Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 STRATO. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include "ctree.h" |
| 20 | #include "disk-io.h" |
| 21 | #include "backref.h" |
| 22 | |
| 23 | struct __data_ref { |
| 24 | struct list_head list; |
| 25 | u64 inum; |
| 26 | u64 root; |
| 27 | u64 extent_data_item_offset; |
| 28 | }; |
| 29 | |
| 30 | struct __shared_ref { |
| 31 | struct list_head list; |
| 32 | u64 disk_byte; |
| 33 | }; |
| 34 | |
| 35 | static int __inode_info(u64 inum, u64 ioff, u8 key_type, |
| 36 | struct btrfs_root *fs_root, struct btrfs_path *path, |
| 37 | struct btrfs_key *found_key) |
| 38 | { |
| 39 | int ret; |
| 40 | struct btrfs_key key; |
| 41 | struct extent_buffer *eb; |
| 42 | |
| 43 | key.type = key_type; |
| 44 | key.objectid = inum; |
| 45 | key.offset = ioff; |
| 46 | |
| 47 | ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); |
| 48 | if (ret < 0) |
| 49 | return ret; |
| 50 | |
| 51 | eb = path->nodes[0]; |
| 52 | if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { |
| 53 | ret = btrfs_next_leaf(fs_root, path); |
| 54 | if (ret) |
| 55 | return ret; |
| 56 | eb = path->nodes[0]; |
| 57 | } |
| 58 | |
| 59 | btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); |
| 60 | if (found_key->type != key.type || found_key->objectid != key.objectid) |
| 61 | return 1; |
| 62 | |
| 63 | return 0; |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * this makes the path point to (inum INODE_ITEM ioff) |
| 68 | */ |
| 69 | int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| 70 | struct btrfs_path *path) |
| 71 | { |
| 72 | struct btrfs_key key; |
| 73 | return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, |
| 74 | &key); |
| 75 | } |
| 76 | |
| 77 | static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, |
| 78 | struct btrfs_path *path, |
| 79 | struct btrfs_key *found_key) |
| 80 | { |
| 81 | return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, |
| 82 | found_key); |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements |
| 87 | * of the path are separated by '/' and the path is guaranteed to be |
| 88 | * 0-terminated. the path is only given within the current file system. |
| 89 | * Therefore, it never starts with a '/'. the caller is responsible to provide |
| 90 | * "size" bytes in "dest". the dest buffer will be filled backwards. finally, |
| 91 | * the start point of the resulting string is returned. this pointer is within |
| 92 | * dest, normally. |
| 93 | * in case the path buffer would overflow, the pointer is decremented further |
| 94 | * as if output was written to the buffer, though no more output is actually |
| 95 | * generated. that way, the caller can determine how much space would be |
| 96 | * required for the path to fit into the buffer. in that case, the returned |
| 97 | * value will be smaller than dest. callers must check this! |
| 98 | */ |
| 99 | static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, |
| 100 | struct btrfs_inode_ref *iref, |
| 101 | struct extent_buffer *eb_in, u64 parent, |
| 102 | char *dest, u32 size) |
| 103 | { |
| 104 | u32 len; |
| 105 | int slot; |
| 106 | u64 next_inum; |
| 107 | int ret; |
| 108 | s64 bytes_left = size - 1; |
| 109 | struct extent_buffer *eb = eb_in; |
| 110 | struct btrfs_key found_key; |
| 111 | |
| 112 | if (bytes_left >= 0) |
| 113 | dest[bytes_left] = '\0'; |
| 114 | |
| 115 | while (1) { |
| 116 | len = btrfs_inode_ref_name_len(eb, iref); |
| 117 | bytes_left -= len; |
| 118 | if (bytes_left >= 0) |
| 119 | read_extent_buffer(eb, dest + bytes_left, |
| 120 | (unsigned long)(iref + 1), len); |
| 121 | if (eb != eb_in) |
| 122 | free_extent_buffer(eb); |
| 123 | ret = inode_ref_info(parent, 0, fs_root, path, &found_key); |
| 124 | if (ret) |
| 125 | break; |
| 126 | next_inum = found_key.offset; |
| 127 | |
| 128 | /* regular exit ahead */ |
| 129 | if (parent == next_inum) |
| 130 | break; |
| 131 | |
| 132 | slot = path->slots[0]; |
| 133 | eb = path->nodes[0]; |
| 134 | /* make sure we can use eb after releasing the path */ |
| 135 | if (eb != eb_in) |
| 136 | atomic_inc(&eb->refs); |
| 137 | btrfs_release_path(path); |
| 138 | |
| 139 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 140 | parent = next_inum; |
| 141 | --bytes_left; |
| 142 | if (bytes_left >= 0) |
| 143 | dest[bytes_left] = '/'; |
| 144 | } |
| 145 | |
| 146 | btrfs_release_path(path); |
| 147 | |
| 148 | if (ret) |
| 149 | return ERR_PTR(ret); |
| 150 | |
| 151 | return dest + bytes_left; |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * this makes the path point to (logical EXTENT_ITEM *) |
| 156 | * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for |
| 157 | * tree blocks and <0 on error. |
| 158 | */ |
| 159 | int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, |
| 160 | struct btrfs_path *path, struct btrfs_key *found_key) |
| 161 | { |
| 162 | int ret; |
| 163 | u64 flags; |
| 164 | u32 item_size; |
| 165 | struct extent_buffer *eb; |
| 166 | struct btrfs_extent_item *ei; |
| 167 | struct btrfs_key key; |
| 168 | |
| 169 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 170 | key.objectid = logical; |
| 171 | key.offset = (u64)-1; |
| 172 | |
| 173 | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| 174 | if (ret < 0) |
| 175 | return ret; |
| 176 | ret = btrfs_previous_item(fs_info->extent_root, path, |
| 177 | 0, BTRFS_EXTENT_ITEM_KEY); |
| 178 | if (ret < 0) |
| 179 | return ret; |
| 180 | |
| 181 | btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); |
| 182 | if (found_key->type != BTRFS_EXTENT_ITEM_KEY || |
| 183 | found_key->objectid > logical || |
| 184 | found_key->objectid + found_key->offset <= logical) |
| 185 | return -ENOENT; |
| 186 | |
| 187 | eb = path->nodes[0]; |
| 188 | item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| 189 | BUG_ON(item_size < sizeof(*ei)); |
| 190 | |
| 191 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 192 | flags = btrfs_extent_flags(eb, ei); |
| 193 | |
| 194 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 195 | return BTRFS_EXTENT_FLAG_TREE_BLOCK; |
| 196 | if (flags & BTRFS_EXTENT_FLAG_DATA) |
| 197 | return BTRFS_EXTENT_FLAG_DATA; |
| 198 | |
| 199 | return -EIO; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * helper function to iterate extent inline refs. ptr must point to a 0 value |
| 204 | * for the first call and may be modified. it is used to track state. |
| 205 | * if more refs exist, 0 is returned and the next call to |
| 206 | * __get_extent_inline_ref must pass the modified ptr parameter to get the |
| 207 | * next ref. after the last ref was processed, 1 is returned. |
| 208 | * returns <0 on error |
| 209 | */ |
| 210 | static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, |
| 211 | struct btrfs_extent_item *ei, u32 item_size, |
| 212 | struct btrfs_extent_inline_ref **out_eiref, |
| 213 | int *out_type) |
| 214 | { |
| 215 | unsigned long end; |
| 216 | u64 flags; |
| 217 | struct btrfs_tree_block_info *info; |
| 218 | |
| 219 | if (!*ptr) { |
| 220 | /* first call */ |
| 221 | flags = btrfs_extent_flags(eb, ei); |
| 222 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 223 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 224 | *out_eiref = |
| 225 | (struct btrfs_extent_inline_ref *)(info + 1); |
| 226 | } else { |
| 227 | *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| 228 | } |
| 229 | *ptr = (unsigned long)*out_eiref; |
| 230 | if ((void *)*ptr >= (void *)ei + item_size) |
| 231 | return -ENOENT; |
| 232 | } |
| 233 | |
| 234 | end = (unsigned long)ei + item_size; |
| 235 | *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; |
| 236 | *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); |
| 237 | |
| 238 | *ptr += btrfs_extent_inline_ref_size(*out_type); |
| 239 | WARN_ON(*ptr > end); |
| 240 | if (*ptr == end) |
| 241 | return 1; /* last */ |
| 242 | |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * reads the tree block backref for an extent. tree level and root are returned |
| 248 | * through out_level and out_root. ptr must point to a 0 value for the first |
| 249 | * call and may be modified (see __get_extent_inline_ref comment). |
| 250 | * returns 0 if data was provided, 1 if there was no more data to provide or |
| 251 | * <0 on error. |
| 252 | */ |
| 253 | int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, |
| 254 | struct btrfs_extent_item *ei, u32 item_size, |
| 255 | u64 *out_root, u8 *out_level) |
| 256 | { |
| 257 | int ret; |
| 258 | int type; |
| 259 | struct btrfs_tree_block_info *info; |
| 260 | struct btrfs_extent_inline_ref *eiref; |
| 261 | |
| 262 | if (*ptr == (unsigned long)-1) |
| 263 | return 1; |
| 264 | |
| 265 | while (1) { |
| 266 | ret = __get_extent_inline_ref(ptr, eb, ei, item_size, |
| 267 | &eiref, &type); |
| 268 | if (ret < 0) |
| 269 | return ret; |
| 270 | |
| 271 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 272 | type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 273 | break; |
| 274 | |
| 275 | if (ret == 1) |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | /* we can treat both ref types equally here */ |
| 280 | info = (struct btrfs_tree_block_info *)(ei + 1); |
| 281 | *out_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| 282 | *out_level = btrfs_tree_block_level(eb, info); |
| 283 | |
| 284 | if (ret == 1) |
| 285 | *ptr = (unsigned long)-1; |
| 286 | |
| 287 | return 0; |
| 288 | } |
| 289 | |
| 290 | static int __data_list_add(struct list_head *head, u64 inum, |
| 291 | u64 extent_data_item_offset, u64 root) |
| 292 | { |
| 293 | struct __data_ref *ref; |
| 294 | |
| 295 | ref = kmalloc(sizeof(*ref), GFP_NOFS); |
| 296 | if (!ref) |
| 297 | return -ENOMEM; |
| 298 | |
| 299 | ref->inum = inum; |
| 300 | ref->extent_data_item_offset = extent_data_item_offset; |
| 301 | ref->root = root; |
| 302 | list_add_tail(&ref->list, head); |
| 303 | |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | static int __data_list_add_eb(struct list_head *head, struct extent_buffer *eb, |
| 308 | struct btrfs_extent_data_ref *dref) |
| 309 | { |
| 310 | return __data_list_add(head, btrfs_extent_data_ref_objectid(eb, dref), |
| 311 | btrfs_extent_data_ref_offset(eb, dref), |
| 312 | btrfs_extent_data_ref_root(eb, dref)); |
| 313 | } |
| 314 | |
| 315 | static int __shared_list_add(struct list_head *head, u64 disk_byte) |
| 316 | { |
| 317 | struct __shared_ref *ref; |
| 318 | |
| 319 | ref = kmalloc(sizeof(*ref), GFP_NOFS); |
| 320 | if (!ref) |
| 321 | return -ENOMEM; |
| 322 | |
| 323 | ref->disk_byte = disk_byte; |
| 324 | list_add_tail(&ref->list, head); |
| 325 | |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | static int __iter_shared_inline_ref_inodes(struct btrfs_fs_info *fs_info, |
| 330 | u64 logical, u64 inum, |
| 331 | u64 extent_data_item_offset, |
| 332 | u64 extent_offset, |
| 333 | struct btrfs_path *path, |
| 334 | struct list_head *data_refs, |
| 335 | iterate_extent_inodes_t *iterate, |
| 336 | void *ctx) |
| 337 | { |
| 338 | u64 ref_root; |
| 339 | u32 item_size; |
| 340 | struct btrfs_key key; |
| 341 | struct extent_buffer *eb; |
| 342 | struct btrfs_extent_item *ei; |
| 343 | struct btrfs_extent_inline_ref *eiref; |
| 344 | struct __data_ref *ref; |
| 345 | int ret; |
| 346 | int type; |
| 347 | int last; |
| 348 | unsigned long ptr = 0; |
| 349 | |
| 350 | WARN_ON(!list_empty(data_refs)); |
| 351 | ret = extent_from_logical(fs_info, logical, path, &key); |
| 352 | if (ret & BTRFS_EXTENT_FLAG_DATA) |
| 353 | ret = -EIO; |
| 354 | if (ret < 0) |
| 355 | goto out; |
| 356 | |
| 357 | eb = path->nodes[0]; |
| 358 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 359 | item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| 360 | |
| 361 | ret = 0; |
| 362 | ref_root = 0; |
| 363 | /* |
| 364 | * as done in iterate_extent_inodes, we first build a list of refs to |
| 365 | * iterate, then free the path and then iterate them to avoid deadlocks. |
| 366 | */ |
| 367 | do { |
| 368 | last = __get_extent_inline_ref(&ptr, eb, ei, item_size, |
| 369 | &eiref, &type); |
| 370 | if (last < 0) { |
| 371 | ret = last; |
| 372 | goto out; |
| 373 | } |
| 374 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 375 | type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 376 | ref_root = btrfs_extent_inline_ref_offset(eb, eiref); |
| 377 | ret = __data_list_add(data_refs, inum, |
| 378 | extent_data_item_offset, |
| 379 | ref_root); |
| 380 | } |
| 381 | } while (!ret && !last); |
| 382 | |
| 383 | btrfs_release_path(path); |
| 384 | |
| 385 | if (ref_root == 0) { |
| 386 | printk(KERN_ERR "btrfs: failed to find tree block ref " |
| 387 | "for shared data backref %llu\n", logical); |
| 388 | WARN_ON(1); |
| 389 | ret = -EIO; |
| 390 | } |
| 391 | |
| 392 | out: |
| 393 | while (!list_empty(data_refs)) { |
| 394 | ref = list_first_entry(data_refs, struct __data_ref, list); |
| 395 | list_del(&ref->list); |
| 396 | if (!ret) |
| 397 | ret = iterate(ref->inum, extent_offset + |
| 398 | ref->extent_data_item_offset, |
| 399 | ref->root, ctx); |
| 400 | kfree(ref); |
| 401 | } |
| 402 | |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | static int __iter_shared_inline_ref(struct btrfs_fs_info *fs_info, |
| 407 | u64 logical, u64 orig_extent_item_objectid, |
| 408 | u64 extent_offset, struct btrfs_path *path, |
| 409 | struct list_head *data_refs, |
| 410 | iterate_extent_inodes_t *iterate, |
| 411 | void *ctx) |
| 412 | { |
| 413 | u64 disk_byte; |
| 414 | struct btrfs_key key; |
| 415 | struct btrfs_file_extent_item *fi; |
| 416 | struct extent_buffer *eb; |
| 417 | int slot; |
| 418 | int nritems; |
| 419 | int ret; |
| 420 | int found = 0; |
| 421 | |
| 422 | eb = read_tree_block(fs_info->tree_root, logical, |
| 423 | fs_info->tree_root->leafsize, 0); |
| 424 | if (!eb) |
| 425 | return -EIO; |
| 426 | |
| 427 | /* |
| 428 | * from the shared data ref, we only have the leaf but we need |
| 429 | * the key. thus, we must look into all items and see that we |
| 430 | * find one (some) with a reference to our extent item. |
| 431 | */ |
| 432 | nritems = btrfs_header_nritems(eb); |
| 433 | for (slot = 0; slot < nritems; ++slot) { |
| 434 | btrfs_item_key_to_cpu(eb, &key, slot); |
| 435 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 436 | continue; |
| 437 | fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| 438 | if (!fi) { |
| 439 | free_extent_buffer(eb); |
| 440 | return -EIO; |
| 441 | } |
| 442 | disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); |
| 443 | if (disk_byte != orig_extent_item_objectid) { |
| 444 | if (found) |
| 445 | break; |
| 446 | else |
| 447 | continue; |
| 448 | } |
| 449 | ++found; |
| 450 | ret = __iter_shared_inline_ref_inodes(fs_info, logical, |
| 451 | key.objectid, |
| 452 | key.offset, |
| 453 | extent_offset, path, |
| 454 | data_refs, |
| 455 | iterate, ctx); |
| 456 | if (ret) |
| 457 | break; |
| 458 | } |
| 459 | |
| 460 | if (!found) { |
| 461 | printk(KERN_ERR "btrfs: failed to follow shared data backref " |
| 462 | "to parent %llu\n", logical); |
| 463 | WARN_ON(1); |
| 464 | ret = -EIO; |
| 465 | } |
| 466 | |
| 467 | free_extent_buffer(eb); |
| 468 | return ret; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * calls iterate() for every inode that references the extent identified by |
| 473 | * the given parameters. will use the path given as a parameter and return it |
| 474 | * released. |
| 475 | * when the iterator function returns a non-zero value, iteration stops. |
| 476 | */ |
| 477 | int iterate_extent_inodes(struct btrfs_fs_info *fs_info, |
| 478 | struct btrfs_path *path, |
| 479 | u64 extent_item_objectid, |
| 480 | u64 extent_offset, |
| 481 | iterate_extent_inodes_t *iterate, void *ctx) |
| 482 | { |
| 483 | unsigned long ptr = 0; |
| 484 | int last; |
| 485 | int ret; |
| 486 | int type; |
| 487 | u64 logical; |
| 488 | u32 item_size; |
| 489 | struct btrfs_extent_inline_ref *eiref; |
| 490 | struct btrfs_extent_data_ref *dref; |
| 491 | struct extent_buffer *eb; |
| 492 | struct btrfs_extent_item *ei; |
| 493 | struct btrfs_key key; |
| 494 | struct list_head data_refs = LIST_HEAD_INIT(data_refs); |
| 495 | struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); |
| 496 | struct __data_ref *ref_d; |
| 497 | struct __shared_ref *ref_s; |
| 498 | |
| 499 | eb = path->nodes[0]; |
| 500 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 501 | item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| 502 | |
| 503 | /* first we iterate the inline refs, ... */ |
| 504 | do { |
| 505 | last = __get_extent_inline_ref(&ptr, eb, ei, item_size, |
| 506 | &eiref, &type); |
| 507 | if (last == -ENOENT) { |
| 508 | ret = 0; |
| 509 | break; |
| 510 | } |
| 511 | if (last < 0) { |
| 512 | ret = last; |
| 513 | break; |
| 514 | } |
| 515 | |
| 516 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 517 | dref = (struct btrfs_extent_data_ref *)(&eiref->offset); |
| 518 | ret = __data_list_add_eb(&data_refs, eb, dref); |
| 519 | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 520 | logical = btrfs_extent_inline_ref_offset(eb, eiref); |
| 521 | ret = __shared_list_add(&shared_refs, logical); |
| 522 | } |
| 523 | } while (!ret && !last); |
| 524 | |
| 525 | /* ... then we proceed to in-tree references and ... */ |
| 526 | while (!ret) { |
| 527 | ++path->slots[0]; |
| 528 | if (path->slots[0] > btrfs_header_nritems(eb)) { |
| 529 | ret = btrfs_next_leaf(fs_info->extent_root, path); |
| 530 | if (ret) { |
| 531 | if (ret == 1) |
| 532 | ret = 0; /* we're done */ |
| 533 | break; |
| 534 | } |
| 535 | eb = path->nodes[0]; |
| 536 | } |
| 537 | btrfs_item_key_to_cpu(eb, &key, path->slots[0]); |
| 538 | if (key.objectid != extent_item_objectid) |
| 539 | break; |
| 540 | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 541 | dref = btrfs_item_ptr(eb, path->slots[0], |
| 542 | struct btrfs_extent_data_ref); |
| 543 | ret = __data_list_add_eb(&data_refs, eb, dref); |
| 544 | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| 545 | ret = __shared_list_add(&shared_refs, key.offset); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | btrfs_release_path(path); |
| 550 | |
| 551 | /* |
| 552 | * ... only at the very end we can process the refs we found. this is |
| 553 | * because the iterator function we call is allowed to make tree lookups |
| 554 | * and we have to avoid deadlocks. additionally, we need more tree |
| 555 | * lookups ourselves for shared data refs. |
| 556 | */ |
| 557 | while (!list_empty(&data_refs)) { |
| 558 | ref_d = list_first_entry(&data_refs, struct __data_ref, list); |
| 559 | list_del(&ref_d->list); |
| 560 | if (!ret) |
| 561 | ret = iterate(ref_d->inum, extent_offset + |
| 562 | ref_d->extent_data_item_offset, |
| 563 | ref_d->root, ctx); |
| 564 | kfree(ref_d); |
| 565 | } |
| 566 | |
| 567 | while (!list_empty(&shared_refs)) { |
| 568 | ref_s = list_first_entry(&shared_refs, struct __shared_ref, |
| 569 | list); |
| 570 | list_del(&ref_s->list); |
| 571 | if (!ret) |
| 572 | ret = __iter_shared_inline_ref(fs_info, |
| 573 | ref_s->disk_byte, |
| 574 | extent_item_objectid, |
| 575 | extent_offset, path, |
| 576 | &data_refs, |
| 577 | iterate, ctx); |
| 578 | kfree(ref_s); |
| 579 | } |
| 580 | |
| 581 | return ret; |
| 582 | } |
| 583 | |
| 584 | int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, |
| 585 | struct btrfs_path *path, |
| 586 | iterate_extent_inodes_t *iterate, void *ctx) |
| 587 | { |
| 588 | int ret; |
| 589 | u64 offset; |
| 590 | struct btrfs_key found_key; |
| 591 | |
| 592 | ret = extent_from_logical(fs_info, logical, path, |
| 593 | &found_key); |
| 594 | if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 595 | ret = -EINVAL; |
| 596 | if (ret < 0) |
| 597 | return ret; |
| 598 | |
| 599 | offset = logical - found_key.objectid; |
| 600 | ret = iterate_extent_inodes(fs_info, path, found_key.objectid, |
| 601 | offset, iterate, ctx); |
| 602 | |
| 603 | return ret; |
| 604 | } |
| 605 | |
| 606 | static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, |
| 607 | struct btrfs_path *path, |
| 608 | iterate_irefs_t *iterate, void *ctx) |
| 609 | { |
| 610 | int ret; |
| 611 | int slot; |
| 612 | u32 cur; |
| 613 | u32 len; |
| 614 | u32 name_len; |
| 615 | u64 parent = 0; |
| 616 | int found = 0; |
| 617 | struct extent_buffer *eb; |
| 618 | struct btrfs_item *item; |
| 619 | struct btrfs_inode_ref *iref; |
| 620 | struct btrfs_key found_key; |
| 621 | |
| 622 | while (1) { |
| 623 | ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, |
| 624 | &found_key); |
| 625 | if (ret < 0) |
| 626 | break; |
| 627 | if (ret) { |
| 628 | ret = found ? 0 : -ENOENT; |
| 629 | break; |
| 630 | } |
| 631 | ++found; |
| 632 | |
| 633 | parent = found_key.offset; |
| 634 | slot = path->slots[0]; |
| 635 | eb = path->nodes[0]; |
| 636 | /* make sure we can use eb after releasing the path */ |
| 637 | atomic_inc(&eb->refs); |
| 638 | btrfs_release_path(path); |
| 639 | |
| 640 | item = btrfs_item_nr(eb, slot); |
| 641 | iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); |
| 642 | |
| 643 | for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { |
| 644 | name_len = btrfs_inode_ref_name_len(eb, iref); |
| 645 | /* path must be released before calling iterate()! */ |
| 646 | ret = iterate(parent, iref, eb, ctx); |
| 647 | if (ret) { |
| 648 | free_extent_buffer(eb); |
| 649 | break; |
| 650 | } |
| 651 | len = sizeof(*iref) + name_len; |
| 652 | iref = (struct btrfs_inode_ref *)((char *)iref + len); |
| 653 | } |
| 654 | free_extent_buffer(eb); |
| 655 | } |
| 656 | |
| 657 | btrfs_release_path(path); |
| 658 | |
| 659 | return ret; |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * returns 0 if the path could be dumped (probably truncated) |
| 664 | * returns <0 in case of an error |
| 665 | */ |
| 666 | static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, |
| 667 | struct extent_buffer *eb, void *ctx) |
| 668 | { |
| 669 | struct inode_fs_paths *ipath = ctx; |
| 670 | char *fspath; |
| 671 | char *fspath_min; |
| 672 | int i = ipath->fspath->elem_cnt; |
| 673 | const int s_ptr = sizeof(char *); |
| 674 | u32 bytes_left; |
| 675 | |
| 676 | bytes_left = ipath->fspath->bytes_left > s_ptr ? |
| 677 | ipath->fspath->bytes_left - s_ptr : 0; |
| 678 | |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 679 | fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 680 | fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, |
| 681 | inum, fspath_min, bytes_left); |
| 682 | if (IS_ERR(fspath)) |
| 683 | return PTR_ERR(fspath); |
| 684 | |
| 685 | if (fspath > fspath_min) { |
Jeff Mahoney | 745c4d8 | 2011-11-20 07:31:57 -0500 | [diff] [blame] | 686 | ipath->fspath->val[i] = (u64)(unsigned long)fspath; |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 687 | ++ipath->fspath->elem_cnt; |
| 688 | ipath->fspath->bytes_left = fspath - fspath_min; |
| 689 | } else { |
| 690 | ++ipath->fspath->elem_missed; |
| 691 | ipath->fspath->bytes_missing += fspath_min - fspath; |
| 692 | ipath->fspath->bytes_left = 0; |
| 693 | } |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * this dumps all file system paths to the inode into the ipath struct, provided |
| 700 | * is has been created large enough. each path is zero-terminated and accessed |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 701 | * from ipath->fspath->val[i]. |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 702 | * when it returns, there are ipath->fspath->elem_cnt number of paths available |
Chris Mason | 740c3d2 | 2011-11-02 15:48:34 -0400 | [diff] [blame] | 703 | * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the |
Jan Schmidt | a542ad1 | 2011-06-13 19:52:59 +0200 | [diff] [blame] | 704 | * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, |
| 705 | * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would |
| 706 | * have been needed to return all paths. |
| 707 | */ |
| 708 | int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) |
| 709 | { |
| 710 | return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, |
| 711 | inode_to_path, ipath); |
| 712 | } |
| 713 | |
| 714 | /* |
| 715 | * allocates space to return multiple file system paths for an inode. |
| 716 | * total_bytes to allocate are passed, note that space usable for actual path |
| 717 | * information will be total_bytes - sizeof(struct inode_fs_paths). |
| 718 | * the returned pointer must be freed with free_ipath() in the end. |
| 719 | */ |
| 720 | struct btrfs_data_container *init_data_container(u32 total_bytes) |
| 721 | { |
| 722 | struct btrfs_data_container *data; |
| 723 | size_t alloc_bytes; |
| 724 | |
| 725 | alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); |
| 726 | data = kmalloc(alloc_bytes, GFP_NOFS); |
| 727 | if (!data) |
| 728 | return ERR_PTR(-ENOMEM); |
| 729 | |
| 730 | if (total_bytes >= sizeof(*data)) { |
| 731 | data->bytes_left = total_bytes - sizeof(*data); |
| 732 | data->bytes_missing = 0; |
| 733 | } else { |
| 734 | data->bytes_missing = sizeof(*data) - total_bytes; |
| 735 | data->bytes_left = 0; |
| 736 | } |
| 737 | |
| 738 | data->elem_cnt = 0; |
| 739 | data->elem_missed = 0; |
| 740 | |
| 741 | return data; |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * allocates space to return multiple file system paths for an inode. |
| 746 | * total_bytes to allocate are passed, note that space usable for actual path |
| 747 | * information will be total_bytes - sizeof(struct inode_fs_paths). |
| 748 | * the returned pointer must be freed with free_ipath() in the end. |
| 749 | */ |
| 750 | struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, |
| 751 | struct btrfs_path *path) |
| 752 | { |
| 753 | struct inode_fs_paths *ifp; |
| 754 | struct btrfs_data_container *fspath; |
| 755 | |
| 756 | fspath = init_data_container(total_bytes); |
| 757 | if (IS_ERR(fspath)) |
| 758 | return (void *)fspath; |
| 759 | |
| 760 | ifp = kmalloc(sizeof(*ifp), GFP_NOFS); |
| 761 | if (!ifp) { |
| 762 | kfree(fspath); |
| 763 | return ERR_PTR(-ENOMEM); |
| 764 | } |
| 765 | |
| 766 | ifp->btrfs_path = path; |
| 767 | ifp->fspath = fspath; |
| 768 | ifp->fs_root = fs_root; |
| 769 | |
| 770 | return ifp; |
| 771 | } |
| 772 | |
| 773 | void free_ipath(struct inode_fs_paths *ipath) |
| 774 | { |
| 775 | kfree(ipath); |
| 776 | } |