blob: 69c2b4ce61605b2b21458e2cc30575ed0834f465 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050031
32#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050033
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
Marc Zyngier5a677ce2013-04-12 19:12:06 +010036static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010037static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000038static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050039static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
Marc Zyngier5a677ce2013-04-12 19:12:06 +010041static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
Christoffer Dall38f791a2014-10-10 12:14:28 +020045#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000046
Christoffer Dall9b5fdb92013-10-02 15:32:01 -070047#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
Mario Smarduchc6473552015-01-15 15:58:56 -080048#define kvm_pud_huge(_x) pud_huge(_x)
Christoffer Dallad361f02012-11-01 17:14:45 +010049
Mario Smarduch15a49a42015-01-15 15:58:58 -080050#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54{
Mario Smarduch15a49a42015-01-15 15:58:58 -080055 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080056}
57
58/**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64void kvm_flush_remote_tlbs(struct kvm *kvm)
65{
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080067}
Christoffer Dall342cd0a2013-01-20 18:28:06 -050068
Marc Zyngier48762762013-01-28 15:27:00 +000069static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050070{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +010071 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050079}
80
Marc Zyngier363ef892014-12-19 16:48:06 +000081/*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86static void kvm_flush_dcache_pte(pte_t pte)
87{
88 __kvm_flush_dcache_pte(pte);
89}
90
91static void kvm_flush_dcache_pmd(pmd_t pmd)
92{
93 __kvm_flush_dcache_pmd(pmd);
94}
95
96static void kvm_flush_dcache_pud(pud_t pud)
97{
98 __kvm_flush_dcache_pud(pud);
99}
100
Mario Smarduch15a49a42015-01-15 15:58:58 -0800101/**
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
104 * @addr: IPA
105 * @pmd: pmd pointer for IPA
106 *
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
109 */
110static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
111{
112 if (!kvm_pmd_huge(*pmd))
113 return;
114
115 pmd_clear(pmd);
116 kvm_tlb_flush_vmid_ipa(kvm, addr);
117 put_page(virt_to_page(pmd));
118}
119
Christoffer Dalld5d81842013-01-20 18:28:07 -0500120static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
121 int min, int max)
122{
123 void *page;
124
125 BUG_ON(max > KVM_NR_MEM_OBJS);
126 if (cache->nobjs >= min)
127 return 0;
128 while (cache->nobjs < max) {
129 page = (void *)__get_free_page(PGALLOC_GFP);
130 if (!page)
131 return -ENOMEM;
132 cache->objects[cache->nobjs++] = page;
133 }
134 return 0;
135}
136
137static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
138{
139 while (mc->nobjs)
140 free_page((unsigned long)mc->objects[--mc->nobjs]);
141}
142
143static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
144{
145 void *p;
146
147 BUG_ON(!mc || !mc->nobjs);
148 p = mc->objects[--mc->nobjs];
149 return p;
150}
151
Christoffer Dall4f853a72014-05-09 23:31:31 +0200152static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100153{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200154 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
155 pgd_clear(pgd);
156 kvm_tlb_flush_vmid_ipa(kvm, addr);
157 pud_free(NULL, pud_table);
158 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100159}
160
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100161static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500162{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200163 pmd_t *pmd_table = pmd_offset(pud, 0);
164 VM_BUG_ON(pud_huge(*pud));
165 pud_clear(pud);
166 kvm_tlb_flush_vmid_ipa(kvm, addr);
167 pmd_free(NULL, pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100168 put_page(virt_to_page(pud));
169}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500170
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100171static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100172{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200173 pte_t *pte_table = pte_offset_kernel(pmd, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd));
175 pmd_clear(pmd);
176 kvm_tlb_flush_vmid_ipa(kvm, addr);
177 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100178 put_page(virt_to_page(pmd));
179}
180
Marc Zyngier363ef892014-12-19 16:48:06 +0000181/*
182 * Unmapping vs dcache management:
183 *
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
187 * data.
188 *
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
192 *
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
196 *
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
200 */
Christoffer Dall4f853a72014-05-09 23:31:31 +0200201static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
202 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100203{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200204 phys_addr_t start_addr = addr;
205 pte_t *pte, *start_pte;
206
207 start_pte = pte = pte_offset_kernel(pmd, addr);
208 do {
209 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000210 pte_t old_pte = *pte;
211
Christoffer Dall4f853a72014-05-09 23:31:31 +0200212 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200213 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000214
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
217 kvm_flush_dcache_pte(old_pte);
218
219 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200220 }
221 } while (pte++, addr += PAGE_SIZE, addr != end);
222
Christoffer Dall38f791a2014-10-10 12:14:28 +0200223 if (kvm_pte_table_empty(kvm, start_pte))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200224 clear_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500225}
226
Christoffer Dall4f853a72014-05-09 23:31:31 +0200227static void unmap_pmds(struct kvm *kvm, pud_t *pud,
228 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500229{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200230 phys_addr_t next, start_addr = addr;
231 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000232
Christoffer Dall4f853a72014-05-09 23:31:31 +0200233 start_pmd = pmd = pmd_offset(pud, addr);
234 do {
235 next = kvm_pmd_addr_end(addr, end);
236 if (!pmd_none(*pmd)) {
237 if (kvm_pmd_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000238 pmd_t old_pmd = *pmd;
239
Christoffer Dall4f853a72014-05-09 23:31:31 +0200240 pmd_clear(pmd);
241 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000242
243 kvm_flush_dcache_pmd(old_pmd);
244
Christoffer Dall4f853a72014-05-09 23:31:31 +0200245 put_page(virt_to_page(pmd));
246 } else {
247 unmap_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100248 }
249 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200250 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100251
Christoffer Dall38f791a2014-10-10 12:14:28 +0200252 if (kvm_pmd_table_empty(kvm, start_pmd))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200253 clear_pud_entry(kvm, pud, start_addr);
254}
255
256static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
257 phys_addr_t addr, phys_addr_t end)
258{
259 phys_addr_t next, start_addr = addr;
260 pud_t *pud, *start_pud;
261
262 start_pud = pud = pud_offset(pgd, addr);
263 do {
264 next = kvm_pud_addr_end(addr, end);
265 if (!pud_none(*pud)) {
266 if (pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000267 pud_t old_pud = *pud;
268
Christoffer Dall4f853a72014-05-09 23:31:31 +0200269 pud_clear(pud);
270 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000271
272 kvm_flush_dcache_pud(old_pud);
273
Christoffer Dall4f853a72014-05-09 23:31:31 +0200274 put_page(virt_to_page(pud));
275 } else {
276 unmap_pmds(kvm, pud, addr, next);
277 }
278 }
279 } while (pud++, addr = next, addr != end);
280
Christoffer Dall38f791a2014-10-10 12:14:28 +0200281 if (kvm_pud_table_empty(kvm, start_pud))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200282 clear_pgd_entry(kvm, pgd, start_addr);
283}
284
285
286static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
287 phys_addr_t start, u64 size)
288{
289 pgd_t *pgd;
290 phys_addr_t addr = start, end = start + size;
291 phys_addr_t next;
292
293 pgd = pgdp + pgd_index(addr);
294 do {
295 next = kvm_pgd_addr_end(addr, end);
Mark Rutland7cbb87d2014-10-28 19:36:45 +0000296 if (!pgd_none(*pgd))
297 unmap_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200298 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000299}
300
Marc Zyngier9d218a12014-01-15 12:50:23 +0000301static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
302 phys_addr_t addr, phys_addr_t end)
303{
304 pte_t *pte;
305
306 pte = pte_offset_kernel(pmd, addr);
307 do {
Marc Zyngier363ef892014-12-19 16:48:06 +0000308 if (!pte_none(*pte) &&
309 (pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
310 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000311 } while (pte++, addr += PAGE_SIZE, addr != end);
312}
313
314static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
315 phys_addr_t addr, phys_addr_t end)
316{
317 pmd_t *pmd;
318 phys_addr_t next;
319
320 pmd = pmd_offset(pud, addr);
321 do {
322 next = kvm_pmd_addr_end(addr, end);
323 if (!pmd_none(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000324 if (kvm_pmd_huge(*pmd))
325 kvm_flush_dcache_pmd(*pmd);
326 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000327 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000328 }
329 } while (pmd++, addr = next, addr != end);
330}
331
332static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
333 phys_addr_t addr, phys_addr_t end)
334{
335 pud_t *pud;
336 phys_addr_t next;
337
338 pud = pud_offset(pgd, addr);
339 do {
340 next = kvm_pud_addr_end(addr, end);
341 if (!pud_none(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000342 if (pud_huge(*pud))
343 kvm_flush_dcache_pud(*pud);
344 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000345 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000346 }
347 } while (pud++, addr = next, addr != end);
348}
349
350static void stage2_flush_memslot(struct kvm *kvm,
351 struct kvm_memory_slot *memslot)
352{
353 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
354 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
355 phys_addr_t next;
356 pgd_t *pgd;
357
358 pgd = kvm->arch.pgd + pgd_index(addr);
359 do {
360 next = kvm_pgd_addr_end(addr, end);
361 stage2_flush_puds(kvm, pgd, addr, next);
362 } while (pgd++, addr = next, addr != end);
363}
364
365/**
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
368 *
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
371 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000372static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000373{
374 struct kvm_memslots *slots;
375 struct kvm_memory_slot *memslot;
376 int idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 slots = kvm_memslots(kvm);
382 kvm_for_each_memslot(memslot, slots)
383 stage2_flush_memslot(kvm, memslot);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387}
388
Marc Zyngier000d3992013-03-05 02:43:17 +0000389/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100390 * free_boot_hyp_pgd - free HYP boot page tables
391 *
392 * Free the HYP boot page tables. The bounce page is also freed.
393 */
394void free_boot_hyp_pgd(void)
395{
396 mutex_lock(&kvm_hyp_pgd_mutex);
397
398 if (boot_hyp_pgd) {
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100399 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
400 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200401 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100402 boot_hyp_pgd = NULL;
403 }
404
405 if (hyp_pgd)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100406 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100407
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100408 mutex_unlock(&kvm_hyp_pgd_mutex);
409}
410
411/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100412 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000413 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100414 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
415 * therefore contains either mappings in the kernel memory area (above
416 * PAGE_OFFSET), or device mappings in the vmalloc range (from
417 * VMALLOC_START to VMALLOC_END).
418 *
419 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000420 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100421void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000422{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500423 unsigned long addr;
424
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100425 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100426
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100427 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100428
Marc Zyngier4f728272013-04-12 19:12:05 +0100429 if (hyp_pgd) {
430 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100431 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100432 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100433 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
434
Christoffer Dall38f791a2014-10-10 12:14:28 +0200435 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100436 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100437 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000438 if (merged_hyp_pgd) {
439 clear_page(merged_hyp_pgd);
440 free_page((unsigned long)merged_hyp_pgd);
441 merged_hyp_pgd = NULL;
442 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100443
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500444 mutex_unlock(&kvm_hyp_pgd_mutex);
445}
446
447static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100448 unsigned long end, unsigned long pfn,
449 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500450{
451 pte_t *pte;
452 unsigned long addr;
453
Marc Zyngier3562c762013-04-12 19:12:02 +0100454 addr = start;
455 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100456 pte = pte_offset_kernel(pmd, addr);
457 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100458 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100459 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100460 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100461 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500462}
463
464static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100465 unsigned long end, unsigned long pfn,
466 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500467{
468 pmd_t *pmd;
469 pte_t *pte;
470 unsigned long addr, next;
471
Marc Zyngier3562c762013-04-12 19:12:02 +0100472 addr = start;
473 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100474 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500475
476 BUG_ON(pmd_sect(*pmd));
477
478 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100479 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500480 if (!pte) {
481 kvm_err("Cannot allocate Hyp pte\n");
482 return -ENOMEM;
483 }
484 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100485 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100486 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500487 }
488
489 next = pmd_addr_end(addr, end);
490
Marc Zyngier6060df82013-04-12 19:12:01 +0100491 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
492 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100493 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500494
495 return 0;
496}
497
Christoffer Dall38f791a2014-10-10 12:14:28 +0200498static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
499 unsigned long end, unsigned long pfn,
500 pgprot_t prot)
501{
502 pud_t *pud;
503 pmd_t *pmd;
504 unsigned long addr, next;
505 int ret;
506
507 addr = start;
508 do {
509 pud = pud_offset(pgd, addr);
510
511 if (pud_none_or_clear_bad(pud)) {
512 pmd = pmd_alloc_one(NULL, addr);
513 if (!pmd) {
514 kvm_err("Cannot allocate Hyp pmd\n");
515 return -ENOMEM;
516 }
517 pud_populate(NULL, pud, pmd);
518 get_page(virt_to_page(pud));
519 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
520 }
521
522 next = pud_addr_end(addr, end);
523 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
524 if (ret)
525 return ret;
526 pfn += (next - addr) >> PAGE_SHIFT;
527 } while (addr = next, addr != end);
528
529 return 0;
530}
531
Marc Zyngier6060df82013-04-12 19:12:01 +0100532static int __create_hyp_mappings(pgd_t *pgdp,
533 unsigned long start, unsigned long end,
534 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500535{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500536 pgd_t *pgd;
537 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500538 unsigned long addr, next;
539 int err = 0;
540
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500541 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100542 addr = start & PAGE_MASK;
543 end = PAGE_ALIGN(end);
544 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100545 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500546
Christoffer Dall38f791a2014-10-10 12:14:28 +0200547 if (pgd_none(*pgd)) {
548 pud = pud_alloc_one(NULL, addr);
549 if (!pud) {
550 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500551 err = -ENOMEM;
552 goto out;
553 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200554 pgd_populate(NULL, pgd, pud);
555 get_page(virt_to_page(pgd));
556 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500557 }
558
559 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200560 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500561 if (err)
562 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100563 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100564 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500565out:
566 mutex_unlock(&kvm_hyp_pgd_mutex);
567 return err;
568}
569
Christoffer Dall40c27292013-11-15 13:14:12 -0800570static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
571{
572 if (!is_vmalloc_addr(kaddr)) {
573 BUG_ON(!virt_addr_valid(kaddr));
574 return __pa(kaddr);
575 } else {
576 return page_to_phys(vmalloc_to_page(kaddr)) +
577 offset_in_page(kaddr);
578 }
579}
580
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500581/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
585 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100586 * The same virtual address as the kernel virtual address is also used
587 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
588 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500589 */
590int create_hyp_mappings(void *from, void *to)
591{
Christoffer Dall40c27292013-11-15 13:14:12 -0800592 phys_addr_t phys_addr;
593 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100594 unsigned long start = KERN_TO_HYP((unsigned long)from);
595 unsigned long end = KERN_TO_HYP((unsigned long)to);
596
Christoffer Dall40c27292013-11-15 13:14:12 -0800597 start = start & PAGE_MASK;
598 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100599
Christoffer Dall40c27292013-11-15 13:14:12 -0800600 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
601 int err;
602
603 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
604 err = __create_hyp_mappings(hyp_pgd, virt_addr,
605 virt_addr + PAGE_SIZE,
606 __phys_to_pfn(phys_addr),
607 PAGE_HYP);
608 if (err)
609 return err;
610 }
611
612 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500613}
614
615/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100616 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
617 * @from: The kernel start VA of the range
618 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100619 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100620 *
621 * The resulting HYP VA is the same as the kernel VA, modulo
622 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500623 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100624int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500625{
Marc Zyngier6060df82013-04-12 19:12:01 +0100626 unsigned long start = KERN_TO_HYP((unsigned long)from);
627 unsigned long end = KERN_TO_HYP((unsigned long)to);
628
629 /* Check for a valid kernel IO mapping */
630 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
631 return -EINVAL;
632
633 return __create_hyp_mappings(hyp_pgd, start, end,
634 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500635}
636
Christoffer Dalld5d81842013-01-20 18:28:07 -0500637/**
638 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
639 * @kvm: The KVM struct pointer for the VM.
640 *
641 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
642 * support either full 40-bit input addresses or limited to 32-bit input
643 * addresses). Clears the allocated pages.
644 *
645 * Note we don't need locking here as this is only called when the VM is
646 * created, which can only be done once.
647 */
648int kvm_alloc_stage2_pgd(struct kvm *kvm)
649{
Christoffer Dall38f791a2014-10-10 12:14:28 +0200650 int ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500651 pgd_t *pgd;
652
653 if (kvm->arch.pgd != NULL) {
654 kvm_err("kvm_arch already initialized?\n");
655 return -EINVAL;
656 }
657
Christoffer Dall38f791a2014-10-10 12:14:28 +0200658 if (KVM_PREALLOC_LEVEL > 0) {
659 /*
660 * Allocate fake pgd for the page table manipulation macros to
661 * work. This is not used by the hardware and we have no
662 * alignment requirement for this allocation.
663 */
664 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
665 GFP_KERNEL | __GFP_ZERO);
666 } else {
667 /*
668 * Allocate actual first-level Stage-2 page table used by the
669 * hardware for Stage-2 page table walks.
670 */
671 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
672 }
673
Christoffer Dalld5d81842013-01-20 18:28:07 -0500674 if (!pgd)
675 return -ENOMEM;
676
Christoffer Dall38f791a2014-10-10 12:14:28 +0200677 ret = kvm_prealloc_hwpgd(kvm, pgd);
678 if (ret)
679 goto out_err;
680
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100681 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500682 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500683 return 0;
Christoffer Dall38f791a2014-10-10 12:14:28 +0200684out_err:
685 if (KVM_PREALLOC_LEVEL > 0)
686 kfree(pgd);
687 else
688 free_pages((unsigned long)pgd, S2_PGD_ORDER);
689 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500690}
691
Christoffer Dalld5d81842013-01-20 18:28:07 -0500692/**
693 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
694 * @kvm: The VM pointer
695 * @start: The intermediate physical base address of the range to unmap
696 * @size: The size of the area to unmap
697 *
698 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
699 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
700 * destroying the VM), otherwise another faulting VCPU may come in and mess
701 * with things behind our backs.
702 */
703static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
704{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100705 unmap_range(kvm, kvm->arch.pgd, start, size);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500706}
707
Christoffer Dall957db102014-11-27 10:35:03 +0100708static void stage2_unmap_memslot(struct kvm *kvm,
709 struct kvm_memory_slot *memslot)
710{
711 hva_t hva = memslot->userspace_addr;
712 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
713 phys_addr_t size = PAGE_SIZE * memslot->npages;
714 hva_t reg_end = hva + size;
715
716 /*
717 * A memory region could potentially cover multiple VMAs, and any holes
718 * between them, so iterate over all of them to find out if we should
719 * unmap any of them.
720 *
721 * +--------------------------------------------+
722 * +---------------+----------------+ +----------------+
723 * | : VMA 1 | VMA 2 | | VMA 3 : |
724 * +---------------+----------------+ +----------------+
725 * | memory region |
726 * +--------------------------------------------+
727 */
728 do {
729 struct vm_area_struct *vma = find_vma(current->mm, hva);
730 hva_t vm_start, vm_end;
731
732 if (!vma || vma->vm_start >= reg_end)
733 break;
734
735 /*
736 * Take the intersection of this VMA with the memory region
737 */
738 vm_start = max(hva, vma->vm_start);
739 vm_end = min(reg_end, vma->vm_end);
740
741 if (!(vma->vm_flags & VM_PFNMAP)) {
742 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
743 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
744 }
745 hva = vm_end;
746 } while (hva < reg_end);
747}
748
749/**
750 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
751 * @kvm: The struct kvm pointer
752 *
753 * Go through the memregions and unmap any reguler RAM
754 * backing memory already mapped to the VM.
755 */
756void stage2_unmap_vm(struct kvm *kvm)
757{
758 struct kvm_memslots *slots;
759 struct kvm_memory_slot *memslot;
760 int idx;
761
762 idx = srcu_read_lock(&kvm->srcu);
763 spin_lock(&kvm->mmu_lock);
764
765 slots = kvm_memslots(kvm);
766 kvm_for_each_memslot(memslot, slots)
767 stage2_unmap_memslot(kvm, memslot);
768
769 spin_unlock(&kvm->mmu_lock);
770 srcu_read_unlock(&kvm->srcu, idx);
771}
772
Christoffer Dalld5d81842013-01-20 18:28:07 -0500773/**
774 * kvm_free_stage2_pgd - free all stage-2 tables
775 * @kvm: The KVM struct pointer for the VM.
776 *
777 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
778 * underlying level-2 and level-3 tables before freeing the actual level-1 table
779 * and setting the struct pointer to NULL.
780 *
781 * Note we don't need locking here as this is only called when the VM is
782 * destroyed, which can only be done once.
783 */
784void kvm_free_stage2_pgd(struct kvm *kvm)
785{
786 if (kvm->arch.pgd == NULL)
787 return;
788
789 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200790 kvm_free_hwpgd(kvm);
791 if (KVM_PREALLOC_LEVEL > 0)
792 kfree(kvm->arch.pgd);
793 else
794 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500795 kvm->arch.pgd = NULL;
796}
797
Christoffer Dall38f791a2014-10-10 12:14:28 +0200798static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
799 phys_addr_t addr)
800{
801 pgd_t *pgd;
802 pud_t *pud;
803
804 pgd = kvm->arch.pgd + pgd_index(addr);
805 if (WARN_ON(pgd_none(*pgd))) {
806 if (!cache)
807 return NULL;
808 pud = mmu_memory_cache_alloc(cache);
809 pgd_populate(NULL, pgd, pud);
810 get_page(virt_to_page(pgd));
811 }
812
813 return pud_offset(pgd, addr);
814}
815
Christoffer Dallad361f02012-11-01 17:14:45 +0100816static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
817 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500818{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500819 pud_t *pud;
820 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500821
Christoffer Dall38f791a2014-10-10 12:14:28 +0200822 pud = stage2_get_pud(kvm, cache, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500823 if (pud_none(*pud)) {
824 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100825 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500826 pmd = mmu_memory_cache_alloc(cache);
827 pud_populate(NULL, pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500828 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100829 }
830
Christoffer Dallad361f02012-11-01 17:14:45 +0100831 return pmd_offset(pud, addr);
832}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500833
Christoffer Dallad361f02012-11-01 17:14:45 +0100834static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
835 *cache, phys_addr_t addr, const pmd_t *new_pmd)
836{
837 pmd_t *pmd, old_pmd;
838
839 pmd = stage2_get_pmd(kvm, cache, addr);
840 VM_BUG_ON(!pmd);
841
842 /*
843 * Mapping in huge pages should only happen through a fault. If a
844 * page is merged into a transparent huge page, the individual
845 * subpages of that huge page should be unmapped through MMU
846 * notifiers before we get here.
847 *
848 * Merging of CompoundPages is not supported; they should become
849 * splitting first, unmapped, merged, and mapped back in on-demand.
850 */
851 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
852
853 old_pmd = *pmd;
854 kvm_set_pmd(pmd, *new_pmd);
855 if (pmd_present(old_pmd))
856 kvm_tlb_flush_vmid_ipa(kvm, addr);
857 else
858 get_page(virt_to_page(pmd));
859 return 0;
860}
861
862static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800863 phys_addr_t addr, const pte_t *new_pte,
864 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100865{
866 pmd_t *pmd;
867 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800868 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
869 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
870
871 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100872
Christoffer Dall38f791a2014-10-10 12:14:28 +0200873 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100874 pmd = stage2_get_pmd(kvm, cache, addr);
875 if (!pmd) {
876 /*
877 * Ignore calls from kvm_set_spte_hva for unallocated
878 * address ranges.
879 */
880 return 0;
881 }
882
Mario Smarduch15a49a42015-01-15 15:58:58 -0800883 /*
884 * While dirty page logging - dissolve huge PMD, then continue on to
885 * allocate page.
886 */
887 if (logging_active)
888 stage2_dissolve_pmd(kvm, addr, pmd);
889
Christoffer Dallad361f02012-11-01 17:14:45 +0100890 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500891 if (pmd_none(*pmd)) {
892 if (!cache)
893 return 0; /* ignore calls from kvm_set_spte_hva */
894 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100895 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500896 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500897 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100898 }
899
900 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500901
902 if (iomap && pte_present(*pte))
903 return -EFAULT;
904
905 /* Create 2nd stage page table mapping - Level 3 */
906 old_pte = *pte;
907 kvm_set_pte(pte, *new_pte);
908 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000909 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500910 else
911 get_page(virt_to_page(pte));
912
913 return 0;
914}
915
916/**
917 * kvm_phys_addr_ioremap - map a device range to guest IPA
918 *
919 * @kvm: The KVM pointer
920 * @guest_ipa: The IPA at which to insert the mapping
921 * @pa: The physical address of the device
922 * @size: The size of the mapping
923 */
924int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700925 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500926{
927 phys_addr_t addr, end;
928 int ret = 0;
929 unsigned long pfn;
930 struct kvm_mmu_memory_cache cache = { 0, };
931
932 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
933 pfn = __phys_to_pfn(pa);
934
935 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100936 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500937
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700938 if (writable)
939 kvm_set_s2pte_writable(&pte);
940
Christoffer Dall38f791a2014-10-10 12:14:28 +0200941 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
942 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500943 if (ret)
944 goto out;
945 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -0800946 ret = stage2_set_pte(kvm, &cache, addr, &pte,
947 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500948 spin_unlock(&kvm->mmu_lock);
949 if (ret)
950 goto out;
951
952 pfn++;
953 }
954
955out:
956 mmu_free_memory_cache(&cache);
957 return ret;
958}
959
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700960static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
961{
962 pfn_t pfn = *pfnp;
963 gfn_t gfn = *ipap >> PAGE_SHIFT;
964
965 if (PageTransCompound(pfn_to_page(pfn))) {
966 unsigned long mask;
967 /*
968 * The address we faulted on is backed by a transparent huge
969 * page. However, because we map the compound huge page and
970 * not the individual tail page, we need to transfer the
971 * refcount to the head page. We have to be careful that the
972 * THP doesn't start to split while we are adjusting the
973 * refcounts.
974 *
975 * We are sure this doesn't happen, because mmu_notifier_retry
976 * was successful and we are holding the mmu_lock, so if this
977 * THP is trying to split, it will be blocked in the mmu
978 * notifier before touching any of the pages, specifically
979 * before being able to call __split_huge_page_refcount().
980 *
981 * We can therefore safely transfer the refcount from PG_tail
982 * to PG_head and switch the pfn from a tail page to the head
983 * page accordingly.
984 */
985 mask = PTRS_PER_PMD - 1;
986 VM_BUG_ON((gfn & mask) != (pfn & mask));
987 if (pfn & mask) {
988 *ipap &= PMD_MASK;
989 kvm_release_pfn_clean(pfn);
990 pfn &= ~mask;
991 kvm_get_pfn(pfn);
992 *pfnp = pfn;
993 }
994
995 return true;
996 }
997
998 return false;
999}
1000
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001001static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1002{
1003 if (kvm_vcpu_trap_is_iabt(vcpu))
1004 return false;
1005
1006 return kvm_vcpu_dabt_iswrite(vcpu);
1007}
1008
Ard Biesheuvelbb55e9b2014-11-10 09:33:55 +01001009static bool kvm_is_device_pfn(unsigned long pfn)
1010{
1011 return !pfn_valid(pfn);
1012}
1013
Mario Smarduchc6473552015-01-15 15:58:56 -08001014/**
1015 * stage2_wp_ptes - write protect PMD range
1016 * @pmd: pointer to pmd entry
1017 * @addr: range start address
1018 * @end: range end address
1019 */
1020static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1021{
1022 pte_t *pte;
1023
1024 pte = pte_offset_kernel(pmd, addr);
1025 do {
1026 if (!pte_none(*pte)) {
1027 if (!kvm_s2pte_readonly(pte))
1028 kvm_set_s2pte_readonly(pte);
1029 }
1030 } while (pte++, addr += PAGE_SIZE, addr != end);
1031}
1032
1033/**
1034 * stage2_wp_pmds - write protect PUD range
1035 * @pud: pointer to pud entry
1036 * @addr: range start address
1037 * @end: range end address
1038 */
1039static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1040{
1041 pmd_t *pmd;
1042 phys_addr_t next;
1043
1044 pmd = pmd_offset(pud, addr);
1045
1046 do {
1047 next = kvm_pmd_addr_end(addr, end);
1048 if (!pmd_none(*pmd)) {
1049 if (kvm_pmd_huge(*pmd)) {
1050 if (!kvm_s2pmd_readonly(pmd))
1051 kvm_set_s2pmd_readonly(pmd);
1052 } else {
1053 stage2_wp_ptes(pmd, addr, next);
1054 }
1055 }
1056 } while (pmd++, addr = next, addr != end);
1057}
1058
1059/**
1060 * stage2_wp_puds - write protect PGD range
1061 * @pgd: pointer to pgd entry
1062 * @addr: range start address
1063 * @end: range end address
1064 *
1065 * Process PUD entries, for a huge PUD we cause a panic.
1066 */
1067static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1068{
1069 pud_t *pud;
1070 phys_addr_t next;
1071
1072 pud = pud_offset(pgd, addr);
1073 do {
1074 next = kvm_pud_addr_end(addr, end);
1075 if (!pud_none(*pud)) {
1076 /* TODO:PUD not supported, revisit later if supported */
1077 BUG_ON(kvm_pud_huge(*pud));
1078 stage2_wp_pmds(pud, addr, next);
1079 }
1080 } while (pud++, addr = next, addr != end);
1081}
1082
1083/**
1084 * stage2_wp_range() - write protect stage2 memory region range
1085 * @kvm: The KVM pointer
1086 * @addr: Start address of range
1087 * @end: End address of range
1088 */
1089static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1090{
1091 pgd_t *pgd;
1092 phys_addr_t next;
1093
1094 pgd = kvm->arch.pgd + pgd_index(addr);
1095 do {
1096 /*
1097 * Release kvm_mmu_lock periodically if the memory region is
1098 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001099 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1100 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001101 * will also starve other vCPUs.
1102 */
1103 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1104 cond_resched_lock(&kvm->mmu_lock);
1105
1106 next = kvm_pgd_addr_end(addr, end);
1107 if (pgd_present(*pgd))
1108 stage2_wp_puds(pgd, addr, next);
1109 } while (pgd++, addr = next, addr != end);
1110}
1111
1112/**
1113 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1114 * @kvm: The KVM pointer
1115 * @slot: The memory slot to write protect
1116 *
1117 * Called to start logging dirty pages after memory region
1118 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1119 * all present PMD and PTEs are write protected in the memory region.
1120 * Afterwards read of dirty page log can be called.
1121 *
1122 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1123 * serializing operations for VM memory regions.
1124 */
1125void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1126{
1127 struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1128 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1129 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1130
1131 spin_lock(&kvm->mmu_lock);
1132 stage2_wp_range(kvm, start, end);
1133 spin_unlock(&kvm->mmu_lock);
1134 kvm_flush_remote_tlbs(kvm);
1135}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001136
1137/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001138 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001139 * @kvm: The KVM pointer
1140 * @slot: The memory slot associated with mask
1141 * @gfn_offset: The gfn offset in memory slot
1142 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1143 * slot to be write protected
1144 *
1145 * Walks bits set in mask write protects the associated pte's. Caller must
1146 * acquire kvm_mmu_lock.
1147 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001148static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001149 struct kvm_memory_slot *slot,
1150 gfn_t gfn_offset, unsigned long mask)
1151{
1152 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1153 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1154 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1155
1156 stage2_wp_range(kvm, start, end);
1157}
Mario Smarduchc6473552015-01-15 15:58:56 -08001158
Kai Huang3b0f1d02015-01-28 10:54:23 +08001159/*
1160 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1161 * dirty pages.
1162 *
1163 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1164 * enable dirty logging for them.
1165 */
1166void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1167 struct kvm_memory_slot *slot,
1168 gfn_t gfn_offset, unsigned long mask)
1169{
1170 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1171}
1172
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001173static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1174 unsigned long size, bool uncached)
1175{
1176 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1177}
1178
Christoffer Dall94f8e642013-01-20 18:28:12 -05001179static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001180 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001181 unsigned long fault_status)
1182{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001183 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001184 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001185 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001186 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001187 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001188 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001189 struct vm_area_struct *vma;
1190 pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001191 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001192 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001193 bool logging_active = memslot_is_logging(memslot);
1194 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001195
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001196 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001197 if (fault_status == FSC_PERM && !write_fault) {
1198 kvm_err("Unexpected L2 read permission error\n");
1199 return -EFAULT;
1200 }
1201
Christoffer Dallad361f02012-11-01 17:14:45 +01001202 /* Let's check if we will get back a huge page backed by hugetlbfs */
1203 down_read(&current->mm->mmap_sem);
1204 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001205 if (unlikely(!vma)) {
1206 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1207 up_read(&current->mm->mmap_sem);
1208 return -EFAULT;
1209 }
1210
Mario Smarduch15a49a42015-01-15 15:58:58 -08001211 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001212 hugetlb = true;
1213 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001214 } else {
1215 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001216 * Pages belonging to memslots that don't have the same
1217 * alignment for userspace and IPA cannot be mapped using
1218 * block descriptors even if the pages belong to a THP for
1219 * the process, because the stage-2 block descriptor will
1220 * cover more than a single THP and we loose atomicity for
1221 * unmapping, updates, and splits of the THP or other pages
1222 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001223 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001224 if ((memslot->userspace_addr & ~PMD_MASK) !=
1225 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001226 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001227 }
1228 up_read(&current->mm->mmap_sem);
1229
Christoffer Dall94f8e642013-01-20 18:28:12 -05001230 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001231 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1232 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001233 if (ret)
1234 return ret;
1235
1236 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1237 /*
1238 * Ensure the read of mmu_notifier_seq happens before we call
1239 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1240 * the page we just got a reference to gets unmapped before we have a
1241 * chance to grab the mmu_lock, which ensure that if the page gets
1242 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1243 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1244 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1245 */
1246 smp_rmb();
1247
Christoffer Dallad361f02012-11-01 17:14:45 +01001248 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001249 if (is_error_pfn(pfn))
1250 return -EFAULT;
1251
Mario Smarduch15a49a42015-01-15 15:58:58 -08001252 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001253 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001254 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1255 } else if (logging_active) {
1256 /*
1257 * Faults on pages in a memslot with logging enabled
1258 * should not be mapped with huge pages (it introduces churn
1259 * and performance degradation), so force a pte mapping.
1260 */
1261 force_pte = true;
1262 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1263
1264 /*
1265 * Only actually map the page as writable if this was a write
1266 * fault.
1267 */
1268 if (!write_fault)
1269 writable = false;
1270 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001271
Christoffer Dallad361f02012-11-01 17:14:45 +01001272 spin_lock(&kvm->mmu_lock);
1273 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001274 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001275
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001276 if (!hugetlb && !force_pte)
1277 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001278
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001279 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001280
Christoffer Dallad361f02012-11-01 17:14:45 +01001281 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001282 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001283 new_pmd = pmd_mkhuge(new_pmd);
1284 if (writable) {
1285 kvm_set_s2pmd_writable(&new_pmd);
1286 kvm_set_pfn_dirty(pfn);
1287 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001288 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001289 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1290 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001291 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001292
Christoffer Dallad361f02012-11-01 17:14:45 +01001293 if (writable) {
1294 kvm_set_s2pte_writable(&new_pte);
1295 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001296 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001297 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001298 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001299 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001300 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001301
Christoffer Dall94f8e642013-01-20 18:28:12 -05001302out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001303 spin_unlock(&kvm->mmu_lock);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001304 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001305 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001306}
1307
1308/**
1309 * kvm_handle_guest_abort - handles all 2nd stage aborts
1310 * @vcpu: the VCPU pointer
1311 * @run: the kvm_run structure
1312 *
1313 * Any abort that gets to the host is almost guaranteed to be caused by a
1314 * missing second stage translation table entry, which can mean that either the
1315 * guest simply needs more memory and we must allocate an appropriate page or it
1316 * can mean that the guest tried to access I/O memory, which is emulated by user
1317 * space. The distinction is based on the IPA causing the fault and whether this
1318 * memory region has been registered as standard RAM by user space.
1319 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001320int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1321{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001322 unsigned long fault_status;
1323 phys_addr_t fault_ipa;
1324 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001325 unsigned long hva;
1326 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001327 gfn_t gfn;
1328 int ret, idx;
1329
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001330 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001331 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001332
Marc Zyngier7393b592012-09-17 19:27:09 +01001333 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1334 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001335
1336 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001337 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001338 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001339 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1340 kvm_vcpu_trap_get_class(vcpu),
1341 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1342 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001343 return -EFAULT;
1344 }
1345
1346 idx = srcu_read_lock(&vcpu->kvm->srcu);
1347
1348 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001349 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1350 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001351 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001352 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001353 if (is_iabt) {
1354 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001355 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001356 ret = 1;
1357 goto out_unlock;
1358 }
1359
Marc Zyngiercfe39502012-12-12 14:42:09 +00001360 /*
1361 * The IPA is reported as [MAX:12], so we need to
1362 * complement it with the bottom 12 bits from the
1363 * faulting VA. This is always 12 bits, irrespective
1364 * of the page size.
1365 */
1366 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001367 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001368 goto out_unlock;
1369 }
1370
Christoffer Dallc3058d52014-10-10 12:14:29 +02001371 /* Userspace should not be able to register out-of-bounds IPAs */
1372 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1373
Christoffer Dall98047882014-08-19 12:18:04 +02001374 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001375 if (ret == 0)
1376 ret = 1;
1377out_unlock:
1378 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1379 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001380}
1381
Christoffer Dalld5d81842013-01-20 18:28:07 -05001382static void handle_hva_to_gpa(struct kvm *kvm,
1383 unsigned long start,
1384 unsigned long end,
1385 void (*handler)(struct kvm *kvm,
1386 gpa_t gpa, void *data),
1387 void *data)
1388{
1389 struct kvm_memslots *slots;
1390 struct kvm_memory_slot *memslot;
1391
1392 slots = kvm_memslots(kvm);
1393
1394 /* we only care about the pages that the guest sees */
1395 kvm_for_each_memslot(memslot, slots) {
1396 unsigned long hva_start, hva_end;
1397 gfn_t gfn, gfn_end;
1398
1399 hva_start = max(start, memslot->userspace_addr);
1400 hva_end = min(end, memslot->userspace_addr +
1401 (memslot->npages << PAGE_SHIFT));
1402 if (hva_start >= hva_end)
1403 continue;
1404
1405 /*
1406 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1407 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1408 */
1409 gfn = hva_to_gfn_memslot(hva_start, memslot);
1410 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1411
1412 for (; gfn < gfn_end; ++gfn) {
1413 gpa_t gpa = gfn << PAGE_SHIFT;
1414 handler(kvm, gpa, data);
1415 }
1416 }
1417}
1418
1419static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1420{
1421 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001422}
1423
1424int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1425{
1426 unsigned long end = hva + PAGE_SIZE;
1427
1428 if (!kvm->arch.pgd)
1429 return 0;
1430
1431 trace_kvm_unmap_hva(hva);
1432 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1433 return 0;
1434}
1435
1436int kvm_unmap_hva_range(struct kvm *kvm,
1437 unsigned long start, unsigned long end)
1438{
1439 if (!kvm->arch.pgd)
1440 return 0;
1441
1442 trace_kvm_unmap_hva_range(start, end);
1443 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1444 return 0;
1445}
1446
1447static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1448{
1449 pte_t *pte = (pte_t *)data;
1450
Mario Smarduch15a49a42015-01-15 15:58:58 -08001451 /*
1452 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1453 * flag clear because MMU notifiers will have unmapped a huge PMD before
1454 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1455 * therefore stage2_set_pte() never needs to clear out a huge PMD
1456 * through this calling path.
1457 */
1458 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001459}
1460
1461
1462void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1463{
1464 unsigned long end = hva + PAGE_SIZE;
1465 pte_t stage2_pte;
1466
1467 if (!kvm->arch.pgd)
1468 return;
1469
1470 trace_kvm_set_spte_hva(hva);
1471 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1472 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1473}
1474
1475void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1476{
1477 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1478}
1479
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001480phys_addr_t kvm_mmu_get_httbr(void)
1481{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001482 if (__kvm_cpu_uses_extended_idmap())
1483 return virt_to_phys(merged_hyp_pgd);
1484 else
1485 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001486}
1487
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001488phys_addr_t kvm_mmu_get_boot_httbr(void)
1489{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001490 if (__kvm_cpu_uses_extended_idmap())
1491 return virt_to_phys(merged_hyp_pgd);
1492 else
1493 return virt_to_phys(boot_hyp_pgd);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001494}
1495
1496phys_addr_t kvm_get_idmap_vector(void)
1497{
1498 return hyp_idmap_vector;
1499}
1500
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001501int kvm_mmu_init(void)
1502{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001503 int err;
1504
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001505 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1506 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1507 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001508
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001509 /*
1510 * We rely on the linker script to ensure at build time that the HYP
1511 * init code does not cross a page boundary.
1512 */
1513 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001514
Christoffer Dall38f791a2014-10-10 12:14:28 +02001515 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1516 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Mark Salter5d4e08c2014-03-28 14:25:19 +00001517
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001518 if (!hyp_pgd || !boot_hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001519 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001520 err = -ENOMEM;
1521 goto out;
1522 }
1523
1524 /* Create the idmap in the boot page tables */
1525 err = __create_hyp_mappings(boot_hyp_pgd,
1526 hyp_idmap_start, hyp_idmap_end,
1527 __phys_to_pfn(hyp_idmap_start),
1528 PAGE_HYP);
1529
1530 if (err) {
1531 kvm_err("Failed to idmap %lx-%lx\n",
1532 hyp_idmap_start, hyp_idmap_end);
1533 goto out;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001534 }
1535
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001536 if (__kvm_cpu_uses_extended_idmap()) {
1537 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1538 if (!merged_hyp_pgd) {
1539 kvm_err("Failed to allocate extra HYP pgd\n");
1540 goto out;
1541 }
1542 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1543 hyp_idmap_start);
1544 return 0;
1545 }
1546
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001547 /* Map the very same page at the trampoline VA */
1548 err = __create_hyp_mappings(boot_hyp_pgd,
1549 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1550 __phys_to_pfn(hyp_idmap_start),
1551 PAGE_HYP);
1552 if (err) {
1553 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1554 TRAMPOLINE_VA);
1555 goto out;
1556 }
1557
1558 /* Map the same page again into the runtime page tables */
1559 err = __create_hyp_mappings(hyp_pgd,
1560 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1561 __phys_to_pfn(hyp_idmap_start),
1562 PAGE_HYP);
1563 if (err) {
1564 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1565 TRAMPOLINE_VA);
1566 goto out;
1567 }
1568
Christoffer Dalld5d81842013-01-20 18:28:07 -05001569 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001570out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001571 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001572 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001573}
Eric Augerdf6ce242014-06-06 11:10:23 +02001574
1575void kvm_arch_commit_memory_region(struct kvm *kvm,
1576 struct kvm_userspace_memory_region *mem,
1577 const struct kvm_memory_slot *old,
1578 enum kvm_mr_change change)
1579{
Mario Smarduchc6473552015-01-15 15:58:56 -08001580 /*
1581 * At this point memslot has been committed and there is an
1582 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1583 * memory slot is write protected.
1584 */
1585 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1586 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001587}
1588
1589int kvm_arch_prepare_memory_region(struct kvm *kvm,
1590 struct kvm_memory_slot *memslot,
1591 struct kvm_userspace_memory_region *mem,
1592 enum kvm_mr_change change)
1593{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001594 hva_t hva = mem->userspace_addr;
1595 hva_t reg_end = hva + mem->memory_size;
1596 bool writable = !(mem->flags & KVM_MEM_READONLY);
1597 int ret = 0;
1598
Mario Smarduch15a49a42015-01-15 15:58:58 -08001599 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1600 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001601 return 0;
1602
1603 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001604 * Prevent userspace from creating a memory region outside of the IPA
1605 * space addressable by the KVM guest IPA space.
1606 */
1607 if (memslot->base_gfn + memslot->npages >=
1608 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1609 return -EFAULT;
1610
1611 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001612 * A memory region could potentially cover multiple VMAs, and any holes
1613 * between them, so iterate over all of them to find out if we can map
1614 * any of them right now.
1615 *
1616 * +--------------------------------------------+
1617 * +---------------+----------------+ +----------------+
1618 * | : VMA 1 | VMA 2 | | VMA 3 : |
1619 * +---------------+----------------+ +----------------+
1620 * | memory region |
1621 * +--------------------------------------------+
1622 */
1623 do {
1624 struct vm_area_struct *vma = find_vma(current->mm, hva);
1625 hva_t vm_start, vm_end;
1626
1627 if (!vma || vma->vm_start >= reg_end)
1628 break;
1629
1630 /*
1631 * Mapping a read-only VMA is only allowed if the
1632 * memory region is configured as read-only.
1633 */
1634 if (writable && !(vma->vm_flags & VM_WRITE)) {
1635 ret = -EPERM;
1636 break;
1637 }
1638
1639 /*
1640 * Take the intersection of this VMA with the memory region
1641 */
1642 vm_start = max(hva, vma->vm_start);
1643 vm_end = min(reg_end, vma->vm_end);
1644
1645 if (vma->vm_flags & VM_PFNMAP) {
1646 gpa_t gpa = mem->guest_phys_addr +
1647 (vm_start - mem->userspace_addr);
1648 phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1649 vm_start - vma->vm_start;
1650
Mario Smarduch15a49a42015-01-15 15:58:58 -08001651 /* IO region dirty page logging not allowed */
1652 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1653 return -EINVAL;
1654
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001655 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1656 vm_end - vm_start,
1657 writable);
1658 if (ret)
1659 break;
1660 }
1661 hva = vm_end;
1662 } while (hva < reg_end);
1663
Mario Smarduch15a49a42015-01-15 15:58:58 -08001664 if (change == KVM_MR_FLAGS_ONLY)
1665 return ret;
1666
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001667 spin_lock(&kvm->mmu_lock);
1668 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001669 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001670 else
1671 stage2_flush_memslot(kvm, memslot);
1672 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001673 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001674}
1675
1676void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1677 struct kvm_memory_slot *dont)
1678{
1679}
1680
1681int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1682 unsigned long npages)
1683{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001684 /*
1685 * Readonly memslots are not incoherent with the caches by definition,
1686 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1687 * that the guest may consider devices and hence map as uncached.
1688 * To prevent incoherency issues in these cases, tag all readonly
1689 * regions as incoherent.
1690 */
1691 if (slot->flags & KVM_MEM_READONLY)
1692 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001693 return 0;
1694}
1695
1696void kvm_arch_memslots_updated(struct kvm *kvm)
1697{
1698}
1699
1700void kvm_arch_flush_shadow_all(struct kvm *kvm)
1701{
1702}
1703
1704void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1705 struct kvm_memory_slot *slot)
1706{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001707 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1708 phys_addr_t size = slot->npages << PAGE_SHIFT;
1709
1710 spin_lock(&kvm->mmu_lock);
1711 unmap_stage2_range(kvm, gpa, size);
1712 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001713}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001714
1715/*
1716 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1717 *
1718 * Main problems:
1719 * - S/W ops are local to a CPU (not broadcast)
1720 * - We have line migration behind our back (speculation)
1721 * - System caches don't support S/W at all (damn!)
1722 *
1723 * In the face of the above, the best we can do is to try and convert
1724 * S/W ops to VA ops. Because the guest is not allowed to infer the
1725 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1726 * which is a rather good thing for us.
1727 *
1728 * Also, it is only used when turning caches on/off ("The expected
1729 * usage of the cache maintenance instructions that operate by set/way
1730 * is associated with the cache maintenance instructions associated
1731 * with the powerdown and powerup of caches, if this is required by
1732 * the implementation.").
1733 *
1734 * We use the following policy:
1735 *
1736 * - If we trap a S/W operation, we enable VM trapping to detect
1737 * caches being turned on/off, and do a full clean.
1738 *
1739 * - We flush the caches on both caches being turned on and off.
1740 *
1741 * - Once the caches are enabled, we stop trapping VM ops.
1742 */
1743void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1744{
1745 unsigned long hcr = vcpu_get_hcr(vcpu);
1746
1747 /*
1748 * If this is the first time we do a S/W operation
1749 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1750 * VM trapping.
1751 *
1752 * Otherwise, rely on the VM trapping to wait for the MMU +
1753 * Caches to be turned off. At that point, we'll be able to
1754 * clean the caches again.
1755 */
1756 if (!(hcr & HCR_TVM)) {
1757 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1758 vcpu_has_cache_enabled(vcpu));
1759 stage2_flush_vm(vcpu->kvm);
1760 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1761 }
1762}
1763
1764void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1765{
1766 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1767
1768 /*
1769 * If switching the MMU+caches on, need to invalidate the caches.
1770 * If switching it off, need to clean the caches.
1771 * Clean + invalidate does the trick always.
1772 */
1773 if (now_enabled != was_enabled)
1774 stage2_flush_vm(vcpu->kvm);
1775
1776 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1777 if (now_enabled)
1778 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1779
1780 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1781}