| /* |
| * Copyright (C) 2011 STRATO. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "backref.h" |
| |
| struct __data_ref { |
| struct list_head list; |
| u64 inum; |
| u64 root; |
| u64 extent_data_item_offset; |
| }; |
| |
| struct __shared_ref { |
| struct list_head list; |
| u64 disk_byte; |
| }; |
| |
| static int __inode_info(u64 inum, u64 ioff, u8 key_type, |
| struct btrfs_root *fs_root, struct btrfs_path *path, |
| struct btrfs_key *found_key) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| |
| key.type = key_type; |
| key.objectid = inum; |
| key.offset = ioff; |
| |
| ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| eb = path->nodes[0]; |
| if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { |
| ret = btrfs_next_leaf(fs_root, path); |
| if (ret) |
| return ret; |
| eb = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); |
| if (found_key->type != key.type || found_key->objectid != key.objectid) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| struct btrfs_path *path) |
| { |
| struct btrfs_key key; |
| return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, |
| &key); |
| } |
| |
| static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| struct btrfs_path *path, |
| struct btrfs_key *found_key) |
| { |
| return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, |
| found_key); |
| } |
| |
| /* |
| * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements |
| * of the path are separated by '/' and the path is guaranteed to be |
| * 0-terminated. the path is only given within the current file system. |
| * Therefore, it never starts with a '/'. the caller is responsible to provide |
| * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| * the start point of the resulting string is returned. this pointer is within |
| * dest, normally. |
| * in case the path buffer would overflow, the pointer is decremented further |
| * as if output was written to the buffer, though no more output is actually |
| * generated. that way, the caller can determine how much space would be |
| * required for the path to fit into the buffer. in that case, the returned |
| * value will be smaller than dest. callers must check this! |
| */ |
| static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| struct btrfs_inode_ref *iref, |
| struct extent_buffer *eb_in, u64 parent, |
| char *dest, u32 size) |
| { |
| u32 len; |
| int slot; |
| u64 next_inum; |
| int ret; |
| s64 bytes_left = size - 1; |
| struct extent_buffer *eb = eb_in; |
| struct btrfs_key found_key; |
| |
| if (bytes_left >= 0) |
| dest[bytes_left] = '\0'; |
| |
| while (1) { |
| len = btrfs_inode_ref_name_len(eb, iref); |
| bytes_left -= len; |
| if (bytes_left >= 0) |
| read_extent_buffer(eb, dest + bytes_left, |
| (unsigned long)(iref + 1), len); |
| if (eb != eb_in) |
| free_extent_buffer(eb); |
| ret = inode_ref_info(parent, 0, fs_root, path, &found_key); |
| if (ret) |
| break; |
| next_inum = found_key.offset; |
| |
| /* regular exit ahead */ |
| if (parent == next_inum) |
| break; |
| |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| /* make sure we can use eb after releasing the path */ |
| if (eb != eb_in) |
| atomic_inc(&eb->refs); |
| btrfs_release_path(path); |
| |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| parent = next_inum; |
| --bytes_left; |
| if (bytes_left >= 0) |
| dest[bytes_left] = '/'; |
| } |
| |
| btrfs_release_path(path); |
| |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return dest + bytes_left; |
| } |
| |
| /* |
| * this makes the path point to (logical EXTENT_ITEM *) |
| * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| * tree blocks and <0 on error. |
| */ |
| int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| struct btrfs_path *path, struct btrfs_key *found_key) |
| { |
| int ret; |
| u64 flags; |
| u32 item_size; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = logical; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_previous_item(fs_info->extent_root, path, |
| 0, BTRFS_EXTENT_ITEM_KEY); |
| if (ret < 0) |
| return ret; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| if (found_key->type != BTRFS_EXTENT_ITEM_KEY || |
| found_key->objectid > logical || |
| found_key->objectid + found_key->offset <= logical) |
| return -ENOENT; |
| |
| eb = path->nodes[0]; |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(eb, ei); |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| return BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| if (flags & BTRFS_EXTENT_FLAG_DATA) |
| return BTRFS_EXTENT_FLAG_DATA; |
| |
| return -EIO; |
| } |
| |
| /* |
| * helper function to iterate extent inline refs. ptr must point to a 0 value |
| * for the first call and may be modified. it is used to track state. |
| * if more refs exist, 0 is returned and the next call to |
| * __get_extent_inline_ref must pass the modified ptr parameter to get the |
| * next ref. after the last ref was processed, 1 is returned. |
| * returns <0 on error |
| */ |
| static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, |
| struct btrfs_extent_item *ei, u32 item_size, |
| struct btrfs_extent_inline_ref **out_eiref, |
| int *out_type) |
| { |
| unsigned long end; |
| u64 flags; |
| struct btrfs_tree_block_info *info; |
| |
| if (!*ptr) { |
| /* first call */ |
| flags = btrfs_extent_flags(eb, ei); |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_eiref = |
| (struct btrfs_extent_inline_ref *)(info + 1); |
| } else { |
| *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| } |
| *ptr = (unsigned long)*out_eiref; |
| if ((void *)*ptr >= (void *)ei + item_size) |
| return -ENOENT; |
| } |
| |
| end = (unsigned long)ei + item_size; |
| *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; |
| *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); |
| |
| *ptr += btrfs_extent_inline_ref_size(*out_type); |
| WARN_ON(*ptr > end); |
| if (*ptr == end) |
| return 1; /* last */ |
| |
| return 0; |
| } |
| |
| /* |
| * reads the tree block backref for an extent. tree level and root are returned |
| * through out_level and out_root. ptr must point to a 0 value for the first |
| * call and may be modified (see __get_extent_inline_ref comment). |
| * returns 0 if data was provided, 1 if there was no more data to provide or |
| * <0 on error. |
| */ |
| int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| struct btrfs_extent_item *ei, u32 item_size, |
| u64 *out_root, u8 *out_level) |
| { |
| int ret; |
| int type; |
| struct btrfs_tree_block_info *info; |
| struct btrfs_extent_inline_ref *eiref; |
| |
| if (*ptr == (unsigned long)-1) |
| return 1; |
| |
| while (1) { |
| ret = __get_extent_inline_ref(ptr, eb, ei, item_size, |
| &eiref, &type); |
| if (ret < 0) |
| return ret; |
| |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY) |
| break; |
| |
| if (ret == 1) |
| return 1; |
| } |
| |
| /* we can treat both ref types equally here */ |
| info = (struct btrfs_tree_block_info *)(ei + 1); |
| *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| *out_level = btrfs_tree_block_level(eb, info); |
| |
| if (ret == 1) |
| *ptr = (unsigned long)-1; |
| |
| return 0; |
| } |
| |
| static int __data_list_add(struct list_head *head, u64 inum, |
| u64 extent_data_item_offset, u64 root) |
| { |
| struct __data_ref *ref; |
| |
| ref = kmalloc(sizeof(*ref), GFP_NOFS); |
| if (!ref) |
| return -ENOMEM; |
| |
| ref->inum = inum; |
| ref->extent_data_item_offset = extent_data_item_offset; |
| ref->root = root; |
| list_add_tail(&ref->list, head); |
| |
| return 0; |
| } |
| |
| static int __data_list_add_eb(struct list_head *head, struct extent_buffer *eb, |
| struct btrfs_extent_data_ref *dref) |
| { |
| return __data_list_add(head, btrfs_extent_data_ref_objectid(eb, dref), |
| btrfs_extent_data_ref_offset(eb, dref), |
| btrfs_extent_data_ref_root(eb, dref)); |
| } |
| |
| static int __shared_list_add(struct list_head *head, u64 disk_byte) |
| { |
| struct __shared_ref *ref; |
| |
| ref = kmalloc(sizeof(*ref), GFP_NOFS); |
| if (!ref) |
| return -ENOMEM; |
| |
| ref->disk_byte = disk_byte; |
| list_add_tail(&ref->list, head); |
| |
| return 0; |
| } |
| |
| static int __iter_shared_inline_ref_inodes(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 inum, |
| u64 extent_data_item_offset, |
| u64 extent_offset, |
| struct btrfs_path *path, |
| struct list_head *data_refs, |
| iterate_extent_inodes_t *iterate, |
| void *ctx) |
| { |
| u64 ref_root; |
| u32 item_size; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *eiref; |
| struct __data_ref *ref; |
| int ret; |
| int type; |
| int last; |
| unsigned long ptr = 0; |
| |
| WARN_ON(!list_empty(data_refs)); |
| ret = extent_from_logical(fs_info, logical, path, &key); |
| if (ret & BTRFS_EXTENT_FLAG_DATA) |
| ret = -EIO; |
| if (ret < 0) |
| goto out; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| |
| ret = 0; |
| ref_root = 0; |
| /* |
| * as done in iterate_extent_inodes, we first build a list of refs to |
| * iterate, then free the path and then iterate them to avoid deadlocks. |
| */ |
| do { |
| last = __get_extent_inline_ref(&ptr, eb, ei, item_size, |
| &eiref, &type); |
| if (last < 0) { |
| ret = last; |
| goto out; |
| } |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| ref_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| ret = __data_list_add(data_refs, inum, |
| extent_data_item_offset, |
| ref_root); |
| } |
| } while (!ret && !last); |
| |
| btrfs_release_path(path); |
| |
| if (ref_root == 0) { |
| printk(KERN_ERR "btrfs: failed to find tree block ref " |
| "for shared data backref %llu\n", logical); |
| WARN_ON(1); |
| ret = -EIO; |
| } |
| |
| out: |
| while (!list_empty(data_refs)) { |
| ref = list_first_entry(data_refs, struct __data_ref, list); |
| list_del(&ref->list); |
| if (!ret) |
| ret = iterate(ref->inum, extent_offset + |
| ref->extent_data_item_offset, |
| ref->root, ctx); |
| kfree(ref); |
| } |
| |
| return ret; |
| } |
| |
| static int __iter_shared_inline_ref(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 orig_extent_item_objectid, |
| u64 extent_offset, struct btrfs_path *path, |
| struct list_head *data_refs, |
| iterate_extent_inodes_t *iterate, |
| void *ctx) |
| { |
| u64 disk_byte; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *eb; |
| int slot; |
| int nritems; |
| int ret; |
| int found = 0; |
| |
| eb = read_tree_block(fs_info->tree_root, logical, |
| fs_info->tree_root->leafsize, 0); |
| if (!eb) |
| return -EIO; |
| |
| /* |
| * from the shared data ref, we only have the leaf but we need |
| * the key. thus, we must look into all items and see that we |
| * find one (some) with a reference to our extent item. |
| */ |
| nritems = btrfs_header_nritems(eb); |
| for (slot = 0; slot < nritems; ++slot) { |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| if (!fi) { |
| free_extent_buffer(eb); |
| return -EIO; |
| } |
| disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| if (disk_byte != orig_extent_item_objectid) { |
| if (found) |
| break; |
| else |
| continue; |
| } |
| ++found; |
| ret = __iter_shared_inline_ref_inodes(fs_info, logical, |
| key.objectid, |
| key.offset, |
| extent_offset, path, |
| data_refs, |
| iterate, ctx); |
| if (ret) |
| break; |
| } |
| |
| if (!found) { |
| printk(KERN_ERR "btrfs: failed to follow shared data backref " |
| "to parent %llu\n", logical); |
| WARN_ON(1); |
| ret = -EIO; |
| } |
| |
| free_extent_buffer(eb); |
| return ret; |
| } |
| |
| /* |
| * calls iterate() for every inode that references the extent identified by |
| * the given parameters. will use the path given as a parameter and return it |
| * released. |
| * when the iterator function returns a non-zero value, iteration stops. |
| */ |
| int iterate_extent_inodes(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| u64 extent_item_objectid, |
| u64 extent_offset, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| unsigned long ptr = 0; |
| int last; |
| int ret; |
| int type; |
| u64 logical; |
| u32 item_size; |
| struct btrfs_extent_inline_ref *eiref; |
| struct btrfs_extent_data_ref *dref; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| struct list_head data_refs = LIST_HEAD_INIT(data_refs); |
| struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); |
| struct __data_ref *ref_d; |
| struct __shared_ref *ref_s; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| |
| /* first we iterate the inline refs, ... */ |
| do { |
| last = __get_extent_inline_ref(&ptr, eb, ei, item_size, |
| &eiref, &type); |
| if (last == -ENOENT) { |
| ret = 0; |
| break; |
| } |
| if (last < 0) { |
| ret = last; |
| break; |
| } |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = (struct btrfs_extent_data_ref *)(&eiref->offset); |
| ret = __data_list_add_eb(&data_refs, eb, dref); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| logical = btrfs_extent_inline_ref_offset(eb, eiref); |
| ret = __shared_list_add(&shared_refs, logical); |
| } |
| } while (!ret && !last); |
| |
| /* ... then we proceed to in-tree references and ... */ |
| while (!ret) { |
| ++path->slots[0]; |
| if (path->slots[0] > btrfs_header_nritems(eb)) { |
| ret = btrfs_next_leaf(fs_info->extent_root, path); |
| if (ret) { |
| if (ret == 1) |
| ret = 0; /* we're done */ |
| break; |
| } |
| eb = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(eb, &key, path->slots[0]); |
| if (key.objectid != extent_item_objectid) |
| break; |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = btrfs_item_ptr(eb, path->slots[0], |
| struct btrfs_extent_data_ref); |
| ret = __data_list_add_eb(&data_refs, eb, dref); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ret = __shared_list_add(&shared_refs, key.offset); |
| } |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * ... only at the very end we can process the refs we found. this is |
| * because the iterator function we call is allowed to make tree lookups |
| * and we have to avoid deadlocks. additionally, we need more tree |
| * lookups ourselves for shared data refs. |
| */ |
| while (!list_empty(&data_refs)) { |
| ref_d = list_first_entry(&data_refs, struct __data_ref, list); |
| list_del(&ref_d->list); |
| if (!ret) |
| ret = iterate(ref_d->inum, extent_offset + |
| ref_d->extent_data_item_offset, |
| ref_d->root, ctx); |
| kfree(ref_d); |
| } |
| |
| while (!list_empty(&shared_refs)) { |
| ref_s = list_first_entry(&shared_refs, struct __shared_ref, |
| list); |
| list_del(&ref_s->list); |
| if (!ret) |
| ret = __iter_shared_inline_ref(fs_info, |
| ref_s->disk_byte, |
| extent_item_objectid, |
| extent_offset, path, |
| &data_refs, |
| iterate, ctx); |
| kfree(ref_s); |
| } |
| |
| return ret; |
| } |
| |
| int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| iterate_extent_inodes_t *iterate, void *ctx) |
| { |
| int ret; |
| u64 offset; |
| struct btrfs_key found_key; |
| |
| ret = extent_from_logical(fs_info, logical, path, |
| &found_key); |
| if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| ret = -EINVAL; |
| if (ret < 0) |
| return ret; |
| |
| offset = logical - found_key.objectid; |
| ret = iterate_extent_inodes(fs_info, path, found_key.objectid, |
| offset, iterate, ctx); |
| |
| return ret; |
| } |
| |
| static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, |
| struct btrfs_path *path, |
| iterate_irefs_t *iterate, void *ctx) |
| { |
| int ret; |
| int slot; |
| u32 cur; |
| u32 len; |
| u32 name_len; |
| u64 parent = 0; |
| int found = 0; |
| struct extent_buffer *eb; |
| struct btrfs_item *item; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_key found_key; |
| |
| while (1) { |
| ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, |
| &found_key); |
| if (ret < 0) |
| break; |
| if (ret) { |
| ret = found ? 0 : -ENOENT; |
| break; |
| } |
| ++found; |
| |
| parent = found_key.offset; |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| /* make sure we can use eb after releasing the path */ |
| atomic_inc(&eb->refs); |
| btrfs_release_path(path); |
| |
| item = btrfs_item_nr(eb, slot); |
| iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| |
| for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { |
| name_len = btrfs_inode_ref_name_len(eb, iref); |
| /* path must be released before calling iterate()! */ |
| ret = iterate(parent, iref, eb, ctx); |
| if (ret) { |
| free_extent_buffer(eb); |
| break; |
| } |
| len = sizeof(*iref) + name_len; |
| iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| } |
| free_extent_buffer(eb); |
| } |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * returns 0 if the path could be dumped (probably truncated) |
| * returns <0 in case of an error |
| */ |
| static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, |
| struct extent_buffer *eb, void *ctx) |
| { |
| struct inode_fs_paths *ipath = ctx; |
| char *fspath; |
| char *fspath_min; |
| int i = ipath->fspath->elem_cnt; |
| const int s_ptr = sizeof(char *); |
| u32 bytes_left; |
| |
| bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| ipath->fspath->bytes_left - s_ptr : 0; |
| |
| fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
| fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, |
| inum, fspath_min, bytes_left); |
| if (IS_ERR(fspath)) |
| return PTR_ERR(fspath); |
| |
| if (fspath > fspath_min) { |
| ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
| ++ipath->fspath->elem_cnt; |
| ipath->fspath->bytes_left = fspath - fspath_min; |
| } else { |
| ++ipath->fspath->elem_missed; |
| ipath->fspath->bytes_missing += fspath_min - fspath; |
| ipath->fspath->bytes_left = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * this dumps all file system paths to the inode into the ipath struct, provided |
| * is has been created large enough. each path is zero-terminated and accessed |
| * from ipath->fspath->val[i]. |
| * when it returns, there are ipath->fspath->elem_cnt number of paths available |
| * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
| * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, |
| * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| * have been needed to return all paths. |
| */ |
| int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| { |
| return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, |
| inode_to_path, ipath); |
| } |
| |
| /* |
| * allocates space to return multiple file system paths for an inode. |
| * total_bytes to allocate are passed, note that space usable for actual path |
| * information will be total_bytes - sizeof(struct inode_fs_paths). |
| * the returned pointer must be freed with free_ipath() in the end. |
| */ |
| struct btrfs_data_container *init_data_container(u32 total_bytes) |
| { |
| struct btrfs_data_container *data; |
| size_t alloc_bytes; |
| |
| alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| data = kmalloc(alloc_bytes, GFP_NOFS); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| |
| if (total_bytes >= sizeof(*data)) { |
| data->bytes_left = total_bytes - sizeof(*data); |
| data->bytes_missing = 0; |
| } else { |
| data->bytes_missing = sizeof(*data) - total_bytes; |
| data->bytes_left = 0; |
| } |
| |
| data->elem_cnt = 0; |
| data->elem_missed = 0; |
| |
| return data; |
| } |
| |
| /* |
| * allocates space to return multiple file system paths for an inode. |
| * total_bytes to allocate are passed, note that space usable for actual path |
| * information will be total_bytes - sizeof(struct inode_fs_paths). |
| * the returned pointer must be freed with free_ipath() in the end. |
| */ |
| struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| struct btrfs_path *path) |
| { |
| struct inode_fs_paths *ifp; |
| struct btrfs_data_container *fspath; |
| |
| fspath = init_data_container(total_bytes); |
| if (IS_ERR(fspath)) |
| return (void *)fspath; |
| |
| ifp = kmalloc(sizeof(*ifp), GFP_NOFS); |
| if (!ifp) { |
| kfree(fspath); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ifp->btrfs_path = path; |
| ifp->fspath = fspath; |
| ifp->fs_root = fs_root; |
| |
| return ifp; |
| } |
| |
| void free_ipath(struct inode_fs_paths *ipath) |
| { |
| kfree(ipath); |
| } |