blob: 4450f9d845c6ec4f7a61e872b87ec7a60afc0e9c [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +00006 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
Timur Tabi17467f22008-01-11 18:15:26 +010011 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090023#include <linux/gfp.h>
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000024#include <linux/of_platform.h>
25#include <linux/list.h>
Timur Tabi17467f22008-01-11 18:15:26 +010026
Timur Tabi17467f22008-01-11 18:15:26 +010027#include <sound/core.h>
28#include <sound/pcm.h>
29#include <sound/pcm_params.h>
30#include <sound/soc.h>
31
32#include <asm/io.h>
33
34#include "fsl_dma.h"
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000035#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
Timur Tabi17467f22008-01-11 18:15:26 +010036
37/*
38 * The formats that the DMA controller supports, which is anything
39 * that is 8, 16, or 32 bits.
40 */
41#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
42 SNDRV_PCM_FMTBIT_U8 | \
43 SNDRV_PCM_FMTBIT_S16_LE | \
44 SNDRV_PCM_FMTBIT_S16_BE | \
45 SNDRV_PCM_FMTBIT_U16_LE | \
46 SNDRV_PCM_FMTBIT_U16_BE | \
47 SNDRV_PCM_FMTBIT_S24_LE | \
48 SNDRV_PCM_FMTBIT_S24_BE | \
49 SNDRV_PCM_FMTBIT_U24_LE | \
50 SNDRV_PCM_FMTBIT_U24_BE | \
51 SNDRV_PCM_FMTBIT_S32_LE | \
52 SNDRV_PCM_FMTBIT_S32_BE | \
53 SNDRV_PCM_FMTBIT_U32_LE | \
54 SNDRV_PCM_FMTBIT_U32_BE)
55
56#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 SNDRV_PCM_RATE_CONTINUOUS)
58
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000059struct dma_object {
60 struct list_head list;
61 struct snd_soc_platform_driver dai;
Timur Tabi17467f22008-01-11 18:15:26 +010062 dma_addr_t ssi_stx_phys;
63 dma_addr_t ssi_srx_phys;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000064 struct ccsr_dma_channel __iomem *channel;
65 unsigned int irq;
66 bool assigned;
67 char path[1];
68};
Timur Tabi17467f22008-01-11 18:15:26 +010069
70/*
71 * The number of DMA links to use. Two is the bare minimum, but if you
72 * have really small links you might need more.
73 */
74#define NUM_DMA_LINKS 2
75
76/** fsl_dma_private: p-substream DMA data
77 *
78 * Each substream has a 1-to-1 association with a DMA channel.
79 *
80 * The link[] array is first because it needs to be aligned on a 32-byte
81 * boundary, so putting it first will ensure alignment without padding the
82 * structure.
83 *
84 * @link[]: array of link descriptors
Timur Tabi17467f22008-01-11 18:15:26 +010085 * @dma_channel: pointer to the DMA channel's registers
86 * @irq: IRQ for this DMA channel
87 * @substream: pointer to the substream object, needed by the ISR
88 * @ssi_sxx_phys: bus address of the STX or SRX register to use
89 * @ld_buf_phys: physical address of the LD buffer
90 * @current_link: index into link[] of the link currently being processed
91 * @dma_buf_phys: physical address of the DMA buffer
92 * @dma_buf_next: physical address of the next period to process
93 * @dma_buf_end: physical address of the byte after the end of the DMA
94 * @buffer period_size: the size of a single period
95 * @num_periods: the number of periods in the DMA buffer
96 */
97struct fsl_dma_private {
98 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
Timur Tabi17467f22008-01-11 18:15:26 +010099 struct ccsr_dma_channel __iomem *dma_channel;
100 unsigned int irq;
101 struct snd_pcm_substream *substream;
102 dma_addr_t ssi_sxx_phys;
103 dma_addr_t ld_buf_phys;
104 unsigned int current_link;
105 dma_addr_t dma_buf_phys;
106 dma_addr_t dma_buf_next;
107 dma_addr_t dma_buf_end;
108 size_t period_size;
109 unsigned int num_periods;
110};
111
112/**
113 * fsl_dma_hardare: define characteristics of the PCM hardware.
114 *
115 * The PCM hardware is the Freescale DMA controller. This structure defines
116 * the capabilities of that hardware.
117 *
118 * Since the sampling rate and data format are not controlled by the DMA
119 * controller, we specify no limits for those values. The only exception is
120 * period_bytes_min, which is set to a reasonably low value to prevent the
121 * DMA controller from generating too many interrupts per second.
122 *
123 * Since each link descriptor has a 32-bit byte count field, we set
124 * period_bytes_max to the largest 32-bit number. We also have no maximum
125 * number of periods.
Timur Tabibe41e942008-07-28 17:04:39 -0500126 *
127 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128 * limitation in the SSI driver requires the sample rates for playback and
129 * capture to be the same.
Timur Tabi17467f22008-01-11 18:15:26 +0100130 */
131static const struct snd_pcm_hardware fsl_dma_hardware = {
132
Timur Tabi4052ce42008-01-17 17:44:49 +0100133 .info = SNDRV_PCM_INFO_INTERLEAVED |
134 SNDRV_PCM_INFO_MMAP |
Timur Tabibe41e942008-07-28 17:04:39 -0500135 SNDRV_PCM_INFO_MMAP_VALID |
Timur Tabi3a638ff2009-03-06 18:39:34 -0600136 SNDRV_PCM_INFO_JOINT_DUPLEX |
137 SNDRV_PCM_INFO_PAUSE,
Timur Tabi17467f22008-01-11 18:15:26 +0100138 .formats = FSLDMA_PCM_FORMATS,
139 .rates = FSLDMA_PCM_RATES,
140 .rate_min = 5512,
141 .rate_max = 192000,
142 .period_bytes_min = 512, /* A reasonable limit */
143 .period_bytes_max = (u32) -1,
144 .periods_min = NUM_DMA_LINKS,
145 .periods_max = (unsigned int) -1,
146 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
147};
148
149/**
150 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
151 *
152 * This function should be called by the ISR whenever the DMA controller
153 * halts data transfer.
154 */
155static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
156{
157 unsigned long flags;
158
159 snd_pcm_stream_lock_irqsave(substream, flags);
160
161 if (snd_pcm_running(substream))
162 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
163
164 snd_pcm_stream_unlock_irqrestore(substream, flags);
165}
166
167/**
168 * fsl_dma_update_pointers - update LD pointers to point to the next period
169 *
170 * As each period is completed, this function changes the the link
171 * descriptor pointers for that period to point to the next period.
172 */
173static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
174{
175 struct fsl_dma_link_descriptor *link =
176 &dma_private->link[dma_private->current_link];
177
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500178 /* Update our link descriptors to point to the next period. On a 36-bit
179 * system, we also need to update the ESAD bits. We also set (keep) the
180 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
181 */
182 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
183 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
184#ifdef CONFIG_PHYS_64BIT
185 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
186 upper_32_bits(dma_private->dma_buf_next));
187#endif
188 } else {
189 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
190#ifdef CONFIG_PHYS_64BIT
191 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
192 upper_32_bits(dma_private->dma_buf_next));
193#endif
194 }
Timur Tabi17467f22008-01-11 18:15:26 +0100195
196 /* Update our variables for next time */
197 dma_private->dma_buf_next += dma_private->period_size;
198
199 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
200 dma_private->dma_buf_next = dma_private->dma_buf_phys;
201
202 if (++dma_private->current_link >= NUM_DMA_LINKS)
203 dma_private->current_link = 0;
204}
205
206/**
207 * fsl_dma_isr: interrupt handler for the DMA controller
208 *
209 * @irq: IRQ of the DMA channel
210 * @dev_id: pointer to the dma_private structure for this DMA channel
211 */
212static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
213{
214 struct fsl_dma_private *dma_private = dev_id;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000215 struct snd_pcm_substream *substream = dma_private->substream;
216 struct snd_soc_pcm_runtime *rtd = substream->private_data;
217 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100218 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
219 irqreturn_t ret = IRQ_NONE;
220 u32 sr, sr2 = 0;
221
222 /* We got an interrupt, so read the status register to see what we
223 were interrupted for.
224 */
225 sr = in_be32(&dma_channel->sr);
226
227 if (sr & CCSR_DMA_SR_TE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000228 dev_err(dev, "dma transmit error\n");
229 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100230 sr2 |= CCSR_DMA_SR_TE;
231 ret = IRQ_HANDLED;
232 }
233
234 if (sr & CCSR_DMA_SR_CH)
235 ret = IRQ_HANDLED;
236
237 if (sr & CCSR_DMA_SR_PE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000238 dev_err(dev, "dma programming error\n");
239 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100240 sr2 |= CCSR_DMA_SR_PE;
241 ret = IRQ_HANDLED;
242 }
243
244 if (sr & CCSR_DMA_SR_EOLNI) {
245 sr2 |= CCSR_DMA_SR_EOLNI;
246 ret = IRQ_HANDLED;
247 }
248
249 if (sr & CCSR_DMA_SR_CB)
250 ret = IRQ_HANDLED;
251
252 if (sr & CCSR_DMA_SR_EOSI) {
Timur Tabi17467f22008-01-11 18:15:26 +0100253 /* Tell ALSA we completed a period. */
254 snd_pcm_period_elapsed(substream);
255
256 /*
257 * Update our link descriptors to point to the next period. We
258 * only need to do this if the number of periods is not equal to
259 * the number of links.
260 */
261 if (dma_private->num_periods != NUM_DMA_LINKS)
262 fsl_dma_update_pointers(dma_private);
263
264 sr2 |= CCSR_DMA_SR_EOSI;
265 ret = IRQ_HANDLED;
266 }
267
268 if (sr & CCSR_DMA_SR_EOLSI) {
269 sr2 |= CCSR_DMA_SR_EOLSI;
270 ret = IRQ_HANDLED;
271 }
272
273 /* Clear the bits that we set */
274 if (sr2)
275 out_be32(&dma_channel->sr, sr2);
276
277 return ret;
278}
279
280/**
281 * fsl_dma_new: initialize this PCM driver.
282 *
283 * This function is called when the codec driver calls snd_soc_new_pcms(),
Mark Brown87506542008-11-18 20:50:34 +0000284 * once for each .dai_link in the machine driver's snd_soc_card
Timur Tabi17467f22008-01-11 18:15:26 +0100285 * structure.
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500286 *
287 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
288 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
289 * is specified. Therefore, any DMA buffers we allocate will always be in low
290 * memory, but we support for 36-bit physical addresses anyway.
291 *
292 * Regardless of where the memory is actually allocated, since the device can
293 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
Timur Tabi17467f22008-01-11 18:15:26 +0100294 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100295static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100296 struct snd_pcm *pcm)
297{
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500298 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
Timur Tabi17467f22008-01-11 18:15:26 +0100299 int ret;
300
301 if (!card->dev->dma_mask)
302 card->dev->dma_mask = &fsl_dma_dmamask;
303
304 if (!card->dev->coherent_dma_mask)
305 card->dev->coherent_dma_mask = fsl_dma_dmamask;
306
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400307 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100308 fsl_dma_hardware.buffer_bytes_max,
309 &pcm->streams[0].substream->dma_buffer);
310 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000311 dev_err(card->dev, "can't allocate playback dma buffer\n");
312 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100313 }
314
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400315 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100316 fsl_dma_hardware.buffer_bytes_max,
317 &pcm->streams[1].substream->dma_buffer);
318 if (ret) {
319 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000320 dev_err(card->dev, "can't allocate capture dma buffer\n");
321 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100322 }
323
324 return 0;
325}
326
327/**
328 * fsl_dma_open: open a new substream.
329 *
330 * Each substream has its own DMA buffer.
Timur Tabibf9c8c92008-08-01 14:58:44 -0500331 *
332 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
333 * descriptors that ping-pong from one period to the next. For example, if
334 * there are six periods and two link descriptors, this is how they look
335 * before playback starts:
336 *
337 * The last link descriptor
338 * ____________ points back to the first
339 * | |
340 * V |
341 * ___ ___ |
342 * | |->| |->|
343 * |___| |___|
344 * | |
345 * | |
346 * V V
347 * _________________________________________
348 * | | | | | | | The DMA buffer is
349 * | | | | | | | divided into 6 parts
350 * |______|______|______|______|______|______|
351 *
352 * and here's how they look after the first period is finished playing:
353 *
354 * ____________
355 * | |
356 * V |
357 * ___ ___ |
358 * | |->| |->|
359 * |___| |___|
360 * | |
361 * |______________
362 * | |
363 * V V
364 * _________________________________________
365 * | | | | | | |
366 * | | | | | | |
367 * |______|______|______|______|______|______|
368 *
369 * The first link descriptor now points to the third period. The DMA
370 * controller is currently playing the second period. When it finishes, it
371 * will jump back to the first descriptor and play the third period.
372 *
373 * There are four reasons we do this:
374 *
375 * 1. The only way to get the DMA controller to automatically restart the
376 * transfer when it gets to the end of the buffer is to use chaining
377 * mode. Basic direct mode doesn't offer that feature.
378 * 2. We need to receive an interrupt at the end of every period. The DMA
379 * controller can generate an interrupt at the end of every link transfer
380 * (aka segment). Making each period into a DMA segment will give us the
381 * interrupts we need.
382 * 3. By creating only two link descriptors, regardless of the number of
383 * periods, we do not need to reallocate the link descriptors if the
384 * number of periods changes.
385 * 4. All of the audio data is still stored in a single, contiguous DMA
386 * buffer, which is what ALSA expects. We're just dividing it into
387 * contiguous parts, and creating a link descriptor for each one.
Timur Tabi17467f22008-01-11 18:15:26 +0100388 */
389static int fsl_dma_open(struct snd_pcm_substream *substream)
390{
391 struct snd_pcm_runtime *runtime = substream->runtime;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000392 struct snd_soc_pcm_runtime *rtd = substream->private_data;
393 struct device *dev = rtd->platform->dev;
394 struct dma_object *dma =
395 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100396 struct fsl_dma_private *dma_private;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500397 struct ccsr_dma_channel __iomem *dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100398 dma_addr_t ld_buf_phys;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500399 u64 temp_link; /* Pointer to next link descriptor */
400 u32 mr;
Timur Tabi17467f22008-01-11 18:15:26 +0100401 unsigned int channel;
402 int ret = 0;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500403 unsigned int i;
Timur Tabi17467f22008-01-11 18:15:26 +0100404
405 /*
406 * Reject any DMA buffer whose size is not a multiple of the period
407 * size. We need to make sure that the DMA buffer can be evenly divided
408 * into periods.
409 */
410 ret = snd_pcm_hw_constraint_integer(runtime,
411 SNDRV_PCM_HW_PARAM_PERIODS);
412 if (ret < 0) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000413 dev_err(dev, "invalid buffer size\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100414 return ret;
415 }
416
417 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
418
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000419 if (dma->assigned) {
420 dev_err(dev, "dma channel already assigned\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100421 return -EBUSY;
422 }
423
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000424 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
425 &ld_buf_phys, GFP_KERNEL);
Timur Tabi17467f22008-01-11 18:15:26 +0100426 if (!dma_private) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000427 dev_err(dev, "can't allocate dma private data\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100428 return -ENOMEM;
429 }
430 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000431 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100432 else
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000433 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100434
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000435 dma_private->dma_channel = dma->channel;
436 dma_private->irq = dma->irq;
Timur Tabi17467f22008-01-11 18:15:26 +0100437 dma_private->substream = substream;
438 dma_private->ld_buf_phys = ld_buf_phys;
439 dma_private->dma_buf_phys = substream->dma_buffer.addr;
440
Timur Tabi17467f22008-01-11 18:15:26 +0100441 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
442 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000443 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
Timur Tabi17467f22008-01-11 18:15:26 +0100444 dma_private->irq, ret);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000445 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
Timur Tabi17467f22008-01-11 18:15:26 +0100446 dma_private, dma_private->ld_buf_phys);
447 return ret;
448 }
449
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000450 dma->assigned = 1;
Timur Tabi17467f22008-01-11 18:15:26 +0100451
452 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
453 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
454 runtime->private_data = dma_private;
455
Timur Tabibf9c8c92008-08-01 14:58:44 -0500456 /* Program the fixed DMA controller parameters */
Timur Tabi17467f22008-01-11 18:15:26 +0100457
Timur Tabibf9c8c92008-08-01 14:58:44 -0500458 dma_channel = dma_private->dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100459
Timur Tabi17467f22008-01-11 18:15:26 +0100460 temp_link = dma_private->ld_buf_phys +
461 sizeof(struct fsl_dma_link_descriptor);
462
463 for (i = 0; i < NUM_DMA_LINKS; i++) {
Timur Tabi85ef2372009-02-05 17:56:02 -0600464 dma_private->link[i].next = cpu_to_be64(temp_link);
Timur Tabi17467f22008-01-11 18:15:26 +0100465
Timur Tabi17467f22008-01-11 18:15:26 +0100466 temp_link += sizeof(struct fsl_dma_link_descriptor);
467 }
468 /* The last link descriptor points to the first */
469 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
470
471 /* Tell the DMA controller where the first link descriptor is */
472 out_be32(&dma_channel->clndar,
473 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
474 out_be32(&dma_channel->eclndar,
475 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
476
477 /* The manual says the BCR must be clear before enabling EMP */
478 out_be32(&dma_channel->bcr, 0);
479
480 /*
481 * Program the mode register for interrupts, external master control,
482 * and source/destination hold. Also clear the Channel Abort bit.
483 */
484 mr = in_be32(&dma_channel->mr) &
485 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
486
487 /*
488 * We want External Master Start and External Master Pause enabled,
489 * because the SSI is controlling the DMA controller. We want the DMA
490 * controller to be set up in advance, and then we signal only the SSI
Timur Tabibf9c8c92008-08-01 14:58:44 -0500491 * to start transferring.
Timur Tabi17467f22008-01-11 18:15:26 +0100492 *
493 * We want End-Of-Segment Interrupts enabled, because this will generate
494 * an interrupt at the end of each segment (each link descriptor
495 * represents one segment). Each DMA segment is the same thing as an
496 * ALSA period, so this is how we get an interrupt at the end of every
497 * period.
498 *
499 * We want Error Interrupt enabled, so that we can get an error if
500 * the DMA controller is mis-programmed somehow.
501 */
502 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
503 CCSR_DMA_MR_EMS_EN;
504
505 /* For playback, we want the destination address to be held. For
506 capture, set the source address to be held. */
507 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
508 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
509
510 out_be32(&dma_channel->mr, mr);
511
512 return 0;
513}
514
515/**
Timur Tabibf9c8c92008-08-01 14:58:44 -0500516 * fsl_dma_hw_params: continue initializing the DMA links
517 *
518 * This function obtains hardware parameters about the opened stream and
519 * programs the DMA controller accordingly.
520 *
Timur Tabi85ef2372009-02-05 17:56:02 -0600521 * One drawback of big-endian is that when copying integers of different
522 * sizes to a fixed-sized register, the address to which the integer must be
523 * copied is dependent on the size of the integer.
Timur Tabi17467f22008-01-11 18:15:26 +0100524 *
525 * For example, if P is the address of a 32-bit register, and X is a 32-bit
526 * integer, then X should be copied to address P. However, if X is a 16-bit
527 * integer, then it should be copied to P+2. If X is an 8-bit register,
528 * then it should be copied to P+3.
529 *
530 * So for playback of 8-bit samples, the DMA controller must transfer single
531 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
532 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
533 *
534 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
535 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
536 * and 8 bytes at a time). So we do not support packed 24-bit samples.
537 * 24-bit data must be padded to 32 bits.
538 */
Timur Tabi85ef2372009-02-05 17:56:02 -0600539static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
540 struct snd_pcm_hw_params *hw_params)
Timur Tabi17467f22008-01-11 18:15:26 +0100541{
542 struct snd_pcm_runtime *runtime = substream->runtime;
543 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000544 struct snd_soc_pcm_runtime *rtd = substream->private_data;
545 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100546
Timur Tabi85ef2372009-02-05 17:56:02 -0600547 /* Number of bits per sample */
548 unsigned int sample_size =
549 snd_pcm_format_physical_width(params_format(hw_params));
550
551 /* Number of bytes per frame */
552 unsigned int frame_size = 2 * (sample_size / 8);
553
554 /* Bus address of SSI STX register */
555 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
556
557 /* Size of the DMA buffer, in bytes */
558 size_t buffer_size = params_buffer_bytes(hw_params);
559
560 /* Number of bytes per period */
561 size_t period_size = params_period_bytes(hw_params);
562
563 /* Pointer to next period */
564 dma_addr_t temp_addr = substream->dma_buffer.addr;
565
566 /* Pointer to DMA controller */
567 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
568
569 u32 mr; /* DMA Mode Register */
570
571 unsigned int i;
572
573 /* Initialize our DMA tracking variables */
574 dma_private->period_size = period_size;
575 dma_private->num_periods = params_periods(hw_params);
576 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
577 dma_private->dma_buf_next = dma_private->dma_buf_phys +
578 (NUM_DMA_LINKS * period_size);
579
580 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
581 /* This happens if the number of periods == NUM_DMA_LINKS */
582 dma_private->dma_buf_next = dma_private->dma_buf_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100583
584 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
585 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
586
Timur Tabi85ef2372009-02-05 17:56:02 -0600587 /* Due to a quirk of the SSI's STX register, the target address
588 * for the DMA operations depends on the sample size. So we calculate
589 * that offset here. While we're at it, also tell the DMA controller
590 * how much data to transfer per sample.
591 */
592 switch (sample_size) {
Timur Tabi17467f22008-01-11 18:15:26 +0100593 case 8:
594 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
595 ssi_sxx_phys += 3;
596 break;
597 case 16:
598 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
599 ssi_sxx_phys += 2;
600 break;
601 case 32:
602 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
603 break;
604 default:
Timur Tabi85ef2372009-02-05 17:56:02 -0600605 /* We should never get here */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000606 dev_err(dev, "unsupported sample size %u\n", sample_size);
Timur Tabi17467f22008-01-11 18:15:26 +0100607 return -EINVAL;
608 }
609
Timur Tabi17467f22008-01-11 18:15:26 +0100610 /*
611 * BWC should always be a multiple of the frame size. BWC determines
612 * how many bytes are sent/received before the DMA controller checks the
613 * SSI to see if it needs to stop. For playback, the transmit FIFO can
614 * hold three frames, so we want to send two frames at a time. For
615 * capture, the receive FIFO is triggered when it contains one frame, so
616 * we want to receive one frame at a time.
617 */
Timur Tabi17467f22008-01-11 18:15:26 +0100618 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
619 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
620 else
621 mr |= CCSR_DMA_MR_BWC(frame_size);
622
623 out_be32(&dma_channel->mr, mr);
624
Timur Tabi17467f22008-01-11 18:15:26 +0100625 for (i = 0; i < NUM_DMA_LINKS; i++) {
626 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
627
Timur Tabi85ef2372009-02-05 17:56:02 -0600628 link->count = cpu_to_be32(period_size);
629
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500630 /* The snoop bit tells the DMA controller whether it should tell
Timur Tabi85ef2372009-02-05 17:56:02 -0600631 * the ECM to snoop during a read or write to an address. For
632 * audio, we use DMA to transfer data between memory and an I/O
633 * device (the SSI's STX0 or SRX0 register). Snooping is only
634 * needed if there is a cache, so we need to snoop memory
635 * addresses only. For playback, that means we snoop the source
636 * but not the destination. For capture, we snoop the
637 * destination but not the source.
638 *
639 * Note that failing to snoop properly is unlikely to cause
640 * cache incoherency if the period size is larger than the
641 * size of L1 cache. This is because filling in one period will
642 * flush out the data for the previous period. So if you
643 * increased period_bytes_min to a large enough size, you might
644 * get more performance by not snooping, and you'll still be
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500645 * okay. You'll need to update fsl_dma_update_pointers() also.
Timur Tabi85ef2372009-02-05 17:56:02 -0600646 */
647 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
648 link->source_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500649 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
650 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600651
Timur Tabi17467f22008-01-11 18:15:26 +0100652 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500653 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
654 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600655 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100656 link->source_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500657 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
658 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600659
660 link->dest_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500661 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
662 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600663 }
664
665 temp_addr += period_size;
Timur Tabi17467f22008-01-11 18:15:26 +0100666 }
667
668 return 0;
669}
670
671/**
672 * fsl_dma_pointer: determine the current position of the DMA transfer
673 *
674 * This function is called by ALSA when ALSA wants to know where in the
675 * stream buffer the hardware currently is.
676 *
677 * For playback, the SAR register contains the physical address of the most
678 * recent DMA transfer. For capture, the value is in the DAR register.
679 *
680 * The base address of the buffer is stored in the source_addr field of the
681 * first link descriptor.
682 */
683static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
684{
685 struct snd_pcm_runtime *runtime = substream->runtime;
686 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000687 struct snd_soc_pcm_runtime *rtd = substream->private_data;
688 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100689 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
690 dma_addr_t position;
691 snd_pcm_uframes_t frames;
692
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500693 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
694 * only have 32-bit DMA addresses. This function is typically called
695 * in interrupt context, so we need to optimize it.
696 */
697 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
Timur Tabi17467f22008-01-11 18:15:26 +0100698 position = in_be32(&dma_channel->sar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500699#ifdef CONFIG_PHYS_64BIT
700 position |= (u64)(in_be32(&dma_channel->satr) &
701 CCSR_DMA_ATR_ESAD_MASK) << 32;
702#endif
703 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100704 position = in_be32(&dma_channel->dar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500705#ifdef CONFIG_PHYS_64BIT
706 position |= (u64)(in_be32(&dma_channel->datr) &
707 CCSR_DMA_ATR_ESAD_MASK) << 32;
708#endif
709 }
Timur Tabi17467f22008-01-11 18:15:26 +0100710
Timur Tabia4d11fe2009-03-25 18:20:37 -0500711 /*
712 * When capture is started, the SSI immediately starts to fill its FIFO.
713 * This means that the DMA controller is not started until the FIFO is
714 * full. However, ALSA calls this function before that happens, when
715 * MR.DAR is still zero. In this case, just return zero to indicate
716 * that nothing has been received yet.
717 */
718 if (!position)
719 return 0;
720
721 if ((position < dma_private->dma_buf_phys) ||
722 (position > dma_private->dma_buf_end)) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000723 dev_err(dev, "dma pointer is out of range, halting stream\n");
Timur Tabia4d11fe2009-03-25 18:20:37 -0500724 return SNDRV_PCM_POS_XRUN;
725 }
726
Timur Tabi17467f22008-01-11 18:15:26 +0100727 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
728
729 /*
730 * If the current address is just past the end of the buffer, wrap it
731 * around.
732 */
733 if (frames == runtime->buffer_size)
734 frames = 0;
735
736 return frames;
737}
738
739/**
740 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
741 *
742 * Release the resources allocated in fsl_dma_hw_params() and de-program the
743 * registers.
744 *
745 * This function can be called multiple times.
746 */
747static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
748{
749 struct snd_pcm_runtime *runtime = substream->runtime;
750 struct fsl_dma_private *dma_private = runtime->private_data;
751
752 if (dma_private) {
753 struct ccsr_dma_channel __iomem *dma_channel;
754
755 dma_channel = dma_private->dma_channel;
756
757 /* Stop the DMA */
758 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
759 out_be32(&dma_channel->mr, 0);
760
761 /* Reset all the other registers */
762 out_be32(&dma_channel->sr, -1);
763 out_be32(&dma_channel->clndar, 0);
764 out_be32(&dma_channel->eclndar, 0);
765 out_be32(&dma_channel->satr, 0);
766 out_be32(&dma_channel->sar, 0);
767 out_be32(&dma_channel->datr, 0);
768 out_be32(&dma_channel->dar, 0);
769 out_be32(&dma_channel->bcr, 0);
770 out_be32(&dma_channel->nlndar, 0);
771 out_be32(&dma_channel->enlndar, 0);
772 }
773
774 return 0;
775}
776
777/**
778 * fsl_dma_close: close the stream.
779 */
780static int fsl_dma_close(struct snd_pcm_substream *substream)
781{
782 struct snd_pcm_runtime *runtime = substream->runtime;
783 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000784 struct snd_soc_pcm_runtime *rtd = substream->private_data;
785 struct device *dev = rtd->platform->dev;
786 struct dma_object *dma =
787 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100788
789 if (dma_private) {
790 if (dma_private->irq)
791 free_irq(dma_private->irq, dma_private);
792
793 if (dma_private->ld_buf_phys) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000794 dma_unmap_single(dev, dma_private->ld_buf_phys,
795 sizeof(dma_private->link),
796 DMA_TO_DEVICE);
Timur Tabi17467f22008-01-11 18:15:26 +0100797 }
798
799 /* Deallocate the fsl_dma_private structure */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000800 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
801 dma_private, dma_private->ld_buf_phys);
Timur Tabi17467f22008-01-11 18:15:26 +0100802 substream->runtime->private_data = NULL;
803 }
804
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000805 dma->assigned = 0;
Timur Tabi17467f22008-01-11 18:15:26 +0100806
807 return 0;
808}
809
810/*
811 * Remove this PCM driver.
812 */
813static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
814{
815 struct snd_pcm_substream *substream;
816 unsigned int i;
817
818 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
819 substream = pcm->streams[i].substream;
820 if (substream) {
821 snd_dma_free_pages(&substream->dma_buffer);
822 substream->dma_buffer.area = NULL;
823 substream->dma_buffer.addr = 0;
824 }
825 }
826}
827
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000828/* List of DMA nodes that we've probed */
829static LIST_HEAD(dma_list);
830
831/**
832 * find_ssi_node -- returns the SSI node that points to his DMA channel node
833 *
834 * Although this DMA driver attempts to operate independently of the other
835 * devices, it still needs to determine some information about the SSI device
836 * that it's working with. Unfortunately, the device tree does not contain
837 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
838 * other way. So we need to scan the device tree for SSI nodes until we find
839 * the one that points to the given DMA channel node. It's ugly, but at least
840 * it's contained in this one function.
841 */
842static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
843{
844 struct device_node *ssi_np, *np;
845
846 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
847 /* Check each DMA phandle to see if it points to us. We
848 * assume that device_node pointers are a valid comparison.
849 */
850 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
851 if (np == dma_channel_np)
852 return ssi_np;
853
854 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
855 if (np == dma_channel_np)
856 return ssi_np;
857 }
858
859 return NULL;
860}
861
Timur Tabi17467f22008-01-11 18:15:26 +0100862static struct snd_pcm_ops fsl_dma_ops = {
863 .open = fsl_dma_open,
864 .close = fsl_dma_close,
865 .ioctl = snd_pcm_lib_ioctl,
866 .hw_params = fsl_dma_hw_params,
867 .hw_free = fsl_dma_hw_free,
Timur Tabi17467f22008-01-11 18:15:26 +0100868 .pointer = fsl_dma_pointer,
869};
870
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000871static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
872 const struct of_device_id *match)
873 {
874 struct dma_object *dma;
875 struct device_node *np = of_dev->dev.of_node;
876 struct device_node *ssi_np;
877 struct resource res;
878 int ret;
879
880 /* Find the SSI node that points to us. */
881 ssi_np = find_ssi_node(np);
882 if (!ssi_np) {
883 dev_err(&of_dev->dev, "cannot find parent SSI node\n");
884 return -ENODEV;
885 }
886
887 ret = of_address_to_resource(ssi_np, 0, &res);
888 of_node_put(ssi_np);
889 if (ret) {
890 dev_err(&of_dev->dev, "could not determine device resources\n");
891 return ret;
892 }
893
894 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
895 if (!dma) {
896 dev_err(&of_dev->dev, "could not allocate dma object\n");
897 return -ENOMEM;
898 }
899
900 strcpy(dma->path, np->full_name);
901 dma->dai.ops = &fsl_dma_ops;
902 dma->dai.pcm_new = fsl_dma_new;
903 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
904
905 /* Store the SSI-specific information that we need */
906 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
907 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
908
909 ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
910 if (ret) {
911 dev_err(&of_dev->dev, "could not register platform\n");
912 kfree(dma);
913 return ret;
914 }
915
916 dma->channel = of_iomap(np, 0);
917 dma->irq = irq_of_parse_and_map(np, 0);
918 list_add(&dma->list, &dma_list);
919
920 return 0;
921}
922
923static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
924{
925 struct list_head *n, *ptr;
926 struct dma_object *dma;
927
928 list_for_each_safe(ptr, n, &dma_list) {
929 dma = list_entry(ptr, struct dma_object, list);
930 list_del_init(ptr);
931
932 snd_soc_unregister_platform(&of_dev->dev);
933 iounmap(dma->channel);
934 irq_dispose_mapping(dma->irq);
935 kfree(dma);
936 }
937
938 return 0;
939}
940
941static const struct of_device_id fsl_soc_dma_ids[] = {
942 { .compatible = "fsl,ssi-dma-channel", },
943 {}
Timur Tabi17467f22008-01-11 18:15:26 +0100944};
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000945MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
Timur Tabi17467f22008-01-11 18:15:26 +0100946
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000947static struct of_platform_driver fsl_soc_dma_driver = {
948 .driver = {
949 .name = "fsl-pcm-audio",
950 .owner = THIS_MODULE,
951 .of_match_table = fsl_soc_dma_ids,
952 },
953 .probe = fsl_soc_dma_probe,
954 .remove = __devexit_p(fsl_soc_dma_remove),
955};
956
957static int __init fsl_soc_dma_init(void)
958{
959 pr_info("Freescale Elo DMA ASoC PCM Driver\n");
960
961 return of_register_platform_driver(&fsl_soc_dma_driver);
962}
963
964static void __exit fsl_soc_dma_exit(void)
965{
966 of_unregister_platform_driver(&fsl_soc_dma_driver);
967}
968
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000969module_init(fsl_soc_dma_init);
970module_exit(fsl_soc_dma_exit);
Mark Brown958e7922008-12-03 19:58:17 +0000971
Timur Tabi17467f22008-01-11 18:15:26 +0100972MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000973MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
974MODULE_LICENSE("GPL v2");