Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> |
| 3 | * Copyright © 2004 Micron Technology Inc. |
| 4 | * Copyright © 2004 David Brownell |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/platform_device.h> |
| 12 | #include <linux/dma-mapping.h> |
| 13 | #include <linux/delay.h> |
vimal singh | c276aca | 2009-06-27 11:07:06 +0530 | [diff] [blame] | 14 | #include <linux/jiffies.h> |
| 15 | #include <linux/sched.h> |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 16 | #include <linux/mtd/mtd.h> |
| 17 | #include <linux/mtd/nand.h> |
| 18 | #include <linux/mtd/partitions.h> |
| 19 | #include <linux/io.h> |
| 20 | |
Tony Lindgren | ce491cf | 2009-10-20 09:40:47 -0700 | [diff] [blame^] | 21 | #include <plat/dma.h> |
| 22 | #include <plat/gpmc.h> |
| 23 | #include <plat/nand.h> |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 24 | |
| 25 | #define GPMC_IRQ_STATUS 0x18 |
| 26 | #define GPMC_ECC_CONFIG 0x1F4 |
| 27 | #define GPMC_ECC_CONTROL 0x1F8 |
| 28 | #define GPMC_ECC_SIZE_CONFIG 0x1FC |
| 29 | #define GPMC_ECC1_RESULT 0x200 |
| 30 | |
| 31 | #define DRIVER_NAME "omap2-nand" |
| 32 | |
| 33 | /* size (4 KiB) for IO mapping */ |
| 34 | #define NAND_IO_SIZE SZ_4K |
| 35 | |
| 36 | #define NAND_WP_OFF 0 |
| 37 | #define NAND_WP_BIT 0x00000010 |
| 38 | #define WR_RD_PIN_MONITORING 0x00600000 |
| 39 | |
| 40 | #define GPMC_BUF_FULL 0x00000001 |
| 41 | #define GPMC_BUF_EMPTY 0x00000000 |
| 42 | |
| 43 | #define NAND_Ecc_P1e (1 << 0) |
| 44 | #define NAND_Ecc_P2e (1 << 1) |
| 45 | #define NAND_Ecc_P4e (1 << 2) |
| 46 | #define NAND_Ecc_P8e (1 << 3) |
| 47 | #define NAND_Ecc_P16e (1 << 4) |
| 48 | #define NAND_Ecc_P32e (1 << 5) |
| 49 | #define NAND_Ecc_P64e (1 << 6) |
| 50 | #define NAND_Ecc_P128e (1 << 7) |
| 51 | #define NAND_Ecc_P256e (1 << 8) |
| 52 | #define NAND_Ecc_P512e (1 << 9) |
| 53 | #define NAND_Ecc_P1024e (1 << 10) |
| 54 | #define NAND_Ecc_P2048e (1 << 11) |
| 55 | |
| 56 | #define NAND_Ecc_P1o (1 << 16) |
| 57 | #define NAND_Ecc_P2o (1 << 17) |
| 58 | #define NAND_Ecc_P4o (1 << 18) |
| 59 | #define NAND_Ecc_P8o (1 << 19) |
| 60 | #define NAND_Ecc_P16o (1 << 20) |
| 61 | #define NAND_Ecc_P32o (1 << 21) |
| 62 | #define NAND_Ecc_P64o (1 << 22) |
| 63 | #define NAND_Ecc_P128o (1 << 23) |
| 64 | #define NAND_Ecc_P256o (1 << 24) |
| 65 | #define NAND_Ecc_P512o (1 << 25) |
| 66 | #define NAND_Ecc_P1024o (1 << 26) |
| 67 | #define NAND_Ecc_P2048o (1 << 27) |
| 68 | |
| 69 | #define TF(value) (value ? 1 : 0) |
| 70 | |
| 71 | #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) |
| 72 | #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) |
| 73 | #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) |
| 74 | #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) |
| 75 | #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) |
| 76 | #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) |
| 77 | #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) |
| 78 | #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) |
| 79 | |
| 80 | #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) |
| 81 | #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) |
| 82 | #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) |
| 83 | #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) |
| 84 | #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) |
| 85 | #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) |
| 86 | #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) |
| 87 | #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) |
| 88 | |
| 89 | #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) |
| 90 | #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) |
| 91 | #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) |
| 92 | #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) |
| 93 | #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) |
| 94 | #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) |
| 95 | #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) |
| 96 | #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) |
| 97 | |
| 98 | #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) |
| 99 | #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) |
| 100 | #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) |
| 101 | #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) |
| 102 | #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) |
| 103 | #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) |
| 104 | #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) |
| 105 | #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) |
| 106 | |
| 107 | #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) |
| 108 | #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) |
| 109 | |
| 110 | #ifdef CONFIG_MTD_PARTITIONS |
| 111 | static const char *part_probes[] = { "cmdlinepart", NULL }; |
| 112 | #endif |
| 113 | |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 114 | #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH |
| 115 | static int use_prefetch = 1; |
| 116 | |
| 117 | /* "modprobe ... use_prefetch=0" etc */ |
| 118 | module_param(use_prefetch, bool, 0); |
| 119 | MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH"); |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 120 | |
| 121 | #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA |
| 122 | static int use_dma = 1; |
| 123 | |
| 124 | /* "modprobe ... use_dma=0" etc */ |
| 125 | module_param(use_dma, bool, 0); |
| 126 | MODULE_PARM_DESC(use_dma, "enable/disable use of DMA"); |
| 127 | #else |
| 128 | const int use_dma; |
| 129 | #endif |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 130 | #else |
| 131 | const int use_prefetch; |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 132 | const int use_dma; |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 133 | #endif |
| 134 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 135 | struct omap_nand_info { |
| 136 | struct nand_hw_control controller; |
| 137 | struct omap_nand_platform_data *pdata; |
| 138 | struct mtd_info mtd; |
| 139 | struct mtd_partition *parts; |
| 140 | struct nand_chip nand; |
| 141 | struct platform_device *pdev; |
| 142 | |
| 143 | int gpmc_cs; |
| 144 | unsigned long phys_base; |
| 145 | void __iomem *gpmc_cs_baseaddr; |
| 146 | void __iomem *gpmc_baseaddr; |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 147 | void __iomem *nand_pref_fifo_add; |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 148 | struct completion comp; |
| 149 | int dma_ch; |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 150 | }; |
| 151 | |
| 152 | /** |
| 153 | * omap_nand_wp - This function enable or disable the Write Protect feature |
| 154 | * @mtd: MTD device structure |
| 155 | * @mode: WP ON/OFF |
| 156 | */ |
| 157 | static void omap_nand_wp(struct mtd_info *mtd, int mode) |
| 158 | { |
| 159 | struct omap_nand_info *info = container_of(mtd, |
| 160 | struct omap_nand_info, mtd); |
| 161 | |
| 162 | unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); |
| 163 | |
| 164 | if (mode) |
| 165 | config &= ~(NAND_WP_BIT); /* WP is ON */ |
| 166 | else |
| 167 | config |= (NAND_WP_BIT); /* WP is OFF */ |
| 168 | |
| 169 | __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * omap_hwcontrol - hardware specific access to control-lines |
| 174 | * @mtd: MTD device structure |
| 175 | * @cmd: command to device |
| 176 | * @ctrl: |
| 177 | * NAND_NCE: bit 0 -> don't care |
| 178 | * NAND_CLE: bit 1 -> Command Latch |
| 179 | * NAND_ALE: bit 2 -> Address Latch |
| 180 | * |
| 181 | * NOTE: boards may use different bits for these!! |
| 182 | */ |
| 183 | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| 184 | { |
| 185 | struct omap_nand_info *info = container_of(mtd, |
| 186 | struct omap_nand_info, mtd); |
| 187 | switch (ctrl) { |
| 188 | case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
| 189 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 190 | GPMC_CS_NAND_COMMAND; |
| 191 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 192 | GPMC_CS_NAND_DATA; |
| 193 | break; |
| 194 | |
| 195 | case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
| 196 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 197 | GPMC_CS_NAND_ADDRESS; |
| 198 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 199 | GPMC_CS_NAND_DATA; |
| 200 | break; |
| 201 | |
| 202 | case NAND_CTRL_CHANGE | NAND_NCE: |
| 203 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 204 | GPMC_CS_NAND_DATA; |
| 205 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 206 | GPMC_CS_NAND_DATA; |
| 207 | break; |
| 208 | } |
| 209 | |
| 210 | if (cmd != NAND_CMD_NONE) |
| 211 | __raw_writeb(cmd, info->nand.IO_ADDR_W); |
| 212 | } |
| 213 | |
| 214 | /** |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 215 | * omap_read_buf8 - read data from NAND controller into buffer |
| 216 | * @mtd: MTD device structure |
| 217 | * @buf: buffer to store date |
| 218 | * @len: number of bytes to read |
| 219 | */ |
| 220 | static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) |
| 221 | { |
| 222 | struct nand_chip *nand = mtd->priv; |
| 223 | |
| 224 | ioread8_rep(nand->IO_ADDR_R, buf, len); |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * omap_write_buf8 - write buffer to NAND controller |
| 229 | * @mtd: MTD device structure |
| 230 | * @buf: data buffer |
| 231 | * @len: number of bytes to write |
| 232 | */ |
| 233 | static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) |
| 234 | { |
| 235 | struct omap_nand_info *info = container_of(mtd, |
| 236 | struct omap_nand_info, mtd); |
| 237 | u_char *p = (u_char *)buf; |
| 238 | |
| 239 | while (len--) { |
| 240 | iowrite8(*p++, info->nand.IO_ADDR_W); |
| 241 | while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + |
| 242 | GPMC_STATUS) & GPMC_BUF_FULL)); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /** |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 247 | * omap_read_buf16 - read data from NAND controller into buffer |
| 248 | * @mtd: MTD device structure |
| 249 | * @buf: buffer to store date |
| 250 | * @len: number of bytes to read |
| 251 | */ |
| 252 | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) |
| 253 | { |
| 254 | struct nand_chip *nand = mtd->priv; |
| 255 | |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 256 | ioread16_rep(nand->IO_ADDR_R, buf, len / 2); |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 257 | } |
| 258 | |
| 259 | /** |
| 260 | * omap_write_buf16 - write buffer to NAND controller |
| 261 | * @mtd: MTD device structure |
| 262 | * @buf: data buffer |
| 263 | * @len: number of bytes to write |
| 264 | */ |
| 265 | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) |
| 266 | { |
| 267 | struct omap_nand_info *info = container_of(mtd, |
| 268 | struct omap_nand_info, mtd); |
| 269 | u16 *p = (u16 *) buf; |
| 270 | |
| 271 | /* FIXME try bursts of writesw() or DMA ... */ |
| 272 | len >>= 1; |
| 273 | |
| 274 | while (len--) { |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 275 | iowrite16(*p++, info->nand.IO_ADDR_W); |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 276 | |
| 277 | while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + |
| 278 | GPMC_STATUS) & GPMC_BUF_FULL)) |
| 279 | ; |
| 280 | } |
| 281 | } |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 282 | |
| 283 | /** |
| 284 | * omap_read_buf_pref - read data from NAND controller into buffer |
| 285 | * @mtd: MTD device structure |
| 286 | * @buf: buffer to store date |
| 287 | * @len: number of bytes to read |
| 288 | */ |
| 289 | static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) |
| 290 | { |
| 291 | struct omap_nand_info *info = container_of(mtd, |
| 292 | struct omap_nand_info, mtd); |
| 293 | uint32_t pfpw_status = 0, r_count = 0; |
| 294 | int ret = 0; |
| 295 | u32 *p = (u32 *)buf; |
| 296 | |
| 297 | /* take care of subpage reads */ |
| 298 | for (; len % 4 != 0; ) { |
| 299 | *buf++ = __raw_readb(info->nand.IO_ADDR_R); |
| 300 | len--; |
| 301 | } |
| 302 | p = (u32 *) buf; |
| 303 | |
| 304 | /* configure and start prefetch transfer */ |
| 305 | ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0); |
| 306 | if (ret) { |
| 307 | /* PFPW engine is busy, use cpu copy method */ |
| 308 | if (info->nand.options & NAND_BUSWIDTH_16) |
| 309 | omap_read_buf16(mtd, buf, len); |
| 310 | else |
| 311 | omap_read_buf8(mtd, buf, len); |
| 312 | } else { |
| 313 | do { |
| 314 | pfpw_status = gpmc_prefetch_status(); |
| 315 | r_count = ((pfpw_status >> 24) & 0x7F) >> 2; |
| 316 | ioread32_rep(info->nand_pref_fifo_add, p, r_count); |
| 317 | p += r_count; |
| 318 | len -= r_count << 2; |
| 319 | } while (len); |
| 320 | |
| 321 | /* disable and stop the PFPW engine */ |
| 322 | gpmc_prefetch_reset(); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /** |
| 327 | * omap_write_buf_pref - write buffer to NAND controller |
| 328 | * @mtd: MTD device structure |
| 329 | * @buf: data buffer |
| 330 | * @len: number of bytes to write |
| 331 | */ |
| 332 | static void omap_write_buf_pref(struct mtd_info *mtd, |
| 333 | const u_char *buf, int len) |
| 334 | { |
| 335 | struct omap_nand_info *info = container_of(mtd, |
| 336 | struct omap_nand_info, mtd); |
| 337 | uint32_t pfpw_status = 0, w_count = 0; |
| 338 | int i = 0, ret = 0; |
| 339 | u16 *p = (u16 *) buf; |
| 340 | |
| 341 | /* take care of subpage writes */ |
| 342 | if (len % 2 != 0) { |
| 343 | writeb(*buf, info->nand.IO_ADDR_R); |
| 344 | p = (u16 *)(buf + 1); |
| 345 | len--; |
| 346 | } |
| 347 | |
| 348 | /* configure and start prefetch transfer */ |
| 349 | ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1); |
| 350 | if (ret) { |
| 351 | /* PFPW engine is busy, use cpu copy method */ |
| 352 | if (info->nand.options & NAND_BUSWIDTH_16) |
| 353 | omap_write_buf16(mtd, buf, len); |
| 354 | else |
| 355 | omap_write_buf8(mtd, buf, len); |
| 356 | } else { |
| 357 | pfpw_status = gpmc_prefetch_status(); |
| 358 | while (pfpw_status & 0x3FFF) { |
| 359 | w_count = ((pfpw_status >> 24) & 0x7F) >> 1; |
| 360 | for (i = 0; (i < w_count) && len; i++, len -= 2) |
| 361 | iowrite16(*p++, info->nand_pref_fifo_add); |
| 362 | pfpw_status = gpmc_prefetch_status(); |
| 363 | } |
| 364 | |
| 365 | /* disable and stop the PFPW engine */ |
| 366 | gpmc_prefetch_reset(); |
| 367 | } |
| 368 | } |
| 369 | |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 370 | #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA |
| 371 | /* |
| 372 | * omap_nand_dma_cb: callback on the completion of dma transfer |
| 373 | * @lch: logical channel |
| 374 | * @ch_satuts: channel status |
| 375 | * @data: pointer to completion data structure |
| 376 | */ |
| 377 | static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) |
| 378 | { |
| 379 | complete((struct completion *) data); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * omap_nand_dma_transfer: configer and start dma transfer |
| 384 | * @mtd: MTD device structure |
| 385 | * @addr: virtual address in RAM of source/destination |
| 386 | * @len: number of data bytes to be transferred |
| 387 | * @is_write: flag for read/write operation |
| 388 | */ |
| 389 | static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, |
| 390 | unsigned int len, int is_write) |
| 391 | { |
| 392 | struct omap_nand_info *info = container_of(mtd, |
| 393 | struct omap_nand_info, mtd); |
| 394 | uint32_t prefetch_status = 0; |
| 395 | enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : |
| 396 | DMA_FROM_DEVICE; |
| 397 | dma_addr_t dma_addr; |
| 398 | int ret; |
| 399 | |
| 400 | /* The fifo depth is 64 bytes. We have a sync at each frame and frame |
| 401 | * length is 64 bytes. |
| 402 | */ |
| 403 | int buf_len = len >> 6; |
| 404 | |
| 405 | if (addr >= high_memory) { |
| 406 | struct page *p1; |
| 407 | |
| 408 | if (((size_t)addr & PAGE_MASK) != |
| 409 | ((size_t)(addr + len - 1) & PAGE_MASK)) |
| 410 | goto out_copy; |
| 411 | p1 = vmalloc_to_page(addr); |
| 412 | if (!p1) |
| 413 | goto out_copy; |
| 414 | addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); |
| 415 | } |
| 416 | |
| 417 | dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); |
| 418 | if (dma_mapping_error(&info->pdev->dev, dma_addr)) { |
| 419 | dev_err(&info->pdev->dev, |
| 420 | "Couldn't DMA map a %d byte buffer\n", len); |
| 421 | goto out_copy; |
| 422 | } |
| 423 | |
| 424 | if (is_write) { |
| 425 | omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, |
| 426 | info->phys_base, 0, 0); |
| 427 | omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, |
| 428 | dma_addr, 0, 0); |
| 429 | omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, |
| 430 | 0x10, buf_len, OMAP_DMA_SYNC_FRAME, |
| 431 | OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); |
| 432 | } else { |
| 433 | omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, |
| 434 | info->phys_base, 0, 0); |
| 435 | omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, |
| 436 | dma_addr, 0, 0); |
| 437 | omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, |
| 438 | 0x10, buf_len, OMAP_DMA_SYNC_FRAME, |
| 439 | OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); |
| 440 | } |
| 441 | /* configure and start prefetch transfer */ |
| 442 | ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write); |
| 443 | if (ret) |
| 444 | /* PFPW engine is busy, use cpu copy methode */ |
| 445 | goto out_copy; |
| 446 | |
| 447 | init_completion(&info->comp); |
| 448 | |
| 449 | omap_start_dma(info->dma_ch); |
| 450 | |
| 451 | /* setup and start DMA using dma_addr */ |
| 452 | wait_for_completion(&info->comp); |
| 453 | |
| 454 | while (0x3fff & (prefetch_status = gpmc_prefetch_status())) |
| 455 | ; |
| 456 | /* disable and stop the PFPW engine */ |
| 457 | gpmc_prefetch_reset(); |
| 458 | |
| 459 | dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); |
| 460 | return 0; |
| 461 | |
| 462 | out_copy: |
| 463 | if (info->nand.options & NAND_BUSWIDTH_16) |
| 464 | is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) |
| 465 | : omap_write_buf16(mtd, (u_char *) addr, len); |
| 466 | else |
| 467 | is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) |
| 468 | : omap_write_buf8(mtd, (u_char *) addr, len); |
| 469 | return 0; |
| 470 | } |
| 471 | #else |
| 472 | static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {} |
| 473 | static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, |
| 474 | unsigned int len, int is_write) |
| 475 | { |
| 476 | return 0; |
| 477 | } |
| 478 | #endif |
| 479 | |
| 480 | /** |
| 481 | * omap_read_buf_dma_pref - read data from NAND controller into buffer |
| 482 | * @mtd: MTD device structure |
| 483 | * @buf: buffer to store date |
| 484 | * @len: number of bytes to read |
| 485 | */ |
| 486 | static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) |
| 487 | { |
| 488 | if (len <= mtd->oobsize) |
| 489 | omap_read_buf_pref(mtd, buf, len); |
| 490 | else |
| 491 | /* start transfer in DMA mode */ |
| 492 | omap_nand_dma_transfer(mtd, buf, len, 0x0); |
| 493 | } |
| 494 | |
| 495 | /** |
| 496 | * omap_write_buf_dma_pref - write buffer to NAND controller |
| 497 | * @mtd: MTD device structure |
| 498 | * @buf: data buffer |
| 499 | * @len: number of bytes to write |
| 500 | */ |
| 501 | static void omap_write_buf_dma_pref(struct mtd_info *mtd, |
| 502 | const u_char *buf, int len) |
| 503 | { |
| 504 | if (len <= mtd->oobsize) |
| 505 | omap_write_buf_pref(mtd, buf, len); |
| 506 | else |
| 507 | /* start transfer in DMA mode */ |
| 508 | omap_nand_dma_transfer(mtd, buf, len, 0x1); |
| 509 | } |
| 510 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 511 | /** |
| 512 | * omap_verify_buf - Verify chip data against buffer |
| 513 | * @mtd: MTD device structure |
| 514 | * @buf: buffer containing the data to compare |
| 515 | * @len: number of bytes to compare |
| 516 | */ |
| 517 | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) |
| 518 | { |
| 519 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 520 | mtd); |
| 521 | u16 *p = (u16 *) buf; |
| 522 | |
| 523 | len >>= 1; |
| 524 | while (len--) { |
| 525 | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) |
| 526 | return -EFAULT; |
| 527 | } |
| 528 | |
| 529 | return 0; |
| 530 | } |
| 531 | |
| 532 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC |
| 533 | /** |
| 534 | * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller |
| 535 | * @mtd: MTD device structure |
| 536 | */ |
| 537 | static void omap_hwecc_init(struct mtd_info *mtd) |
| 538 | { |
| 539 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 540 | mtd); |
| 541 | struct nand_chip *chip = mtd->priv; |
| 542 | unsigned long val = 0x0; |
| 543 | |
| 544 | /* Read from ECC Control Register */ |
| 545 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 546 | /* Clear all ECC | Enable Reg1 */ |
| 547 | val = ((0x00000001<<8) | 0x00000001); |
| 548 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 549 | |
| 550 | /* Read from ECC Size Config Register */ |
| 551 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); |
| 552 | /* ECCSIZE1=512 | Select eccResultsize[0-3] */ |
| 553 | val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); |
| 554 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); |
| 555 | } |
| 556 | |
| 557 | /** |
| 558 | * gen_true_ecc - This function will generate true ECC value |
| 559 | * @ecc_buf: buffer to store ecc code |
| 560 | * |
| 561 | * This generated true ECC value can be used when correcting |
| 562 | * data read from NAND flash memory core |
| 563 | */ |
| 564 | static void gen_true_ecc(u8 *ecc_buf) |
| 565 | { |
| 566 | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | |
| 567 | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); |
| 568 | |
| 569 | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | |
| 570 | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); |
| 571 | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | |
| 572 | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); |
| 573 | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | |
| 574 | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); |
| 575 | } |
| 576 | |
| 577 | /** |
| 578 | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data |
| 579 | * @ecc_data1: ecc code from nand spare area |
| 580 | * @ecc_data2: ecc code from hardware register obtained from hardware ecc |
| 581 | * @page_data: page data |
| 582 | * |
| 583 | * This function compares two ECC's and indicates if there is an error. |
| 584 | * If the error can be corrected it will be corrected to the buffer. |
| 585 | */ |
| 586 | static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ |
| 587 | u8 *ecc_data2, /* read from register */ |
| 588 | u8 *page_data) |
| 589 | { |
| 590 | uint i; |
| 591 | u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; |
| 592 | u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; |
| 593 | u8 ecc_bit[24]; |
| 594 | u8 ecc_sum = 0; |
| 595 | u8 find_bit = 0; |
| 596 | uint find_byte = 0; |
| 597 | int isEccFF; |
| 598 | |
| 599 | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); |
| 600 | |
| 601 | gen_true_ecc(ecc_data1); |
| 602 | gen_true_ecc(ecc_data2); |
| 603 | |
| 604 | for (i = 0; i <= 2; i++) { |
| 605 | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); |
| 606 | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); |
| 607 | } |
| 608 | |
| 609 | for (i = 0; i < 8; i++) { |
| 610 | tmp0_bit[i] = *ecc_data1 % 2; |
| 611 | *ecc_data1 = *ecc_data1 / 2; |
| 612 | } |
| 613 | |
| 614 | for (i = 0; i < 8; i++) { |
| 615 | tmp1_bit[i] = *(ecc_data1 + 1) % 2; |
| 616 | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; |
| 617 | } |
| 618 | |
| 619 | for (i = 0; i < 8; i++) { |
| 620 | tmp2_bit[i] = *(ecc_data1 + 2) % 2; |
| 621 | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; |
| 622 | } |
| 623 | |
| 624 | for (i = 0; i < 8; i++) { |
| 625 | comp0_bit[i] = *ecc_data2 % 2; |
| 626 | *ecc_data2 = *ecc_data2 / 2; |
| 627 | } |
| 628 | |
| 629 | for (i = 0; i < 8; i++) { |
| 630 | comp1_bit[i] = *(ecc_data2 + 1) % 2; |
| 631 | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; |
| 632 | } |
| 633 | |
| 634 | for (i = 0; i < 8; i++) { |
| 635 | comp2_bit[i] = *(ecc_data2 + 2) % 2; |
| 636 | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; |
| 637 | } |
| 638 | |
| 639 | for (i = 0; i < 6; i++) |
| 640 | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; |
| 641 | |
| 642 | for (i = 0; i < 8; i++) |
| 643 | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; |
| 644 | |
| 645 | for (i = 0; i < 8; i++) |
| 646 | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; |
| 647 | |
| 648 | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; |
| 649 | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; |
| 650 | |
| 651 | for (i = 0; i < 24; i++) |
| 652 | ecc_sum += ecc_bit[i]; |
| 653 | |
| 654 | switch (ecc_sum) { |
| 655 | case 0: |
| 656 | /* Not reached because this function is not called if |
| 657 | * ECC values are equal |
| 658 | */ |
| 659 | return 0; |
| 660 | |
| 661 | case 1: |
| 662 | /* Uncorrectable error */ |
| 663 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); |
| 664 | return -1; |
| 665 | |
| 666 | case 11: |
| 667 | /* UN-Correctable error */ |
| 668 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); |
| 669 | return -1; |
| 670 | |
| 671 | case 12: |
| 672 | /* Correctable error */ |
| 673 | find_byte = (ecc_bit[23] << 8) + |
| 674 | (ecc_bit[21] << 7) + |
| 675 | (ecc_bit[19] << 6) + |
| 676 | (ecc_bit[17] << 5) + |
| 677 | (ecc_bit[15] << 4) + |
| 678 | (ecc_bit[13] << 3) + |
| 679 | (ecc_bit[11] << 2) + |
| 680 | (ecc_bit[9] << 1) + |
| 681 | ecc_bit[7]; |
| 682 | |
| 683 | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; |
| 684 | |
| 685 | DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " |
| 686 | "offset: %d, bit: %d\n", find_byte, find_bit); |
| 687 | |
| 688 | page_data[find_byte] ^= (1 << find_bit); |
| 689 | |
| 690 | return 0; |
| 691 | default: |
| 692 | if (isEccFF) { |
| 693 | if (ecc_data2[0] == 0 && |
| 694 | ecc_data2[1] == 0 && |
| 695 | ecc_data2[2] == 0) |
| 696 | return 0; |
| 697 | } |
| 698 | DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); |
| 699 | return -1; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /** |
| 704 | * omap_correct_data - Compares the ECC read with HW generated ECC |
| 705 | * @mtd: MTD device structure |
| 706 | * @dat: page data |
| 707 | * @read_ecc: ecc read from nand flash |
| 708 | * @calc_ecc: ecc read from HW ECC registers |
| 709 | * |
| 710 | * Compares the ecc read from nand spare area with ECC registers values |
| 711 | * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection |
| 712 | * and correction. |
| 713 | */ |
| 714 | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, |
| 715 | u_char *read_ecc, u_char *calc_ecc) |
| 716 | { |
| 717 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 718 | mtd); |
| 719 | int blockCnt = 0, i = 0, ret = 0; |
| 720 | |
| 721 | /* Ex NAND_ECC_HW12_2048 */ |
| 722 | if ((info->nand.ecc.mode == NAND_ECC_HW) && |
| 723 | (info->nand.ecc.size == 2048)) |
| 724 | blockCnt = 4; |
| 725 | else |
| 726 | blockCnt = 1; |
| 727 | |
| 728 | for (i = 0; i < blockCnt; i++) { |
| 729 | if (memcmp(read_ecc, calc_ecc, 3) != 0) { |
| 730 | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); |
| 731 | if (ret < 0) |
| 732 | return ret; |
| 733 | } |
| 734 | read_ecc += 3; |
| 735 | calc_ecc += 3; |
| 736 | dat += 512; |
| 737 | } |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | /** |
| 742 | * omap_calcuate_ecc - Generate non-inverted ECC bytes. |
| 743 | * @mtd: MTD device structure |
| 744 | * @dat: The pointer to data on which ecc is computed |
| 745 | * @ecc_code: The ecc_code buffer |
| 746 | * |
| 747 | * Using noninverted ECC can be considered ugly since writing a blank |
| 748 | * page ie. padding will clear the ECC bytes. This is no problem as long |
| 749 | * nobody is trying to write data on the seemingly unused page. Reading |
| 750 | * an erased page will produce an ECC mismatch between generated and read |
| 751 | * ECC bytes that has to be dealt with separately. |
| 752 | */ |
| 753 | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| 754 | u_char *ecc_code) |
| 755 | { |
| 756 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 757 | mtd); |
| 758 | unsigned long val = 0x0; |
| 759 | unsigned long reg; |
| 760 | |
| 761 | /* Start Reading from HW ECC1_Result = 0x200 */ |
| 762 | reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); |
| 763 | val = __raw_readl(reg); |
| 764 | *ecc_code++ = val; /* P128e, ..., P1e */ |
| 765 | *ecc_code++ = val >> 16; /* P128o, ..., P1o */ |
| 766 | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ |
| 767 | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); |
| 768 | reg += 4; |
| 769 | |
| 770 | return 0; |
| 771 | } |
| 772 | |
| 773 | /** |
| 774 | * omap_enable_hwecc - This function enables the hardware ecc functionality |
| 775 | * @mtd: MTD device structure |
| 776 | * @mode: Read/Write mode |
| 777 | */ |
| 778 | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) |
| 779 | { |
| 780 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 781 | mtd); |
| 782 | struct nand_chip *chip = mtd->priv; |
| 783 | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| 784 | unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); |
| 785 | |
| 786 | switch (mode) { |
| 787 | case NAND_ECC_READ: |
| 788 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 789 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 790 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 791 | break; |
| 792 | case NAND_ECC_READSYN: |
| 793 | __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 794 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 795 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 796 | break; |
| 797 | case NAND_ECC_WRITE: |
| 798 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 799 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 800 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 801 | break; |
| 802 | default: |
| 803 | DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", |
| 804 | mode); |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); |
| 809 | } |
| 810 | #endif |
| 811 | |
| 812 | /** |
| 813 | * omap_wait - wait until the command is done |
| 814 | * @mtd: MTD device structure |
| 815 | * @chip: NAND Chip structure |
| 816 | * |
| 817 | * Wait function is called during Program and erase operations and |
| 818 | * the way it is called from MTD layer, we should wait till the NAND |
| 819 | * chip is ready after the programming/erase operation has completed. |
| 820 | * |
| 821 | * Erase can take up to 400ms and program up to 20ms according to |
| 822 | * general NAND and SmartMedia specs |
| 823 | */ |
| 824 | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| 825 | { |
| 826 | struct nand_chip *this = mtd->priv; |
| 827 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 828 | mtd); |
| 829 | unsigned long timeo = jiffies; |
vimal singh | c276aca | 2009-06-27 11:07:06 +0530 | [diff] [blame] | 830 | int status = NAND_STATUS_FAIL, state = this->state; |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 831 | |
| 832 | if (state == FL_ERASING) |
| 833 | timeo += (HZ * 400) / 1000; |
| 834 | else |
| 835 | timeo += (HZ * 20) / 1000; |
| 836 | |
| 837 | this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + |
| 838 | GPMC_CS_NAND_COMMAND; |
| 839 | this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; |
| 840 | |
| 841 | __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); |
| 842 | |
| 843 | while (time_before(jiffies, timeo)) { |
| 844 | status = __raw_readb(this->IO_ADDR_R); |
vimal singh | c276aca | 2009-06-27 11:07:06 +0530 | [diff] [blame] | 845 | if (status & NAND_STATUS_READY) |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 846 | break; |
vimal singh | c276aca | 2009-06-27 11:07:06 +0530 | [diff] [blame] | 847 | cond_resched(); |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 848 | } |
| 849 | return status; |
| 850 | } |
| 851 | |
| 852 | /** |
| 853 | * omap_dev_ready - calls the platform specific dev_ready function |
| 854 | * @mtd: MTD device structure |
| 855 | */ |
| 856 | static int omap_dev_ready(struct mtd_info *mtd) |
| 857 | { |
| 858 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 859 | mtd); |
| 860 | unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); |
| 861 | |
| 862 | if ((val & 0x100) == 0x100) { |
| 863 | /* Clear IRQ Interrupt */ |
| 864 | val |= 0x100; |
| 865 | val &= ~(0x0); |
| 866 | __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); |
| 867 | } else { |
| 868 | unsigned int cnt = 0; |
| 869 | while (cnt++ < 0x1FF) { |
| 870 | if ((val & 0x100) == 0x100) |
| 871 | return 0; |
| 872 | val = __raw_readl(info->gpmc_baseaddr + |
| 873 | GPMC_IRQ_STATUS); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | return 1; |
| 878 | } |
| 879 | |
| 880 | static int __devinit omap_nand_probe(struct platform_device *pdev) |
| 881 | { |
| 882 | struct omap_nand_info *info; |
| 883 | struct omap_nand_platform_data *pdata; |
| 884 | int err; |
| 885 | unsigned long val; |
| 886 | |
| 887 | |
| 888 | pdata = pdev->dev.platform_data; |
| 889 | if (pdata == NULL) { |
| 890 | dev_err(&pdev->dev, "platform data missing\n"); |
| 891 | return -ENODEV; |
| 892 | } |
| 893 | |
| 894 | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); |
| 895 | if (!info) |
| 896 | return -ENOMEM; |
| 897 | |
| 898 | platform_set_drvdata(pdev, info); |
| 899 | |
| 900 | spin_lock_init(&info->controller.lock); |
| 901 | init_waitqueue_head(&info->controller.wq); |
| 902 | |
| 903 | info->pdev = pdev; |
| 904 | |
| 905 | info->gpmc_cs = pdata->cs; |
| 906 | info->gpmc_baseaddr = pdata->gpmc_baseaddr; |
| 907 | info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; |
| 908 | |
| 909 | info->mtd.priv = &info->nand; |
| 910 | info->mtd.name = dev_name(&pdev->dev); |
| 911 | info->mtd.owner = THIS_MODULE; |
| 912 | |
| 913 | err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); |
| 914 | if (err < 0) { |
| 915 | dev_err(&pdev->dev, "Cannot request GPMC CS\n"); |
| 916 | goto out_free_info; |
| 917 | } |
| 918 | |
| 919 | /* Enable RD PIN Monitoring Reg */ |
| 920 | if (pdata->dev_ready) { |
| 921 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); |
| 922 | val |= WR_RD_PIN_MONITORING; |
| 923 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); |
| 924 | } |
| 925 | |
| 926 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); |
| 927 | val &= ~(0xf << 8); |
| 928 | val |= (0xc & 0xf) << 8; |
| 929 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); |
| 930 | |
| 931 | /* NAND write protect off */ |
| 932 | omap_nand_wp(&info->mtd, NAND_WP_OFF); |
| 933 | |
| 934 | if (!request_mem_region(info->phys_base, NAND_IO_SIZE, |
| 935 | pdev->dev.driver->name)) { |
| 936 | err = -EBUSY; |
| 937 | goto out_free_cs; |
| 938 | } |
| 939 | |
| 940 | info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); |
| 941 | if (!info->nand.IO_ADDR_R) { |
| 942 | err = -ENOMEM; |
| 943 | goto out_release_mem_region; |
| 944 | } |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 945 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 946 | info->nand.controller = &info->controller; |
| 947 | |
| 948 | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; |
| 949 | info->nand.cmd_ctrl = omap_hwcontrol; |
| 950 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 951 | /* |
| 952 | * If RDY/BSY line is connected to OMAP then use the omap ready |
| 953 | * funcrtion and the generic nand_wait function which reads the status |
| 954 | * register after monitoring the RDY/BSY line.Otherwise use a standard |
| 955 | * chip delay which is slightly more than tR (AC Timing) of the NAND |
| 956 | * device and read status register until you get a failure or success |
| 957 | */ |
| 958 | if (pdata->dev_ready) { |
| 959 | info->nand.dev_ready = omap_dev_ready; |
| 960 | info->nand.chip_delay = 0; |
| 961 | } else { |
| 962 | info->nand.waitfunc = omap_wait; |
| 963 | info->nand.chip_delay = 50; |
| 964 | } |
| 965 | |
| 966 | info->nand.options |= NAND_SKIP_BBTSCAN; |
| 967 | if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) |
| 968 | == 0x1000) |
| 969 | info->nand.options |= NAND_BUSWIDTH_16; |
| 970 | |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 971 | if (use_prefetch) { |
| 972 | /* copy the virtual address of nand base for fifo access */ |
| 973 | info->nand_pref_fifo_add = info->nand.IO_ADDR_R; |
| 974 | |
| 975 | info->nand.read_buf = omap_read_buf_pref; |
| 976 | info->nand.write_buf = omap_write_buf_pref; |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 977 | if (use_dma) { |
| 978 | err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", |
| 979 | omap_nand_dma_cb, &info->comp, &info->dma_ch); |
| 980 | if (err < 0) { |
| 981 | info->dma_ch = -1; |
| 982 | printk(KERN_WARNING "DMA request failed." |
| 983 | " Non-dma data transfer mode\n"); |
| 984 | } else { |
| 985 | omap_set_dma_dest_burst_mode(info->dma_ch, |
| 986 | OMAP_DMA_DATA_BURST_16); |
| 987 | omap_set_dma_src_burst_mode(info->dma_ch, |
| 988 | OMAP_DMA_DATA_BURST_16); |
| 989 | |
| 990 | info->nand.read_buf = omap_read_buf_dma_pref; |
| 991 | info->nand.write_buf = omap_write_buf_dma_pref; |
| 992 | } |
| 993 | } |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 994 | } else { |
| 995 | if (info->nand.options & NAND_BUSWIDTH_16) { |
| 996 | info->nand.read_buf = omap_read_buf16; |
| 997 | info->nand.write_buf = omap_write_buf16; |
| 998 | } else { |
| 999 | info->nand.read_buf = omap_read_buf8; |
| 1000 | info->nand.write_buf = omap_write_buf8; |
| 1001 | } |
| 1002 | } |
| 1003 | info->nand.verify_buf = omap_verify_buf; |
| 1004 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 1005 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC |
| 1006 | info->nand.ecc.bytes = 3; |
| 1007 | info->nand.ecc.size = 512; |
| 1008 | info->nand.ecc.calculate = omap_calculate_ecc; |
| 1009 | info->nand.ecc.hwctl = omap_enable_hwecc; |
| 1010 | info->nand.ecc.correct = omap_correct_data; |
| 1011 | info->nand.ecc.mode = NAND_ECC_HW; |
| 1012 | |
| 1013 | /* init HW ECC */ |
| 1014 | omap_hwecc_init(&info->mtd); |
| 1015 | #else |
| 1016 | info->nand.ecc.mode = NAND_ECC_SOFT; |
| 1017 | #endif |
| 1018 | |
| 1019 | /* DIP switches on some boards change between 8 and 16 bit |
| 1020 | * bus widths for flash. Try the other width if the first try fails. |
| 1021 | */ |
| 1022 | if (nand_scan(&info->mtd, 1)) { |
| 1023 | info->nand.options ^= NAND_BUSWIDTH_16; |
| 1024 | if (nand_scan(&info->mtd, 1)) { |
| 1025 | err = -ENXIO; |
| 1026 | goto out_release_mem_region; |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | #ifdef CONFIG_MTD_PARTITIONS |
| 1031 | err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); |
| 1032 | if (err > 0) |
| 1033 | add_mtd_partitions(&info->mtd, info->parts, err); |
| 1034 | else if (pdata->parts) |
| 1035 | add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); |
| 1036 | else |
| 1037 | #endif |
| 1038 | add_mtd_device(&info->mtd); |
| 1039 | |
| 1040 | platform_set_drvdata(pdev, &info->mtd); |
| 1041 | |
| 1042 | return 0; |
| 1043 | |
| 1044 | out_release_mem_region: |
| 1045 | release_mem_region(info->phys_base, NAND_IO_SIZE); |
| 1046 | out_free_cs: |
| 1047 | gpmc_cs_free(info->gpmc_cs); |
| 1048 | out_free_info: |
| 1049 | kfree(info); |
| 1050 | |
| 1051 | return err; |
| 1052 | } |
| 1053 | |
| 1054 | static int omap_nand_remove(struct platform_device *pdev) |
| 1055 | { |
| 1056 | struct mtd_info *mtd = platform_get_drvdata(pdev); |
| 1057 | struct omap_nand_info *info = mtd->priv; |
| 1058 | |
| 1059 | platform_set_drvdata(pdev, NULL); |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 1060 | if (use_dma) |
| 1061 | omap_free_dma(info->dma_ch); |
| 1062 | |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 1063 | /* Release NAND device, its internal structures and partitions */ |
| 1064 | nand_release(&info->mtd); |
vimal singh | 59e9c5a | 2009-07-13 16:26:24 +0530 | [diff] [blame] | 1065 | iounmap(info->nand_pref_fifo_add); |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 1066 | kfree(&info->mtd); |
| 1067 | return 0; |
| 1068 | } |
| 1069 | |
| 1070 | static struct platform_driver omap_nand_driver = { |
| 1071 | .probe = omap_nand_probe, |
| 1072 | .remove = omap_nand_remove, |
| 1073 | .driver = { |
| 1074 | .name = DRIVER_NAME, |
| 1075 | .owner = THIS_MODULE, |
| 1076 | }, |
| 1077 | }; |
| 1078 | |
| 1079 | static int __init omap_nand_init(void) |
| 1080 | { |
| 1081 | printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); |
vimal singh | dfe3289 | 2009-07-13 16:29:16 +0530 | [diff] [blame] | 1082 | |
| 1083 | /* This check is required if driver is being |
| 1084 | * loaded run time as a module |
| 1085 | */ |
| 1086 | if ((1 == use_dma) && (0 == use_prefetch)) { |
| 1087 | printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 " |
| 1088 | "without use_prefetch'. Prefetch will not be" |
| 1089 | " used in either mode (mpu or dma)\n"); |
| 1090 | } |
Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame] | 1091 | return platform_driver_register(&omap_nand_driver); |
| 1092 | } |
| 1093 | |
| 1094 | static void __exit omap_nand_exit(void) |
| 1095 | { |
| 1096 | platform_driver_unregister(&omap_nand_driver); |
| 1097 | } |
| 1098 | |
| 1099 | module_init(omap_nand_init); |
| 1100 | module_exit(omap_nand_exit); |
| 1101 | |
| 1102 | MODULE_ALIAS(DRIVER_NAME); |
| 1103 | MODULE_LICENSE("GPL"); |
| 1104 | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |