blob: 374dfcfccd07af35de8f5c45e8b0d6ac106a6bef [file] [log] [blame]
J Freyensee0b61d2a2011-05-06 16:56:49 -07001/*
2 * pti.c - PTI driver for cJTAG data extration
3 *
4 * Copyright (C) Intel 2010
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 *
17 * The PTI (Parallel Trace Interface) driver directs trace data routed from
18 * various parts in the system out through the Intel Penwell PTI port and
19 * out of the mobile device for analysis with a debugging tool
20 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21 * compact JTAG, standard.
22 */
23
24#include <linux/init.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/console.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/tty.h>
31#include <linux/tty_driver.h>
32#include <linux/pci.h>
33#include <linux/mutex.h>
34#include <linux/miscdevice.h>
35#include <linux/pti.h>
36
37#define DRIVERNAME "pti"
38#define PCINAME "pciPTI"
39#define TTYNAME "ttyPTI"
40#define CHARNAME "pti"
41#define PTITTY_MINOR_START 0
42#define PTITTY_MINOR_NUM 2
43#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
44#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
45#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
46#define MODEM_BASE_ID 71 /* modem master ID address */
47#define CONTROL_ID 72 /* control master ID address */
48#define CONSOLE_ID 73 /* console master ID address */
49#define OS_BASE_ID 74 /* base OS master ID address */
50#define APP_BASE_ID 80 /* base App master ID address */
51#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
52#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
53#define APERTURE_14 0x3800000 /* offset to first OS write addr */
54#define APERTURE_LEN 0x400000 /* address length */
55
56struct pti_tty {
57 struct pti_masterchannel *mc;
58};
59
60struct pti_dev {
61 struct tty_port port;
62 unsigned long pti_addr;
63 unsigned long aperture_base;
64 void __iomem *pti_ioaddr;
65 u8 ia_app[MAX_APP_IDS];
66 u8 ia_os[MAX_OS_IDS];
67 u8 ia_modem[MAX_MODEM_IDS];
68};
69
70/*
71 * This protects access to ia_app, ia_os, and ia_modem,
72 * which keeps track of channels allocated in
73 * an aperture write id.
74 */
75static DEFINE_MUTEX(alloclock);
76
77static struct pci_device_id pci_ids[] __devinitconst = {
78 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
79 {0}
80};
81
82static struct tty_driver *pti_tty_driver;
83static struct pti_dev *drv_data;
84
85static unsigned int pti_console_channel;
86static unsigned int pti_control_channel;
87
88/**
89 * pti_write_to_aperture()- The private write function to PTI HW.
90 *
91 * @mc: The 'aperture'. It's part of a write address that holds
92 * a master and channel ID.
93 * @buf: Data being written to the HW that will ultimately be seen
94 * in a debugging tool (Fido, Lauterbach).
95 * @len: Size of buffer.
96 *
97 * Since each aperture is specified by a unique
98 * master/channel ID, no two processes will be writing
99 * to the same aperture at the same time so no lock is required. The
100 * PTI-Output agent will send these out in the order that they arrived, and
101 * thus, it will intermix these messages. The debug tool can then later
102 * regroup the appropriate message segments together reconstituting each
103 * message.
104 */
105static void pti_write_to_aperture(struct pti_masterchannel *mc,
106 u8 *buf,
107 int len)
108{
109 int dwordcnt;
110 int final;
111 int i;
112 u32 ptiword;
113 u32 __iomem *aperture;
114 u8 *p = buf;
115
116 /*
117 * calculate the aperture offset from the base using the master and
118 * channel id's.
119 */
120 aperture = drv_data->pti_ioaddr + (mc->master << 15)
121 + (mc->channel << 8);
122
123 dwordcnt = len >> 2;
124 final = len - (dwordcnt << 2); /* final = trailing bytes */
125 if (final == 0 && dwordcnt != 0) { /* always need a final dword */
126 final += 4;
127 dwordcnt--;
128 }
129
130 for (i = 0; i < dwordcnt; i++) {
131 ptiword = be32_to_cpu(*(u32 *)p);
132 p += 4;
133 iowrite32(ptiword, aperture);
134 }
135
136 aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
137
138 ptiword = 0;
139 for (i = 0; i < final; i++)
140 ptiword |= *p++ << (24-(8*i));
141
142 iowrite32(ptiword, aperture);
143 return;
144}
145
146/**
147 * pti_control_frame_built_and_sent()- control frame build and send function.
148 *
149 * @mc: The master / channel structure on which the function
150 * built a control frame.
151 *
152 * To be able to post process the PTI contents on host side, a control frame
153 * is added before sending any PTI content. So the host side knows on
154 * each PTI frame the name of the thread using a dedicated master / channel.
155 * The thread name is retrieved from the 'current' global variable.
156 * This function builds this frame and sends it to a master ID CONTROL_ID.
157 * The overhead is only 32 bytes since the driver only writes to HW
158 * in 32 byte chunks.
159 */
160
161static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc)
162{
163 struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
164 .channel = 0};
165 const char *control_format = "%3d %3d %s";
166 u8 control_frame[CONTROL_FRAME_LEN];
167
168 /*
169 * Since we access the comm member in current's task_struct,
170 * we only need to be as large as what 'comm' in that
171 * structure is.
172 */
173 char comm[TASK_COMM_LEN];
174
175 if (!in_interrupt())
176 get_task_comm(comm, current);
177 else
178 strncpy(comm, "Interrupt", TASK_COMM_LEN);
179
180 /* Absolutely ensure our buffer is zero terminated. */
181 comm[TASK_COMM_LEN-1] = 0;
182
183 mccontrol.channel = pti_control_channel;
184 pti_control_channel = (pti_control_channel + 1) & 0x7f;
185
186 snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
187 mc->channel, comm);
188 pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
189}
190
191/**
192 * pti_write_full_frame_to_aperture()- high level function to
193 * write to PTI.
194 *
195 * @mc: The 'aperture'. It's part of a write address that holds
196 * a master and channel ID.
197 * @buf: Data being written to the HW that will ultimately be seen
198 * in a debugging tool (Fido, Lauterbach).
199 * @len: Size of buffer.
200 *
201 * All threads sending data (either console, user space application, ...)
202 * are calling the high level function to write to PTI meaning that it is
203 * possible to add a control frame before sending the content.
204 */
205static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
206 const unsigned char *buf,
207 int len)
208{
209 pti_control_frame_built_and_sent(mc);
210 pti_write_to_aperture(mc, (u8 *)buf, len);
211}
212
213/**
214 * get_id()- Allocate a master and channel ID.
215 *
216 * @id_array: an array of bits representing what channel
217 * id's are allocated for writing.
218 * @max_ids: The max amount of available write IDs to use.
219 * @base_id: The starting SW channel ID, based on the Intel
220 * PTI arch.
221 *
222 * Returns:
223 * pti_masterchannel struct with master, channel ID address
224 * 0 for error
225 *
226 * Each bit in the arrays ia_app and ia_os correspond to a master and
227 * channel id. The bit is one if the id is taken and 0 if free. For
228 * every master there are 128 channel id's.
229 */
230static struct pti_masterchannel *get_id(u8 *id_array, int max_ids, int base_id)
231{
232 struct pti_masterchannel *mc;
233 int i, j, mask;
234
235 mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
236 if (mc == NULL)
237 return NULL;
238
239 /* look for a byte with a free bit */
240 for (i = 0; i < max_ids; i++)
241 if (id_array[i] != 0xff)
242 break;
243 if (i == max_ids) {
244 kfree(mc);
245 return NULL;
246 }
247 /* find the bit in the 128 possible channel opportunities */
248 mask = 0x80;
249 for (j = 0; j < 8; j++) {
250 if ((id_array[i] & mask) == 0)
251 break;
252 mask >>= 1;
253 }
254
255 /* grab it */
256 id_array[i] |= mask;
257 mc->master = base_id;
258 mc->channel = ((i & 0xf)<<3) + j;
259 /* write new master Id / channel Id allocation to channel control */
260 pti_control_frame_built_and_sent(mc);
261 return mc;
262}
263
264/*
265 * The following three functions:
266 * pti_request_mastercahannel(), mipi_release_masterchannel()
267 * and pti_writedata() are an API for other kernel drivers to
268 * access PTI.
269 */
270
271/**
272 * pti_request_masterchannel()- Kernel API function used to allocate
273 * a master, channel ID address
274 * to write to PTI HW.
275 *
276 * @type: 0- request Application master, channel aperture ID write address.
277 * 1- request OS master, channel aperture ID write
278 * address.
279 * 2- request Modem master, channel aperture ID
280 * write address.
281 * Other values, error.
282 *
283 * Returns:
284 * pti_masterchannel struct
285 * 0 for error
286 */
287struct pti_masterchannel *pti_request_masterchannel(u8 type)
288{
289 struct pti_masterchannel *mc;
290
291 mutex_lock(&alloclock);
292
293 switch (type) {
294
295 case 0:
296 mc = get_id(drv_data->ia_app, MAX_APP_IDS, APP_BASE_ID);
297 break;
298
299 case 1:
300 mc = get_id(drv_data->ia_os, MAX_OS_IDS, OS_BASE_ID);
301 break;
302
303 case 2:
304 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, MODEM_BASE_ID);
305 break;
306 default:
307 mc = NULL;
308 }
309
310 mutex_unlock(&alloclock);
311 return mc;
312}
313EXPORT_SYMBOL_GPL(pti_request_masterchannel);
314
315/**
316 * pti_release_masterchannel()- Kernel API function used to release
317 * a master, channel ID address
318 * used to write to PTI HW.
319 *
J Freyensee29021bcc2011-05-25 14:38:18 -0700320 * @mc: master, channel apeture ID address to be released. This
321 * will de-allocate the structure via kfree().
J Freyensee0b61d2a2011-05-06 16:56:49 -0700322 */
323void pti_release_masterchannel(struct pti_masterchannel *mc)
324{
325 u8 master, channel, i;
326
327 mutex_lock(&alloclock);
328
329 if (mc) {
330 master = mc->master;
331 channel = mc->channel;
332
333 if (master == APP_BASE_ID) {
334 i = channel >> 3;
335 drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
336 } else if (master == OS_BASE_ID) {
337 i = channel >> 3;
338 drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
339 } else {
340 i = channel >> 3;
341 drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
342 }
343
344 kfree(mc);
345 }
346
347 mutex_unlock(&alloclock);
348}
349EXPORT_SYMBOL_GPL(pti_release_masterchannel);
350
351/**
352 * pti_writedata()- Kernel API function used to write trace
353 * debugging data to PTI HW.
354 *
355 * @mc: Master, channel aperture ID address to write to.
356 * Null value will return with no write occurring.
357 * @buf: Trace debuging data to write to the PTI HW.
358 * Null value will return with no write occurring.
359 * @count: Size of buf. Value of 0 or a negative number will
360 * return with no write occuring.
361 */
362void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
363{
364 /*
365 * since this function is exported, this is treated like an
366 * API function, thus, all parameters should
367 * be checked for validity.
368 */
369 if ((mc != NULL) && (buf != NULL) && (count > 0))
370 pti_write_to_aperture(mc, buf, count);
371 return;
372}
373EXPORT_SYMBOL_GPL(pti_writedata);
374
375/**
376 * pti_pci_remove()- Driver exit method to remove PTI from
377 * PCI bus.
378 * @pdev: variable containing pci info of PTI.
379 */
380static void __devexit pti_pci_remove(struct pci_dev *pdev)
381{
382 struct pti_dev *drv_data;
383
384 drv_data = pci_get_drvdata(pdev);
385 if (drv_data != NULL) {
386 pci_iounmap(pdev, drv_data->pti_ioaddr);
387 pci_set_drvdata(pdev, NULL);
388 kfree(drv_data);
389 pci_release_region(pdev, 1);
390 pci_disable_device(pdev);
391 }
392}
393
394/*
395 * for the tty_driver_*() basic function descriptions, see tty_driver.h.
396 * Specific header comments made for PTI-related specifics.
397 */
398
399/**
400 * pti_tty_driver_open()- Open an Application master, channel aperture
401 * ID to the PTI device via tty device.
402 *
403 * @tty: tty interface.
404 * @filp: filp interface pased to tty_port_open() call.
405 *
406 * Returns:
407 * int, 0 for success
408 * otherwise, fail value
409 *
410 * The main purpose of using the tty device interface is for
411 * each tty port to have a unique PTI write aperture. In an
412 * example use case, ttyPTI0 gets syslogd and an APP aperture
413 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
414 * modem messages into PTI. Modem trace data does not have to
415 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
416 * master IDs. These messages go through the PTI HW and out of
417 * the handheld platform and to the Fido/Lauterbach device.
418 */
419static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
420{
421 /*
422 * we actually want to allocate a new channel per open, per
423 * system arch. HW gives more than plenty channels for a single
424 * system task to have its own channel to write trace data. This
425 * also removes a locking requirement for the actual write
426 * procedure.
427 */
428 return tty_port_open(&drv_data->port, tty, filp);
429}
430
431/**
432 * pti_tty_driver_close()- close tty device and release Application
433 * master, channel aperture ID to the PTI device via tty device.
434 *
435 * @tty: tty interface.
436 * @filp: filp interface pased to tty_port_close() call.
437 *
438 * The main purpose of using the tty device interface is to route
439 * syslog daemon messages to the PTI HW and out of the handheld platform
440 * and to the Fido/Lauterbach device.
441 */
442static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
443{
444 tty_port_close(&drv_data->port, tty, filp);
445}
446
447/**
448 * pti_tty_intstall()- Used to set up specific master-channels
449 * to tty ports for organizational purposes when
450 * tracing viewed from debuging tools.
451 *
452 * @driver: tty driver information.
453 * @tty: tty struct containing pti information.
454 *
455 * Returns:
456 * 0 for success
457 * otherwise, error
458 */
459static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
460{
461 int idx = tty->index;
462 struct pti_tty *pti_tty_data;
463 int ret = tty_init_termios(tty);
464
465 if (ret == 0) {
466 tty_driver_kref_get(driver);
467 tty->count++;
468 driver->ttys[idx] = tty;
469
470 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
471 if (pti_tty_data == NULL)
472 return -ENOMEM;
473
474 if (idx == PTITTY_MINOR_START)
475 pti_tty_data->mc = pti_request_masterchannel(0);
476 else
477 pti_tty_data->mc = pti_request_masterchannel(2);
478
J Freyensee1dae42b2011-05-25 14:45:40 -0700479 if (pti_tty_data->mc == NULL) {
480 kfree(pti_tty_data);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700481 return -ENXIO;
J Freyensee1dae42b2011-05-25 14:45:40 -0700482 }
J Freyensee0b61d2a2011-05-06 16:56:49 -0700483 tty->driver_data = pti_tty_data;
484 }
485
486 return ret;
487}
488
489/**
490 * pti_tty_cleanup()- Used to de-allocate master-channel resources
491 * tied to tty's of this driver.
492 *
493 * @tty: tty struct containing pti information.
494 */
495static void pti_tty_cleanup(struct tty_struct *tty)
496{
497 struct pti_tty *pti_tty_data = tty->driver_data;
498 if (pti_tty_data == NULL)
499 return;
500 pti_release_masterchannel(pti_tty_data->mc);
J Freyensee1312ba42011-05-25 14:56:43 -0700501 kfree(pti_tty_data);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700502 tty->driver_data = NULL;
503}
504
505/**
506 * pti_tty_driver_write()- Write trace debugging data through the char
507 * interface to the PTI HW. Part of the misc device implementation.
508 *
509 * @filp: Contains private data which is used to obtain
510 * master, channel write ID.
511 * @data: trace data to be written.
512 * @len: # of byte to write.
513 *
514 * Returns:
515 * int, # of bytes written
516 * otherwise, error
517 */
518static int pti_tty_driver_write(struct tty_struct *tty,
519 const unsigned char *buf, int len)
520{
521 struct pti_tty *pti_tty_data = tty->driver_data;
522 if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
523 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
524 return len;
525 }
526 /*
527 * we can't write to the pti hardware if the private driver_data
528 * and the mc address is not there.
529 */
530 else
531 return -EFAULT;
532}
533
534/**
535 * pti_tty_write_room()- Always returns 2048.
536 *
537 * @tty: contains tty info of the pti driver.
538 */
539static int pti_tty_write_room(struct tty_struct *tty)
540{
541 return 2048;
542}
543
544/**
545 * pti_char_open()- Open an Application master, channel aperture
546 * ID to the PTI device. Part of the misc device implementation.
547 *
548 * @inode: not used.
549 * @filp: Output- will have a masterchannel struct set containing
550 * the allocated application PTI aperture write address.
551 *
552 * Returns:
553 * int, 0 for success
554 * otherwise, a fail value
555 */
556static int pti_char_open(struct inode *inode, struct file *filp)
557{
558 struct pti_masterchannel *mc;
559
560 /*
561 * We really do want to fail immediately if
562 * pti_request_masterchannel() fails,
563 * before assigning the value to filp->private_data.
564 * Slightly easier to debug if this driver needs debugging.
565 */
566 mc = pti_request_masterchannel(0);
567 if (mc == NULL)
568 return -ENOMEM;
569 filp->private_data = mc;
570 return 0;
571}
572
573/**
574 * pti_char_release()- Close a char channel to the PTI device. Part
575 * of the misc device implementation.
576 *
577 * @inode: Not used in this implementaiton.
578 * @filp: Contains private_data that contains the master, channel
579 * ID to be released by the PTI device.
580 *
581 * Returns:
582 * always 0
583 */
584static int pti_char_release(struct inode *inode, struct file *filp)
585{
586 pti_release_masterchannel(filp->private_data);
J Freyensee29021bcc2011-05-25 14:38:18 -0700587 filp->private_data = NULL;
J Freyensee0b61d2a2011-05-06 16:56:49 -0700588 return 0;
589}
590
591/**
592 * pti_char_write()- Write trace debugging data through the char
593 * interface to the PTI HW. Part of the misc device implementation.
594 *
595 * @filp: Contains private data which is used to obtain
596 * master, channel write ID.
597 * @data: trace data to be written.
598 * @len: # of byte to write.
599 * @ppose: Not used in this function implementation.
600 *
601 * Returns:
602 * int, # of bytes written
603 * otherwise, error value
604 *
605 * Notes: From side discussions with Alan Cox and experimenting
606 * with PTI debug HW like Nokia's Fido box and Lauterbach
607 * devices, 8192 byte write buffer used by USER_COPY_SIZE was
608 * deemed an appropriate size for this type of usage with
609 * debugging HW.
610 */
611static ssize_t pti_char_write(struct file *filp, const char __user *data,
612 size_t len, loff_t *ppose)
613{
614 struct pti_masterchannel *mc;
615 void *kbuf;
616 const char __user *tmp;
617 size_t size = USER_COPY_SIZE;
618 size_t n = 0;
619
620 tmp = data;
621 mc = filp->private_data;
622
623 kbuf = kmalloc(size, GFP_KERNEL);
624 if (kbuf == NULL) {
625 pr_err("%s(%d): buf allocation failed\n",
626 __func__, __LINE__);
627 return -ENOMEM;
628 }
629
630 do {
631 if (len - n > USER_COPY_SIZE)
632 size = USER_COPY_SIZE;
633 else
634 size = len - n;
635
636 if (copy_from_user(kbuf, tmp, size)) {
637 kfree(kbuf);
638 return n ? n : -EFAULT;
639 }
640
641 pti_write_to_aperture(mc, kbuf, size);
642 n += size;
643 tmp += size;
644
645 } while (len > n);
646
647 kfree(kbuf);
648 return len;
649}
650
651static const struct tty_operations pti_tty_driver_ops = {
652 .open = pti_tty_driver_open,
653 .close = pti_tty_driver_close,
654 .write = pti_tty_driver_write,
655 .write_room = pti_tty_write_room,
656 .install = pti_tty_install,
657 .cleanup = pti_tty_cleanup
658};
659
660static const struct file_operations pti_char_driver_ops = {
661 .owner = THIS_MODULE,
662 .write = pti_char_write,
663 .open = pti_char_open,
664 .release = pti_char_release,
665};
666
667static struct miscdevice pti_char_driver = {
668 .minor = MISC_DYNAMIC_MINOR,
669 .name = CHARNAME,
670 .fops = &pti_char_driver_ops
671};
672
673/**
674 * pti_console_write()- Write to the console that has been acquired.
675 *
676 * @c: Not used in this implementaiton.
677 * @buf: Data to be written.
678 * @len: Length of buf.
679 */
680static void pti_console_write(struct console *c, const char *buf, unsigned len)
681{
682 static struct pti_masterchannel mc = {.master = CONSOLE_ID,
683 .channel = 0};
684
685 mc.channel = pti_console_channel;
686 pti_console_channel = (pti_console_channel + 1) & 0x7f;
687
688 pti_write_full_frame_to_aperture(&mc, buf, len);
689}
690
691/**
692 * pti_console_device()- Return the driver tty structure and set the
693 * associated index implementation.
694 *
695 * @c: Console device of the driver.
696 * @index: index associated with c.
697 *
698 * Returns:
699 * always value of pti_tty_driver structure when this function
700 * is called.
701 */
702static struct tty_driver *pti_console_device(struct console *c, int *index)
703{
704 *index = c->index;
705 return pti_tty_driver;
706}
707
708/**
709 * pti_console_setup()- Initialize console variables used by the driver.
710 *
711 * @c: Not used.
712 * @opts: Not used.
713 *
714 * Returns:
715 * always 0.
716 */
717static int pti_console_setup(struct console *c, char *opts)
718{
719 pti_console_channel = 0;
720 pti_control_channel = 0;
721 return 0;
722}
723
724/*
725 * pti_console struct, used to capture OS printk()'s and shift
726 * out to the PTI device for debugging. This cannot be
727 * enabled upon boot because of the possibility of eating
728 * any serial console printk's (race condition discovered).
729 * The console should be enabled upon when the tty port is
730 * used for the first time. Since the primary purpose for
731 * the tty port is to hook up syslog to it, the tty port
732 * will be open for a really long time.
733 */
734static struct console pti_console = {
735 .name = TTYNAME,
736 .write = pti_console_write,
737 .device = pti_console_device,
738 .setup = pti_console_setup,
739 .flags = CON_PRINTBUFFER,
740 .index = 0,
741};
742
743/**
744 * pti_port_activate()- Used to start/initialize any items upon
745 * first opening of tty_port().
746 *
747 * @port- The tty port number of the PTI device.
748 * @tty- The tty struct associated with this device.
749 *
750 * Returns:
751 * always returns 0
752 *
753 * Notes: The primary purpose of the PTI tty port 0 is to hook
754 * the syslog daemon to it; thus this port will be open for a
755 * very long time.
756 */
757static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
758{
759 if (port->tty->index == PTITTY_MINOR_START)
760 console_start(&pti_console);
761 return 0;
762}
763
764/**
765 * pti_port_shutdown()- Used to stop/shutdown any items upon the
766 * last tty port close.
767 *
768 * @port- The tty port number of the PTI device.
769 *
770 * Notes: The primary purpose of the PTI tty port 0 is to hook
771 * the syslog daemon to it; thus this port will be open for a
772 * very long time.
773 */
774static void pti_port_shutdown(struct tty_port *port)
775{
776 if (port->tty->index == PTITTY_MINOR_START)
777 console_stop(&pti_console);
778}
779
780static const struct tty_port_operations tty_port_ops = {
781 .activate = pti_port_activate,
782 .shutdown = pti_port_shutdown,
783};
784
785/*
786 * Note the _probe() call sets everything up and ties the char and tty
787 * to successfully detecting the PTI device on the pci bus.
788 */
789
790/**
791 * pti_pci_probe()- Used to detect pti on the pci bus and set
792 * things up in the driver.
793 *
794 * @pdev- pci_dev struct values for pti.
795 * @ent- pci_device_id struct for pti driver.
796 *
797 * Returns:
798 * 0 for success
799 * otherwise, error
800 */
801static int __devinit pti_pci_probe(struct pci_dev *pdev,
802 const struct pci_device_id *ent)
803{
804 int retval = -EINVAL;
805 int pci_bar = 1;
806
807 dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
808 __func__, __LINE__, pdev->vendor, pdev->device);
809
810 retval = misc_register(&pti_char_driver);
811 if (retval) {
812 pr_err("%s(%d): CHAR registration failed of pti driver\n",
813 __func__, __LINE__);
814 pr_err("%s(%d): Error value returned: %d\n",
815 __func__, __LINE__, retval);
816 return retval;
817 }
818
819 retval = pci_enable_device(pdev);
820 if (retval != 0) {
821 dev_err(&pdev->dev,
822 "%s: pci_enable_device() returned error %d\n",
823 __func__, retval);
824 return retval;
825 }
826
827 drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
828
829 if (drv_data == NULL) {
830 retval = -ENOMEM;
831 dev_err(&pdev->dev,
832 "%s(%d): kmalloc() returned NULL memory.\n",
833 __func__, __LINE__);
834 return retval;
835 }
836 drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
837
838 retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
839 if (retval != 0) {
840 dev_err(&pdev->dev,
841 "%s(%d): pci_request_region() returned error %d\n",
842 __func__, __LINE__, retval);
843 kfree(drv_data);
844 return retval;
845 }
846 drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
847 drv_data->pti_ioaddr =
848 ioremap_nocache((u32)drv_data->aperture_base,
849 APERTURE_LEN);
850 if (!drv_data->pti_ioaddr) {
851 pci_release_region(pdev, pci_bar);
852 retval = -ENOMEM;
853 kfree(drv_data);
854 return retval;
855 }
856
857 pci_set_drvdata(pdev, drv_data);
858
859 tty_port_init(&drv_data->port);
860 drv_data->port.ops = &tty_port_ops;
861
862 tty_register_device(pti_tty_driver, 0, &pdev->dev);
863 tty_register_device(pti_tty_driver, 1, &pdev->dev);
864
865 register_console(&pti_console);
866
867 return retval;
868}
869
870static struct pci_driver pti_pci_driver = {
871 .name = PCINAME,
872 .id_table = pci_ids,
873 .probe = pti_pci_probe,
874 .remove = pti_pci_remove,
875};
876
877/**
878 *
879 * pti_init()- Overall entry/init call to the pti driver.
880 * It starts the registration process with the kernel.
881 *
882 * Returns:
883 * int __init, 0 for success
884 * otherwise value is an error
885 *
886 */
887static int __init pti_init(void)
888{
889 int retval = -EINVAL;
890
891 /* First register module as tty device */
892
893 pti_tty_driver = alloc_tty_driver(1);
894 if (pti_tty_driver == NULL) {
895 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
896 __func__, __LINE__);
897 return -ENOMEM;
898 }
899
900 pti_tty_driver->owner = THIS_MODULE;
901 pti_tty_driver->magic = TTY_DRIVER_MAGIC;
902 pti_tty_driver->driver_name = DRIVERNAME;
903 pti_tty_driver->name = TTYNAME;
904 pti_tty_driver->major = 0;
905 pti_tty_driver->minor_start = PTITTY_MINOR_START;
906 pti_tty_driver->minor_num = PTITTY_MINOR_NUM;
907 pti_tty_driver->num = PTITTY_MINOR_NUM;
908 pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
909 pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
910 pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
911 TTY_DRIVER_DYNAMIC_DEV;
912 pti_tty_driver->init_termios = tty_std_termios;
913
914 tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
915
916 retval = tty_register_driver(pti_tty_driver);
917 if (retval) {
918 pr_err("%s(%d): TTY registration failed of pti driver\n",
919 __func__, __LINE__);
920 pr_err("%s(%d): Error value returned: %d\n",
921 __func__, __LINE__, retval);
922
923 pti_tty_driver = NULL;
924 return retval;
925 }
926
927 retval = pci_register_driver(&pti_pci_driver);
928
929 if (retval) {
930 pr_err("%s(%d): PCI registration failed of pti driver\n",
931 __func__, __LINE__);
932 pr_err("%s(%d): Error value returned: %d\n",
933 __func__, __LINE__, retval);
934
935 tty_unregister_driver(pti_tty_driver);
936 pr_err("%s(%d): Unregistering TTY part of pti driver\n",
937 __func__, __LINE__);
938 pti_tty_driver = NULL;
939 return retval;
940 }
941
942 return retval;
943}
944
945/**
946 * pti_exit()- Unregisters this module as a tty and pci driver.
947 */
948static void __exit pti_exit(void)
949{
950 int retval;
951
952 tty_unregister_device(pti_tty_driver, 0);
953 tty_unregister_device(pti_tty_driver, 1);
954
955 retval = tty_unregister_driver(pti_tty_driver);
956 if (retval) {
957 pr_err("%s(%d): TTY unregistration failed of pti driver\n",
958 __func__, __LINE__);
959 pr_err("%s(%d): Error value returned: %d\n",
960 __func__, __LINE__, retval);
961 }
962
963 pci_unregister_driver(&pti_pci_driver);
964
965 retval = misc_deregister(&pti_char_driver);
966 if (retval) {
967 pr_err("%s(%d): CHAR unregistration failed of pti driver\n",
968 __func__, __LINE__);
969 pr_err("%s(%d): Error value returned: %d\n",
970 __func__, __LINE__, retval);
971 }
972
973 unregister_console(&pti_console);
974 return;
975}
976
977module_init(pti_init);
978module_exit(pti_exit);
979
980MODULE_LICENSE("GPL");
981MODULE_AUTHOR("Ken Mills, Jay Freyensee");
982MODULE_DESCRIPTION("PTI Driver");
983