blob: f84ae0dd435864d660e9054821cc199fa3135602 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001|
2| round.sa 3.4 7/29/91
3|
4| handle rounding and normalization tasks
5|
6|
7|
8| Copyright (C) Motorola, Inc. 1990
9| All Rights Reserved
10|
Matt Waddele00d82d2006-02-11 17:55:48 -080011| For details on the license for this file, please see the
12| file, README, in this same directory.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013
14|ROUND idnt 2,1 | Motorola 040 Floating Point Software Package
15
16 |section 8
17
18#include "fpsp.h"
19
20|
21| round --- round result according to precision/mode
22|
23| a0 points to the input operand in the internal extended format
24| d1(high word) contains rounding precision:
25| ext = $0000xxxx
26| sgl = $0001xxxx
27| dbl = $0002xxxx
28| d1(low word) contains rounding mode:
29| RN = $xxxx0000
30| RZ = $xxxx0001
31| RM = $xxxx0010
32| RP = $xxxx0011
33| d0{31:29} contains the g,r,s bits (extended)
34|
35| On return the value pointed to by a0 is correctly rounded,
36| a0 is preserved and the g-r-s bits in d0 are cleared.
37| The result is not typed - the tag field is invalid. The
38| result is still in the internal extended format.
39|
40| The INEX bit of USER_FPSR will be set if the rounded result was
41| inexact (i.e. if any of the g-r-s bits were set).
42|
43
44 .global round
45round:
46| If g=r=s=0 then result is exact and round is done, else set
47| the inex flag in status reg and continue.
48|
49 bsrs ext_grs |this subroutine looks at the
50| :rounding precision and sets
51| ;the appropriate g-r-s bits.
52 tstl %d0 |if grs are zero, go force
53 bne rnd_cont |lower bits to zero for size
54
55 swap %d1 |set up d1.w for round prec.
56 bra truncate
57
58rnd_cont:
59|
60| Use rounding mode as an index into a jump table for these modes.
61|
62 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
63 lea mode_tab,%a1
64 movel (%a1,%d1.w*4),%a1
65 jmp (%a1)
66|
67| Jump table indexed by rounding mode in d1.w. All following assumes
68| grs != 0.
69|
70mode_tab:
71 .long rnd_near
72 .long rnd_zero
73 .long rnd_mnus
74 .long rnd_plus
75|
76| ROUND PLUS INFINITY
77|
78| If sign of fp number = 0 (positive), then add 1 to l.
79|
80rnd_plus:
81 swap %d1 |set up d1 for round prec.
82 tstb LOCAL_SGN(%a0) |check for sign
83 bmi truncate |if positive then truncate
84 movel #0xffffffff,%d0 |force g,r,s to be all f's
85 lea add_to_l,%a1
86 movel (%a1,%d1.w*4),%a1
87 jmp (%a1)
88|
89| ROUND MINUS INFINITY
90|
91| If sign of fp number = 1 (negative), then add 1 to l.
92|
93rnd_mnus:
94 swap %d1 |set up d1 for round prec.
95 tstb LOCAL_SGN(%a0) |check for sign
96 bpl truncate |if negative then truncate
97 movel #0xffffffff,%d0 |force g,r,s to be all f's
98 lea add_to_l,%a1
99 movel (%a1,%d1.w*4),%a1
100 jmp (%a1)
101|
102| ROUND ZERO
103|
104| Always truncate.
105rnd_zero:
106 swap %d1 |set up d1 for round prec.
107 bra truncate
108|
109|
110| ROUND NEAREST
111|
112| If (g=1), then add 1 to l and if (r=s=0), then clear l
113| Note that this will round to even in case of a tie.
114|
115rnd_near:
116 swap %d1 |set up d1 for round prec.
117 asll #1,%d0 |shift g-bit to c-bit
118 bcc truncate |if (g=1) then
119 lea add_to_l,%a1
120 movel (%a1,%d1.w*4),%a1
121 jmp (%a1)
122
123|
124| ext_grs --- extract guard, round and sticky bits
125|
126| Input: d1 = PREC:ROUND
127| Output: d0{31:29}= guard, round, sticky
128|
129| The ext_grs extract the guard/round/sticky bits according to the
130| selected rounding precision. It is called by the round subroutine
131| only. All registers except d0 are kept intact. d0 becomes an
132| updated guard,round,sticky in d0{31:29}
133|
134| Notes: the ext_grs uses the round PREC, and therefore has to swap d1
135| prior to usage, and needs to restore d1 to original.
136|
137ext_grs:
138 swap %d1 |have d1.w point to round precision
139 cmpiw #0,%d1
140 bnes sgl_or_dbl
141 bras end_ext_grs
142
143sgl_or_dbl:
144 moveml %d2/%d3,-(%a7) |make some temp registers
145 cmpiw #1,%d1
146 bnes grs_dbl
147grs_sgl:
148 bfextu LOCAL_HI(%a0){#24:#2},%d3 |sgl prec. g-r are 2 bits right
149 movel #30,%d2 |of the sgl prec. limits
150 lsll %d2,%d3 |shift g-r bits to MSB of d3
151 movel LOCAL_HI(%a0),%d2 |get word 2 for s-bit test
152 andil #0x0000003f,%d2 |s bit is the or of all other
153 bnes st_stky |bits to the right of g-r
154 tstl LOCAL_LO(%a0) |test lower mantissa
155 bnes st_stky |if any are set, set sticky
156 tstl %d0 |test original g,r,s
157 bnes st_stky |if any are set, set sticky
158 bras end_sd |if words 3 and 4 are clr, exit
159grs_dbl:
160 bfextu LOCAL_LO(%a0){#21:#2},%d3 |dbl-prec. g-r are 2 bits right
161 movel #30,%d2 |of the dbl prec. limits
162 lsll %d2,%d3 |shift g-r bits to the MSB of d3
163 movel LOCAL_LO(%a0),%d2 |get lower mantissa for s-bit test
164 andil #0x000001ff,%d2 |s bit is the or-ing of all
165 bnes st_stky |other bits to the right of g-r
166 tstl %d0 |test word original g,r,s
167 bnes st_stky |if any are set, set sticky
168 bras end_sd |if clear, exit
169st_stky:
170 bset #rnd_stky_bit,%d3
171end_sd:
172 movel %d3,%d0 |return grs to d0
173 moveml (%a7)+,%d2/%d3 |restore scratch registers
174end_ext_grs:
175 swap %d1 |restore d1 to original
176 rts
177
178|******************* Local Equates
179 .set ad_1_sgl,0x00000100 | constant to add 1 to l-bit in sgl prec
180 .set ad_1_dbl,0x00000800 | constant to add 1 to l-bit in dbl prec
181
182
183|Jump table for adding 1 to the l-bit indexed by rnd prec
184
185add_to_l:
186 .long add_ext
187 .long add_sgl
188 .long add_dbl
189 .long add_dbl
190|
191| ADD SINGLE
192|
193add_sgl:
194 addl #ad_1_sgl,LOCAL_HI(%a0)
195 bccs scc_clr |no mantissa overflow
196 roxrw LOCAL_HI(%a0) |shift v-bit back in
197 roxrw LOCAL_HI+2(%a0) |shift v-bit back in
198 addw #0x1,LOCAL_EX(%a0) |and incr exponent
199scc_clr:
200 tstl %d0 |test for rs = 0
201 bnes sgl_done
202 andiw #0xfe00,LOCAL_HI+2(%a0) |clear the l-bit
203sgl_done:
204 andil #0xffffff00,LOCAL_HI(%a0) |truncate bits beyond sgl limit
205 clrl LOCAL_LO(%a0) |clear d2
206 rts
207
208|
209| ADD EXTENDED
210|
211add_ext:
212 addql #1,LOCAL_LO(%a0) |add 1 to l-bit
213 bccs xcc_clr |test for carry out
214 addql #1,LOCAL_HI(%a0) |propagate carry
215 bccs xcc_clr
216 roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit
217 roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit
218 roxrw LOCAL_LO(%a0)
219 roxrw LOCAL_LO+2(%a0)
220 addw #0x1,LOCAL_EX(%a0) |and inc exp
221xcc_clr:
222 tstl %d0 |test rs = 0
223 bnes add_ext_done
224 andib #0xfe,LOCAL_LO+3(%a0) |clear the l bit
225add_ext_done:
226 rts
227|
228| ADD DOUBLE
229|
230add_dbl:
231 addl #ad_1_dbl,LOCAL_LO(%a0)
232 bccs dcc_clr
233 addql #1,LOCAL_HI(%a0) |propagate carry
234 bccs dcc_clr
235 roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit
236 roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit
237 roxrw LOCAL_LO(%a0)
238 roxrw LOCAL_LO+2(%a0)
239 addw #0x1,LOCAL_EX(%a0) |incr exponent
240dcc_clr:
241 tstl %d0 |test for rs = 0
242 bnes dbl_done
243 andiw #0xf000,LOCAL_LO+2(%a0) |clear the l-bit
244
245dbl_done:
246 andil #0xfffff800,LOCAL_LO(%a0) |truncate bits beyond dbl limit
247 rts
248
249error:
250 rts
251|
252| Truncate all other bits
253|
254trunct:
255 .long end_rnd
256 .long sgl_done
257 .long dbl_done
258 .long dbl_done
259
260truncate:
261 lea trunct,%a1
262 movel (%a1,%d1.w*4),%a1
263 jmp (%a1)
264
265end_rnd:
266 rts
267
268|
269| NORMALIZE
270|
271| These routines (nrm_zero & nrm_set) normalize the unnorm. This
272| is done by shifting the mantissa left while decrementing the
273| exponent.
274|
275| NRM_SET shifts and decrements until there is a 1 set in the integer
276| bit of the mantissa (msb in d1).
277|
278| NRM_ZERO shifts and decrements until there is a 1 set in the integer
279| bit of the mantissa (msb in d1) unless this would mean the exponent
280| would go less than 0. In that case the number becomes a denorm - the
281| exponent (d0) is set to 0 and the mantissa (d1 & d2) is not
282| normalized.
283|
284| Note that both routines have been optimized (for the worst case) and
285| therefore do not have the easy to follow decrement/shift loop.
286|
287| NRM_ZERO
288|
289| Distance to first 1 bit in mantissa = X
290| Distance to 0 from exponent = Y
291| If X < Y
292| Then
293| nrm_set
294| Else
295| shift mantissa by Y
296| set exponent = 0
297|
298|input:
299| FP_SCR1 = exponent, ms mantissa part, ls mantissa part
300|output:
301| L_SCR1{4} = fpte15 or ete15 bit
302|
303 .global nrm_zero
304nrm_zero:
305 movew LOCAL_EX(%a0),%d0
306 cmpw #64,%d0 |see if exp > 64
307 bmis d0_less
308 bsr nrm_set |exp > 64 so exp won't exceed 0
309 rts
310d0_less:
311 moveml %d2/%d3/%d5/%d6,-(%a7)
312 movel LOCAL_HI(%a0),%d1
313 movel LOCAL_LO(%a0),%d2
314
315 bfffo %d1{#0:#32},%d3 |get the distance to the first 1
316| ;in ms mant
317 beqs ms_clr |branch if no bits were set
318 cmpw %d3,%d0 |of X>Y
319 bmis greater |then exp will go past 0 (neg) if
320| ;it is just shifted
321 bsr nrm_set |else exp won't go past 0
322 moveml (%a7)+,%d2/%d3/%d5/%d6
323 rts
324greater:
325 movel %d2,%d6 |save ls mant in d6
326 lsll %d0,%d2 |shift ls mant by count
327 lsll %d0,%d1 |shift ms mant by count
328 movel #32,%d5
329 subl %d0,%d5 |make op a denorm by shifting bits
330 lsrl %d5,%d6 |by the number in the exp, then
331| ;set exp = 0.
332 orl %d6,%d1 |shift the ls mant bits into the ms mant
333 movel #0,%d0 |same as if decremented exp to 0
334| ;while shifting
335 movew %d0,LOCAL_EX(%a0)
336 movel %d1,LOCAL_HI(%a0)
337 movel %d2,LOCAL_LO(%a0)
338 moveml (%a7)+,%d2/%d3/%d5/%d6
339 rts
340ms_clr:
341 bfffo %d2{#0:#32},%d3 |check if any bits set in ls mant
342 beqs all_clr |branch if none set
343 addw #32,%d3
344 cmpw %d3,%d0 |if X>Y
345 bmis greater |then branch
346 bsr nrm_set |else exp won't go past 0
347 moveml (%a7)+,%d2/%d3/%d5/%d6
348 rts
349all_clr:
350 movew #0,LOCAL_EX(%a0) |no mantissa bits set. Set exp = 0.
351 moveml (%a7)+,%d2/%d3/%d5/%d6
352 rts
353|
354| NRM_SET
355|
356 .global nrm_set
357nrm_set:
358 movel %d7,-(%a7)
359 bfffo LOCAL_HI(%a0){#0:#32},%d7 |find first 1 in ms mant to d7)
360 beqs lower |branch if ms mant is all 0's
361
362 movel %d6,-(%a7)
363
364 subw %d7,LOCAL_EX(%a0) |sub exponent by count
365 movel LOCAL_HI(%a0),%d0 |d0 has ms mant
366 movel LOCAL_LO(%a0),%d1 |d1 has ls mant
367
368 lsll %d7,%d0 |shift first 1 to j bit position
369 movel %d1,%d6 |copy ls mant into d6
370 lsll %d7,%d6 |shift ls mant by count
371 movel %d6,LOCAL_LO(%a0) |store ls mant into memory
372 moveql #32,%d6
373 subl %d7,%d6 |continue shift
374 lsrl %d6,%d1 |shift off all bits but those that will
375| ;be shifted into ms mant
376 orl %d1,%d0 |shift the ls mant bits into the ms mant
377 movel %d0,LOCAL_HI(%a0) |store ms mant into memory
378 moveml (%a7)+,%d7/%d6 |restore registers
379 rts
380
381|
382| We get here if ms mant was = 0, and we assume ls mant has bits
383| set (otherwise this would have been tagged a zero not a denorm).
384|
385lower:
386 movew LOCAL_EX(%a0),%d0 |d0 has exponent
387 movel LOCAL_LO(%a0),%d1 |d1 has ls mant
388 subw #32,%d0 |account for ms mant being all zeros
389 bfffo %d1{#0:#32},%d7 |find first 1 in ls mant to d7)
390 subw %d7,%d0 |subtract shift count from exp
391 lsll %d7,%d1 |shift first 1 to integer bit in ms mant
392 movew %d0,LOCAL_EX(%a0) |store ms mant
393 movel %d1,LOCAL_HI(%a0) |store exp
394 clrl LOCAL_LO(%a0) |clear ls mant
395 movel (%a7)+,%d7
396 rts
397|
398| denorm --- denormalize an intermediate result
399|
400| Used by underflow.
401|
402| Input:
403| a0 points to the operand to be denormalized
404| (in the internal extended format)
405|
406| d0: rounding precision
407| Output:
408| a0 points to the denormalized result
409| (in the internal extended format)
410|
411| d0 is guard,round,sticky
412|
413| d0 comes into this routine with the rounding precision. It
414| is then loaded with the denormalized exponent threshold for the
415| rounding precision.
416|
417
418 .global denorm
419denorm:
420 btstb #6,LOCAL_EX(%a0) |check for exponents between $7fff-$4000
421 beqs no_sgn_ext
422 bsetb #7,LOCAL_EX(%a0) |sign extend if it is so
423no_sgn_ext:
424
425 cmpib #0,%d0 |if 0 then extended precision
426 bnes not_ext |else branch
427
428 clrl %d1 |load d1 with ext threshold
429 clrl %d0 |clear the sticky flag
430 bsr dnrm_lp |denormalize the number
431 tstb %d1 |check for inex
432 beq no_inex |if clr, no inex
433 bras dnrm_inex |if set, set inex
434
435not_ext:
436 cmpil #1,%d0 |if 1 then single precision
437 beqs load_sgl |else must be 2, double prec
438
439load_dbl:
440 movew #dbl_thresh,%d1 |put copy of threshold in d1
441 movel %d1,%d0 |copy d1 into d0
442 subw LOCAL_EX(%a0),%d0 |diff = threshold - exp
443 cmpw #67,%d0 |if diff > 67 (mant + grs bits)
444 bpls chk_stky |then branch (all bits would be
445| ; shifted off in denorm routine)
446 clrl %d0 |else clear the sticky flag
447 bsr dnrm_lp |denormalize the number
448 tstb %d1 |check flag
449 beqs no_inex |if clr, no inex
450 bras dnrm_inex |if set, set inex
451
452load_sgl:
453 movew #sgl_thresh,%d1 |put copy of threshold in d1
454 movel %d1,%d0 |copy d1 into d0
455 subw LOCAL_EX(%a0),%d0 |diff = threshold - exp
456 cmpw #67,%d0 |if diff > 67 (mant + grs bits)
457 bpls chk_stky |then branch (all bits would be
458| ; shifted off in denorm routine)
459 clrl %d0 |else clear the sticky flag
460 bsr dnrm_lp |denormalize the number
461 tstb %d1 |check flag
462 beqs no_inex |if clr, no inex
463 bras dnrm_inex |if set, set inex
464
465chk_stky:
466 tstl LOCAL_HI(%a0) |check for any bits set
467 bnes set_stky
468 tstl LOCAL_LO(%a0) |check for any bits set
469 bnes set_stky
470 bras clr_mant
471set_stky:
472 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
473 movel #0x20000000,%d0 |set sticky bit in return value
474clr_mant:
475 movew %d1,LOCAL_EX(%a0) |load exp with threshold
476 movel #0,LOCAL_HI(%a0) |set d1 = 0 (ms mantissa)
477 movel #0,LOCAL_LO(%a0) |set d2 = 0 (ms mantissa)
478 rts
479dnrm_inex:
480 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
481no_inex:
482 rts
483
484|
485| dnrm_lp --- normalize exponent/mantissa to specified threshold
486|
487| Input:
488| a0 points to the operand to be denormalized
489| d0{31:29} initial guard,round,sticky
490| d1{15:0} denormalization threshold
491| Output:
492| a0 points to the denormalized operand
493| d0{31:29} final guard,round,sticky
494| d1.b inexact flag: all ones means inexact result
495|
496| The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2
497| so that bfext can be used to extract the new low part of the mantissa.
498| Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there
499| is no LOCAL_GRS scratch word following it on the fsave frame.
500|
501 .global dnrm_lp
502dnrm_lp:
503 movel %d2,-(%sp) |save d2 for temp use
504 btstb #E3,E_BYTE(%a6) |test for type E3 exception
505 beqs not_E3 |not type E3 exception
506 bfextu WBTEMP_GRS(%a6){#6:#3},%d2 |extract guard,round, sticky bit
507 movel #29,%d0
508 lsll %d0,%d2 |shift g,r,s to their positions
509 movel %d2,%d0
510not_E3:
511 movel (%sp)+,%d2 |restore d2
512 movel LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6)
513 movel %d0,FP_SCR2+LOCAL_GRS(%a6)
514 movel %d1,%d0 |copy the denorm threshold
515 subw LOCAL_EX(%a0),%d1 |d1 = threshold - uns exponent
516 bles no_lp |d1 <= 0
517 cmpw #32,%d1
518 blts case_1 |0 = d1 < 32
519 cmpw #64,%d1
520 blts case_2 |32 <= d1 < 64
521 bra case_3 |d1 >= 64
522|
523| No normalization necessary
524|
525no_lp:
526 clrb %d1 |set no inex2 reported
527 movel FP_SCR2+LOCAL_GRS(%a6),%d0 |restore original g,r,s
528 rts
529|
530| case (0<d1<32)
531|
532case_1:
533 movel %d2,-(%sp)
534 movew %d0,LOCAL_EX(%a0) |exponent = denorm threshold
535 movel #32,%d0
536 subw %d1,%d0 |d0 = 32 - d1
537 bfextu LOCAL_EX(%a0){%d0:#32},%d2
538 bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_HI
539 bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new LOCAL_LO
540 bfextu FP_SCR2+LOCAL_LO(%a6){%d0:#32},%d0 |d0 = new G,R,S
541 movel %d2,LOCAL_HI(%a0) |store new LOCAL_HI
542 movel %d1,LOCAL_LO(%a0) |store new LOCAL_LO
543 clrb %d1
544 bftst %d0{#2:#30}
545 beqs c1nstky
546 bsetl #rnd_stky_bit,%d0
547 st %d1
548c1nstky:
549 movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s
550 andil #0xe0000000,%d2 |clear all but G,R,S
551 tstl %d2 |test if original G,R,S are clear
552 beqs grs_clear
553 orl #0x20000000,%d0 |set sticky bit in d0
554grs_clear:
555 andil #0xe0000000,%d0 |clear all but G,R,S
556 movel (%sp)+,%d2
557 rts
558|
559| case (32<=d1<64)
560|
561case_2:
562 movel %d2,-(%sp)
563 movew %d0,LOCAL_EX(%a0) |unsigned exponent = threshold
564 subw #32,%d1 |d1 now between 0 and 32
565 movel #32,%d0
566 subw %d1,%d0 |d0 = 32 - d1
567 bfextu LOCAL_EX(%a0){%d0:#32},%d2
568 bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_LO
569 bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new G,R,S
570 bftst %d1{#2:#30}
571 bnes c2_sstky |bra if sticky bit to be set
572 bftst FP_SCR2+LOCAL_LO(%a6){%d0:#32}
573 bnes c2_sstky |bra if sticky bit to be set
574 movel %d1,%d0
575 clrb %d1
576 bras end_c2
577c2_sstky:
578 movel %d1,%d0
579 bsetl #rnd_stky_bit,%d0
580 st %d1
581end_c2:
582 clrl LOCAL_HI(%a0) |store LOCAL_HI = 0
583 movel %d2,LOCAL_LO(%a0) |store LOCAL_LO
584 movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s
585 andil #0xe0000000,%d2 |clear all but G,R,S
586 tstl %d2 |test if original G,R,S are clear
587 beqs clear_grs
588 orl #0x20000000,%d0 |set sticky bit in d0
589clear_grs:
590 andil #0xe0000000,%d0 |get rid of all but G,R,S
591 movel (%sp)+,%d2
592 rts
593|
594| d1 >= 64 Force the exponent to be the denorm threshold with the
595| correct sign.
596|
597case_3:
598 movew %d0,LOCAL_EX(%a0)
599 tstw LOCAL_SGN(%a0)
600 bges c3con
601c3neg:
602 orl #0x80000000,LOCAL_EX(%a0)
603c3con:
604 cmpw #64,%d1
605 beqs sixty_four
606 cmpw #65,%d1
607 beqs sixty_five
608|
609| Shift value is out of range. Set d1 for inex2 flag and
610| return a zero with the given threshold.
611|
612 clrl LOCAL_HI(%a0)
613 clrl LOCAL_LO(%a0)
614 movel #0x20000000,%d0
615 st %d1
616 rts
617
618sixty_four:
619 movel LOCAL_HI(%a0),%d0
620 bfextu %d0{#2:#30},%d1
621 andil #0xc0000000,%d0
622 bras c3com
623
624sixty_five:
625 movel LOCAL_HI(%a0),%d0
626 bfextu %d0{#1:#31},%d1
627 andil #0x80000000,%d0
628 lsrl #1,%d0 |shift high bit into R bit
629
630c3com:
631 tstl %d1
632 bnes c3ssticky
633 tstl LOCAL_LO(%a0)
634 bnes c3ssticky
635 tstb FP_SCR2+LOCAL_GRS(%a6)
636 bnes c3ssticky
637 clrb %d1
638 bras c3end
639
640c3ssticky:
641 bsetl #rnd_stky_bit,%d0
642 st %d1
643c3end:
644 clrl LOCAL_HI(%a0)
645 clrl LOCAL_LO(%a0)
646 rts
647
648 |end