blob: 0e1d4d80e22e1a3351c6b3622495fc327be88035 [file] [log] [blame]
Markos Chandrase24c3be2015-08-13 09:56:31 +02001/*
2 * IEEE754 floating point arithmetic
3 * double precision: MADDF.f (Fused Multiply Add)
4 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
5 *
6 * MIPS floating point support
7 * Copyright (C) 2015 Imagination Technologies, Ltd.
8 * Author: Markos Chandras <markos.chandras@imgtec.com>
9 *
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; version 2 of the License.
13 */
14
15#include "ieee754dp.h"
16
Paul Burtond728f672016-04-21 14:04:50 +010017enum maddf_flags {
18 maddf_negate_product = 1 << 0,
19};
20
21static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
22 union ieee754dp y, enum maddf_flags flags)
Markos Chandrase24c3be2015-08-13 09:56:31 +020023{
24 int re;
25 int rs;
26 u64 rm;
27 unsigned lxm;
28 unsigned hxm;
29 unsigned lym;
30 unsigned hym;
31 u64 lrm;
32 u64 hrm;
33 u64 t;
34 u64 at;
35 int s;
36
37 COMPXDP;
38 COMPYDP;
Paul Burtone2d11e12016-04-21 14:04:51 +010039 COMPZDP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020040
41 EXPLODEXDP;
42 EXPLODEYDP;
Paul Burtone2d11e12016-04-21 14:04:51 +010043 EXPLODEZDP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020044
45 FLUSHXDP;
46 FLUSHYDP;
Paul Burtone2d11e12016-04-21 14:04:51 +010047 FLUSHZDP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020048
49 ieee754_clearcx();
50
51 switch (zc) {
52 case IEEE754_CLASS_SNAN:
53 ieee754_setcx(IEEE754_INVALID_OPERATION);
54 return ieee754dp_nanxcpt(z);
55 case IEEE754_CLASS_DNORM:
Paul Burtone2d11e12016-04-21 14:04:51 +010056 DPDNORMZ;
Markos Chandrase24c3be2015-08-13 09:56:31 +020057 /* QNAN is handled separately below */
58 }
59
60 switch (CLPAIR(xc, yc)) {
61 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
62 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
63 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
64 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
65 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
66 return ieee754dp_nanxcpt(y);
67
68 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
69 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
70 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
71 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
72 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
73 case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
74 return ieee754dp_nanxcpt(x);
75
76 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
77 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
78 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
79 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
80 return y;
81
82 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
83 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
84 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
85 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
86 case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
87 return x;
88
89
90 /*
91 * Infinity handling
92 */
93 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
94 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
95 if (zc == IEEE754_CLASS_QNAN)
96 return z;
97 ieee754_setcx(IEEE754_INVALID_OPERATION);
98 return ieee754dp_indef();
99
100 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
101 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
102 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
103 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
104 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
105 if (zc == IEEE754_CLASS_QNAN)
106 return z;
107 return ieee754dp_inf(xs ^ ys);
108
109 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
110 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
111 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
112 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
113 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
114 if (zc == IEEE754_CLASS_INF)
115 return ieee754dp_inf(zs);
116 /* Multiplication is 0 so just return z */
117 return z;
118
119 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
120 DPDNORMX;
121
122 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
123 if (zc == IEEE754_CLASS_QNAN)
124 return z;
125 else if (zc == IEEE754_CLASS_INF)
126 return ieee754dp_inf(zs);
127 DPDNORMY;
128 break;
129
130 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
131 if (zc == IEEE754_CLASS_QNAN)
132 return z;
133 else if (zc == IEEE754_CLASS_INF)
134 return ieee754dp_inf(zs);
135 DPDNORMX;
136 break;
137
138 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
139 if (zc == IEEE754_CLASS_QNAN)
140 return z;
141 else if (zc == IEEE754_CLASS_INF)
142 return ieee754dp_inf(zs);
143 /* fall through to real computations */
144 }
145
146 /* Finally get to do some computation */
147
148 /*
149 * Do the multiplication bit first
150 *
151 * rm = xm * ym, re = xe + ye basically
152 *
153 * At this point xm and ym should have been normalized.
154 */
155 assert(xm & DP_HIDDEN_BIT);
156 assert(ym & DP_HIDDEN_BIT);
157
158 re = xe + ye;
159 rs = xs ^ ys;
Paul Burtond728f672016-04-21 14:04:50 +0100160 if (flags & maddf_negate_product)
161 rs ^= 1;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200162
163 /* shunt to top of word */
164 xm <<= 64 - (DP_FBITS + 1);
165 ym <<= 64 - (DP_FBITS + 1);
166
167 /*
168 * Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
169 */
170
171 /* 32 * 32 => 64 */
172#define DPXMULT(x, y) ((u64)(x) * (u64)y)
173
174 lxm = xm;
175 hxm = xm >> 32;
176 lym = ym;
177 hym = ym >> 32;
178
179 lrm = DPXMULT(lxm, lym);
180 hrm = DPXMULT(hxm, hym);
181
182 t = DPXMULT(lxm, hym);
183
184 at = lrm + (t << 32);
185 hrm += at < lrm;
186 lrm = at;
187
188 hrm = hrm + (t >> 32);
189
190 t = DPXMULT(hxm, lym);
191
192 at = lrm + (t << 32);
193 hrm += at < lrm;
194 lrm = at;
195
196 hrm = hrm + (t >> 32);
197
198 rm = hrm | (lrm != 0);
199
200 /*
201 * Sticky shift down to normal rounding precision.
202 */
203 if ((s64) rm < 0) {
204 rm = (rm >> (64 - (DP_FBITS + 1 + 3))) |
205 ((rm << (DP_FBITS + 1 + 3)) != 0);
206 re++;
207 } else {
208 rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) |
209 ((rm << (DP_FBITS + 1 + 3 + 1)) != 0);
210 }
211 assert(rm & (DP_HIDDEN_BIT << 3));
212
213 /* And now the addition */
214 assert(zm & DP_HIDDEN_BIT);
215
216 /*
217 * Provide guard,round and stick bit space.
218 */
219 zm <<= 3;
220
221 if (ze > re) {
222 /*
223 * Have to shift y fraction right to align.
224 */
225 s = ze - re;
226 rm = XDPSRS(rm, s);
227 re += s;
228 } else if (re > ze) {
229 /*
230 * Have to shift x fraction right to align.
231 */
232 s = re - ze;
233 zm = XDPSRS(zm, s);
234 ze += s;
235 }
236 assert(ze == re);
237 assert(ze <= DP_EMAX);
238
239 if (zs == rs) {
240 /*
241 * Generate 28 bit result of adding two 27 bit numbers
242 * leaving result in xm, xs and xe.
243 */
244 zm = zm + rm;
245
246 if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */
247 zm = XDPSRS1(zm);
248 ze++;
249 }
250 } else {
251 if (zm >= rm) {
252 zm = zm - rm;
253 } else {
254 zm = rm - zm;
255 zs = rs;
256 }
257 if (zm == 0)
258 return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
259
260 /*
261 * Normalize to rounding precision.
262 */
263 while ((zm >> (DP_FBITS + 3)) == 0) {
264 zm <<= 1;
265 ze--;
266 }
267 }
268
269 return ieee754dp_format(zs, ze, zm);
270}
Paul Burtond728f672016-04-21 14:04:50 +0100271
272union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
273 union ieee754dp y)
274{
275 return _dp_maddf(z, x, y, 0);
276}
277
278union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
279 union ieee754dp y)
280{
281 return _dp_maddf(z, x, y, maddf_negate_product);
282}