blob: b70df72e2b33d417307d01f57bca57388650d34f [file] [log] [blame]
Zhang Xiantao1d737c82007-12-14 09:35:10 +08001#ifndef __KVM_X86_MMU_H
2#define __KVM_X86_MMU_H
3
Avi Kivityedf88412007-12-16 11:02:48 +02004#include <linux/kvm_host.h>
Avi Kivityfc78f512009-12-07 12:16:48 +02005#include "kvm_cache_regs.h"
Zhang Xiantao1d737c82007-12-14 09:35:10 +08006
Sheng Yang8c6d6ad2008-04-25 10:17:08 +08007#define PT64_PT_BITS 9
8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9#define PT32_PT_BITS 10
10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12#define PT_WRITABLE_SHIFT 1
Huaitong Hanbe94f6b2016-03-22 16:51:20 +080013#define PT_USER_SHIFT 2
Sheng Yang8c6d6ad2008-04-25 10:17:08 +080014
15#define PT_PRESENT_MASK (1ULL << 0)
16#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
Huaitong Hanbe94f6b2016-03-22 16:51:20 +080017#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
Sheng Yang8c6d6ad2008-04-25 10:17:08 +080018#define PT_PWT_MASK (1ULL << 3)
19#define PT_PCD_MASK (1ULL << 4)
Avi Kivity1b7fcd32008-05-15 13:51:35 +030020#define PT_ACCESSED_SHIFT 5
21#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
Avi Kivity8ea667f2012-09-12 13:44:53 +030022#define PT_DIRTY_SHIFT 6
23#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
Avi Kivity6fd01b72012-09-12 20:46:56 +030024#define PT_PAGE_SIZE_SHIFT 7
25#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
Sheng Yang8c6d6ad2008-04-25 10:17:08 +080026#define PT_PAT_MASK (1ULL << 7)
27#define PT_GLOBAL_MASK (1ULL << 8)
28#define PT64_NX_SHIFT 63
29#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30
31#define PT_PAT_SHIFT 7
32#define PT_DIR_PAT_SHIFT 12
33#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34
35#define PT32_DIR_PSE36_SIZE 4
36#define PT32_DIR_PSE36_SHIFT 13
37#define PT32_DIR_PSE36_MASK \
38 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
39
40#define PT64_ROOT_LEVEL 4
41#define PT32_ROOT_LEVEL 2
42#define PT32E_ROOT_LEVEL 3
43
Sheng Yangc9c54172010-01-05 19:02:26 +080044#define PT_PDPE_LEVEL 3
45#define PT_DIRECTORY_LEVEL 2
46#define PT_PAGE_TABLE_LEVEL 1
Xiao Guangrong8a3d08f2015-05-13 14:42:21 +080047#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
Sheng Yangc9c54172010-01-05 19:02:26 +080048
Tiejun Chend1431482014-09-01 18:44:04 +080049static inline u64 rsvd_bits(int s, int e)
50{
51 return ((1ULL << (e - s + 1)) - 1) << s;
52}
53
Xiao Guangrongce88dec2011-07-12 03:33:44 +080054void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080055
Xiao Guangrongc258b622015-08-05 12:04:24 +080056void
57reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
58
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080059/*
Paolo Bonzini450869d2015-11-04 13:41:21 +010060 * Return values of handle_mmio_page_fault:
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080061 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
Xiao Guangrongf8f55942013-06-07 16:51:26 +080062 * directly.
63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
64 * fault path update the mmio spte.
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080065 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
Paolo Bonzini450869d2015-11-04 13:41:21 +010066 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080067 */
68enum {
69 RET_MMIO_PF_EMULATE = 1,
Xiao Guangrongf8f55942013-06-07 16:51:26 +080070 RET_MMIO_PF_INVALID = 2,
Xiao Guangrongb37fbea2013-06-07 16:51:25 +080071 RET_MMIO_PF_RETRY = 0,
72 RET_MMIO_PF_BUG = -1
73};
74
Paolo Bonzini450869d2015-11-04 13:41:21 +010075int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
Paolo Bonziniad896af2013-10-02 16:56:14 +020076void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
77void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
Marcelo Tosatti94d8b052009-06-11 12:07:42 -030078
Dave Hansene0df7b92010-08-19 18:11:05 -070079static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
80{
Marcelo Tosatti5d218812013-03-12 22:36:43 -030081 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
82 return kvm->arch.n_max_mmu_pages -
83 kvm->arch.n_used_mmu_pages;
84
85 return 0;
Dave Hansene0df7b92010-08-19 18:11:05 -070086}
87
Zhang Xiantao1d737c82007-12-14 09:35:10 +080088static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
89{
90 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
91 return 0;
92
93 return kvm_mmu_load(vcpu);
94}
95
Avi Kivity43a37952009-06-10 14:12:05 +030096static inline int is_present_gpte(unsigned long pte)
Dong, Eddie20c466b2009-03-31 23:03:45 +080097{
98 return pte & PT_PRESENT_MASK;
99}
100
Xiao Guangrong198c74f2014-04-17 17:06:16 +0800101/*
102 * Currently, we have two sorts of write-protection, a) the first one
103 * write-protects guest page to sync the guest modification, b) another one is
104 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
105 * between these two sorts are:
106 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
107 * 2) the first case requires flushing tlb immediately avoiding corrupting
108 * shadow page table between all vcpus so it should be in the protection of
109 * mmu-lock. And the another case does not need to flush tlb until returning
110 * the dirty bitmap to userspace since it only write-protects the page
111 * logged in the bitmap, that means the page in the dirty bitmap is not
112 * missed, so it can flush tlb out of mmu-lock.
113 *
114 * So, there is the problem: the first case can meet the corrupted tlb caused
115 * by another case which write-protects pages but without flush tlb
116 * immediately. In order to making the first case be aware this problem we let
117 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
118 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
119 *
120 * Anyway, whenever a spte is updated (only permission and status bits are
121 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
122 * readonly, if that happens, we need to flush tlb. Fortunately,
123 * mmu_spte_update() has already handled it perfectly.
124 *
125 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
126 * - if we want to see if it has writable tlb entry or if the spte can be
127 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
128 * case, otherwise
129 * - if we fix page fault on the spte or do write-protection by dirty logging,
130 * check PT_WRITABLE_MASK.
131 *
132 * TODO: introduce APIs to split these two cases.
133 */
Xiao Guangrongbebb1062011-07-12 03:23:20 +0800134static inline int is_writable_pte(unsigned long pte)
135{
136 return pte & PT_WRITABLE_MASK;
137}
138
139static inline bool is_write_protection(struct kvm_vcpu *vcpu)
140{
141 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
142}
143
Avi Kivity97d64b72012-09-12 14:52:00 +0300144/*
Paolo Bonzinif13577e2016-03-08 10:08:16 +0100145 * Check if a given access (described through the I/D, W/R and U/S bits of a
146 * page fault error code pfec) causes a permission fault with the given PTE
147 * access rights (in ACC_* format).
148 *
149 * Return zero if the access does not fault; return the page fault error code
150 * if the access faults.
Avi Kivity97d64b72012-09-12 14:52:00 +0300151 */
Paolo Bonzinif13577e2016-03-08 10:08:16 +0100152static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
Huaitong Hanbe94f6b2016-03-22 16:51:20 +0800153 unsigned pte_access, unsigned pte_pkey,
154 unsigned pfec)
Xiao Guangrongbebb1062011-07-12 03:23:20 +0800155{
Feng Wu97ec8c02014-04-01 17:46:34 +0800156 int cpl = kvm_x86_ops->get_cpl(vcpu);
157 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
158
159 /*
160 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
161 *
162 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
163 * (these are implicit supervisor accesses) regardless of the value
164 * of EFLAGS.AC.
165 *
166 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
167 * the result in X86_EFLAGS_AC. We then insert it in place of
168 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
169 * but it will be one in index if SMAP checks are being overridden.
170 * It is important to keep this branchless.
171 */
172 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
173 int index = (pfec >> 1) +
174 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
Huaitong Hanbe94f6b2016-03-22 16:51:20 +0800175 bool fault = (mmu->permissions[index] >> pte_access) & 1;
Feng Wu97ec8c02014-04-01 17:46:34 +0800176
Huaitong Hanbe94f6b2016-03-22 16:51:20 +0800177 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
Paolo Bonzinif13577e2016-03-08 10:08:16 +0100178 pfec |= PFERR_PRESENT_MASK;
Huaitong Hanbe94f6b2016-03-22 16:51:20 +0800179
180 if (unlikely(mmu->pkru_mask)) {
181 u32 pkru_bits, offset;
182
183 /*
184 * PKRU defines 32 bits, there are 16 domains and 2
185 * attribute bits per domain in pkru. pte_pkey is the
186 * index of the protection domain, so pte_pkey * 2 is
187 * is the index of the first bit for the domain.
188 */
189 pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
190
191 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
192 offset = pfec - 1 +
193 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
194
195 pkru_bits &= mmu->pkru_mask >> offset;
196 pfec |= -pkru_bits & PFERR_PK_MASK;
197 fault |= (pkru_bits != 0);
198 }
199
200 return -(uint32_t)fault & pfec;
Xiao Guangrongbebb1062011-07-12 03:23:20 +0800201}
Avi Kivity97d64b72012-09-12 14:52:00 +0300202
Xiao Guangrong5304b8d2013-05-31 08:36:22 +0800203void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
Xiao Guangrongefdfe532015-05-13 14:42:27 +0800204void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
Xiao Guangrong547ffae2016-02-24 17:51:07 +0800205
206void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
207void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
Xiao Guangrongaeecee22016-02-24 17:51:08 +0800208bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
209 struct kvm_memory_slot *slot, u64 gfn);
Zhang Xiantao1d737c82007-12-14 09:35:10 +0800210#endif