blob: 6b859d7a48e77af9a922704d60283b78543614e8 [file] [log] [blame]
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000023#include <linux/kvm_host.h>
Mark Rutlandc6d01a92014-11-24 13:59:30 +000024#include <linux/mm.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000025#include <linux/uaccess.h>
Mark Rutlandc6d01a92014-11-24 13:59:30 +000026
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000027#include <asm/cacheflush.h>
28#include <asm/cputype.h>
Marc Zyngier0c557ed2014-04-24 10:24:46 +010029#include <asm/debug-monitors.h>
Mark Rutlandc6d01a92014-11-24 13:59:30 +000030#include <asm/esr.h>
31#include <asm/kvm_arm.h>
32#include <asm/kvm_coproc.h>
33#include <asm/kvm_emulate.h>
34#include <asm/kvm_host.h>
35#include <asm/kvm_mmu.h>
36
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000037#include <trace/events/kvm.h>
38
39#include "sys_regs.h"
40
41/*
42 * All of this file is extremly similar to the ARM coproc.c, but the
43 * types are different. My gut feeling is that it should be pretty
44 * easy to merge, but that would be an ABI breakage -- again. VFP
45 * would also need to be abstracted.
Marc Zyngier62a89c42013-02-07 10:32:33 +000046 *
47 * For AArch32, we only take care of what is being trapped. Anything
48 * that has to do with init and userspace access has to go via the
49 * 64bit interface.
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000050 */
51
52/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
53static u32 cache_levels;
54
55/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
56#define CSSELR_MAX 12
57
58/* Which cache CCSIDR represents depends on CSSELR value. */
59static u32 get_ccsidr(u32 csselr)
60{
61 u32 ccsidr;
62
63 /* Make sure noone else changes CSSELR during this! */
64 local_irq_disable();
65 /* Put value into CSSELR */
66 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
67 isb();
68 /* Read result out of CCSIDR */
69 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
70 local_irq_enable();
71
72 return ccsidr;
73}
74
75static void do_dc_cisw(u32 val)
76{
77 asm volatile("dc cisw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010078 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000079}
80
81static void do_dc_csw(u32 val)
82{
83 asm volatile("dc csw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010084 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000085}
86
87/* See note at ARM ARM B1.14.4 */
88static bool access_dcsw(struct kvm_vcpu *vcpu,
89 const struct sys_reg_params *p,
90 const struct sys_reg_desc *r)
91{
92 unsigned long val;
93 int cpu;
94
95 if (!p->is_write)
96 return read_from_write_only(vcpu, p);
97
98 cpu = get_cpu();
99
100 cpumask_setall(&vcpu->arch.require_dcache_flush);
101 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
102
103 /* If we were already preempted, take the long way around */
104 if (cpu != vcpu->arch.last_pcpu) {
105 flush_cache_all();
106 goto done;
107 }
108
109 val = *vcpu_reg(vcpu, p->Rt);
110
111 switch (p->CRm) {
112 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
113 case 14: /* DCCISW */
114 do_dc_cisw(val);
115 break;
116
117 case 10: /* DCCSW */
118 do_dc_csw(val);
119 break;
120 }
121
122done:
123 put_cpu();
124
125 return true;
126}
127
128/*
Marc Zyngier4d449232014-01-14 18:00:55 +0000129 * Generic accessor for VM registers. Only called as long as HCR_TVM
130 * is set.
131 */
132static bool access_vm_reg(struct kvm_vcpu *vcpu,
133 const struct sys_reg_params *p,
134 const struct sys_reg_desc *r)
135{
136 unsigned long val;
137
138 BUG_ON(!p->is_write);
139
140 val = *vcpu_reg(vcpu, p->Rt);
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100141 if (!p->is_aarch32) {
Marc Zyngier4d449232014-01-14 18:00:55 +0000142 vcpu_sys_reg(vcpu, r->reg) = val;
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100143 } else {
144 if (!p->is_32bit)
145 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100146 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100147 }
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100148
Marc Zyngier4d449232014-01-14 18:00:55 +0000149 return true;
150}
151
152/*
153 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
154 * guest enables the MMU, we stop trapping the VM sys_regs and leave
155 * it in complete control of the caches.
156 */
157static bool access_sctlr(struct kvm_vcpu *vcpu,
158 const struct sys_reg_params *p,
159 const struct sys_reg_desc *r)
160{
161 access_vm_reg(vcpu, p, r);
162
Marc Zyngier9d218a12014-01-15 12:50:23 +0000163 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
Marc Zyngier4d449232014-01-14 18:00:55 +0000164 vcpu->arch.hcr_el2 &= ~HCR_TVM;
Marc Zyngier9d218a12014-01-15 12:50:23 +0000165 stage2_flush_vm(vcpu->kvm);
166 }
Marc Zyngier4d449232014-01-14 18:00:55 +0000167
168 return true;
169}
170
Marc Zyngier7609c122014-04-24 10:21:16 +0100171static bool trap_raz_wi(struct kvm_vcpu *vcpu,
172 const struct sys_reg_params *p,
173 const struct sys_reg_desc *r)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000174{
175 if (p->is_write)
176 return ignore_write(vcpu, p);
177 else
178 return read_zero(vcpu, p);
179}
180
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100181static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
182 const struct sys_reg_params *p,
183 const struct sys_reg_desc *r)
184{
185 if (p->is_write) {
186 return ignore_write(vcpu, p);
187 } else {
188 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
189 return true;
190 }
191}
192
193static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
194 const struct sys_reg_params *p,
195 const struct sys_reg_desc *r)
196{
197 if (p->is_write) {
198 return ignore_write(vcpu, p);
199 } else {
200 u32 val;
201 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
202 *vcpu_reg(vcpu, p->Rt) = val;
203 return true;
204 }
205}
206
207/*
208 * We want to avoid world-switching all the DBG registers all the
209 * time:
210 *
211 * - If we've touched any debug register, it is likely that we're
212 * going to touch more of them. It then makes sense to disable the
213 * traps and start doing the save/restore dance
214 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
215 * then mandatory to save/restore the registers, as the guest
216 * depends on them.
217 *
218 * For this, we use a DIRTY bit, indicating the guest has modified the
219 * debug registers, used as follow:
220 *
221 * On guest entry:
222 * - If the dirty bit is set (because we're coming back from trapping),
223 * disable the traps, save host registers, restore guest registers.
224 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
225 * set the dirty bit, disable the traps, save host registers,
226 * restore guest registers.
227 * - Otherwise, enable the traps
228 *
229 * On guest exit:
230 * - If the dirty bit is set, save guest registers, restore host
231 * registers and clear the dirty bit. This ensure that the host can
232 * now use the debug registers.
233 */
234static bool trap_debug_regs(struct kvm_vcpu *vcpu,
235 const struct sys_reg_params *p,
236 const struct sys_reg_desc *r)
237{
238 if (p->is_write) {
239 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
240 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
241 } else {
242 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
243 }
244
245 return true;
246}
247
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000248static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
249{
250 u64 amair;
251
252 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
253 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
254}
255
256static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
257{
258 /*
259 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
260 */
261 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
262}
263
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100264/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
265#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
266 /* DBGBVRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
268 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
269 /* DBGBCRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
271 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
272 /* DBGWVRn_EL1 */ \
273 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
274 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
275 /* DBGWCRn_EL1 */ \
276 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
277 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
278
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000279/*
280 * Architected system registers.
281 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
Marc Zyngier7609c122014-04-24 10:21:16 +0100282 *
283 * We could trap ID_DFR0 and tell the guest we don't support performance
284 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
285 * NAKed, so it will read the PMCR anyway.
286 *
287 * Therefore we tell the guest we have 0 counters. Unfortunately, we
288 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
289 * all PM registers, which doesn't crash the guest kernel at least.
290 *
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100291 * Debug handling: We do trap most, if not all debug related system
292 * registers. The implementation is good enough to ensure that a guest
293 * can use these with minimal performance degradation. The drawback is
294 * that we don't implement any of the external debug, none of the
295 * OSlock protocol. This should be revisited if we ever encounter a
296 * more demanding guest...
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000297 */
298static const struct sys_reg_desc sys_reg_descs[] = {
299 /* DC ISW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
301 access_dcsw },
302 /* DC CSW */
303 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
304 access_dcsw },
305 /* DC CISW */
306 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
307 access_dcsw },
308
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100309 DBG_BCR_BVR_WCR_WVR_EL1(0),
310 DBG_BCR_BVR_WCR_WVR_EL1(1),
311 /* MDCCINT_EL1 */
312 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
313 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
314 /* MDSCR_EL1 */
315 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
316 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
317 DBG_BCR_BVR_WCR_WVR_EL1(2),
318 DBG_BCR_BVR_WCR_WVR_EL1(3),
319 DBG_BCR_BVR_WCR_WVR_EL1(4),
320 DBG_BCR_BVR_WCR_WVR_EL1(5),
321 DBG_BCR_BVR_WCR_WVR_EL1(6),
322 DBG_BCR_BVR_WCR_WVR_EL1(7),
323 DBG_BCR_BVR_WCR_WVR_EL1(8),
324 DBG_BCR_BVR_WCR_WVR_EL1(9),
325 DBG_BCR_BVR_WCR_WVR_EL1(10),
326 DBG_BCR_BVR_WCR_WVR_EL1(11),
327 DBG_BCR_BVR_WCR_WVR_EL1(12),
328 DBG_BCR_BVR_WCR_WVR_EL1(13),
329 DBG_BCR_BVR_WCR_WVR_EL1(14),
330 DBG_BCR_BVR_WCR_WVR_EL1(15),
331
332 /* MDRAR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
334 trap_raz_wi },
335 /* OSLAR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
337 trap_raz_wi },
338 /* OSLSR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
340 trap_oslsr_el1 },
341 /* OSDLR_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
343 trap_raz_wi },
344 /* DBGPRCR_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
346 trap_raz_wi },
347 /* DBGCLAIMSET_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
349 trap_raz_wi },
350 /* DBGCLAIMCLR_EL1 */
351 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
352 trap_raz_wi },
353 /* DBGAUTHSTATUS_EL1 */
354 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
355 trap_dbgauthstatus_el1 },
356
Marc Zyngier62a89c42013-02-07 10:32:33 +0000357 /* TEECR32_EL1 */
358 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
359 NULL, reset_val, TEECR32_EL1, 0 },
360 /* TEEHBR32_EL1 */
361 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
362 NULL, reset_val, TEEHBR32_EL1, 0 },
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100363
364 /* MDCCSR_EL1 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
366 trap_raz_wi },
367 /* DBGDTR_EL0 */
368 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
369 trap_raz_wi },
370 /* DBGDTR[TR]X_EL0 */
371 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
372 trap_raz_wi },
373
Marc Zyngier62a89c42013-02-07 10:32:33 +0000374 /* DBGVCR32_EL2 */
375 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
376 NULL, reset_val, DBGVCR32_EL2, 0 },
377
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000378 /* MPIDR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
380 NULL, reset_mpidr, MPIDR_EL1 },
381 /* SCTLR_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000383 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000384 /* CPACR_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
386 NULL, reset_val, CPACR_EL1, 0 },
387 /* TTBR0_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000389 access_vm_reg, reset_unknown, TTBR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000390 /* TTBR1_EL1 */
391 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000392 access_vm_reg, reset_unknown, TTBR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000393 /* TCR_EL1 */
394 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
Marc Zyngier4d449232014-01-14 18:00:55 +0000395 access_vm_reg, reset_val, TCR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000396
397 /* AFSR0_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000399 access_vm_reg, reset_unknown, AFSR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000400 /* AFSR1_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000402 access_vm_reg, reset_unknown, AFSR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000403 /* ESR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000405 access_vm_reg, reset_unknown, ESR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000406 /* FAR_EL1 */
407 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000408 access_vm_reg, reset_unknown, FAR_EL1 },
Marc Zyngier1bbd8052013-06-07 11:02:34 +0100409 /* PAR_EL1 */
410 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
411 NULL, reset_unknown, PAR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000412
413 /* PMINTENSET_EL1 */
414 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100415 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000416 /* PMINTENCLR_EL1 */
417 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100418 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000419
420 /* MAIR_EL1 */
421 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000422 access_vm_reg, reset_unknown, MAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000423 /* AMAIR_EL1 */
424 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000425 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000426
427 /* VBAR_EL1 */
428 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
429 NULL, reset_val, VBAR_EL1, 0 },
Christoffer Dalldb7dedd2014-11-19 11:23:54 +0000430
431 /* ICC_SRE_EL1 */
432 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
433 trap_raz_wi },
434
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000435 /* CONTEXTIDR_EL1 */
436 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000437 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000438 /* TPIDR_EL1 */
439 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
440 NULL, reset_unknown, TPIDR_EL1 },
441
442 /* CNTKCTL_EL1 */
443 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
444 NULL, reset_val, CNTKCTL_EL1, 0},
445
446 /* CSSELR_EL1 */
447 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
448 NULL, reset_unknown, CSSELR_EL1 },
449
450 /* PMCR_EL0 */
451 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100452 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000453 /* PMCNTENSET_EL0 */
454 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100455 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000456 /* PMCNTENCLR_EL0 */
457 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100458 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000459 /* PMOVSCLR_EL0 */
460 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100461 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000462 /* PMSWINC_EL0 */
463 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
Marc Zyngier7609c122014-04-24 10:21:16 +0100464 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000465 /* PMSELR_EL0 */
466 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
Marc Zyngier7609c122014-04-24 10:21:16 +0100467 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000468 /* PMCEID0_EL0 */
469 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
Marc Zyngier7609c122014-04-24 10:21:16 +0100470 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000471 /* PMCEID1_EL0 */
472 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
Marc Zyngier7609c122014-04-24 10:21:16 +0100473 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000474 /* PMCCNTR_EL0 */
475 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100476 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000477 /* PMXEVTYPER_EL0 */
478 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100479 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000480 /* PMXEVCNTR_EL0 */
481 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100482 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000483 /* PMUSERENR_EL0 */
484 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100485 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000486 /* PMOVSSET_EL0 */
487 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100488 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000489
490 /* TPIDR_EL0 */
491 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
492 NULL, reset_unknown, TPIDR_EL0 },
493 /* TPIDRRO_EL0 */
494 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
495 NULL, reset_unknown, TPIDRRO_EL0 },
Marc Zyngier62a89c42013-02-07 10:32:33 +0000496
497 /* DACR32_EL2 */
498 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
499 NULL, reset_unknown, DACR32_EL2 },
500 /* IFSR32_EL2 */
501 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
502 NULL, reset_unknown, IFSR32_EL2 },
503 /* FPEXC32_EL2 */
504 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
505 NULL, reset_val, FPEXC32_EL2, 0x70 },
506};
507
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100508static bool trap_dbgidr(struct kvm_vcpu *vcpu,
509 const struct sys_reg_params *p,
510 const struct sys_reg_desc *r)
511{
512 if (p->is_write) {
513 return ignore_write(vcpu, p);
514 } else {
515 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
516 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
517 u32 el3 = !!((pfr >> 12) & 0xf);
518
519 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
520 (((dfr >> 12) & 0xf) << 24) |
521 (((dfr >> 28) & 0xf) << 20) |
522 (6 << 16) | (el3 << 14) | (el3 << 12));
523 return true;
524 }
525}
526
527static bool trap_debug32(struct kvm_vcpu *vcpu,
528 const struct sys_reg_params *p,
529 const struct sys_reg_desc *r)
530{
531 if (p->is_write) {
532 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
533 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
534 } else {
535 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
536 }
537
538 return true;
539}
540
541#define DBG_BCR_BVR_WCR_WVR(n) \
542 /* DBGBVRn */ \
543 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
544 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
545 /* DBGBCRn */ \
546 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
547 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
548 /* DBGWVRn */ \
549 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
550 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
551 /* DBGWCRn */ \
552 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
553 NULL, (cp14_DBGWCR0 + (n) * 2) }
554
555#define DBGBXVR(n) \
556 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
557 NULL, cp14_DBGBXVR0 + n * 2 }
558
559/*
560 * Trapped cp14 registers. We generally ignore most of the external
561 * debug, on the principle that they don't really make sense to a
562 * guest. Revisit this one day, whould this principle change.
563 */
Marc Zyngier72564012014-04-24 10:27:13 +0100564static const struct sys_reg_desc cp14_regs[] = {
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100565 /* DBGIDR */
566 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
567 /* DBGDTRRXext */
568 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
569
570 DBG_BCR_BVR_WCR_WVR(0),
571 /* DBGDSCRint */
572 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
573 DBG_BCR_BVR_WCR_WVR(1),
574 /* DBGDCCINT */
575 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
576 /* DBGDSCRext */
577 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
578 DBG_BCR_BVR_WCR_WVR(2),
579 /* DBGDTR[RT]Xint */
580 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
581 /* DBGDTR[RT]Xext */
582 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
583 DBG_BCR_BVR_WCR_WVR(3),
584 DBG_BCR_BVR_WCR_WVR(4),
585 DBG_BCR_BVR_WCR_WVR(5),
586 /* DBGWFAR */
587 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
588 /* DBGOSECCR */
589 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
590 DBG_BCR_BVR_WCR_WVR(6),
591 /* DBGVCR */
592 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
593 DBG_BCR_BVR_WCR_WVR(7),
594 DBG_BCR_BVR_WCR_WVR(8),
595 DBG_BCR_BVR_WCR_WVR(9),
596 DBG_BCR_BVR_WCR_WVR(10),
597 DBG_BCR_BVR_WCR_WVR(11),
598 DBG_BCR_BVR_WCR_WVR(12),
599 DBG_BCR_BVR_WCR_WVR(13),
600 DBG_BCR_BVR_WCR_WVR(14),
601 DBG_BCR_BVR_WCR_WVR(15),
602
603 /* DBGDRAR (32bit) */
604 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
605
606 DBGBXVR(0),
607 /* DBGOSLAR */
608 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
609 DBGBXVR(1),
610 /* DBGOSLSR */
611 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
612 DBGBXVR(2),
613 DBGBXVR(3),
614 /* DBGOSDLR */
615 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
616 DBGBXVR(4),
617 /* DBGPRCR */
618 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
619 DBGBXVR(5),
620 DBGBXVR(6),
621 DBGBXVR(7),
622 DBGBXVR(8),
623 DBGBXVR(9),
624 DBGBXVR(10),
625 DBGBXVR(11),
626 DBGBXVR(12),
627 DBGBXVR(13),
628 DBGBXVR(14),
629 DBGBXVR(15),
630
631 /* DBGDSAR (32bit) */
632 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
633
634 /* DBGDEVID2 */
635 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
636 /* DBGDEVID1 */
637 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
638 /* DBGDEVID */
639 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
640 /* DBGCLAIMSET */
641 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
642 /* DBGCLAIMCLR */
643 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
644 /* DBGAUTHSTATUS */
645 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
Marc Zyngier72564012014-04-24 10:27:13 +0100646};
647
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100648/* Trapped cp14 64bit registers */
649static const struct sys_reg_desc cp14_64_regs[] = {
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100650 /* DBGDRAR (64bit) */
651 { Op1( 0), CRm( 1), .access = trap_raz_wi },
652
653 /* DBGDSAR (64bit) */
654 { Op1( 0), CRm( 2), .access = trap_raz_wi },
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100655};
656
Marc Zyngier4d449232014-01-14 18:00:55 +0000657/*
658 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
659 * depending on the way they are accessed (as a 32bit or a 64bit
660 * register).
661 */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000662static const struct sys_reg_desc cp15_regs[] = {
Marc Zyngier4d449232014-01-14 18:00:55 +0000663 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
664 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
665 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
666 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
667 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
668 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
669 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
670 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
671 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
672 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
673 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
674
Marc Zyngier62a89c42013-02-07 10:32:33 +0000675 /*
676 * DC{C,I,CI}SW operations:
677 */
678 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
679 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
680 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
Marc Zyngier4d449232014-01-14 18:00:55 +0000681
Marc Zyngier7609c122014-04-24 10:21:16 +0100682 /* PMU */
683 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
684 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
685 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
686 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
687 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
688 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
689 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
690 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
691 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
692 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
693 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
694 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
695 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
Marc Zyngier4d449232014-01-14 18:00:55 +0000696
697 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
698 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
699 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
700 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
Christoffer Dalldb7dedd2014-11-19 11:23:54 +0000701
702 /* ICC_SRE */
703 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
704
Marc Zyngier4d449232014-01-14 18:00:55 +0000705 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100706};
707
708static const struct sys_reg_desc cp15_64_regs[] = {
709 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
Marc Zyngier4d449232014-01-14 18:00:55 +0000710 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000711};
712
713/* Target specific emulation tables */
714static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
715
716void kvm_register_target_sys_reg_table(unsigned int target,
717 struct kvm_sys_reg_target_table *table)
718{
719 target_tables[target] = table;
720}
721
722/* Get specific register table for this target. */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000723static const struct sys_reg_desc *get_target_table(unsigned target,
724 bool mode_is_64,
725 size_t *num)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000726{
727 struct kvm_sys_reg_target_table *table;
728
729 table = target_tables[target];
Marc Zyngier62a89c42013-02-07 10:32:33 +0000730 if (mode_is_64) {
731 *num = table->table64.num;
732 return table->table64.table;
733 } else {
734 *num = table->table32.num;
735 return table->table32.table;
736 }
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000737}
738
739static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
740 const struct sys_reg_desc table[],
741 unsigned int num)
742{
743 unsigned int i;
744
745 for (i = 0; i < num; i++) {
746 const struct sys_reg_desc *r = &table[i];
747
748 if (params->Op0 != r->Op0)
749 continue;
750 if (params->Op1 != r->Op1)
751 continue;
752 if (params->CRn != r->CRn)
753 continue;
754 if (params->CRm != r->CRm)
755 continue;
756 if (params->Op2 != r->Op2)
757 continue;
758
759 return r;
760 }
761 return NULL;
762}
763
Marc Zyngier62a89c42013-02-07 10:32:33 +0000764int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
765{
766 kvm_inject_undefined(vcpu);
767 return 1;
768}
769
Marc Zyngier72564012014-04-24 10:27:13 +0100770/*
771 * emulate_cp -- tries to match a sys_reg access in a handling table, and
772 * call the corresponding trap handler.
773 *
774 * @params: pointer to the descriptor of the access
775 * @table: array of trap descriptors
776 * @num: size of the trap descriptor array
777 *
778 * Return 0 if the access has been handled, and -1 if not.
779 */
780static int emulate_cp(struct kvm_vcpu *vcpu,
781 const struct sys_reg_params *params,
782 const struct sys_reg_desc *table,
783 size_t num)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000784{
Marc Zyngier72564012014-04-24 10:27:13 +0100785 const struct sys_reg_desc *r;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000786
Marc Zyngier72564012014-04-24 10:27:13 +0100787 if (!table)
788 return -1; /* Not handled */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000789
Marc Zyngier62a89c42013-02-07 10:32:33 +0000790 r = find_reg(params, table, num);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000791
Marc Zyngier72564012014-04-24 10:27:13 +0100792 if (r) {
Marc Zyngier62a89c42013-02-07 10:32:33 +0000793 /*
794 * Not having an accessor means that we have
795 * configured a trap that we don't know how to
796 * handle. This certainly qualifies as a gross bug
797 * that should be fixed right away.
798 */
799 BUG_ON(!r->access);
800
801 if (likely(r->access(vcpu, params, r))) {
802 /* Skip instruction, since it was emulated */
803 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000804 }
Marc Zyngier72564012014-04-24 10:27:13 +0100805
806 /* Handled */
807 return 0;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000808 }
809
Marc Zyngier72564012014-04-24 10:27:13 +0100810 /* Not handled */
811 return -1;
812}
813
814static void unhandled_cp_access(struct kvm_vcpu *vcpu,
815 struct sys_reg_params *params)
816{
817 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
818 int cp;
819
820 switch(hsr_ec) {
Mark Rutlandc6d01a92014-11-24 13:59:30 +0000821 case ESR_ELx_EC_CP15_32:
822 case ESR_ELx_EC_CP15_64:
Marc Zyngier72564012014-04-24 10:27:13 +0100823 cp = 15;
824 break;
Mark Rutlandc6d01a92014-11-24 13:59:30 +0000825 case ESR_ELx_EC_CP14_MR:
826 case ESR_ELx_EC_CP14_64:
Marc Zyngier72564012014-04-24 10:27:13 +0100827 cp = 14;
828 break;
829 default:
830 WARN_ON((cp = -1));
831 }
832
833 kvm_err("Unsupported guest CP%d access at: %08lx\n",
834 cp, *vcpu_pc(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000835 print_sys_reg_instr(params);
836 kvm_inject_undefined(vcpu);
837}
838
839/**
Marc Zyngier72564012014-04-24 10:27:13 +0100840 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
Marc Zyngier62a89c42013-02-07 10:32:33 +0000841 * @vcpu: The VCPU pointer
842 * @run: The kvm_run struct
843 */
Marc Zyngier72564012014-04-24 10:27:13 +0100844static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
845 const struct sys_reg_desc *global,
846 size_t nr_global,
847 const struct sys_reg_desc *target_specific,
848 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000849{
850 struct sys_reg_params params;
851 u32 hsr = kvm_vcpu_get_hsr(vcpu);
852 int Rt2 = (hsr >> 10) & 0xf;
853
Marc Zyngier2072d292014-01-21 10:55:17 +0000854 params.is_aarch32 = true;
855 params.is_32bit = false;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000856 params.CRm = (hsr >> 1) & 0xf;
857 params.Rt = (hsr >> 5) & 0xf;
858 params.is_write = ((hsr & 1) == 0);
859
860 params.Op0 = 0;
861 params.Op1 = (hsr >> 16) & 0xf;
862 params.Op2 = 0;
863 params.CRn = 0;
864
865 /*
866 * Massive hack here. Store Rt2 in the top 32bits so we only
867 * have one register to deal with. As we use the same trap
868 * backends between AArch32 and AArch64, we get away with it.
869 */
870 if (params.is_write) {
871 u64 val = *vcpu_reg(vcpu, params.Rt);
872 val &= 0xffffffff;
873 val |= *vcpu_reg(vcpu, Rt2) << 32;
874 *vcpu_reg(vcpu, params.Rt) = val;
875 }
876
Marc Zyngier72564012014-04-24 10:27:13 +0100877 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
878 goto out;
879 if (!emulate_cp(vcpu, &params, global, nr_global))
880 goto out;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000881
Marc Zyngier72564012014-04-24 10:27:13 +0100882 unhandled_cp_access(vcpu, &params);
883
884out:
Marc Zyngier62a89c42013-02-07 10:32:33 +0000885 /* Do the opposite hack for the read side */
886 if (!params.is_write) {
887 u64 val = *vcpu_reg(vcpu, params.Rt);
888 val >>= 32;
889 *vcpu_reg(vcpu, Rt2) = val;
890 }
891
892 return 1;
893}
894
895/**
896 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
897 * @vcpu: The VCPU pointer
898 * @run: The kvm_run struct
899 */
Marc Zyngier72564012014-04-24 10:27:13 +0100900static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
901 const struct sys_reg_desc *global,
902 size_t nr_global,
903 const struct sys_reg_desc *target_specific,
904 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000905{
906 struct sys_reg_params params;
907 u32 hsr = kvm_vcpu_get_hsr(vcpu);
908
Marc Zyngier2072d292014-01-21 10:55:17 +0000909 params.is_aarch32 = true;
910 params.is_32bit = true;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000911 params.CRm = (hsr >> 1) & 0xf;
912 params.Rt = (hsr >> 5) & 0xf;
913 params.is_write = ((hsr & 1) == 0);
914 params.CRn = (hsr >> 10) & 0xf;
915 params.Op0 = 0;
916 params.Op1 = (hsr >> 14) & 0x7;
917 params.Op2 = (hsr >> 17) & 0x7;
918
Marc Zyngier72564012014-04-24 10:27:13 +0100919 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
920 return 1;
921 if (!emulate_cp(vcpu, &params, global, nr_global))
922 return 1;
923
924 unhandled_cp_access(vcpu, &params);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000925 return 1;
926}
927
Marc Zyngier72564012014-04-24 10:27:13 +0100928int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
929{
930 const struct sys_reg_desc *target_specific;
931 size_t num;
932
933 target_specific = get_target_table(vcpu->arch.target, false, &num);
934 return kvm_handle_cp_64(vcpu,
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100935 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
Marc Zyngier72564012014-04-24 10:27:13 +0100936 target_specific, num);
937}
938
939int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
940{
941 const struct sys_reg_desc *target_specific;
942 size_t num;
943
944 target_specific = get_target_table(vcpu->arch.target, false, &num);
945 return kvm_handle_cp_32(vcpu,
946 cp15_regs, ARRAY_SIZE(cp15_regs),
947 target_specific, num);
948}
949
950int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
951{
952 return kvm_handle_cp_64(vcpu,
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100953 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
Marc Zyngier72564012014-04-24 10:27:13 +0100954 NULL, 0);
955}
956
957int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
958{
959 return kvm_handle_cp_32(vcpu,
960 cp14_regs, ARRAY_SIZE(cp14_regs),
961 NULL, 0);
962}
963
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000964static int emulate_sys_reg(struct kvm_vcpu *vcpu,
965 const struct sys_reg_params *params)
966{
967 size_t num;
968 const struct sys_reg_desc *table, *r;
969
Marc Zyngier62a89c42013-02-07 10:32:33 +0000970 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000971
972 /* Search target-specific then generic table. */
973 r = find_reg(params, table, num);
974 if (!r)
975 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
976
977 if (likely(r)) {
978 /*
979 * Not having an accessor means that we have
980 * configured a trap that we don't know how to
981 * handle. This certainly qualifies as a gross bug
982 * that should be fixed right away.
983 */
984 BUG_ON(!r->access);
985
986 if (likely(r->access(vcpu, params, r))) {
987 /* Skip instruction, since it was emulated */
988 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
989 return 1;
990 }
991 /* If access function fails, it should complain. */
992 } else {
993 kvm_err("Unsupported guest sys_reg access at: %lx\n",
994 *vcpu_pc(vcpu));
995 print_sys_reg_instr(params);
996 }
997 kvm_inject_undefined(vcpu);
998 return 1;
999}
1000
1001static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1002 const struct sys_reg_desc *table, size_t num)
1003{
1004 unsigned long i;
1005
1006 for (i = 0; i < num; i++)
1007 if (table[i].reset)
1008 table[i].reset(vcpu, &table[i]);
1009}
1010
1011/**
1012 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1013 * @vcpu: The VCPU pointer
1014 * @run: The kvm_run struct
1015 */
1016int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1017{
1018 struct sys_reg_params params;
1019 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1020
Marc Zyngier2072d292014-01-21 10:55:17 +00001021 params.is_aarch32 = false;
1022 params.is_32bit = false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001023 params.Op0 = (esr >> 20) & 3;
1024 params.Op1 = (esr >> 14) & 0x7;
1025 params.CRn = (esr >> 10) & 0xf;
1026 params.CRm = (esr >> 1) & 0xf;
1027 params.Op2 = (esr >> 17) & 0x7;
1028 params.Rt = (esr >> 5) & 0x1f;
1029 params.is_write = !(esr & 1);
1030
1031 return emulate_sys_reg(vcpu, &params);
1032}
1033
1034/******************************************************************************
1035 * Userspace API
1036 *****************************************************************************/
1037
1038static bool index_to_params(u64 id, struct sys_reg_params *params)
1039{
1040 switch (id & KVM_REG_SIZE_MASK) {
1041 case KVM_REG_SIZE_U64:
1042 /* Any unused index bits means it's not valid. */
1043 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1044 | KVM_REG_ARM_COPROC_MASK
1045 | KVM_REG_ARM64_SYSREG_OP0_MASK
1046 | KVM_REG_ARM64_SYSREG_OP1_MASK
1047 | KVM_REG_ARM64_SYSREG_CRN_MASK
1048 | KVM_REG_ARM64_SYSREG_CRM_MASK
1049 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1050 return false;
1051 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1052 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1053 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1054 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1055 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1056 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1057 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1058 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1059 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1060 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1061 return true;
1062 default:
1063 return false;
1064 }
1065}
1066
1067/* Decode an index value, and find the sys_reg_desc entry. */
1068static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1069 u64 id)
1070{
1071 size_t num;
1072 const struct sys_reg_desc *table, *r;
1073 struct sys_reg_params params;
1074
1075 /* We only do sys_reg for now. */
1076 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1077 return NULL;
1078
1079 if (!index_to_params(id, &params))
1080 return NULL;
1081
Marc Zyngier62a89c42013-02-07 10:32:33 +00001082 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001083 r = find_reg(&params, table, num);
1084 if (!r)
1085 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1086
1087 /* Not saved in the sys_reg array? */
1088 if (r && !r->reg)
1089 r = NULL;
1090
1091 return r;
1092}
1093
1094/*
1095 * These are the invariant sys_reg registers: we let the guest see the
1096 * host versions of these, so they're part of the guest state.
1097 *
1098 * A future CPU may provide a mechanism to present different values to
1099 * the guest, or a future kvm may trap them.
1100 */
1101
1102#define FUNCTION_INVARIANT(reg) \
1103 static void get_##reg(struct kvm_vcpu *v, \
1104 const struct sys_reg_desc *r) \
1105 { \
1106 u64 val; \
1107 \
1108 asm volatile("mrs %0, " __stringify(reg) "\n" \
1109 : "=r" (val)); \
1110 ((struct sys_reg_desc *)r)->val = val; \
1111 }
1112
1113FUNCTION_INVARIANT(midr_el1)
1114FUNCTION_INVARIANT(ctr_el0)
1115FUNCTION_INVARIANT(revidr_el1)
1116FUNCTION_INVARIANT(id_pfr0_el1)
1117FUNCTION_INVARIANT(id_pfr1_el1)
1118FUNCTION_INVARIANT(id_dfr0_el1)
1119FUNCTION_INVARIANT(id_afr0_el1)
1120FUNCTION_INVARIANT(id_mmfr0_el1)
1121FUNCTION_INVARIANT(id_mmfr1_el1)
1122FUNCTION_INVARIANT(id_mmfr2_el1)
1123FUNCTION_INVARIANT(id_mmfr3_el1)
1124FUNCTION_INVARIANT(id_isar0_el1)
1125FUNCTION_INVARIANT(id_isar1_el1)
1126FUNCTION_INVARIANT(id_isar2_el1)
1127FUNCTION_INVARIANT(id_isar3_el1)
1128FUNCTION_INVARIANT(id_isar4_el1)
1129FUNCTION_INVARIANT(id_isar5_el1)
1130FUNCTION_INVARIANT(clidr_el1)
1131FUNCTION_INVARIANT(aidr_el1)
1132
1133/* ->val is filled in by kvm_sys_reg_table_init() */
1134static struct sys_reg_desc invariant_sys_regs[] = {
1135 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1136 NULL, get_midr_el1 },
1137 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1138 NULL, get_revidr_el1 },
1139 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1140 NULL, get_id_pfr0_el1 },
1141 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1142 NULL, get_id_pfr1_el1 },
1143 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1144 NULL, get_id_dfr0_el1 },
1145 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1146 NULL, get_id_afr0_el1 },
1147 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1148 NULL, get_id_mmfr0_el1 },
1149 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1150 NULL, get_id_mmfr1_el1 },
1151 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1152 NULL, get_id_mmfr2_el1 },
1153 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1154 NULL, get_id_mmfr3_el1 },
1155 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1156 NULL, get_id_isar0_el1 },
1157 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1158 NULL, get_id_isar1_el1 },
1159 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1160 NULL, get_id_isar2_el1 },
1161 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1162 NULL, get_id_isar3_el1 },
1163 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1164 NULL, get_id_isar4_el1 },
1165 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1166 NULL, get_id_isar5_el1 },
1167 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1168 NULL, get_clidr_el1 },
1169 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1170 NULL, get_aidr_el1 },
1171 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1172 NULL, get_ctr_el0 },
1173};
1174
Victor Kamensky26c99af2014-06-12 09:30:12 -07001175static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001176{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001177 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1178 return -EFAULT;
1179 return 0;
1180}
1181
Victor Kamensky26c99af2014-06-12 09:30:12 -07001182static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001183{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001184 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1185 return -EFAULT;
1186 return 0;
1187}
1188
1189static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1190{
1191 struct sys_reg_params params;
1192 const struct sys_reg_desc *r;
1193
1194 if (!index_to_params(id, &params))
1195 return -ENOENT;
1196
1197 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1198 if (!r)
1199 return -ENOENT;
1200
1201 return reg_to_user(uaddr, &r->val, id);
1202}
1203
1204static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1205{
1206 struct sys_reg_params params;
1207 const struct sys_reg_desc *r;
1208 int err;
1209 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1210
1211 if (!index_to_params(id, &params))
1212 return -ENOENT;
1213 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1214 if (!r)
1215 return -ENOENT;
1216
1217 err = reg_from_user(&val, uaddr, id);
1218 if (err)
1219 return err;
1220
1221 /* This is what we mean by invariant: you can't change it. */
1222 if (r->val != val)
1223 return -EINVAL;
1224
1225 return 0;
1226}
1227
1228static bool is_valid_cache(u32 val)
1229{
1230 u32 level, ctype;
1231
1232 if (val >= CSSELR_MAX)
Will Deacon18d45762014-08-26 15:13:22 +01001233 return false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001234
1235 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1236 level = (val >> 1);
1237 ctype = (cache_levels >> (level * 3)) & 7;
1238
1239 switch (ctype) {
1240 case 0: /* No cache */
1241 return false;
1242 case 1: /* Instruction cache only */
1243 return (val & 1);
1244 case 2: /* Data cache only */
1245 case 4: /* Unified cache */
1246 return !(val & 1);
1247 case 3: /* Separate instruction and data caches */
1248 return true;
1249 default: /* Reserved: we can't know instruction or data. */
1250 return false;
1251 }
1252}
1253
1254static int demux_c15_get(u64 id, void __user *uaddr)
1255{
1256 u32 val;
1257 u32 __user *uval = uaddr;
1258
1259 /* Fail if we have unknown bits set. */
1260 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1261 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1262 return -ENOENT;
1263
1264 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1265 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1266 if (KVM_REG_SIZE(id) != 4)
1267 return -ENOENT;
1268 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1269 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1270 if (!is_valid_cache(val))
1271 return -ENOENT;
1272
1273 return put_user(get_ccsidr(val), uval);
1274 default:
1275 return -ENOENT;
1276 }
1277}
1278
1279static int demux_c15_set(u64 id, void __user *uaddr)
1280{
1281 u32 val, newval;
1282 u32 __user *uval = uaddr;
1283
1284 /* Fail if we have unknown bits set. */
1285 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1286 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1287 return -ENOENT;
1288
1289 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1290 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1291 if (KVM_REG_SIZE(id) != 4)
1292 return -ENOENT;
1293 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1294 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1295 if (!is_valid_cache(val))
1296 return -ENOENT;
1297
1298 if (get_user(newval, uval))
1299 return -EFAULT;
1300
1301 /* This is also invariant: you can't change it. */
1302 if (newval != get_ccsidr(val))
1303 return -EINVAL;
1304 return 0;
1305 default:
1306 return -ENOENT;
1307 }
1308}
1309
1310int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1311{
1312 const struct sys_reg_desc *r;
1313 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1314
1315 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1316 return demux_c15_get(reg->id, uaddr);
1317
1318 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1319 return -ENOENT;
1320
1321 r = index_to_sys_reg_desc(vcpu, reg->id);
1322 if (!r)
1323 return get_invariant_sys_reg(reg->id, uaddr);
1324
1325 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1326}
1327
1328int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1329{
1330 const struct sys_reg_desc *r;
1331 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1332
1333 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1334 return demux_c15_set(reg->id, uaddr);
1335
1336 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1337 return -ENOENT;
1338
1339 r = index_to_sys_reg_desc(vcpu, reg->id);
1340 if (!r)
1341 return set_invariant_sys_reg(reg->id, uaddr);
1342
1343 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1344}
1345
1346static unsigned int num_demux_regs(void)
1347{
1348 unsigned int i, count = 0;
1349
1350 for (i = 0; i < CSSELR_MAX; i++)
1351 if (is_valid_cache(i))
1352 count++;
1353
1354 return count;
1355}
1356
1357static int write_demux_regids(u64 __user *uindices)
1358{
Alex Bennéeefd48ce2014-07-01 16:53:13 +01001359 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001360 unsigned int i;
1361
1362 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1363 for (i = 0; i < CSSELR_MAX; i++) {
1364 if (!is_valid_cache(i))
1365 continue;
1366 if (put_user(val | i, uindices))
1367 return -EFAULT;
1368 uindices++;
1369 }
1370 return 0;
1371}
1372
1373static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1374{
1375 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1376 KVM_REG_ARM64_SYSREG |
1377 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1378 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1379 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1380 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1381 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1382}
1383
1384static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1385{
1386 if (!*uind)
1387 return true;
1388
1389 if (put_user(sys_reg_to_index(reg), *uind))
1390 return false;
1391
1392 (*uind)++;
1393 return true;
1394}
1395
1396/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1397static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1398{
1399 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1400 unsigned int total = 0;
1401 size_t num;
1402
1403 /* We check for duplicates here, to allow arch-specific overrides. */
Marc Zyngier62a89c42013-02-07 10:32:33 +00001404 i1 = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001405 end1 = i1 + num;
1406 i2 = sys_reg_descs;
1407 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1408
1409 BUG_ON(i1 == end1 || i2 == end2);
1410
1411 /* Walk carefully, as both tables may refer to the same register. */
1412 while (i1 || i2) {
1413 int cmp = cmp_sys_reg(i1, i2);
1414 /* target-specific overrides generic entry. */
1415 if (cmp <= 0) {
1416 /* Ignore registers we trap but don't save. */
1417 if (i1->reg) {
1418 if (!copy_reg_to_user(i1, &uind))
1419 return -EFAULT;
1420 total++;
1421 }
1422 } else {
1423 /* Ignore registers we trap but don't save. */
1424 if (i2->reg) {
1425 if (!copy_reg_to_user(i2, &uind))
1426 return -EFAULT;
1427 total++;
1428 }
1429 }
1430
1431 if (cmp <= 0 && ++i1 == end1)
1432 i1 = NULL;
1433 if (cmp >= 0 && ++i2 == end2)
1434 i2 = NULL;
1435 }
1436 return total;
1437}
1438
1439unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1440{
1441 return ARRAY_SIZE(invariant_sys_regs)
1442 + num_demux_regs()
1443 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1444}
1445
1446int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1447{
1448 unsigned int i;
1449 int err;
1450
1451 /* Then give them all the invariant registers' indices. */
1452 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1453 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1454 return -EFAULT;
1455 uindices++;
1456 }
1457
1458 err = walk_sys_regs(vcpu, uindices);
1459 if (err < 0)
1460 return err;
1461 uindices += err;
1462
1463 return write_demux_regids(uindices);
1464}
1465
Marc Zyngiere6a95512014-05-07 13:43:39 +01001466static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1467{
1468 unsigned int i;
1469
1470 for (i = 1; i < n; i++) {
1471 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1472 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1473 return 1;
1474 }
1475 }
1476
1477 return 0;
1478}
1479
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001480void kvm_sys_reg_table_init(void)
1481{
1482 unsigned int i;
1483 struct sys_reg_desc clidr;
1484
1485 /* Make sure tables are unique and in order. */
Marc Zyngiere6a95512014-05-07 13:43:39 +01001486 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1487 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1488 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1489 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1490 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1491 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001492
1493 /* We abuse the reset function to overwrite the table itself. */
1494 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1495 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1496
1497 /*
1498 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1499 *
1500 * If software reads the Cache Type fields from Ctype1
1501 * upwards, once it has seen a value of 0b000, no caches
1502 * exist at further-out levels of the hierarchy. So, for
1503 * example, if Ctype3 is the first Cache Type field with a
1504 * value of 0b000, the values of Ctype4 to Ctype7 must be
1505 * ignored.
1506 */
1507 get_clidr_el1(NULL, &clidr); /* Ugly... */
1508 cache_levels = clidr.val;
1509 for (i = 0; i < 7; i++)
1510 if (((cache_levels >> (i*3)) & 7) == 0)
1511 break;
1512 /* Clear all higher bits. */
1513 cache_levels &= (1 << (i*3))-1;
1514}
1515
1516/**
1517 * kvm_reset_sys_regs - sets system registers to reset value
1518 * @vcpu: The VCPU pointer
1519 *
1520 * This function finds the right table above and sets the registers on the
1521 * virtual CPU struct to their architecturally defined reset values.
1522 */
1523void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1524{
1525 size_t num;
1526 const struct sys_reg_desc *table;
1527
1528 /* Catch someone adding a register without putting in reset entry. */
1529 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1530
1531 /* Generic chip reset first (so target could override). */
1532 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1533
Marc Zyngier62a89c42013-02-07 10:32:33 +00001534 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001535 reset_sys_reg_descs(vcpu, table, num);
1536
1537 for (num = 1; num < NR_SYS_REGS; num++)
1538 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1539 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1540}