
| 1183 | efx_sriov_rx_flush_done(efx, event); |
| 1184 | break; |
| 1185 | case FSE_AZ_EVQ_INIT_DONE_EV: |
| 1186 | netif_dbg(efx, hw, efx->net_dev, |
| 1187 | "channel %d EVQ %d initialised\n", |
| 1188 | channel->channel, ev_sub_data); |
| 1189 | break; |
| 1190 | case FSE_AZ_SRM_UPD_DONE_EV: |
| 1191 | netif_vdbg(efx, hw, efx->net_dev, |
| 1192 | "channel %d SRAM update done\n", channel->channel); |
| 1193 | break; |
| 1194 | case FSE_AZ_WAKE_UP_EV: |
| 1195 | netif_vdbg(efx, hw, efx->net_dev, |
| 1196 | "channel %d RXQ %d wakeup event\n", |
| 1197 | channel->channel, ev_sub_data); |
| 1198 | break; |
| 1199 | case FSE_AZ_TIMER_EV: |
| 1200 | netif_vdbg(efx, hw, efx->net_dev, |
| 1201 | "channel %d RX queue %d timer expired\n", |
| 1202 | channel->channel, ev_sub_data); |
| 1203 | break; |
| 1204 | case FSE_AA_RX_RECOVER_EV: |
| 1205 | netif_err(efx, rx_err, efx->net_dev, |
| 1206 | "channel %d seen DRIVER RX_RESET event. " |
| 1207 | "Resetting.\n", channel->channel); |
| 1208 | atomic_inc(&efx->rx_reset); |
| 1209 | efx_schedule_reset(efx, |
| 1210 | EFX_WORKAROUND_6555(efx) ? |
| 1211 | RESET_TYPE_RX_RECOVERY : |
| 1212 | RESET_TYPE_DISABLE); |
| 1213 | break; |
| 1214 | case FSE_BZ_RX_DSC_ERROR_EV: |
| 1215 | if (ev_sub_data < EFX_VI_BASE) { |
| 1216 | netif_err(efx, rx_err, efx->net_dev, |
| 1217 | "RX DMA Q %d reports descriptor fetch error." |
| 1218 | " RX Q %d is disabled.\n", ev_sub_data, |
| 1219 | ev_sub_data); |
Alexandre Rames | 3de82b9 | 2013-06-13 11:36:15 +0100 | [diff] [blame] | 1220 | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1221 | } else |
| 1222 | efx_sriov_desc_fetch_err(efx, ev_sub_data); |
| 1223 | break; |
| 1224 | case FSE_BZ_TX_DSC_ERROR_EV: |
| 1225 | if (ev_sub_data < EFX_VI_BASE) { |
| 1226 | netif_err(efx, tx_err, efx->net_dev, |
| 1227 | "TX DMA Q %d reports descriptor fetch error." |
| 1228 | " TX Q %d is disabled.\n", ev_sub_data, |
| 1229 | ev_sub_data); |
Alexandre Rames | 3de82b9 | 2013-06-13 11:36:15 +0100 | [diff] [blame] | 1230 | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1231 | } else |
| 1232 | efx_sriov_desc_fetch_err(efx, ev_sub_data); |
| 1233 | break; |
| 1234 | default: |
| 1235 | netif_vdbg(efx, hw, efx->net_dev, |
| 1236 | "channel %d unknown driver event code %d " |
| 1237 | "data %04x\n", channel->channel, ev_sub_code, |
| 1238 | ev_sub_data); |
| 1239 | break; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | int efx_farch_ev_process(struct efx_channel *channel, int budget) |
| 1244 | { |
| 1245 | struct efx_nic *efx = channel->efx; |
| 1246 | unsigned int read_ptr; |
| 1247 | efx_qword_t event, *p_event; |
| 1248 | int ev_code; |
| 1249 | int tx_packets = 0; |
| 1250 | int spent = 0; |
| 1251 | |
| 1252 | read_ptr = channel->eventq_read_ptr; |
| 1253 | |
| 1254 | for (;;) { |
| 1255 | p_event = efx_event(channel, read_ptr); |
| 1256 | event = *p_event; |
| 1257 | |
| 1258 | if (!efx_event_present(&event)) |
| 1259 | /* End of events */ |
| 1260 | break; |
| 1261 | |
| 1262 | netif_vdbg(channel->efx, intr, channel->efx->net_dev, |
| 1263 | "channel %d event is "EFX_QWORD_FMT"\n", |
| 1264 | channel->channel, EFX_QWORD_VAL(event)); |
| 1265 | |
| 1266 | /* Clear this event by marking it all ones */ |
| 1267 | EFX_SET_QWORD(*p_event); |
| 1268 | |
| 1269 | ++read_ptr; |
| 1270 | |
| 1271 | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); |
| 1272 | |
| 1273 | switch (ev_code) { |
| 1274 | case FSE_AZ_EV_CODE_RX_EV: |
| 1275 | efx_farch_handle_rx_event(channel, &event); |
| 1276 | if (++spent == budget) |
| 1277 | goto out; |
| 1278 | break; |
| 1279 | case FSE_AZ_EV_CODE_TX_EV: |
| 1280 | tx_packets += efx_farch_handle_tx_event(channel, |
| 1281 | &event); |
| 1282 | if (tx_packets > efx->txq_entries) { |
| 1283 | spent = budget; |
| 1284 | goto out; |
| 1285 | } |
| 1286 | break; |
| 1287 | case FSE_AZ_EV_CODE_DRV_GEN_EV: |
| 1288 | efx_farch_handle_generated_event(channel, &event); |
| 1289 | break; |
| 1290 | case FSE_AZ_EV_CODE_DRIVER_EV: |
| 1291 | efx_farch_handle_driver_event(channel, &event); |
| 1292 | break; |
| 1293 | case FSE_CZ_EV_CODE_USER_EV: |
| 1294 | efx_sriov_event(channel, &event); |
| 1295 | break; |
| 1296 | case FSE_CZ_EV_CODE_MCDI_EV: |
| 1297 | efx_mcdi_process_event(channel, &event); |
| 1298 | break; |
| 1299 | case FSE_AZ_EV_CODE_GLOBAL_EV: |
| 1300 | if (efx->type->handle_global_event && |
| 1301 | efx->type->handle_global_event(channel, &event)) |
| 1302 | break; |
| 1303 | /* else fall through */ |
| 1304 | default: |
| 1305 | netif_err(channel->efx, hw, channel->efx->net_dev, |
| 1306 | "channel %d unknown event type %d (data " |
| 1307 | EFX_QWORD_FMT ")\n", channel->channel, |
| 1308 | ev_code, EFX_QWORD_VAL(event)); |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | out: |
| 1313 | channel->eventq_read_ptr = read_ptr; |
| 1314 | return spent; |
| 1315 | } |
| 1316 | |
| 1317 | /* Allocate buffer table entries for event queue */ |
| 1318 | int efx_farch_ev_probe(struct efx_channel *channel) |
| 1319 | { |
| 1320 | struct efx_nic *efx = channel->efx; |
| 1321 | unsigned entries; |
| 1322 | |
| 1323 | entries = channel->eventq_mask + 1; |
| 1324 | return efx_alloc_special_buffer(efx, &channel->eventq, |
| 1325 | entries * sizeof(efx_qword_t)); |
| 1326 | } |
| 1327 | |
Jon Cooper | 261e4d9 | 2013-04-15 18:51:54 +0100 | [diff] [blame] | 1328 | int efx_farch_ev_init(struct efx_channel *channel) |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1329 | { |
| 1330 | efx_oword_t reg; |
| 1331 | struct efx_nic *efx = channel->efx; |
| 1332 | |
| 1333 | netif_dbg(efx, hw, efx->net_dev, |
| 1334 | "channel %d event queue in special buffers %d-%d\n", |
| 1335 | channel->channel, channel->eventq.index, |
| 1336 | channel->eventq.index + channel->eventq.entries - 1); |
| 1337 | |
| 1338 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { |
| 1339 | EFX_POPULATE_OWORD_3(reg, |
| 1340 | FRF_CZ_TIMER_Q_EN, 1, |
| 1341 | FRF_CZ_HOST_NOTIFY_MODE, 0, |
| 1342 | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| 1343 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| 1344 | } |
| 1345 | |
| 1346 | /* Pin event queue buffer */ |
| 1347 | efx_init_special_buffer(efx, &channel->eventq); |
| 1348 | |
| 1349 | /* Fill event queue with all ones (i.e. empty events) */ |
| 1350 | memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); |
| 1351 | |
| 1352 | /* Push event queue to card */ |
| 1353 | EFX_POPULATE_OWORD_3(reg, |
| 1354 | FRF_AZ_EVQ_EN, 1, |
| 1355 | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), |
| 1356 | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); |
| 1357 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| 1358 | channel->channel); |
| 1359 | |
Jon Cooper | 261e4d9 | 2013-04-15 18:51:54 +0100 | [diff] [blame] | 1360 | return 0; |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1361 | } |
| 1362 | |
| 1363 | void efx_farch_ev_fini(struct efx_channel *channel) |
| 1364 | { |
| 1365 | efx_oword_t reg; |
| 1366 | struct efx_nic *efx = channel->efx; |
| 1367 | |
| 1368 | /* Remove event queue from card */ |
| 1369 | EFX_ZERO_OWORD(reg); |
| 1370 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| 1371 | channel->channel); |
| 1372 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| 1373 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| 1374 | |
| 1375 | /* Unpin event queue */ |
| 1376 | efx_fini_special_buffer(efx, &channel->eventq); |
| 1377 | } |
| 1378 | |
| 1379 | /* Free buffers backing event queue */ |
| 1380 | void efx_farch_ev_remove(struct efx_channel *channel) |
| 1381 | { |
| 1382 | efx_free_special_buffer(channel->efx, &channel->eventq); |
| 1383 | } |
| 1384 | |
| 1385 | |
| 1386 | void efx_farch_ev_test_generate(struct efx_channel *channel) |
| 1387 | { |
| 1388 | efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); |
| 1389 | } |
| 1390 | |
| 1391 | void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue) |
| 1392 | { |
| 1393 | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| 1394 | EFX_CHANNEL_MAGIC_FILL(rx_queue)); |
| 1395 | } |
| 1396 | |
| 1397 | /************************************************************************** |
| 1398 | * |
| 1399 | * Hardware interrupts |
| 1400 | * The hardware interrupt handler does very little work; all the event |
| 1401 | * queue processing is carried out by per-channel tasklets. |
| 1402 | * |
| 1403 | **************************************************************************/ |
| 1404 | |
| 1405 | /* Enable/disable/generate interrupts */ |
| 1406 | static inline void efx_farch_interrupts(struct efx_nic *efx, |
| 1407 | bool enabled, bool force) |
| 1408 | { |
| 1409 | efx_oword_t int_en_reg_ker; |
| 1410 | |
| 1411 | EFX_POPULATE_OWORD_3(int_en_reg_ker, |
| 1412 | FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, |
| 1413 | FRF_AZ_KER_INT_KER, force, |
| 1414 | FRF_AZ_DRV_INT_EN_KER, enabled); |
| 1415 | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); |
| 1416 | } |
| 1417 | |
| 1418 | void efx_farch_irq_enable_master(struct efx_nic *efx) |
| 1419 | { |
| 1420 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| 1421 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| 1422 | |
| 1423 | efx_farch_interrupts(efx, true, false); |
| 1424 | } |
| 1425 | |
| 1426 | void efx_farch_irq_disable_master(struct efx_nic *efx) |
| 1427 | { |
| 1428 | /* Disable interrupts */ |
| 1429 | efx_farch_interrupts(efx, false, false); |
| 1430 | } |
| 1431 | |
| 1432 | /* Generate a test interrupt |
| 1433 | * Interrupt must already have been enabled, otherwise nasty things |
| 1434 | * may happen. |
| 1435 | */ |
| 1436 | void efx_farch_irq_test_generate(struct efx_nic *efx) |
| 1437 | { |
| 1438 | efx_farch_interrupts(efx, true, true); |
| 1439 | } |
| 1440 | |
| 1441 | /* Process a fatal interrupt |
| 1442 | * Disable bus mastering ASAP and schedule a reset |
| 1443 | */ |
| 1444 | irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx) |
| 1445 | { |
| 1446 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 1447 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1448 | efx_oword_t fatal_intr; |
| 1449 | int error, mem_perr; |
| 1450 | |
| 1451 | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); |
| 1452 | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); |
| 1453 | |
| 1454 | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " |
| 1455 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| 1456 | EFX_OWORD_VAL(fatal_intr), |
| 1457 | error ? "disabling bus mastering" : "no recognised error"); |
| 1458 | |
| 1459 | /* If this is a memory parity error dump which blocks are offending */ |
| 1460 | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || |
| 1461 | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); |
| 1462 | if (mem_perr) { |
| 1463 | efx_oword_t reg; |
| 1464 | efx_reado(efx, ®, FR_AZ_MEM_STAT); |
| 1465 | netif_err(efx, hw, efx->net_dev, |
| 1466 | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", |
| 1467 | EFX_OWORD_VAL(reg)); |
| 1468 | } |
| 1469 | |
| 1470 | /* Disable both devices */ |
| 1471 | pci_clear_master(efx->pci_dev); |
| 1472 | if (efx_nic_is_dual_func(efx)) |
| 1473 | pci_clear_master(nic_data->pci_dev2); |
| 1474 | efx_farch_irq_disable_master(efx); |
| 1475 | |
| 1476 | /* Count errors and reset or disable the NIC accordingly */ |
| 1477 | if (efx->int_error_count == 0 || |
| 1478 | time_after(jiffies, efx->int_error_expire)) { |
| 1479 | efx->int_error_count = 0; |
| 1480 | efx->int_error_expire = |
| 1481 | jiffies + EFX_INT_ERROR_EXPIRE * HZ; |
| 1482 | } |
| 1483 | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { |
| 1484 | netif_err(efx, hw, efx->net_dev, |
| 1485 | "SYSTEM ERROR - reset scheduled\n"); |
| 1486 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| 1487 | } else { |
| 1488 | netif_err(efx, hw, efx->net_dev, |
| 1489 | "SYSTEM ERROR - max number of errors seen." |
| 1490 | "NIC will be disabled\n"); |
| 1491 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1492 | } |
| 1493 | |
| 1494 | return IRQ_HANDLED; |
| 1495 | } |
| 1496 | |
| 1497 | /* Handle a legacy interrupt |
| 1498 | * Acknowledges the interrupt and schedule event queue processing. |
| 1499 | */ |
| 1500 | irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id) |
| 1501 | { |
| 1502 | struct efx_nic *efx = dev_id; |
| 1503 | bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled); |
| 1504 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1505 | irqreturn_t result = IRQ_NONE; |
| 1506 | struct efx_channel *channel; |
| 1507 | efx_dword_t reg; |
| 1508 | u32 queues; |
| 1509 | int syserr; |
| 1510 | |
| 1511 | /* Read the ISR which also ACKs the interrupts */ |
| 1512 | efx_readd(efx, ®, FR_BZ_INT_ISR0); |
| 1513 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| 1514 | |
| 1515 | /* Legacy interrupts are disabled too late by the EEH kernel |
| 1516 | * code. Disable them earlier. |
| 1517 | * If an EEH error occurred, the read will have returned all ones. |
| 1518 | */ |
| 1519 | if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) && |
| 1520 | !efx->eeh_disabled_legacy_irq) { |
| 1521 | disable_irq_nosync(efx->legacy_irq); |
| 1522 | efx->eeh_disabled_legacy_irq = true; |
| 1523 | } |
| 1524 | |
| 1525 | /* Handle non-event-queue sources */ |
| 1526 | if (queues & (1U << efx->irq_level) && soft_enabled) { |
| 1527 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1528 | if (unlikely(syserr)) |
| 1529 | return efx_farch_fatal_interrupt(efx); |
| 1530 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1531 | } |
| 1532 | |
| 1533 | if (queues != 0) { |
Ben Hutchings | ab3b825 | 2012-10-05 19:31:02 +0100 | [diff] [blame] | 1534 | efx->irq_zero_count = 0; |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1535 | |
| 1536 | /* Schedule processing of any interrupting queues */ |
| 1537 | if (likely(soft_enabled)) { |
| 1538 | efx_for_each_channel(channel, efx) { |
| 1539 | if (queues & 1) |
| 1540 | efx_schedule_channel_irq(channel); |
| 1541 | queues >>= 1; |
| 1542 | } |
| 1543 | } |
| 1544 | result = IRQ_HANDLED; |
| 1545 | |
Ben Hutchings | ab3b825 | 2012-10-05 19:31:02 +0100 | [diff] [blame] | 1546 | } else { |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1547 | efx_qword_t *event; |
| 1548 | |
Ben Hutchings | ab3b825 | 2012-10-05 19:31:02 +0100 | [diff] [blame] | 1549 | /* Legacy ISR read can return zero once (SF bug 15783) */ |
| 1550 | |
Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame] | 1551 | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 |
| 1552 | * because this might be a shared interrupt. */ |
| 1553 | if (efx->irq_zero_count++ == 0) |
| 1554 | result = IRQ_HANDLED; |
| 1555 | |
| 1556 | /* Ensure we schedule or rearm all event queues */ |
| 1557 | if (likely(soft_enabled)) { |
| 1558 | efx_for_each_channel(channel, efx) { |
| 1559 | event = efx_event(channel, |
| 1560 | channel->eventq_read_ptr); |
| 1561 | if (efx_event_present(event)) |
| 1562 | efx_schedule_channel_irq(channel); |
| 1563 | else |
| 1564 | efx_farch_ev_read_ack(channel); |
| 1565 | } |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | if (result == IRQ_HANDLED) |
| 1570 | netif_vdbg(efx, intr, efx->net_dev, |
| 1571 | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| 1572 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| 1573 | |
| 1574 | return result; |
| 1575 | } |
| 1576 | |
| 1577 | /* Handle an MSI interrupt |
| 1578 | * |
| 1579 | * Handle an MSI hardware interrupt. This routine schedules event |
| 1580 | * queue processing. No interrupt acknowledgement cycle is necessary. |
| 1581 | * Also, we never need to check that the interrupt is for us, since |
| 1582 | * MSI interrupts cannot be shared. |
| 1583 | */ |
| 1584 | irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id) |
| 1585 | { |
| 1586 | struct efx_msi_context *context = dev_id; |
| 1587 | struct efx_nic *efx = context->efx; |
| 1588 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1589 | int syserr; |
| 1590 | |
| 1591 | netif_vdbg(efx, intr, efx->net_dev, |
| 1592 | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| 1593 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| 1594 | |
| 1595 | if (!likely(ACCESS_ONCE(efx->irq_soft_enabled))) |
| 1596 | return IRQ_HANDLED; |
| 1597 | |
| 1598 | /* Handle non-event-queue sources */ |
| 1599 | if (context->index == efx->irq_level) { |
| 1600 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1601 | if (unlikely(syserr)) |
| 1602 | return efx_farch_fatal_interrupt(efx); |
| 1603 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1604 | } |
| 1605 | |
| 1606 | /* Schedule processing of the channel */ |
| 1607 | efx_schedule_channel_irq(efx->channel[context->index]); |
| 1608 | |
| 1609 | return IRQ_HANDLED; |
| 1610 | } |
| 1611 | |
| 1612 | |
| 1613 | /* Setup RSS indirection table. |
| 1614 | * This maps from the hash value of the packet to RXQ |
| 1615 | */ |
| 1616 | void efx_farch_rx_push_indir_table(struct efx_nic *efx) |
| 1617 | { |
| 1618 | size_t i = 0; |
| 1619 | efx_dword_t dword; |
| 1620 | |
| 1621 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| 1622 | return; |
| 1623 | |
| 1624 | BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != |
| 1625 | FR_BZ_RX_INDIRECTION_TBL_ROWS); |
| 1626 | |
| 1627 | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { |
| 1628 | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, |
| 1629 | efx->rx_indir_table[i]); |
| 1630 | efx_writed(efx, &dword, |
| 1631 | FR_BZ_RX_INDIRECTION_TBL + |
| 1632 | FR_BZ_RX_INDIRECTION_TBL_STEP * i); |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | /* Looks at available SRAM resources and works out how many queues we |
| 1637 | * can support, and where things like descriptor caches should live. |
| 1638 | * |
| 1639 | * SRAM is split up as follows: |
| 1640 | * 0 buftbl entries for channels |
| 1641 | * efx->vf_buftbl_base buftbl entries for SR-IOV |
| 1642 | * efx->rx_dc_base RX descriptor caches |
| 1643 | * efx->tx_dc_base TX descriptor caches |
| 1644 | */ |
| 1645 | void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) |
| 1646 | { |
| 1647 | unsigned vi_count, buftbl_min; |
| 1648 | |
| 1649 | /* Account for the buffer table entries backing the datapath channels |
| 1650 | * and the descriptor caches for those channels. |
| 1651 | */ |
| 1652 | buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + |
| 1653 | efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + |
| 1654 | efx->n_channels * EFX_MAX_EVQ_SIZE) |
| 1655 | * sizeof(efx_qword_t) / EFX_BUF_SIZE); |
| 1656 | vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); |
| 1657 | |
| 1658 | #ifdef CONFIG_SFC_SRIOV |
| 1659 | if (efx_sriov_wanted(efx)) { |
| 1660 | unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit; |
| 1661 | |
| 1662 | efx->vf_buftbl_base = buftbl_min; |
| 1663 | |
| 1664 | vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; |
| 1665 | vi_count = max(vi_count, EFX_VI_BASE); |
| 1666 | buftbl_free = (sram_lim_qw - buftbl_min - |
| 1667 | vi_count * vi_dc_entries); |
| 1668 | |
| 1669 | entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) * |
| 1670 | efx_vf_size(efx)); |
| 1671 | vf_limit = min(buftbl_free / entries_per_vf, |
| 1672 | (1024U - EFX_VI_BASE) >> efx->vi_scale); |
| 1673 | |
| 1674 | if (efx->vf_count > vf_limit) { |
| 1675 | netif_err(efx, probe, efx->net_dev, |
| 1676 | "Reducing VF count from from %d to %d\n", |
| 1677 | efx->vf_count, vf_limit); |
| 1678 | efx->vf_count = vf_limit; |
| 1679 | } |
| 1680 | vi_count += efx->vf_count * efx_vf_size(efx); |
| 1681 | } |
| 1682 | #endif |
| 1683 | |
| 1684 | efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; |
| 1685 | efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; |
| 1686 | } |
| 1687 | |
| 1688 | u32 efx_farch_fpga_ver(struct efx_nic *efx) |
| 1689 | { |
| 1690 | efx_oword_t altera_build; |
| 1691 | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); |
| 1692 | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); |
| 1693 | } |
| 1694 | |
| 1695 | void efx_farch_init_common(struct efx_nic *efx) |
| 1696 | { |
| 1697 | efx_oword_t temp; |
| 1698 | |
| 1699 | /* Set positions of descriptor caches in SRAM. */ |
| 1700 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); |
| 1701 | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); |
| 1702 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); |
| 1703 | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); |
| 1704 | |
| 1705 | /* Set TX descriptor cache size. */ |
| 1706 | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); |
| 1707 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| 1708 | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); |
| 1709 | |
| 1710 | /* Set RX descriptor cache size. Set low watermark to size-8, as |
| 1711 | * this allows most efficient prefetching. |
| 1712 | */ |
| 1713 | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); |
| 1714 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| 1715 | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); |
| 1716 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| 1717 | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); |
| 1718 | |
| 1719 | /* Program INT_KER address */ |
| 1720 | EFX_POPULATE_OWORD_2(temp, |
| 1721 | FRF_AZ_NORM_INT_VEC_DIS_KER, |
| 1722 | EFX_INT_MODE_USE_MSI(efx), |
| 1723 | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); |
| 1724 | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); |
| 1725 | |
| 1726 | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) |
| 1727 | /* Use an interrupt level unused by event queues */ |
| 1728 | efx->irq_level = 0x1f; |
| 1729 | else |
| 1730 | /* Use a valid MSI-X vector */ |
| 1731 | efx->irq_level = 0; |
| 1732 | |
| 1733 | /* Enable all the genuinely fatal interrupts. (They are still |
| 1734 | * masked by the overall interrupt mask, controlled by |
| 1735 | * falcon_interrupts()). |
| 1736 | * |
| 1737 | * Note: All other fatal interrupts are enabled |
| 1738 | */ |
| 1739 | EFX_POPULATE_OWORD_3(temp, |
| 1740 | FRF_AZ_ILL_ADR_INT_KER_EN, 1, |
| 1741 | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, |
| 1742 | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); |
| 1743 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| 1744 | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); |
| 1745 | EFX_INVERT_OWORD(temp); |
| 1746 | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); |
| 1747 | |
| 1748 | efx_farch_rx_push_indir_table(efx); |
| 1749 | |
| 1750 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| 1751 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| 1752 | */ |
| 1753 | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| 1754 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); |
| 1755 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); |
| 1756 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); |
| 1757 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); |
| 1758 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); |
| 1759 | /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| 1760 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); |
| 1761 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| 1762 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); |
| 1763 | /* Disable hardware watchdog which can misfire */ |
| 1764 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); |
| 1765 | /* Squash TX of packets of 16 bytes or less */ |
| 1766 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| 1767 | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| 1768 | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| 1769 | |
| 1770 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 1771 | EFX_POPULATE_OWORD_4(temp, |
| 1772 | /* Default values */ |
| 1773 | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, |
| 1774 | FRF_BZ_TX_PACE_SB_AF, 0xb, |
| 1775 | FRF_BZ_TX_PACE_FB_BASE, 0, |
| 1776 | /* Allow large pace values in the |
| 1777 | * fast bin. */ |
| 1778 | FRF_BZ_TX_PACE_BIN_TH, |
| 1779 | FFE_BZ_TX_PACE_RESERVED); |
| 1780 | efx_writeo(efx, &temp, FR_BZ_TX_PACE); |
| 1781 | } |
| 1782 | } |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 1783 | |
| 1784 | /************************************************************************** |
| 1785 | * |
| 1786 | * Filter tables |
| 1787 | * |
| 1788 | ************************************************************************** |
| 1789 | */ |
| 1790 | |
| 1791 | /* "Fudge factors" - difference between programmed value and actual depth. |
| 1792 | * Due to pipelined implementation we need to program H/W with a value that |
| 1793 | * is larger than the hop limit we want. |
| 1794 | */ |
| 1795 | #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 |
| 1796 | #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 |
| 1797 | |
| 1798 | /* Hard maximum search limit. Hardware will time-out beyond 200-something. |
| 1799 | * We also need to avoid infinite loops in efx_farch_filter_search() when the |
| 1800 | * table is full. |
| 1801 | */ |
| 1802 | #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200 |
| 1803 | |
| 1804 | /* Don't try very hard to find space for performance hints, as this is |
| 1805 | * counter-productive. */ |
| 1806 | #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 |
| 1807 | |
| 1808 | enum efx_farch_filter_type { |
| 1809 | EFX_FARCH_FILTER_TCP_FULL = 0, |
| 1810 | EFX_FARCH_FILTER_TCP_WILD, |
| 1811 | EFX_FARCH_FILTER_UDP_FULL, |
| 1812 | EFX_FARCH_FILTER_UDP_WILD, |
| 1813 | EFX_FARCH_FILTER_MAC_FULL = 4, |
| 1814 | EFX_FARCH_FILTER_MAC_WILD, |
| 1815 | EFX_FARCH_FILTER_UC_DEF = 8, |
| 1816 | EFX_FARCH_FILTER_MC_DEF, |
| 1817 | EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */ |
| 1818 | }; |
| 1819 | |
| 1820 | enum efx_farch_filter_table_id { |
| 1821 | EFX_FARCH_FILTER_TABLE_RX_IP = 0, |
| 1822 | EFX_FARCH_FILTER_TABLE_RX_MAC, |
| 1823 | EFX_FARCH_FILTER_TABLE_RX_DEF, |
| 1824 | EFX_FARCH_FILTER_TABLE_TX_MAC, |
| 1825 | EFX_FARCH_FILTER_TABLE_COUNT, |
| 1826 | }; |
| 1827 | |
| 1828 | enum efx_farch_filter_index { |
| 1829 | EFX_FARCH_FILTER_INDEX_UC_DEF, |
| 1830 | EFX_FARCH_FILTER_INDEX_MC_DEF, |
| 1831 | EFX_FARCH_FILTER_SIZE_RX_DEF, |
| 1832 | }; |
| 1833 | |
| 1834 | struct efx_farch_filter_spec { |
| 1835 | u8 type:4; |
| 1836 | u8 priority:4; |
| 1837 | u8 flags; |
| 1838 | u16 dmaq_id; |
| 1839 | u32 data[3]; |
| 1840 | }; |
| 1841 | |
| 1842 | struct efx_farch_filter_table { |
| 1843 | enum efx_farch_filter_table_id id; |
| 1844 | u32 offset; /* address of table relative to BAR */ |
| 1845 | unsigned size; /* number of entries */ |
| 1846 | unsigned step; /* step between entries */ |
| 1847 | unsigned used; /* number currently used */ |
| 1848 | unsigned long *used_bitmap; |
| 1849 | struct efx_farch_filter_spec *spec; |
| 1850 | unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT]; |
| 1851 | }; |
| 1852 | |
| 1853 | struct efx_farch_filter_state { |
| 1854 | struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT]; |
| 1855 | }; |
| 1856 | |
| 1857 | static void |
| 1858 | efx_farch_filter_table_clear_entry(struct efx_nic *efx, |
| 1859 | struct efx_farch_filter_table *table, |
| 1860 | unsigned int filter_idx); |
| 1861 | |
| 1862 | /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit |
| 1863 | * key derived from the n-tuple. The initial LFSR state is 0xffff. */ |
| 1864 | static u16 efx_farch_filter_hash(u32 key) |
| 1865 | { |
| 1866 | u16 tmp; |
| 1867 | |
| 1868 | /* First 16 rounds */ |
| 1869 | tmp = 0x1fff ^ key >> 16; |
| 1870 | tmp = tmp ^ tmp >> 3 ^ tmp >> 6; |
| 1871 | tmp = tmp ^ tmp >> 9; |
| 1872 | /* Last 16 rounds */ |
| 1873 | tmp = tmp ^ tmp << 13 ^ key; |
| 1874 | tmp = tmp ^ tmp >> 3 ^ tmp >> 6; |
| 1875 | return tmp ^ tmp >> 9; |
| 1876 | } |
| 1877 | |
| 1878 | /* To allow for hash collisions, filter search continues at these |
| 1879 | * increments from the first possible entry selected by the hash. */ |
| 1880 | static u16 efx_farch_filter_increment(u32 key) |
| 1881 | { |
| 1882 | return key * 2 - 1; |
| 1883 | } |
| 1884 | |
| 1885 | static enum efx_farch_filter_table_id |
| 1886 | efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec) |
| 1887 | { |
| 1888 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| 1889 | (EFX_FARCH_FILTER_TCP_FULL >> 2)); |
| 1890 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| 1891 | (EFX_FARCH_FILTER_TCP_WILD >> 2)); |
| 1892 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| 1893 | (EFX_FARCH_FILTER_UDP_FULL >> 2)); |
| 1894 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != |
| 1895 | (EFX_FARCH_FILTER_UDP_WILD >> 2)); |
| 1896 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != |
| 1897 | (EFX_FARCH_FILTER_MAC_FULL >> 2)); |
| 1898 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != |
| 1899 | (EFX_FARCH_FILTER_MAC_WILD >> 2)); |
| 1900 | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC != |
| 1901 | EFX_FARCH_FILTER_TABLE_RX_MAC + 2); |
| 1902 | return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0); |
| 1903 | } |
| 1904 | |
| 1905 | static void efx_farch_filter_push_rx_config(struct efx_nic *efx) |
| 1906 | { |
| 1907 | struct efx_farch_filter_state *state = efx->filter_state; |
| 1908 | struct efx_farch_filter_table *table; |
| 1909 | efx_oword_t filter_ctl; |
| 1910 | |
| 1911 | efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); |
| 1912 | |
| 1913 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| 1914 | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, |
| 1915 | table->search_limit[EFX_FARCH_FILTER_TCP_FULL] + |
| 1916 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| 1917 | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, |
| 1918 | table->search_limit[EFX_FARCH_FILTER_TCP_WILD] + |
| 1919 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| 1920 | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, |
| 1921 | table->search_limit[EFX_FARCH_FILTER_UDP_FULL] + |
| 1922 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| 1923 | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, |
| 1924 | table->search_limit[EFX_FARCH_FILTER_UDP_WILD] + |
| 1925 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| 1926 | |
| 1927 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; |
| 1928 | if (table->size) { |
| 1929 | EFX_SET_OWORD_FIELD( |
| 1930 | filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, |
| 1931 | table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + |
| 1932 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| 1933 | EFX_SET_OWORD_FIELD( |
| 1934 | filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, |
| 1935 | table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + |
| 1936 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| 1937 | } |
| 1938 | |
| 1939 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| 1940 | if (table->size) { |
| 1941 | EFX_SET_OWORD_FIELD( |
| 1942 | filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, |
| 1943 | table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); |
| 1944 | EFX_SET_OWORD_FIELD( |
| 1945 | filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, |
| 1946 | !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & |
| 1947 | EFX_FILTER_FLAG_RX_RSS)); |
| 1948 | EFX_SET_OWORD_FIELD( |
| 1949 | filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, |
| 1950 | table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); |
| 1951 | EFX_SET_OWORD_FIELD( |
| 1952 | filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, |
| 1953 | !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & |
| 1954 | EFX_FILTER_FLAG_RX_RSS)); |
| 1955 | |
| 1956 | /* There is a single bit to enable RX scatter for all |
| 1957 | * unmatched packets. Only set it if scatter is |
| 1958 | * enabled in both filter specs. |
| 1959 | */ |
| 1960 | EFX_SET_OWORD_FIELD( |
| 1961 | filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, |
| 1962 | !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & |
| 1963 | table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & |
| 1964 | EFX_FILTER_FLAG_RX_SCATTER)); |
| 1965 | } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 1966 | /* We don't expose 'default' filters because unmatched |
| 1967 | * packets always go to the queue number found in the |
| 1968 | * RSS table. But we still need to set the RX scatter |
| 1969 | * bit here. |
| 1970 | */ |
| 1971 | EFX_SET_OWORD_FIELD( |
| 1972 | filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, |
| 1973 | efx->rx_scatter); |
| 1974 | } |
| 1975 | |
| 1976 | efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); |
| 1977 | } |
| 1978 | |
| 1979 | static void efx_farch_filter_push_tx_limits(struct efx_nic *efx) |
| 1980 | { |
| 1981 | struct efx_farch_filter_state *state = efx->filter_state; |
| 1982 | struct efx_farch_filter_table *table; |
| 1983 | efx_oword_t tx_cfg; |
| 1984 | |
| 1985 | efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG); |
| 1986 | |
| 1987 | table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; |
| 1988 | if (table->size) { |
| 1989 | EFX_SET_OWORD_FIELD( |
| 1990 | tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, |
| 1991 | table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + |
| 1992 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); |
| 1993 | EFX_SET_OWORD_FIELD( |
| 1994 | tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, |
| 1995 | table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + |
| 1996 | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); |
| 1997 | } |
| 1998 | |
| 1999 | efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); |
| 2000 | } |
| 2001 | |
| 2002 | static int |
| 2003 | efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec, |
| 2004 | const struct efx_filter_spec *gen_spec) |
| 2005 | { |
| 2006 | bool is_full = false; |
| 2007 | |
| 2008 | if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && |
| 2009 | gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT) |
| 2010 | return -EINVAL; |
| 2011 | |
| 2012 | spec->priority = gen_spec->priority; |
| 2013 | spec->flags = gen_spec->flags; |
| 2014 | spec->dmaq_id = gen_spec->dmaq_id; |
| 2015 | |
| 2016 | switch (gen_spec->match_flags) { |
| 2017 | case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | |
| 2018 | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | |
| 2019 | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT): |
| 2020 | is_full = true; |
| 2021 | /* fall through */ |
| 2022 | case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | |
| 2023 | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): { |
| 2024 | __be32 rhost, host1, host2; |
| 2025 | __be16 rport, port1, port2; |
| 2026 | |
| 2027 | EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX)); |
| 2028 | |
| 2029 | if (gen_spec->ether_type != htons(ETH_P_IP)) |
| 2030 | return -EPROTONOSUPPORT; |
| 2031 | if (gen_spec->loc_port == 0 || |
| 2032 | (is_full && gen_spec->rem_port == 0)) |
| 2033 | return -EADDRNOTAVAIL; |
| 2034 | switch (gen_spec->ip_proto) { |
| 2035 | case IPPROTO_TCP: |
| 2036 | spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL : |
| 2037 | EFX_FARCH_FILTER_TCP_WILD); |
| 2038 | break; |
| 2039 | case IPPROTO_UDP: |
| 2040 | spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL : |
| 2041 | EFX_FARCH_FILTER_UDP_WILD); |
| 2042 | break; |
| 2043 | default: |
| 2044 | return -EPROTONOSUPPORT; |
| 2045 | } |
| 2046 | |
| 2047 | /* Filter is constructed in terms of source and destination, |
| 2048 | * with the odd wrinkle that the ports are swapped in a UDP |
| 2049 | * wildcard filter. We need to convert from local and remote |
| 2050 | * (= zero for wildcard) addresses. |
| 2051 | */ |
| 2052 | rhost = is_full ? gen_spec->rem_host[0] : 0; |
| 2053 | rport = is_full ? gen_spec->rem_port : 0; |
| 2054 | host1 = rhost; |
| 2055 | host2 = gen_spec->loc_host[0]; |
| 2056 | if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { |
| 2057 | port1 = gen_spec->loc_port; |
| 2058 | port2 = rport; |
| 2059 | } else { |
| 2060 | port1 = rport; |
| 2061 | port2 = gen_spec->loc_port; |
| 2062 | } |
| 2063 | spec->data[0] = ntohl(host1) << 16 | ntohs(port1); |
| 2064 | spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; |
| 2065 | spec->data[2] = ntohl(host2); |
| 2066 | |
| 2067 | break; |
| 2068 | } |
| 2069 | |
| 2070 | case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID: |
| 2071 | is_full = true; |
| 2072 | /* fall through */ |
| 2073 | case EFX_FILTER_MATCH_LOC_MAC: |
| 2074 | spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL : |
| 2075 | EFX_FARCH_FILTER_MAC_WILD); |
| 2076 | spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; |
| 2077 | spec->data[1] = (gen_spec->loc_mac[2] << 24 | |
| 2078 | gen_spec->loc_mac[3] << 16 | |
| 2079 | gen_spec->loc_mac[4] << 8 | |
| 2080 | gen_spec->loc_mac[5]); |
| 2081 | spec->data[2] = (gen_spec->loc_mac[0] << 8 | |
| 2082 | gen_spec->loc_mac[1]); |
| 2083 | break; |
| 2084 | |
| 2085 | case EFX_FILTER_MATCH_LOC_MAC_IG: |
| 2086 | spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? |
| 2087 | EFX_FARCH_FILTER_MC_DEF : |
| 2088 | EFX_FARCH_FILTER_UC_DEF); |
| 2089 | memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ |
| 2090 | break; |
| 2091 | |
| 2092 | default: |
| 2093 | return -EPROTONOSUPPORT; |
| 2094 | } |
| 2095 | |
| 2096 | return 0; |
| 2097 | } |
| 2098 | |
| 2099 | static void |
| 2100 | efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec, |
| 2101 | const struct efx_farch_filter_spec *spec) |
| 2102 | { |
| 2103 | bool is_full = false; |
| 2104 | |
| 2105 | /* *gen_spec should be completely initialised, to be consistent |
| 2106 | * with efx_filter_init_{rx,tx}() and in case we want to copy |
| 2107 | * it back to userland. |
| 2108 | */ |
| 2109 | memset(gen_spec, 0, sizeof(*gen_spec)); |
| 2110 | |
| 2111 | gen_spec->priority = spec->priority; |
| 2112 | gen_spec->flags = spec->flags; |
| 2113 | gen_spec->dmaq_id = spec->dmaq_id; |
| 2114 | |
| 2115 | switch (spec->type) { |
| 2116 | case EFX_FARCH_FILTER_TCP_FULL: |
| 2117 | case EFX_FARCH_FILTER_UDP_FULL: |
| 2118 | is_full = true; |
| 2119 | /* fall through */ |
| 2120 | case EFX_FARCH_FILTER_TCP_WILD: |
| 2121 | case EFX_FARCH_FILTER_UDP_WILD: { |
| 2122 | __be32 host1, host2; |
| 2123 | __be16 port1, port2; |
| 2124 | |
| 2125 | gen_spec->match_flags = |
| 2126 | EFX_FILTER_MATCH_ETHER_TYPE | |
| 2127 | EFX_FILTER_MATCH_IP_PROTO | |
| 2128 | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; |
| 2129 | if (is_full) |
| 2130 | gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST | |
| 2131 | EFX_FILTER_MATCH_REM_PORT); |
| 2132 | gen_spec->ether_type = htons(ETH_P_IP); |
| 2133 | gen_spec->ip_proto = |
| 2134 | (spec->type == EFX_FARCH_FILTER_TCP_FULL || |
| 2135 | spec->type == EFX_FARCH_FILTER_TCP_WILD) ? |
| 2136 | IPPROTO_TCP : IPPROTO_UDP; |
| 2137 | |
| 2138 | host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); |
| 2139 | port1 = htons(spec->data[0]); |
| 2140 | host2 = htonl(spec->data[2]); |
| 2141 | port2 = htons(spec->data[1] >> 16); |
| 2142 | if (spec->flags & EFX_FILTER_FLAG_TX) { |
| 2143 | gen_spec->loc_host[0] = host1; |
| 2144 | gen_spec->rem_host[0] = host2; |
| 2145 | } else { |
| 2146 | gen_spec->loc_host[0] = host2; |
| 2147 | gen_spec->rem_host[0] = host1; |
| 2148 | } |
| 2149 | if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^ |
| 2150 | (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { |
| 2151 | gen_spec->loc_port = port1; |
| 2152 | gen_spec->rem_port = port2; |
| 2153 | } else { |
| 2154 | gen_spec->loc_port = port2; |
| 2155 | gen_spec->rem_port = port1; |
| 2156 | } |
| 2157 | |
| 2158 | break; |
| 2159 | } |
| 2160 | |
| 2161 | case EFX_FARCH_FILTER_MAC_FULL: |
| 2162 | is_full = true; |
| 2163 | /* fall through */ |
| 2164 | case EFX_FARCH_FILTER_MAC_WILD: |
| 2165 | gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC; |
| 2166 | if (is_full) |
| 2167 | gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID; |
| 2168 | gen_spec->loc_mac[0] = spec->data[2] >> 8; |
| 2169 | gen_spec->loc_mac[1] = spec->data[2]; |
| 2170 | gen_spec->loc_mac[2] = spec->data[1] >> 24; |
| 2171 | gen_spec->loc_mac[3] = spec->data[1] >> 16; |
| 2172 | gen_spec->loc_mac[4] = spec->data[1] >> 8; |
| 2173 | gen_spec->loc_mac[5] = spec->data[1]; |
| 2174 | gen_spec->outer_vid = htons(spec->data[0]); |
| 2175 | break; |
| 2176 | |
| 2177 | case EFX_FARCH_FILTER_UC_DEF: |
| 2178 | case EFX_FARCH_FILTER_MC_DEF: |
| 2179 | gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG; |
| 2180 | gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF; |
| 2181 | break; |
| 2182 | |
| 2183 | default: |
| 2184 | WARN_ON(1); |
| 2185 | break; |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | static void |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2190 | efx_farch_filter_init_rx_for_stack(struct efx_nic *efx, |
| 2191 | struct efx_farch_filter_spec *spec) |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2192 | { |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2193 | /* If there's only one channel then disable RSS for non VF |
| 2194 | * traffic, thereby allowing VFs to use RSS when the PF can't. |
| 2195 | */ |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2196 | spec->priority = EFX_FILTER_PRI_REQUIRED; |
| 2197 | spec->flags = (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_STACK | |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2198 | (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) | |
| 2199 | (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0)); |
| 2200 | spec->dmaq_id = 0; |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2201 | } |
| 2202 | |
| 2203 | /* Build a filter entry and return its n-tuple key. */ |
| 2204 | static u32 efx_farch_filter_build(efx_oword_t *filter, |
| 2205 | struct efx_farch_filter_spec *spec) |
| 2206 | { |
| 2207 | u32 data3; |
| 2208 | |
| 2209 | switch (efx_farch_filter_spec_table_id(spec)) { |
| 2210 | case EFX_FARCH_FILTER_TABLE_RX_IP: { |
| 2211 | bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL || |
| 2212 | spec->type == EFX_FARCH_FILTER_UDP_WILD); |
| 2213 | EFX_POPULATE_OWORD_7( |
| 2214 | *filter, |
| 2215 | FRF_BZ_RSS_EN, |
| 2216 | !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), |
| 2217 | FRF_BZ_SCATTER_EN, |
| 2218 | !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), |
| 2219 | FRF_BZ_TCP_UDP, is_udp, |
| 2220 | FRF_BZ_RXQ_ID, spec->dmaq_id, |
| 2221 | EFX_DWORD_2, spec->data[2], |
| 2222 | EFX_DWORD_1, spec->data[1], |
| 2223 | EFX_DWORD_0, spec->data[0]); |
| 2224 | data3 = is_udp; |
| 2225 | break; |
| 2226 | } |
| 2227 | |
| 2228 | case EFX_FARCH_FILTER_TABLE_RX_MAC: { |
| 2229 | bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; |
| 2230 | EFX_POPULATE_OWORD_7( |
| 2231 | *filter, |
| 2232 | FRF_CZ_RMFT_RSS_EN, |
| 2233 | !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), |
| 2234 | FRF_CZ_RMFT_SCATTER_EN, |
| 2235 | !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), |
| 2236 | FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, |
| 2237 | FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, |
| 2238 | FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], |
| 2239 | FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], |
| 2240 | FRF_CZ_RMFT_VLAN_ID, spec->data[0]); |
| 2241 | data3 = is_wild; |
| 2242 | break; |
| 2243 | } |
| 2244 | |
| 2245 | case EFX_FARCH_FILTER_TABLE_TX_MAC: { |
| 2246 | bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; |
| 2247 | EFX_POPULATE_OWORD_5(*filter, |
| 2248 | FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, |
| 2249 | FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, |
| 2250 | FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], |
| 2251 | FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], |
| 2252 | FRF_CZ_TMFT_VLAN_ID, spec->data[0]); |
| 2253 | data3 = is_wild | spec->dmaq_id << 1; |
| 2254 | break; |
| 2255 | } |
| 2256 | |
| 2257 | default: |
| 2258 | BUG(); |
| 2259 | } |
| 2260 | |
| 2261 | return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; |
| 2262 | } |
| 2263 | |
| 2264 | static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left, |
| 2265 | const struct efx_farch_filter_spec *right) |
| 2266 | { |
| 2267 | if (left->type != right->type || |
| 2268 | memcmp(left->data, right->data, sizeof(left->data))) |
| 2269 | return false; |
| 2270 | |
| 2271 | if (left->flags & EFX_FILTER_FLAG_TX && |
| 2272 | left->dmaq_id != right->dmaq_id) |
| 2273 | return false; |
| 2274 | |
| 2275 | return true; |
| 2276 | } |
| 2277 | |
| 2278 | /* |
| 2279 | * Construct/deconstruct external filter IDs. At least the RX filter |
| 2280 | * IDs must be ordered by matching priority, for RX NFC semantics. |
| 2281 | * |
| 2282 | * Deconstruction needs to be robust against invalid IDs so that |
| 2283 | * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can |
| 2284 | * accept user-provided IDs. |
| 2285 | */ |
| 2286 | |
| 2287 | #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5 |
| 2288 | |
| 2289 | static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = { |
| 2290 | [EFX_FARCH_FILTER_TCP_FULL] = 0, |
| 2291 | [EFX_FARCH_FILTER_UDP_FULL] = 0, |
| 2292 | [EFX_FARCH_FILTER_TCP_WILD] = 1, |
| 2293 | [EFX_FARCH_FILTER_UDP_WILD] = 1, |
| 2294 | [EFX_FARCH_FILTER_MAC_FULL] = 2, |
| 2295 | [EFX_FARCH_FILTER_MAC_WILD] = 3, |
| 2296 | [EFX_FARCH_FILTER_UC_DEF] = 4, |
| 2297 | [EFX_FARCH_FILTER_MC_DEF] = 4, |
| 2298 | }; |
| 2299 | |
| 2300 | static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = { |
| 2301 | EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */ |
| 2302 | EFX_FARCH_FILTER_TABLE_RX_IP, |
| 2303 | EFX_FARCH_FILTER_TABLE_RX_MAC, |
| 2304 | EFX_FARCH_FILTER_TABLE_RX_MAC, |
| 2305 | EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */ |
| 2306 | EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */ |
| 2307 | EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */ |
| 2308 | }; |
| 2309 | |
| 2310 | #define EFX_FARCH_FILTER_INDEX_WIDTH 13 |
| 2311 | #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1) |
| 2312 | |
| 2313 | static inline u32 |
| 2314 | efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec, |
| 2315 | unsigned int index) |
| 2316 | { |
| 2317 | unsigned int range; |
| 2318 | |
| 2319 | range = efx_farch_filter_type_match_pri[spec->type]; |
| 2320 | if (!(spec->flags & EFX_FILTER_FLAG_RX)) |
| 2321 | range += EFX_FARCH_FILTER_MATCH_PRI_COUNT; |
| 2322 | |
| 2323 | return range << EFX_FARCH_FILTER_INDEX_WIDTH | index; |
| 2324 | } |
| 2325 | |
| 2326 | static inline enum efx_farch_filter_table_id |
| 2327 | efx_farch_filter_id_table_id(u32 id) |
| 2328 | { |
| 2329 | unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH; |
| 2330 | |
| 2331 | if (range < ARRAY_SIZE(efx_farch_filter_range_table)) |
| 2332 | return efx_farch_filter_range_table[range]; |
| 2333 | else |
| 2334 | return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */ |
| 2335 | } |
| 2336 | |
| 2337 | static inline unsigned int efx_farch_filter_id_index(u32 id) |
| 2338 | { |
| 2339 | return id & EFX_FARCH_FILTER_INDEX_MASK; |
| 2340 | } |
| 2341 | |
| 2342 | u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx) |
| 2343 | { |
| 2344 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2345 | unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1; |
| 2346 | enum efx_farch_filter_table_id table_id; |
| 2347 | |
| 2348 | do { |
| 2349 | table_id = efx_farch_filter_range_table[range]; |
| 2350 | if (state->table[table_id].size != 0) |
| 2351 | return range << EFX_FARCH_FILTER_INDEX_WIDTH | |
| 2352 | state->table[table_id].size; |
| 2353 | } while (range--); |
| 2354 | |
| 2355 | return 0; |
| 2356 | } |
| 2357 | |
| 2358 | s32 efx_farch_filter_insert(struct efx_nic *efx, |
| 2359 | struct efx_filter_spec *gen_spec, |
| 2360 | bool replace_equal) |
| 2361 | { |
| 2362 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2363 | struct efx_farch_filter_table *table; |
| 2364 | struct efx_farch_filter_spec spec; |
| 2365 | efx_oword_t filter; |
| 2366 | int rep_index, ins_index; |
| 2367 | unsigned int depth = 0; |
| 2368 | int rc; |
| 2369 | |
| 2370 | rc = efx_farch_filter_from_gen_spec(&spec, gen_spec); |
| 2371 | if (rc) |
| 2372 | return rc; |
| 2373 | |
| 2374 | table = &state->table[efx_farch_filter_spec_table_id(&spec)]; |
| 2375 | if (table->size == 0) |
| 2376 | return -EINVAL; |
| 2377 | |
| 2378 | netif_vdbg(efx, hw, efx->net_dev, |
| 2379 | "%s: type %d search_limit=%d", __func__, spec.type, |
| 2380 | table->search_limit[spec.type]); |
| 2381 | |
| 2382 | if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { |
| 2383 | /* One filter spec per type */ |
| 2384 | BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0); |
| 2385 | BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF != |
| 2386 | EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF); |
| 2387 | rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF; |
| 2388 | ins_index = rep_index; |
| 2389 | |
| 2390 | spin_lock_bh(&efx->filter_lock); |
| 2391 | } else { |
| 2392 | /* Search concurrently for |
| 2393 | * (1) a filter to be replaced (rep_index): any filter |
| 2394 | * with the same match values, up to the current |
| 2395 | * search depth for this type, and |
| 2396 | * (2) the insertion point (ins_index): (1) or any |
| 2397 | * free slot before it or up to the maximum search |
| 2398 | * depth for this priority |
| 2399 | * We fail if we cannot find (2). |
| 2400 | * |
| 2401 | * We can stop once either |
| 2402 | * (a) we find (1), in which case we have definitely |
| 2403 | * found (2) as well; or |
| 2404 | * (b) we have searched exhaustively for (1), and have |
| 2405 | * either found (2) or searched exhaustively for it |
| 2406 | */ |
| 2407 | u32 key = efx_farch_filter_build(&filter, &spec); |
| 2408 | unsigned int hash = efx_farch_filter_hash(key); |
| 2409 | unsigned int incr = efx_farch_filter_increment(key); |
| 2410 | unsigned int max_rep_depth = table->search_limit[spec.type]; |
| 2411 | unsigned int max_ins_depth = |
| 2412 | spec.priority <= EFX_FILTER_PRI_HINT ? |
| 2413 | EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX : |
| 2414 | EFX_FARCH_FILTER_CTL_SRCH_MAX; |
| 2415 | unsigned int i = hash & (table->size - 1); |
| 2416 | |
| 2417 | ins_index = -1; |
| 2418 | depth = 1; |
| 2419 | |
| 2420 | spin_lock_bh(&efx->filter_lock); |
| 2421 | |
| 2422 | for (;;) { |
| 2423 | if (!test_bit(i, table->used_bitmap)) { |
| 2424 | if (ins_index < 0) |
| 2425 | ins_index = i; |
| 2426 | } else if (efx_farch_filter_equal(&spec, |
| 2427 | &table->spec[i])) { |
| 2428 | /* Case (a) */ |
| 2429 | if (ins_index < 0) |
| 2430 | ins_index = i; |
| 2431 | rep_index = i; |
| 2432 | break; |
| 2433 | } |
| 2434 | |
| 2435 | if (depth >= max_rep_depth && |
| 2436 | (ins_index >= 0 || depth >= max_ins_depth)) { |
| 2437 | /* Case (b) */ |
| 2438 | if (ins_index < 0) { |
| 2439 | rc = -EBUSY; |
| 2440 | goto out; |
| 2441 | } |
| 2442 | rep_index = -1; |
| 2443 | break; |
| 2444 | } |
| 2445 | |
| 2446 | i = (i + incr) & (table->size - 1); |
| 2447 | ++depth; |
| 2448 | } |
| 2449 | } |
| 2450 | |
| 2451 | /* If we found a filter to be replaced, check whether we |
| 2452 | * should do so |
| 2453 | */ |
| 2454 | if (rep_index >= 0) { |
| 2455 | struct efx_farch_filter_spec *saved_spec = |
| 2456 | &table->spec[rep_index]; |
| 2457 | |
| 2458 | if (spec.priority == saved_spec->priority && !replace_equal) { |
| 2459 | rc = -EEXIST; |
| 2460 | goto out; |
| 2461 | } |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2462 | if (spec.priority < saved_spec->priority && |
| 2463 | !(saved_spec->priority == EFX_FILTER_PRI_REQUIRED && |
| 2464 | saved_spec->flags & EFX_FILTER_FLAG_RX_STACK)) { |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2465 | rc = -EPERM; |
| 2466 | goto out; |
| 2467 | } |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2468 | if (spec.flags & EFX_FILTER_FLAG_RX_STACK) { |
| 2469 | /* Just make sure it won't be removed */ |
| 2470 | saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK; |
| 2471 | rc = 0; |
| 2472 | goto out; |
| 2473 | } |
| 2474 | /* Retain the RX_STACK flag */ |
| 2475 | spec.flags |= saved_spec->flags & EFX_FILTER_FLAG_RX_STACK; |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2476 | } |
| 2477 | |
| 2478 | /* Insert the filter */ |
| 2479 | if (ins_index != rep_index) { |
| 2480 | __set_bit(ins_index, table->used_bitmap); |
| 2481 | ++table->used; |
| 2482 | } |
| 2483 | table->spec[ins_index] = spec; |
| 2484 | |
| 2485 | if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { |
| 2486 | efx_farch_filter_push_rx_config(efx); |
| 2487 | } else { |
| 2488 | if (table->search_limit[spec.type] < depth) { |
| 2489 | table->search_limit[spec.type] = depth; |
| 2490 | if (spec.flags & EFX_FILTER_FLAG_TX) |
| 2491 | efx_farch_filter_push_tx_limits(efx); |
| 2492 | else |
| 2493 | efx_farch_filter_push_rx_config(efx); |
| 2494 | } |
| 2495 | |
| 2496 | efx_writeo(efx, &filter, |
| 2497 | table->offset + table->step * ins_index); |
| 2498 | |
| 2499 | /* If we were able to replace a filter by inserting |
| 2500 | * at a lower depth, clear the replaced filter |
| 2501 | */ |
| 2502 | if (ins_index != rep_index && rep_index >= 0) |
| 2503 | efx_farch_filter_table_clear_entry(efx, table, |
| 2504 | rep_index); |
| 2505 | } |
| 2506 | |
| 2507 | netif_vdbg(efx, hw, efx->net_dev, |
| 2508 | "%s: filter type %d index %d rxq %u set", |
| 2509 | __func__, spec.type, ins_index, spec.dmaq_id); |
| 2510 | rc = efx_farch_filter_make_id(&spec, ins_index); |
| 2511 | |
| 2512 | out: |
| 2513 | spin_unlock_bh(&efx->filter_lock); |
| 2514 | return rc; |
| 2515 | } |
| 2516 | |
| 2517 | static void |
| 2518 | efx_farch_filter_table_clear_entry(struct efx_nic *efx, |
| 2519 | struct efx_farch_filter_table *table, |
| 2520 | unsigned int filter_idx) |
| 2521 | { |
| 2522 | static efx_oword_t filter; |
| 2523 | |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2524 | EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2525 | BUG_ON(table->offset == 0); /* can't clear MAC default filters */ |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2526 | |
| 2527 | __clear_bit(filter_idx, table->used_bitmap); |
| 2528 | --table->used; |
| 2529 | memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); |
| 2530 | |
| 2531 | efx_writeo(efx, &filter, table->offset + table->step * filter_idx); |
| 2532 | |
| 2533 | /* If this filter required a greater search depth than |
| 2534 | * any other, the search limit for its type can now be |
| 2535 | * decreased. However, it is hard to determine that |
| 2536 | * unless the table has become completely empty - in |
| 2537 | * which case, all its search limits can be set to 0. |
| 2538 | */ |
| 2539 | if (unlikely(table->used == 0)) { |
| 2540 | memset(table->search_limit, 0, sizeof(table->search_limit)); |
| 2541 | if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC) |
| 2542 | efx_farch_filter_push_tx_limits(efx); |
| 2543 | else |
| 2544 | efx_farch_filter_push_rx_config(efx); |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | static int efx_farch_filter_remove(struct efx_nic *efx, |
| 2549 | struct efx_farch_filter_table *table, |
| 2550 | unsigned int filter_idx, |
| 2551 | enum efx_filter_priority priority) |
| 2552 | { |
| 2553 | struct efx_farch_filter_spec *spec = &table->spec[filter_idx]; |
| 2554 | |
| 2555 | if (!test_bit(filter_idx, table->used_bitmap) || |
| 2556 | spec->priority > priority) |
| 2557 | return -ENOENT; |
| 2558 | |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2559 | if (spec->flags & EFX_FILTER_FLAG_RX_STACK) { |
| 2560 | efx_farch_filter_init_rx_for_stack(efx, spec); |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2561 | efx_farch_filter_push_rx_config(efx); |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2562 | } else { |
| 2563 | efx_farch_filter_table_clear_entry(efx, table, filter_idx); |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2564 | } |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2565 | |
| 2566 | return 0; |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2567 | } |
| 2568 | |
| 2569 | int efx_farch_filter_remove_safe(struct efx_nic *efx, |
| 2570 | enum efx_filter_priority priority, |
| 2571 | u32 filter_id) |
| 2572 | { |
| 2573 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2574 | enum efx_farch_filter_table_id table_id; |
| 2575 | struct efx_farch_filter_table *table; |
| 2576 | unsigned int filter_idx; |
| 2577 | struct efx_farch_filter_spec *spec; |
| 2578 | int rc; |
| 2579 | |
| 2580 | table_id = efx_farch_filter_id_table_id(filter_id); |
| 2581 | if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) |
| 2582 | return -ENOENT; |
| 2583 | table = &state->table[table_id]; |
| 2584 | |
| 2585 | filter_idx = efx_farch_filter_id_index(filter_id); |
| 2586 | if (filter_idx >= table->size) |
| 2587 | return -ENOENT; |
| 2588 | spec = &table->spec[filter_idx]; |
| 2589 | |
| 2590 | spin_lock_bh(&efx->filter_lock); |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2591 | rc = efx_farch_filter_remove(efx, table, filter_idx, priority); |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2592 | spin_unlock_bh(&efx->filter_lock); |
| 2593 | |
| 2594 | return rc; |
| 2595 | } |
| 2596 | |
| 2597 | int efx_farch_filter_get_safe(struct efx_nic *efx, |
| 2598 | enum efx_filter_priority priority, |
| 2599 | u32 filter_id, struct efx_filter_spec *spec_buf) |
| 2600 | { |
| 2601 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2602 | enum efx_farch_filter_table_id table_id; |
| 2603 | struct efx_farch_filter_table *table; |
| 2604 | struct efx_farch_filter_spec *spec; |
| 2605 | unsigned int filter_idx; |
| 2606 | int rc; |
| 2607 | |
| 2608 | table_id = efx_farch_filter_id_table_id(filter_id); |
| 2609 | if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) |
| 2610 | return -ENOENT; |
| 2611 | table = &state->table[table_id]; |
| 2612 | |
| 2613 | filter_idx = efx_farch_filter_id_index(filter_id); |
| 2614 | if (filter_idx >= table->size) |
| 2615 | return -ENOENT; |
| 2616 | spec = &table->spec[filter_idx]; |
| 2617 | |
| 2618 | spin_lock_bh(&efx->filter_lock); |
| 2619 | |
| 2620 | if (test_bit(filter_idx, table->used_bitmap) && |
| 2621 | spec->priority == priority) { |
| 2622 | efx_farch_filter_to_gen_spec(spec_buf, spec); |
| 2623 | rc = 0; |
| 2624 | } else { |
| 2625 | rc = -ENOENT; |
| 2626 | } |
| 2627 | |
| 2628 | spin_unlock_bh(&efx->filter_lock); |
| 2629 | |
| 2630 | return rc; |
| 2631 | } |
| 2632 | |
| 2633 | static void |
| 2634 | efx_farch_filter_table_clear(struct efx_nic *efx, |
| 2635 | enum efx_farch_filter_table_id table_id, |
| 2636 | enum efx_filter_priority priority) |
| 2637 | { |
| 2638 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2639 | struct efx_farch_filter_table *table = &state->table[table_id]; |
| 2640 | unsigned int filter_idx; |
| 2641 | |
| 2642 | spin_lock_bh(&efx->filter_lock); |
| 2643 | for (filter_idx = 0; filter_idx < table->size; ++filter_idx) |
Ben Hutchings | 14990a5 | 2012-11-19 23:08:19 +0000 | [diff] [blame] | 2644 | efx_farch_filter_remove(efx, table, filter_idx, priority); |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2645 | spin_unlock_bh(&efx->filter_lock); |
| 2646 | } |
| 2647 | |
| 2648 | void efx_farch_filter_clear_rx(struct efx_nic *efx, |
| 2649 | enum efx_filter_priority priority) |
| 2650 | { |
| 2651 | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP, |
| 2652 | priority); |
| 2653 | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC, |
| 2654 | priority); |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2655 | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF, |
| 2656 | priority); |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2657 | } |
| 2658 | |
| 2659 | u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, |
| 2660 | enum efx_filter_priority priority) |
| 2661 | { |
| 2662 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2663 | enum efx_farch_filter_table_id table_id; |
| 2664 | struct efx_farch_filter_table *table; |
| 2665 | unsigned int filter_idx; |
| 2666 | u32 count = 0; |
| 2667 | |
| 2668 | spin_lock_bh(&efx->filter_lock); |
| 2669 | |
| 2670 | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| 2671 | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| 2672 | table_id++) { |
| 2673 | table = &state->table[table_id]; |
| 2674 | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| 2675 | if (test_bit(filter_idx, table->used_bitmap) && |
| 2676 | table->spec[filter_idx].priority == priority) |
| 2677 | ++count; |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | spin_unlock_bh(&efx->filter_lock); |
| 2682 | |
| 2683 | return count; |
| 2684 | } |
| 2685 | |
| 2686 | s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, |
| 2687 | enum efx_filter_priority priority, |
| 2688 | u32 *buf, u32 size) |
| 2689 | { |
| 2690 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2691 | enum efx_farch_filter_table_id table_id; |
| 2692 | struct efx_farch_filter_table *table; |
| 2693 | unsigned int filter_idx; |
| 2694 | s32 count = 0; |
| 2695 | |
| 2696 | spin_lock_bh(&efx->filter_lock); |
| 2697 | |
| 2698 | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| 2699 | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| 2700 | table_id++) { |
| 2701 | table = &state->table[table_id]; |
| 2702 | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| 2703 | if (test_bit(filter_idx, table->used_bitmap) && |
| 2704 | table->spec[filter_idx].priority == priority) { |
| 2705 | if (count == size) { |
| 2706 | count = -EMSGSIZE; |
| 2707 | goto out; |
| 2708 | } |
| 2709 | buf[count++] = efx_farch_filter_make_id( |
| 2710 | &table->spec[filter_idx], filter_idx); |
| 2711 | } |
| 2712 | } |
| 2713 | } |
| 2714 | out: |
| 2715 | spin_unlock_bh(&efx->filter_lock); |
| 2716 | |
| 2717 | return count; |
| 2718 | } |
| 2719 | |
| 2720 | /* Restore filter stater after reset */ |
| 2721 | void efx_farch_filter_table_restore(struct efx_nic *efx) |
| 2722 | { |
| 2723 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2724 | enum efx_farch_filter_table_id table_id; |
| 2725 | struct efx_farch_filter_table *table; |
| 2726 | efx_oword_t filter; |
| 2727 | unsigned int filter_idx; |
| 2728 | |
| 2729 | spin_lock_bh(&efx->filter_lock); |
| 2730 | |
| 2731 | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| 2732 | table = &state->table[table_id]; |
| 2733 | |
| 2734 | /* Check whether this is a regular register table */ |
| 2735 | if (table->step == 0) |
| 2736 | continue; |
| 2737 | |
| 2738 | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| 2739 | if (!test_bit(filter_idx, table->used_bitmap)) |
| 2740 | continue; |
| 2741 | efx_farch_filter_build(&filter, &table->spec[filter_idx]); |
| 2742 | efx_writeo(efx, &filter, |
| 2743 | table->offset + table->step * filter_idx); |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | efx_farch_filter_push_rx_config(efx); |
| 2748 | efx_farch_filter_push_tx_limits(efx); |
| 2749 | |
| 2750 | spin_unlock_bh(&efx->filter_lock); |
| 2751 | } |
| 2752 | |
| 2753 | void efx_farch_filter_table_remove(struct efx_nic *efx) |
| 2754 | { |
| 2755 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2756 | enum efx_farch_filter_table_id table_id; |
| 2757 | |
| 2758 | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| 2759 | kfree(state->table[table_id].used_bitmap); |
| 2760 | vfree(state->table[table_id].spec); |
| 2761 | } |
| 2762 | kfree(state); |
| 2763 | } |
| 2764 | |
| 2765 | int efx_farch_filter_table_probe(struct efx_nic *efx) |
| 2766 | { |
| 2767 | struct efx_farch_filter_state *state; |
| 2768 | struct efx_farch_filter_table *table; |
| 2769 | unsigned table_id; |
| 2770 | |
| 2771 | state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL); |
| 2772 | if (!state) |
| 2773 | return -ENOMEM; |
| 2774 | efx->filter_state = state; |
| 2775 | |
| 2776 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 2777 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| 2778 | table->id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| 2779 | table->offset = FR_BZ_RX_FILTER_TBL0; |
| 2780 | table->size = FR_BZ_RX_FILTER_TBL0_ROWS; |
| 2781 | table->step = FR_BZ_RX_FILTER_TBL0_STEP; |
| 2782 | } |
| 2783 | |
| 2784 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { |
| 2785 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; |
| 2786 | table->id = EFX_FARCH_FILTER_TABLE_RX_MAC; |
| 2787 | table->offset = FR_CZ_RX_MAC_FILTER_TBL0; |
| 2788 | table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; |
| 2789 | table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; |
| 2790 | |
| 2791 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| 2792 | table->id = EFX_FARCH_FILTER_TABLE_RX_DEF; |
| 2793 | table->size = EFX_FARCH_FILTER_SIZE_RX_DEF; |
| 2794 | |
| 2795 | table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; |
| 2796 | table->id = EFX_FARCH_FILTER_TABLE_TX_MAC; |
| 2797 | table->offset = FR_CZ_TX_MAC_FILTER_TBL0; |
| 2798 | table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS; |
| 2799 | table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP; |
| 2800 | } |
| 2801 | |
| 2802 | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { |
| 2803 | table = &state->table[table_id]; |
| 2804 | if (table->size == 0) |
| 2805 | continue; |
| 2806 | table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size), |
| 2807 | sizeof(unsigned long), |
| 2808 | GFP_KERNEL); |
| 2809 | if (!table->used_bitmap) |
| 2810 | goto fail; |
| 2811 | table->spec = vzalloc(table->size * sizeof(*table->spec)); |
| 2812 | if (!table->spec) |
| 2813 | goto fail; |
| 2814 | } |
| 2815 | |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2816 | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; |
| 2817 | if (table->size) { |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2818 | /* RX default filters must always exist */ |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2819 | struct efx_farch_filter_spec *spec; |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2820 | unsigned i; |
Ben Hutchings | 8803e15 | 2012-11-19 23:08:20 +0000 | [diff] [blame] | 2821 | |
| 2822 | for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) { |
| 2823 | spec = &table->spec[i]; |
| 2824 | spec->type = EFX_FARCH_FILTER_UC_DEF + i; |
| 2825 | efx_farch_filter_init_rx_for_stack(efx, spec); |
| 2826 | __set_bit(i, table->used_bitmap); |
| 2827 | } |
Ben Hutchings | add7247 | 2012-11-08 01:46:53 +0000 | [diff] [blame] | 2828 | } |
| 2829 | |
| 2830 | efx_farch_filter_push_rx_config(efx); |
| 2831 | |
| 2832 | return 0; |
| 2833 | |
| 2834 | fail: |
| 2835 | efx_farch_filter_table_remove(efx); |
| 2836 | return -ENOMEM; |
| 2837 | } |
| 2838 | |
| 2839 | /* Update scatter enable flags for filters pointing to our own RX queues */ |
| 2840 | void efx_farch_filter_update_rx_scatter(struct efx_nic *efx) |
| 2841 | { |
| 2842 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2843 | enum efx_farch_filter_table_id table_id; |
| 2844 | struct efx_farch_filter_table *table; |
| 2845 | efx_oword_t filter; |
| 2846 | unsigned int filter_idx; |
| 2847 | |
| 2848 | spin_lock_bh(&efx->filter_lock); |
| 2849 | |
| 2850 | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; |
| 2851 | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; |
| 2852 | table_id++) { |
| 2853 | table = &state->table[table_id]; |
| 2854 | |
| 2855 | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { |
| 2856 | if (!test_bit(filter_idx, table->used_bitmap) || |
| 2857 | table->spec[filter_idx].dmaq_id >= |
| 2858 | efx->n_rx_channels) |
| 2859 | continue; |
| 2860 | |
| 2861 | if (efx->rx_scatter) |
| 2862 | table->spec[filter_idx].flags |= |
| 2863 | EFX_FILTER_FLAG_RX_SCATTER; |
| 2864 | else |
| 2865 | table->spec[filter_idx].flags &= |
| 2866 | ~EFX_FILTER_FLAG_RX_SCATTER; |
| 2867 | |
| 2868 | if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF) |
| 2869 | /* Pushed by efx_farch_filter_push_rx_config() */ |
| 2870 | continue; |
| 2871 | |
| 2872 | efx_farch_filter_build(&filter, &table->spec[filter_idx]); |
| 2873 | efx_writeo(efx, &filter, |
| 2874 | table->offset + table->step * filter_idx); |
| 2875 | } |
| 2876 | } |
| 2877 | |
| 2878 | efx_farch_filter_push_rx_config(efx); |
| 2879 | |
| 2880 | spin_unlock_bh(&efx->filter_lock); |
| 2881 | } |
| 2882 | |
| 2883 | #ifdef CONFIG_RFS_ACCEL |
| 2884 | |
| 2885 | s32 efx_farch_filter_rfs_insert(struct efx_nic *efx, |
| 2886 | struct efx_filter_spec *gen_spec) |
| 2887 | { |
| 2888 | return efx_farch_filter_insert(efx, gen_spec, true); |
| 2889 | } |
| 2890 | |
| 2891 | bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, |
| 2892 | unsigned int index) |
| 2893 | { |
| 2894 | struct efx_farch_filter_state *state = efx->filter_state; |
| 2895 | struct efx_farch_filter_table *table = |
| 2896 | &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; |
| 2897 | |
| 2898 | if (test_bit(index, table->used_bitmap) && |
| 2899 | table->spec[index].priority == EFX_FILTER_PRI_HINT && |
| 2900 | rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id, |
| 2901 | flow_id, index)) { |
| 2902 | efx_farch_filter_table_clear_entry(efx, table, index); |
| 2903 | return true; |
| 2904 | } |
| 2905 | |
| 2906 | return false; |
| 2907 | } |
| 2908 | |
| 2909 | #endif /* CONFIG_RFS_ACCEL */ |
Ben Hutchings | 964e613 | 2012-11-19 23:08:22 +0000 | [diff] [blame] | 2910 | |
| 2911 | void efx_farch_filter_sync_rx_mode(struct efx_nic *efx) |
| 2912 | { |
| 2913 | struct net_device *net_dev = efx->net_dev; |
| 2914 | struct netdev_hw_addr *ha; |
| 2915 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| 2916 | u32 crc; |
| 2917 | int bit; |
| 2918 | |
| 2919 | netif_addr_lock_bh(net_dev); |
| 2920 | |
| 2921 | efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); |
| 2922 | |
| 2923 | /* Build multicast hash table */ |
| 2924 | if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { |
| 2925 | memset(mc_hash, 0xff, sizeof(*mc_hash)); |
| 2926 | } else { |
| 2927 | memset(mc_hash, 0x00, sizeof(*mc_hash)); |
| 2928 | netdev_for_each_mc_addr(ha, net_dev) { |
| 2929 | crc = ether_crc_le(ETH_ALEN, ha->addr); |
| 2930 | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); |
| 2931 | __set_bit_le(bit, mc_hash); |
| 2932 | } |
| 2933 | |
| 2934 | /* Broadcast packets go through the multicast hash filter. |
| 2935 | * ether_crc_le() of the broadcast address is 0xbe2612ff |
| 2936 | * so we always add bit 0xff to the mask. |
| 2937 | */ |
| 2938 | __set_bit_le(0xff, mc_hash); |
| 2939 | } |
| 2940 | |
| 2941 | netif_addr_unlock_bh(net_dev); |
| 2942 | } |