blob: 5a69abb05ac32b716bee539bc6c5cbd4fc984610 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100206 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100243 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200244 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100292static struct list_head *
293ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
294{
295 if (event->attr.pinned)
296 return &ctx->pinned_groups;
297 else
298 return &ctx->flexible_groups;
299}
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301/*
302 * Add a event from the lists for its context.
303 * Must be called with ctx->mutex and ctx->lock held.
304 */
305static void
306list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307{
308 struct perf_event *group_leader = event->group_leader;
309
310 /*
311 * Depending on whether it is a standalone or sibling event,
312 * add it straight to the context's event list, or to the group
313 * leader's sibling list:
314 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100315 if (group_leader == event) {
316 struct list_head *list;
317
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100318 if (is_software_event(event))
319 event->group_flags |= PERF_GROUP_SOFTWARE;
320
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100321 list = ctx_group_list(event, ctx);
322 list_add_tail(&event->group_entry, list);
323 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 list_add_rcu(&event->event_entry, &ctx->event_list);
333 ctx->nr_events++;
334 if (event->attr.inherit_stat)
335 ctx->nr_stat++;
336}
337
338/*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342static void
343list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344{
345 struct perf_event *sibling, *tmp;
346
347 if (list_empty(&event->group_entry))
348 return;
349 ctx->nr_events--;
350 if (event->attr.inherit_stat)
351 ctx->nr_stat--;
352
353 list_del_init(&event->group_entry);
354 list_del_rcu(&event->event_entry);
355
356 if (event->group_leader != event)
357 event->group_leader->nr_siblings--;
358
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100359 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800360
361 /*
362 * If event was in error state, then keep it
363 * that way, otherwise bogus counts will be
364 * returned on read(). The only way to get out
365 * of error state is by explicit re-enabling
366 * of the event
367 */
368 if (event->state > PERF_EVENT_STATE_OFF)
369 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100370
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200371 /*
372 * If this was a group event with sibling events then
373 * upgrade the siblings to singleton events by adding them
374 * to the context list directly:
375 */
376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100377 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200378
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100379 list = ctx_group_list(event, ctx);
380 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200381 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100382
383 /* Inherit group flags from the previous leader */
384 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200385 }
386}
387
388static void
389event_sched_out(struct perf_event *event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 if (event->state != PERF_EVENT_STATE_ACTIVE)
394 return;
395
396 event->state = PERF_EVENT_STATE_INACTIVE;
397 if (event->pending_disable) {
398 event->pending_disable = 0;
399 event->state = PERF_EVENT_STATE_OFF;
400 }
401 event->tstamp_stopped = ctx->time;
402 event->pmu->disable(event);
403 event->oncpu = -1;
404
405 if (!is_software_event(event))
406 cpuctx->active_oncpu--;
407 ctx->nr_active--;
408 if (event->attr.exclusive || !cpuctx->active_oncpu)
409 cpuctx->exclusive = 0;
410}
411
412static void
413group_sched_out(struct perf_event *group_event,
414 struct perf_cpu_context *cpuctx,
415 struct perf_event_context *ctx)
416{
417 struct perf_event *event;
418
419 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 return;
421
422 event_sched_out(group_event, cpuctx, ctx);
423
424 /*
425 * Schedule out siblings (if any):
426 */
427 list_for_each_entry(event, &group_event->sibling_list, group_entry)
428 event_sched_out(event, cpuctx, ctx);
429
430 if (group_event->attr.exclusive)
431 cpuctx->exclusive = 0;
432}
433
434/*
435 * Cross CPU call to remove a performance event
436 *
437 * We disable the event on the hardware level first. After that we
438 * remove it from the context list.
439 */
440static void __perf_event_remove_from_context(void *info)
441{
442 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 struct perf_event *event = info;
444 struct perf_event_context *ctx = event->ctx;
445
446 /*
447 * If this is a task context, we need to check whether it is
448 * the current task context of this cpu. If not it has been
449 * scheduled out before the smp call arrived.
450 */
451 if (ctx->task && cpuctx->task_ctx != ctx)
452 return;
453
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100454 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200455 /*
456 * Protect the list operation against NMI by disabling the
457 * events on a global level.
458 */
459 perf_disable();
460
461 event_sched_out(event, cpuctx, ctx);
462
463 list_del_event(event, ctx);
464
465 if (!ctx->task) {
466 /*
467 * Allow more per task events with respect to the
468 * reservation:
469 */
470 cpuctx->max_pertask =
471 min(perf_max_events - ctx->nr_events,
472 perf_max_events - perf_reserved_percpu);
473 }
474
475 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100476 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200477}
478
479
480/*
481 * Remove the event from a task's (or a CPU's) list of events.
482 *
483 * Must be called with ctx->mutex held.
484 *
485 * CPU events are removed with a smp call. For task events we only
486 * call when the task is on a CPU.
487 *
488 * If event->ctx is a cloned context, callers must make sure that
489 * every task struct that event->ctx->task could possibly point to
490 * remains valid. This is OK when called from perf_release since
491 * that only calls us on the top-level context, which can't be a clone.
492 * When called from perf_event_exit_task, it's OK because the
493 * context has been detached from its task.
494 */
495static void perf_event_remove_from_context(struct perf_event *event)
496{
497 struct perf_event_context *ctx = event->ctx;
498 struct task_struct *task = ctx->task;
499
500 if (!task) {
501 /*
502 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200503 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504 */
505 smp_call_function_single(event->cpu,
506 __perf_event_remove_from_context,
507 event, 1);
508 return;
509 }
510
511retry:
512 task_oncpu_function_call(task, __perf_event_remove_from_context,
513 event);
514
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100515 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516 /*
517 * If the context is active we need to retry the smp call.
518 */
519 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100520 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200521 goto retry;
522 }
523
524 /*
525 * The lock prevents that this context is scheduled in so we
526 * can remove the event safely, if the call above did not
527 * succeed.
528 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100529 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200530 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100531 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200532}
533
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200534/*
535 * Update total_time_enabled and total_time_running for all events in a group.
536 */
537static void update_group_times(struct perf_event *leader)
538{
539 struct perf_event *event;
540
541 update_event_times(leader);
542 list_for_each_entry(event, &leader->sibling_list, group_entry)
543 update_event_times(event);
544}
545
546/*
547 * Cross CPU call to disable a performance event
548 */
549static void __perf_event_disable(void *info)
550{
551 struct perf_event *event = info;
552 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553 struct perf_event_context *ctx = event->ctx;
554
555 /*
556 * If this is a per-task event, need to check whether this
557 * event's task is the current task on this cpu.
558 */
559 if (ctx->task && cpuctx->task_ctx != ctx)
560 return;
561
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100562 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200563
564 /*
565 * If the event is on, turn it off.
566 * If it is in error state, leave it in error state.
567 */
568 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569 update_context_time(ctx);
570 update_group_times(event);
571 if (event == event->group_leader)
572 group_sched_out(event, cpuctx, ctx);
573 else
574 event_sched_out(event, cpuctx, ctx);
575 event->state = PERF_EVENT_STATE_OFF;
576 }
577
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200579}
580
581/*
582 * Disable a event.
583 *
584 * If event->ctx is a cloned context, callers must make sure that
585 * every task struct that event->ctx->task could possibly point to
586 * remains valid. This condition is satisifed when called through
587 * perf_event_for_each_child or perf_event_for_each because they
588 * hold the top-level event's child_mutex, so any descendant that
589 * goes to exit will block in sync_child_event.
590 * When called from perf_pending_event it's OK because event->ctx
591 * is the current context on this CPU and preemption is disabled,
592 * hence we can't get into perf_event_task_sched_out for this context.
593 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100594void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200595{
596 struct perf_event_context *ctx = event->ctx;
597 struct task_struct *task = ctx->task;
598
599 if (!task) {
600 /*
601 * Disable the event on the cpu that it's on
602 */
603 smp_call_function_single(event->cpu, __perf_event_disable,
604 event, 1);
605 return;
606 }
607
608 retry:
609 task_oncpu_function_call(task, __perf_event_disable, event);
610
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100611 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * If the event is still active, we need to retry the cross-call.
614 */
615 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100616 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200617 goto retry;
618 }
619
620 /*
621 * Since we have the lock this context can't be scheduled
622 * in, so we can change the state safely.
623 */
624 if (event->state == PERF_EVENT_STATE_INACTIVE) {
625 update_group_times(event);
626 event->state = PERF_EVENT_STATE_OFF;
627 }
628
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100629 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200630}
631
632static int
633event_sched_in(struct perf_event *event,
634 struct perf_cpu_context *cpuctx,
635 struct perf_event_context *ctx,
636 int cpu)
637{
638 if (event->state <= PERF_EVENT_STATE_OFF)
639 return 0;
640
641 event->state = PERF_EVENT_STATE_ACTIVE;
642 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
643 /*
644 * The new state must be visible before we turn it on in the hardware:
645 */
646 smp_wmb();
647
648 if (event->pmu->enable(event)) {
649 event->state = PERF_EVENT_STATE_INACTIVE;
650 event->oncpu = -1;
651 return -EAGAIN;
652 }
653
654 event->tstamp_running += ctx->time - event->tstamp_stopped;
655
656 if (!is_software_event(event))
657 cpuctx->active_oncpu++;
658 ctx->nr_active++;
659
660 if (event->attr.exclusive)
661 cpuctx->exclusive = 1;
662
663 return 0;
664}
665
666static int
667group_sched_in(struct perf_event *group_event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx,
670 int cpu)
671{
672 struct perf_event *event, *partial_group;
673 int ret;
674
675 if (group_event->state == PERF_EVENT_STATE_OFF)
676 return 0;
677
678 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 if (ret)
680 return ret < 0 ? ret : 0;
681
682 if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 return -EAGAIN;
684
685 /*
686 * Schedule in siblings as one group (if any):
687 */
688 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
689 if (event_sched_in(event, cpuctx, ctx, cpu)) {
690 partial_group = event;
691 goto group_error;
692 }
693 }
694
695 return 0;
696
697group_error:
698 /*
699 * Groups can be scheduled in as one unit only, so undo any
700 * partial group before returning:
701 */
702 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
703 if (event == partial_group)
704 break;
705 event_sched_out(event, cpuctx, ctx);
706 }
707 event_sched_out(group_event, cpuctx, ctx);
708
709 return -EAGAIN;
710}
711
712/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200713 * Work out whether we can put this event group on the CPU now.
714 */
715static int group_can_go_on(struct perf_event *event,
716 struct perf_cpu_context *cpuctx,
717 int can_add_hw)
718{
719 /*
720 * Groups consisting entirely of software events can always go on.
721 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100722 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200723 return 1;
724 /*
725 * If an exclusive group is already on, no other hardware
726 * events can go on.
727 */
728 if (cpuctx->exclusive)
729 return 0;
730 /*
731 * If this group is exclusive and there are already
732 * events on the CPU, it can't go on.
733 */
734 if (event->attr.exclusive && cpuctx->active_oncpu)
735 return 0;
736 /*
737 * Otherwise, try to add it if all previous groups were able
738 * to go on.
739 */
740 return can_add_hw;
741}
742
743static void add_event_to_ctx(struct perf_event *event,
744 struct perf_event_context *ctx)
745{
746 list_add_event(event, ctx);
747 event->tstamp_enabled = ctx->time;
748 event->tstamp_running = ctx->time;
749 event->tstamp_stopped = ctx->time;
750}
751
752/*
753 * Cross CPU call to install and enable a performance event
754 *
755 * Must be called with ctx->mutex held
756 */
757static void __perf_install_in_context(void *info)
758{
759 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 struct perf_event *event = info;
761 struct perf_event_context *ctx = event->ctx;
762 struct perf_event *leader = event->group_leader;
763 int cpu = smp_processor_id();
764 int err;
765
766 /*
767 * If this is a task context, we need to check whether it is
768 * the current task context of this cpu. If not it has been
769 * scheduled out before the smp call arrived.
770 * Or possibly this is the right context but it isn't
771 * on this cpu because it had no events.
772 */
773 if (ctx->task && cpuctx->task_ctx != ctx) {
774 if (cpuctx->task_ctx || ctx->task != current)
775 return;
776 cpuctx->task_ctx = ctx;
777 }
778
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100779 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780 ctx->is_active = 1;
781 update_context_time(ctx);
782
783 /*
784 * Protect the list operation against NMI by disabling the
785 * events on a global level. NOP for non NMI based events.
786 */
787 perf_disable();
788
789 add_event_to_ctx(event, ctx);
790
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100791 if (event->cpu != -1 && event->cpu != smp_processor_id())
792 goto unlock;
793
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200794 /*
795 * Don't put the event on if it is disabled or if
796 * it is in a group and the group isn't on.
797 */
798 if (event->state != PERF_EVENT_STATE_INACTIVE ||
799 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 goto unlock;
801
802 /*
803 * An exclusive event can't go on if there are already active
804 * hardware events, and no hardware event can go on if there
805 * is already an exclusive event on.
806 */
807 if (!group_can_go_on(event, cpuctx, 1))
808 err = -EEXIST;
809 else
810 err = event_sched_in(event, cpuctx, ctx, cpu);
811
812 if (err) {
813 /*
814 * This event couldn't go on. If it is in a group
815 * then we have to pull the whole group off.
816 * If the event group is pinned then put it in error state.
817 */
818 if (leader != event)
819 group_sched_out(leader, cpuctx, ctx);
820 if (leader->attr.pinned) {
821 update_group_times(leader);
822 leader->state = PERF_EVENT_STATE_ERROR;
823 }
824 }
825
826 if (!err && !ctx->task && cpuctx->max_pertask)
827 cpuctx->max_pertask--;
828
829 unlock:
830 perf_enable();
831
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100832 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200833}
834
835/*
836 * Attach a performance event to a context
837 *
838 * First we add the event to the list with the hardware enable bit
839 * in event->hw_config cleared.
840 *
841 * If the event is attached to a task which is on a CPU we use a smp
842 * call to enable it in the task context. The task might have been
843 * scheduled away, but we check this in the smp call again.
844 *
845 * Must be called with ctx->mutex held.
846 */
847static void
848perf_install_in_context(struct perf_event_context *ctx,
849 struct perf_event *event,
850 int cpu)
851{
852 struct task_struct *task = ctx->task;
853
854 if (!task) {
855 /*
856 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200857 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200858 */
859 smp_call_function_single(cpu, __perf_install_in_context,
860 event, 1);
861 return;
862 }
863
864retry:
865 task_oncpu_function_call(task, __perf_install_in_context,
866 event);
867
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100868 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200869 /*
870 * we need to retry the smp call.
871 */
872 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100873 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200874 goto retry;
875 }
876
877 /*
878 * The lock prevents that this context is scheduled in so we
879 * can add the event safely, if it the call above did not
880 * succeed.
881 */
882 if (list_empty(&event->group_entry))
883 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100884 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200885}
886
887/*
888 * Put a event into inactive state and update time fields.
889 * Enabling the leader of a group effectively enables all
890 * the group members that aren't explicitly disabled, so we
891 * have to update their ->tstamp_enabled also.
892 * Note: this works for group members as well as group leaders
893 * since the non-leader members' sibling_lists will be empty.
894 */
895static void __perf_event_mark_enabled(struct perf_event *event,
896 struct perf_event_context *ctx)
897{
898 struct perf_event *sub;
899
900 event->state = PERF_EVENT_STATE_INACTIVE;
901 event->tstamp_enabled = ctx->time - event->total_time_enabled;
902 list_for_each_entry(sub, &event->sibling_list, group_entry)
903 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 sub->tstamp_enabled =
905 ctx->time - sub->total_time_enabled;
906}
907
908/*
909 * Cross CPU call to enable a performance event
910 */
911static void __perf_event_enable(void *info)
912{
913 struct perf_event *event = info;
914 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 struct perf_event_context *ctx = event->ctx;
916 struct perf_event *leader = event->group_leader;
917 int err;
918
919 /*
920 * If this is a per-task event, need to check whether this
921 * event's task is the current task on this cpu.
922 */
923 if (ctx->task && cpuctx->task_ctx != ctx) {
924 if (cpuctx->task_ctx || ctx->task != current)
925 return;
926 cpuctx->task_ctx = ctx;
927 }
928
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100929 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200930 ctx->is_active = 1;
931 update_context_time(ctx);
932
933 if (event->state >= PERF_EVENT_STATE_INACTIVE)
934 goto unlock;
935 __perf_event_mark_enabled(event, ctx);
936
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100937 if (event->cpu != -1 && event->cpu != smp_processor_id())
938 goto unlock;
939
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200940 /*
941 * If the event is in a group and isn't the group leader,
942 * then don't put it on unless the group is on.
943 */
944 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945 goto unlock;
946
947 if (!group_can_go_on(event, cpuctx, 1)) {
948 err = -EEXIST;
949 } else {
950 perf_disable();
951 if (event == leader)
952 err = group_sched_in(event, cpuctx, ctx,
953 smp_processor_id());
954 else
955 err = event_sched_in(event, cpuctx, ctx,
956 smp_processor_id());
957 perf_enable();
958 }
959
960 if (err) {
961 /*
962 * If this event can't go on and it's part of a
963 * group, then the whole group has to come off.
964 */
965 if (leader != event)
966 group_sched_out(leader, cpuctx, ctx);
967 if (leader->attr.pinned) {
968 update_group_times(leader);
969 leader->state = PERF_EVENT_STATE_ERROR;
970 }
971 }
972
973 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100974 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200975}
976
977/*
978 * Enable a event.
979 *
980 * If event->ctx is a cloned context, callers must make sure that
981 * every task struct that event->ctx->task could possibly point to
982 * remains valid. This condition is satisfied when called through
983 * perf_event_for_each_child or perf_event_for_each as described
984 * for perf_event_disable.
985 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100986void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200987{
988 struct perf_event_context *ctx = event->ctx;
989 struct task_struct *task = ctx->task;
990
991 if (!task) {
992 /*
993 * Enable the event on the cpu that it's on
994 */
995 smp_call_function_single(event->cpu, __perf_event_enable,
996 event, 1);
997 return;
998 }
999
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001000 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001001 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 goto out;
1003
1004 /*
1005 * If the event is in error state, clear that first.
1006 * That way, if we see the event in error state below, we
1007 * know that it has gone back into error state, as distinct
1008 * from the task having been scheduled away before the
1009 * cross-call arrived.
1010 */
1011 if (event->state == PERF_EVENT_STATE_ERROR)
1012 event->state = PERF_EVENT_STATE_OFF;
1013
1014 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016 task_oncpu_function_call(task, __perf_event_enable, event);
1017
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001018 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001019
1020 /*
1021 * If the context is active and the event is still off,
1022 * we need to retry the cross-call.
1023 */
1024 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 goto retry;
1026
1027 /*
1028 * Since we have the lock this context can't be scheduled
1029 * in, so we can change the state safely.
1030 */
1031 if (event->state == PERF_EVENT_STATE_OFF)
1032 __perf_event_mark_enabled(event, ctx);
1033
1034 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001035 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001036}
1037
1038static int perf_event_refresh(struct perf_event *event, int refresh)
1039{
1040 /*
1041 * not supported on inherited events
1042 */
1043 if (event->attr.inherit)
1044 return -EINVAL;
1045
1046 atomic_add(refresh, &event->event_limit);
1047 perf_event_enable(event);
1048
1049 return 0;
1050}
1051
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001052enum event_type_t {
1053 EVENT_FLEXIBLE = 0x1,
1054 EVENT_PINNED = 0x2,
1055 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1056};
1057
1058static void ctx_sched_out(struct perf_event_context *ctx,
1059 struct perf_cpu_context *cpuctx,
1060 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001061{
1062 struct perf_event *event;
1063
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001064 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001065 ctx->is_active = 0;
1066 if (likely(!ctx->nr_events))
1067 goto out;
1068 update_context_time(ctx);
1069
1070 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001071 if (!ctx->nr_active)
1072 goto out_enable;
1073
1074 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001075 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1077
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001078 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001079 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001080 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001081
1082 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083 perf_enable();
1084 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001085 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001086}
1087
1088/*
1089 * Test whether two contexts are equivalent, i.e. whether they
1090 * have both been cloned from the same version of the same context
1091 * and they both have the same number of enabled events.
1092 * If the number of enabled events is the same, then the set
1093 * of enabled events should be the same, because these are both
1094 * inherited contexts, therefore we can't access individual events
1095 * in them directly with an fd; we can only enable/disable all
1096 * events via prctl, or enable/disable all events in a family
1097 * via ioctl, which will have the same effect on both contexts.
1098 */
1099static int context_equiv(struct perf_event_context *ctx1,
1100 struct perf_event_context *ctx2)
1101{
1102 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103 && ctx1->parent_gen == ctx2->parent_gen
1104 && !ctx1->pin_count && !ctx2->pin_count;
1105}
1106
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001107static void __perf_event_sync_stat(struct perf_event *event,
1108 struct perf_event *next_event)
1109{
1110 u64 value;
1111
1112 if (!event->attr.inherit_stat)
1113 return;
1114
1115 /*
1116 * Update the event value, we cannot use perf_event_read()
1117 * because we're in the middle of a context switch and have IRQs
1118 * disabled, which upsets smp_call_function_single(), however
1119 * we know the event must be on the current CPU, therefore we
1120 * don't need to use it.
1121 */
1122 switch (event->state) {
1123 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001124 event->pmu->read(event);
1125 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001126
1127 case PERF_EVENT_STATE_INACTIVE:
1128 update_event_times(event);
1129 break;
1130
1131 default:
1132 break;
1133 }
1134
1135 /*
1136 * In order to keep per-task stats reliable we need to flip the event
1137 * values when we flip the contexts.
1138 */
1139 value = atomic64_read(&next_event->count);
1140 value = atomic64_xchg(&event->count, value);
1141 atomic64_set(&next_event->count, value);
1142
1143 swap(event->total_time_enabled, next_event->total_time_enabled);
1144 swap(event->total_time_running, next_event->total_time_running);
1145
1146 /*
1147 * Since we swizzled the values, update the user visible data too.
1148 */
1149 perf_event_update_userpage(event);
1150 perf_event_update_userpage(next_event);
1151}
1152
1153#define list_next_entry(pos, member) \
1154 list_entry(pos->member.next, typeof(*pos), member)
1155
1156static void perf_event_sync_stat(struct perf_event_context *ctx,
1157 struct perf_event_context *next_ctx)
1158{
1159 struct perf_event *event, *next_event;
1160
1161 if (!ctx->nr_stat)
1162 return;
1163
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001164 update_context_time(ctx);
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 event = list_first_entry(&ctx->event_list,
1167 struct perf_event, event_entry);
1168
1169 next_event = list_first_entry(&next_ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 while (&event->event_entry != &ctx->event_list &&
1173 &next_event->event_entry != &next_ctx->event_list) {
1174
1175 __perf_event_sync_stat(event, next_event);
1176
1177 event = list_next_entry(event, event_entry);
1178 next_event = list_next_entry(next_event, event_entry);
1179 }
1180}
1181
1182/*
1183 * Called from scheduler to remove the events of the current task,
1184 * with interrupts disabled.
1185 *
1186 * We stop each event and update the event value in event->count.
1187 *
1188 * This does not protect us against NMI, but disable()
1189 * sets the disabled bit in the control field of event _before_
1190 * accessing the event control register. If a NMI hits, then it will
1191 * not restart the event.
1192 */
1193void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001194 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001195{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001196 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001197 struct perf_event_context *ctx = task->perf_event_ctxp;
1198 struct perf_event_context *next_ctx;
1199 struct perf_event_context *parent;
1200 struct pt_regs *regs;
1201 int do_switch = 1;
1202
1203 regs = task_pt_regs(task);
1204 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205
1206 if (likely(!ctx || !cpuctx->task_ctx))
1207 return;
1208
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001209 rcu_read_lock();
1210 parent = rcu_dereference(ctx->parent_ctx);
1211 next_ctx = next->perf_event_ctxp;
1212 if (parent && next_ctx &&
1213 rcu_dereference(next_ctx->parent_ctx) == parent) {
1214 /*
1215 * Looks like the two contexts are clones, so we might be
1216 * able to optimize the context switch. We lock both
1217 * contexts and check that they are clones under the
1218 * lock (including re-checking that neither has been
1219 * uncloned in the meantime). It doesn't matter which
1220 * order we take the locks because no other cpu could
1221 * be trying to lock both of these tasks.
1222 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001223 raw_spin_lock(&ctx->lock);
1224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001225 if (context_equiv(ctx, next_ctx)) {
1226 /*
1227 * XXX do we need a memory barrier of sorts
1228 * wrt to rcu_dereference() of perf_event_ctxp
1229 */
1230 task->perf_event_ctxp = next_ctx;
1231 next->perf_event_ctxp = ctx;
1232 ctx->task = next;
1233 next_ctx->task = task;
1234 do_switch = 0;
1235
1236 perf_event_sync_stat(ctx, next_ctx);
1237 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001238 raw_spin_unlock(&next_ctx->lock);
1239 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001240 }
1241 rcu_read_unlock();
1242
1243 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001244 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001245 cpuctx->task_ctx = NULL;
1246 }
1247}
1248
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249static void task_ctx_sched_out(struct perf_event_context *ctx,
1250 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1253
1254 if (!cpuctx->task_ctx)
1255 return;
1256
1257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1258 return;
1259
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261 cpuctx->task_ctx = NULL;
1262}
1263
1264/*
1265 * Called with IRQs disabled
1266 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001267static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001268{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001269 task_ctx_sched_out(ctx, EVENT_ALL);
1270}
1271
1272/*
1273 * Called with IRQs disabled
1274 */
1275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1276 enum event_type_t event_type)
1277{
1278 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001279}
1280
1281static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001282ctx_pinned_sched_in(struct perf_event_context *ctx,
1283 struct perf_cpu_context *cpuctx,
1284 int cpu)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285{
1286 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001288 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1289 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, 1))
1295 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296
1297 /*
1298 * If this pinned group hasn't been scheduled,
1299 * put it in error state.
1300 */
1301 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1302 update_group_times(event);
1303 event->state = PERF_EVENT_STATE_ERROR;
1304 }
1305 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001306}
1307
1308static void
1309ctx_flexible_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 int cpu)
1312{
1313 struct perf_event *event;
1314 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001315
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001316 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1317 /* Ignore events in OFF or ERROR state */
1318 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001319 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001320 /*
1321 * Listen to the 'cpu' scheduling filter constraint
1322 * of events:
1323 */
1324 if (event->cpu != -1 && event->cpu != cpu)
1325 continue;
1326
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001327 if (group_can_go_on(event, cpuctx, can_add_hw))
1328 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001329 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001330 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001331}
1332
1333static void
1334ctx_sched_in(struct perf_event_context *ctx,
1335 struct perf_cpu_context *cpuctx,
1336 enum event_type_t event_type)
1337{
1338 int cpu = smp_processor_id();
1339
1340 raw_spin_lock(&ctx->lock);
1341 ctx->is_active = 1;
1342 if (likely(!ctx->nr_events))
1343 goto out;
1344
1345 ctx->timestamp = perf_clock();
1346
1347 perf_disable();
1348
1349 /*
1350 * First go through the list and put on any pinned groups
1351 * in order to give them the best chance of going on.
1352 */
1353 if (event_type & EVENT_PINNED)
1354 ctx_pinned_sched_in(ctx, cpuctx, cpu);
1355
1356 /* Then walk through the lower prio flexible groups */
1357 if (event_type & EVENT_FLEXIBLE)
1358 ctx_flexible_sched_in(ctx, cpuctx, cpu);
1359
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360 perf_enable();
1361 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001362 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001363}
1364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1366 enum event_type_t event_type)
1367{
1368 struct perf_event_context *ctx = &cpuctx->ctx;
1369
1370 ctx_sched_in(ctx, cpuctx, event_type);
1371}
1372
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001373static void task_ctx_sched_in(struct task_struct *task,
1374 enum event_type_t event_type)
1375{
1376 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1377 struct perf_event_context *ctx = task->perf_event_ctxp;
1378
1379 if (likely(!ctx))
1380 return;
1381 if (cpuctx->task_ctx == ctx)
1382 return;
1383 ctx_sched_in(ctx, cpuctx, event_type);
1384 cpuctx->task_ctx = ctx;
1385}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001386/*
1387 * Called from scheduler to add the events of the current task
1388 * with interrupts disabled.
1389 *
1390 * We restore the event value and then enable it.
1391 *
1392 * This does not protect us against NMI, but enable()
1393 * sets the enabled bit in the control field of event _before_
1394 * accessing the event control register. If a NMI hits, then it will
1395 * keep the event running.
1396 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001397void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001399 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1400 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001401
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001402 if (likely(!ctx))
1403 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001404
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001405 if (cpuctx->task_ctx == ctx)
1406 return;
1407
1408 /*
1409 * We want to keep the following priority order:
1410 * cpu pinned (that don't need to move), task pinned,
1411 * cpu flexible, task flexible.
1412 */
1413 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1414
1415 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1416 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1417 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1418
1419 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001420}
1421
1422#define MAX_INTERRUPTS (~0ULL)
1423
1424static void perf_log_throttle(struct perf_event *event, int enable);
1425
Peter Zijlstraabd50712010-01-26 18:50:16 +01001426static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1427{
1428 u64 frequency = event->attr.sample_freq;
1429 u64 sec = NSEC_PER_SEC;
1430 u64 divisor, dividend;
1431
1432 int count_fls, nsec_fls, frequency_fls, sec_fls;
1433
1434 count_fls = fls64(count);
1435 nsec_fls = fls64(nsec);
1436 frequency_fls = fls64(frequency);
1437 sec_fls = 30;
1438
1439 /*
1440 * We got @count in @nsec, with a target of sample_freq HZ
1441 * the target period becomes:
1442 *
1443 * @count * 10^9
1444 * period = -------------------
1445 * @nsec * sample_freq
1446 *
1447 */
1448
1449 /*
1450 * Reduce accuracy by one bit such that @a and @b converge
1451 * to a similar magnitude.
1452 */
1453#define REDUCE_FLS(a, b) \
1454do { \
1455 if (a##_fls > b##_fls) { \
1456 a >>= 1; \
1457 a##_fls--; \
1458 } else { \
1459 b >>= 1; \
1460 b##_fls--; \
1461 } \
1462} while (0)
1463
1464 /*
1465 * Reduce accuracy until either term fits in a u64, then proceed with
1466 * the other, so that finally we can do a u64/u64 division.
1467 */
1468 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1469 REDUCE_FLS(nsec, frequency);
1470 REDUCE_FLS(sec, count);
1471 }
1472
1473 if (count_fls + sec_fls > 64) {
1474 divisor = nsec * frequency;
1475
1476 while (count_fls + sec_fls > 64) {
1477 REDUCE_FLS(count, sec);
1478 divisor >>= 1;
1479 }
1480
1481 dividend = count * sec;
1482 } else {
1483 dividend = count * sec;
1484
1485 while (nsec_fls + frequency_fls > 64) {
1486 REDUCE_FLS(nsec, frequency);
1487 dividend >>= 1;
1488 }
1489
1490 divisor = nsec * frequency;
1491 }
1492
1493 return div64_u64(dividend, divisor);
1494}
1495
1496static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001497{
1498 struct hw_perf_event *hwc = &event->hw;
1499 u64 period, sample_period;
1500 s64 delta;
1501
Peter Zijlstraabd50712010-01-26 18:50:16 +01001502 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001503
1504 delta = (s64)(period - hwc->sample_period);
1505 delta = (delta + 7) / 8; /* low pass filter */
1506
1507 sample_period = hwc->sample_period + delta;
1508
1509 if (!sample_period)
1510 sample_period = 1;
1511
1512 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513
1514 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1515 perf_disable();
1516 event->pmu->disable(event);
1517 atomic64_set(&hwc->period_left, 0);
1518 event->pmu->enable(event);
1519 perf_enable();
1520 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001521}
1522
1523static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1524{
1525 struct perf_event *event;
1526 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001527 u64 interrupts, now;
1528 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001529
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001530 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001531 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 if (event->state != PERF_EVENT_STATE_ACTIVE)
1533 continue;
1534
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001535 if (event->cpu != -1 && event->cpu != smp_processor_id())
1536 continue;
1537
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001538 hwc = &event->hw;
1539
1540 interrupts = hwc->interrupts;
1541 hwc->interrupts = 0;
1542
1543 /*
1544 * unthrottle events on the tick
1545 */
1546 if (interrupts == MAX_INTERRUPTS) {
1547 perf_log_throttle(event, 1);
1548 event->pmu->unthrottle(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001549 }
1550
1551 if (!event->attr.freq || !event->attr.sample_freq)
1552 continue;
1553
Peter Zijlstraabd50712010-01-26 18:50:16 +01001554 event->pmu->read(event);
1555 now = atomic64_read(&event->count);
1556 delta = now - hwc->freq_count_stamp;
1557 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001558
Peter Zijlstraabd50712010-01-26 18:50:16 +01001559 if (delta > 0)
1560 perf_adjust_period(event, TICK_NSEC, delta);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001562 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001563}
1564
1565/*
1566 * Round-robin a context's events:
1567 */
1568static void rotate_ctx(struct perf_event_context *ctx)
1569{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001570 if (!ctx->nr_events)
1571 return;
1572
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001573 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001574
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001575 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001576 list_rotate_left(&ctx->flexible_groups);
1577
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001579}
1580
Peter Zijlstra49f47432009-12-27 11:51:52 +01001581void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001582{
1583 struct perf_cpu_context *cpuctx;
1584 struct perf_event_context *ctx;
1585
1586 if (!atomic_read(&nr_events))
1587 return;
1588
Peter Zijlstra49f47432009-12-27 11:51:52 +01001589 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001590 ctx = curr->perf_event_ctxp;
1591
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001592 perf_disable();
1593
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001598 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001599 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001600 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001601
1602 rotate_ctx(&cpuctx->ctx);
1603 if (ctx)
1604 rotate_ctx(ctx);
1605
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001606 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001607 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001608 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001609
1610 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611}
1612
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001613static int event_enable_on_exec(struct perf_event *event,
1614 struct perf_event_context *ctx)
1615{
1616 if (!event->attr.enable_on_exec)
1617 return 0;
1618
1619 event->attr.enable_on_exec = 0;
1620 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1621 return 0;
1622
1623 __perf_event_mark_enabled(event, ctx);
1624
1625 return 1;
1626}
1627
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001628/*
1629 * Enable all of a task's events that have been marked enable-on-exec.
1630 * This expects task == current.
1631 */
1632static void perf_event_enable_on_exec(struct task_struct *task)
1633{
1634 struct perf_event_context *ctx;
1635 struct perf_event *event;
1636 unsigned long flags;
1637 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001638 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001639
1640 local_irq_save(flags);
1641 ctx = task->perf_event_ctxp;
1642 if (!ctx || !ctx->nr_events)
1643 goto out;
1644
1645 __perf_event_task_sched_out(ctx);
1646
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001647 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001648
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001649 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1650 ret = event_enable_on_exec(event, ctx);
1651 if (ret)
1652 enabled = 1;
1653 }
1654
1655 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1656 ret = event_enable_on_exec(event, ctx);
1657 if (ret)
1658 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001659 }
1660
1661 /*
1662 * Unclone this context if we enabled any event.
1663 */
1664 if (enabled)
1665 unclone_ctx(ctx);
1666
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001667 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001668
Peter Zijlstra49f47432009-12-27 11:51:52 +01001669 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001670 out:
1671 local_irq_restore(flags);
1672}
1673
1674/*
1675 * Cross CPU call to read the hardware event
1676 */
1677static void __perf_event_read(void *info)
1678{
1679 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1680 struct perf_event *event = info;
1681 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001682
1683 /*
1684 * If this is a task context, we need to check whether it is
1685 * the current task context of this cpu. If not it has been
1686 * scheduled out before the smp call arrived. In that case
1687 * event->count would have been updated to a recent sample
1688 * when the event was scheduled out.
1689 */
1690 if (ctx->task && cpuctx->task_ctx != ctx)
1691 return;
1692
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001693 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001694 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001695 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001696 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001697
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001698 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001699}
1700
1701static u64 perf_event_read(struct perf_event *event)
1702{
1703 /*
1704 * If event is enabled and currently active on a CPU, update the
1705 * value in the event structure:
1706 */
1707 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1708 smp_call_function_single(event->oncpu,
1709 __perf_event_read, event, 1);
1710 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001711 struct perf_event_context *ctx = event->ctx;
1712 unsigned long flags;
1713
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001714 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001715 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001716 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001717 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001718 }
1719
1720 return atomic64_read(&event->count);
1721}
1722
1723/*
1724 * Initialize the perf_event context in a task_struct:
1725 */
1726static void
1727__perf_event_init_context(struct perf_event_context *ctx,
1728 struct task_struct *task)
1729{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001730 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001731 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001732 INIT_LIST_HEAD(&ctx->pinned_groups);
1733 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 INIT_LIST_HEAD(&ctx->event_list);
1735 atomic_set(&ctx->refcount, 1);
1736 ctx->task = task;
1737}
1738
1739static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1740{
1741 struct perf_event_context *ctx;
1742 struct perf_cpu_context *cpuctx;
1743 struct task_struct *task;
1744 unsigned long flags;
1745 int err;
1746
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001747 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001748 /* Must be root to operate on a CPU event: */
1749 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1750 return ERR_PTR(-EACCES);
1751
Paul Mackerras0f624e72009-12-15 19:40:32 +11001752 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001753 return ERR_PTR(-EINVAL);
1754
1755 /*
1756 * We could be clever and allow to attach a event to an
1757 * offline CPU and activate it when the CPU comes up, but
1758 * that's for later.
1759 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001760 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001761 return ERR_PTR(-ENODEV);
1762
1763 cpuctx = &per_cpu(perf_cpu_context, cpu);
1764 ctx = &cpuctx->ctx;
1765 get_ctx(ctx);
1766
1767 return ctx;
1768 }
1769
1770 rcu_read_lock();
1771 if (!pid)
1772 task = current;
1773 else
1774 task = find_task_by_vpid(pid);
1775 if (task)
1776 get_task_struct(task);
1777 rcu_read_unlock();
1778
1779 if (!task)
1780 return ERR_PTR(-ESRCH);
1781
1782 /*
1783 * Can't attach events to a dying task.
1784 */
1785 err = -ESRCH;
1786 if (task->flags & PF_EXITING)
1787 goto errout;
1788
1789 /* Reuse ptrace permission checks for now. */
1790 err = -EACCES;
1791 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1792 goto errout;
1793
1794 retry:
1795 ctx = perf_lock_task_context(task, &flags);
1796 if (ctx) {
1797 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001798 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001799 }
1800
1801 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001802 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001803 err = -ENOMEM;
1804 if (!ctx)
1805 goto errout;
1806 __perf_event_init_context(ctx, task);
1807 get_ctx(ctx);
1808 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1809 /*
1810 * We raced with some other task; use
1811 * the context they set.
1812 */
1813 kfree(ctx);
1814 goto retry;
1815 }
1816 get_task_struct(task);
1817 }
1818
1819 put_task_struct(task);
1820 return ctx;
1821
1822 errout:
1823 put_task_struct(task);
1824 return ERR_PTR(err);
1825}
1826
Li Zefan6fb29152009-10-15 11:21:42 +08001827static void perf_event_free_filter(struct perf_event *event);
1828
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001829static void free_event_rcu(struct rcu_head *head)
1830{
1831 struct perf_event *event;
1832
1833 event = container_of(head, struct perf_event, rcu_head);
1834 if (event->ns)
1835 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001836 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001837 kfree(event);
1838}
1839
1840static void perf_pending_sync(struct perf_event *event);
1841
1842static void free_event(struct perf_event *event)
1843{
1844 perf_pending_sync(event);
1845
1846 if (!event->parent) {
1847 atomic_dec(&nr_events);
1848 if (event->attr.mmap)
1849 atomic_dec(&nr_mmap_events);
1850 if (event->attr.comm)
1851 atomic_dec(&nr_comm_events);
1852 if (event->attr.task)
1853 atomic_dec(&nr_task_events);
1854 }
1855
1856 if (event->output) {
1857 fput(event->output->filp);
1858 event->output = NULL;
1859 }
1860
1861 if (event->destroy)
1862 event->destroy(event);
1863
1864 put_ctx(event->ctx);
1865 call_rcu(&event->rcu_head, free_event_rcu);
1866}
1867
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001868int perf_event_release_kernel(struct perf_event *event)
1869{
1870 struct perf_event_context *ctx = event->ctx;
1871
1872 WARN_ON_ONCE(ctx->parent_ctx);
1873 mutex_lock(&ctx->mutex);
1874 perf_event_remove_from_context(event);
1875 mutex_unlock(&ctx->mutex);
1876
1877 mutex_lock(&event->owner->perf_event_mutex);
1878 list_del_init(&event->owner_entry);
1879 mutex_unlock(&event->owner->perf_event_mutex);
1880 put_task_struct(event->owner);
1881
1882 free_event(event);
1883
1884 return 0;
1885}
1886EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1887
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001888/*
1889 * Called when the last reference to the file is gone.
1890 */
1891static int perf_release(struct inode *inode, struct file *file)
1892{
1893 struct perf_event *event = file->private_data;
1894
1895 file->private_data = NULL;
1896
1897 return perf_event_release_kernel(event);
1898}
1899
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001900static int perf_event_read_size(struct perf_event *event)
1901{
1902 int entry = sizeof(u64); /* value */
1903 int size = 0;
1904 int nr = 1;
1905
1906 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1907 size += sizeof(u64);
1908
1909 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1910 size += sizeof(u64);
1911
1912 if (event->attr.read_format & PERF_FORMAT_ID)
1913 entry += sizeof(u64);
1914
1915 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1916 nr += event->group_leader->nr_siblings;
1917 size += sizeof(u64);
1918 }
1919
1920 size += entry * nr;
1921
1922 return size;
1923}
1924
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001925u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001926{
1927 struct perf_event *child;
1928 u64 total = 0;
1929
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001930 *enabled = 0;
1931 *running = 0;
1932
Peter Zijlstra6f105812009-11-20 22:19:56 +01001933 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001934 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001935 *enabled += event->total_time_enabled +
1936 atomic64_read(&event->child_total_time_enabled);
1937 *running += event->total_time_running +
1938 atomic64_read(&event->child_total_time_running);
1939
1940 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001941 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001942 *enabled += child->total_time_enabled;
1943 *running += child->total_time_running;
1944 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001945 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001946
1947 return total;
1948}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001949EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001951static int perf_event_read_group(struct perf_event *event,
1952 u64 read_format, char __user *buf)
1953{
1954 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001955 int n = 0, size = 0, ret = -EFAULT;
1956 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001957 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001958 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001959
Peter Zijlstra6f105812009-11-20 22:19:56 +01001960 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001961 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001962
1963 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001964 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1965 values[n++] = enabled;
1966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1967 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001968 values[n++] = count;
1969 if (read_format & PERF_FORMAT_ID)
1970 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001971
1972 size = n * sizeof(u64);
1973
1974 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001975 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001976
Peter Zijlstra6f105812009-11-20 22:19:56 +01001977 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001978
1979 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001980 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001981
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001982 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001983 if (read_format & PERF_FORMAT_ID)
1984 values[n++] = primary_event_id(sub);
1985
1986 size = n * sizeof(u64);
1987
Stephane Eranian184d3da2009-11-23 21:40:49 -08001988 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001989 ret = -EFAULT;
1990 goto unlock;
1991 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001992
1993 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001994 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001995unlock:
1996 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001997
Peter Zijlstraabf48682009-11-20 22:19:49 +01001998 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001999}
2000
2001static int perf_event_read_one(struct perf_event *event,
2002 u64 read_format, char __user *buf)
2003{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002004 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005 u64 values[4];
2006 int n = 0;
2007
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002008 values[n++] = perf_event_read_value(event, &enabled, &running);
2009 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2010 values[n++] = enabled;
2011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2012 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002013 if (read_format & PERF_FORMAT_ID)
2014 values[n++] = primary_event_id(event);
2015
2016 if (copy_to_user(buf, values, n * sizeof(u64)))
2017 return -EFAULT;
2018
2019 return n * sizeof(u64);
2020}
2021
2022/*
2023 * Read the performance event - simple non blocking version for now
2024 */
2025static ssize_t
2026perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2027{
2028 u64 read_format = event->attr.read_format;
2029 int ret;
2030
2031 /*
2032 * Return end-of-file for a read on a event that is in
2033 * error state (i.e. because it was pinned but it couldn't be
2034 * scheduled on to the CPU at some point).
2035 */
2036 if (event->state == PERF_EVENT_STATE_ERROR)
2037 return 0;
2038
2039 if (count < perf_event_read_size(event))
2040 return -ENOSPC;
2041
2042 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002043 if (read_format & PERF_FORMAT_GROUP)
2044 ret = perf_event_read_group(event, read_format, buf);
2045 else
2046 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002047
2048 return ret;
2049}
2050
2051static ssize_t
2052perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2053{
2054 struct perf_event *event = file->private_data;
2055
2056 return perf_read_hw(event, buf, count);
2057}
2058
2059static unsigned int perf_poll(struct file *file, poll_table *wait)
2060{
2061 struct perf_event *event = file->private_data;
2062 struct perf_mmap_data *data;
2063 unsigned int events = POLL_HUP;
2064
2065 rcu_read_lock();
2066 data = rcu_dereference(event->data);
2067 if (data)
2068 events = atomic_xchg(&data->poll, 0);
2069 rcu_read_unlock();
2070
2071 poll_wait(file, &event->waitq, wait);
2072
2073 return events;
2074}
2075
2076static void perf_event_reset(struct perf_event *event)
2077{
2078 (void)perf_event_read(event);
2079 atomic64_set(&event->count, 0);
2080 perf_event_update_userpage(event);
2081}
2082
2083/*
2084 * Holding the top-level event's child_mutex means that any
2085 * descendant process that has inherited this event will block
2086 * in sync_child_event if it goes to exit, thus satisfying the
2087 * task existence requirements of perf_event_enable/disable.
2088 */
2089static void perf_event_for_each_child(struct perf_event *event,
2090 void (*func)(struct perf_event *))
2091{
2092 struct perf_event *child;
2093
2094 WARN_ON_ONCE(event->ctx->parent_ctx);
2095 mutex_lock(&event->child_mutex);
2096 func(event);
2097 list_for_each_entry(child, &event->child_list, child_list)
2098 func(child);
2099 mutex_unlock(&event->child_mutex);
2100}
2101
2102static void perf_event_for_each(struct perf_event *event,
2103 void (*func)(struct perf_event *))
2104{
2105 struct perf_event_context *ctx = event->ctx;
2106 struct perf_event *sibling;
2107
2108 WARN_ON_ONCE(ctx->parent_ctx);
2109 mutex_lock(&ctx->mutex);
2110 event = event->group_leader;
2111
2112 perf_event_for_each_child(event, func);
2113 func(event);
2114 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2115 perf_event_for_each_child(event, func);
2116 mutex_unlock(&ctx->mutex);
2117}
2118
2119static int perf_event_period(struct perf_event *event, u64 __user *arg)
2120{
2121 struct perf_event_context *ctx = event->ctx;
2122 unsigned long size;
2123 int ret = 0;
2124 u64 value;
2125
2126 if (!event->attr.sample_period)
2127 return -EINVAL;
2128
2129 size = copy_from_user(&value, arg, sizeof(value));
2130 if (size != sizeof(value))
2131 return -EFAULT;
2132
2133 if (!value)
2134 return -EINVAL;
2135
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002136 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002137 if (event->attr.freq) {
2138 if (value > sysctl_perf_event_sample_rate) {
2139 ret = -EINVAL;
2140 goto unlock;
2141 }
2142
2143 event->attr.sample_freq = value;
2144 } else {
2145 event->attr.sample_period = value;
2146 event->hw.sample_period = value;
2147 }
2148unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002149 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002150
2151 return ret;
2152}
2153
Li Zefan6fb29152009-10-15 11:21:42 +08002154static int perf_event_set_output(struct perf_event *event, int output_fd);
2155static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002156
2157static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2158{
2159 struct perf_event *event = file->private_data;
2160 void (*func)(struct perf_event *);
2161 u32 flags = arg;
2162
2163 switch (cmd) {
2164 case PERF_EVENT_IOC_ENABLE:
2165 func = perf_event_enable;
2166 break;
2167 case PERF_EVENT_IOC_DISABLE:
2168 func = perf_event_disable;
2169 break;
2170 case PERF_EVENT_IOC_RESET:
2171 func = perf_event_reset;
2172 break;
2173
2174 case PERF_EVENT_IOC_REFRESH:
2175 return perf_event_refresh(event, arg);
2176
2177 case PERF_EVENT_IOC_PERIOD:
2178 return perf_event_period(event, (u64 __user *)arg);
2179
2180 case PERF_EVENT_IOC_SET_OUTPUT:
2181 return perf_event_set_output(event, arg);
2182
Li Zefan6fb29152009-10-15 11:21:42 +08002183 case PERF_EVENT_IOC_SET_FILTER:
2184 return perf_event_set_filter(event, (void __user *)arg);
2185
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002186 default:
2187 return -ENOTTY;
2188 }
2189
2190 if (flags & PERF_IOC_FLAG_GROUP)
2191 perf_event_for_each(event, func);
2192 else
2193 perf_event_for_each_child(event, func);
2194
2195 return 0;
2196}
2197
2198int perf_event_task_enable(void)
2199{
2200 struct perf_event *event;
2201
2202 mutex_lock(&current->perf_event_mutex);
2203 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2204 perf_event_for_each_child(event, perf_event_enable);
2205 mutex_unlock(&current->perf_event_mutex);
2206
2207 return 0;
2208}
2209
2210int perf_event_task_disable(void)
2211{
2212 struct perf_event *event;
2213
2214 mutex_lock(&current->perf_event_mutex);
2215 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2216 perf_event_for_each_child(event, perf_event_disable);
2217 mutex_unlock(&current->perf_event_mutex);
2218
2219 return 0;
2220}
2221
2222#ifndef PERF_EVENT_INDEX_OFFSET
2223# define PERF_EVENT_INDEX_OFFSET 0
2224#endif
2225
2226static int perf_event_index(struct perf_event *event)
2227{
2228 if (event->state != PERF_EVENT_STATE_ACTIVE)
2229 return 0;
2230
2231 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2232}
2233
2234/*
2235 * Callers need to ensure there can be no nesting of this function, otherwise
2236 * the seqlock logic goes bad. We can not serialize this because the arch
2237 * code calls this from NMI context.
2238 */
2239void perf_event_update_userpage(struct perf_event *event)
2240{
2241 struct perf_event_mmap_page *userpg;
2242 struct perf_mmap_data *data;
2243
2244 rcu_read_lock();
2245 data = rcu_dereference(event->data);
2246 if (!data)
2247 goto unlock;
2248
2249 userpg = data->user_page;
2250
2251 /*
2252 * Disable preemption so as to not let the corresponding user-space
2253 * spin too long if we get preempted.
2254 */
2255 preempt_disable();
2256 ++userpg->lock;
2257 barrier();
2258 userpg->index = perf_event_index(event);
2259 userpg->offset = atomic64_read(&event->count);
2260 if (event->state == PERF_EVENT_STATE_ACTIVE)
2261 userpg->offset -= atomic64_read(&event->hw.prev_count);
2262
2263 userpg->time_enabled = event->total_time_enabled +
2264 atomic64_read(&event->child_total_time_enabled);
2265
2266 userpg->time_running = event->total_time_running +
2267 atomic64_read(&event->child_total_time_running);
2268
2269 barrier();
2270 ++userpg->lock;
2271 preempt_enable();
2272unlock:
2273 rcu_read_unlock();
2274}
2275
Peter Zijlstra906010b2009-09-21 16:08:49 +02002276static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002277{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002278 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002279}
2280
Peter Zijlstra906010b2009-09-21 16:08:49 +02002281#ifndef CONFIG_PERF_USE_VMALLOC
2282
2283/*
2284 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2285 */
2286
2287static struct page *
2288perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2289{
2290 if (pgoff > data->nr_pages)
2291 return NULL;
2292
2293 if (pgoff == 0)
2294 return virt_to_page(data->user_page);
2295
2296 return virt_to_page(data->data_pages[pgoff - 1]);
2297}
2298
2299static struct perf_mmap_data *
2300perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002301{
2302 struct perf_mmap_data *data;
2303 unsigned long size;
2304 int i;
2305
2306 WARN_ON(atomic_read(&event->mmap_count));
2307
2308 size = sizeof(struct perf_mmap_data);
2309 size += nr_pages * sizeof(void *);
2310
2311 data = kzalloc(size, GFP_KERNEL);
2312 if (!data)
2313 goto fail;
2314
2315 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2316 if (!data->user_page)
2317 goto fail_user_page;
2318
2319 for (i = 0; i < nr_pages; i++) {
2320 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2321 if (!data->data_pages[i])
2322 goto fail_data_pages;
2323 }
2324
Peter Zijlstra906010b2009-09-21 16:08:49 +02002325 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002326 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002327
Peter Zijlstra906010b2009-09-21 16:08:49 +02002328 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002329
2330fail_data_pages:
2331 for (i--; i >= 0; i--)
2332 free_page((unsigned long)data->data_pages[i]);
2333
2334 free_page((unsigned long)data->user_page);
2335
2336fail_user_page:
2337 kfree(data);
2338
2339fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002340 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002341}
2342
2343static void perf_mmap_free_page(unsigned long addr)
2344{
2345 struct page *page = virt_to_page((void *)addr);
2346
2347 page->mapping = NULL;
2348 __free_page(page);
2349}
2350
Peter Zijlstra906010b2009-09-21 16:08:49 +02002351static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002352{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353 int i;
2354
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002355 perf_mmap_free_page((unsigned long)data->user_page);
2356 for (i = 0; i < data->nr_pages; i++)
2357 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002358 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360
Peter Zijlstra906010b2009-09-21 16:08:49 +02002361#else
2362
2363/*
2364 * Back perf_mmap() with vmalloc memory.
2365 *
2366 * Required for architectures that have d-cache aliasing issues.
2367 */
2368
2369static struct page *
2370perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2371{
2372 if (pgoff > (1UL << data->data_order))
2373 return NULL;
2374
2375 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2376}
2377
2378static void perf_mmap_unmark_page(void *addr)
2379{
2380 struct page *page = vmalloc_to_page(addr);
2381
2382 page->mapping = NULL;
2383}
2384
2385static void perf_mmap_data_free_work(struct work_struct *work)
2386{
2387 struct perf_mmap_data *data;
2388 void *base;
2389 int i, nr;
2390
2391 data = container_of(work, struct perf_mmap_data, work);
2392 nr = 1 << data->data_order;
2393
2394 base = data->user_page;
2395 for (i = 0; i < nr + 1; i++)
2396 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2397
2398 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002399 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002400}
2401
2402static void perf_mmap_data_free(struct perf_mmap_data *data)
2403{
2404 schedule_work(&data->work);
2405}
2406
2407static struct perf_mmap_data *
2408perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2409{
2410 struct perf_mmap_data *data;
2411 unsigned long size;
2412 void *all_buf;
2413
2414 WARN_ON(atomic_read(&event->mmap_count));
2415
2416 size = sizeof(struct perf_mmap_data);
2417 size += sizeof(void *);
2418
2419 data = kzalloc(size, GFP_KERNEL);
2420 if (!data)
2421 goto fail;
2422
2423 INIT_WORK(&data->work, perf_mmap_data_free_work);
2424
2425 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2426 if (!all_buf)
2427 goto fail_all_buf;
2428
2429 data->user_page = all_buf;
2430 data->data_pages[0] = all_buf + PAGE_SIZE;
2431 data->data_order = ilog2(nr_pages);
2432 data->nr_pages = 1;
2433
2434 return data;
2435
2436fail_all_buf:
2437 kfree(data);
2438
2439fail:
2440 return NULL;
2441}
2442
2443#endif
2444
2445static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2446{
2447 struct perf_event *event = vma->vm_file->private_data;
2448 struct perf_mmap_data *data;
2449 int ret = VM_FAULT_SIGBUS;
2450
2451 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2452 if (vmf->pgoff == 0)
2453 ret = 0;
2454 return ret;
2455 }
2456
2457 rcu_read_lock();
2458 data = rcu_dereference(event->data);
2459 if (!data)
2460 goto unlock;
2461
2462 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2463 goto unlock;
2464
2465 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2466 if (!vmf->page)
2467 goto unlock;
2468
2469 get_page(vmf->page);
2470 vmf->page->mapping = vma->vm_file->f_mapping;
2471 vmf->page->index = vmf->pgoff;
2472
2473 ret = 0;
2474unlock:
2475 rcu_read_unlock();
2476
2477 return ret;
2478}
2479
2480static void
2481perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2482{
2483 long max_size = perf_data_size(data);
2484
2485 atomic_set(&data->lock, -1);
2486
2487 if (event->attr.watermark) {
2488 data->watermark = min_t(long, max_size,
2489 event->attr.wakeup_watermark);
2490 }
2491
2492 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002493 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002494
2495
2496 rcu_assign_pointer(event->data, data);
2497}
2498
2499static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2500{
2501 struct perf_mmap_data *data;
2502
2503 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2504 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002505}
2506
Peter Zijlstra906010b2009-09-21 16:08:49 +02002507static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002508{
2509 struct perf_mmap_data *data = event->data;
2510
2511 WARN_ON(atomic_read(&event->mmap_count));
2512
2513 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002514 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002515}
2516
2517static void perf_mmap_open(struct vm_area_struct *vma)
2518{
2519 struct perf_event *event = vma->vm_file->private_data;
2520
2521 atomic_inc(&event->mmap_count);
2522}
2523
2524static void perf_mmap_close(struct vm_area_struct *vma)
2525{
2526 struct perf_event *event = vma->vm_file->private_data;
2527
2528 WARN_ON_ONCE(event->ctx->parent_ctx);
2529 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002530 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002531 struct user_struct *user = current_user();
2532
Peter Zijlstra906010b2009-09-21 16:08:49 +02002533 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002534 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002535 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002536 mutex_unlock(&event->mmap_mutex);
2537 }
2538}
2539
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002540static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002541 .open = perf_mmap_open,
2542 .close = perf_mmap_close,
2543 .fault = perf_mmap_fault,
2544 .page_mkwrite = perf_mmap_fault,
2545};
2546
2547static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2548{
2549 struct perf_event *event = file->private_data;
2550 unsigned long user_locked, user_lock_limit;
2551 struct user_struct *user = current_user();
2552 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002553 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002554 unsigned long vma_size;
2555 unsigned long nr_pages;
2556 long user_extra, extra;
2557 int ret = 0;
2558
2559 if (!(vma->vm_flags & VM_SHARED))
2560 return -EINVAL;
2561
2562 vma_size = vma->vm_end - vma->vm_start;
2563 nr_pages = (vma_size / PAGE_SIZE) - 1;
2564
2565 /*
2566 * If we have data pages ensure they're a power-of-two number, so we
2567 * can do bitmasks instead of modulo.
2568 */
2569 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2570 return -EINVAL;
2571
2572 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2573 return -EINVAL;
2574
2575 if (vma->vm_pgoff != 0)
2576 return -EINVAL;
2577
2578 WARN_ON_ONCE(event->ctx->parent_ctx);
2579 mutex_lock(&event->mmap_mutex);
2580 if (event->output) {
2581 ret = -EINVAL;
2582 goto unlock;
2583 }
2584
2585 if (atomic_inc_not_zero(&event->mmap_count)) {
2586 if (nr_pages != event->data->nr_pages)
2587 ret = -EINVAL;
2588 goto unlock;
2589 }
2590
2591 user_extra = nr_pages + 1;
2592 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2593
2594 /*
2595 * Increase the limit linearly with more CPUs:
2596 */
2597 user_lock_limit *= num_online_cpus();
2598
2599 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2600
2601 extra = 0;
2602 if (user_locked > user_lock_limit)
2603 extra = user_locked - user_lock_limit;
2604
2605 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2606 lock_limit >>= PAGE_SHIFT;
2607 locked = vma->vm_mm->locked_vm + extra;
2608
2609 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2610 !capable(CAP_IPC_LOCK)) {
2611 ret = -EPERM;
2612 goto unlock;
2613 }
2614
2615 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002616
2617 data = perf_mmap_data_alloc(event, nr_pages);
2618 ret = -ENOMEM;
2619 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002620 goto unlock;
2621
Peter Zijlstra906010b2009-09-21 16:08:49 +02002622 ret = 0;
2623 perf_mmap_data_init(event, data);
2624
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002625 atomic_set(&event->mmap_count, 1);
2626 atomic_long_add(user_extra, &user->locked_vm);
2627 vma->vm_mm->locked_vm += extra;
2628 event->data->nr_locked = extra;
2629 if (vma->vm_flags & VM_WRITE)
2630 event->data->writable = 1;
2631
2632unlock:
2633 mutex_unlock(&event->mmap_mutex);
2634
2635 vma->vm_flags |= VM_RESERVED;
2636 vma->vm_ops = &perf_mmap_vmops;
2637
2638 return ret;
2639}
2640
2641static int perf_fasync(int fd, struct file *filp, int on)
2642{
2643 struct inode *inode = filp->f_path.dentry->d_inode;
2644 struct perf_event *event = filp->private_data;
2645 int retval;
2646
2647 mutex_lock(&inode->i_mutex);
2648 retval = fasync_helper(fd, filp, on, &event->fasync);
2649 mutex_unlock(&inode->i_mutex);
2650
2651 if (retval < 0)
2652 return retval;
2653
2654 return 0;
2655}
2656
2657static const struct file_operations perf_fops = {
2658 .release = perf_release,
2659 .read = perf_read,
2660 .poll = perf_poll,
2661 .unlocked_ioctl = perf_ioctl,
2662 .compat_ioctl = perf_ioctl,
2663 .mmap = perf_mmap,
2664 .fasync = perf_fasync,
2665};
2666
2667/*
2668 * Perf event wakeup
2669 *
2670 * If there's data, ensure we set the poll() state and publish everything
2671 * to user-space before waking everybody up.
2672 */
2673
2674void perf_event_wakeup(struct perf_event *event)
2675{
2676 wake_up_all(&event->waitq);
2677
2678 if (event->pending_kill) {
2679 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2680 event->pending_kill = 0;
2681 }
2682}
2683
2684/*
2685 * Pending wakeups
2686 *
2687 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2688 *
2689 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2690 * single linked list and use cmpxchg() to add entries lockless.
2691 */
2692
2693static void perf_pending_event(struct perf_pending_entry *entry)
2694{
2695 struct perf_event *event = container_of(entry,
2696 struct perf_event, pending);
2697
2698 if (event->pending_disable) {
2699 event->pending_disable = 0;
2700 __perf_event_disable(event);
2701 }
2702
2703 if (event->pending_wakeup) {
2704 event->pending_wakeup = 0;
2705 perf_event_wakeup(event);
2706 }
2707}
2708
2709#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2710
2711static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2712 PENDING_TAIL,
2713};
2714
2715static void perf_pending_queue(struct perf_pending_entry *entry,
2716 void (*func)(struct perf_pending_entry *))
2717{
2718 struct perf_pending_entry **head;
2719
2720 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2721 return;
2722
2723 entry->func = func;
2724
2725 head = &get_cpu_var(perf_pending_head);
2726
2727 do {
2728 entry->next = *head;
2729 } while (cmpxchg(head, entry->next, entry) != entry->next);
2730
2731 set_perf_event_pending();
2732
2733 put_cpu_var(perf_pending_head);
2734}
2735
2736static int __perf_pending_run(void)
2737{
2738 struct perf_pending_entry *list;
2739 int nr = 0;
2740
2741 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2742 while (list != PENDING_TAIL) {
2743 void (*func)(struct perf_pending_entry *);
2744 struct perf_pending_entry *entry = list;
2745
2746 list = list->next;
2747
2748 func = entry->func;
2749 entry->next = NULL;
2750 /*
2751 * Ensure we observe the unqueue before we issue the wakeup,
2752 * so that we won't be waiting forever.
2753 * -- see perf_not_pending().
2754 */
2755 smp_wmb();
2756
2757 func(entry);
2758 nr++;
2759 }
2760
2761 return nr;
2762}
2763
2764static inline int perf_not_pending(struct perf_event *event)
2765{
2766 /*
2767 * If we flush on whatever cpu we run, there is a chance we don't
2768 * need to wait.
2769 */
2770 get_cpu();
2771 __perf_pending_run();
2772 put_cpu();
2773
2774 /*
2775 * Ensure we see the proper queue state before going to sleep
2776 * so that we do not miss the wakeup. -- see perf_pending_handle()
2777 */
2778 smp_rmb();
2779 return event->pending.next == NULL;
2780}
2781
2782static void perf_pending_sync(struct perf_event *event)
2783{
2784 wait_event(event->waitq, perf_not_pending(event));
2785}
2786
2787void perf_event_do_pending(void)
2788{
2789 __perf_pending_run();
2790}
2791
2792/*
2793 * Callchain support -- arch specific
2794 */
2795
2796__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2797{
2798 return NULL;
2799}
2800
2801/*
2802 * Output
2803 */
2804static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2805 unsigned long offset, unsigned long head)
2806{
2807 unsigned long mask;
2808
2809 if (!data->writable)
2810 return true;
2811
Peter Zijlstra906010b2009-09-21 16:08:49 +02002812 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002813
2814 offset = (offset - tail) & mask;
2815 head = (head - tail) & mask;
2816
2817 if ((int)(head - offset) < 0)
2818 return false;
2819
2820 return true;
2821}
2822
2823static void perf_output_wakeup(struct perf_output_handle *handle)
2824{
2825 atomic_set(&handle->data->poll, POLL_IN);
2826
2827 if (handle->nmi) {
2828 handle->event->pending_wakeup = 1;
2829 perf_pending_queue(&handle->event->pending,
2830 perf_pending_event);
2831 } else
2832 perf_event_wakeup(handle->event);
2833}
2834
2835/*
2836 * Curious locking construct.
2837 *
2838 * We need to ensure a later event_id doesn't publish a head when a former
2839 * event_id isn't done writing. However since we need to deal with NMIs we
2840 * cannot fully serialize things.
2841 *
2842 * What we do is serialize between CPUs so we only have to deal with NMI
2843 * nesting on a single CPU.
2844 *
2845 * We only publish the head (and generate a wakeup) when the outer-most
2846 * event_id completes.
2847 */
2848static void perf_output_lock(struct perf_output_handle *handle)
2849{
2850 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002851 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002852
2853 handle->locked = 0;
2854
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002855 for (;;) {
2856 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2857 if (cur == -1) {
2858 handle->locked = 1;
2859 break;
2860 }
2861 if (cur == cpu)
2862 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002863
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002864 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002865 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002866}
2867
2868static void perf_output_unlock(struct perf_output_handle *handle)
2869{
2870 struct perf_mmap_data *data = handle->data;
2871 unsigned long head;
2872 int cpu;
2873
2874 data->done_head = data->head;
2875
2876 if (!handle->locked)
2877 goto out;
2878
2879again:
2880 /*
2881 * The xchg implies a full barrier that ensures all writes are done
2882 * before we publish the new head, matched by a rmb() in userspace when
2883 * reading this position.
2884 */
2885 while ((head = atomic_long_xchg(&data->done_head, 0)))
2886 data->user_page->data_head = head;
2887
2888 /*
2889 * NMI can happen here, which means we can miss a done_head update.
2890 */
2891
2892 cpu = atomic_xchg(&data->lock, -1);
2893 WARN_ON_ONCE(cpu != smp_processor_id());
2894
2895 /*
2896 * Therefore we have to validate we did not indeed do so.
2897 */
2898 if (unlikely(atomic_long_read(&data->done_head))) {
2899 /*
2900 * Since we had it locked, we can lock it again.
2901 */
2902 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2903 cpu_relax();
2904
2905 goto again;
2906 }
2907
2908 if (atomic_xchg(&data->wakeup, 0))
2909 perf_output_wakeup(handle);
2910out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002911 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002912}
2913
2914void perf_output_copy(struct perf_output_handle *handle,
2915 const void *buf, unsigned int len)
2916{
2917 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002918 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002919 unsigned int size;
2920 void **pages;
2921
2922 offset = handle->offset;
2923 pages_mask = handle->data->nr_pages - 1;
2924 pages = handle->data->data_pages;
2925
2926 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002927 unsigned long page_offset;
2928 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002929 int nr;
2930
2931 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002932 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2933 page_offset = offset & (page_size - 1);
2934 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002935
2936 memcpy(pages[nr] + page_offset, buf, size);
2937
2938 len -= size;
2939 buf += size;
2940 offset += size;
2941 } while (len);
2942
2943 handle->offset = offset;
2944
2945 /*
2946 * Check we didn't copy past our reservation window, taking the
2947 * possible unsigned int wrap into account.
2948 */
2949 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2950}
2951
2952int perf_output_begin(struct perf_output_handle *handle,
2953 struct perf_event *event, unsigned int size,
2954 int nmi, int sample)
2955{
2956 struct perf_event *output_event;
2957 struct perf_mmap_data *data;
2958 unsigned long tail, offset, head;
2959 int have_lost;
2960 struct {
2961 struct perf_event_header header;
2962 u64 id;
2963 u64 lost;
2964 } lost_event;
2965
2966 rcu_read_lock();
2967 /*
2968 * For inherited events we send all the output towards the parent.
2969 */
2970 if (event->parent)
2971 event = event->parent;
2972
2973 output_event = rcu_dereference(event->output);
2974 if (output_event)
2975 event = output_event;
2976
2977 data = rcu_dereference(event->data);
2978 if (!data)
2979 goto out;
2980
2981 handle->data = data;
2982 handle->event = event;
2983 handle->nmi = nmi;
2984 handle->sample = sample;
2985
2986 if (!data->nr_pages)
2987 goto fail;
2988
2989 have_lost = atomic_read(&data->lost);
2990 if (have_lost)
2991 size += sizeof(lost_event);
2992
2993 perf_output_lock(handle);
2994
2995 do {
2996 /*
2997 * Userspace could choose to issue a mb() before updating the
2998 * tail pointer. So that all reads will be completed before the
2999 * write is issued.
3000 */
3001 tail = ACCESS_ONCE(data->user_page->data_tail);
3002 smp_rmb();
3003 offset = head = atomic_long_read(&data->head);
3004 head += size;
3005 if (unlikely(!perf_output_space(data, tail, offset, head)))
3006 goto fail;
3007 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3008
3009 handle->offset = offset;
3010 handle->head = head;
3011
3012 if (head - tail > data->watermark)
3013 atomic_set(&data->wakeup, 1);
3014
3015 if (have_lost) {
3016 lost_event.header.type = PERF_RECORD_LOST;
3017 lost_event.header.misc = 0;
3018 lost_event.header.size = sizeof(lost_event);
3019 lost_event.id = event->id;
3020 lost_event.lost = atomic_xchg(&data->lost, 0);
3021
3022 perf_output_put(handle, lost_event);
3023 }
3024
3025 return 0;
3026
3027fail:
3028 atomic_inc(&data->lost);
3029 perf_output_unlock(handle);
3030out:
3031 rcu_read_unlock();
3032
3033 return -ENOSPC;
3034}
3035
3036void perf_output_end(struct perf_output_handle *handle)
3037{
3038 struct perf_event *event = handle->event;
3039 struct perf_mmap_data *data = handle->data;
3040
3041 int wakeup_events = event->attr.wakeup_events;
3042
3043 if (handle->sample && wakeup_events) {
3044 int events = atomic_inc_return(&data->events);
3045 if (events >= wakeup_events) {
3046 atomic_sub(wakeup_events, &data->events);
3047 atomic_set(&data->wakeup, 1);
3048 }
3049 }
3050
3051 perf_output_unlock(handle);
3052 rcu_read_unlock();
3053}
3054
3055static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3056{
3057 /*
3058 * only top level events have the pid namespace they were created in
3059 */
3060 if (event->parent)
3061 event = event->parent;
3062
3063 return task_tgid_nr_ns(p, event->ns);
3064}
3065
3066static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3067{
3068 /*
3069 * only top level events have the pid namespace they were created in
3070 */
3071 if (event->parent)
3072 event = event->parent;
3073
3074 return task_pid_nr_ns(p, event->ns);
3075}
3076
3077static void perf_output_read_one(struct perf_output_handle *handle,
3078 struct perf_event *event)
3079{
3080 u64 read_format = event->attr.read_format;
3081 u64 values[4];
3082 int n = 0;
3083
3084 values[n++] = atomic64_read(&event->count);
3085 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3086 values[n++] = event->total_time_enabled +
3087 atomic64_read(&event->child_total_time_enabled);
3088 }
3089 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3090 values[n++] = event->total_time_running +
3091 atomic64_read(&event->child_total_time_running);
3092 }
3093 if (read_format & PERF_FORMAT_ID)
3094 values[n++] = primary_event_id(event);
3095
3096 perf_output_copy(handle, values, n * sizeof(u64));
3097}
3098
3099/*
3100 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3101 */
3102static void perf_output_read_group(struct perf_output_handle *handle,
3103 struct perf_event *event)
3104{
3105 struct perf_event *leader = event->group_leader, *sub;
3106 u64 read_format = event->attr.read_format;
3107 u64 values[5];
3108 int n = 0;
3109
3110 values[n++] = 1 + leader->nr_siblings;
3111
3112 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3113 values[n++] = leader->total_time_enabled;
3114
3115 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3116 values[n++] = leader->total_time_running;
3117
3118 if (leader != event)
3119 leader->pmu->read(leader);
3120
3121 values[n++] = atomic64_read(&leader->count);
3122 if (read_format & PERF_FORMAT_ID)
3123 values[n++] = primary_event_id(leader);
3124
3125 perf_output_copy(handle, values, n * sizeof(u64));
3126
3127 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3128 n = 0;
3129
3130 if (sub != event)
3131 sub->pmu->read(sub);
3132
3133 values[n++] = atomic64_read(&sub->count);
3134 if (read_format & PERF_FORMAT_ID)
3135 values[n++] = primary_event_id(sub);
3136
3137 perf_output_copy(handle, values, n * sizeof(u64));
3138 }
3139}
3140
3141static void perf_output_read(struct perf_output_handle *handle,
3142 struct perf_event *event)
3143{
3144 if (event->attr.read_format & PERF_FORMAT_GROUP)
3145 perf_output_read_group(handle, event);
3146 else
3147 perf_output_read_one(handle, event);
3148}
3149
3150void perf_output_sample(struct perf_output_handle *handle,
3151 struct perf_event_header *header,
3152 struct perf_sample_data *data,
3153 struct perf_event *event)
3154{
3155 u64 sample_type = data->type;
3156
3157 perf_output_put(handle, *header);
3158
3159 if (sample_type & PERF_SAMPLE_IP)
3160 perf_output_put(handle, data->ip);
3161
3162 if (sample_type & PERF_SAMPLE_TID)
3163 perf_output_put(handle, data->tid_entry);
3164
3165 if (sample_type & PERF_SAMPLE_TIME)
3166 perf_output_put(handle, data->time);
3167
3168 if (sample_type & PERF_SAMPLE_ADDR)
3169 perf_output_put(handle, data->addr);
3170
3171 if (sample_type & PERF_SAMPLE_ID)
3172 perf_output_put(handle, data->id);
3173
3174 if (sample_type & PERF_SAMPLE_STREAM_ID)
3175 perf_output_put(handle, data->stream_id);
3176
3177 if (sample_type & PERF_SAMPLE_CPU)
3178 perf_output_put(handle, data->cpu_entry);
3179
3180 if (sample_type & PERF_SAMPLE_PERIOD)
3181 perf_output_put(handle, data->period);
3182
3183 if (sample_type & PERF_SAMPLE_READ)
3184 perf_output_read(handle, event);
3185
3186 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3187 if (data->callchain) {
3188 int size = 1;
3189
3190 if (data->callchain)
3191 size += data->callchain->nr;
3192
3193 size *= sizeof(u64);
3194
3195 perf_output_copy(handle, data->callchain, size);
3196 } else {
3197 u64 nr = 0;
3198 perf_output_put(handle, nr);
3199 }
3200 }
3201
3202 if (sample_type & PERF_SAMPLE_RAW) {
3203 if (data->raw) {
3204 perf_output_put(handle, data->raw->size);
3205 perf_output_copy(handle, data->raw->data,
3206 data->raw->size);
3207 } else {
3208 struct {
3209 u32 size;
3210 u32 data;
3211 } raw = {
3212 .size = sizeof(u32),
3213 .data = 0,
3214 };
3215 perf_output_put(handle, raw);
3216 }
3217 }
3218}
3219
3220void perf_prepare_sample(struct perf_event_header *header,
3221 struct perf_sample_data *data,
3222 struct perf_event *event,
3223 struct pt_regs *regs)
3224{
3225 u64 sample_type = event->attr.sample_type;
3226
3227 data->type = sample_type;
3228
3229 header->type = PERF_RECORD_SAMPLE;
3230 header->size = sizeof(*header);
3231
3232 header->misc = 0;
3233 header->misc |= perf_misc_flags(regs);
3234
3235 if (sample_type & PERF_SAMPLE_IP) {
3236 data->ip = perf_instruction_pointer(regs);
3237
3238 header->size += sizeof(data->ip);
3239 }
3240
3241 if (sample_type & PERF_SAMPLE_TID) {
3242 /* namespace issues */
3243 data->tid_entry.pid = perf_event_pid(event, current);
3244 data->tid_entry.tid = perf_event_tid(event, current);
3245
3246 header->size += sizeof(data->tid_entry);
3247 }
3248
3249 if (sample_type & PERF_SAMPLE_TIME) {
3250 data->time = perf_clock();
3251
3252 header->size += sizeof(data->time);
3253 }
3254
3255 if (sample_type & PERF_SAMPLE_ADDR)
3256 header->size += sizeof(data->addr);
3257
3258 if (sample_type & PERF_SAMPLE_ID) {
3259 data->id = primary_event_id(event);
3260
3261 header->size += sizeof(data->id);
3262 }
3263
3264 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3265 data->stream_id = event->id;
3266
3267 header->size += sizeof(data->stream_id);
3268 }
3269
3270 if (sample_type & PERF_SAMPLE_CPU) {
3271 data->cpu_entry.cpu = raw_smp_processor_id();
3272 data->cpu_entry.reserved = 0;
3273
3274 header->size += sizeof(data->cpu_entry);
3275 }
3276
3277 if (sample_type & PERF_SAMPLE_PERIOD)
3278 header->size += sizeof(data->period);
3279
3280 if (sample_type & PERF_SAMPLE_READ)
3281 header->size += perf_event_read_size(event);
3282
3283 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3284 int size = 1;
3285
3286 data->callchain = perf_callchain(regs);
3287
3288 if (data->callchain)
3289 size += data->callchain->nr;
3290
3291 header->size += size * sizeof(u64);
3292 }
3293
3294 if (sample_type & PERF_SAMPLE_RAW) {
3295 int size = sizeof(u32);
3296
3297 if (data->raw)
3298 size += data->raw->size;
3299 else
3300 size += sizeof(u32);
3301
3302 WARN_ON_ONCE(size & (sizeof(u64)-1));
3303 header->size += size;
3304 }
3305}
3306
3307static void perf_event_output(struct perf_event *event, int nmi,
3308 struct perf_sample_data *data,
3309 struct pt_regs *regs)
3310{
3311 struct perf_output_handle handle;
3312 struct perf_event_header header;
3313
3314 perf_prepare_sample(&header, data, event, regs);
3315
3316 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3317 return;
3318
3319 perf_output_sample(&handle, &header, data, event);
3320
3321 perf_output_end(&handle);
3322}
3323
3324/*
3325 * read event_id
3326 */
3327
3328struct perf_read_event {
3329 struct perf_event_header header;
3330
3331 u32 pid;
3332 u32 tid;
3333};
3334
3335static void
3336perf_event_read_event(struct perf_event *event,
3337 struct task_struct *task)
3338{
3339 struct perf_output_handle handle;
3340 struct perf_read_event read_event = {
3341 .header = {
3342 .type = PERF_RECORD_READ,
3343 .misc = 0,
3344 .size = sizeof(read_event) + perf_event_read_size(event),
3345 },
3346 .pid = perf_event_pid(event, task),
3347 .tid = perf_event_tid(event, task),
3348 };
3349 int ret;
3350
3351 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3352 if (ret)
3353 return;
3354
3355 perf_output_put(&handle, read_event);
3356 perf_output_read(&handle, event);
3357
3358 perf_output_end(&handle);
3359}
3360
3361/*
3362 * task tracking -- fork/exit
3363 *
3364 * enabled by: attr.comm | attr.mmap | attr.task
3365 */
3366
3367struct perf_task_event {
3368 struct task_struct *task;
3369 struct perf_event_context *task_ctx;
3370
3371 struct {
3372 struct perf_event_header header;
3373
3374 u32 pid;
3375 u32 ppid;
3376 u32 tid;
3377 u32 ptid;
3378 u64 time;
3379 } event_id;
3380};
3381
3382static void perf_event_task_output(struct perf_event *event,
3383 struct perf_task_event *task_event)
3384{
3385 struct perf_output_handle handle;
3386 int size;
3387 struct task_struct *task = task_event->task;
3388 int ret;
3389
3390 size = task_event->event_id.header.size;
3391 ret = perf_output_begin(&handle, event, size, 0, 0);
3392
3393 if (ret)
3394 return;
3395
3396 task_event->event_id.pid = perf_event_pid(event, task);
3397 task_event->event_id.ppid = perf_event_pid(event, current);
3398
3399 task_event->event_id.tid = perf_event_tid(event, task);
3400 task_event->event_id.ptid = perf_event_tid(event, current);
3401
3402 task_event->event_id.time = perf_clock();
3403
3404 perf_output_put(&handle, task_event->event_id);
3405
3406 perf_output_end(&handle);
3407}
3408
3409static int perf_event_task_match(struct perf_event *event)
3410{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003411 if (event->state != PERF_EVENT_STATE_ACTIVE)
3412 return 0;
3413
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003414 if (event->cpu != -1 && event->cpu != smp_processor_id())
3415 return 0;
3416
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003417 if (event->attr.comm || event->attr.mmap || event->attr.task)
3418 return 1;
3419
3420 return 0;
3421}
3422
3423static void perf_event_task_ctx(struct perf_event_context *ctx,
3424 struct perf_task_event *task_event)
3425{
3426 struct perf_event *event;
3427
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003428 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3429 if (perf_event_task_match(event))
3430 perf_event_task_output(event, task_event);
3431 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003432}
3433
3434static void perf_event_task_event(struct perf_task_event *task_event)
3435{
3436 struct perf_cpu_context *cpuctx;
3437 struct perf_event_context *ctx = task_event->task_ctx;
3438
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003439 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003440 cpuctx = &get_cpu_var(perf_cpu_context);
3441 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003442 if (!ctx)
3443 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3444 if (ctx)
3445 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003446 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003447 rcu_read_unlock();
3448}
3449
3450static void perf_event_task(struct task_struct *task,
3451 struct perf_event_context *task_ctx,
3452 int new)
3453{
3454 struct perf_task_event task_event;
3455
3456 if (!atomic_read(&nr_comm_events) &&
3457 !atomic_read(&nr_mmap_events) &&
3458 !atomic_read(&nr_task_events))
3459 return;
3460
3461 task_event = (struct perf_task_event){
3462 .task = task,
3463 .task_ctx = task_ctx,
3464 .event_id = {
3465 .header = {
3466 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3467 .misc = 0,
3468 .size = sizeof(task_event.event_id),
3469 },
3470 /* .pid */
3471 /* .ppid */
3472 /* .tid */
3473 /* .ptid */
3474 },
3475 };
3476
3477 perf_event_task_event(&task_event);
3478}
3479
3480void perf_event_fork(struct task_struct *task)
3481{
3482 perf_event_task(task, NULL, 1);
3483}
3484
3485/*
3486 * comm tracking
3487 */
3488
3489struct perf_comm_event {
3490 struct task_struct *task;
3491 char *comm;
3492 int comm_size;
3493
3494 struct {
3495 struct perf_event_header header;
3496
3497 u32 pid;
3498 u32 tid;
3499 } event_id;
3500};
3501
3502static void perf_event_comm_output(struct perf_event *event,
3503 struct perf_comm_event *comm_event)
3504{
3505 struct perf_output_handle handle;
3506 int size = comm_event->event_id.header.size;
3507 int ret = perf_output_begin(&handle, event, size, 0, 0);
3508
3509 if (ret)
3510 return;
3511
3512 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3513 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3514
3515 perf_output_put(&handle, comm_event->event_id);
3516 perf_output_copy(&handle, comm_event->comm,
3517 comm_event->comm_size);
3518 perf_output_end(&handle);
3519}
3520
3521static int perf_event_comm_match(struct perf_event *event)
3522{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003523 if (event->state != PERF_EVENT_STATE_ACTIVE)
3524 return 0;
3525
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003526 if (event->cpu != -1 && event->cpu != smp_processor_id())
3527 return 0;
3528
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003529 if (event->attr.comm)
3530 return 1;
3531
3532 return 0;
3533}
3534
3535static void perf_event_comm_ctx(struct perf_event_context *ctx,
3536 struct perf_comm_event *comm_event)
3537{
3538 struct perf_event *event;
3539
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003540 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3541 if (perf_event_comm_match(event))
3542 perf_event_comm_output(event, comm_event);
3543 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003544}
3545
3546static void perf_event_comm_event(struct perf_comm_event *comm_event)
3547{
3548 struct perf_cpu_context *cpuctx;
3549 struct perf_event_context *ctx;
3550 unsigned int size;
3551 char comm[TASK_COMM_LEN];
3552
3553 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003554 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003555 size = ALIGN(strlen(comm)+1, sizeof(u64));
3556
3557 comm_event->comm = comm;
3558 comm_event->comm_size = size;
3559
3560 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3561
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003562 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003563 cpuctx = &get_cpu_var(perf_cpu_context);
3564 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003565 ctx = rcu_dereference(current->perf_event_ctxp);
3566 if (ctx)
3567 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003568 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003569 rcu_read_unlock();
3570}
3571
3572void perf_event_comm(struct task_struct *task)
3573{
3574 struct perf_comm_event comm_event;
3575
3576 if (task->perf_event_ctxp)
3577 perf_event_enable_on_exec(task);
3578
3579 if (!atomic_read(&nr_comm_events))
3580 return;
3581
3582 comm_event = (struct perf_comm_event){
3583 .task = task,
3584 /* .comm */
3585 /* .comm_size */
3586 .event_id = {
3587 .header = {
3588 .type = PERF_RECORD_COMM,
3589 .misc = 0,
3590 /* .size */
3591 },
3592 /* .pid */
3593 /* .tid */
3594 },
3595 };
3596
3597 perf_event_comm_event(&comm_event);
3598}
3599
3600/*
3601 * mmap tracking
3602 */
3603
3604struct perf_mmap_event {
3605 struct vm_area_struct *vma;
3606
3607 const char *file_name;
3608 int file_size;
3609
3610 struct {
3611 struct perf_event_header header;
3612
3613 u32 pid;
3614 u32 tid;
3615 u64 start;
3616 u64 len;
3617 u64 pgoff;
3618 } event_id;
3619};
3620
3621static void perf_event_mmap_output(struct perf_event *event,
3622 struct perf_mmap_event *mmap_event)
3623{
3624 struct perf_output_handle handle;
3625 int size = mmap_event->event_id.header.size;
3626 int ret = perf_output_begin(&handle, event, size, 0, 0);
3627
3628 if (ret)
3629 return;
3630
3631 mmap_event->event_id.pid = perf_event_pid(event, current);
3632 mmap_event->event_id.tid = perf_event_tid(event, current);
3633
3634 perf_output_put(&handle, mmap_event->event_id);
3635 perf_output_copy(&handle, mmap_event->file_name,
3636 mmap_event->file_size);
3637 perf_output_end(&handle);
3638}
3639
3640static int perf_event_mmap_match(struct perf_event *event,
3641 struct perf_mmap_event *mmap_event)
3642{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003643 if (event->state != PERF_EVENT_STATE_ACTIVE)
3644 return 0;
3645
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003646 if (event->cpu != -1 && event->cpu != smp_processor_id())
3647 return 0;
3648
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003649 if (event->attr.mmap)
3650 return 1;
3651
3652 return 0;
3653}
3654
3655static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3656 struct perf_mmap_event *mmap_event)
3657{
3658 struct perf_event *event;
3659
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003660 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3661 if (perf_event_mmap_match(event, mmap_event))
3662 perf_event_mmap_output(event, mmap_event);
3663 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003664}
3665
3666static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3667{
3668 struct perf_cpu_context *cpuctx;
3669 struct perf_event_context *ctx;
3670 struct vm_area_struct *vma = mmap_event->vma;
3671 struct file *file = vma->vm_file;
3672 unsigned int size;
3673 char tmp[16];
3674 char *buf = NULL;
3675 const char *name;
3676
3677 memset(tmp, 0, sizeof(tmp));
3678
3679 if (file) {
3680 /*
3681 * d_path works from the end of the buffer backwards, so we
3682 * need to add enough zero bytes after the string to handle
3683 * the 64bit alignment we do later.
3684 */
3685 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3686 if (!buf) {
3687 name = strncpy(tmp, "//enomem", sizeof(tmp));
3688 goto got_name;
3689 }
3690 name = d_path(&file->f_path, buf, PATH_MAX);
3691 if (IS_ERR(name)) {
3692 name = strncpy(tmp, "//toolong", sizeof(tmp));
3693 goto got_name;
3694 }
3695 } else {
3696 if (arch_vma_name(mmap_event->vma)) {
3697 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3698 sizeof(tmp));
3699 goto got_name;
3700 }
3701
3702 if (!vma->vm_mm) {
3703 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3704 goto got_name;
3705 }
3706
3707 name = strncpy(tmp, "//anon", sizeof(tmp));
3708 goto got_name;
3709 }
3710
3711got_name:
3712 size = ALIGN(strlen(name)+1, sizeof(u64));
3713
3714 mmap_event->file_name = name;
3715 mmap_event->file_size = size;
3716
3717 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3718
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003719 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003720 cpuctx = &get_cpu_var(perf_cpu_context);
3721 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003722 ctx = rcu_dereference(current->perf_event_ctxp);
3723 if (ctx)
3724 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003725 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003726 rcu_read_unlock();
3727
3728 kfree(buf);
3729}
3730
3731void __perf_event_mmap(struct vm_area_struct *vma)
3732{
3733 struct perf_mmap_event mmap_event;
3734
3735 if (!atomic_read(&nr_mmap_events))
3736 return;
3737
3738 mmap_event = (struct perf_mmap_event){
3739 .vma = vma,
3740 /* .file_name */
3741 /* .file_size */
3742 .event_id = {
3743 .header = {
3744 .type = PERF_RECORD_MMAP,
3745 .misc = 0,
3746 /* .size */
3747 },
3748 /* .pid */
3749 /* .tid */
3750 .start = vma->vm_start,
3751 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003752 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003753 },
3754 };
3755
3756 perf_event_mmap_event(&mmap_event);
3757}
3758
3759/*
3760 * IRQ throttle logging
3761 */
3762
3763static void perf_log_throttle(struct perf_event *event, int enable)
3764{
3765 struct perf_output_handle handle;
3766 int ret;
3767
3768 struct {
3769 struct perf_event_header header;
3770 u64 time;
3771 u64 id;
3772 u64 stream_id;
3773 } throttle_event = {
3774 .header = {
3775 .type = PERF_RECORD_THROTTLE,
3776 .misc = 0,
3777 .size = sizeof(throttle_event),
3778 },
3779 .time = perf_clock(),
3780 .id = primary_event_id(event),
3781 .stream_id = event->id,
3782 };
3783
3784 if (enable)
3785 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3786
3787 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3788 if (ret)
3789 return;
3790
3791 perf_output_put(&handle, throttle_event);
3792 perf_output_end(&handle);
3793}
3794
3795/*
3796 * Generic event overflow handling, sampling.
3797 */
3798
3799static int __perf_event_overflow(struct perf_event *event, int nmi,
3800 int throttle, struct perf_sample_data *data,
3801 struct pt_regs *regs)
3802{
3803 int events = atomic_read(&event->event_limit);
3804 struct hw_perf_event *hwc = &event->hw;
3805 int ret = 0;
3806
3807 throttle = (throttle && event->pmu->unthrottle != NULL);
3808
3809 if (!throttle) {
3810 hwc->interrupts++;
3811 } else {
3812 if (hwc->interrupts != MAX_INTERRUPTS) {
3813 hwc->interrupts++;
3814 if (HZ * hwc->interrupts >
3815 (u64)sysctl_perf_event_sample_rate) {
3816 hwc->interrupts = MAX_INTERRUPTS;
3817 perf_log_throttle(event, 0);
3818 ret = 1;
3819 }
3820 } else {
3821 /*
3822 * Keep re-disabling events even though on the previous
3823 * pass we disabled it - just in case we raced with a
3824 * sched-in and the event got enabled again:
3825 */
3826 ret = 1;
3827 }
3828 }
3829
3830 if (event->attr.freq) {
3831 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003832 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003833
Peter Zijlstraabd50712010-01-26 18:50:16 +01003834 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003835
Peter Zijlstraabd50712010-01-26 18:50:16 +01003836 if (delta > 0 && delta < 2*TICK_NSEC)
3837 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003838 }
3839
3840 /*
3841 * XXX event_limit might not quite work as expected on inherited
3842 * events
3843 */
3844
3845 event->pending_kill = POLL_IN;
3846 if (events && atomic_dec_and_test(&event->event_limit)) {
3847 ret = 1;
3848 event->pending_kill = POLL_HUP;
3849 if (nmi) {
3850 event->pending_disable = 1;
3851 perf_pending_queue(&event->pending,
3852 perf_pending_event);
3853 } else
3854 perf_event_disable(event);
3855 }
3856
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003857 if (event->overflow_handler)
3858 event->overflow_handler(event, nmi, data, regs);
3859 else
3860 perf_event_output(event, nmi, data, regs);
3861
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003862 return ret;
3863}
3864
3865int perf_event_overflow(struct perf_event *event, int nmi,
3866 struct perf_sample_data *data,
3867 struct pt_regs *regs)
3868{
3869 return __perf_event_overflow(event, nmi, 1, data, regs);
3870}
3871
3872/*
3873 * Generic software event infrastructure
3874 */
3875
3876/*
3877 * We directly increment event->count and keep a second value in
3878 * event->hw.period_left to count intervals. This period event
3879 * is kept in the range [-sample_period, 0] so that we can use the
3880 * sign as trigger.
3881 */
3882
3883static u64 perf_swevent_set_period(struct perf_event *event)
3884{
3885 struct hw_perf_event *hwc = &event->hw;
3886 u64 period = hwc->last_period;
3887 u64 nr, offset;
3888 s64 old, val;
3889
3890 hwc->last_period = hwc->sample_period;
3891
3892again:
3893 old = val = atomic64_read(&hwc->period_left);
3894 if (val < 0)
3895 return 0;
3896
3897 nr = div64_u64(period + val, period);
3898 offset = nr * period;
3899 val -= offset;
3900 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3901 goto again;
3902
3903 return nr;
3904}
3905
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003906static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003907 int nmi, struct perf_sample_data *data,
3908 struct pt_regs *regs)
3909{
3910 struct hw_perf_event *hwc = &event->hw;
3911 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003912
3913 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003914 if (!overflow)
3915 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003916
3917 if (hwc->interrupts == MAX_INTERRUPTS)
3918 return;
3919
3920 for (; overflow; overflow--) {
3921 if (__perf_event_overflow(event, nmi, throttle,
3922 data, regs)) {
3923 /*
3924 * We inhibit the overflow from happening when
3925 * hwc->interrupts == MAX_INTERRUPTS.
3926 */
3927 break;
3928 }
3929 throttle = 1;
3930 }
3931}
3932
3933static void perf_swevent_unthrottle(struct perf_event *event)
3934{
3935 /*
3936 * Nothing to do, we already reset hwc->interrupts.
3937 */
3938}
3939
3940static void perf_swevent_add(struct perf_event *event, u64 nr,
3941 int nmi, struct perf_sample_data *data,
3942 struct pt_regs *regs)
3943{
3944 struct hw_perf_event *hwc = &event->hw;
3945
3946 atomic64_add(nr, &event->count);
3947
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003948 if (!regs)
3949 return;
3950
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003951 if (!hwc->sample_period)
3952 return;
3953
3954 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3955 return perf_swevent_overflow(event, 1, nmi, data, regs);
3956
3957 if (atomic64_add_negative(nr, &hwc->period_left))
3958 return;
3959
3960 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003961}
3962
3963static int perf_swevent_is_counting(struct perf_event *event)
3964{
3965 /*
3966 * The event is active, we're good!
3967 */
3968 if (event->state == PERF_EVENT_STATE_ACTIVE)
3969 return 1;
3970
3971 /*
3972 * The event is off/error, not counting.
3973 */
3974 if (event->state != PERF_EVENT_STATE_INACTIVE)
3975 return 0;
3976
3977 /*
3978 * The event is inactive, if the context is active
3979 * we're part of a group that didn't make it on the 'pmu',
3980 * not counting.
3981 */
3982 if (event->ctx->is_active)
3983 return 0;
3984
3985 /*
3986 * We're inactive and the context is too, this means the
3987 * task is scheduled out, we're counting events that happen
3988 * to us, like migration events.
3989 */
3990 return 1;
3991}
3992
Li Zefan6fb29152009-10-15 11:21:42 +08003993static int perf_tp_event_match(struct perf_event *event,
3994 struct perf_sample_data *data);
3995
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003996static int perf_exclude_event(struct perf_event *event,
3997 struct pt_regs *regs)
3998{
3999 if (regs) {
4000 if (event->attr.exclude_user && user_mode(regs))
4001 return 1;
4002
4003 if (event->attr.exclude_kernel && !user_mode(regs))
4004 return 1;
4005 }
4006
4007 return 0;
4008}
4009
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004010static int perf_swevent_match(struct perf_event *event,
4011 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004012 u32 event_id,
4013 struct perf_sample_data *data,
4014 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004015{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004016 if (event->cpu != -1 && event->cpu != smp_processor_id())
4017 return 0;
4018
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004019 if (!perf_swevent_is_counting(event))
4020 return 0;
4021
4022 if (event->attr.type != type)
4023 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025 if (event->attr.config != event_id)
4026 return 0;
4027
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004028 if (perf_exclude_event(event, regs))
4029 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004030
Li Zefan6fb29152009-10-15 11:21:42 +08004031 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4032 !perf_tp_event_match(event, data))
4033 return 0;
4034
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004035 return 1;
4036}
4037
4038static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4039 enum perf_type_id type,
4040 u32 event_id, u64 nr, int nmi,
4041 struct perf_sample_data *data,
4042 struct pt_regs *regs)
4043{
4044 struct perf_event *event;
4045
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004046 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004047 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048 perf_swevent_add(event, nr, nmi, data, regs);
4049 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004050}
4051
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004052int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004053{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004054 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4055 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004056
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004057 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004058 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004059 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004060 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004061 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004062 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004063 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004064 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004065
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004066 if (cpuctx->recursion[rctx]) {
4067 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004068 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004069 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004070
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004071 cpuctx->recursion[rctx]++;
4072 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004073
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004074 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004075}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004076EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004077
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004078void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004079{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004080 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4081 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004082 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004083 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004084}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004085EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004086
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004087static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4088 u64 nr, int nmi,
4089 struct perf_sample_data *data,
4090 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004091{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004092 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004093 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004094
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004095 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004096 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004097 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4098 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004099 /*
4100 * doesn't really matter which of the child contexts the
4101 * events ends up in.
4102 */
4103 ctx = rcu_dereference(current->perf_event_ctxp);
4104 if (ctx)
4105 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4106 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004107}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004108
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004109void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4110 struct pt_regs *regs, u64 addr)
4111{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004112 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004113 int rctx;
4114
4115 rctx = perf_swevent_get_recursion_context();
4116 if (rctx < 0)
4117 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004118
Ingo Molnara4234bf2009-11-23 10:57:59 +01004119 data.addr = addr;
4120 data.raw = NULL;
4121
4122 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004123
4124 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004125}
4126
4127static void perf_swevent_read(struct perf_event *event)
4128{
4129}
4130
4131static int perf_swevent_enable(struct perf_event *event)
4132{
4133 struct hw_perf_event *hwc = &event->hw;
4134
4135 if (hwc->sample_period) {
4136 hwc->last_period = hwc->sample_period;
4137 perf_swevent_set_period(event);
4138 }
4139 return 0;
4140}
4141
4142static void perf_swevent_disable(struct perf_event *event)
4143{
4144}
4145
4146static const struct pmu perf_ops_generic = {
4147 .enable = perf_swevent_enable,
4148 .disable = perf_swevent_disable,
4149 .read = perf_swevent_read,
4150 .unthrottle = perf_swevent_unthrottle,
4151};
4152
4153/*
4154 * hrtimer based swevent callback
4155 */
4156
4157static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4158{
4159 enum hrtimer_restart ret = HRTIMER_RESTART;
4160 struct perf_sample_data data;
4161 struct pt_regs *regs;
4162 struct perf_event *event;
4163 u64 period;
4164
4165 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4166 event->pmu->read(event);
4167
4168 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004169 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004170 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004171 regs = get_irq_regs();
4172 /*
4173 * In case we exclude kernel IPs or are somehow not in interrupt
4174 * context, provide the next best thing, the user IP.
4175 */
4176 if ((event->attr.exclude_kernel || !regs) &&
4177 !event->attr.exclude_user)
4178 regs = task_pt_regs(current);
4179
4180 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004181 if (!(event->attr.exclude_idle && current->pid == 0))
4182 if (perf_event_overflow(event, 0, &data, regs))
4183 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004184 }
4185
4186 period = max_t(u64, 10000, event->hw.sample_period);
4187 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4188
4189 return ret;
4190}
4191
Soeren Sandmann721a6692009-09-15 14:33:08 +02004192static void perf_swevent_start_hrtimer(struct perf_event *event)
4193{
4194 struct hw_perf_event *hwc = &event->hw;
4195
4196 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4197 hwc->hrtimer.function = perf_swevent_hrtimer;
4198 if (hwc->sample_period) {
4199 u64 period;
4200
4201 if (hwc->remaining) {
4202 if (hwc->remaining < 0)
4203 period = 10000;
4204 else
4205 period = hwc->remaining;
4206 hwc->remaining = 0;
4207 } else {
4208 period = max_t(u64, 10000, hwc->sample_period);
4209 }
4210 __hrtimer_start_range_ns(&hwc->hrtimer,
4211 ns_to_ktime(period), 0,
4212 HRTIMER_MODE_REL, 0);
4213 }
4214}
4215
4216static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4217{
4218 struct hw_perf_event *hwc = &event->hw;
4219
4220 if (hwc->sample_period) {
4221 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4222 hwc->remaining = ktime_to_ns(remaining);
4223
4224 hrtimer_cancel(&hwc->hrtimer);
4225 }
4226}
4227
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004228/*
4229 * Software event: cpu wall time clock
4230 */
4231
4232static void cpu_clock_perf_event_update(struct perf_event *event)
4233{
4234 int cpu = raw_smp_processor_id();
4235 s64 prev;
4236 u64 now;
4237
4238 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004239 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004240 atomic64_add(now - prev, &event->count);
4241}
4242
4243static int cpu_clock_perf_event_enable(struct perf_event *event)
4244{
4245 struct hw_perf_event *hwc = &event->hw;
4246 int cpu = raw_smp_processor_id();
4247
4248 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004249 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004250
4251 return 0;
4252}
4253
4254static void cpu_clock_perf_event_disable(struct perf_event *event)
4255{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004256 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004257 cpu_clock_perf_event_update(event);
4258}
4259
4260static void cpu_clock_perf_event_read(struct perf_event *event)
4261{
4262 cpu_clock_perf_event_update(event);
4263}
4264
4265static const struct pmu perf_ops_cpu_clock = {
4266 .enable = cpu_clock_perf_event_enable,
4267 .disable = cpu_clock_perf_event_disable,
4268 .read = cpu_clock_perf_event_read,
4269};
4270
4271/*
4272 * Software event: task time clock
4273 */
4274
4275static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4276{
4277 u64 prev;
4278 s64 delta;
4279
4280 prev = atomic64_xchg(&event->hw.prev_count, now);
4281 delta = now - prev;
4282 atomic64_add(delta, &event->count);
4283}
4284
4285static int task_clock_perf_event_enable(struct perf_event *event)
4286{
4287 struct hw_perf_event *hwc = &event->hw;
4288 u64 now;
4289
4290 now = event->ctx->time;
4291
4292 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004293
4294 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004295
4296 return 0;
4297}
4298
4299static void task_clock_perf_event_disable(struct perf_event *event)
4300{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004301 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004302 task_clock_perf_event_update(event, event->ctx->time);
4303
4304}
4305
4306static void task_clock_perf_event_read(struct perf_event *event)
4307{
4308 u64 time;
4309
4310 if (!in_nmi()) {
4311 update_context_time(event->ctx);
4312 time = event->ctx->time;
4313 } else {
4314 u64 now = perf_clock();
4315 u64 delta = now - event->ctx->timestamp;
4316 time = event->ctx->time + delta;
4317 }
4318
4319 task_clock_perf_event_update(event, time);
4320}
4321
4322static const struct pmu perf_ops_task_clock = {
4323 .enable = task_clock_perf_event_enable,
4324 .disable = task_clock_perf_event_disable,
4325 .read = task_clock_perf_event_read,
4326};
4327
Li Zefan07b139c2009-12-21 14:27:35 +08004328#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004329
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004330void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4331 int entry_size)
4332{
4333 struct perf_raw_record raw = {
4334 .size = entry_size,
4335 .data = record,
4336 };
4337
4338 struct perf_sample_data data = {
4339 .addr = addr,
4340 .raw = &raw,
4341 };
4342
4343 struct pt_regs *regs = get_irq_regs();
4344
4345 if (!regs)
4346 regs = task_pt_regs(current);
4347
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004348 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004349 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004350 &data, regs);
4351}
4352EXPORT_SYMBOL_GPL(perf_tp_event);
4353
Li Zefan6fb29152009-10-15 11:21:42 +08004354static int perf_tp_event_match(struct perf_event *event,
4355 struct perf_sample_data *data)
4356{
4357 void *record = data->raw->data;
4358
4359 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4360 return 1;
4361 return 0;
4362}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004363
4364static void tp_perf_event_destroy(struct perf_event *event)
4365{
4366 ftrace_profile_disable(event->attr.config);
4367}
4368
4369static const struct pmu *tp_perf_event_init(struct perf_event *event)
4370{
4371 /*
4372 * Raw tracepoint data is a severe data leak, only allow root to
4373 * have these.
4374 */
4375 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4376 perf_paranoid_tracepoint_raw() &&
4377 !capable(CAP_SYS_ADMIN))
4378 return ERR_PTR(-EPERM);
4379
4380 if (ftrace_profile_enable(event->attr.config))
4381 return NULL;
4382
4383 event->destroy = tp_perf_event_destroy;
4384
4385 return &perf_ops_generic;
4386}
Li Zefan6fb29152009-10-15 11:21:42 +08004387
4388static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4389{
4390 char *filter_str;
4391 int ret;
4392
4393 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4394 return -EINVAL;
4395
4396 filter_str = strndup_user(arg, PAGE_SIZE);
4397 if (IS_ERR(filter_str))
4398 return PTR_ERR(filter_str);
4399
4400 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4401
4402 kfree(filter_str);
4403 return ret;
4404}
4405
4406static void perf_event_free_filter(struct perf_event *event)
4407{
4408 ftrace_profile_free_filter(event);
4409}
4410
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004411#else
Li Zefan6fb29152009-10-15 11:21:42 +08004412
4413static int perf_tp_event_match(struct perf_event *event,
4414 struct perf_sample_data *data)
4415{
4416 return 1;
4417}
4418
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004419static const struct pmu *tp_perf_event_init(struct perf_event *event)
4420{
4421 return NULL;
4422}
Li Zefan6fb29152009-10-15 11:21:42 +08004423
4424static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4425{
4426 return -ENOENT;
4427}
4428
4429static void perf_event_free_filter(struct perf_event *event)
4430{
4431}
4432
Li Zefan07b139c2009-12-21 14:27:35 +08004433#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004434
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004435#ifdef CONFIG_HAVE_HW_BREAKPOINT
4436static void bp_perf_event_destroy(struct perf_event *event)
4437{
4438 release_bp_slot(event);
4439}
4440
4441static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4442{
4443 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004444
4445 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004446 if (err)
4447 return ERR_PTR(err);
4448
4449 bp->destroy = bp_perf_event_destroy;
4450
4451 return &perf_ops_bp;
4452}
4453
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004454void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004455{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004456 struct perf_sample_data sample;
4457 struct pt_regs *regs = data;
4458
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004459 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004460 sample.addr = bp->attr.bp_addr;
4461
4462 if (!perf_exclude_event(bp, regs))
4463 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004464}
4465#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004466static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4467{
4468 return NULL;
4469}
4470
4471void perf_bp_event(struct perf_event *bp, void *regs)
4472{
4473}
4474#endif
4475
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004476atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4477
4478static void sw_perf_event_destroy(struct perf_event *event)
4479{
4480 u64 event_id = event->attr.config;
4481
4482 WARN_ON(event->parent);
4483
4484 atomic_dec(&perf_swevent_enabled[event_id]);
4485}
4486
4487static const struct pmu *sw_perf_event_init(struct perf_event *event)
4488{
4489 const struct pmu *pmu = NULL;
4490 u64 event_id = event->attr.config;
4491
4492 /*
4493 * Software events (currently) can't in general distinguish
4494 * between user, kernel and hypervisor events.
4495 * However, context switches and cpu migrations are considered
4496 * to be kernel events, and page faults are never hypervisor
4497 * events.
4498 */
4499 switch (event_id) {
4500 case PERF_COUNT_SW_CPU_CLOCK:
4501 pmu = &perf_ops_cpu_clock;
4502
4503 break;
4504 case PERF_COUNT_SW_TASK_CLOCK:
4505 /*
4506 * If the user instantiates this as a per-cpu event,
4507 * use the cpu_clock event instead.
4508 */
4509 if (event->ctx->task)
4510 pmu = &perf_ops_task_clock;
4511 else
4512 pmu = &perf_ops_cpu_clock;
4513
4514 break;
4515 case PERF_COUNT_SW_PAGE_FAULTS:
4516 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4517 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4518 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4519 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004520 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4521 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004522 if (!event->parent) {
4523 atomic_inc(&perf_swevent_enabled[event_id]);
4524 event->destroy = sw_perf_event_destroy;
4525 }
4526 pmu = &perf_ops_generic;
4527 break;
4528 }
4529
4530 return pmu;
4531}
4532
4533/*
4534 * Allocate and initialize a event structure
4535 */
4536static struct perf_event *
4537perf_event_alloc(struct perf_event_attr *attr,
4538 int cpu,
4539 struct perf_event_context *ctx,
4540 struct perf_event *group_leader,
4541 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004542 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004543 gfp_t gfpflags)
4544{
4545 const struct pmu *pmu;
4546 struct perf_event *event;
4547 struct hw_perf_event *hwc;
4548 long err;
4549
4550 event = kzalloc(sizeof(*event), gfpflags);
4551 if (!event)
4552 return ERR_PTR(-ENOMEM);
4553
4554 /*
4555 * Single events are their own group leaders, with an
4556 * empty sibling list:
4557 */
4558 if (!group_leader)
4559 group_leader = event;
4560
4561 mutex_init(&event->child_mutex);
4562 INIT_LIST_HEAD(&event->child_list);
4563
4564 INIT_LIST_HEAD(&event->group_entry);
4565 INIT_LIST_HEAD(&event->event_entry);
4566 INIT_LIST_HEAD(&event->sibling_list);
4567 init_waitqueue_head(&event->waitq);
4568
4569 mutex_init(&event->mmap_mutex);
4570
4571 event->cpu = cpu;
4572 event->attr = *attr;
4573 event->group_leader = group_leader;
4574 event->pmu = NULL;
4575 event->ctx = ctx;
4576 event->oncpu = -1;
4577
4578 event->parent = parent_event;
4579
4580 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4581 event->id = atomic64_inc_return(&perf_event_id);
4582
4583 event->state = PERF_EVENT_STATE_INACTIVE;
4584
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004585 if (!overflow_handler && parent_event)
4586 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004587
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004588 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004589
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004590 if (attr->disabled)
4591 event->state = PERF_EVENT_STATE_OFF;
4592
4593 pmu = NULL;
4594
4595 hwc = &event->hw;
4596 hwc->sample_period = attr->sample_period;
4597 if (attr->freq && attr->sample_freq)
4598 hwc->sample_period = 1;
4599 hwc->last_period = hwc->sample_period;
4600
4601 atomic64_set(&hwc->period_left, hwc->sample_period);
4602
4603 /*
4604 * we currently do not support PERF_FORMAT_GROUP on inherited events
4605 */
4606 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4607 goto done;
4608
4609 switch (attr->type) {
4610 case PERF_TYPE_RAW:
4611 case PERF_TYPE_HARDWARE:
4612 case PERF_TYPE_HW_CACHE:
4613 pmu = hw_perf_event_init(event);
4614 break;
4615
4616 case PERF_TYPE_SOFTWARE:
4617 pmu = sw_perf_event_init(event);
4618 break;
4619
4620 case PERF_TYPE_TRACEPOINT:
4621 pmu = tp_perf_event_init(event);
4622 break;
4623
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004624 case PERF_TYPE_BREAKPOINT:
4625 pmu = bp_perf_event_init(event);
4626 break;
4627
4628
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004629 default:
4630 break;
4631 }
4632done:
4633 err = 0;
4634 if (!pmu)
4635 err = -EINVAL;
4636 else if (IS_ERR(pmu))
4637 err = PTR_ERR(pmu);
4638
4639 if (err) {
4640 if (event->ns)
4641 put_pid_ns(event->ns);
4642 kfree(event);
4643 return ERR_PTR(err);
4644 }
4645
4646 event->pmu = pmu;
4647
4648 if (!event->parent) {
4649 atomic_inc(&nr_events);
4650 if (event->attr.mmap)
4651 atomic_inc(&nr_mmap_events);
4652 if (event->attr.comm)
4653 atomic_inc(&nr_comm_events);
4654 if (event->attr.task)
4655 atomic_inc(&nr_task_events);
4656 }
4657
4658 return event;
4659}
4660
4661static int perf_copy_attr(struct perf_event_attr __user *uattr,
4662 struct perf_event_attr *attr)
4663{
4664 u32 size;
4665 int ret;
4666
4667 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4668 return -EFAULT;
4669
4670 /*
4671 * zero the full structure, so that a short copy will be nice.
4672 */
4673 memset(attr, 0, sizeof(*attr));
4674
4675 ret = get_user(size, &uattr->size);
4676 if (ret)
4677 return ret;
4678
4679 if (size > PAGE_SIZE) /* silly large */
4680 goto err_size;
4681
4682 if (!size) /* abi compat */
4683 size = PERF_ATTR_SIZE_VER0;
4684
4685 if (size < PERF_ATTR_SIZE_VER0)
4686 goto err_size;
4687
4688 /*
4689 * If we're handed a bigger struct than we know of,
4690 * ensure all the unknown bits are 0 - i.e. new
4691 * user-space does not rely on any kernel feature
4692 * extensions we dont know about yet.
4693 */
4694 if (size > sizeof(*attr)) {
4695 unsigned char __user *addr;
4696 unsigned char __user *end;
4697 unsigned char val;
4698
4699 addr = (void __user *)uattr + sizeof(*attr);
4700 end = (void __user *)uattr + size;
4701
4702 for (; addr < end; addr++) {
4703 ret = get_user(val, addr);
4704 if (ret)
4705 return ret;
4706 if (val)
4707 goto err_size;
4708 }
4709 size = sizeof(*attr);
4710 }
4711
4712 ret = copy_from_user(attr, uattr, size);
4713 if (ret)
4714 return -EFAULT;
4715
4716 /*
4717 * If the type exists, the corresponding creation will verify
4718 * the attr->config.
4719 */
4720 if (attr->type >= PERF_TYPE_MAX)
4721 return -EINVAL;
4722
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004723 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004724 return -EINVAL;
4725
4726 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4727 return -EINVAL;
4728
4729 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4730 return -EINVAL;
4731
4732out:
4733 return ret;
4734
4735err_size:
4736 put_user(sizeof(*attr), &uattr->size);
4737 ret = -E2BIG;
4738 goto out;
4739}
4740
Li Zefan6fb29152009-10-15 11:21:42 +08004741static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004742{
4743 struct perf_event *output_event = NULL;
4744 struct file *output_file = NULL;
4745 struct perf_event *old_output;
4746 int fput_needed = 0;
4747 int ret = -EINVAL;
4748
4749 if (!output_fd)
4750 goto set;
4751
4752 output_file = fget_light(output_fd, &fput_needed);
4753 if (!output_file)
4754 return -EBADF;
4755
4756 if (output_file->f_op != &perf_fops)
4757 goto out;
4758
4759 output_event = output_file->private_data;
4760
4761 /* Don't chain output fds */
4762 if (output_event->output)
4763 goto out;
4764
4765 /* Don't set an output fd when we already have an output channel */
4766 if (event->data)
4767 goto out;
4768
4769 atomic_long_inc(&output_file->f_count);
4770
4771set:
4772 mutex_lock(&event->mmap_mutex);
4773 old_output = event->output;
4774 rcu_assign_pointer(event->output, output_event);
4775 mutex_unlock(&event->mmap_mutex);
4776
4777 if (old_output) {
4778 /*
4779 * we need to make sure no existing perf_output_*()
4780 * is still referencing this event.
4781 */
4782 synchronize_rcu();
4783 fput(old_output->filp);
4784 }
4785
4786 ret = 0;
4787out:
4788 fput_light(output_file, fput_needed);
4789 return ret;
4790}
4791
4792/**
4793 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4794 *
4795 * @attr_uptr: event_id type attributes for monitoring/sampling
4796 * @pid: target pid
4797 * @cpu: target cpu
4798 * @group_fd: group leader event fd
4799 */
4800SYSCALL_DEFINE5(perf_event_open,
4801 struct perf_event_attr __user *, attr_uptr,
4802 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4803{
4804 struct perf_event *event, *group_leader;
4805 struct perf_event_attr attr;
4806 struct perf_event_context *ctx;
4807 struct file *event_file = NULL;
4808 struct file *group_file = NULL;
4809 int fput_needed = 0;
4810 int fput_needed2 = 0;
4811 int err;
4812
4813 /* for future expandability... */
4814 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4815 return -EINVAL;
4816
4817 err = perf_copy_attr(attr_uptr, &attr);
4818 if (err)
4819 return err;
4820
4821 if (!attr.exclude_kernel) {
4822 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4823 return -EACCES;
4824 }
4825
4826 if (attr.freq) {
4827 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4828 return -EINVAL;
4829 }
4830
4831 /*
4832 * Get the target context (task or percpu):
4833 */
4834 ctx = find_get_context(pid, cpu);
4835 if (IS_ERR(ctx))
4836 return PTR_ERR(ctx);
4837
4838 /*
4839 * Look up the group leader (we will attach this event to it):
4840 */
4841 group_leader = NULL;
4842 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4843 err = -EINVAL;
4844 group_file = fget_light(group_fd, &fput_needed);
4845 if (!group_file)
4846 goto err_put_context;
4847 if (group_file->f_op != &perf_fops)
4848 goto err_put_context;
4849
4850 group_leader = group_file->private_data;
4851 /*
4852 * Do not allow a recursive hierarchy (this new sibling
4853 * becoming part of another group-sibling):
4854 */
4855 if (group_leader->group_leader != group_leader)
4856 goto err_put_context;
4857 /*
4858 * Do not allow to attach to a group in a different
4859 * task or CPU context:
4860 */
4861 if (group_leader->ctx != ctx)
4862 goto err_put_context;
4863 /*
4864 * Only a group leader can be exclusive or pinned
4865 */
4866 if (attr.exclusive || attr.pinned)
4867 goto err_put_context;
4868 }
4869
4870 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004871 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004872 err = PTR_ERR(event);
4873 if (IS_ERR(event))
4874 goto err_put_context;
4875
Roland Dreier628ff7c2009-12-18 09:41:24 -08004876 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004877 if (err < 0)
4878 goto err_free_put_context;
4879
4880 event_file = fget_light(err, &fput_needed2);
4881 if (!event_file)
4882 goto err_free_put_context;
4883
4884 if (flags & PERF_FLAG_FD_OUTPUT) {
4885 err = perf_event_set_output(event, group_fd);
4886 if (err)
4887 goto err_fput_free_put_context;
4888 }
4889
4890 event->filp = event_file;
4891 WARN_ON_ONCE(ctx->parent_ctx);
4892 mutex_lock(&ctx->mutex);
4893 perf_install_in_context(ctx, event, cpu);
4894 ++ctx->generation;
4895 mutex_unlock(&ctx->mutex);
4896
4897 event->owner = current;
4898 get_task_struct(current);
4899 mutex_lock(&current->perf_event_mutex);
4900 list_add_tail(&event->owner_entry, &current->perf_event_list);
4901 mutex_unlock(&current->perf_event_mutex);
4902
4903err_fput_free_put_context:
4904 fput_light(event_file, fput_needed2);
4905
4906err_free_put_context:
4907 if (err < 0)
4908 kfree(event);
4909
4910err_put_context:
4911 if (err < 0)
4912 put_ctx(ctx);
4913
4914 fput_light(group_file, fput_needed);
4915
4916 return err;
4917}
4918
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004919/**
4920 * perf_event_create_kernel_counter
4921 *
4922 * @attr: attributes of the counter to create
4923 * @cpu: cpu in which the counter is bound
4924 * @pid: task to profile
4925 */
4926struct perf_event *
4927perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004928 pid_t pid,
4929 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004930{
4931 struct perf_event *event;
4932 struct perf_event_context *ctx;
4933 int err;
4934
4935 /*
4936 * Get the target context (task or percpu):
4937 */
4938
4939 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004940 if (IS_ERR(ctx)) {
4941 err = PTR_ERR(ctx);
4942 goto err_exit;
4943 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004944
4945 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004946 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004947 if (IS_ERR(event)) {
4948 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004949 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004950 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004951
4952 event->filp = NULL;
4953 WARN_ON_ONCE(ctx->parent_ctx);
4954 mutex_lock(&ctx->mutex);
4955 perf_install_in_context(ctx, event, cpu);
4956 ++ctx->generation;
4957 mutex_unlock(&ctx->mutex);
4958
4959 event->owner = current;
4960 get_task_struct(current);
4961 mutex_lock(&current->perf_event_mutex);
4962 list_add_tail(&event->owner_entry, &current->perf_event_list);
4963 mutex_unlock(&current->perf_event_mutex);
4964
4965 return event;
4966
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004967 err_put_context:
4968 put_ctx(ctx);
4969 err_exit:
4970 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004971}
4972EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4973
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004974/*
4975 * inherit a event from parent task to child task:
4976 */
4977static struct perf_event *
4978inherit_event(struct perf_event *parent_event,
4979 struct task_struct *parent,
4980 struct perf_event_context *parent_ctx,
4981 struct task_struct *child,
4982 struct perf_event *group_leader,
4983 struct perf_event_context *child_ctx)
4984{
4985 struct perf_event *child_event;
4986
4987 /*
4988 * Instead of creating recursive hierarchies of events,
4989 * we link inherited events back to the original parent,
4990 * which has a filp for sure, which we use as the reference
4991 * count:
4992 */
4993 if (parent_event->parent)
4994 parent_event = parent_event->parent;
4995
4996 child_event = perf_event_alloc(&parent_event->attr,
4997 parent_event->cpu, child_ctx,
4998 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004999 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005000 if (IS_ERR(child_event))
5001 return child_event;
5002 get_ctx(child_ctx);
5003
5004 /*
5005 * Make the child state follow the state of the parent event,
5006 * not its attr.disabled bit. We hold the parent's mutex,
5007 * so we won't race with perf_event_{en, dis}able_family.
5008 */
5009 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5010 child_event->state = PERF_EVENT_STATE_INACTIVE;
5011 else
5012 child_event->state = PERF_EVENT_STATE_OFF;
5013
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005014 if (parent_event->attr.freq) {
5015 u64 sample_period = parent_event->hw.sample_period;
5016 struct hw_perf_event *hwc = &child_event->hw;
5017
5018 hwc->sample_period = sample_period;
5019 hwc->last_period = sample_period;
5020
5021 atomic64_set(&hwc->period_left, sample_period);
5022 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005023
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005024 child_event->overflow_handler = parent_event->overflow_handler;
5025
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005026 /*
5027 * Link it up in the child's context:
5028 */
5029 add_event_to_ctx(child_event, child_ctx);
5030
5031 /*
5032 * Get a reference to the parent filp - we will fput it
5033 * when the child event exits. This is safe to do because
5034 * we are in the parent and we know that the filp still
5035 * exists and has a nonzero count:
5036 */
5037 atomic_long_inc(&parent_event->filp->f_count);
5038
5039 /*
5040 * Link this into the parent event's child list
5041 */
5042 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5043 mutex_lock(&parent_event->child_mutex);
5044 list_add_tail(&child_event->child_list, &parent_event->child_list);
5045 mutex_unlock(&parent_event->child_mutex);
5046
5047 return child_event;
5048}
5049
5050static int inherit_group(struct perf_event *parent_event,
5051 struct task_struct *parent,
5052 struct perf_event_context *parent_ctx,
5053 struct task_struct *child,
5054 struct perf_event_context *child_ctx)
5055{
5056 struct perf_event *leader;
5057 struct perf_event *sub;
5058 struct perf_event *child_ctr;
5059
5060 leader = inherit_event(parent_event, parent, parent_ctx,
5061 child, NULL, child_ctx);
5062 if (IS_ERR(leader))
5063 return PTR_ERR(leader);
5064 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5065 child_ctr = inherit_event(sub, parent, parent_ctx,
5066 child, leader, child_ctx);
5067 if (IS_ERR(child_ctr))
5068 return PTR_ERR(child_ctr);
5069 }
5070 return 0;
5071}
5072
5073static void sync_child_event(struct perf_event *child_event,
5074 struct task_struct *child)
5075{
5076 struct perf_event *parent_event = child_event->parent;
5077 u64 child_val;
5078
5079 if (child_event->attr.inherit_stat)
5080 perf_event_read_event(child_event, child);
5081
5082 child_val = atomic64_read(&child_event->count);
5083
5084 /*
5085 * Add back the child's count to the parent's count:
5086 */
5087 atomic64_add(child_val, &parent_event->count);
5088 atomic64_add(child_event->total_time_enabled,
5089 &parent_event->child_total_time_enabled);
5090 atomic64_add(child_event->total_time_running,
5091 &parent_event->child_total_time_running);
5092
5093 /*
5094 * Remove this event from the parent's list
5095 */
5096 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5097 mutex_lock(&parent_event->child_mutex);
5098 list_del_init(&child_event->child_list);
5099 mutex_unlock(&parent_event->child_mutex);
5100
5101 /*
5102 * Release the parent event, if this was the last
5103 * reference to it.
5104 */
5105 fput(parent_event->filp);
5106}
5107
5108static void
5109__perf_event_exit_task(struct perf_event *child_event,
5110 struct perf_event_context *child_ctx,
5111 struct task_struct *child)
5112{
5113 struct perf_event *parent_event;
5114
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005115 perf_event_remove_from_context(child_event);
5116
5117 parent_event = child_event->parent;
5118 /*
5119 * It can happen that parent exits first, and has events
5120 * that are still around due to the child reference. These
5121 * events need to be zapped - but otherwise linger.
5122 */
5123 if (parent_event) {
5124 sync_child_event(child_event, child);
5125 free_event(child_event);
5126 }
5127}
5128
5129/*
5130 * When a child task exits, feed back event values to parent events.
5131 */
5132void perf_event_exit_task(struct task_struct *child)
5133{
5134 struct perf_event *child_event, *tmp;
5135 struct perf_event_context *child_ctx;
5136 unsigned long flags;
5137
5138 if (likely(!child->perf_event_ctxp)) {
5139 perf_event_task(child, NULL, 0);
5140 return;
5141 }
5142
5143 local_irq_save(flags);
5144 /*
5145 * We can't reschedule here because interrupts are disabled,
5146 * and either child is current or it is a task that can't be
5147 * scheduled, so we are now safe from rescheduling changing
5148 * our context.
5149 */
5150 child_ctx = child->perf_event_ctxp;
5151 __perf_event_task_sched_out(child_ctx);
5152
5153 /*
5154 * Take the context lock here so that if find_get_context is
5155 * reading child->perf_event_ctxp, we wait until it has
5156 * incremented the context's refcount before we do put_ctx below.
5157 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005158 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005159 child->perf_event_ctxp = NULL;
5160 /*
5161 * If this context is a clone; unclone it so it can't get
5162 * swapped to another process while we're removing all
5163 * the events from it.
5164 */
5165 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005166 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005167 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005168
5169 /*
5170 * Report the task dead after unscheduling the events so that we
5171 * won't get any samples after PERF_RECORD_EXIT. We can however still
5172 * get a few PERF_RECORD_READ events.
5173 */
5174 perf_event_task(child, child_ctx, 0);
5175
5176 /*
5177 * We can recurse on the same lock type through:
5178 *
5179 * __perf_event_exit_task()
5180 * sync_child_event()
5181 * fput(parent_event->filp)
5182 * perf_release()
5183 * mutex_lock(&ctx->mutex)
5184 *
5185 * But since its the parent context it won't be the same instance.
5186 */
5187 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5188
5189again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005190 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5191 group_entry)
5192 __perf_event_exit_task(child_event, child_ctx, child);
5193
5194 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005195 group_entry)
5196 __perf_event_exit_task(child_event, child_ctx, child);
5197
5198 /*
5199 * If the last event was a group event, it will have appended all
5200 * its siblings to the list, but we obtained 'tmp' before that which
5201 * will still point to the list head terminating the iteration.
5202 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005203 if (!list_empty(&child_ctx->pinned_groups) ||
5204 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005205 goto again;
5206
5207 mutex_unlock(&child_ctx->mutex);
5208
5209 put_ctx(child_ctx);
5210}
5211
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005212static void perf_free_event(struct perf_event *event,
5213 struct perf_event_context *ctx)
5214{
5215 struct perf_event *parent = event->parent;
5216
5217 if (WARN_ON_ONCE(!parent))
5218 return;
5219
5220 mutex_lock(&parent->child_mutex);
5221 list_del_init(&event->child_list);
5222 mutex_unlock(&parent->child_mutex);
5223
5224 fput(parent->filp);
5225
5226 list_del_event(event, ctx);
5227 free_event(event);
5228}
5229
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005230/*
5231 * free an unexposed, unused context as created by inheritance by
5232 * init_task below, used by fork() in case of fail.
5233 */
5234void perf_event_free_task(struct task_struct *task)
5235{
5236 struct perf_event_context *ctx = task->perf_event_ctxp;
5237 struct perf_event *event, *tmp;
5238
5239 if (!ctx)
5240 return;
5241
5242 mutex_lock(&ctx->mutex);
5243again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005244 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5245 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005246
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005247 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5248 group_entry)
5249 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005250
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005251 if (!list_empty(&ctx->pinned_groups) ||
5252 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005253 goto again;
5254
5255 mutex_unlock(&ctx->mutex);
5256
5257 put_ctx(ctx);
5258}
5259
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005260static int
5261inherit_task_group(struct perf_event *event, struct task_struct *parent,
5262 struct perf_event_context *parent_ctx,
5263 struct task_struct *child,
5264 int *inherited_all)
5265{
5266 int ret;
5267 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5268
5269 if (!event->attr.inherit) {
5270 *inherited_all = 0;
5271 return 0;
5272 }
5273
5274 if (!child_ctx) {
5275 /*
5276 * This is executed from the parent task context, so
5277 * inherit events that have been marked for cloning.
5278 * First allocate and initialize a context for the
5279 * child.
5280 */
5281
5282 child_ctx = kzalloc(sizeof(struct perf_event_context),
5283 GFP_KERNEL);
5284 if (!child_ctx)
5285 return -ENOMEM;
5286
5287 __perf_event_init_context(child_ctx, child);
5288 child->perf_event_ctxp = child_ctx;
5289 get_task_struct(child);
5290 }
5291
5292 ret = inherit_group(event, parent, parent_ctx,
5293 child, child_ctx);
5294
5295 if (ret)
5296 *inherited_all = 0;
5297
5298 return ret;
5299}
5300
5301
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005302/*
5303 * Initialize the perf_event context in task_struct
5304 */
5305int perf_event_init_task(struct task_struct *child)
5306{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005307 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005308 struct perf_event_context *cloned_ctx;
5309 struct perf_event *event;
5310 struct task_struct *parent = current;
5311 int inherited_all = 1;
5312 int ret = 0;
5313
5314 child->perf_event_ctxp = NULL;
5315
5316 mutex_init(&child->perf_event_mutex);
5317 INIT_LIST_HEAD(&child->perf_event_list);
5318
5319 if (likely(!parent->perf_event_ctxp))
5320 return 0;
5321
5322 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005323 * If the parent's context is a clone, pin it so it won't get
5324 * swapped under us.
5325 */
5326 parent_ctx = perf_pin_task_context(parent);
5327
5328 /*
5329 * No need to check if parent_ctx != NULL here; since we saw
5330 * it non-NULL earlier, the only reason for it to become NULL
5331 * is if we exit, and since we're currently in the middle of
5332 * a fork we can't be exiting at the same time.
5333 */
5334
5335 /*
5336 * Lock the parent list. No need to lock the child - not PID
5337 * hashed yet and not running, so nobody can access it.
5338 */
5339 mutex_lock(&parent_ctx->mutex);
5340
5341 /*
5342 * We dont have to disable NMIs - we are only looking at
5343 * the list, not manipulating it:
5344 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005345 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5346 ret = inherit_task_group(event, parent, parent_ctx, child,
5347 &inherited_all);
5348 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005349 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005350 }
5351
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005352 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5353 ret = inherit_task_group(event, parent, parent_ctx, child,
5354 &inherited_all);
5355 if (ret)
5356 break;
5357 }
5358
5359 child_ctx = child->perf_event_ctxp;
5360
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005361 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005362 /*
5363 * Mark the child context as a clone of the parent
5364 * context, or of whatever the parent is a clone of.
5365 * Note that if the parent is a clone, it could get
5366 * uncloned at any point, but that doesn't matter
5367 * because the list of events and the generation
5368 * count can't have changed since we took the mutex.
5369 */
5370 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5371 if (cloned_ctx) {
5372 child_ctx->parent_ctx = cloned_ctx;
5373 child_ctx->parent_gen = parent_ctx->parent_gen;
5374 } else {
5375 child_ctx->parent_ctx = parent_ctx;
5376 child_ctx->parent_gen = parent_ctx->generation;
5377 }
5378 get_ctx(child_ctx->parent_ctx);
5379 }
5380
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005381 mutex_unlock(&parent_ctx->mutex);
5382
5383 perf_unpin_context(parent_ctx);
5384
5385 return ret;
5386}
5387
5388static void __cpuinit perf_event_init_cpu(int cpu)
5389{
5390 struct perf_cpu_context *cpuctx;
5391
5392 cpuctx = &per_cpu(perf_cpu_context, cpu);
5393 __perf_event_init_context(&cpuctx->ctx, NULL);
5394
5395 spin_lock(&perf_resource_lock);
5396 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5397 spin_unlock(&perf_resource_lock);
5398
5399 hw_perf_event_setup(cpu);
5400}
5401
5402#ifdef CONFIG_HOTPLUG_CPU
5403static void __perf_event_exit_cpu(void *info)
5404{
5405 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5406 struct perf_event_context *ctx = &cpuctx->ctx;
5407 struct perf_event *event, *tmp;
5408
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005409 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5410 __perf_event_remove_from_context(event);
5411 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005412 __perf_event_remove_from_context(event);
5413}
5414static void perf_event_exit_cpu(int cpu)
5415{
5416 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5417 struct perf_event_context *ctx = &cpuctx->ctx;
5418
5419 mutex_lock(&ctx->mutex);
5420 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5421 mutex_unlock(&ctx->mutex);
5422}
5423#else
5424static inline void perf_event_exit_cpu(int cpu) { }
5425#endif
5426
5427static int __cpuinit
5428perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5429{
5430 unsigned int cpu = (long)hcpu;
5431
5432 switch (action) {
5433
5434 case CPU_UP_PREPARE:
5435 case CPU_UP_PREPARE_FROZEN:
5436 perf_event_init_cpu(cpu);
5437 break;
5438
5439 case CPU_ONLINE:
5440 case CPU_ONLINE_FROZEN:
5441 hw_perf_event_setup_online(cpu);
5442 break;
5443
5444 case CPU_DOWN_PREPARE:
5445 case CPU_DOWN_PREPARE_FROZEN:
5446 perf_event_exit_cpu(cpu);
5447 break;
5448
5449 default:
5450 break;
5451 }
5452
5453 return NOTIFY_OK;
5454}
5455
5456/*
5457 * This has to have a higher priority than migration_notifier in sched.c.
5458 */
5459static struct notifier_block __cpuinitdata perf_cpu_nb = {
5460 .notifier_call = perf_cpu_notify,
5461 .priority = 20,
5462};
5463
5464void __init perf_event_init(void)
5465{
5466 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5467 (void *)(long)smp_processor_id());
5468 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5469 (void *)(long)smp_processor_id());
5470 register_cpu_notifier(&perf_cpu_nb);
5471}
5472
5473static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5474{
5475 return sprintf(buf, "%d\n", perf_reserved_percpu);
5476}
5477
5478static ssize_t
5479perf_set_reserve_percpu(struct sysdev_class *class,
5480 const char *buf,
5481 size_t count)
5482{
5483 struct perf_cpu_context *cpuctx;
5484 unsigned long val;
5485 int err, cpu, mpt;
5486
5487 err = strict_strtoul(buf, 10, &val);
5488 if (err)
5489 return err;
5490 if (val > perf_max_events)
5491 return -EINVAL;
5492
5493 spin_lock(&perf_resource_lock);
5494 perf_reserved_percpu = val;
5495 for_each_online_cpu(cpu) {
5496 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005497 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005498 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5499 perf_max_events - perf_reserved_percpu);
5500 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005501 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005502 }
5503 spin_unlock(&perf_resource_lock);
5504
5505 return count;
5506}
5507
5508static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5509{
5510 return sprintf(buf, "%d\n", perf_overcommit);
5511}
5512
5513static ssize_t
5514perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5515{
5516 unsigned long val;
5517 int err;
5518
5519 err = strict_strtoul(buf, 10, &val);
5520 if (err)
5521 return err;
5522 if (val > 1)
5523 return -EINVAL;
5524
5525 spin_lock(&perf_resource_lock);
5526 perf_overcommit = val;
5527 spin_unlock(&perf_resource_lock);
5528
5529 return count;
5530}
5531
5532static SYSDEV_CLASS_ATTR(
5533 reserve_percpu,
5534 0644,
5535 perf_show_reserve_percpu,
5536 perf_set_reserve_percpu
5537 );
5538
5539static SYSDEV_CLASS_ATTR(
5540 overcommit,
5541 0644,
5542 perf_show_overcommit,
5543 perf_set_overcommit
5544 );
5545
5546static struct attribute *perfclass_attrs[] = {
5547 &attr_reserve_percpu.attr,
5548 &attr_overcommit.attr,
5549 NULL
5550};
5551
5552static struct attribute_group perfclass_attr_group = {
5553 .attrs = perfclass_attrs,
5554 .name = "perf_events",
5555};
5556
5557static int __init perf_event_sysfs_init(void)
5558{
5559 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5560 &perfclass_attr_group);
5561}
5562device_initcall(perf_event_sysfs_init);