blob: c977f7a2f0e47fa3fbbc06adf452e7058d58f3f5 [file] [log] [blame]
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
Catalin Marinas4698c1f2009-06-26 17:38:27 +010051 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
Catalin Marinas3c7b4e62009-06-11 13:22:39 +010055 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
Joe Perchesae281062009-06-23 14:40:26 +010064#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
Catalin Marinas3c7b4e62009-06-11 13:22:39 +010066#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE 16 /* stack trace length */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100106#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100107#define SECS_FIRST_SCAN 60 /* delay before the first scan */
108#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
Catalin Marinas25873622009-07-07 10:32:58 +0100109#define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
Catalin Marinasaf986032009-08-27 14:29:12 +0100110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100111
112#define BYTES_PER_POINTER sizeof(void *)
113
Catalin Marinas216c04b2009-06-17 18:29:02 +0100114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long offset;
121 size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133 spinlock_t lock;
134 unsigned long flags; /* object status flags */
135 struct list_head object_list;
136 struct list_head gray_list;
137 struct prio_tree_node tree_node;
138 struct rcu_head rcu; /* object_list lockless traversal */
139 /* object usage count; object freed when use_count == 0 */
140 atomic_t use_count;
141 unsigned long pointer;
142 size_t size;
143 /* minimum number of a pointers found before it is considered leak */
144 int min_count;
145 /* the total number of pointers found pointing to this object */
146 int count;
147 /* memory ranges to be scanned inside an object (empty for all) */
148 struct hlist_head area_list;
149 unsigned long trace[MAX_TRACE];
150 unsigned int trace_len;
151 unsigned long jiffies; /* creation timestamp */
152 pid_t pid; /* pid of the current task */
153 char comm[TASK_COMM_LEN]; /* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED (1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED (1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN (1 << 2)
Catalin Marinas25873622009-07-07 10:32:58 +0100162/* flag set on newly allocated objects */
163#define OBJECT_NEW (1 << 3)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100164
165/* the list of all allocated objects */
166static LIST_HEAD(object_list);
167/* the list of gray-colored objects (see color_gray comment below) */
168static LIST_HEAD(gray_list);
169/* prio search tree for object boundaries */
170static struct prio_tree_root object_tree_root;
171/* rw_lock protecting the access to object_list and prio_tree_root */
172static DEFINE_RWLOCK(kmemleak_lock);
173
174/* allocation caches for kmemleak internal data */
175static struct kmem_cache *object_cache;
176static struct kmem_cache *scan_area_cache;
177
178/* set if tracing memory operations is enabled */
179static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
180/* set in the late_initcall if there were no errors */
181static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
182/* enables or disables early logging of the memory operations */
183static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
184/* set if a fata kmemleak error has occurred */
185static atomic_t kmemleak_error = ATOMIC_INIT(0);
186
187/* minimum and maximum address that may be valid pointers */
188static unsigned long min_addr = ULONG_MAX;
189static unsigned long max_addr;
190
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100191static struct task_struct *scan_thread;
Catalin Marinasacf49682009-06-26 17:38:29 +0100192/* used to avoid reporting of recently allocated objects */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100193static unsigned long jiffies_min_age;
Catalin Marinasacf49682009-06-26 17:38:29 +0100194static unsigned long jiffies_last_scan;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100195/* delay between automatic memory scannings */
196static signed long jiffies_scan_wait;
197/* enables or disables the task stacks scanning */
Catalin Marinase0a2a162009-06-26 17:38:25 +0100198static int kmemleak_stack_scan = 1;
Catalin Marinas4698c1f2009-06-26 17:38:27 +0100199/* protects the memory scanning, parameters and debug/kmemleak file access */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100200static DEFINE_MUTEX(scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100201
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100202/*
Catalin Marinas20301172009-06-17 18:29:04 +0100203 * Early object allocation/freeing logging. Kmemleak is initialized after the
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100204 * kernel allocator. However, both the kernel allocator and kmemleak may
Catalin Marinas20301172009-06-17 18:29:04 +0100205 * allocate memory blocks which need to be tracked. Kmemleak defines an
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100206 * arbitrary buffer to hold the allocation/freeing information before it is
207 * fully initialized.
208 */
209
210/* kmemleak operation type for early logging */
211enum {
212 KMEMLEAK_ALLOC,
213 KMEMLEAK_FREE,
Catalin Marinas53238a62009-07-07 10:33:00 +0100214 KMEMLEAK_FREE_PART,
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100215 KMEMLEAK_NOT_LEAK,
216 KMEMLEAK_IGNORE,
217 KMEMLEAK_SCAN_AREA,
218 KMEMLEAK_NO_SCAN
219};
220
221/*
222 * Structure holding the information passed to kmemleak callbacks during the
223 * early logging.
224 */
225struct early_log {
226 int op_type; /* kmemleak operation type */
227 const void *ptr; /* allocated/freed memory block */
228 size_t size; /* memory block size */
229 int min_count; /* minimum reference count */
230 unsigned long offset; /* scan area offset */
231 size_t length; /* scan area length */
232};
233
234/* early logging buffer and current position */
Catalin Marinasa9d90582009-06-25 10:16:11 +0100235static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100236static int crt_early_log;
237
238static void kmemleak_disable(void);
239
240/*
241 * Print a warning and dump the stack trace.
242 */
243#define kmemleak_warn(x...) do { \
244 pr_warning(x); \
245 dump_stack(); \
246} while (0)
247
248/*
249 * Macro invoked when a serious kmemleak condition occured and cannot be
Catalin Marinas20301172009-06-17 18:29:04 +0100250 * recovered from. Kmemleak will be disabled and further allocation/freeing
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100251 * tracing no longer available.
252 */
Catalin Marinas000814f2009-06-17 18:29:03 +0100253#define kmemleak_stop(x...) do { \
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100254 kmemleak_warn(x); \
255 kmemleak_disable(); \
256} while (0)
257
258/*
259 * Object colors, encoded with count and min_count:
260 * - white - orphan object, not enough references to it (count < min_count)
261 * - gray - not orphan, not marked as false positive (min_count == 0) or
262 * sufficient references to it (count >= min_count)
263 * - black - ignore, it doesn't contain references (e.g. text section)
264 * (min_count == -1). No function defined for this color.
265 * Newly created objects don't have any color assigned (object->count == -1)
266 * before the next memory scan when they become white.
267 */
268static int color_white(const struct kmemleak_object *object)
269{
270 return object->count != -1 && object->count < object->min_count;
271}
272
273static int color_gray(const struct kmemleak_object *object)
274{
275 return object->min_count != -1 && object->count >= object->min_count;
276}
277
Catalin Marinas25873622009-07-07 10:32:58 +0100278static int color_black(const struct kmemleak_object *object)
279{
280 return object->min_count == -1;
281}
282
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100283/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100284 * Objects are considered unreferenced only if their color is white, they have
285 * not be deleted and have a minimum age to avoid false positives caused by
286 * pointers temporarily stored in CPU registers.
287 */
288static int unreferenced_object(struct kmemleak_object *object)
289{
290 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
Catalin Marinasacf49682009-06-26 17:38:29 +0100291 time_before_eq(object->jiffies + jiffies_min_age,
292 jiffies_last_scan);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100293}
294
295/*
Catalin Marinasbab4a342009-06-26 17:38:26 +0100296 * Printing of the unreferenced objects information to the seq file. The
297 * print_unreferenced function must be called with the object->lock held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100298 */
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100299static void print_unreferenced(struct seq_file *seq,
300 struct kmemleak_object *object)
301{
302 int i;
303
Catalin Marinasbab4a342009-06-26 17:38:26 +0100304 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
305 object->pointer, object->size);
306 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
307 object->comm, object->pid, object->jiffies);
308 seq_printf(seq, " backtrace:\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100309
310 for (i = 0; i < object->trace_len; i++) {
311 void *ptr = (void *)object->trace[i];
Catalin Marinasbab4a342009-06-26 17:38:26 +0100312 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100313 }
314}
315
316/*
317 * Print the kmemleak_object information. This function is used mainly for
318 * debugging special cases when kmemleak operations. It must be called with
319 * the object->lock held.
320 */
321static void dump_object_info(struct kmemleak_object *object)
322{
323 struct stack_trace trace;
324
325 trace.nr_entries = object->trace_len;
326 trace.entries = object->trace;
327
Joe Perchesae281062009-06-23 14:40:26 +0100328 pr_notice("Object 0x%08lx (size %zu):\n",
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100329 object->tree_node.start, object->size);
330 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
331 object->comm, object->pid, object->jiffies);
332 pr_notice(" min_count = %d\n", object->min_count);
333 pr_notice(" count = %d\n", object->count);
Catalin Marinas189d84e2009-08-27 14:29:15 +0100334 pr_notice(" flags = 0x%lx\n", object->flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100335 pr_notice(" backtrace:\n");
336 print_stack_trace(&trace, 4);
337}
338
339/*
340 * Look-up a memory block metadata (kmemleak_object) in the priority search
341 * tree based on a pointer value. If alias is 0, only values pointing to the
342 * beginning of the memory block are allowed. The kmemleak_lock must be held
343 * when calling this function.
344 */
345static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
346{
347 struct prio_tree_node *node;
348 struct prio_tree_iter iter;
349 struct kmemleak_object *object;
350
351 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
352 node = prio_tree_next(&iter);
353 if (node) {
354 object = prio_tree_entry(node, struct kmemleak_object,
355 tree_node);
356 if (!alias && object->pointer != ptr) {
Joe Perchesae281062009-06-23 14:40:26 +0100357 kmemleak_warn("Found object by alias");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100358 object = NULL;
359 }
360 } else
361 object = NULL;
362
363 return object;
364}
365
366/*
367 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
368 * that once an object's use_count reached 0, the RCU freeing was already
369 * registered and the object should no longer be used. This function must be
370 * called under the protection of rcu_read_lock().
371 */
372static int get_object(struct kmemleak_object *object)
373{
374 return atomic_inc_not_zero(&object->use_count);
375}
376
377/*
378 * RCU callback to free a kmemleak_object.
379 */
380static void free_object_rcu(struct rcu_head *rcu)
381{
382 struct hlist_node *elem, *tmp;
383 struct kmemleak_scan_area *area;
384 struct kmemleak_object *object =
385 container_of(rcu, struct kmemleak_object, rcu);
386
387 /*
388 * Once use_count is 0 (guaranteed by put_object), there is no other
389 * code accessing this object, hence no need for locking.
390 */
391 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
392 hlist_del(elem);
393 kmem_cache_free(scan_area_cache, area);
394 }
395 kmem_cache_free(object_cache, object);
396}
397
398/*
399 * Decrement the object use_count. Once the count is 0, free the object using
400 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
401 * delete_object() path, the delayed RCU freeing ensures that there is no
402 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
403 * is also possible.
404 */
405static void put_object(struct kmemleak_object *object)
406{
407 if (!atomic_dec_and_test(&object->use_count))
408 return;
409
410 /* should only get here after delete_object was called */
411 WARN_ON(object->flags & OBJECT_ALLOCATED);
412
413 call_rcu(&object->rcu, free_object_rcu);
414}
415
416/*
417 * Look up an object in the prio search tree and increase its use_count.
418 */
419static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
420{
421 unsigned long flags;
422 struct kmemleak_object *object = NULL;
423
424 rcu_read_lock();
425 read_lock_irqsave(&kmemleak_lock, flags);
426 if (ptr >= min_addr && ptr < max_addr)
427 object = lookup_object(ptr, alias);
428 read_unlock_irqrestore(&kmemleak_lock, flags);
429
430 /* check whether the object is still available */
431 if (object && !get_object(object))
432 object = NULL;
433 rcu_read_unlock();
434
435 return object;
436}
437
438/*
439 * Create the metadata (struct kmemleak_object) corresponding to an allocated
440 * memory block and add it to the object_list and object_tree_root.
441 */
442static void create_object(unsigned long ptr, size_t size, int min_count,
443 gfp_t gfp)
444{
445 unsigned long flags;
446 struct kmemleak_object *object;
447 struct prio_tree_node *node;
448 struct stack_trace trace;
449
Catalin Marinas216c04b2009-06-17 18:29:02 +0100450 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100451 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100452 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100453 return;
454 }
455
456 INIT_LIST_HEAD(&object->object_list);
457 INIT_LIST_HEAD(&object->gray_list);
458 INIT_HLIST_HEAD(&object->area_list);
459 spin_lock_init(&object->lock);
460 atomic_set(&object->use_count, 1);
Catalin Marinas25873622009-07-07 10:32:58 +0100461 object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100462 object->pointer = ptr;
463 object->size = size;
464 object->min_count = min_count;
465 object->count = -1; /* no color initially */
466 object->jiffies = jiffies;
467
468 /* task information */
469 if (in_irq()) {
470 object->pid = 0;
471 strncpy(object->comm, "hardirq", sizeof(object->comm));
472 } else if (in_softirq()) {
473 object->pid = 0;
474 strncpy(object->comm, "softirq", sizeof(object->comm));
475 } else {
476 object->pid = current->pid;
477 /*
478 * There is a small chance of a race with set_task_comm(),
479 * however using get_task_comm() here may cause locking
480 * dependency issues with current->alloc_lock. In the worst
481 * case, the command line is not correct.
482 */
483 strncpy(object->comm, current->comm, sizeof(object->comm));
484 }
485
486 /* kernel backtrace */
487 trace.max_entries = MAX_TRACE;
488 trace.nr_entries = 0;
489 trace.entries = object->trace;
490 trace.skip = 1;
491 save_stack_trace(&trace);
492 object->trace_len = trace.nr_entries;
493
494 INIT_PRIO_TREE_NODE(&object->tree_node);
495 object->tree_node.start = ptr;
496 object->tree_node.last = ptr + size - 1;
497
498 write_lock_irqsave(&kmemleak_lock, flags);
499 min_addr = min(min_addr, ptr);
500 max_addr = max(max_addr, ptr + size);
501 node = prio_tree_insert(&object_tree_root, &object->tree_node);
502 /*
503 * The code calling the kernel does not yet have the pointer to the
504 * memory block to be able to free it. However, we still hold the
505 * kmemleak_lock here in case parts of the kernel started freeing
506 * random memory blocks.
507 */
508 if (node != &object->tree_node) {
509 unsigned long flags;
510
Joe Perchesae281062009-06-23 14:40:26 +0100511 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
512 "(already existing)\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100513 object = lookup_object(ptr, 1);
514 spin_lock_irqsave(&object->lock, flags);
515 dump_object_info(object);
516 spin_unlock_irqrestore(&object->lock, flags);
517
518 goto out;
519 }
520 list_add_tail_rcu(&object->object_list, &object_list);
521out:
522 write_unlock_irqrestore(&kmemleak_lock, flags);
523}
524
525/*
526 * Remove the metadata (struct kmemleak_object) for a memory block from the
527 * object_list and object_tree_root and decrement its use_count.
528 */
Catalin Marinas53238a62009-07-07 10:33:00 +0100529static void __delete_object(struct kmemleak_object *object)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100530{
531 unsigned long flags;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100532
533 write_lock_irqsave(&kmemleak_lock, flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100534 prio_tree_remove(&object_tree_root, &object->tree_node);
535 list_del_rcu(&object->object_list);
536 write_unlock_irqrestore(&kmemleak_lock, flags);
537
538 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
Catalin Marinas53238a62009-07-07 10:33:00 +0100539 WARN_ON(atomic_read(&object->use_count) < 2);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100540
541 /*
542 * Locking here also ensures that the corresponding memory block
543 * cannot be freed when it is being scanned.
544 */
545 spin_lock_irqsave(&object->lock, flags);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100546 object->flags &= ~OBJECT_ALLOCATED;
547 spin_unlock_irqrestore(&object->lock, flags);
548 put_object(object);
549}
550
551/*
Catalin Marinas53238a62009-07-07 10:33:00 +0100552 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
553 * delete it.
554 */
555static void delete_object_full(unsigned long ptr)
556{
557 struct kmemleak_object *object;
558
559 object = find_and_get_object(ptr, 0);
560 if (!object) {
561#ifdef DEBUG
562 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
563 ptr);
564#endif
565 return;
566 }
567 __delete_object(object);
568 put_object(object);
569}
570
571/*
572 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
573 * delete it. If the memory block is partially freed, the function may create
574 * additional metadata for the remaining parts of the block.
575 */
576static void delete_object_part(unsigned long ptr, size_t size)
577{
578 struct kmemleak_object *object;
579 unsigned long start, end;
580
581 object = find_and_get_object(ptr, 1);
582 if (!object) {
583#ifdef DEBUG
584 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
585 "(size %zu)\n", ptr, size);
586#endif
587 return;
588 }
589 __delete_object(object);
590
591 /*
592 * Create one or two objects that may result from the memory block
593 * split. Note that partial freeing is only done by free_bootmem() and
594 * this happens before kmemleak_init() is called. The path below is
595 * only executed during early log recording in kmemleak_init(), so
596 * GFP_KERNEL is enough.
597 */
598 start = object->pointer;
599 end = object->pointer + object->size;
600 if (ptr > start)
601 create_object(start, ptr - start, object->min_count,
602 GFP_KERNEL);
603 if (ptr + size < end)
604 create_object(ptr + size, end - ptr - size, object->min_count,
605 GFP_KERNEL);
606
607 put_object(object);
608}
609/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100610 * Make a object permanently as gray-colored so that it can no longer be
611 * reported as a leak. This is used in general to mark a false positive.
612 */
613static void make_gray_object(unsigned long ptr)
614{
615 unsigned long flags;
616 struct kmemleak_object *object;
617
618 object = find_and_get_object(ptr, 0);
619 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100620 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100621 return;
622 }
623
624 spin_lock_irqsave(&object->lock, flags);
625 object->min_count = 0;
626 spin_unlock_irqrestore(&object->lock, flags);
627 put_object(object);
628}
629
630/*
631 * Mark the object as black-colored so that it is ignored from scans and
632 * reporting.
633 */
634static void make_black_object(unsigned long ptr)
635{
636 unsigned long flags;
637 struct kmemleak_object *object;
638
639 object = find_and_get_object(ptr, 0);
640 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100641 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100642 return;
643 }
644
645 spin_lock_irqsave(&object->lock, flags);
646 object->min_count = -1;
Catalin Marinasaf986032009-08-27 14:29:12 +0100647 object->flags |= OBJECT_NO_SCAN;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100648 spin_unlock_irqrestore(&object->lock, flags);
649 put_object(object);
650}
651
652/*
653 * Add a scanning area to the object. If at least one such area is added,
654 * kmemleak will only scan these ranges rather than the whole memory block.
655 */
656static void add_scan_area(unsigned long ptr, unsigned long offset,
657 size_t length, gfp_t gfp)
658{
659 unsigned long flags;
660 struct kmemleak_object *object;
661 struct kmemleak_scan_area *area;
662
663 object = find_and_get_object(ptr, 0);
664 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100665 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
666 ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100667 return;
668 }
669
Catalin Marinas216c04b2009-06-17 18:29:02 +0100670 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100671 if (!area) {
Joe Perchesae281062009-06-23 14:40:26 +0100672 kmemleak_warn("Cannot allocate a scan area\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100673 goto out;
674 }
675
676 spin_lock_irqsave(&object->lock, flags);
677 if (offset + length > object->size) {
Joe Perchesae281062009-06-23 14:40:26 +0100678 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100679 dump_object_info(object);
680 kmem_cache_free(scan_area_cache, area);
681 goto out_unlock;
682 }
683
684 INIT_HLIST_NODE(&area->node);
685 area->offset = offset;
686 area->length = length;
687
688 hlist_add_head(&area->node, &object->area_list);
689out_unlock:
690 spin_unlock_irqrestore(&object->lock, flags);
691out:
692 put_object(object);
693}
694
695/*
696 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
697 * pointer. Such object will not be scanned by kmemleak but references to it
698 * are searched.
699 */
700static void object_no_scan(unsigned long ptr)
701{
702 unsigned long flags;
703 struct kmemleak_object *object;
704
705 object = find_and_get_object(ptr, 0);
706 if (!object) {
Joe Perchesae281062009-06-23 14:40:26 +0100707 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100708 return;
709 }
710
711 spin_lock_irqsave(&object->lock, flags);
712 object->flags |= OBJECT_NO_SCAN;
713 spin_unlock_irqrestore(&object->lock, flags);
714 put_object(object);
715}
716
717/*
718 * Log an early kmemleak_* call to the early_log buffer. These calls will be
719 * processed later once kmemleak is fully initialized.
720 */
721static void log_early(int op_type, const void *ptr, size_t size,
722 int min_count, unsigned long offset, size_t length)
723{
724 unsigned long flags;
725 struct early_log *log;
726
727 if (crt_early_log >= ARRAY_SIZE(early_log)) {
Catalin Marinasa9d90582009-06-25 10:16:11 +0100728 pr_warning("Early log buffer exceeded\n");
729 kmemleak_disable();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100730 return;
731 }
732
733 /*
734 * There is no need for locking since the kernel is still in UP mode
735 * at this stage. Disabling the IRQs is enough.
736 */
737 local_irq_save(flags);
738 log = &early_log[crt_early_log];
739 log->op_type = op_type;
740 log->ptr = ptr;
741 log->size = size;
742 log->min_count = min_count;
743 log->offset = offset;
744 log->length = length;
745 crt_early_log++;
746 local_irq_restore(flags);
747}
748
749/*
750 * Memory allocation function callback. This function is called from the
751 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
752 * vmalloc etc.).
753 */
754void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
755{
756 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
757
758 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
759 create_object((unsigned long)ptr, size, min_count, gfp);
760 else if (atomic_read(&kmemleak_early_log))
761 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
762}
763EXPORT_SYMBOL_GPL(kmemleak_alloc);
764
765/*
766 * Memory freeing function callback. This function is called from the kernel
767 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
768 */
769void kmemleak_free(const void *ptr)
770{
771 pr_debug("%s(0x%p)\n", __func__, ptr);
772
773 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
Catalin Marinas53238a62009-07-07 10:33:00 +0100774 delete_object_full((unsigned long)ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100775 else if (atomic_read(&kmemleak_early_log))
776 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
777}
778EXPORT_SYMBOL_GPL(kmemleak_free);
779
780/*
Catalin Marinas53238a62009-07-07 10:33:00 +0100781 * Partial memory freeing function callback. This function is usually called
782 * from bootmem allocator when (part of) a memory block is freed.
783 */
784void kmemleak_free_part(const void *ptr, size_t size)
785{
786 pr_debug("%s(0x%p)\n", __func__, ptr);
787
788 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
789 delete_object_part((unsigned long)ptr, size);
790 else if (atomic_read(&kmemleak_early_log))
791 log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
792}
793EXPORT_SYMBOL_GPL(kmemleak_free_part);
794
795/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100796 * Mark an already allocated memory block as a false positive. This will cause
797 * the block to no longer be reported as leak and always be scanned.
798 */
799void kmemleak_not_leak(const void *ptr)
800{
801 pr_debug("%s(0x%p)\n", __func__, ptr);
802
803 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
804 make_gray_object((unsigned long)ptr);
805 else if (atomic_read(&kmemleak_early_log))
806 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
807}
808EXPORT_SYMBOL(kmemleak_not_leak);
809
810/*
811 * Ignore a memory block. This is usually done when it is known that the
812 * corresponding block is not a leak and does not contain any references to
813 * other allocated memory blocks.
814 */
815void kmemleak_ignore(const void *ptr)
816{
817 pr_debug("%s(0x%p)\n", __func__, ptr);
818
819 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
820 make_black_object((unsigned long)ptr);
821 else if (atomic_read(&kmemleak_early_log))
822 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
823}
824EXPORT_SYMBOL(kmemleak_ignore);
825
826/*
827 * Limit the range to be scanned in an allocated memory block.
828 */
829void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
830 gfp_t gfp)
831{
832 pr_debug("%s(0x%p)\n", __func__, ptr);
833
834 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
835 add_scan_area((unsigned long)ptr, offset, length, gfp);
836 else if (atomic_read(&kmemleak_early_log))
837 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
838}
839EXPORT_SYMBOL(kmemleak_scan_area);
840
841/*
842 * Inform kmemleak not to scan the given memory block.
843 */
844void kmemleak_no_scan(const void *ptr)
845{
846 pr_debug("%s(0x%p)\n", __func__, ptr);
847
848 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
849 object_no_scan((unsigned long)ptr);
850 else if (atomic_read(&kmemleak_early_log))
851 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
852}
853EXPORT_SYMBOL(kmemleak_no_scan);
854
855/*
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100856 * Memory scanning is a long process and it needs to be interruptable. This
857 * function checks whether such interrupt condition occured.
858 */
859static int scan_should_stop(void)
860{
861 if (!atomic_read(&kmemleak_enabled))
862 return 1;
863
864 /*
865 * This function may be called from either process or kthread context,
866 * hence the need to check for both stop conditions.
867 */
868 if (current->mm)
869 return signal_pending(current);
870 else
871 return kthread_should_stop();
872
873 return 0;
874}
875
876/*
877 * Scan a memory block (exclusive range) for valid pointers and add those
878 * found to the gray list.
879 */
880static void scan_block(void *_start, void *_end,
Catalin Marinas4b8a9672009-07-07 10:32:56 +0100881 struct kmemleak_object *scanned, int allow_resched)
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100882{
883 unsigned long *ptr;
884 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
885 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
886
887 for (ptr = start; ptr < end; ptr++) {
888 unsigned long flags;
889 unsigned long pointer = *ptr;
890 struct kmemleak_object *object;
891
Catalin Marinas4b8a9672009-07-07 10:32:56 +0100892 if (allow_resched)
893 cond_resched();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100894 if (scan_should_stop())
895 break;
896
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100897 object = find_and_get_object(pointer, 1);
898 if (!object)
899 continue;
900 if (object == scanned) {
901 /* self referenced, ignore */
902 put_object(object);
903 continue;
904 }
905
906 /*
907 * Avoid the lockdep recursive warning on object->lock being
908 * previously acquired in scan_object(). These locks are
909 * enclosed by scan_mutex.
910 */
911 spin_lock_irqsave_nested(&object->lock, flags,
912 SINGLE_DEPTH_NESTING);
913 if (!color_white(object)) {
914 /* non-orphan, ignored or new */
915 spin_unlock_irqrestore(&object->lock, flags);
916 put_object(object);
917 continue;
918 }
919
920 /*
921 * Increase the object's reference count (number of pointers
922 * to the memory block). If this count reaches the required
923 * minimum, the object's color will become gray and it will be
924 * added to the gray_list.
925 */
926 object->count++;
927 if (color_gray(object))
928 list_add_tail(&object->gray_list, &gray_list);
929 else
930 put_object(object);
931 spin_unlock_irqrestore(&object->lock, flags);
932 }
933}
934
935/*
936 * Scan a memory block corresponding to a kmemleak_object. A condition is
937 * that object->use_count >= 1.
938 */
939static void scan_object(struct kmemleak_object *object)
940{
941 struct kmemleak_scan_area *area;
942 struct hlist_node *elem;
943 unsigned long flags;
944
945 /*
946 * Once the object->lock is aquired, the corresponding memory block
947 * cannot be freed (the same lock is aquired in delete_object).
948 */
949 spin_lock_irqsave(&object->lock, flags);
950 if (object->flags & OBJECT_NO_SCAN)
951 goto out;
952 if (!(object->flags & OBJECT_ALLOCATED))
953 /* already freed object */
954 goto out;
Catalin Marinasaf986032009-08-27 14:29:12 +0100955 if (hlist_empty(&object->area_list)) {
956 void *start = (void *)object->pointer;
957 void *end = (void *)(object->pointer + object->size);
958
959 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
960 !(object->flags & OBJECT_NO_SCAN)) {
961 scan_block(start, min(start + MAX_SCAN_SIZE, end),
962 object, 0);
963 start += MAX_SCAN_SIZE;
964
965 spin_unlock_irqrestore(&object->lock, flags);
966 cond_resched();
967 spin_lock_irqsave(&object->lock, flags);
968 }
969 } else
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100970 hlist_for_each_entry(area, elem, &object->area_list, node)
971 scan_block((void *)(object->pointer + area->offset),
972 (void *)(object->pointer + area->offset
Catalin Marinas4b8a9672009-07-07 10:32:56 +0100973 + area->length), object, 0);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100974out:
975 spin_unlock_irqrestore(&object->lock, flags);
976}
977
978/*
979 * Scan data sections and all the referenced memory blocks allocated via the
980 * kernel's standard allocators. This function must be called with the
981 * scan_mutex held.
982 */
983static void kmemleak_scan(void)
984{
985 unsigned long flags;
986 struct kmemleak_object *object, *tmp;
987 struct task_struct *task;
988 int i;
Catalin Marinas4698c1f2009-06-26 17:38:27 +0100989 int new_leaks = 0;
Catalin Marinas25873622009-07-07 10:32:58 +0100990 int gray_list_pass = 0;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100991
Catalin Marinasacf49682009-06-26 17:38:29 +0100992 jiffies_last_scan = jiffies;
993
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100994 /* prepare the kmemleak_object's */
995 rcu_read_lock();
996 list_for_each_entry_rcu(object, &object_list, object_list) {
997 spin_lock_irqsave(&object->lock, flags);
998#ifdef DEBUG
999 /*
1000 * With a few exceptions there should be a maximum of
1001 * 1 reference to any object at this point.
1002 */
1003 if (atomic_read(&object->use_count) > 1) {
Joe Perchesae281062009-06-23 14:40:26 +01001004 pr_debug("object->use_count = %d\n",
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001005 atomic_read(&object->use_count));
1006 dump_object_info(object);
1007 }
1008#endif
1009 /* reset the reference count (whiten the object) */
1010 object->count = 0;
Catalin Marinas25873622009-07-07 10:32:58 +01001011 object->flags &= ~OBJECT_NEW;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001012 if (color_gray(object) && get_object(object))
1013 list_add_tail(&object->gray_list, &gray_list);
1014
1015 spin_unlock_irqrestore(&object->lock, flags);
1016 }
1017 rcu_read_unlock();
1018
1019 /* data/bss scanning */
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001020 scan_block(_sdata, _edata, NULL, 1);
1021 scan_block(__bss_start, __bss_stop, NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001022
1023#ifdef CONFIG_SMP
1024 /* per-cpu sections scanning */
1025 for_each_possible_cpu(i)
1026 scan_block(__per_cpu_start + per_cpu_offset(i),
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001027 __per_cpu_end + per_cpu_offset(i), NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001028#endif
1029
1030 /*
1031 * Struct page scanning for each node. The code below is not yet safe
1032 * with MEMORY_HOTPLUG.
1033 */
1034 for_each_online_node(i) {
1035 pg_data_t *pgdat = NODE_DATA(i);
1036 unsigned long start_pfn = pgdat->node_start_pfn;
1037 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1038 unsigned long pfn;
1039
1040 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1041 struct page *page;
1042
1043 if (!pfn_valid(pfn))
1044 continue;
1045 page = pfn_to_page(pfn);
1046 /* only scan if page is in use */
1047 if (page_count(page) == 0)
1048 continue;
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001049 scan_block(page, page + 1, NULL, 1);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001050 }
1051 }
1052
1053 /*
1054 * Scanning the task stacks may introduce false negatives and it is
1055 * not enabled by default.
1056 */
1057 if (kmemleak_stack_scan) {
1058 read_lock(&tasklist_lock);
1059 for_each_process(task)
1060 scan_block(task_stack_page(task),
Catalin Marinas4b8a9672009-07-07 10:32:56 +01001061 task_stack_page(task) + THREAD_SIZE,
1062 NULL, 0);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001063 read_unlock(&tasklist_lock);
1064 }
1065
1066 /*
1067 * Scan the objects already referenced from the sections scanned
1068 * above. More objects will be referenced and, if there are no memory
1069 * leaks, all the objects will be scanned. The list traversal is safe
1070 * for both tail additions and removals from inside the loop. The
1071 * kmemleak objects cannot be freed from outside the loop because their
1072 * use_count was increased.
1073 */
Catalin Marinas25873622009-07-07 10:32:58 +01001074repeat:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001075 object = list_entry(gray_list.next, typeof(*object), gray_list);
1076 while (&object->gray_list != &gray_list) {
Ingo Molnar57d81f62009-07-01 09:43:53 +02001077 cond_resched();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001078
1079 /* may add new objects to the list */
1080 if (!scan_should_stop())
1081 scan_object(object);
1082
1083 tmp = list_entry(object->gray_list.next, typeof(*object),
1084 gray_list);
1085
1086 /* remove the object from the list and release it */
1087 list_del(&object->gray_list);
1088 put_object(object);
1089
1090 object = tmp;
1091 }
Catalin Marinas25873622009-07-07 10:32:58 +01001092
1093 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1094 goto scan_end;
1095
1096 /*
1097 * Check for new objects allocated during this scanning and add them
1098 * to the gray list.
1099 */
1100 rcu_read_lock();
1101 list_for_each_entry_rcu(object, &object_list, object_list) {
1102 spin_lock_irqsave(&object->lock, flags);
1103 if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1104 get_object(object)) {
1105 object->flags &= ~OBJECT_NEW;
1106 list_add_tail(&object->gray_list, &gray_list);
1107 }
1108 spin_unlock_irqrestore(&object->lock, flags);
1109 }
1110 rcu_read_unlock();
1111
1112 if (!list_empty(&gray_list))
1113 goto repeat;
1114
1115scan_end:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001116 WARN_ON(!list_empty(&gray_list));
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001117
1118 /*
Catalin Marinas25873622009-07-07 10:32:58 +01001119 * If scanning was stopped or new objects were being allocated at a
1120 * higher rate than gray list scanning, do not report any new
1121 * unreferenced objects.
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001122 */
Catalin Marinas25873622009-07-07 10:32:58 +01001123 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001124 return;
1125
1126 /*
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001127 * Scanning result reporting.
1128 */
1129 rcu_read_lock();
1130 list_for_each_entry_rcu(object, &object_list, object_list) {
1131 spin_lock_irqsave(&object->lock, flags);
1132 if (unreferenced_object(object) &&
1133 !(object->flags & OBJECT_REPORTED)) {
1134 object->flags |= OBJECT_REPORTED;
1135 new_leaks++;
1136 }
1137 spin_unlock_irqrestore(&object->lock, flags);
1138 }
1139 rcu_read_unlock();
1140
1141 if (new_leaks)
1142 pr_info("%d new suspected memory leaks (see "
1143 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1144
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001145}
1146
1147/*
1148 * Thread function performing automatic memory scanning. Unreferenced objects
1149 * at the end of a memory scan are reported but only the first time.
1150 */
1151static int kmemleak_scan_thread(void *arg)
1152{
1153 static int first_run = 1;
1154
Joe Perchesae281062009-06-23 14:40:26 +01001155 pr_info("Automatic memory scanning thread started\n");
Catalin Marinasbf2a76b2009-07-07 10:32:55 +01001156 set_user_nice(current, 10);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001157
1158 /*
1159 * Wait before the first scan to allow the system to fully initialize.
1160 */
1161 if (first_run) {
1162 first_run = 0;
1163 ssleep(SECS_FIRST_SCAN);
1164 }
1165
1166 while (!kthread_should_stop()) {
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001167 signed long timeout = jiffies_scan_wait;
1168
1169 mutex_lock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001170 kmemleak_scan();
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001171 mutex_unlock(&scan_mutex);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001172
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001173 /* wait before the next scan */
1174 while (timeout && !kthread_should_stop())
1175 timeout = schedule_timeout_interruptible(timeout);
1176 }
1177
Joe Perchesae281062009-06-23 14:40:26 +01001178 pr_info("Automatic memory scanning thread ended\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001179
1180 return 0;
1181}
1182
1183/*
1184 * Start the automatic memory scanning thread. This function must be called
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001185 * with the scan_mutex held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001186 */
1187void start_scan_thread(void)
1188{
1189 if (scan_thread)
1190 return;
1191 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1192 if (IS_ERR(scan_thread)) {
Joe Perchesae281062009-06-23 14:40:26 +01001193 pr_warning("Failed to create the scan thread\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001194 scan_thread = NULL;
1195 }
1196}
1197
1198/*
1199 * Stop the automatic memory scanning thread. This function must be called
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001200 * with the scan_mutex held.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001201 */
1202void stop_scan_thread(void)
1203{
1204 if (scan_thread) {
1205 kthread_stop(scan_thread);
1206 scan_thread = NULL;
1207 }
1208}
1209
1210/*
1211 * Iterate over the object_list and return the first valid object at or after
1212 * the required position with its use_count incremented. The function triggers
1213 * a memory scanning when the pos argument points to the first position.
1214 */
1215static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1216{
1217 struct kmemleak_object *object;
1218 loff_t n = *pos;
Catalin Marinasb87324d2009-07-07 10:32:58 +01001219 int err;
1220
1221 err = mutex_lock_interruptible(&scan_mutex);
1222 if (err < 0)
1223 return ERR_PTR(err);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001224
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001225 rcu_read_lock();
1226 list_for_each_entry_rcu(object, &object_list, object_list) {
1227 if (n-- > 0)
1228 continue;
1229 if (get_object(object))
1230 goto out;
1231 }
1232 object = NULL;
1233out:
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001234 return object;
1235}
1236
1237/*
1238 * Return the next object in the object_list. The function decrements the
1239 * use_count of the previous object and increases that of the next one.
1240 */
1241static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1242{
1243 struct kmemleak_object *prev_obj = v;
1244 struct kmemleak_object *next_obj = NULL;
1245 struct list_head *n = &prev_obj->object_list;
1246
1247 ++(*pos);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001248
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001249 list_for_each_continue_rcu(n, &object_list) {
1250 next_obj = list_entry(n, struct kmemleak_object, object_list);
1251 if (get_object(next_obj))
1252 break;
1253 }
Catalin Marinas288c8572009-07-07 10:32:57 +01001254
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001255 put_object(prev_obj);
1256 return next_obj;
1257}
1258
1259/*
1260 * Decrement the use_count of the last object required, if any.
1261 */
1262static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1263{
Catalin Marinasb87324d2009-07-07 10:32:58 +01001264 if (!IS_ERR(v)) {
1265 /*
1266 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1267 * waiting was interrupted, so only release it if !IS_ERR.
1268 */
Catalin Marinasf5886c72009-07-29 16:26:57 +01001269 rcu_read_unlock();
Catalin Marinasb87324d2009-07-07 10:32:58 +01001270 mutex_unlock(&scan_mutex);
1271 if (v)
1272 put_object(v);
1273 }
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001274}
1275
1276/*
1277 * Print the information for an unreferenced object to the seq file.
1278 */
1279static int kmemleak_seq_show(struct seq_file *seq, void *v)
1280{
1281 struct kmemleak_object *object = v;
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&object->lock, flags);
Catalin Marinas288c8572009-07-07 10:32:57 +01001285 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
Catalin Marinas17bb9e02009-06-29 17:13:56 +01001286 print_unreferenced(seq, object);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001287 spin_unlock_irqrestore(&object->lock, flags);
1288 return 0;
1289}
1290
1291static const struct seq_operations kmemleak_seq_ops = {
1292 .start = kmemleak_seq_start,
1293 .next = kmemleak_seq_next,
1294 .stop = kmemleak_seq_stop,
1295 .show = kmemleak_seq_show,
1296};
1297
1298static int kmemleak_open(struct inode *inode, struct file *file)
1299{
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001300 if (!atomic_read(&kmemleak_enabled))
1301 return -EBUSY;
1302
Catalin Marinasb87324d2009-07-07 10:32:58 +01001303 return seq_open(file, &kmemleak_seq_ops);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001304}
1305
1306static int kmemleak_release(struct inode *inode, struct file *file)
1307{
Catalin Marinasb87324d2009-07-07 10:32:58 +01001308 return seq_release(inode, file);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001309}
1310
Catalin Marinas189d84e2009-08-27 14:29:15 +01001311static int dump_str_object_info(const char *str)
1312{
1313 unsigned long flags;
1314 struct kmemleak_object *object;
1315 unsigned long addr;
1316
1317 addr= simple_strtoul(str, NULL, 0);
1318 object = find_and_get_object(addr, 0);
1319 if (!object) {
1320 pr_info("Unknown object at 0x%08lx\n", addr);
1321 return -EINVAL;
1322 }
1323
1324 spin_lock_irqsave(&object->lock, flags);
1325 dump_object_info(object);
1326 spin_unlock_irqrestore(&object->lock, flags);
1327
1328 put_object(object);
1329 return 0;
1330}
1331
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001332/*
1333 * File write operation to configure kmemleak at run-time. The following
1334 * commands can be written to the /sys/kernel/debug/kmemleak file:
1335 * off - disable kmemleak (irreversible)
1336 * stack=on - enable the task stacks scanning
1337 * stack=off - disable the tasks stacks scanning
1338 * scan=on - start the automatic memory scanning thread
1339 * scan=off - stop the automatic memory scanning thread
1340 * scan=... - set the automatic memory scanning period in seconds (0 to
1341 * disable it)
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001342 * scan - trigger a memory scan
Catalin Marinas189d84e2009-08-27 14:29:15 +01001343 * dump=... - dump information about the object found at the given address
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001344 */
1345static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1346 size_t size, loff_t *ppos)
1347{
1348 char buf[64];
1349 int buf_size;
Catalin Marinasb87324d2009-07-07 10:32:58 +01001350 int ret;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001351
1352 buf_size = min(size, (sizeof(buf) - 1));
1353 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1354 return -EFAULT;
1355 buf[buf_size] = 0;
1356
Catalin Marinasb87324d2009-07-07 10:32:58 +01001357 ret = mutex_lock_interruptible(&scan_mutex);
1358 if (ret < 0)
1359 return ret;
1360
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001361 if (strncmp(buf, "off", 3) == 0)
1362 kmemleak_disable();
1363 else if (strncmp(buf, "stack=on", 8) == 0)
1364 kmemleak_stack_scan = 1;
1365 else if (strncmp(buf, "stack=off", 9) == 0)
1366 kmemleak_stack_scan = 0;
1367 else if (strncmp(buf, "scan=on", 7) == 0)
1368 start_scan_thread();
1369 else if (strncmp(buf, "scan=off", 8) == 0)
1370 stop_scan_thread();
1371 else if (strncmp(buf, "scan=", 5) == 0) {
1372 unsigned long secs;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001373
Catalin Marinasb87324d2009-07-07 10:32:58 +01001374 ret = strict_strtoul(buf + 5, 0, &secs);
1375 if (ret < 0)
1376 goto out;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001377 stop_scan_thread();
1378 if (secs) {
1379 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1380 start_scan_thread();
1381 }
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001382 } else if (strncmp(buf, "scan", 4) == 0)
1383 kmemleak_scan();
Catalin Marinas189d84e2009-08-27 14:29:15 +01001384 else if (strncmp(buf, "dump=", 5) == 0)
1385 ret = dump_str_object_info(buf + 5);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001386 else
Catalin Marinasb87324d2009-07-07 10:32:58 +01001387 ret = -EINVAL;
1388
1389out:
1390 mutex_unlock(&scan_mutex);
1391 if (ret < 0)
1392 return ret;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001393
1394 /* ignore the rest of the buffer, only one command at a time */
1395 *ppos += size;
1396 return size;
1397}
1398
1399static const struct file_operations kmemleak_fops = {
1400 .owner = THIS_MODULE,
1401 .open = kmemleak_open,
1402 .read = seq_read,
1403 .write = kmemleak_write,
1404 .llseek = seq_lseek,
1405 .release = kmemleak_release,
1406};
1407
1408/*
1409 * Perform the freeing of the kmemleak internal objects after waiting for any
1410 * current memory scan to complete.
1411 */
1412static int kmemleak_cleanup_thread(void *arg)
1413{
1414 struct kmemleak_object *object;
1415
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001416 mutex_lock(&scan_mutex);
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001417 stop_scan_thread();
1418
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001419 rcu_read_lock();
1420 list_for_each_entry_rcu(object, &object_list, object_list)
Catalin Marinas53238a62009-07-07 10:33:00 +01001421 delete_object_full(object->pointer);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001422 rcu_read_unlock();
1423 mutex_unlock(&scan_mutex);
1424
1425 return 0;
1426}
1427
1428/*
1429 * Start the clean-up thread.
1430 */
1431static void kmemleak_cleanup(void)
1432{
1433 struct task_struct *cleanup_thread;
1434
1435 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1436 "kmemleak-clean");
1437 if (IS_ERR(cleanup_thread))
Joe Perchesae281062009-06-23 14:40:26 +01001438 pr_warning("Failed to create the clean-up thread\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001439}
1440
1441/*
1442 * Disable kmemleak. No memory allocation/freeing will be traced once this
1443 * function is called. Disabling kmemleak is an irreversible operation.
1444 */
1445static void kmemleak_disable(void)
1446{
1447 /* atomically check whether it was already invoked */
1448 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1449 return;
1450
1451 /* stop any memory operation tracing */
1452 atomic_set(&kmemleak_early_log, 0);
1453 atomic_set(&kmemleak_enabled, 0);
1454
1455 /* check whether it is too early for a kernel thread */
1456 if (atomic_read(&kmemleak_initialized))
1457 kmemleak_cleanup();
1458
1459 pr_info("Kernel memory leak detector disabled\n");
1460}
1461
1462/*
1463 * Allow boot-time kmemleak disabling (enabled by default).
1464 */
1465static int kmemleak_boot_config(char *str)
1466{
1467 if (!str)
1468 return -EINVAL;
1469 if (strcmp(str, "off") == 0)
1470 kmemleak_disable();
1471 else if (strcmp(str, "on") != 0)
1472 return -EINVAL;
1473 return 0;
1474}
1475early_param("kmemleak", kmemleak_boot_config);
1476
1477/*
Catalin Marinas20301172009-06-17 18:29:04 +01001478 * Kmemleak initialization.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001479 */
1480void __init kmemleak_init(void)
1481{
1482 int i;
1483 unsigned long flags;
1484
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001485 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1486 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1487
1488 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1489 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1490 INIT_PRIO_TREE_ROOT(&object_tree_root);
1491
1492 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1493 local_irq_save(flags);
1494 if (!atomic_read(&kmemleak_error)) {
1495 atomic_set(&kmemleak_enabled, 1);
1496 atomic_set(&kmemleak_early_log, 0);
1497 }
1498 local_irq_restore(flags);
1499
1500 /*
1501 * This is the point where tracking allocations is safe. Automatic
1502 * scanning is started during the late initcall. Add the early logged
1503 * callbacks to the kmemleak infrastructure.
1504 */
1505 for (i = 0; i < crt_early_log; i++) {
1506 struct early_log *log = &early_log[i];
1507
1508 switch (log->op_type) {
1509 case KMEMLEAK_ALLOC:
1510 kmemleak_alloc(log->ptr, log->size, log->min_count,
1511 GFP_KERNEL);
1512 break;
1513 case KMEMLEAK_FREE:
1514 kmemleak_free(log->ptr);
1515 break;
Catalin Marinas53238a62009-07-07 10:33:00 +01001516 case KMEMLEAK_FREE_PART:
1517 kmemleak_free_part(log->ptr, log->size);
1518 break;
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001519 case KMEMLEAK_NOT_LEAK:
1520 kmemleak_not_leak(log->ptr);
1521 break;
1522 case KMEMLEAK_IGNORE:
1523 kmemleak_ignore(log->ptr);
1524 break;
1525 case KMEMLEAK_SCAN_AREA:
1526 kmemleak_scan_area(log->ptr, log->offset, log->length,
1527 GFP_KERNEL);
1528 break;
1529 case KMEMLEAK_NO_SCAN:
1530 kmemleak_no_scan(log->ptr);
1531 break;
1532 default:
1533 WARN_ON(1);
1534 }
1535 }
1536}
1537
1538/*
1539 * Late initialization function.
1540 */
1541static int __init kmemleak_late_init(void)
1542{
1543 struct dentry *dentry;
1544
1545 atomic_set(&kmemleak_initialized, 1);
1546
1547 if (atomic_read(&kmemleak_error)) {
1548 /*
1549 * Some error occured and kmemleak was disabled. There is a
1550 * small chance that kmemleak_disable() was called immediately
1551 * after setting kmemleak_initialized and we may end up with
1552 * two clean-up threads but serialized by scan_mutex.
1553 */
1554 kmemleak_cleanup();
1555 return -ENOMEM;
1556 }
1557
1558 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1559 &kmemleak_fops);
1560 if (!dentry)
Joe Perchesae281062009-06-23 14:40:26 +01001561 pr_warning("Failed to create the debugfs kmemleak file\n");
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001562 mutex_lock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001563 start_scan_thread();
Catalin Marinas4698c1f2009-06-26 17:38:27 +01001564 mutex_unlock(&scan_mutex);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001565
1566 pr_info("Kernel memory leak detector initialized\n");
1567
1568 return 0;
1569}
1570late_initcall(kmemleak_late_init);