Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 1 | /* |
| 2 | * 8253/8254 interval timer emulation |
| 3 | * |
| 4 | * Copyright (c) 2003-2004 Fabrice Bellard |
| 5 | * Copyright (c) 2006 Intel Corporation |
| 6 | * Copyright (c) 2007 Keir Fraser, XenSource Inc |
| 7 | * Copyright (c) 2008 Intel Corporation |
| 8 | * |
| 9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 10 | * of this software and associated documentation files (the "Software"), to deal |
| 11 | * in the Software without restriction, including without limitation the rights |
| 12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 13 | * copies of the Software, and to permit persons to whom the Software is |
| 14 | * furnished to do so, subject to the following conditions: |
| 15 | * |
| 16 | * The above copyright notice and this permission notice shall be included in |
| 17 | * all copies or substantial portions of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 22 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 25 | * THE SOFTWARE. |
| 26 | * |
| 27 | * Authors: |
| 28 | * Sheng Yang <sheng.yang@intel.com> |
| 29 | * Based on QEMU and Xen. |
| 30 | */ |
| 31 | |
| 32 | #include <linux/kvm_host.h> |
| 33 | |
| 34 | #include "irq.h" |
| 35 | #include "i8254.h" |
| 36 | |
| 37 | #ifndef CONFIG_X86_64 |
| 38 | #define mod_64(x, y) ((x) - (y) * div64_64(x, y)) |
| 39 | #else |
| 40 | #define mod_64(x, y) ((x) % (y)) |
| 41 | #endif |
| 42 | |
| 43 | #define RW_STATE_LSB 1 |
| 44 | #define RW_STATE_MSB 2 |
| 45 | #define RW_STATE_WORD0 3 |
| 46 | #define RW_STATE_WORD1 4 |
| 47 | |
| 48 | /* Compute with 96 bit intermediate result: (a*b)/c */ |
| 49 | static u64 muldiv64(u64 a, u32 b, u32 c) |
| 50 | { |
| 51 | union { |
| 52 | u64 ll; |
| 53 | struct { |
| 54 | u32 low, high; |
| 55 | } l; |
| 56 | } u, res; |
| 57 | u64 rl, rh; |
| 58 | |
| 59 | u.ll = a; |
| 60 | rl = (u64)u.l.low * (u64)b; |
| 61 | rh = (u64)u.l.high * (u64)b; |
| 62 | rh += (rl >> 32); |
| 63 | res.l.high = div64_64(rh, c); |
| 64 | res.l.low = div64_64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); |
| 65 | return res.ll; |
| 66 | } |
| 67 | |
| 68 | static void pit_set_gate(struct kvm *kvm, int channel, u32 val) |
| 69 | { |
| 70 | struct kvm_kpit_channel_state *c = |
| 71 | &kvm->arch.vpit->pit_state.channels[channel]; |
| 72 | |
| 73 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 74 | |
| 75 | switch (c->mode) { |
| 76 | default: |
| 77 | case 0: |
| 78 | case 4: |
| 79 | /* XXX: just disable/enable counting */ |
| 80 | break; |
| 81 | case 1: |
| 82 | case 2: |
| 83 | case 3: |
| 84 | case 5: |
| 85 | /* Restart counting on rising edge. */ |
| 86 | if (c->gate < val) |
| 87 | c->count_load_time = ktime_get(); |
| 88 | break; |
| 89 | } |
| 90 | |
| 91 | c->gate = val; |
| 92 | } |
| 93 | |
| 94 | int pit_get_gate(struct kvm *kvm, int channel) |
| 95 | { |
| 96 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 97 | |
| 98 | return kvm->arch.vpit->pit_state.channels[channel].gate; |
| 99 | } |
| 100 | |
| 101 | static int pit_get_count(struct kvm *kvm, int channel) |
| 102 | { |
| 103 | struct kvm_kpit_channel_state *c = |
| 104 | &kvm->arch.vpit->pit_state.channels[channel]; |
| 105 | s64 d, t; |
| 106 | int counter; |
| 107 | |
| 108 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 109 | |
| 110 | t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); |
| 111 | d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); |
| 112 | |
| 113 | switch (c->mode) { |
| 114 | case 0: |
| 115 | case 1: |
| 116 | case 4: |
| 117 | case 5: |
| 118 | counter = (c->count - d) & 0xffff; |
| 119 | break; |
| 120 | case 3: |
| 121 | /* XXX: may be incorrect for odd counts */ |
| 122 | counter = c->count - (mod_64((2 * d), c->count)); |
| 123 | break; |
| 124 | default: |
| 125 | counter = c->count - mod_64(d, c->count); |
| 126 | break; |
| 127 | } |
| 128 | return counter; |
| 129 | } |
| 130 | |
| 131 | static int pit_get_out(struct kvm *kvm, int channel) |
| 132 | { |
| 133 | struct kvm_kpit_channel_state *c = |
| 134 | &kvm->arch.vpit->pit_state.channels[channel]; |
| 135 | s64 d, t; |
| 136 | int out; |
| 137 | |
| 138 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 139 | |
| 140 | t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); |
| 141 | d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); |
| 142 | |
| 143 | switch (c->mode) { |
| 144 | default: |
| 145 | case 0: |
| 146 | out = (d >= c->count); |
| 147 | break; |
| 148 | case 1: |
| 149 | out = (d < c->count); |
| 150 | break; |
| 151 | case 2: |
| 152 | out = ((mod_64(d, c->count) == 0) && (d != 0)); |
| 153 | break; |
| 154 | case 3: |
| 155 | out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); |
| 156 | break; |
| 157 | case 4: |
| 158 | case 5: |
| 159 | out = (d == c->count); |
| 160 | break; |
| 161 | } |
| 162 | |
| 163 | return out; |
| 164 | } |
| 165 | |
| 166 | static void pit_latch_count(struct kvm *kvm, int channel) |
| 167 | { |
| 168 | struct kvm_kpit_channel_state *c = |
| 169 | &kvm->arch.vpit->pit_state.channels[channel]; |
| 170 | |
| 171 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 172 | |
| 173 | if (!c->count_latched) { |
| 174 | c->latched_count = pit_get_count(kvm, channel); |
| 175 | c->count_latched = c->rw_mode; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | static void pit_latch_status(struct kvm *kvm, int channel) |
| 180 | { |
| 181 | struct kvm_kpit_channel_state *c = |
| 182 | &kvm->arch.vpit->pit_state.channels[channel]; |
| 183 | |
| 184 | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| 185 | |
| 186 | if (!c->status_latched) { |
| 187 | /* TODO: Return NULL COUNT (bit 6). */ |
| 188 | c->status = ((pit_get_out(kvm, channel) << 7) | |
| 189 | (c->rw_mode << 4) | |
| 190 | (c->mode << 1) | |
| 191 | c->bcd); |
| 192 | c->status_latched = 1; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | int __pit_timer_fn(struct kvm_kpit_state *ps) |
| 197 | { |
| 198 | struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0]; |
| 199 | struct kvm_kpit_timer *pt = &ps->pit_timer; |
| 200 | |
| 201 | atomic_inc(&pt->pending); |
| 202 | smp_mb__after_atomic_inc(); |
| 203 | /* FIXME: handle case where the guest is in guest mode */ |
| 204 | if (vcpu0 && waitqueue_active(&vcpu0->wq)) { |
Avi Kivity | a453529 | 2008-04-13 17:54:35 +0300 | [diff] [blame] | 205 | vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 206 | wake_up_interruptible(&vcpu0->wq); |
| 207 | } |
| 208 | |
| 209 | pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period); |
| 210 | pt->scheduled = ktime_to_ns(pt->timer.expires); |
| 211 | |
| 212 | return (pt->period == 0 ? 0 : 1); |
| 213 | } |
| 214 | |
Marcelo Tosatti | 3d80840 | 2008-04-11 14:53:26 -0300 | [diff] [blame] | 215 | int pit_has_pending_timer(struct kvm_vcpu *vcpu) |
| 216 | { |
| 217 | struct kvm_pit *pit = vcpu->kvm->arch.vpit; |
| 218 | |
| 219 | if (pit && vcpu->vcpu_id == 0) |
| 220 | return atomic_read(&pit->pit_state.pit_timer.pending); |
| 221 | |
| 222 | return 0; |
| 223 | } |
| 224 | |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 225 | static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) |
| 226 | { |
| 227 | struct kvm_kpit_state *ps; |
| 228 | int restart_timer = 0; |
| 229 | |
| 230 | ps = container_of(data, struct kvm_kpit_state, pit_timer.timer); |
| 231 | |
| 232 | restart_timer = __pit_timer_fn(ps); |
| 233 | |
| 234 | if (restart_timer) |
| 235 | return HRTIMER_RESTART; |
| 236 | else |
| 237 | return HRTIMER_NORESTART; |
| 238 | } |
| 239 | |
| 240 | static void destroy_pit_timer(struct kvm_kpit_timer *pt) |
| 241 | { |
| 242 | pr_debug("pit: execute del timer!\n"); |
| 243 | hrtimer_cancel(&pt->timer); |
| 244 | } |
| 245 | |
| 246 | static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period) |
| 247 | { |
| 248 | s64 interval; |
| 249 | |
| 250 | interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); |
| 251 | |
| 252 | pr_debug("pit: create pit timer, interval is %llu nsec\n", interval); |
| 253 | |
| 254 | /* TODO The new value only affected after the retriggered */ |
| 255 | hrtimer_cancel(&pt->timer); |
| 256 | pt->period = (is_period == 0) ? 0 : interval; |
| 257 | pt->timer.function = pit_timer_fn; |
| 258 | atomic_set(&pt->pending, 0); |
| 259 | |
| 260 | hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval), |
| 261 | HRTIMER_MODE_ABS); |
| 262 | } |
| 263 | |
| 264 | static void pit_load_count(struct kvm *kvm, int channel, u32 val) |
| 265 | { |
| 266 | struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; |
| 267 | |
| 268 | WARN_ON(!mutex_is_locked(&ps->lock)); |
| 269 | |
| 270 | pr_debug("pit: load_count val is %d, channel is %d\n", val, channel); |
| 271 | |
| 272 | /* |
| 273 | * Though spec said the state of 8254 is undefined after power-up, |
| 274 | * seems some tricky OS like Windows XP depends on IRQ0 interrupt |
| 275 | * when booting up. |
| 276 | * So here setting initialize rate for it, and not a specific number |
| 277 | */ |
| 278 | if (val == 0) |
| 279 | val = 0x10000; |
| 280 | |
| 281 | ps->channels[channel].count_load_time = ktime_get(); |
| 282 | ps->channels[channel].count = val; |
| 283 | |
| 284 | if (channel != 0) |
| 285 | return; |
| 286 | |
| 287 | /* Two types of timer |
| 288 | * mode 1 is one shot, mode 2 is period, otherwise del timer */ |
| 289 | switch (ps->channels[0].mode) { |
| 290 | case 1: |
| 291 | create_pit_timer(&ps->pit_timer, val, 0); |
| 292 | break; |
| 293 | case 2: |
| 294 | create_pit_timer(&ps->pit_timer, val, 1); |
| 295 | break; |
| 296 | default: |
| 297 | destroy_pit_timer(&ps->pit_timer); |
| 298 | } |
| 299 | } |
| 300 | |
Sheng Yang | e0f63cb | 2008-03-04 00:50:59 +0800 | [diff] [blame] | 301 | void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val) |
| 302 | { |
| 303 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| 304 | pit_load_count(kvm, channel, val); |
| 305 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| 306 | } |
| 307 | |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 308 | static void pit_ioport_write(struct kvm_io_device *this, |
| 309 | gpa_t addr, int len, const void *data) |
| 310 | { |
| 311 | struct kvm_pit *pit = (struct kvm_pit *)this->private; |
| 312 | struct kvm_kpit_state *pit_state = &pit->pit_state; |
| 313 | struct kvm *kvm = pit->kvm; |
| 314 | int channel, access; |
| 315 | struct kvm_kpit_channel_state *s; |
| 316 | u32 val = *(u32 *) data; |
| 317 | |
| 318 | val &= 0xff; |
| 319 | addr &= KVM_PIT_CHANNEL_MASK; |
| 320 | |
| 321 | mutex_lock(&pit_state->lock); |
| 322 | |
| 323 | if (val != 0) |
| 324 | pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n", |
| 325 | (unsigned int)addr, len, val); |
| 326 | |
| 327 | if (addr == 3) { |
| 328 | channel = val >> 6; |
| 329 | if (channel == 3) { |
| 330 | /* Read-Back Command. */ |
| 331 | for (channel = 0; channel < 3; channel++) { |
| 332 | s = &pit_state->channels[channel]; |
| 333 | if (val & (2 << channel)) { |
| 334 | if (!(val & 0x20)) |
| 335 | pit_latch_count(kvm, channel); |
| 336 | if (!(val & 0x10)) |
| 337 | pit_latch_status(kvm, channel); |
| 338 | } |
| 339 | } |
| 340 | } else { |
| 341 | /* Select Counter <channel>. */ |
| 342 | s = &pit_state->channels[channel]; |
| 343 | access = (val >> 4) & KVM_PIT_CHANNEL_MASK; |
| 344 | if (access == 0) { |
| 345 | pit_latch_count(kvm, channel); |
| 346 | } else { |
| 347 | s->rw_mode = access; |
| 348 | s->read_state = access; |
| 349 | s->write_state = access; |
| 350 | s->mode = (val >> 1) & 7; |
| 351 | if (s->mode > 5) |
| 352 | s->mode -= 4; |
| 353 | s->bcd = val & 1; |
| 354 | } |
| 355 | } |
| 356 | } else { |
| 357 | /* Write Count. */ |
| 358 | s = &pit_state->channels[addr]; |
| 359 | switch (s->write_state) { |
| 360 | default: |
| 361 | case RW_STATE_LSB: |
| 362 | pit_load_count(kvm, addr, val); |
| 363 | break; |
| 364 | case RW_STATE_MSB: |
| 365 | pit_load_count(kvm, addr, val << 8); |
| 366 | break; |
| 367 | case RW_STATE_WORD0: |
| 368 | s->write_latch = val; |
| 369 | s->write_state = RW_STATE_WORD1; |
| 370 | break; |
| 371 | case RW_STATE_WORD1: |
| 372 | pit_load_count(kvm, addr, s->write_latch | (val << 8)); |
| 373 | s->write_state = RW_STATE_WORD0; |
| 374 | break; |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | mutex_unlock(&pit_state->lock); |
| 379 | } |
| 380 | |
| 381 | static void pit_ioport_read(struct kvm_io_device *this, |
| 382 | gpa_t addr, int len, void *data) |
| 383 | { |
| 384 | struct kvm_pit *pit = (struct kvm_pit *)this->private; |
| 385 | struct kvm_kpit_state *pit_state = &pit->pit_state; |
| 386 | struct kvm *kvm = pit->kvm; |
| 387 | int ret, count; |
| 388 | struct kvm_kpit_channel_state *s; |
| 389 | |
| 390 | addr &= KVM_PIT_CHANNEL_MASK; |
| 391 | s = &pit_state->channels[addr]; |
| 392 | |
| 393 | mutex_lock(&pit_state->lock); |
| 394 | |
| 395 | if (s->status_latched) { |
| 396 | s->status_latched = 0; |
| 397 | ret = s->status; |
| 398 | } else if (s->count_latched) { |
| 399 | switch (s->count_latched) { |
| 400 | default: |
| 401 | case RW_STATE_LSB: |
| 402 | ret = s->latched_count & 0xff; |
| 403 | s->count_latched = 0; |
| 404 | break; |
| 405 | case RW_STATE_MSB: |
| 406 | ret = s->latched_count >> 8; |
| 407 | s->count_latched = 0; |
| 408 | break; |
| 409 | case RW_STATE_WORD0: |
| 410 | ret = s->latched_count & 0xff; |
| 411 | s->count_latched = RW_STATE_MSB; |
| 412 | break; |
| 413 | } |
| 414 | } else { |
| 415 | switch (s->read_state) { |
| 416 | default: |
| 417 | case RW_STATE_LSB: |
| 418 | count = pit_get_count(kvm, addr); |
| 419 | ret = count & 0xff; |
| 420 | break; |
| 421 | case RW_STATE_MSB: |
| 422 | count = pit_get_count(kvm, addr); |
| 423 | ret = (count >> 8) & 0xff; |
| 424 | break; |
| 425 | case RW_STATE_WORD0: |
| 426 | count = pit_get_count(kvm, addr); |
| 427 | ret = count & 0xff; |
| 428 | s->read_state = RW_STATE_WORD1; |
| 429 | break; |
| 430 | case RW_STATE_WORD1: |
| 431 | count = pit_get_count(kvm, addr); |
| 432 | ret = (count >> 8) & 0xff; |
| 433 | s->read_state = RW_STATE_WORD0; |
| 434 | break; |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | if (len > sizeof(ret)) |
| 439 | len = sizeof(ret); |
| 440 | memcpy(data, (char *)&ret, len); |
| 441 | |
| 442 | mutex_unlock(&pit_state->lock); |
| 443 | } |
| 444 | |
| 445 | static int pit_in_range(struct kvm_io_device *this, gpa_t addr) |
| 446 | { |
| 447 | return ((addr >= KVM_PIT_BASE_ADDRESS) && |
| 448 | (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); |
| 449 | } |
| 450 | |
| 451 | static void speaker_ioport_write(struct kvm_io_device *this, |
| 452 | gpa_t addr, int len, const void *data) |
| 453 | { |
| 454 | struct kvm_pit *pit = (struct kvm_pit *)this->private; |
| 455 | struct kvm_kpit_state *pit_state = &pit->pit_state; |
| 456 | struct kvm *kvm = pit->kvm; |
| 457 | u32 val = *(u32 *) data; |
| 458 | |
| 459 | mutex_lock(&pit_state->lock); |
| 460 | pit_state->speaker_data_on = (val >> 1) & 1; |
| 461 | pit_set_gate(kvm, 2, val & 1); |
| 462 | mutex_unlock(&pit_state->lock); |
| 463 | } |
| 464 | |
| 465 | static void speaker_ioport_read(struct kvm_io_device *this, |
| 466 | gpa_t addr, int len, void *data) |
| 467 | { |
| 468 | struct kvm_pit *pit = (struct kvm_pit *)this->private; |
| 469 | struct kvm_kpit_state *pit_state = &pit->pit_state; |
| 470 | struct kvm *kvm = pit->kvm; |
| 471 | unsigned int refresh_clock; |
| 472 | int ret; |
| 473 | |
| 474 | /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ |
| 475 | refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; |
| 476 | |
| 477 | mutex_lock(&pit_state->lock); |
| 478 | ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | |
| 479 | (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); |
| 480 | if (len > sizeof(ret)) |
| 481 | len = sizeof(ret); |
| 482 | memcpy(data, (char *)&ret, len); |
| 483 | mutex_unlock(&pit_state->lock); |
| 484 | } |
| 485 | |
| 486 | static int speaker_in_range(struct kvm_io_device *this, gpa_t addr) |
| 487 | { |
| 488 | return (addr == KVM_SPEAKER_BASE_ADDRESS); |
| 489 | } |
| 490 | |
Sheng Yang | 308b0f2 | 2008-03-13 10:22:26 +0800 | [diff] [blame] | 491 | void kvm_pit_reset(struct kvm_pit *pit) |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 492 | { |
| 493 | int i; |
Sheng Yang | 308b0f2 | 2008-03-13 10:22:26 +0800 | [diff] [blame] | 494 | struct kvm_kpit_channel_state *c; |
| 495 | |
| 496 | mutex_lock(&pit->pit_state.lock); |
| 497 | for (i = 0; i < 3; i++) { |
| 498 | c = &pit->pit_state.channels[i]; |
| 499 | c->mode = 0xff; |
| 500 | c->gate = (i != 2); |
| 501 | pit_load_count(pit->kvm, i, 0); |
| 502 | } |
| 503 | mutex_unlock(&pit->pit_state.lock); |
| 504 | |
| 505 | atomic_set(&pit->pit_state.pit_timer.pending, 0); |
| 506 | pit->pit_state.inject_pending = 1; |
| 507 | } |
| 508 | |
| 509 | struct kvm_pit *kvm_create_pit(struct kvm *kvm) |
| 510 | { |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 511 | struct kvm_pit *pit; |
| 512 | struct kvm_kpit_state *pit_state; |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 513 | |
| 514 | pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); |
| 515 | if (!pit) |
| 516 | return NULL; |
| 517 | |
| 518 | mutex_init(&pit->pit_state.lock); |
| 519 | mutex_lock(&pit->pit_state.lock); |
| 520 | |
| 521 | /* Initialize PIO device */ |
| 522 | pit->dev.read = pit_ioport_read; |
| 523 | pit->dev.write = pit_ioport_write; |
| 524 | pit->dev.in_range = pit_in_range; |
| 525 | pit->dev.private = pit; |
| 526 | kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev); |
| 527 | |
| 528 | pit->speaker_dev.read = speaker_ioport_read; |
| 529 | pit->speaker_dev.write = speaker_ioport_write; |
| 530 | pit->speaker_dev.in_range = speaker_in_range; |
| 531 | pit->speaker_dev.private = pit; |
| 532 | kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev); |
| 533 | |
| 534 | kvm->arch.vpit = pit; |
| 535 | pit->kvm = kvm; |
| 536 | |
| 537 | pit_state = &pit->pit_state; |
| 538 | pit_state->pit = pit; |
| 539 | hrtimer_init(&pit_state->pit_timer.timer, |
| 540 | CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 541 | mutex_unlock(&pit->pit_state.lock); |
| 542 | |
Sheng Yang | 308b0f2 | 2008-03-13 10:22:26 +0800 | [diff] [blame] | 543 | kvm_pit_reset(pit); |
Sheng Yang | 7837699 | 2008-01-28 05:10:22 +0800 | [diff] [blame] | 544 | |
| 545 | return pit; |
| 546 | } |
| 547 | |
| 548 | void kvm_free_pit(struct kvm *kvm) |
| 549 | { |
| 550 | struct hrtimer *timer; |
| 551 | |
| 552 | if (kvm->arch.vpit) { |
| 553 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| 554 | timer = &kvm->arch.vpit->pit_state.pit_timer.timer; |
| 555 | hrtimer_cancel(timer); |
| 556 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| 557 | kfree(kvm->arch.vpit); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | void __inject_pit_timer_intr(struct kvm *kvm) |
| 562 | { |
| 563 | mutex_lock(&kvm->lock); |
| 564 | kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1); |
| 565 | kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0); |
| 566 | kvm_pic_set_irq(pic_irqchip(kvm), 0, 1); |
| 567 | kvm_pic_set_irq(pic_irqchip(kvm), 0, 0); |
| 568 | mutex_unlock(&kvm->lock); |
| 569 | } |
| 570 | |
| 571 | void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu) |
| 572 | { |
| 573 | struct kvm_pit *pit = vcpu->kvm->arch.vpit; |
| 574 | struct kvm *kvm = vcpu->kvm; |
| 575 | struct kvm_kpit_state *ps; |
| 576 | |
| 577 | if (vcpu && pit) { |
| 578 | ps = &pit->pit_state; |
| 579 | |
| 580 | /* Try to inject pending interrupts when: |
| 581 | * 1. Pending exists |
| 582 | * 2. Last interrupt was accepted or waited for too long time*/ |
| 583 | if (atomic_read(&ps->pit_timer.pending) && |
| 584 | (ps->inject_pending || |
| 585 | (jiffies - ps->last_injected_time |
| 586 | >= KVM_MAX_PIT_INTR_INTERVAL))) { |
| 587 | ps->inject_pending = 0; |
| 588 | __inject_pit_timer_intr(kvm); |
| 589 | ps->last_injected_time = jiffies; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec) |
| 595 | { |
| 596 | struct kvm_arch *arch = &vcpu->kvm->arch; |
| 597 | struct kvm_kpit_state *ps; |
| 598 | |
| 599 | if (vcpu && arch->vpit) { |
| 600 | ps = &arch->vpit->pit_state; |
| 601 | if (atomic_read(&ps->pit_timer.pending) && |
| 602 | (((arch->vpic->pics[0].imr & 1) == 0 && |
| 603 | arch->vpic->pics[0].irq_base == vec) || |
| 604 | (arch->vioapic->redirtbl[0].fields.vector == vec && |
| 605 | arch->vioapic->redirtbl[0].fields.mask != 1))) { |
| 606 | ps->inject_pending = 1; |
| 607 | atomic_dec(&ps->pit_timer.pending); |
| 608 | ps->channels[0].count_load_time = ktime_get(); |
| 609 | } |
| 610 | } |
| 611 | } |