blob: d0732e9c8560e10d8ec239957fa3b8d4d3c1df00 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8 *
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
24 *
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
35 */
36
37/*
38 * The functions in this file will not compile correctly with gcc 2.4.x
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/types.h>
44#include <linux/kernel.h>
45#include <linux/sched.h>
46#include <linux/mm.h>
47#include <linux/interrupt.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/slab.h>
51#include <linux/netdevice.h>
52#ifdef CONFIG_NET_CLS_ACT
53#include <net/pkt_sched.h>
54#endif
55#include <linux/string.h>
56#include <linux/skbuff.h>
57#include <linux/cache.h>
58#include <linux/rtnetlink.h>
59#include <linux/init.h>
60#include <linux/highmem.h>
61
62#include <net/protocol.h>
63#include <net/dst.h>
64#include <net/sock.h>
65#include <net/checksum.h>
66#include <net/xfrm.h>
67
68#include <asm/uaccess.h>
69#include <asm/system.h>
70
Eric Dumazetba899662005-08-26 12:05:31 -070071static kmem_cache_t *skbuff_head_cache __read_mostly;
72static kmem_cache_t *skbuff_fclone_cache __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -070073
74/*
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
78 */
79
80/**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
85 *
86 * Out of line support code for skb_put(). Not user callable.
87 */
88void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89{
Patrick McHardy26095452005-04-21 16:43:02 -070090 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
Linus Torvalds1da177e2005-04-16 15:20:36 -070094 BUG();
95}
96
97/**
98 * skb_under_panic - private function
99 * @skb: buffer
100 * @sz: size
101 * @here: address
102 *
103 * Out of line support code for skb_push(). Not user callable.
104 */
105
106void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107{
Patrick McHardy26095452005-04-21 16:43:02 -0700108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112 BUG();
113}
114
115/* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
117 * [BEEP] leaks.
118 *
119 */
120
121/**
David S. Millerd179cd12005-08-17 14:57:30 -0700122 * __alloc_skb - allocate a network buffer
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123 * @size: size to allocate
124 * @gfp_mask: allocation mask
Randy Dunlapc83c2482005-10-18 22:07:41 -0700125 * @fclone: allocate from fclone cache instead of head cache
126 * and allocate a cloned (child) skb
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127 *
128 * Allocate a new &sk_buff. The returned buffer has no headroom and a
129 * tail room of size bytes. The object has a reference count of one.
130 * The return is the buffer. On a failure the return is %NULL.
131 *
132 * Buffers may only be allocated from interrupts using a @gfp_mask of
133 * %GFP_ATOMIC.
134 */
Al Virodd0fc662005-10-07 07:46:04 +0100135struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
David S. Millerd179cd12005-08-17 14:57:30 -0700136 int fclone)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137{
Benjamin LaHaise4947d3e2006-01-03 14:06:50 -0800138 struct skb_shared_info *shinfo;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139 struct sk_buff *skb;
140 u8 *data;
141
142 /* Get the HEAD */
Benjamin LaHaise4947d3e2006-01-03 14:06:50 -0800143 skb = kmem_cache_alloc(fclone ? skbuff_fclone_cache : skbuff_head_cache,
144 gfp_mask & ~__GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700145 if (!skb)
146 goto out;
147
148 /* Get the DATA. Size must match skb_add_mtu(). */
149 size = SKB_DATA_ALIGN(size);
150 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
151 if (!data)
152 goto nodata;
153
154 memset(skb, 0, offsetof(struct sk_buff, truesize));
155 skb->truesize = size + sizeof(struct sk_buff);
156 atomic_set(&skb->users, 1);
157 skb->head = data;
158 skb->data = data;
159 skb->tail = data;
160 skb->end = data + size;
Benjamin LaHaise4947d3e2006-01-03 14:06:50 -0800161 /* make sure we initialize shinfo sequentially */
162 shinfo = skb_shinfo(skb);
163 atomic_set(&shinfo->dataref, 1);
164 shinfo->nr_frags = 0;
165 shinfo->tso_size = 0;
166 shinfo->tso_segs = 0;
167 shinfo->ufo_size = 0;
168 shinfo->ip6_frag_id = 0;
169 shinfo->frag_list = NULL;
170
David S. Millerd179cd12005-08-17 14:57:30 -0700171 if (fclone) {
172 struct sk_buff *child = skb + 1;
173 atomic_t *fclone_ref = (atomic_t *) (child + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174
David S. Millerd179cd12005-08-17 14:57:30 -0700175 skb->fclone = SKB_FCLONE_ORIG;
176 atomic_set(fclone_ref, 1);
177
178 child->fclone = SKB_FCLONE_UNAVAILABLE;
179 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180out:
181 return skb;
182nodata:
183 kmem_cache_free(skbuff_head_cache, skb);
184 skb = NULL;
185 goto out;
186}
187
188/**
189 * alloc_skb_from_cache - allocate a network buffer
190 * @cp: kmem_cache from which to allocate the data area
191 * (object size must be big enough for @size bytes + skb overheads)
192 * @size: size to allocate
193 * @gfp_mask: allocation mask
194 *
195 * Allocate a new &sk_buff. The returned buffer has no headroom and
196 * tail room of size bytes. The object has a reference count of one.
197 * The return is the buffer. On a failure the return is %NULL.
198 *
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
201 */
202struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
Victor Fusco86a76ca2005-07-08 14:57:47 -0700203 unsigned int size,
Al Virodd0fc662005-10-07 07:46:04 +0100204 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205{
206 struct sk_buff *skb;
207 u8 *data;
208
209 /* Get the HEAD */
210 skb = kmem_cache_alloc(skbuff_head_cache,
211 gfp_mask & ~__GFP_DMA);
212 if (!skb)
213 goto out;
214
215 /* Get the DATA. */
216 size = SKB_DATA_ALIGN(size);
217 data = kmem_cache_alloc(cp, gfp_mask);
218 if (!data)
219 goto nodata;
220
221 memset(skb, 0, offsetof(struct sk_buff, truesize));
222 skb->truesize = size + sizeof(struct sk_buff);
223 atomic_set(&skb->users, 1);
224 skb->head = data;
225 skb->data = data;
226 skb->tail = data;
227 skb->end = data + size;
228
229 atomic_set(&(skb_shinfo(skb)->dataref), 1);
230 skb_shinfo(skb)->nr_frags = 0;
231 skb_shinfo(skb)->tso_size = 0;
232 skb_shinfo(skb)->tso_segs = 0;
233 skb_shinfo(skb)->frag_list = NULL;
234out:
235 return skb;
236nodata:
237 kmem_cache_free(skbuff_head_cache, skb);
238 skb = NULL;
239 goto out;
240}
241
242
243static void skb_drop_fraglist(struct sk_buff *skb)
244{
245 struct sk_buff *list = skb_shinfo(skb)->frag_list;
246
247 skb_shinfo(skb)->frag_list = NULL;
248
249 do {
250 struct sk_buff *this = list;
251 list = list->next;
252 kfree_skb(this);
253 } while (list);
254}
255
256static void skb_clone_fraglist(struct sk_buff *skb)
257{
258 struct sk_buff *list;
259
260 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
261 skb_get(list);
262}
263
264void skb_release_data(struct sk_buff *skb)
265{
266 if (!skb->cloned ||
267 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
268 &skb_shinfo(skb)->dataref)) {
269 if (skb_shinfo(skb)->nr_frags) {
270 int i;
271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
272 put_page(skb_shinfo(skb)->frags[i].page);
273 }
274
275 if (skb_shinfo(skb)->frag_list)
276 skb_drop_fraglist(skb);
277
278 kfree(skb->head);
279 }
280}
281
282/*
283 * Free an skbuff by memory without cleaning the state.
284 */
285void kfree_skbmem(struct sk_buff *skb)
286{
David S. Millerd179cd12005-08-17 14:57:30 -0700287 struct sk_buff *other;
288 atomic_t *fclone_ref;
289
Linus Torvalds1da177e2005-04-16 15:20:36 -0700290 skb_release_data(skb);
David S. Millerd179cd12005-08-17 14:57:30 -0700291 switch (skb->fclone) {
292 case SKB_FCLONE_UNAVAILABLE:
293 kmem_cache_free(skbuff_head_cache, skb);
294 break;
295
296 case SKB_FCLONE_ORIG:
297 fclone_ref = (atomic_t *) (skb + 2);
298 if (atomic_dec_and_test(fclone_ref))
299 kmem_cache_free(skbuff_fclone_cache, skb);
300 break;
301
302 case SKB_FCLONE_CLONE:
303 fclone_ref = (atomic_t *) (skb + 1);
304 other = skb - 1;
305
306 /* The clone portion is available for
307 * fast-cloning again.
308 */
309 skb->fclone = SKB_FCLONE_UNAVAILABLE;
310
311 if (atomic_dec_and_test(fclone_ref))
312 kmem_cache_free(skbuff_fclone_cache, other);
313 break;
314 };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315}
316
317/**
318 * __kfree_skb - private function
319 * @skb: buffer
320 *
321 * Free an sk_buff. Release anything attached to the buffer.
322 * Clean the state. This is an internal helper function. Users should
323 * always call kfree_skb
324 */
325
326void __kfree_skb(struct sk_buff *skb)
327{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 dst_release(skb->dst);
329#ifdef CONFIG_XFRM
330 secpath_put(skb->sp);
331#endif
Stephen Hemminger9c2b3322005-04-19 22:39:42 -0700332 if (skb->destructor) {
333 WARN_ON(in_irq());
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334 skb->destructor(skb);
335 }
336#ifdef CONFIG_NETFILTER
337 nf_conntrack_put(skb->nfct);
Yasuyuki Kozakai9fb9cbb2005-11-09 16:38:16 -0800338#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
339 nf_conntrack_put_reasm(skb->nfct_reasm);
340#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#ifdef CONFIG_BRIDGE_NETFILTER
342 nf_bridge_put(skb->nf_bridge);
343#endif
344#endif
345/* XXX: IS this still necessary? - JHS */
346#ifdef CONFIG_NET_SCHED
347 skb->tc_index = 0;
348#ifdef CONFIG_NET_CLS_ACT
349 skb->tc_verd = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700350#endif
351#endif
352
353 kfree_skbmem(skb);
354}
355
356/**
357 * skb_clone - duplicate an sk_buff
358 * @skb: buffer to clone
359 * @gfp_mask: allocation priority
360 *
361 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
362 * copies share the same packet data but not structure. The new
363 * buffer has a reference count of 1. If the allocation fails the
364 * function returns %NULL otherwise the new buffer is returned.
365 *
366 * If this function is called from an interrupt gfp_mask() must be
367 * %GFP_ATOMIC.
368 */
369
Al Virodd0fc662005-10-07 07:46:04 +0100370struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371{
David S. Millerd179cd12005-08-17 14:57:30 -0700372 struct sk_buff *n;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
David S. Millerd179cd12005-08-17 14:57:30 -0700374 n = skb + 1;
375 if (skb->fclone == SKB_FCLONE_ORIG &&
376 n->fclone == SKB_FCLONE_UNAVAILABLE) {
377 atomic_t *fclone_ref = (atomic_t *) (n + 1);
378 n->fclone = SKB_FCLONE_CLONE;
379 atomic_inc(fclone_ref);
380 } else {
381 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
382 if (!n)
383 return NULL;
384 n->fclone = SKB_FCLONE_UNAVAILABLE;
385 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
387#define C(x) n->x = skb->x
388
389 n->next = n->prev = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390 n->sk = NULL;
Patrick McHardya61bbcf2005-08-14 17:24:31 -0700391 C(tstamp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 C(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393 C(h);
394 C(nh);
395 C(mac);
396 C(dst);
397 dst_clone(skb->dst);
398 C(sp);
399#ifdef CONFIG_INET
400 secpath_get(skb->sp);
401#endif
402 memcpy(n->cb, skb->cb, sizeof(skb->cb));
403 C(len);
404 C(data_len);
405 C(csum);
406 C(local_df);
407 n->cloned = 1;
408 n->nohdr = 0;
409 C(pkt_type);
410 C(ip_summed);
411 C(priority);
412 C(protocol);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413 n->destructor = NULL;
414#ifdef CONFIG_NETFILTER
415 C(nfmark);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 C(nfct);
417 nf_conntrack_get(skb->nfct);
418 C(nfctinfo);
Yasuyuki Kozakai9fb9cbb2005-11-09 16:38:16 -0800419#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
420 C(nfct_reasm);
421 nf_conntrack_get_reasm(skb->nfct_reasm);
422#endif
Julian Anastasovc98d80e2005-10-22 13:39:21 +0300423#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
424 C(ipvs_property);
425#endif
Yasuyuki Kozakai9fb9cbb2005-11-09 16:38:16 -0800426#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
427 C(nfct_reasm);
428 nf_conntrack_get_reasm(skb->nfct_reasm);
429#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430#ifdef CONFIG_BRIDGE_NETFILTER
431 C(nf_bridge);
432 nf_bridge_get(skb->nf_bridge);
433#endif
434#endif /*CONFIG_NETFILTER*/
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#ifdef CONFIG_NET_SCHED
436 C(tc_index);
437#ifdef CONFIG_NET_CLS_ACT
438 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
David S. Millerb72f6ec2005-07-19 14:13:54 -0700439 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
440 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 C(input_dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442#endif
443
444#endif
445 C(truesize);
446 atomic_set(&n->users, 1);
447 C(head);
448 C(data);
449 C(tail);
450 C(end);
451
452 atomic_inc(&(skb_shinfo(skb)->dataref));
453 skb->cloned = 1;
454
455 return n;
456}
457
458static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
459{
460 /*
461 * Shift between the two data areas in bytes
462 */
463 unsigned long offset = new->data - old->data;
464
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465 new->sk = NULL;
466 new->dev = old->dev;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 new->priority = old->priority;
468 new->protocol = old->protocol;
469 new->dst = dst_clone(old->dst);
470#ifdef CONFIG_INET
471 new->sp = secpath_get(old->sp);
472#endif
473 new->h.raw = old->h.raw + offset;
474 new->nh.raw = old->nh.raw + offset;
475 new->mac.raw = old->mac.raw + offset;
476 memcpy(new->cb, old->cb, sizeof(old->cb));
477 new->local_df = old->local_df;
David S. Millerd179cd12005-08-17 14:57:30 -0700478 new->fclone = SKB_FCLONE_UNAVAILABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479 new->pkt_type = old->pkt_type;
Patrick McHardya61bbcf2005-08-14 17:24:31 -0700480 new->tstamp = old->tstamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481 new->destructor = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700482#ifdef CONFIG_NETFILTER
483 new->nfmark = old->nfmark;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 new->nfct = old->nfct;
485 nf_conntrack_get(old->nfct);
486 new->nfctinfo = old->nfctinfo;
Yasuyuki Kozakai9fb9cbb2005-11-09 16:38:16 -0800487#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
488 new->nfct_reasm = old->nfct_reasm;
489 nf_conntrack_get_reasm(old->nfct_reasm);
490#endif
Julian Anastasovc98d80e2005-10-22 13:39:21 +0300491#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
492 new->ipvs_property = old->ipvs_property;
493#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700494#ifdef CONFIG_BRIDGE_NETFILTER
495 new->nf_bridge = old->nf_bridge;
496 nf_bridge_get(old->nf_bridge);
497#endif
498#endif
499#ifdef CONFIG_NET_SCHED
500#ifdef CONFIG_NET_CLS_ACT
501 new->tc_verd = old->tc_verd;
502#endif
503 new->tc_index = old->tc_index;
504#endif
505 atomic_set(&new->users, 1);
506 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
507 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
508}
509
510/**
511 * skb_copy - create private copy of an sk_buff
512 * @skb: buffer to copy
513 * @gfp_mask: allocation priority
514 *
515 * Make a copy of both an &sk_buff and its data. This is used when the
516 * caller wishes to modify the data and needs a private copy of the
517 * data to alter. Returns %NULL on failure or the pointer to the buffer
518 * on success. The returned buffer has a reference count of 1.
519 *
520 * As by-product this function converts non-linear &sk_buff to linear
521 * one, so that &sk_buff becomes completely private and caller is allowed
522 * to modify all the data of returned buffer. This means that this
523 * function is not recommended for use in circumstances when only
524 * header is going to be modified. Use pskb_copy() instead.
525 */
526
Al Virodd0fc662005-10-07 07:46:04 +0100527struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528{
529 int headerlen = skb->data - skb->head;
530 /*
531 * Allocate the copy buffer
532 */
533 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
534 gfp_mask);
535 if (!n)
536 return NULL;
537
538 /* Set the data pointer */
539 skb_reserve(n, headerlen);
540 /* Set the tail pointer and length */
541 skb_put(n, skb->len);
542 n->csum = skb->csum;
543 n->ip_summed = skb->ip_summed;
544
545 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
546 BUG();
547
548 copy_skb_header(n, skb);
549 return n;
550}
551
552
553/**
554 * pskb_copy - create copy of an sk_buff with private head.
555 * @skb: buffer to copy
556 * @gfp_mask: allocation priority
557 *
558 * Make a copy of both an &sk_buff and part of its data, located
559 * in header. Fragmented data remain shared. This is used when
560 * the caller wishes to modify only header of &sk_buff and needs
561 * private copy of the header to alter. Returns %NULL on failure
562 * or the pointer to the buffer on success.
563 * The returned buffer has a reference count of 1.
564 */
565
Al Virodd0fc662005-10-07 07:46:04 +0100566struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567{
568 /*
569 * Allocate the copy buffer
570 */
571 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
572
573 if (!n)
574 goto out;
575
576 /* Set the data pointer */
577 skb_reserve(n, skb->data - skb->head);
578 /* Set the tail pointer and length */
579 skb_put(n, skb_headlen(skb));
580 /* Copy the bytes */
581 memcpy(n->data, skb->data, n->len);
582 n->csum = skb->csum;
583 n->ip_summed = skb->ip_summed;
584
585 n->data_len = skb->data_len;
586 n->len = skb->len;
587
588 if (skb_shinfo(skb)->nr_frags) {
589 int i;
590
591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
592 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
593 get_page(skb_shinfo(n)->frags[i].page);
594 }
595 skb_shinfo(n)->nr_frags = i;
596 }
597
598 if (skb_shinfo(skb)->frag_list) {
599 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
600 skb_clone_fraglist(n);
601 }
602
603 copy_skb_header(n, skb);
604out:
605 return n;
606}
607
608/**
609 * pskb_expand_head - reallocate header of &sk_buff
610 * @skb: buffer to reallocate
611 * @nhead: room to add at head
612 * @ntail: room to add at tail
613 * @gfp_mask: allocation priority
614 *
615 * Expands (or creates identical copy, if &nhead and &ntail are zero)
616 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617 * reference count of 1. Returns zero in the case of success or error,
618 * if expansion failed. In the last case, &sk_buff is not changed.
619 *
620 * All the pointers pointing into skb header may change and must be
621 * reloaded after call to this function.
622 */
623
Victor Fusco86a76ca2005-07-08 14:57:47 -0700624int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
Al Virodd0fc662005-10-07 07:46:04 +0100625 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700626{
627 int i;
628 u8 *data;
629 int size = nhead + (skb->end - skb->head) + ntail;
630 long off;
631
632 if (skb_shared(skb))
633 BUG();
634
635 size = SKB_DATA_ALIGN(size);
636
637 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
638 if (!data)
639 goto nodata;
640
641 /* Copy only real data... and, alas, header. This should be
642 * optimized for the cases when header is void. */
643 memcpy(data + nhead, skb->head, skb->tail - skb->head);
644 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
645
646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
647 get_page(skb_shinfo(skb)->frags[i].page);
648
649 if (skb_shinfo(skb)->frag_list)
650 skb_clone_fraglist(skb);
651
652 skb_release_data(skb);
653
654 off = (data + nhead) - skb->head;
655
656 skb->head = data;
657 skb->end = data + size;
658 skb->data += off;
659 skb->tail += off;
660 skb->mac.raw += off;
661 skb->h.raw += off;
662 skb->nh.raw += off;
663 skb->cloned = 0;
664 skb->nohdr = 0;
665 atomic_set(&skb_shinfo(skb)->dataref, 1);
666 return 0;
667
668nodata:
669 return -ENOMEM;
670}
671
672/* Make private copy of skb with writable head and some headroom */
673
674struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
675{
676 struct sk_buff *skb2;
677 int delta = headroom - skb_headroom(skb);
678
679 if (delta <= 0)
680 skb2 = pskb_copy(skb, GFP_ATOMIC);
681 else {
682 skb2 = skb_clone(skb, GFP_ATOMIC);
683 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
684 GFP_ATOMIC)) {
685 kfree_skb(skb2);
686 skb2 = NULL;
687 }
688 }
689 return skb2;
690}
691
692
693/**
694 * skb_copy_expand - copy and expand sk_buff
695 * @skb: buffer to copy
696 * @newheadroom: new free bytes at head
697 * @newtailroom: new free bytes at tail
698 * @gfp_mask: allocation priority
699 *
700 * Make a copy of both an &sk_buff and its data and while doing so
701 * allocate additional space.
702 *
703 * This is used when the caller wishes to modify the data and needs a
704 * private copy of the data to alter as well as more space for new fields.
705 * Returns %NULL on failure or the pointer to the buffer
706 * on success. The returned buffer has a reference count of 1.
707 *
708 * You must pass %GFP_ATOMIC as the allocation priority if this function
709 * is called from an interrupt.
710 *
711 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
712 * only by netfilter in the cases when checksum is recalculated? --ANK
713 */
714struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
Victor Fusco86a76ca2005-07-08 14:57:47 -0700715 int newheadroom, int newtailroom,
Al Virodd0fc662005-10-07 07:46:04 +0100716 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717{
718 /*
719 * Allocate the copy buffer
720 */
721 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
722 gfp_mask);
723 int head_copy_len, head_copy_off;
724
725 if (!n)
726 return NULL;
727
728 skb_reserve(n, newheadroom);
729
730 /* Set the tail pointer and length */
731 skb_put(n, skb->len);
732
733 head_copy_len = skb_headroom(skb);
734 head_copy_off = 0;
735 if (newheadroom <= head_copy_len)
736 head_copy_len = newheadroom;
737 else
738 head_copy_off = newheadroom - head_copy_len;
739
740 /* Copy the linear header and data. */
741 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
742 skb->len + head_copy_len))
743 BUG();
744
745 copy_skb_header(n, skb);
746
747 return n;
748}
749
750/**
751 * skb_pad - zero pad the tail of an skb
752 * @skb: buffer to pad
753 * @pad: space to pad
754 *
755 * Ensure that a buffer is followed by a padding area that is zero
756 * filled. Used by network drivers which may DMA or transfer data
757 * beyond the buffer end onto the wire.
758 *
759 * May return NULL in out of memory cases.
760 */
761
762struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
763{
764 struct sk_buff *nskb;
765
766 /* If the skbuff is non linear tailroom is always zero.. */
767 if (skb_tailroom(skb) >= pad) {
768 memset(skb->data+skb->len, 0, pad);
769 return skb;
770 }
771
772 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
773 kfree_skb(skb);
774 if (nskb)
775 memset(nskb->data+nskb->len, 0, pad);
776 return nskb;
777}
778
779/* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
780 * If realloc==0 and trimming is impossible without change of data,
781 * it is BUG().
782 */
783
784int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
785{
786 int offset = skb_headlen(skb);
787 int nfrags = skb_shinfo(skb)->nr_frags;
788 int i;
789
790 for (i = 0; i < nfrags; i++) {
791 int end = offset + skb_shinfo(skb)->frags[i].size;
792 if (end > len) {
793 if (skb_cloned(skb)) {
Kris Katterjohn09a62662006-01-08 22:24:28 -0800794 BUG_ON(!realloc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
796 return -ENOMEM;
797 }
798 if (len <= offset) {
799 put_page(skb_shinfo(skb)->frags[i].page);
800 skb_shinfo(skb)->nr_frags--;
801 } else {
802 skb_shinfo(skb)->frags[i].size = len - offset;
803 }
804 }
805 offset = end;
806 }
807
808 if (offset < len) {
809 skb->data_len -= skb->len - len;
810 skb->len = len;
811 } else {
812 if (len <= skb_headlen(skb)) {
813 skb->len = len;
814 skb->data_len = 0;
815 skb->tail = skb->data + len;
816 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
817 skb_drop_fraglist(skb);
818 } else {
819 skb->data_len -= skb->len - len;
820 skb->len = len;
821 }
822 }
823
824 return 0;
825}
826
827/**
828 * __pskb_pull_tail - advance tail of skb header
829 * @skb: buffer to reallocate
830 * @delta: number of bytes to advance tail
831 *
832 * The function makes a sense only on a fragmented &sk_buff,
833 * it expands header moving its tail forward and copying necessary
834 * data from fragmented part.
835 *
836 * &sk_buff MUST have reference count of 1.
837 *
838 * Returns %NULL (and &sk_buff does not change) if pull failed
839 * or value of new tail of skb in the case of success.
840 *
841 * All the pointers pointing into skb header may change and must be
842 * reloaded after call to this function.
843 */
844
845/* Moves tail of skb head forward, copying data from fragmented part,
846 * when it is necessary.
847 * 1. It may fail due to malloc failure.
848 * 2. It may change skb pointers.
849 *
850 * It is pretty complicated. Luckily, it is called only in exceptional cases.
851 */
852unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
853{
854 /* If skb has not enough free space at tail, get new one
855 * plus 128 bytes for future expansions. If we have enough
856 * room at tail, reallocate without expansion only if skb is cloned.
857 */
858 int i, k, eat = (skb->tail + delta) - skb->end;
859
860 if (eat > 0 || skb_cloned(skb)) {
861 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
862 GFP_ATOMIC))
863 return NULL;
864 }
865
866 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
867 BUG();
868
869 /* Optimization: no fragments, no reasons to preestimate
870 * size of pulled pages. Superb.
871 */
872 if (!skb_shinfo(skb)->frag_list)
873 goto pull_pages;
874
875 /* Estimate size of pulled pages. */
876 eat = delta;
877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
878 if (skb_shinfo(skb)->frags[i].size >= eat)
879 goto pull_pages;
880 eat -= skb_shinfo(skb)->frags[i].size;
881 }
882
883 /* If we need update frag list, we are in troubles.
884 * Certainly, it possible to add an offset to skb data,
885 * but taking into account that pulling is expected to
886 * be very rare operation, it is worth to fight against
887 * further bloating skb head and crucify ourselves here instead.
888 * Pure masohism, indeed. 8)8)
889 */
890 if (eat) {
891 struct sk_buff *list = skb_shinfo(skb)->frag_list;
892 struct sk_buff *clone = NULL;
893 struct sk_buff *insp = NULL;
894
895 do {
Kris Katterjohn09a62662006-01-08 22:24:28 -0800896 BUG_ON(!list);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897
898 if (list->len <= eat) {
899 /* Eaten as whole. */
900 eat -= list->len;
901 list = list->next;
902 insp = list;
903 } else {
904 /* Eaten partially. */
905
906 if (skb_shared(list)) {
907 /* Sucks! We need to fork list. :-( */
908 clone = skb_clone(list, GFP_ATOMIC);
909 if (!clone)
910 return NULL;
911 insp = list->next;
912 list = clone;
913 } else {
914 /* This may be pulled without
915 * problems. */
916 insp = list;
917 }
918 if (!pskb_pull(list, eat)) {
919 if (clone)
920 kfree_skb(clone);
921 return NULL;
922 }
923 break;
924 }
925 } while (eat);
926
927 /* Free pulled out fragments. */
928 while ((list = skb_shinfo(skb)->frag_list) != insp) {
929 skb_shinfo(skb)->frag_list = list->next;
930 kfree_skb(list);
931 }
932 /* And insert new clone at head. */
933 if (clone) {
934 clone->next = list;
935 skb_shinfo(skb)->frag_list = clone;
936 }
937 }
938 /* Success! Now we may commit changes to skb data. */
939
940pull_pages:
941 eat = delta;
942 k = 0;
943 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
944 if (skb_shinfo(skb)->frags[i].size <= eat) {
945 put_page(skb_shinfo(skb)->frags[i].page);
946 eat -= skb_shinfo(skb)->frags[i].size;
947 } else {
948 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
949 if (eat) {
950 skb_shinfo(skb)->frags[k].page_offset += eat;
951 skb_shinfo(skb)->frags[k].size -= eat;
952 eat = 0;
953 }
954 k++;
955 }
956 }
957 skb_shinfo(skb)->nr_frags = k;
958
959 skb->tail += delta;
960 skb->data_len -= delta;
961
962 return skb->tail;
963}
964
965/* Copy some data bits from skb to kernel buffer. */
966
967int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
968{
969 int i, copy;
970 int start = skb_headlen(skb);
971
972 if (offset > (int)skb->len - len)
973 goto fault;
974
975 /* Copy header. */
976 if ((copy = start - offset) > 0) {
977 if (copy > len)
978 copy = len;
979 memcpy(to, skb->data + offset, copy);
980 if ((len -= copy) == 0)
981 return 0;
982 offset += copy;
983 to += copy;
984 }
985
986 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
987 int end;
988
989 BUG_TRAP(start <= offset + len);
990
991 end = start + skb_shinfo(skb)->frags[i].size;
992 if ((copy = end - offset) > 0) {
993 u8 *vaddr;
994
995 if (copy > len)
996 copy = len;
997
998 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
999 memcpy(to,
1000 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1001 offset - start, copy);
1002 kunmap_skb_frag(vaddr);
1003
1004 if ((len -= copy) == 0)
1005 return 0;
1006 offset += copy;
1007 to += copy;
1008 }
1009 start = end;
1010 }
1011
1012 if (skb_shinfo(skb)->frag_list) {
1013 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1014
1015 for (; list; list = list->next) {
1016 int end;
1017
1018 BUG_TRAP(start <= offset + len);
1019
1020 end = start + list->len;
1021 if ((copy = end - offset) > 0) {
1022 if (copy > len)
1023 copy = len;
1024 if (skb_copy_bits(list, offset - start,
1025 to, copy))
1026 goto fault;
1027 if ((len -= copy) == 0)
1028 return 0;
1029 offset += copy;
1030 to += copy;
1031 }
1032 start = end;
1033 }
1034 }
1035 if (!len)
1036 return 0;
1037
1038fault:
1039 return -EFAULT;
1040}
1041
Herbert Xu357b40a2005-04-19 22:30:14 -07001042/**
1043 * skb_store_bits - store bits from kernel buffer to skb
1044 * @skb: destination buffer
1045 * @offset: offset in destination
1046 * @from: source buffer
1047 * @len: number of bytes to copy
1048 *
1049 * Copy the specified number of bytes from the source buffer to the
1050 * destination skb. This function handles all the messy bits of
1051 * traversing fragment lists and such.
1052 */
1053
1054int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1055{
1056 int i, copy;
1057 int start = skb_headlen(skb);
1058
1059 if (offset > (int)skb->len - len)
1060 goto fault;
1061
1062 if ((copy = start - offset) > 0) {
1063 if (copy > len)
1064 copy = len;
1065 memcpy(skb->data + offset, from, copy);
1066 if ((len -= copy) == 0)
1067 return 0;
1068 offset += copy;
1069 from += copy;
1070 }
1071
1072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1074 int end;
1075
1076 BUG_TRAP(start <= offset + len);
1077
1078 end = start + frag->size;
1079 if ((copy = end - offset) > 0) {
1080 u8 *vaddr;
1081
1082 if (copy > len)
1083 copy = len;
1084
1085 vaddr = kmap_skb_frag(frag);
1086 memcpy(vaddr + frag->page_offset + offset - start,
1087 from, copy);
1088 kunmap_skb_frag(vaddr);
1089
1090 if ((len -= copy) == 0)
1091 return 0;
1092 offset += copy;
1093 from += copy;
1094 }
1095 start = end;
1096 }
1097
1098 if (skb_shinfo(skb)->frag_list) {
1099 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1100
1101 for (; list; list = list->next) {
1102 int end;
1103
1104 BUG_TRAP(start <= offset + len);
1105
1106 end = start + list->len;
1107 if ((copy = end - offset) > 0) {
1108 if (copy > len)
1109 copy = len;
1110 if (skb_store_bits(list, offset - start,
1111 from, copy))
1112 goto fault;
1113 if ((len -= copy) == 0)
1114 return 0;
1115 offset += copy;
1116 from += copy;
1117 }
1118 start = end;
1119 }
1120 }
1121 if (!len)
1122 return 0;
1123
1124fault:
1125 return -EFAULT;
1126}
1127
1128EXPORT_SYMBOL(skb_store_bits);
1129
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130/* Checksum skb data. */
1131
1132unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1133 int len, unsigned int csum)
1134{
1135 int start = skb_headlen(skb);
1136 int i, copy = start - offset;
1137 int pos = 0;
1138
1139 /* Checksum header. */
1140 if (copy > 0) {
1141 if (copy > len)
1142 copy = len;
1143 csum = csum_partial(skb->data + offset, copy, csum);
1144 if ((len -= copy) == 0)
1145 return csum;
1146 offset += copy;
1147 pos = copy;
1148 }
1149
1150 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1151 int end;
1152
1153 BUG_TRAP(start <= offset + len);
1154
1155 end = start + skb_shinfo(skb)->frags[i].size;
1156 if ((copy = end - offset) > 0) {
1157 unsigned int csum2;
1158 u8 *vaddr;
1159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1160
1161 if (copy > len)
1162 copy = len;
1163 vaddr = kmap_skb_frag(frag);
1164 csum2 = csum_partial(vaddr + frag->page_offset +
1165 offset - start, copy, 0);
1166 kunmap_skb_frag(vaddr);
1167 csum = csum_block_add(csum, csum2, pos);
1168 if (!(len -= copy))
1169 return csum;
1170 offset += copy;
1171 pos += copy;
1172 }
1173 start = end;
1174 }
1175
1176 if (skb_shinfo(skb)->frag_list) {
1177 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1178
1179 for (; list; list = list->next) {
1180 int end;
1181
1182 BUG_TRAP(start <= offset + len);
1183
1184 end = start + list->len;
1185 if ((copy = end - offset) > 0) {
1186 unsigned int csum2;
1187 if (copy > len)
1188 copy = len;
1189 csum2 = skb_checksum(list, offset - start,
1190 copy, 0);
1191 csum = csum_block_add(csum, csum2, pos);
1192 if ((len -= copy) == 0)
1193 return csum;
1194 offset += copy;
1195 pos += copy;
1196 }
1197 start = end;
1198 }
1199 }
Kris Katterjohn09a62662006-01-08 22:24:28 -08001200 BUG_ON(len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001201
1202 return csum;
1203}
1204
1205/* Both of above in one bottle. */
1206
1207unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1208 u8 *to, int len, unsigned int csum)
1209{
1210 int start = skb_headlen(skb);
1211 int i, copy = start - offset;
1212 int pos = 0;
1213
1214 /* Copy header. */
1215 if (copy > 0) {
1216 if (copy > len)
1217 copy = len;
1218 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1219 copy, csum);
1220 if ((len -= copy) == 0)
1221 return csum;
1222 offset += copy;
1223 to += copy;
1224 pos = copy;
1225 }
1226
1227 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1228 int end;
1229
1230 BUG_TRAP(start <= offset + len);
1231
1232 end = start + skb_shinfo(skb)->frags[i].size;
1233 if ((copy = end - offset) > 0) {
1234 unsigned int csum2;
1235 u8 *vaddr;
1236 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1237
1238 if (copy > len)
1239 copy = len;
1240 vaddr = kmap_skb_frag(frag);
1241 csum2 = csum_partial_copy_nocheck(vaddr +
1242 frag->page_offset +
1243 offset - start, to,
1244 copy, 0);
1245 kunmap_skb_frag(vaddr);
1246 csum = csum_block_add(csum, csum2, pos);
1247 if (!(len -= copy))
1248 return csum;
1249 offset += copy;
1250 to += copy;
1251 pos += copy;
1252 }
1253 start = end;
1254 }
1255
1256 if (skb_shinfo(skb)->frag_list) {
1257 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1258
1259 for (; list; list = list->next) {
1260 unsigned int csum2;
1261 int end;
1262
1263 BUG_TRAP(start <= offset + len);
1264
1265 end = start + list->len;
1266 if ((copy = end - offset) > 0) {
1267 if (copy > len)
1268 copy = len;
1269 csum2 = skb_copy_and_csum_bits(list,
1270 offset - start,
1271 to, copy, 0);
1272 csum = csum_block_add(csum, csum2, pos);
1273 if ((len -= copy) == 0)
1274 return csum;
1275 offset += copy;
1276 to += copy;
1277 pos += copy;
1278 }
1279 start = end;
1280 }
1281 }
Kris Katterjohn09a62662006-01-08 22:24:28 -08001282 BUG_ON(len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 return csum;
1284}
1285
1286void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1287{
1288 unsigned int csum;
1289 long csstart;
1290
1291 if (skb->ip_summed == CHECKSUM_HW)
1292 csstart = skb->h.raw - skb->data;
1293 else
1294 csstart = skb_headlen(skb);
1295
Kris Katterjohn09a62662006-01-08 22:24:28 -08001296 BUG_ON(csstart > skb_headlen(skb));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297
1298 memcpy(to, skb->data, csstart);
1299
1300 csum = 0;
1301 if (csstart != skb->len)
1302 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1303 skb->len - csstart, 0);
1304
1305 if (skb->ip_summed == CHECKSUM_HW) {
1306 long csstuff = csstart + skb->csum;
1307
1308 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1309 }
1310}
1311
1312/**
1313 * skb_dequeue - remove from the head of the queue
1314 * @list: list to dequeue from
1315 *
1316 * Remove the head of the list. The list lock is taken so the function
1317 * may be used safely with other locking list functions. The head item is
1318 * returned or %NULL if the list is empty.
1319 */
1320
1321struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1322{
1323 unsigned long flags;
1324 struct sk_buff *result;
1325
1326 spin_lock_irqsave(&list->lock, flags);
1327 result = __skb_dequeue(list);
1328 spin_unlock_irqrestore(&list->lock, flags);
1329 return result;
1330}
1331
1332/**
1333 * skb_dequeue_tail - remove from the tail of the queue
1334 * @list: list to dequeue from
1335 *
1336 * Remove the tail of the list. The list lock is taken so the function
1337 * may be used safely with other locking list functions. The tail item is
1338 * returned or %NULL if the list is empty.
1339 */
1340struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1341{
1342 unsigned long flags;
1343 struct sk_buff *result;
1344
1345 spin_lock_irqsave(&list->lock, flags);
1346 result = __skb_dequeue_tail(list);
1347 spin_unlock_irqrestore(&list->lock, flags);
1348 return result;
1349}
1350
1351/**
1352 * skb_queue_purge - empty a list
1353 * @list: list to empty
1354 *
1355 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1356 * the list and one reference dropped. This function takes the list
1357 * lock and is atomic with respect to other list locking functions.
1358 */
1359void skb_queue_purge(struct sk_buff_head *list)
1360{
1361 struct sk_buff *skb;
1362 while ((skb = skb_dequeue(list)) != NULL)
1363 kfree_skb(skb);
1364}
1365
1366/**
1367 * skb_queue_head - queue a buffer at the list head
1368 * @list: list to use
1369 * @newsk: buffer to queue
1370 *
1371 * Queue a buffer at the start of the list. This function takes the
1372 * list lock and can be used safely with other locking &sk_buff functions
1373 * safely.
1374 *
1375 * A buffer cannot be placed on two lists at the same time.
1376 */
1377void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1378{
1379 unsigned long flags;
1380
1381 spin_lock_irqsave(&list->lock, flags);
1382 __skb_queue_head(list, newsk);
1383 spin_unlock_irqrestore(&list->lock, flags);
1384}
1385
1386/**
1387 * skb_queue_tail - queue a buffer at the list tail
1388 * @list: list to use
1389 * @newsk: buffer to queue
1390 *
1391 * Queue a buffer at the tail of the list. This function takes the
1392 * list lock and can be used safely with other locking &sk_buff functions
1393 * safely.
1394 *
1395 * A buffer cannot be placed on two lists at the same time.
1396 */
1397void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1398{
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&list->lock, flags);
1402 __skb_queue_tail(list, newsk);
1403 spin_unlock_irqrestore(&list->lock, flags);
1404}
David S. Miller8728b832005-08-09 19:25:21 -07001405
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406/**
1407 * skb_unlink - remove a buffer from a list
1408 * @skb: buffer to remove
David S. Miller8728b832005-08-09 19:25:21 -07001409 * @list: list to use
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410 *
David S. Miller8728b832005-08-09 19:25:21 -07001411 * Remove a packet from a list. The list locks are taken and this
1412 * function is atomic with respect to other list locked calls
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413 *
David S. Miller8728b832005-08-09 19:25:21 -07001414 * You must know what list the SKB is on.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 */
David S. Miller8728b832005-08-09 19:25:21 -07001416void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417{
David S. Miller8728b832005-08-09 19:25:21 -07001418 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419
David S. Miller8728b832005-08-09 19:25:21 -07001420 spin_lock_irqsave(&list->lock, flags);
1421 __skb_unlink(skb, list);
1422 spin_unlock_irqrestore(&list->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001423}
1424
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425/**
1426 * skb_append - append a buffer
1427 * @old: buffer to insert after
1428 * @newsk: buffer to insert
David S. Miller8728b832005-08-09 19:25:21 -07001429 * @list: list to use
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430 *
1431 * Place a packet after a given packet in a list. The list locks are taken
1432 * and this function is atomic with respect to other list locked calls.
1433 * A buffer cannot be placed on two lists at the same time.
1434 */
David S. Miller8728b832005-08-09 19:25:21 -07001435void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436{
1437 unsigned long flags;
1438
David S. Miller8728b832005-08-09 19:25:21 -07001439 spin_lock_irqsave(&list->lock, flags);
1440 __skb_append(old, newsk, list);
1441 spin_unlock_irqrestore(&list->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442}
1443
1444
1445/**
1446 * skb_insert - insert a buffer
1447 * @old: buffer to insert before
1448 * @newsk: buffer to insert
David S. Miller8728b832005-08-09 19:25:21 -07001449 * @list: list to use
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 *
David S. Miller8728b832005-08-09 19:25:21 -07001451 * Place a packet before a given packet in a list. The list locks are
1452 * taken and this function is atomic with respect to other list locked
1453 * calls.
1454 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 * A buffer cannot be placed on two lists at the same time.
1456 */
David S. Miller8728b832005-08-09 19:25:21 -07001457void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458{
1459 unsigned long flags;
1460
David S. Miller8728b832005-08-09 19:25:21 -07001461 spin_lock_irqsave(&list->lock, flags);
1462 __skb_insert(newsk, old->prev, old, list);
1463 spin_unlock_irqrestore(&list->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464}
1465
1466#if 0
1467/*
1468 * Tune the memory allocator for a new MTU size.
1469 */
1470void skb_add_mtu(int mtu)
1471{
1472 /* Must match allocation in alloc_skb */
1473 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1474
1475 kmem_add_cache_size(mtu);
1476}
1477#endif
1478
1479static inline void skb_split_inside_header(struct sk_buff *skb,
1480 struct sk_buff* skb1,
1481 const u32 len, const int pos)
1482{
1483 int i;
1484
1485 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1486
1487 /* And move data appendix as is. */
1488 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1489 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1490
1491 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1492 skb_shinfo(skb)->nr_frags = 0;
1493 skb1->data_len = skb->data_len;
1494 skb1->len += skb1->data_len;
1495 skb->data_len = 0;
1496 skb->len = len;
1497 skb->tail = skb->data + len;
1498}
1499
1500static inline void skb_split_no_header(struct sk_buff *skb,
1501 struct sk_buff* skb1,
1502 const u32 len, int pos)
1503{
1504 int i, k = 0;
1505 const int nfrags = skb_shinfo(skb)->nr_frags;
1506
1507 skb_shinfo(skb)->nr_frags = 0;
1508 skb1->len = skb1->data_len = skb->len - len;
1509 skb->len = len;
1510 skb->data_len = len - pos;
1511
1512 for (i = 0; i < nfrags; i++) {
1513 int size = skb_shinfo(skb)->frags[i].size;
1514
1515 if (pos + size > len) {
1516 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1517
1518 if (pos < len) {
1519 /* Split frag.
1520 * We have two variants in this case:
1521 * 1. Move all the frag to the second
1522 * part, if it is possible. F.e.
1523 * this approach is mandatory for TUX,
1524 * where splitting is expensive.
1525 * 2. Split is accurately. We make this.
1526 */
1527 get_page(skb_shinfo(skb)->frags[i].page);
1528 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1529 skb_shinfo(skb1)->frags[0].size -= len - pos;
1530 skb_shinfo(skb)->frags[i].size = len - pos;
1531 skb_shinfo(skb)->nr_frags++;
1532 }
1533 k++;
1534 } else
1535 skb_shinfo(skb)->nr_frags++;
1536 pos += size;
1537 }
1538 skb_shinfo(skb1)->nr_frags = k;
1539}
1540
1541/**
1542 * skb_split - Split fragmented skb to two parts at length len.
1543 * @skb: the buffer to split
1544 * @skb1: the buffer to receive the second part
1545 * @len: new length for skb
1546 */
1547void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1548{
1549 int pos = skb_headlen(skb);
1550
1551 if (len < pos) /* Split line is inside header. */
1552 skb_split_inside_header(skb, skb1, len, pos);
1553 else /* Second chunk has no header, nothing to copy. */
1554 skb_split_no_header(skb, skb1, len, pos);
1555}
1556
Thomas Graf677e90e2005-06-23 20:59:51 -07001557/**
1558 * skb_prepare_seq_read - Prepare a sequential read of skb data
1559 * @skb: the buffer to read
1560 * @from: lower offset of data to be read
1561 * @to: upper offset of data to be read
1562 * @st: state variable
1563 *
1564 * Initializes the specified state variable. Must be called before
1565 * invoking skb_seq_read() for the first time.
1566 */
1567void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1568 unsigned int to, struct skb_seq_state *st)
1569{
1570 st->lower_offset = from;
1571 st->upper_offset = to;
1572 st->root_skb = st->cur_skb = skb;
1573 st->frag_idx = st->stepped_offset = 0;
1574 st->frag_data = NULL;
1575}
1576
1577/**
1578 * skb_seq_read - Sequentially read skb data
1579 * @consumed: number of bytes consumed by the caller so far
1580 * @data: destination pointer for data to be returned
1581 * @st: state variable
1582 *
1583 * Reads a block of skb data at &consumed relative to the
1584 * lower offset specified to skb_prepare_seq_read(). Assigns
1585 * the head of the data block to &data and returns the length
1586 * of the block or 0 if the end of the skb data or the upper
1587 * offset has been reached.
1588 *
1589 * The caller is not required to consume all of the data
1590 * returned, i.e. &consumed is typically set to the number
1591 * of bytes already consumed and the next call to
1592 * skb_seq_read() will return the remaining part of the block.
1593 *
1594 * Note: The size of each block of data returned can be arbitary,
1595 * this limitation is the cost for zerocopy seqeuental
1596 * reads of potentially non linear data.
1597 *
1598 * Note: Fragment lists within fragments are not implemented
1599 * at the moment, state->root_skb could be replaced with
1600 * a stack for this purpose.
1601 */
1602unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1603 struct skb_seq_state *st)
1604{
1605 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1606 skb_frag_t *frag;
1607
1608 if (unlikely(abs_offset >= st->upper_offset))
1609 return 0;
1610
1611next_skb:
1612 block_limit = skb_headlen(st->cur_skb);
1613
1614 if (abs_offset < block_limit) {
1615 *data = st->cur_skb->data + abs_offset;
1616 return block_limit - abs_offset;
1617 }
1618
1619 if (st->frag_idx == 0 && !st->frag_data)
1620 st->stepped_offset += skb_headlen(st->cur_skb);
1621
1622 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1623 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1624 block_limit = frag->size + st->stepped_offset;
1625
1626 if (abs_offset < block_limit) {
1627 if (!st->frag_data)
1628 st->frag_data = kmap_skb_frag(frag);
1629
1630 *data = (u8 *) st->frag_data + frag->page_offset +
1631 (abs_offset - st->stepped_offset);
1632
1633 return block_limit - abs_offset;
1634 }
1635
1636 if (st->frag_data) {
1637 kunmap_skb_frag(st->frag_data);
1638 st->frag_data = NULL;
1639 }
1640
1641 st->frag_idx++;
1642 st->stepped_offset += frag->size;
1643 }
1644
1645 if (st->cur_skb->next) {
1646 st->cur_skb = st->cur_skb->next;
1647 st->frag_idx = 0;
1648 goto next_skb;
1649 } else if (st->root_skb == st->cur_skb &&
1650 skb_shinfo(st->root_skb)->frag_list) {
1651 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1652 goto next_skb;
1653 }
1654
1655 return 0;
1656}
1657
1658/**
1659 * skb_abort_seq_read - Abort a sequential read of skb data
1660 * @st: state variable
1661 *
1662 * Must be called if skb_seq_read() was not called until it
1663 * returned 0.
1664 */
1665void skb_abort_seq_read(struct skb_seq_state *st)
1666{
1667 if (st->frag_data)
1668 kunmap_skb_frag(st->frag_data);
1669}
1670
Thomas Graf3fc7e8a2005-06-23 21:00:17 -07001671#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1672
1673static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1674 struct ts_config *conf,
1675 struct ts_state *state)
1676{
1677 return skb_seq_read(offset, text, TS_SKB_CB(state));
1678}
1679
1680static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1681{
1682 skb_abort_seq_read(TS_SKB_CB(state));
1683}
1684
1685/**
1686 * skb_find_text - Find a text pattern in skb data
1687 * @skb: the buffer to look in
1688 * @from: search offset
1689 * @to: search limit
1690 * @config: textsearch configuration
1691 * @state: uninitialized textsearch state variable
1692 *
1693 * Finds a pattern in the skb data according to the specified
1694 * textsearch configuration. Use textsearch_next() to retrieve
1695 * subsequent occurrences of the pattern. Returns the offset
1696 * to the first occurrence or UINT_MAX if no match was found.
1697 */
1698unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1699 unsigned int to, struct ts_config *config,
1700 struct ts_state *state)
1701{
1702 config->get_next_block = skb_ts_get_next_block;
1703 config->finish = skb_ts_finish;
1704
1705 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1706
1707 return textsearch_find(config, state);
1708}
1709
Ananda Rajue89e9cf2005-10-18 15:46:41 -07001710/**
1711 * skb_append_datato_frags: - append the user data to a skb
1712 * @sk: sock structure
1713 * @skb: skb structure to be appened with user data.
1714 * @getfrag: call back function to be used for getting the user data
1715 * @from: pointer to user message iov
1716 * @length: length of the iov message
1717 *
1718 * Description: This procedure append the user data in the fragment part
1719 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1720 */
1721int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
Martin Waitzdab96302005-12-05 13:40:12 -08001722 int (*getfrag)(void *from, char *to, int offset,
Ananda Rajue89e9cf2005-10-18 15:46:41 -07001723 int len, int odd, struct sk_buff *skb),
1724 void *from, int length)
1725{
1726 int frg_cnt = 0;
1727 skb_frag_t *frag = NULL;
1728 struct page *page = NULL;
1729 int copy, left;
1730 int offset = 0;
1731 int ret;
1732
1733 do {
1734 /* Return error if we don't have space for new frag */
1735 frg_cnt = skb_shinfo(skb)->nr_frags;
1736 if (frg_cnt >= MAX_SKB_FRAGS)
1737 return -EFAULT;
1738
1739 /* allocate a new page for next frag */
1740 page = alloc_pages(sk->sk_allocation, 0);
1741
1742 /* If alloc_page fails just return failure and caller will
1743 * free previous allocated pages by doing kfree_skb()
1744 */
1745 if (page == NULL)
1746 return -ENOMEM;
1747
1748 /* initialize the next frag */
1749 sk->sk_sndmsg_page = page;
1750 sk->sk_sndmsg_off = 0;
1751 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1752 skb->truesize += PAGE_SIZE;
1753 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1754
1755 /* get the new initialized frag */
1756 frg_cnt = skb_shinfo(skb)->nr_frags;
1757 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1758
1759 /* copy the user data to page */
1760 left = PAGE_SIZE - frag->page_offset;
1761 copy = (length > left)? left : length;
1762
1763 ret = getfrag(from, (page_address(frag->page) +
1764 frag->page_offset + frag->size),
1765 offset, copy, 0, skb);
1766 if (ret < 0)
1767 return -EFAULT;
1768
1769 /* copy was successful so update the size parameters */
1770 sk->sk_sndmsg_off += copy;
1771 frag->size += copy;
1772 skb->len += copy;
1773 skb->data_len += copy;
1774 offset += copy;
1775 length -= copy;
1776
1777 } while (length > 0);
1778
1779 return 0;
1780}
1781
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782void __init skb_init(void)
1783{
1784 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1785 sizeof(struct sk_buff),
1786 0,
1787 SLAB_HWCACHE_ALIGN,
1788 NULL, NULL);
1789 if (!skbuff_head_cache)
1790 panic("cannot create skbuff cache");
David S. Millerd179cd12005-08-17 14:57:30 -07001791
1792 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1793 (2*sizeof(struct sk_buff)) +
1794 sizeof(atomic_t),
1795 0,
1796 SLAB_HWCACHE_ALIGN,
1797 NULL, NULL);
1798 if (!skbuff_fclone_cache)
1799 panic("cannot create skbuff cache");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800}
1801
1802EXPORT_SYMBOL(___pskb_trim);
1803EXPORT_SYMBOL(__kfree_skb);
1804EXPORT_SYMBOL(__pskb_pull_tail);
David S. Millerd179cd12005-08-17 14:57:30 -07001805EXPORT_SYMBOL(__alloc_skb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806EXPORT_SYMBOL(pskb_copy);
1807EXPORT_SYMBOL(pskb_expand_head);
1808EXPORT_SYMBOL(skb_checksum);
1809EXPORT_SYMBOL(skb_clone);
1810EXPORT_SYMBOL(skb_clone_fraglist);
1811EXPORT_SYMBOL(skb_copy);
1812EXPORT_SYMBOL(skb_copy_and_csum_bits);
1813EXPORT_SYMBOL(skb_copy_and_csum_dev);
1814EXPORT_SYMBOL(skb_copy_bits);
1815EXPORT_SYMBOL(skb_copy_expand);
1816EXPORT_SYMBOL(skb_over_panic);
1817EXPORT_SYMBOL(skb_pad);
1818EXPORT_SYMBOL(skb_realloc_headroom);
1819EXPORT_SYMBOL(skb_under_panic);
1820EXPORT_SYMBOL(skb_dequeue);
1821EXPORT_SYMBOL(skb_dequeue_tail);
1822EXPORT_SYMBOL(skb_insert);
1823EXPORT_SYMBOL(skb_queue_purge);
1824EXPORT_SYMBOL(skb_queue_head);
1825EXPORT_SYMBOL(skb_queue_tail);
1826EXPORT_SYMBOL(skb_unlink);
1827EXPORT_SYMBOL(skb_append);
1828EXPORT_SYMBOL(skb_split);
Thomas Graf677e90e2005-06-23 20:59:51 -07001829EXPORT_SYMBOL(skb_prepare_seq_read);
1830EXPORT_SYMBOL(skb_seq_read);
1831EXPORT_SYMBOL(skb_abort_seq_read);
Thomas Graf3fc7e8a2005-06-23 21:00:17 -07001832EXPORT_SYMBOL(skb_find_text);
Ananda Rajue89e9cf2005-10-18 15:46:41 -07001833EXPORT_SYMBOL(skb_append_datato_frags);