blob: 200efc1b5cf8b312dd3711eab19ef5cb1b2e4955 [file] [log] [blame]
Kent Overstreetcafe5632013-03-23 16:11:31 -07001#ifndef _BCACHE_H
2#define _BCACHE_H
3
4/*
5 * SOME HIGH LEVEL CODE DOCUMENTATION:
6 *
7 * Bcache mostly works with cache sets, cache devices, and backing devices.
8 *
9 * Support for multiple cache devices hasn't quite been finished off yet, but
10 * it's about 95% plumbed through. A cache set and its cache devices is sort of
11 * like a md raid array and its component devices. Most of the code doesn't care
12 * about individual cache devices, the main abstraction is the cache set.
13 *
14 * Multiple cache devices is intended to give us the ability to mirror dirty
15 * cached data and metadata, without mirroring clean cached data.
16 *
17 * Backing devices are different, in that they have a lifetime independent of a
18 * cache set. When you register a newly formatted backing device it'll come up
19 * in passthrough mode, and then you can attach and detach a backing device from
20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21 * invalidates any cached data for that backing device.
22 *
23 * A cache set can have multiple (many) backing devices attached to it.
24 *
25 * There's also flash only volumes - this is the reason for the distinction
26 * between struct cached_dev and struct bcache_device. A flash only volume
27 * works much like a bcache device that has a backing device, except the
28 * "cached" data is always dirty. The end result is that we get thin
29 * provisioning with very little additional code.
30 *
31 * Flash only volumes work but they're not production ready because the moving
32 * garbage collector needs more work. More on that later.
33 *
34 * BUCKETS/ALLOCATION:
35 *
36 * Bcache is primarily designed for caching, which means that in normal
37 * operation all of our available space will be allocated. Thus, we need an
38 * efficient way of deleting things from the cache so we can write new things to
39 * it.
40 *
41 * To do this, we first divide the cache device up into buckets. A bucket is the
42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43 * works efficiently.
44 *
45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46 * it. The gens and priorities for all the buckets are stored contiguously and
47 * packed on disk (in a linked list of buckets - aside from the superblock, all
48 * of bcache's metadata is stored in buckets).
49 *
50 * The priority is used to implement an LRU. We reset a bucket's priority when
51 * we allocate it or on cache it, and every so often we decrement the priority
52 * of each bucket. It could be used to implement something more sophisticated,
53 * if anyone ever gets around to it.
54 *
55 * The generation is used for invalidating buckets. Each pointer also has an 8
56 * bit generation embedded in it; for a pointer to be considered valid, its gen
57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
58 * we have to do is increment its gen (and write its new gen to disk; we batch
59 * this up).
60 *
61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62 * contain metadata (including btree nodes).
63 *
64 * THE BTREE:
65 *
66 * Bcache is in large part design around the btree.
67 *
68 * At a high level, the btree is just an index of key -> ptr tuples.
69 *
70 * Keys represent extents, and thus have a size field. Keys also have a variable
71 * number of pointers attached to them (potentially zero, which is handy for
72 * invalidating the cache).
73 *
74 * The key itself is an inode:offset pair. The inode number corresponds to a
75 * backing device or a flash only volume. The offset is the ending offset of the
76 * extent within the inode - not the starting offset; this makes lookups
77 * slightly more convenient.
78 *
79 * Pointers contain the cache device id, the offset on that device, and an 8 bit
80 * generation number. More on the gen later.
81 *
82 * Index lookups are not fully abstracted - cache lookups in particular are
83 * still somewhat mixed in with the btree code, but things are headed in that
84 * direction.
85 *
86 * Updates are fairly well abstracted, though. There are two different ways of
87 * updating the btree; insert and replace.
88 *
89 * BTREE_INSERT will just take a list of keys and insert them into the btree -
90 * overwriting (possibly only partially) any extents they overlap with. This is
91 * used to update the index after a write.
92 *
93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94 * overwriting a key that matches another given key. This is used for inserting
95 * data into the cache after a cache miss, and for background writeback, and for
96 * the moving garbage collector.
97 *
98 * There is no "delete" operation; deleting things from the index is
99 * accomplished by either by invalidating pointers (by incrementing a bucket's
100 * gen) or by inserting a key with 0 pointers - which will overwrite anything
101 * previously present at that location in the index.
102 *
103 * This means that there are always stale/invalid keys in the btree. They're
104 * filtered out by the code that iterates through a btree node, and removed when
105 * a btree node is rewritten.
106 *
107 * BTREE NODES:
108 *
109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110 * free smaller than a bucket - so, that's how big our btree nodes are.
111 *
112 * (If buckets are really big we'll only use part of the bucket for a btree node
113 * - no less than 1/4th - but a bucket still contains no more than a single
114 * btree node. I'd actually like to change this, but for now we rely on the
115 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116 *
117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118 * btree implementation.
119 *
120 * The way this is solved is that btree nodes are internally log structured; we
121 * can append new keys to an existing btree node without rewriting it. This
122 * means each set of keys we write is sorted, but the node is not.
123 *
124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125 * be expensive, and we have to distinguish between the keys we have written and
126 * the keys we haven't. So to do a lookup in a btree node, we have to search
127 * each sorted set. But we do merge written sets together lazily, so the cost of
128 * these extra searches is quite low (normally most of the keys in a btree node
129 * will be in one big set, and then there'll be one or two sets that are much
130 * smaller).
131 *
132 * This log structure makes bcache's btree more of a hybrid between a
133 * conventional btree and a compacting data structure, with some of the
134 * advantages of both.
135 *
136 * GARBAGE COLLECTION:
137 *
138 * We can't just invalidate any bucket - it might contain dirty data or
139 * metadata. If it once contained dirty data, other writes might overwrite it
140 * later, leaving no valid pointers into that bucket in the index.
141 *
142 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143 * It also counts how much valid data it each bucket currently contains, so that
144 * allocation can reuse buckets sooner when they've been mostly overwritten.
145 *
146 * It also does some things that are really internal to the btree
147 * implementation. If a btree node contains pointers that are stale by more than
148 * some threshold, it rewrites the btree node to avoid the bucket's generation
149 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150 *
151 * THE JOURNAL:
152 *
153 * Bcache's journal is not necessary for consistency; we always strictly
154 * order metadata writes so that the btree and everything else is consistent on
155 * disk in the event of an unclean shutdown, and in fact bcache had writeback
156 * caching (with recovery from unclean shutdown) before journalling was
157 * implemented.
158 *
159 * Rather, the journal is purely a performance optimization; we can't complete a
160 * write until we've updated the index on disk, otherwise the cache would be
161 * inconsistent in the event of an unclean shutdown. This means that without the
162 * journal, on random write workloads we constantly have to update all the leaf
163 * nodes in the btree, and those writes will be mostly empty (appending at most
164 * a few keys each) - highly inefficient in terms of amount of metadata writes,
165 * and it puts more strain on the various btree resorting/compacting code.
166 *
167 * The journal is just a log of keys we've inserted; on startup we just reinsert
168 * all the keys in the open journal entries. That means that when we're updating
169 * a node in the btree, we can wait until a 4k block of keys fills up before
170 * writing them out.
171 *
172 * For simplicity, we only journal updates to leaf nodes; updates to parent
173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174 * the complexity to deal with journalling them (in particular, journal replay)
175 * - updates to non leaf nodes just happen synchronously (see btree_split()).
176 */
177
178#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179
Kent Overstreet81ab4192013-10-31 15:46:42 -0700180#include <linux/bcache.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700181#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700182#include <linux/kobject.h>
183#include <linux/list.h>
184#include <linux/mutex.h>
185#include <linux/rbtree.h>
186#include <linux/rwsem.h>
187#include <linux/types.h>
188#include <linux/workqueue.h>
189
Kent Overstreet67539e82013-09-10 22:53:34 -0700190#include "bset.h"
Kent Overstreetcafe5632013-03-23 16:11:31 -0700191#include "util.h"
192#include "closure.h"
193
194struct bucket {
195 atomic_t pin;
196 uint16_t prio;
197 uint8_t gen;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700198 uint8_t last_gc; /* Most out of date gen in the btree */
199 uint8_t gc_gen;
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800200 uint16_t gc_mark; /* Bitfield used by GC. See below for field */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700201};
202
203/*
204 * I'd use bitfields for these, but I don't trust the compiler not to screw me
205 * as multiple threads touch struct bucket without locking
206 */
207
208BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
Kent Overstreet4fe6a812014-03-13 13:46:29 -0700209#define GC_MARK_RECLAIMABLE 1
210#define GC_MARK_DIRTY 2
211#define GC_MARK_METADATA 3
Darrick J. Wong94717442014-01-28 16:57:39 -0800212#define GC_SECTORS_USED_SIZE 13
213#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
214BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800215BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700216
Kent Overstreetcafe5632013-03-23 16:11:31 -0700217#include "journal.h"
218#include "stats.h"
219struct search;
220struct btree;
221struct keybuf;
222
223struct keybuf_key {
224 struct rb_node node;
225 BKEY_PADDED(key);
226 void *private;
227};
228
Kent Overstreetcafe5632013-03-23 16:11:31 -0700229struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700230 struct bkey last_scanned;
231 spinlock_t lock;
232
233 /*
234 * Beginning and end of range in rb tree - so that we can skip taking
235 * lock and checking the rb tree when we need to check for overlapping
236 * keys.
237 */
238 struct bkey start;
239 struct bkey end;
240
241 struct rb_root keys;
242
Kent Overstreet48a915a2013-10-31 15:43:22 -0700243#define KEYBUF_NR 500
Kent Overstreetcafe5632013-03-23 16:11:31 -0700244 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
245};
246
247struct bio_split_pool {
248 struct bio_set *bio_split;
249 mempool_t *bio_split_hook;
250};
251
252struct bio_split_hook {
253 struct closure cl;
254 struct bio_split_pool *p;
255 struct bio *bio;
256 bio_end_io_t *bi_end_io;
257 void *bi_private;
258};
259
260struct bcache_device {
261 struct closure cl;
262
263 struct kobject kobj;
264
265 struct cache_set *c;
266 unsigned id;
267#define BCACHEDEVNAME_SIZE 12
268 char name[BCACHEDEVNAME_SIZE];
269
270 struct gendisk *disk;
271
Kent Overstreetc4d951d2013-08-21 17:49:09 -0700272 unsigned long flags;
273#define BCACHE_DEV_CLOSING 0
274#define BCACHE_DEV_DETACHING 1
275#define BCACHE_DEV_UNLINK_DONE 2
Kent Overstreetcafe5632013-03-23 16:11:31 -0700276
Kent Overstreet48a915a2013-10-31 15:43:22 -0700277 unsigned nr_stripes;
Kent Overstreet2d679fc2013-08-17 02:13:15 -0700278 unsigned stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700279 atomic_t *stripe_sectors_dirty;
Kent Overstreet48a915a2013-10-31 15:43:22 -0700280 unsigned long *full_dirty_stripes;
Kent Overstreet279afba2013-06-05 06:21:07 -0700281
Kent Overstreetcafe5632013-03-23 16:11:31 -0700282 unsigned long sectors_dirty_last;
283 long sectors_dirty_derivative;
284
Kent Overstreetcafe5632013-03-23 16:11:31 -0700285 struct bio_set *bio_split;
286
287 unsigned data_csum:1;
288
289 int (*cache_miss)(struct btree *, struct search *,
290 struct bio *, unsigned);
291 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
292
293 struct bio_split_pool bio_split_hook;
294};
295
296struct io {
297 /* Used to track sequential IO so it can be skipped */
298 struct hlist_node hash;
299 struct list_head lru;
300
301 unsigned long jiffies;
302 unsigned sequential;
303 sector_t last;
304};
305
306struct cached_dev {
307 struct list_head list;
308 struct bcache_device disk;
309 struct block_device *bdev;
310
311 struct cache_sb sb;
312 struct bio sb_bio;
313 struct bio_vec sb_bv[1];
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800314 struct closure sb_write;
315 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700316
317 /* Refcount on the cache set. Always nonzero when we're caching. */
318 atomic_t count;
319 struct work_struct detach;
320
321 /*
322 * Device might not be running if it's dirty and the cache set hasn't
323 * showed up yet.
324 */
325 atomic_t running;
326
327 /*
328 * Writes take a shared lock from start to finish; scanning for dirty
329 * data to refill the rb tree requires an exclusive lock.
330 */
331 struct rw_semaphore writeback_lock;
332
333 /*
334 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
335 * data in the cache. Protected by writeback_lock; must have an
336 * shared lock to set and exclusive lock to clear.
337 */
338 atomic_t has_dirty;
339
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700340 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700341 struct delayed_work writeback_rate_update;
342
343 /*
344 * Internal to the writeback code, so read_dirty() can keep track of
345 * where it's at.
346 */
347 sector_t last_read;
348
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700349 /* Limit number of writeback bios in flight */
350 struct semaphore in_flight;
Kent Overstreet5e6926d2013-07-24 17:50:06 -0700351 struct task_struct *writeback_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700352
353 struct keybuf writeback_keys;
354
355 /* For tracking sequential IO */
356#define RECENT_IO_BITS 7
357#define RECENT_IO (1 << RECENT_IO_BITS)
358 struct io io[RECENT_IO];
359 struct hlist_head io_hash[RECENT_IO + 1];
360 struct list_head io_lru;
361 spinlock_t io_lock;
362
363 struct cache_accounting accounting;
364
365 /* The rest of this all shows up in sysfs */
366 unsigned sequential_cutoff;
367 unsigned readahead;
368
Kent Overstreetcafe5632013-03-23 16:11:31 -0700369 unsigned verify:1;
Kent Overstreet5ceaaad2013-09-10 14:27:42 -0700370 unsigned bypass_torture_test:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700371
Kent Overstreet72c27062013-06-05 06:24:39 -0700372 unsigned partial_stripes_expensive:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700373 unsigned writeback_metadata:1;
374 unsigned writeback_running:1;
375 unsigned char writeback_percent;
376 unsigned writeback_delay;
377
Kent Overstreetcafe5632013-03-23 16:11:31 -0700378 uint64_t writeback_rate_target;
Kent Overstreet16749c22013-11-11 13:58:34 -0800379 int64_t writeback_rate_proportional;
380 int64_t writeback_rate_derivative;
381 int64_t writeback_rate_change;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700382
383 unsigned writeback_rate_update_seconds;
384 unsigned writeback_rate_d_term;
385 unsigned writeback_rate_p_term_inverse;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700386};
387
Kent Overstreet78365412013-12-17 01:29:34 -0800388enum alloc_reserve {
389 RESERVE_BTREE,
390 RESERVE_PRIO,
391 RESERVE_MOVINGGC,
392 RESERVE_NONE,
393 RESERVE_NR,
Kent Overstreetcafe5632013-03-23 16:11:31 -0700394};
395
396struct cache {
397 struct cache_set *set;
398 struct cache_sb sb;
399 struct bio sb_bio;
400 struct bio_vec sb_bv[1];
401
402 struct kobject kobj;
403 struct block_device *bdev;
404
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700405 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700406
407 struct closure prio;
408 struct prio_set *disk_buckets;
409
410 /*
411 * When allocating new buckets, prio_write() gets first dibs - since we
412 * may not be allocate at all without writing priorities and gens.
413 * prio_buckets[] contains the last buckets we wrote priorities to (so
414 * gc can mark them as metadata), prio_next[] contains the buckets
415 * allocated for the next prio write.
416 */
417 uint64_t *prio_buckets;
418 uint64_t *prio_last_buckets;
419
420 /*
421 * free: Buckets that are ready to be used
422 *
423 * free_inc: Incoming buckets - these are buckets that currently have
424 * cached data in them, and we can't reuse them until after we write
425 * their new gen to disk. After prio_write() finishes writing the new
426 * gens/prios, they'll be moved to the free list (and possibly discarded
427 * in the process)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700428 */
Kent Overstreet78365412013-12-17 01:29:34 -0800429 DECLARE_FIFO(long, free)[RESERVE_NR];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700430 DECLARE_FIFO(long, free_inc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700431
432 size_t fifo_last_bucket;
433
434 /* Allocation stuff: */
435 struct bucket *buckets;
436
437 DECLARE_HEAP(struct bucket *, heap);
438
439 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700440 * If nonzero, we know we aren't going to find any buckets to invalidate
441 * until a gc finishes - otherwise we could pointlessly burn a ton of
442 * cpu
443 */
444 unsigned invalidate_needs_gc:1;
445
446 bool discard; /* Get rid of? */
447
Kent Overstreetcafe5632013-03-23 16:11:31 -0700448 struct journal_device journal;
449
450 /* The rest of this all shows up in sysfs */
451#define IO_ERROR_SHIFT 20
452 atomic_t io_errors;
453 atomic_t io_count;
454
455 atomic_long_t meta_sectors_written;
456 atomic_long_t btree_sectors_written;
457 atomic_long_t sectors_written;
458
459 struct bio_split_pool bio_split_hook;
460};
461
462struct gc_stat {
463 size_t nodes;
464 size_t key_bytes;
465
466 size_t nkeys;
467 uint64_t data; /* sectors */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700468 unsigned in_use; /* percent */
469};
470
471/*
472 * Flag bits, for how the cache set is shutting down, and what phase it's at:
473 *
474 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
475 * all the backing devices first (their cached data gets invalidated, and they
476 * won't automatically reattach).
477 *
478 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
479 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
480 * flushing dirty data).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700481 */
482#define CACHE_SET_UNREGISTERING 0
483#define CACHE_SET_STOPPING 1
Kent Overstreetcafe5632013-03-23 16:11:31 -0700484
485struct cache_set {
486 struct closure cl;
487
488 struct list_head list;
489 struct kobject kobj;
490 struct kobject internal;
491 struct dentry *debug;
492 struct cache_accounting accounting;
493
494 unsigned long flags;
495
496 struct cache_sb sb;
497
498 struct cache *cache[MAX_CACHES_PER_SET];
499 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
500 int caches_loaded;
501
502 struct bcache_device **devices;
503 struct list_head cached_devs;
504 uint64_t cached_dev_sectors;
505 struct closure caching;
506
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800507 struct closure sb_write;
508 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700509
510 mempool_t *search;
511 mempool_t *bio_meta;
512 struct bio_set *bio_split;
513
514 /* For the btree cache */
515 struct shrinker shrink;
516
Kent Overstreetcafe5632013-03-23 16:11:31 -0700517 /* For the btree cache and anything allocation related */
518 struct mutex bucket_lock;
519
520 /* log2(bucket_size), in sectors */
521 unsigned short bucket_bits;
522
523 /* log2(block_size), in sectors */
524 unsigned short block_bits;
525
526 /*
527 * Default number of pages for a new btree node - may be less than a
528 * full bucket
529 */
530 unsigned btree_pages;
531
532 /*
533 * Lists of struct btrees; lru is the list for structs that have memory
534 * allocated for actual btree node, freed is for structs that do not.
535 *
536 * We never free a struct btree, except on shutdown - we just put it on
537 * the btree_cache_freed list and reuse it later. This simplifies the
538 * code, and it doesn't cost us much memory as the memory usage is
539 * dominated by buffers that hold the actual btree node data and those
540 * can be freed - and the number of struct btrees allocated is
541 * effectively bounded.
542 *
543 * btree_cache_freeable effectively is a small cache - we use it because
544 * high order page allocations can be rather expensive, and it's quite
545 * common to delete and allocate btree nodes in quick succession. It
546 * should never grow past ~2-3 nodes in practice.
547 */
548 struct list_head btree_cache;
549 struct list_head btree_cache_freeable;
550 struct list_head btree_cache_freed;
551
552 /* Number of elements in btree_cache + btree_cache_freeable lists */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700553 unsigned btree_cache_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700554
555 /*
556 * If we need to allocate memory for a new btree node and that
557 * allocation fails, we can cannibalize another node in the btree cache
Kent Overstreet0a63b662014-03-17 17:15:53 -0700558 * to satisfy the allocation - lock to guarantee only one thread does
559 * this at a time:
Kent Overstreetcafe5632013-03-23 16:11:31 -0700560 */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700561 wait_queue_head_t btree_cache_wait;
562 struct task_struct *btree_cache_alloc_lock;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700563
564 /*
565 * When we free a btree node, we increment the gen of the bucket the
566 * node is in - but we can't rewrite the prios and gens until we
567 * finished whatever it is we were doing, otherwise after a crash the
568 * btree node would be freed but for say a split, we might not have the
569 * pointers to the new nodes inserted into the btree yet.
570 *
571 * This is a refcount that blocks prio_write() until the new keys are
572 * written.
573 */
574 atomic_t prio_blocked;
Kent Overstreet35fcd842013-07-24 17:29:09 -0700575 wait_queue_head_t bucket_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700576
577 /*
578 * For any bio we don't skip we subtract the number of sectors from
579 * rescale; when it hits 0 we rescale all the bucket priorities.
580 */
581 atomic_t rescale;
582 /*
583 * When we invalidate buckets, we use both the priority and the amount
584 * of good data to determine which buckets to reuse first - to weight
585 * those together consistently we keep track of the smallest nonzero
586 * priority of any bucket.
587 */
588 uint16_t min_prio;
589
590 /*
591 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
592 * to keep gens from wrapping around.
593 */
594 uint8_t need_gc;
595 struct gc_stat gc_stats;
596 size_t nbuckets;
597
Kent Overstreet72a44512013-10-24 17:19:26 -0700598 struct task_struct *gc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700599 /* Where in the btree gc currently is */
600 struct bkey gc_done;
601
602 /*
603 * The allocation code needs gc_mark in struct bucket to be correct, but
604 * it's not while a gc is in progress. Protected by bucket_lock.
605 */
606 int gc_mark_valid;
607
608 /* Counts how many sectors bio_insert has added to the cache */
609 atomic_t sectors_to_gc;
610
Kent Overstreet72a44512013-10-24 17:19:26 -0700611 wait_queue_head_t moving_gc_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700612 struct keybuf moving_gc_keys;
613 /* Number of moving GC bios in flight */
Kent Overstreet72a44512013-10-24 17:19:26 -0700614 struct semaphore moving_in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700615
Nicholas Swensonda415a02014-01-09 16:03:04 -0800616 struct workqueue_struct *moving_gc_wq;
617
Kent Overstreetcafe5632013-03-23 16:11:31 -0700618 struct btree *root;
619
620#ifdef CONFIG_BCACHE_DEBUG
621 struct btree *verify_data;
Kent Overstreet78b77bf2013-12-17 22:49:08 -0800622 struct bset *verify_ondisk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700623 struct mutex verify_lock;
624#endif
625
626 unsigned nr_uuids;
627 struct uuid_entry *uuids;
628 BKEY_PADDED(uuid_bucket);
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800629 struct closure uuid_write;
630 struct semaphore uuid_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700631
632 /*
633 * A btree node on disk could have too many bsets for an iterator to fit
Kent Overstreet57943512013-04-25 13:58:35 -0700634 * on the stack - have to dynamically allocate them
Kent Overstreetcafe5632013-03-23 16:11:31 -0700635 */
Kent Overstreet57943512013-04-25 13:58:35 -0700636 mempool_t *fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700637
Kent Overstreet67539e82013-09-10 22:53:34 -0700638 struct bset_sort_state sort;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700639
640 /* List of buckets we're currently writing data to */
641 struct list_head data_buckets;
642 spinlock_t data_bucket_lock;
643
644 struct journal journal;
645
646#define CONGESTED_MAX 1024
647 unsigned congested_last_us;
648 atomic_t congested;
649
650 /* The rest of this all shows up in sysfs */
651 unsigned congested_read_threshold_us;
652 unsigned congested_write_threshold_us;
653
Kent Overstreetcafe5632013-03-23 16:11:31 -0700654 struct time_stats btree_gc_time;
655 struct time_stats btree_split_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700656 struct time_stats btree_read_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700657
658 atomic_long_t cache_read_races;
659 atomic_long_t writeback_keys_done;
660 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700661
662 enum {
663 ON_ERROR_UNREGISTER,
664 ON_ERROR_PANIC,
665 } on_error;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700666 unsigned error_limit;
667 unsigned error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700668
Kent Overstreetcafe5632013-03-23 16:11:31 -0700669 unsigned short journal_delay_ms;
Kent Overstreeta85e9682013-12-20 17:28:16 -0800670 bool expensive_debug_checks;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700671 unsigned verify:1;
672 unsigned key_merging_disabled:1;
673 unsigned gc_always_rewrite:1;
674 unsigned shrinker_disabled:1;
675 unsigned copy_gc_enabled:1;
676
677#define BUCKET_HASH_BITS 12
678 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
679};
680
Kent Overstreetcafe5632013-03-23 16:11:31 -0700681struct bbio {
682 unsigned submit_time_us;
683 union {
684 struct bkey key;
685 uint64_t _pad[3];
686 /*
687 * We only need pad = 3 here because we only ever carry around a
688 * single pointer - i.e. the pointer we're doing io to/from.
689 */
690 };
691 struct bio bio;
692};
693
Kent Overstreetcafe5632013-03-23 16:11:31 -0700694#define BTREE_PRIO USHRT_MAX
Kent Overstreete0a985a2013-11-12 13:49:10 -0800695#define INITIAL_PRIO 32768U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700696
697#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
698#define btree_blocks(b) \
699 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
700
701#define btree_default_blocks(c) \
702 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
703
704#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
705#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
706#define block_bytes(c) ((c)->sb.block_size << 9)
707
Kent Overstreetcafe5632013-03-23 16:11:31 -0700708#define prios_per_bucket(c) \
709 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
710 sizeof(struct bucket_disk))
711#define prio_buckets(c) \
712 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
713
Kent Overstreetcafe5632013-03-23 16:11:31 -0700714static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
715{
716 return s >> c->bucket_bits;
717}
718
719static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
720{
721 return ((sector_t) b) << c->bucket_bits;
722}
723
724static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
725{
726 return s & (c->sb.bucket_size - 1);
727}
728
729static inline struct cache *PTR_CACHE(struct cache_set *c,
730 const struct bkey *k,
731 unsigned ptr)
732{
733 return c->cache[PTR_DEV(k, ptr)];
734}
735
736static inline size_t PTR_BUCKET_NR(struct cache_set *c,
737 const struct bkey *k,
738 unsigned ptr)
739{
740 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
741}
742
743static inline struct bucket *PTR_BUCKET(struct cache_set *c,
744 const struct bkey *k,
745 unsigned ptr)
746{
747 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
748}
749
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800750static inline uint8_t gen_after(uint8_t a, uint8_t b)
751{
752 uint8_t r = a - b;
753 return r > 128U ? 0 : r;
754}
755
756static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
757 unsigned i)
758{
759 return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
760}
761
762static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
763 unsigned i)
764{
765 return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
766}
767
Kent Overstreetcafe5632013-03-23 16:11:31 -0700768/* Btree key macros */
769
Kent Overstreetcafe5632013-03-23 16:11:31 -0700770/*
771 * This is used for various on disk data structures - cache_sb, prio_set, bset,
772 * jset: The checksum is _always_ the first 8 bytes of these structs
773 */
774#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600775 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetfafff812013-12-17 21:56:21 -0800776 ((void *) bset_bkey_last(i)) - \
777 (((void *) (i)) + sizeof(uint64_t)))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700778
779/* Error handling macros */
780
781#define btree_bug(b, ...) \
782do { \
783 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
784 dump_stack(); \
785} while (0)
786
787#define cache_bug(c, ...) \
788do { \
789 if (bch_cache_set_error(c, __VA_ARGS__)) \
790 dump_stack(); \
791} while (0)
792
793#define btree_bug_on(cond, b, ...) \
794do { \
795 if (cond) \
796 btree_bug(b, __VA_ARGS__); \
797} while (0)
798
799#define cache_bug_on(cond, c, ...) \
800do { \
801 if (cond) \
802 cache_bug(c, __VA_ARGS__); \
803} while (0)
804
805#define cache_set_err_on(cond, c, ...) \
806do { \
807 if (cond) \
808 bch_cache_set_error(c, __VA_ARGS__); \
809} while (0)
810
811/* Looping macros */
812
813#define for_each_cache(ca, cs, iter) \
814 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
815
816#define for_each_bucket(b, ca) \
817 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
818 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
819
Kent Overstreetcafe5632013-03-23 16:11:31 -0700820static inline void cached_dev_put(struct cached_dev *dc)
821{
822 if (atomic_dec_and_test(&dc->count))
823 schedule_work(&dc->detach);
824}
825
826static inline bool cached_dev_get(struct cached_dev *dc)
827{
828 if (!atomic_inc_not_zero(&dc->count))
829 return false;
830
831 /* Paired with the mb in cached_dev_attach */
832 smp_mb__after_atomic_inc();
833 return true;
834}
835
836/*
837 * bucket_gc_gen() returns the difference between the bucket's current gen and
838 * the oldest gen of any pointer into that bucket in the btree (last_gc).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700839 */
840
841static inline uint8_t bucket_gc_gen(struct bucket *b)
842{
843 return b->gen - b->last_gc;
844}
845
Kent Overstreetcafe5632013-03-23 16:11:31 -0700846#define BUCKET_GC_GEN_MAX 96U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700847
848#define kobj_attribute_write(n, fn) \
849 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
850
851#define kobj_attribute_rw(n, show, store) \
852 static struct kobj_attribute ksysfs_##n = \
853 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
854
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700855static inline void wake_up_allocators(struct cache_set *c)
856{
857 struct cache *ca;
858 unsigned i;
859
860 for_each_cache(ca, c, i)
861 wake_up_process(ca->alloc_thread);
862}
863
Kent Overstreetcafe5632013-03-23 16:11:31 -0700864/* Forward declarations */
865
Kent Overstreetcafe5632013-03-23 16:11:31 -0700866void bch_count_io_errors(struct cache *, int, const char *);
867void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
868 int, const char *);
869void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
870void bch_bbio_free(struct bio *, struct cache_set *);
871struct bio *bch_bbio_alloc(struct cache_set *);
872
Kent Overstreetcafe5632013-03-23 16:11:31 -0700873void bch_generic_make_request(struct bio *, struct bio_split_pool *);
874void __bch_submit_bbio(struct bio *, struct cache_set *);
875void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
876
877uint8_t bch_inc_gen(struct cache *, struct bucket *);
878void bch_rescale_priorities(struct cache_set *, int);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700879
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700880bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
881void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
882
883void __bch_bucket_free(struct cache *, struct bucket *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700884void bch_bucket_free(struct cache_set *, struct bkey *);
885
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700886long bch_bucket_alloc(struct cache *, unsigned, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700887int __bch_bucket_alloc_set(struct cache_set *, unsigned,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700888 struct bkey *, int, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700889int bch_bucket_alloc_set(struct cache_set *, unsigned,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700890 struct bkey *, int, bool);
Kent Overstreet2599b532013-07-24 18:11:11 -0700891bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
892 unsigned, unsigned, bool);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700893
894__printf(2, 3)
895bool bch_cache_set_error(struct cache_set *, const char *, ...);
896
897void bch_prio_write(struct cache *);
898void bch_write_bdev_super(struct cached_dev *, struct closure *);
899
Kent Overstreet72a44512013-10-24 17:19:26 -0700900extern struct workqueue_struct *bcache_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700901extern const char * const bch_cache_modes[];
902extern struct mutex bch_register_lock;
903extern struct list_head bch_cache_sets;
904
905extern struct kobj_type bch_cached_dev_ktype;
906extern struct kobj_type bch_flash_dev_ktype;
907extern struct kobj_type bch_cache_set_ktype;
908extern struct kobj_type bch_cache_set_internal_ktype;
909extern struct kobj_type bch_cache_ktype;
910
911void bch_cached_dev_release(struct kobject *);
912void bch_flash_dev_release(struct kobject *);
913void bch_cache_set_release(struct kobject *);
914void bch_cache_release(struct kobject *);
915
916int bch_uuid_write(struct cache_set *);
917void bcache_write_super(struct cache_set *);
918
919int bch_flash_dev_create(struct cache_set *c, uint64_t size);
920
921int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
922void bch_cached_dev_detach(struct cached_dev *);
923void bch_cached_dev_run(struct cached_dev *);
924void bcache_device_stop(struct bcache_device *);
925
926void bch_cache_set_unregister(struct cache_set *);
927void bch_cache_set_stop(struct cache_set *);
928
929struct cache_set *bch_cache_set_alloc(struct cache_sb *);
930void bch_btree_cache_free(struct cache_set *);
931int bch_btree_cache_alloc(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700932void bch_moving_init_cache_set(struct cache_set *);
Kent Overstreet2599b532013-07-24 18:11:11 -0700933int bch_open_buckets_alloc(struct cache_set *);
934void bch_open_buckets_free(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700935
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700936int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700937
938void bch_debug_exit(void);
939int bch_debug_init(struct kobject *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700940void bch_request_exit(void);
941int bch_request_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700942
943#endif /* _BCACHE_H */