blob: 622a4ef5409f3e3620a88c20d68193ca803344e1 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
Andy Whitcroftd41dee32005-06-23 00:07:54 -070061#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds1da177e2005-04-16 15:20:36 -070062/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
Hugh Dickinse0da3822005-04-19 13:29:15 -0700113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114{
Hugh Dickinse0da3822005-04-19 13:29:15 -0700115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120}
121
Hugh Dickinse0da3822005-04-19 13:29:15 -0700122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125{
126 pmd_t *pmd;
127 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700128 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129
Hugh Dickinse0da3822005-04-19 13:29:15 -0700130 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 pmd = pmd_offset(pud, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700136 free_pte_range(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137 } while (pmd++, addr = next, addr != end);
138
Hugh Dickinse0da3822005-04-19 13:29:15 -0700139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153}
154
Hugh Dickinse0da3822005-04-19 13:29:15 -0700155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158{
159 pud_t *pud;
160 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700161 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Hugh Dickinse0da3822005-04-19 13:29:15 -0700163 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 pud = pud_offset(pgd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 } while (pud++, addr = next, addr != end);
171
Hugh Dickinse0da3822005-04-19 13:29:15 -0700172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
187
188/*
Hugh Dickinse0da3822005-04-19 13:29:15 -0700189 * This function frees user-level page tables of a process.
190 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191 * Must be called with pagetable lock held.
192 */
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700193void free_pgd_range(struct mmu_gather **tlb,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196{
197 pgd_t *pgd;
198 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700199 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200
Hugh Dickinse0da3822005-04-19 13:29:15 -0700201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
226
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700244 pgd = pgd_offset((*tlb)->mm, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 } while (pgd++, addr = next, addr != end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700251
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700252 if (!(*tlb)->fullmm)
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700253 flush_tlb_pgtables((*tlb)->mm, start, end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700257 unsigned long floor, unsigned long ceiling)
Hugh Dickinse0da3822005-04-19 13:29:15 -0700258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
Hugh Dickins8f4f8c12005-10-29 18:16:29 -0700263 /*
264 * Hide vma from rmap and vmtruncate before freeing pgtables
265 */
266 anon_vma_unlink(vma);
267 unlink_file_vma(vma);
268
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700269 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
270 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700271 floor, next? next->vm_start: ceiling);
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700272 } else {
273 /*
274 * Optimization: gather nearby vmas into one call down
275 */
276 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
277 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
278 HPAGE_SIZE)) {
279 vma = next;
280 next = vma->vm_next;
Hugh Dickins8f4f8c12005-10-29 18:16:29 -0700281 anon_vma_unlink(vma);
282 unlink_file_vma(vma);
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700283 }
284 free_pgd_range(tlb, addr, vma->vm_end,
285 floor, next? next->vm_start: ceiling);
286 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700287 vma = next;
288 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289}
290
Hugh Dickins1bb36302005-10-29 18:16:22 -0700291int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700292{
Hugh Dickinsc74df322005-10-29 18:16:23 -0700293 struct page *new = pte_alloc_one(mm, address);
Hugh Dickins1bb36302005-10-29 18:16:22 -0700294 if (!new)
295 return -ENOMEM;
296
Hugh Dickinsc74df322005-10-29 18:16:23 -0700297 spin_lock(&mm->page_table_lock);
Hugh Dickins1bb36302005-10-29 18:16:22 -0700298 if (pmd_present(*pmd)) /* Another has populated it */
299 pte_free(new);
300 else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301 mm->nr_ptes++;
302 inc_page_state(nr_page_table_pages);
303 pmd_populate(mm, pmd, new);
304 }
Hugh Dickinsc74df322005-10-29 18:16:23 -0700305 spin_unlock(&mm->page_table_lock);
Hugh Dickins1bb36302005-10-29 18:16:22 -0700306 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307}
308
Hugh Dickins1bb36302005-10-29 18:16:22 -0700309int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310{
Hugh Dickins1bb36302005-10-29 18:16:22 -0700311 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
312 if (!new)
313 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Hugh Dickins1bb36302005-10-29 18:16:22 -0700315 spin_lock(&init_mm.page_table_lock);
316 if (pmd_present(*pmd)) /* Another has populated it */
317 pte_free_kernel(new);
318 else
319 pmd_populate_kernel(&init_mm, pmd, new);
320 spin_unlock(&init_mm.page_table_lock);
321 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322}
323
Hugh Dickinsae859762005-10-29 18:16:05 -0700324static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
325{
326 if (file_rss)
327 add_mm_counter(mm, file_rss, file_rss);
328 if (anon_rss)
329 add_mm_counter(mm, anon_rss, anon_rss);
330}
331
Linus Torvalds1da177e2005-04-16 15:20:36 -0700332/*
Nick Pigginb5810032005-10-29 18:16:12 -0700333 * This function is called to print an error when a pte in a
334 * !VM_RESERVED region is found pointing to an invalid pfn (which
335 * is an error.
336 *
337 * The calling function must still handle the error.
338 */
339void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
340{
341 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
342 "vm_flags = %lx, vaddr = %lx\n",
343 (long long)pte_val(pte),
344 (vma->vm_mm == current->mm ? current->comm : "???"),
345 vma->vm_flags, vaddr);
346 dump_stack();
347}
348
349/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700350 * copy one vm_area from one task to the other. Assumes the page tables
351 * already present in the new task to be cleared in the whole range
352 * covered by this vma.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700353 */
354
Hugh Dickins8c103762005-10-29 18:16:13 -0700355static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
Nick Pigginb5810032005-10-29 18:16:12 -0700357 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
Hugh Dickins8c103762005-10-29 18:16:13 -0700358 unsigned long addr, int *rss)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359{
Nick Pigginb5810032005-10-29 18:16:12 -0700360 unsigned long vm_flags = vma->vm_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361 pte_t pte = *src_pte;
362 struct page *page;
363 unsigned long pfn;
364
365 /* pte contains position in swap or file, so copy. */
366 if (unlikely(!pte_present(pte))) {
367 if (!pte_file(pte)) {
368 swap_duplicate(pte_to_swp_entry(pte));
369 /* make sure dst_mm is on swapoff's mmlist. */
370 if (unlikely(list_empty(&dst_mm->mmlist))) {
371 spin_lock(&mmlist_lock);
372 list_add(&dst_mm->mmlist, &src_mm->mmlist);
373 spin_unlock(&mmlist_lock);
374 }
375 }
Hugh Dickinsae859762005-10-29 18:16:05 -0700376 goto out_set_pte;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 }
378
Nick Pigginb5810032005-10-29 18:16:12 -0700379 /* If the region is VM_RESERVED, the mapping is not
380 * mapped via rmap - duplicate the pte as is.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381 */
Nick Pigginb5810032005-10-29 18:16:12 -0700382 if (vm_flags & VM_RESERVED)
Hugh Dickinsae859762005-10-29 18:16:05 -0700383 goto out_set_pte;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384
Nick Pigginb5810032005-10-29 18:16:12 -0700385 pfn = pte_pfn(pte);
386 /* If the pte points outside of valid memory but
387 * the region is not VM_RESERVED, we have a problem.
388 */
389 if (unlikely(!pfn_valid(pfn))) {
390 print_bad_pte(vma, pte, addr);
391 goto out_set_pte; /* try to do something sane */
392 }
393
394 page = pfn_to_page(pfn);
395
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 /*
397 * If it's a COW mapping, write protect it both
398 * in the parent and the child
399 */
400 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
401 ptep_set_wrprotect(src_mm, addr, src_pte);
402 pte = *src_pte;
403 }
404
405 /*
406 * If it's a shared mapping, mark it clean in
407 * the child
408 */
409 if (vm_flags & VM_SHARED)
410 pte = pte_mkclean(pte);
411 pte = pte_mkold(pte);
412 get_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413 page_dup_rmap(page);
Hugh Dickins8c103762005-10-29 18:16:13 -0700414 rss[!!PageAnon(page)]++;
Hugh Dickinsae859762005-10-29 18:16:05 -0700415
416out_set_pte:
417 set_pte_at(dst_mm, addr, dst_pte, pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418}
419
420static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
421 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
422 unsigned long addr, unsigned long end)
423{
424 pte_t *src_pte, *dst_pte;
Hugh Dickinsc74df322005-10-29 18:16:23 -0700425 spinlock_t *src_ptl, *dst_ptl;
Hugh Dickinse040f212005-10-29 18:15:53 -0700426 int progress = 0;
Hugh Dickins8c103762005-10-29 18:16:13 -0700427 int rss[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428
429again:
Hugh Dickinsae859762005-10-29 18:16:05 -0700430 rss[1] = rss[0] = 0;
Hugh Dickinsc74df322005-10-29 18:16:23 -0700431 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 if (!dst_pte)
433 return -ENOMEM;
434 src_pte = pte_offset_map_nested(src_pmd, addr);
Hugh Dickinsc74df322005-10-29 18:16:23 -0700435 src_ptl = &src_mm->page_table_lock;
436 spin_lock(src_ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 do {
439 /*
440 * We are holding two locks at this point - either of them
441 * could generate latencies in another task on another CPU.
442 */
Hugh Dickinse040f212005-10-29 18:15:53 -0700443 if (progress >= 32) {
444 progress = 0;
445 if (need_resched() ||
Hugh Dickinsc74df322005-10-29 18:16:23 -0700446 need_lockbreak(src_ptl) ||
447 need_lockbreak(dst_ptl))
Hugh Dickinse040f212005-10-29 18:15:53 -0700448 break;
449 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 if (pte_none(*src_pte)) {
451 progress++;
452 continue;
453 }
Hugh Dickins8c103762005-10-29 18:16:13 -0700454 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455 progress += 8;
456 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
Hugh Dickinsc74df322005-10-29 18:16:23 -0700458 spin_unlock(src_ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 pte_unmap_nested(src_pte - 1);
Hugh Dickinsae859762005-10-29 18:16:05 -0700460 add_mm_rss(dst_mm, rss[0], rss[1]);
Hugh Dickinsc74df322005-10-29 18:16:23 -0700461 pte_unmap_unlock(dst_pte - 1, dst_ptl);
462 cond_resched();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463 if (addr != end)
464 goto again;
465 return 0;
466}
467
468static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
469 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
470 unsigned long addr, unsigned long end)
471{
472 pmd_t *src_pmd, *dst_pmd;
473 unsigned long next;
474
475 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
476 if (!dst_pmd)
477 return -ENOMEM;
478 src_pmd = pmd_offset(src_pud, addr);
479 do {
480 next = pmd_addr_end(addr, end);
481 if (pmd_none_or_clear_bad(src_pmd))
482 continue;
483 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
484 vma, addr, next))
485 return -ENOMEM;
486 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
487 return 0;
488}
489
490static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
492 unsigned long addr, unsigned long end)
493{
494 pud_t *src_pud, *dst_pud;
495 unsigned long next;
496
497 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
498 if (!dst_pud)
499 return -ENOMEM;
500 src_pud = pud_offset(src_pgd, addr);
501 do {
502 next = pud_addr_end(addr, end);
503 if (pud_none_or_clear_bad(src_pud))
504 continue;
505 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
506 vma, addr, next))
507 return -ENOMEM;
508 } while (dst_pud++, src_pud++, addr = next, addr != end);
509 return 0;
510}
511
512int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513 struct vm_area_struct *vma)
514{
515 pgd_t *src_pgd, *dst_pgd;
516 unsigned long next;
517 unsigned long addr = vma->vm_start;
518 unsigned long end = vma->vm_end;
519
Nick Piggind9928952005-08-28 16:49:11 +1000520 /*
521 * Don't copy ptes where a page fault will fill them correctly.
522 * Fork becomes much lighter when there are big shared or private
523 * readonly mappings. The tradeoff is that copy_page_range is more
524 * efficient than faulting.
525 */
526 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
527 if (!vma->anon_vma)
528 return 0;
529 }
530
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531 if (is_vm_hugetlb_page(vma))
532 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
533
534 dst_pgd = pgd_offset(dst_mm, addr);
535 src_pgd = pgd_offset(src_mm, addr);
536 do {
537 next = pgd_addr_end(addr, end);
538 if (pgd_none_or_clear_bad(src_pgd))
539 continue;
540 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
541 vma, addr, next))
542 return -ENOMEM;
543 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
544 return 0;
545}
546
Nick Pigginb5810032005-10-29 18:16:12 -0700547static void zap_pte_range(struct mmu_gather *tlb,
548 struct vm_area_struct *vma, pmd_t *pmd,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 unsigned long addr, unsigned long end,
550 struct zap_details *details)
551{
Nick Pigginb5810032005-10-29 18:16:12 -0700552 struct mm_struct *mm = tlb->mm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 pte_t *pte;
Hugh Dickins508034a2005-10-29 18:16:30 -0700554 spinlock_t *ptl;
Hugh Dickinsae859762005-10-29 18:16:05 -0700555 int file_rss = 0;
556 int anon_rss = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557
Hugh Dickins508034a2005-10-29 18:16:30 -0700558 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 do {
560 pte_t ptent = *pte;
561 if (pte_none(ptent))
562 continue;
563 if (pte_present(ptent)) {
564 struct page *page = NULL;
Nick Pigginb5810032005-10-29 18:16:12 -0700565 if (!(vma->vm_flags & VM_RESERVED)) {
566 unsigned long pfn = pte_pfn(ptent);
567 if (unlikely(!pfn_valid(pfn)))
568 print_bad_pte(vma, ptent, addr);
569 else
570 page = pfn_to_page(pfn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700571 }
572 if (unlikely(details) && page) {
573 /*
574 * unmap_shared_mapping_pages() wants to
575 * invalidate cache without truncating:
576 * unmap shared but keep private pages.
577 */
578 if (details->check_mapping &&
579 details->check_mapping != page->mapping)
580 continue;
581 /*
582 * Each page->index must be checked when
583 * invalidating or truncating nonlinear.
584 */
585 if (details->nonlinear_vma &&
586 (page->index < details->first_index ||
587 page->index > details->last_index))
588 continue;
589 }
Nick Pigginb5810032005-10-29 18:16:12 -0700590 ptent = ptep_get_and_clear_full(mm, addr, pte,
Zachary Amsdena6003882005-09-03 15:55:04 -0700591 tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592 tlb_remove_tlb_entry(tlb, pte, addr);
593 if (unlikely(!page))
594 continue;
595 if (unlikely(details) && details->nonlinear_vma
596 && linear_page_index(details->nonlinear_vma,
597 addr) != page->index)
Nick Pigginb5810032005-10-29 18:16:12 -0700598 set_pte_at(mm, addr, pte,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599 pgoff_to_pte(page->index));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 if (PageAnon(page))
Hugh Dickins86d912f2005-10-29 18:16:14 -0700601 anon_rss--;
Hugh Dickins6237bcd2005-10-29 18:15:54 -0700602 else {
603 if (pte_dirty(ptent))
604 set_page_dirty(page);
605 if (pte_young(ptent))
606 mark_page_accessed(page);
Hugh Dickins86d912f2005-10-29 18:16:14 -0700607 file_rss--;
Hugh Dickins6237bcd2005-10-29 18:15:54 -0700608 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609 page_remove_rmap(page);
610 tlb_remove_page(tlb, page);
611 continue;
612 }
613 /*
614 * If details->check_mapping, we leave swap entries;
615 * if details->nonlinear_vma, we leave file entries.
616 */
617 if (unlikely(details))
618 continue;
619 if (!pte_file(ptent))
620 free_swap_and_cache(pte_to_swp_entry(ptent));
Nick Pigginb5810032005-10-29 18:16:12 -0700621 pte_clear_full(mm, addr, pte, tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700622 } while (pte++, addr += PAGE_SIZE, addr != end);
Hugh Dickinsae859762005-10-29 18:16:05 -0700623
Hugh Dickins86d912f2005-10-29 18:16:14 -0700624 add_mm_rss(mm, file_rss, anon_rss);
Hugh Dickins508034a2005-10-29 18:16:30 -0700625 pte_unmap_unlock(pte - 1, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700626}
627
Nick Pigginb5810032005-10-29 18:16:12 -0700628static inline void zap_pmd_range(struct mmu_gather *tlb,
629 struct vm_area_struct *vma, pud_t *pud,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 unsigned long addr, unsigned long end,
631 struct zap_details *details)
632{
633 pmd_t *pmd;
634 unsigned long next;
635
636 pmd = pmd_offset(pud, addr);
637 do {
638 next = pmd_addr_end(addr, end);
639 if (pmd_none_or_clear_bad(pmd))
640 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700641 zap_pte_range(tlb, vma, pmd, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700642 } while (pmd++, addr = next, addr != end);
643}
644
Nick Pigginb5810032005-10-29 18:16:12 -0700645static inline void zap_pud_range(struct mmu_gather *tlb,
646 struct vm_area_struct *vma, pgd_t *pgd,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647 unsigned long addr, unsigned long end,
648 struct zap_details *details)
649{
650 pud_t *pud;
651 unsigned long next;
652
653 pud = pud_offset(pgd, addr);
654 do {
655 next = pud_addr_end(addr, end);
656 if (pud_none_or_clear_bad(pud))
657 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700658 zap_pmd_range(tlb, vma, pud, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700659 } while (pud++, addr = next, addr != end);
660}
661
662static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
663 unsigned long addr, unsigned long end,
664 struct zap_details *details)
665{
666 pgd_t *pgd;
667 unsigned long next;
668
669 if (details && !details->check_mapping && !details->nonlinear_vma)
670 details = NULL;
671
672 BUG_ON(addr >= end);
673 tlb_start_vma(tlb, vma);
674 pgd = pgd_offset(vma->vm_mm, addr);
675 do {
676 next = pgd_addr_end(addr, end);
677 if (pgd_none_or_clear_bad(pgd))
678 continue;
Nick Pigginb5810032005-10-29 18:16:12 -0700679 zap_pud_range(tlb, vma, pgd, addr, next, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680 } while (pgd++, addr = next, addr != end);
681 tlb_end_vma(tlb, vma);
682}
683
684#ifdef CONFIG_PREEMPT
685# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
686#else
687/* No preempt: go for improved straight-line efficiency */
688# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
689#endif
690
691/**
692 * unmap_vmas - unmap a range of memory covered by a list of vma's
693 * @tlbp: address of the caller's struct mmu_gather
Linus Torvalds1da177e2005-04-16 15:20:36 -0700694 * @vma: the starting vma
695 * @start_addr: virtual address at which to start unmapping
696 * @end_addr: virtual address at which to end unmapping
697 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
698 * @details: details of nonlinear truncation or shared cache invalidation
699 *
Hugh Dickinsee39b372005-04-19 13:29:15 -0700700 * Returns the end address of the unmapping (restart addr if interrupted).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701 *
Hugh Dickins508034a2005-10-29 18:16:30 -0700702 * Unmap all pages in the vma list.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700703 *
Hugh Dickins508034a2005-10-29 18:16:30 -0700704 * We aim to not hold locks for too long (for scheduling latency reasons).
705 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706 * return the ending mmu_gather to the caller.
707 *
708 * Only addresses between `start' and `end' will be unmapped.
709 *
710 * The VMA list must be sorted in ascending virtual address order.
711 *
712 * unmap_vmas() assumes that the caller will flush the whole unmapped address
713 * range after unmap_vmas() returns. So the only responsibility here is to
714 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
715 * drops the lock and schedules.
716 */
Hugh Dickins508034a2005-10-29 18:16:30 -0700717unsigned long unmap_vmas(struct mmu_gather **tlbp,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 struct vm_area_struct *vma, unsigned long start_addr,
719 unsigned long end_addr, unsigned long *nr_accounted,
720 struct zap_details *details)
721{
722 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
723 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
724 int tlb_start_valid = 0;
Hugh Dickinsee39b372005-04-19 13:29:15 -0700725 unsigned long start = start_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700726 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700727 int fullmm = (*tlbp)->fullmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728
729 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730 unsigned long end;
731
732 start = max(vma->vm_start, start_addr);
733 if (start >= vma->vm_end)
734 continue;
735 end = min(vma->vm_end, end_addr);
736 if (end <= vma->vm_start)
737 continue;
738
739 if (vma->vm_flags & VM_ACCOUNT)
740 *nr_accounted += (end - start) >> PAGE_SHIFT;
741
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742 while (start != end) {
743 unsigned long block;
744
745 if (!tlb_start_valid) {
746 tlb_start = start;
747 tlb_start_valid = 1;
748 }
749
750 if (is_vm_hugetlb_page(vma)) {
751 block = end - start;
752 unmap_hugepage_range(vma, start, end);
753 } else {
754 block = min(zap_bytes, end - start);
755 unmap_page_range(*tlbp, vma, start,
756 start + block, details);
757 }
758
759 start += block;
760 zap_bytes -= block;
761 if ((long)zap_bytes > 0)
762 continue;
763
764 tlb_finish_mmu(*tlbp, tlb_start, start);
765
766 if (need_resched() ||
Linus Torvalds1da177e2005-04-16 15:20:36 -0700767 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
768 if (i_mmap_lock) {
Hugh Dickins508034a2005-10-29 18:16:30 -0700769 *tlbp = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 goto out;
771 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700772 cond_resched();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773 }
774
Hugh Dickins508034a2005-10-29 18:16:30 -0700775 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776 tlb_start_valid = 0;
777 zap_bytes = ZAP_BLOCK_SIZE;
778 }
779 }
780out:
Hugh Dickinsee39b372005-04-19 13:29:15 -0700781 return start; /* which is now the end (or restart) address */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782}
783
784/**
785 * zap_page_range - remove user pages in a given range
786 * @vma: vm_area_struct holding the applicable pages
787 * @address: starting address of pages to zap
788 * @size: number of bytes to zap
789 * @details: details of nonlinear truncation or shared cache invalidation
790 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700791unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792 unsigned long size, struct zap_details *details)
793{
794 struct mm_struct *mm = vma->vm_mm;
795 struct mmu_gather *tlb;
796 unsigned long end = address + size;
797 unsigned long nr_accounted = 0;
798
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799 lru_add_drain();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 tlb = tlb_gather_mmu(mm, 0);
Hugh Dickins365e9c872005-10-29 18:16:18 -0700801 update_hiwater_rss(mm);
Hugh Dickins508034a2005-10-29 18:16:30 -0700802 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
803 if (tlb)
804 tlb_finish_mmu(tlb, address, end);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700805 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806}
807
808/*
809 * Do a quick page-table lookup for a single page.
810 * mm->page_table_lock must be held.
811 */
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700812static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
813 int read, int write, int accessed)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814{
815 pgd_t *pgd;
816 pud_t *pud;
817 pmd_t *pmd;
818 pte_t *ptep, pte;
819 unsigned long pfn;
820 struct page *page;
821
822 page = follow_huge_addr(mm, address, write);
823 if (! IS_ERR(page))
824 return page;
825
826 pgd = pgd_offset(mm, address);
827 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
828 goto out;
829
830 pud = pud_offset(pgd, address);
831 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
832 goto out;
833
834 pmd = pmd_offset(pud, address);
835 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
836 goto out;
837 if (pmd_huge(*pmd))
838 return follow_huge_pmd(mm, address, pmd, write);
839
840 ptep = pte_offset_map(pmd, address);
841 if (!ptep)
842 goto out;
843
844 pte = *ptep;
845 pte_unmap(ptep);
846 if (pte_present(pte)) {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000847 if (write && !pte_write(pte))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848 goto out;
849 if (read && !pte_read(pte))
850 goto out;
851 pfn = pte_pfn(pte);
852 if (pfn_valid(pfn)) {
853 page = pfn_to_page(pfn);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000854 if (accessed) {
855 if (write && !pte_dirty(pte) &&!PageDirty(page))
856 set_page_dirty(page);
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700857 mark_page_accessed(page);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000858 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 return page;
860 }
861 }
862
863out:
864 return NULL;
865}
866
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700867inline struct page *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700868follow_page(struct mm_struct *mm, unsigned long address, int write)
869{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700870 return __follow_page(mm, address, 0, write, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700871}
872
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700873/*
874 * check_user_page_readable() can be called frm niterrupt context by oprofile,
875 * so we need to avoid taking any non-irq-safe locks
876 */
877int check_user_page_readable(struct mm_struct *mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700879 return __follow_page(mm, address, 1, 0, 0) != NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881EXPORT_SYMBOL(check_user_page_readable);
882
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883static inline int
884untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
885 unsigned long address)
886{
887 pgd_t *pgd;
888 pud_t *pud;
889 pmd_t *pmd;
890
891 /* Check if the vma is for an anonymous mapping. */
892 if (vma->vm_ops && vma->vm_ops->nopage)
893 return 0;
894
895 /* Check if page directory entry exists. */
896 pgd = pgd_offset(mm, address);
897 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
898 return 1;
899
900 pud = pud_offset(pgd, address);
901 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
902 return 1;
903
904 /* Check if page middle directory entry exists. */
905 pmd = pmd_offset(pud, address);
906 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
907 return 1;
908
909 /* There is a pte slot for 'address' in 'mm'. */
910 return 0;
911}
912
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
914 unsigned long start, int len, int write, int force,
915 struct page **pages, struct vm_area_struct **vmas)
916{
917 int i;
918 unsigned int flags;
919
920 /*
921 * Require read or write permissions.
922 * If 'force' is set, we only require the "MAY" flags.
923 */
924 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
925 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
926 i = 0;
927
928 do {
929 struct vm_area_struct * vma;
930
931 vma = find_extend_vma(mm, start);
932 if (!vma && in_gate_area(tsk, start)) {
933 unsigned long pg = start & PAGE_MASK;
934 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
935 pgd_t *pgd;
936 pud_t *pud;
937 pmd_t *pmd;
938 pte_t *pte;
939 if (write) /* user gate pages are read-only */
940 return i ? : -EFAULT;
941 if (pg > TASK_SIZE)
942 pgd = pgd_offset_k(pg);
943 else
944 pgd = pgd_offset_gate(mm, pg);
945 BUG_ON(pgd_none(*pgd));
946 pud = pud_offset(pgd, pg);
947 BUG_ON(pud_none(*pud));
948 pmd = pmd_offset(pud, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700949 if (pmd_none(*pmd))
950 return i ? : -EFAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951 pte = pte_offset_map(pmd, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700952 if (pte_none(*pte)) {
953 pte_unmap(pte);
954 return i ? : -EFAULT;
955 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956 if (pages) {
957 pages[i] = pte_page(*pte);
958 get_page(pages[i]);
959 }
960 pte_unmap(pte);
961 if (vmas)
962 vmas[i] = gate_vma;
963 i++;
964 start += PAGE_SIZE;
965 len--;
966 continue;
967 }
968
Nick Pigginb5810032005-10-29 18:16:12 -0700969 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 || !(flags & vma->vm_flags))
971 return i ? : -EFAULT;
972
973 if (is_vm_hugetlb_page(vma)) {
974 i = follow_hugetlb_page(mm, vma, pages, vmas,
975 &start, &len, i);
976 continue;
977 }
978 spin_lock(&mm->page_table_lock);
979 do {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000980 int write_access = write;
Hugh Dickins08ef4722005-06-21 17:15:10 -0700981 struct page *page;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700982
983 cond_resched_lock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000984 while (!(page = follow_page(mm, start, write_access))) {
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700985 int ret;
986
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987 /*
988 * Shortcut for anonymous pages. We don't want
989 * to force the creation of pages tables for
Hugh Dickins08ef4722005-06-21 17:15:10 -0700990 * insanely big anonymously mapped areas that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 * nobody touched so far. This is important
992 * for doing a core dump for these mappings.
993 */
Linus Torvalds4ceb5db2005-08-01 11:14:49 -0700994 if (!write && untouched_anonymous_page(mm,vma,start)) {
Hugh Dickins08ef4722005-06-21 17:15:10 -0700995 page = ZERO_PAGE(start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996 break;
997 }
998 spin_unlock(&mm->page_table_lock);
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700999 ret = __handle_mm_fault(mm, vma, start, write_access);
1000
1001 /*
1002 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1003 * broken COW when necessary, even if maybe_mkwrite
1004 * decided not to set pte_write. We can thus safely do
1005 * subsequent page lookups as if they were reads.
1006 */
1007 if (ret & VM_FAULT_WRITE)
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001008 write_access = 0;
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -07001009
1010 switch (ret & ~VM_FAULT_WRITE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 case VM_FAULT_MINOR:
1012 tsk->min_flt++;
1013 break;
1014 case VM_FAULT_MAJOR:
1015 tsk->maj_flt++;
1016 break;
1017 case VM_FAULT_SIGBUS:
1018 return i ? i : -EFAULT;
1019 case VM_FAULT_OOM:
1020 return i ? i : -ENOMEM;
1021 default:
1022 BUG();
1023 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 spin_lock(&mm->page_table_lock);
1025 }
1026 if (pages) {
Hugh Dickins08ef4722005-06-21 17:15:10 -07001027 pages[i] = page;
1028 flush_dcache_page(page);
Nick Pigginb5810032005-10-29 18:16:12 -07001029 page_cache_get(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 }
1031 if (vmas)
1032 vmas[i] = vma;
1033 i++;
1034 start += PAGE_SIZE;
1035 len--;
Hugh Dickins08ef4722005-06-21 17:15:10 -07001036 } while (len && start < vma->vm_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 spin_unlock(&mm->page_table_lock);
Hugh Dickins08ef4722005-06-21 17:15:10 -07001038 } while (len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 return i;
1040}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041EXPORT_SYMBOL(get_user_pages);
1042
1043static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1044 unsigned long addr, unsigned long end, pgprot_t prot)
1045{
1046 pte_t *pte;
Hugh Dickinsc74df322005-10-29 18:16:23 -07001047 spinlock_t *ptl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048
Hugh Dickinsc74df322005-10-29 18:16:23 -07001049 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050 if (!pte)
1051 return -ENOMEM;
1052 do {
Nick Pigginb5810032005-10-29 18:16:12 -07001053 struct page *page = ZERO_PAGE(addr);
1054 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1055 page_cache_get(page);
1056 page_add_file_rmap(page);
1057 inc_mm_counter(mm, file_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058 BUG_ON(!pte_none(*pte));
1059 set_pte_at(mm, addr, pte, zero_pte);
1060 } while (pte++, addr += PAGE_SIZE, addr != end);
Hugh Dickinsc74df322005-10-29 18:16:23 -07001061 pte_unmap_unlock(pte - 1, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062 return 0;
1063}
1064
1065static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1066 unsigned long addr, unsigned long end, pgprot_t prot)
1067{
1068 pmd_t *pmd;
1069 unsigned long next;
1070
1071 pmd = pmd_alloc(mm, pud, addr);
1072 if (!pmd)
1073 return -ENOMEM;
1074 do {
1075 next = pmd_addr_end(addr, end);
1076 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1077 return -ENOMEM;
1078 } while (pmd++, addr = next, addr != end);
1079 return 0;
1080}
1081
1082static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1083 unsigned long addr, unsigned long end, pgprot_t prot)
1084{
1085 pud_t *pud;
1086 unsigned long next;
1087
1088 pud = pud_alloc(mm, pgd, addr);
1089 if (!pud)
1090 return -ENOMEM;
1091 do {
1092 next = pud_addr_end(addr, end);
1093 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1094 return -ENOMEM;
1095 } while (pud++, addr = next, addr != end);
1096 return 0;
1097}
1098
1099int zeromap_page_range(struct vm_area_struct *vma,
1100 unsigned long addr, unsigned long size, pgprot_t prot)
1101{
1102 pgd_t *pgd;
1103 unsigned long next;
1104 unsigned long end = addr + size;
1105 struct mm_struct *mm = vma->vm_mm;
1106 int err;
1107
1108 BUG_ON(addr >= end);
1109 pgd = pgd_offset(mm, addr);
1110 flush_cache_range(vma, addr, end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001111 do {
1112 next = pgd_addr_end(addr, end);
1113 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1114 if (err)
1115 break;
1116 } while (pgd++, addr = next, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 return err;
1118}
1119
1120/*
1121 * maps a range of physical memory into the requested pages. the old
1122 * mappings are removed. any references to nonexistent pages results
1123 * in null mappings (currently treated as "copy-on-access")
1124 */
1125static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1126 unsigned long addr, unsigned long end,
1127 unsigned long pfn, pgprot_t prot)
1128{
1129 pte_t *pte;
Hugh Dickinsc74df322005-10-29 18:16:23 -07001130 spinlock_t *ptl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131
Hugh Dickinsc74df322005-10-29 18:16:23 -07001132 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133 if (!pte)
1134 return -ENOMEM;
1135 do {
1136 BUG_ON(!pte_none(*pte));
Nick Pigginb5810032005-10-29 18:16:12 -07001137 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138 pfn++;
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
Hugh Dickinsc74df322005-10-29 18:16:23 -07001140 pte_unmap_unlock(pte - 1, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001141 return 0;
1142}
1143
1144static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1145 unsigned long addr, unsigned long end,
1146 unsigned long pfn, pgprot_t prot)
1147{
1148 pmd_t *pmd;
1149 unsigned long next;
1150
1151 pfn -= addr >> PAGE_SHIFT;
1152 pmd = pmd_alloc(mm, pud, addr);
1153 if (!pmd)
1154 return -ENOMEM;
1155 do {
1156 next = pmd_addr_end(addr, end);
1157 if (remap_pte_range(mm, pmd, addr, next,
1158 pfn + (addr >> PAGE_SHIFT), prot))
1159 return -ENOMEM;
1160 } while (pmd++, addr = next, addr != end);
1161 return 0;
1162}
1163
1164static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1165 unsigned long addr, unsigned long end,
1166 unsigned long pfn, pgprot_t prot)
1167{
1168 pud_t *pud;
1169 unsigned long next;
1170
1171 pfn -= addr >> PAGE_SHIFT;
1172 pud = pud_alloc(mm, pgd, addr);
1173 if (!pud)
1174 return -ENOMEM;
1175 do {
1176 next = pud_addr_end(addr, end);
1177 if (remap_pmd_range(mm, pud, addr, next,
1178 pfn + (addr >> PAGE_SHIFT), prot))
1179 return -ENOMEM;
1180 } while (pud++, addr = next, addr != end);
1181 return 0;
1182}
1183
1184/* Note: this is only safe if the mm semaphore is held when called. */
1185int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1186 unsigned long pfn, unsigned long size, pgprot_t prot)
1187{
1188 pgd_t *pgd;
1189 unsigned long next;
Hugh Dickins2d15cab2005-06-25 14:54:33 -07001190 unsigned long end = addr + PAGE_ALIGN(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 struct mm_struct *mm = vma->vm_mm;
1192 int err;
1193
1194 /*
1195 * Physically remapped pages are special. Tell the
1196 * rest of the world about it:
1197 * VM_IO tells people not to look at these pages
1198 * (accesses can have side effects).
Nick Pigginb5810032005-10-29 18:16:12 -07001199 * VM_RESERVED tells the core MM not to "manage" these pages
1200 * (e.g. refcount, mapcount, try to swap them out).
Linus Torvalds1da177e2005-04-16 15:20:36 -07001201 */
1202 vma->vm_flags |= VM_IO | VM_RESERVED;
1203
1204 BUG_ON(addr >= end);
1205 pfn -= addr >> PAGE_SHIFT;
1206 pgd = pgd_offset(mm, addr);
1207 flush_cache_range(vma, addr, end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 do {
1209 next = pgd_addr_end(addr, end);
1210 err = remap_pud_range(mm, pgd, addr, next,
1211 pfn + (addr >> PAGE_SHIFT), prot);
1212 if (err)
1213 break;
1214 } while (pgd++, addr = next, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215 return err;
1216}
1217EXPORT_SYMBOL(remap_pfn_range);
1218
1219/*
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001220 * handle_pte_fault chooses page fault handler according to an entry
1221 * which was read non-atomically. Before making any commitment, on
1222 * those architectures or configurations (e.g. i386 with PAE) which
1223 * might give a mix of unmatched parts, do_swap_page and do_file_page
1224 * must check under lock before unmapping the pte and proceeding
1225 * (but do_wp_page is only called after already making such a check;
1226 * and do_anonymous_page and do_no_page can safely check later on).
1227 */
1228static inline int pte_unmap_same(struct mm_struct *mm,
1229 pte_t *page_table, pte_t orig_pte)
1230{
1231 int same = 1;
1232#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1233 if (sizeof(pte_t) > sizeof(unsigned long)) {
1234 spin_lock(&mm->page_table_lock);
1235 same = pte_same(*page_table, orig_pte);
1236 spin_unlock(&mm->page_table_lock);
1237 }
1238#endif
1239 pte_unmap(page_table);
1240 return same;
1241}
1242
1243/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1245 * servicing faults for write access. In the normal case, do always want
1246 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1247 * that do not have writing enabled, when used by access_process_vm.
1248 */
1249static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1250{
1251 if (likely(vma->vm_flags & VM_WRITE))
1252 pte = pte_mkwrite(pte);
1253 return pte;
1254}
1255
1256/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001257 * This routine handles present pages, when users try to write
1258 * to a shared page. It is done by copying the page to a new address
1259 * and decrementing the shared-page counter for the old page.
1260 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261 * Note that this routine assumes that the protection checks have been
1262 * done by the caller (the low-level page fault routine in most cases).
1263 * Thus we can safely just mark it writable once we've done any necessary
1264 * COW.
1265 *
1266 * We also mark the page dirty at this point even though the page will
1267 * change only once the write actually happens. This avoids a few races,
1268 * and potentially makes it more efficient.
1269 *
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001270 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1271 * but allow concurrent faults), with pte both mapped and locked.
1272 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001273 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001274static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1275 unsigned long address, pte_t *page_table, pmd_t *pmd,
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001276 spinlock_t *ptl, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277{
1278 struct page *old_page, *new_page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001279 unsigned long pfn = pte_pfn(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 pte_t entry;
Hugh Dickins65500d22005-10-29 18:15:59 -07001281 int ret = VM_FAULT_MINOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282
Nick Pigginb5810032005-10-29 18:16:12 -07001283 BUG_ON(vma->vm_flags & VM_RESERVED);
1284
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 if (unlikely(!pfn_valid(pfn))) {
1286 /*
Hugh Dickins65500d22005-10-29 18:15:59 -07001287 * Page table corrupted: show pte and kill process.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 */
Nick Pigginb5810032005-10-29 18:16:12 -07001289 print_bad_pte(vma, orig_pte, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001290 ret = VM_FAULT_OOM;
1291 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 }
1293 old_page = pfn_to_page(pfn);
1294
Hugh Dickinsd296e9c2005-06-21 17:15:11 -07001295 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 int reuse = can_share_swap_page(old_page);
1297 unlock_page(old_page);
1298 if (reuse) {
1299 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001300 entry = pte_mkyoung(orig_pte);
1301 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 ptep_set_access_flags(vma, address, page_table, entry, 1);
1303 update_mmu_cache(vma, address, entry);
1304 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001305 ret |= VM_FAULT_WRITE;
1306 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001307 }
1308 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309
1310 /*
1311 * Ok, we need to copy. Oh, well..
1312 */
Nick Pigginb5810032005-10-29 18:16:12 -07001313 page_cache_get(old_page);
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001314 pte_unmap_unlock(page_table, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315
1316 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001317 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 if (old_page == ZERO_PAGE(address)) {
1319 new_page = alloc_zeroed_user_highpage(vma, address);
1320 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001321 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001322 } else {
1323 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1324 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001325 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001326 copy_user_highpage(new_page, old_page, address);
1327 }
Hugh Dickins65500d22005-10-29 18:15:59 -07001328
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329 /*
1330 * Re-check the pte - we dropped the lock
1331 */
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001332 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
Hugh Dickins65500d22005-10-29 18:15:59 -07001333 if (likely(pte_same(*page_table, orig_pte))) {
Nick Pigginb5810032005-10-29 18:16:12 -07001334 page_remove_rmap(old_page);
1335 if (!PageAnon(old_page)) {
Hugh Dickins42946212005-10-29 18:16:05 -07001336 inc_mm_counter(mm, anon_rss);
Nick Pigginb5810032005-10-29 18:16:12 -07001337 dec_mm_counter(mm, file_rss);
Hugh Dickins42946212005-10-29 18:16:05 -07001338 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001340 entry = mk_pte(new_page, vma->vm_page_prot);
1341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1342 ptep_establish(vma, address, page_table, entry);
1343 update_mmu_cache(vma, address, entry);
1344 lazy_mmu_prot_update(entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001345 lru_cache_add_active(new_page);
1346 page_add_anon_rmap(new_page, vma, address);
1347
1348 /* Free the old page.. */
1349 new_page = old_page;
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001350 ret |= VM_FAULT_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 page_cache_release(new_page);
1353 page_cache_release(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001354unlock:
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001355 pte_unmap_unlock(page_table, ptl);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001356 return ret;
Hugh Dickins65500d22005-10-29 18:15:59 -07001357oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001358 page_cache_release(old_page);
1359 return VM_FAULT_OOM;
1360}
1361
1362/*
1363 * Helper functions for unmap_mapping_range().
1364 *
1365 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1366 *
1367 * We have to restart searching the prio_tree whenever we drop the lock,
1368 * since the iterator is only valid while the lock is held, and anyway
1369 * a later vma might be split and reinserted earlier while lock dropped.
1370 *
1371 * The list of nonlinear vmas could be handled more efficiently, using
1372 * a placeholder, but handle it in the same way until a need is shown.
1373 * It is important to search the prio_tree before nonlinear list: a vma
1374 * may become nonlinear and be shifted from prio_tree to nonlinear list
1375 * while the lock is dropped; but never shifted from list to prio_tree.
1376 *
1377 * In order to make forward progress despite restarting the search,
1378 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1379 * quickly skip it next time around. Since the prio_tree search only
1380 * shows us those vmas affected by unmapping the range in question, we
1381 * can't efficiently keep all vmas in step with mapping->truncate_count:
1382 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1383 * mapping->truncate_count and vma->vm_truncate_count are protected by
1384 * i_mmap_lock.
1385 *
1386 * In order to make forward progress despite repeatedly restarting some
Hugh Dickinsee39b372005-04-19 13:29:15 -07001387 * large vma, note the restart_addr from unmap_vmas when it breaks out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388 * and restart from that address when we reach that vma again. It might
1389 * have been split or merged, shrunk or extended, but never shifted: so
1390 * restart_addr remains valid so long as it remains in the vma's range.
1391 * unmap_mapping_range forces truncate_count to leap over page-aligned
1392 * values so we can save vma's restart_addr in its truncate_count field.
1393 */
1394#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1395
1396static void reset_vma_truncate_counts(struct address_space *mapping)
1397{
1398 struct vm_area_struct *vma;
1399 struct prio_tree_iter iter;
1400
1401 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1402 vma->vm_truncate_count = 0;
1403 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1404 vma->vm_truncate_count = 0;
1405}
1406
1407static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1408 unsigned long start_addr, unsigned long end_addr,
1409 struct zap_details *details)
1410{
1411 unsigned long restart_addr;
1412 int need_break;
1413
1414again:
1415 restart_addr = vma->vm_truncate_count;
1416 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1417 start_addr = restart_addr;
1418 if (start_addr >= end_addr) {
1419 /* Top of vma has been split off since last time */
1420 vma->vm_truncate_count = details->truncate_count;
1421 return 0;
1422 }
1423 }
1424
Hugh Dickinsee39b372005-04-19 13:29:15 -07001425 restart_addr = zap_page_range(vma, start_addr,
1426 end_addr - start_addr, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 need_break = need_resched() ||
1428 need_lockbreak(details->i_mmap_lock);
1429
Hugh Dickinsee39b372005-04-19 13:29:15 -07001430 if (restart_addr >= end_addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 /* We have now completed this vma: mark it so */
1432 vma->vm_truncate_count = details->truncate_count;
1433 if (!need_break)
1434 return 0;
1435 } else {
1436 /* Note restart_addr in vma's truncate_count field */
Hugh Dickinsee39b372005-04-19 13:29:15 -07001437 vma->vm_truncate_count = restart_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 if (!need_break)
1439 goto again;
1440 }
1441
1442 spin_unlock(details->i_mmap_lock);
1443 cond_resched();
1444 spin_lock(details->i_mmap_lock);
1445 return -EINTR;
1446}
1447
1448static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1449 struct zap_details *details)
1450{
1451 struct vm_area_struct *vma;
1452 struct prio_tree_iter iter;
1453 pgoff_t vba, vea, zba, zea;
1454
1455restart:
1456 vma_prio_tree_foreach(vma, &iter, root,
1457 details->first_index, details->last_index) {
1458 /* Skip quickly over those we have already dealt with */
1459 if (vma->vm_truncate_count == details->truncate_count)
1460 continue;
1461
1462 vba = vma->vm_pgoff;
1463 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1464 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1465 zba = details->first_index;
1466 if (zba < vba)
1467 zba = vba;
1468 zea = details->last_index;
1469 if (zea > vea)
1470 zea = vea;
1471
1472 if (unmap_mapping_range_vma(vma,
1473 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1474 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1475 details) < 0)
1476 goto restart;
1477 }
1478}
1479
1480static inline void unmap_mapping_range_list(struct list_head *head,
1481 struct zap_details *details)
1482{
1483 struct vm_area_struct *vma;
1484
1485 /*
1486 * In nonlinear VMAs there is no correspondence between virtual address
1487 * offset and file offset. So we must perform an exhaustive search
1488 * across *all* the pages in each nonlinear VMA, not just the pages
1489 * whose virtual address lies outside the file truncation point.
1490 */
1491restart:
1492 list_for_each_entry(vma, head, shared.vm_set.list) {
1493 /* Skip quickly over those we have already dealt with */
1494 if (vma->vm_truncate_count == details->truncate_count)
1495 continue;
1496 details->nonlinear_vma = vma;
1497 if (unmap_mapping_range_vma(vma, vma->vm_start,
1498 vma->vm_end, details) < 0)
1499 goto restart;
1500 }
1501}
1502
1503/**
1504 * unmap_mapping_range - unmap the portion of all mmaps
1505 * in the specified address_space corresponding to the specified
1506 * page range in the underlying file.
Martin Waitz3d410882005-06-23 22:05:21 -07001507 * @mapping: the address space containing mmaps to be unmapped.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508 * @holebegin: byte in first page to unmap, relative to the start of
1509 * the underlying file. This will be rounded down to a PAGE_SIZE
1510 * boundary. Note that this is different from vmtruncate(), which
1511 * must keep the partial page. In contrast, we must get rid of
1512 * partial pages.
1513 * @holelen: size of prospective hole in bytes. This will be rounded
1514 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1515 * end of the file.
1516 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1517 * but 0 when invalidating pagecache, don't throw away private data.
1518 */
1519void unmap_mapping_range(struct address_space *mapping,
1520 loff_t const holebegin, loff_t const holelen, int even_cows)
1521{
1522 struct zap_details details;
1523 pgoff_t hba = holebegin >> PAGE_SHIFT;
1524 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1525
1526 /* Check for overflow. */
1527 if (sizeof(holelen) > sizeof(hlen)) {
1528 long long holeend =
1529 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1530 if (holeend & ~(long long)ULONG_MAX)
1531 hlen = ULONG_MAX - hba + 1;
1532 }
1533
1534 details.check_mapping = even_cows? NULL: mapping;
1535 details.nonlinear_vma = NULL;
1536 details.first_index = hba;
1537 details.last_index = hba + hlen - 1;
1538 if (details.last_index < details.first_index)
1539 details.last_index = ULONG_MAX;
1540 details.i_mmap_lock = &mapping->i_mmap_lock;
1541
1542 spin_lock(&mapping->i_mmap_lock);
1543
1544 /* serialize i_size write against truncate_count write */
1545 smp_wmb();
1546 /* Protect against page faults, and endless unmapping loops */
1547 mapping->truncate_count++;
1548 /*
1549 * For archs where spin_lock has inclusive semantics like ia64
1550 * this smp_mb() will prevent to read pagetable contents
1551 * before the truncate_count increment is visible to
1552 * other cpus.
1553 */
1554 smp_mb();
1555 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1556 if (mapping->truncate_count == 0)
1557 reset_vma_truncate_counts(mapping);
1558 mapping->truncate_count++;
1559 }
1560 details.truncate_count = mapping->truncate_count;
1561
1562 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1563 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1564 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1565 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1566 spin_unlock(&mapping->i_mmap_lock);
1567}
1568EXPORT_SYMBOL(unmap_mapping_range);
1569
1570/*
1571 * Handle all mappings that got truncated by a "truncate()"
1572 * system call.
1573 *
1574 * NOTE! We have to be ready to update the memory sharing
1575 * between the file and the memory map for a potential last
1576 * incomplete page. Ugly, but necessary.
1577 */
1578int vmtruncate(struct inode * inode, loff_t offset)
1579{
1580 struct address_space *mapping = inode->i_mapping;
1581 unsigned long limit;
1582
1583 if (inode->i_size < offset)
1584 goto do_expand;
1585 /*
1586 * truncation of in-use swapfiles is disallowed - it would cause
1587 * subsequent swapout to scribble on the now-freed blocks.
1588 */
1589 if (IS_SWAPFILE(inode))
1590 goto out_busy;
1591 i_size_write(inode, offset);
1592 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1593 truncate_inode_pages(mapping, offset);
1594 goto out_truncate;
1595
1596do_expand:
1597 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1598 if (limit != RLIM_INFINITY && offset > limit)
1599 goto out_sig;
1600 if (offset > inode->i_sb->s_maxbytes)
1601 goto out_big;
1602 i_size_write(inode, offset);
1603
1604out_truncate:
1605 if (inode->i_op && inode->i_op->truncate)
1606 inode->i_op->truncate(inode);
1607 return 0;
1608out_sig:
1609 send_sig(SIGXFSZ, current, 0);
1610out_big:
1611 return -EFBIG;
1612out_busy:
1613 return -ETXTBSY;
1614}
1615
1616EXPORT_SYMBOL(vmtruncate);
1617
1618/*
1619 * Primitive swap readahead code. We simply read an aligned block of
1620 * (1 << page_cluster) entries in the swap area. This method is chosen
1621 * because it doesn't cost us any seek time. We also make sure to queue
1622 * the 'original' request together with the readahead ones...
1623 *
1624 * This has been extended to use the NUMA policies from the mm triggering
1625 * the readahead.
1626 *
1627 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1628 */
1629void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1630{
1631#ifdef CONFIG_NUMA
1632 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1633#endif
1634 int i, num;
1635 struct page *new_page;
1636 unsigned long offset;
1637
1638 /*
1639 * Get the number of handles we should do readahead io to.
1640 */
1641 num = valid_swaphandles(entry, &offset);
1642 for (i = 0; i < num; offset++, i++) {
1643 /* Ok, do the async read-ahead now */
1644 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1645 offset), vma, addr);
1646 if (!new_page)
1647 break;
1648 page_cache_release(new_page);
1649#ifdef CONFIG_NUMA
1650 /*
1651 * Find the next applicable VMA for the NUMA policy.
1652 */
1653 addr += PAGE_SIZE;
1654 if (addr == 0)
1655 vma = NULL;
1656 if (vma) {
1657 if (addr >= vma->vm_end) {
1658 vma = next_vma;
1659 next_vma = vma ? vma->vm_next : NULL;
1660 }
1661 if (vma && addr < vma->vm_start)
1662 vma = NULL;
1663 } else {
1664 if (next_vma && addr >= next_vma->vm_start) {
1665 vma = next_vma;
1666 next_vma = vma->vm_next;
1667 }
1668 }
1669#endif
1670 }
1671 lru_add_drain(); /* Push any new pages onto the LRU now */
1672}
1673
1674/*
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001675 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1676 * but allow concurrent faults), and pte mapped but not yet locked.
1677 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001679static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1680 unsigned long address, pte_t *page_table, pmd_t *pmd,
1681 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682{
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001683 spinlock_t *ptl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 struct page *page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001685 swp_entry_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 pte_t pte;
1687 int ret = VM_FAULT_MINOR;
1688
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001689 if (!pte_unmap_same(mm, page_table, orig_pte))
1690 goto out;
Hugh Dickins65500d22005-10-29 18:15:59 -07001691
1692 entry = pte_to_swp_entry(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 page = lookup_swap_cache(entry);
1694 if (!page) {
1695 swapin_readahead(entry, address, vma);
1696 page = read_swap_cache_async(entry, vma, address);
1697 if (!page) {
1698 /*
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001699 * Back out if somebody else faulted in this pte
1700 * while we released the pte lock.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701 */
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703 if (likely(pte_same(*page_table, orig_pte)))
1704 ret = VM_FAULT_OOM;
Hugh Dickins65500d22005-10-29 18:15:59 -07001705 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001706 }
1707
1708 /* Had to read the page from swap area: Major fault */
1709 ret = VM_FAULT_MAJOR;
1710 inc_page_state(pgmajfault);
1711 grab_swap_token();
1712 }
1713
1714 mark_page_accessed(page);
1715 lock_page(page);
1716
1717 /*
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001718 * Back out if somebody else already faulted in this pte.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719 */
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001720 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
Hugh Dickins9e9bef02005-10-29 18:16:15 -07001721 if (unlikely(!pte_same(*page_table, orig_pte)))
Kirill Korotaevb8107482005-05-16 21:53:50 -07001722 goto out_nomap;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001723
1724 if (unlikely(!PageUptodate(page))) {
1725 ret = VM_FAULT_SIGBUS;
1726 goto out_nomap;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001727 }
1728
1729 /* The page isn't present yet, go ahead with the fault. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001730
Hugh Dickins42946212005-10-29 18:16:05 -07001731 inc_mm_counter(mm, anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 pte = mk_pte(page, vma->vm_page_prot);
1733 if (write_access && can_share_swap_page(page)) {
1734 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1735 write_access = 0;
1736 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001737
1738 flush_icache_page(vma, page);
1739 set_pte_at(mm, address, page_table, pte);
1740 page_add_anon_rmap(page, vma, address);
1741
Hugh Dickinsc475a8a2005-06-21 17:15:12 -07001742 swap_free(entry);
1743 if (vm_swap_full())
1744 remove_exclusive_swap_page(page);
1745 unlock_page(page);
1746
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747 if (write_access) {
1748 if (do_wp_page(mm, vma, address,
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001749 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750 ret = VM_FAULT_OOM;
1751 goto out;
1752 }
1753
1754 /* No need to invalidate - it was non-present before */
1755 update_mmu_cache(vma, address, pte);
1756 lazy_mmu_prot_update(pte);
Hugh Dickins65500d22005-10-29 18:15:59 -07001757unlock:
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001758 pte_unmap_unlock(page_table, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759out:
1760 return ret;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001761out_nomap:
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001762 pte_unmap_unlock(page_table, ptl);
Kirill Korotaevb8107482005-05-16 21:53:50 -07001763 unlock_page(page);
1764 page_cache_release(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001765 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766}
1767
1768/*
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001769 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1770 * but allow concurrent faults), and pte mapped but not yet locked.
1771 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001773static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1774 unsigned long address, pte_t *page_table, pmd_t *pmd,
1775 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776{
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001777 struct page *page;
1778 spinlock_t *ptl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779 pte_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 if (write_access) {
1782 /* Allocate our own private page. */
1783 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784
1785 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001786 goto oom;
1787 page = alloc_zeroed_user_highpage(vma, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 if (!page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001789 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790
Hugh Dickins65500d22005-10-29 18:15:59 -07001791 entry = mk_pte(page, vma->vm_page_prot);
1792 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001793
1794 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1795 if (!pte_none(*page_table))
1796 goto release;
1797 inc_mm_counter(mm, anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798 lru_cache_add_active(page);
1799 SetPageReferenced(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001800 page_add_anon_rmap(page, vma, address);
Nick Pigginb5810032005-10-29 18:16:12 -07001801 } else {
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001802 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1803 page = ZERO_PAGE(address);
1804 page_cache_get(page);
1805 entry = mk_pte(page, vma->vm_page_prot);
1806
1807 ptl = &mm->page_table_lock;
1808 spin_lock(ptl);
1809 if (!pte_none(*page_table))
1810 goto release;
Nick Pigginb5810032005-10-29 18:16:12 -07001811 inc_mm_counter(mm, file_rss);
1812 page_add_file_rmap(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 }
1814
Hugh Dickins65500d22005-10-29 18:15:59 -07001815 set_pte_at(mm, address, page_table, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816
1817 /* No need to invalidate - it was non-present before */
Hugh Dickins65500d22005-10-29 18:15:59 -07001818 update_mmu_cache(vma, address, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001820unlock:
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001821 pte_unmap_unlock(page_table, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 return VM_FAULT_MINOR;
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001823release:
1824 page_cache_release(page);
1825 goto unlock;
Hugh Dickins65500d22005-10-29 18:15:59 -07001826oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 return VM_FAULT_OOM;
1828}
1829
1830/*
1831 * do_no_page() tries to create a new page mapping. It aggressively
1832 * tries to share with existing pages, but makes a separate copy if
1833 * the "write_access" parameter is true in order to avoid the next
1834 * page fault.
1835 *
1836 * As this is called only for pages that do not currently exist, we
1837 * do not need to flush old virtual caches or the TLB.
1838 *
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001839 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1840 * but allow concurrent faults), and pte mapped but not yet locked.
1841 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001843static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1844 unsigned long address, pte_t *page_table, pmd_t *pmd,
1845 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846{
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001847 spinlock_t *ptl;
Hugh Dickins65500d22005-10-29 18:15:59 -07001848 struct page *new_page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001849 struct address_space *mapping = NULL;
1850 pte_t entry;
1851 unsigned int sequence = 0;
1852 int ret = VM_FAULT_MINOR;
1853 int anon = 0;
1854
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856
1857 if (vma->vm_file) {
1858 mapping = vma->vm_file->f_mapping;
1859 sequence = mapping->truncate_count;
1860 smp_rmb(); /* serializes i_size against truncate_count */
1861 }
1862retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1864 /*
1865 * No smp_rmb is needed here as long as there's a full
1866 * spin_lock/unlock sequence inside the ->nopage callback
1867 * (for the pagecache lookup) that acts as an implicit
1868 * smp_mb() and prevents the i_size read to happen
1869 * after the next truncate_count read.
1870 */
1871
1872 /* no page was available -- either SIGBUS or OOM */
1873 if (new_page == NOPAGE_SIGBUS)
1874 return VM_FAULT_SIGBUS;
1875 if (new_page == NOPAGE_OOM)
1876 return VM_FAULT_OOM;
1877
1878 /*
1879 * Should we do an early C-O-W break?
1880 */
1881 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1882 struct page *page;
1883
1884 if (unlikely(anon_vma_prepare(vma)))
1885 goto oom;
1886 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1887 if (!page)
1888 goto oom;
1889 copy_user_highpage(page, new_page, address);
1890 page_cache_release(new_page);
1891 new_page = page;
1892 anon = 1;
1893 }
1894
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001895 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896 /*
1897 * For a file-backed vma, someone could have truncated or otherwise
1898 * invalidated this page. If unmap_mapping_range got called,
1899 * retry getting the page.
1900 */
1901 if (mapping && unlikely(sequence != mapping->truncate_count)) {
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001902 pte_unmap_unlock(page_table, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001904 cond_resched();
1905 sequence = mapping->truncate_count;
1906 smp_rmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 goto retry;
1908 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909
1910 /*
1911 * This silly early PAGE_DIRTY setting removes a race
1912 * due to the bad i386 page protection. But it's valid
1913 * for other architectures too.
1914 *
1915 * Note that if write_access is true, we either now have
1916 * an exclusive copy of the page, or this is a shared mapping,
1917 * so we can make it writable and dirty to avoid having to
1918 * handle that later.
1919 */
1920 /* Only go through if we didn't race with anybody else... */
1921 if (pte_none(*page_table)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 flush_icache_page(vma, new_page);
1923 entry = mk_pte(new_page, vma->vm_page_prot);
1924 if (write_access)
1925 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1926 set_pte_at(mm, address, page_table, entry);
1927 if (anon) {
Hugh Dickins42946212005-10-29 18:16:05 -07001928 inc_mm_counter(mm, anon_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929 lru_cache_add_active(new_page);
1930 page_add_anon_rmap(new_page, vma, address);
Nick Pigginb5810032005-10-29 18:16:12 -07001931 } else if (!(vma->vm_flags & VM_RESERVED)) {
Hugh Dickins42946212005-10-29 18:16:05 -07001932 inc_mm_counter(mm, file_rss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933 page_add_file_rmap(new_page);
Hugh Dickins42946212005-10-29 18:16:05 -07001934 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001935 } else {
1936 /* One of our sibling threads was faster, back out. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001938 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939 }
1940
1941 /* no need to invalidate: a not-present page shouldn't be cached */
1942 update_mmu_cache(vma, address, entry);
1943 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001944unlock:
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001945 pte_unmap_unlock(page_table, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 return ret;
1947oom:
1948 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001949 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950}
1951
1952/*
1953 * Fault of a previously existing named mapping. Repopulate the pte
1954 * from the encoded file_pte if possible. This enables swappable
1955 * nonlinear vmas.
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001956 *
1957 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1958 * but allow concurrent faults), and pte mapped but not yet locked.
1959 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001961static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1962 unsigned long address, pte_t *page_table, pmd_t *pmd,
1963 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964{
Hugh Dickins65500d22005-10-29 18:15:59 -07001965 pgoff_t pgoff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 int err;
1967
Hugh Dickins8f4e2102005-10-29 18:16:26 -07001968 if (!pte_unmap_same(mm, page_table, orig_pte))
1969 return VM_FAULT_MINOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001970
Hugh Dickins65500d22005-10-29 18:15:59 -07001971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1972 /*
1973 * Page table corrupted: show pte and kill process.
1974 */
Nick Pigginb5810032005-10-29 18:16:12 -07001975 print_bad_pte(vma, orig_pte, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001976 return VM_FAULT_OOM;
1977 }
1978 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1979
1980 pgoff = pte_to_pgoff(orig_pte);
1981 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1982 vma->vm_page_prot, pgoff, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983 if (err == -ENOMEM)
1984 return VM_FAULT_OOM;
1985 if (err)
1986 return VM_FAULT_SIGBUS;
1987 return VM_FAULT_MAJOR;
1988}
1989
1990/*
1991 * These routines also need to handle stuff like marking pages dirty
1992 * and/or accessed for architectures that don't do it in hardware (most
1993 * RISC architectures). The early dirtying is also good on the i386.
1994 *
1995 * There is also a hook called "update_mmu_cache()" that architectures
1996 * with external mmu caches can use to update those (ie the Sparc or
1997 * PowerPC hashed page tables that act as extended TLBs).
1998 *
Hugh Dickinsc74df322005-10-29 18:16:23 -07001999 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2000 * but allow concurrent faults), and pte mapped but not yet locked.
2001 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002 */
2003static inline int handle_pte_fault(struct mm_struct *mm,
Hugh Dickins65500d22005-10-29 18:15:59 -07002004 struct vm_area_struct *vma, unsigned long address,
2005 pte_t *pte, pmd_t *pmd, int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006{
2007 pte_t entry;
Hugh Dickins8f4e2102005-10-29 18:16:26 -07002008 spinlock_t *ptl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009
2010 entry = *pte;
2011 if (!pte_present(entry)) {
Hugh Dickins65500d22005-10-29 18:15:59 -07002012 if (pte_none(entry)) {
2013 if (!vma->vm_ops || !vma->vm_ops->nopage)
2014 return do_anonymous_page(mm, vma, address,
2015 pte, pmd, write_access);
2016 return do_no_page(mm, vma, address,
2017 pte, pmd, write_access);
2018 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 if (pte_file(entry))
Hugh Dickins65500d22005-10-29 18:15:59 -07002020 return do_file_page(mm, vma, address,
2021 pte, pmd, write_access, entry);
2022 return do_swap_page(mm, vma, address,
2023 pte, pmd, write_access, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024 }
2025
Hugh Dickins8f4e2102005-10-29 18:16:26 -07002026 ptl = &mm->page_table_lock;
2027 spin_lock(ptl);
2028 if (unlikely(!pte_same(*pte, entry)))
2029 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030 if (write_access) {
2031 if (!pte_write(entry))
Hugh Dickins8f4e2102005-10-29 18:16:26 -07002032 return do_wp_page(mm, vma, address,
2033 pte, pmd, ptl, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034 entry = pte_mkdirty(entry);
2035 }
2036 entry = pte_mkyoung(entry);
2037 ptep_set_access_flags(vma, address, pte, entry, write_access);
2038 update_mmu_cache(vma, address, entry);
2039 lazy_mmu_prot_update(entry);
Hugh Dickins8f4e2102005-10-29 18:16:26 -07002040unlock:
2041 pte_unmap_unlock(pte, ptl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002042 return VM_FAULT_MINOR;
2043}
2044
2045/*
2046 * By the time we get here, we already hold the mm semaphore
2047 */
Hugh Dickins65500d22005-10-29 18:15:59 -07002048int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 unsigned long address, int write_access)
2050{
2051 pgd_t *pgd;
2052 pud_t *pud;
2053 pmd_t *pmd;
2054 pte_t *pte;
2055
2056 __set_current_state(TASK_RUNNING);
2057
2058 inc_page_state(pgfault);
2059
Hugh Dickinsac9b9c62005-10-20 16:24:28 +01002060 if (unlikely(is_vm_hugetlb_page(vma)))
2061 return hugetlb_fault(mm, vma, address, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002062
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063 pgd = pgd_offset(mm, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064 pud = pud_alloc(mm, pgd, address);
2065 if (!pud)
Hugh Dickinsc74df322005-10-29 18:16:23 -07002066 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067 pmd = pmd_alloc(mm, pud, address);
2068 if (!pmd)
Hugh Dickinsc74df322005-10-29 18:16:23 -07002069 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070 pte = pte_alloc_map(mm, pmd, address);
2071 if (!pte)
Hugh Dickinsc74df322005-10-29 18:16:23 -07002072 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073
Hugh Dickinsc74df322005-10-29 18:16:23 -07002074 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075}
2076
2077#ifndef __PAGETABLE_PUD_FOLDED
2078/*
2079 * Allocate page upper directory.
Hugh Dickins872fec12005-10-29 18:16:21 -07002080 * We've already handled the fast-path in-line.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081 */
Hugh Dickins1bb36302005-10-29 18:16:22 -07002082int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083{
Hugh Dickinsc74df322005-10-29 18:16:23 -07002084 pud_t *new = pud_alloc_one(mm, address);
2085 if (!new)
Hugh Dickins1bb36302005-10-29 18:16:22 -07002086 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002087
Hugh Dickins872fec12005-10-29 18:16:21 -07002088 spin_lock(&mm->page_table_lock);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002089 if (pgd_present(*pgd)) /* Another has populated it */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 pud_free(new);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002091 else
2092 pgd_populate(mm, pgd, new);
Hugh Dickinsc74df322005-10-29 18:16:23 -07002093 spin_unlock(&mm->page_table_lock);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002094 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095}
2096#endif /* __PAGETABLE_PUD_FOLDED */
2097
2098#ifndef __PAGETABLE_PMD_FOLDED
2099/*
2100 * Allocate page middle directory.
Hugh Dickins872fec12005-10-29 18:16:21 -07002101 * We've already handled the fast-path in-line.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 */
Hugh Dickins1bb36302005-10-29 18:16:22 -07002103int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104{
Hugh Dickinsc74df322005-10-29 18:16:23 -07002105 pmd_t *new = pmd_alloc_one(mm, address);
2106 if (!new)
Hugh Dickins1bb36302005-10-29 18:16:22 -07002107 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108
Hugh Dickins872fec12005-10-29 18:16:21 -07002109 spin_lock(&mm->page_table_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110#ifndef __ARCH_HAS_4LEVEL_HACK
Hugh Dickins1bb36302005-10-29 18:16:22 -07002111 if (pud_present(*pud)) /* Another has populated it */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112 pmd_free(new);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002113 else
2114 pud_populate(mm, pud, new);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115#else
Hugh Dickins1bb36302005-10-29 18:16:22 -07002116 if (pgd_present(*pud)) /* Another has populated it */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 pmd_free(new);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002118 else
2119 pgd_populate(mm, pud, new);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002120#endif /* __ARCH_HAS_4LEVEL_HACK */
Hugh Dickinsc74df322005-10-29 18:16:23 -07002121 spin_unlock(&mm->page_table_lock);
Hugh Dickins1bb36302005-10-29 18:16:22 -07002122 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123}
2124#endif /* __PAGETABLE_PMD_FOLDED */
2125
2126int make_pages_present(unsigned long addr, unsigned long end)
2127{
2128 int ret, len, write;
2129 struct vm_area_struct * vma;
2130
2131 vma = find_vma(current->mm, addr);
2132 if (!vma)
2133 return -1;
2134 write = (vma->vm_flags & VM_WRITE) != 0;
2135 if (addr >= end)
2136 BUG();
2137 if (end > vma->vm_end)
2138 BUG();
2139 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2140 ret = get_user_pages(current, current->mm, addr,
2141 len, write, 0, NULL, NULL);
2142 if (ret < 0)
2143 return ret;
2144 return ret == len ? 0 : -1;
2145}
2146
2147/*
2148 * Map a vmalloc()-space virtual address to the physical page.
2149 */
2150struct page * vmalloc_to_page(void * vmalloc_addr)
2151{
2152 unsigned long addr = (unsigned long) vmalloc_addr;
2153 struct page *page = NULL;
2154 pgd_t *pgd = pgd_offset_k(addr);
2155 pud_t *pud;
2156 pmd_t *pmd;
2157 pte_t *ptep, pte;
2158
2159 if (!pgd_none(*pgd)) {
2160 pud = pud_offset(pgd, addr);
2161 if (!pud_none(*pud)) {
2162 pmd = pmd_offset(pud, addr);
2163 if (!pmd_none(*pmd)) {
2164 ptep = pte_offset_map(pmd, addr);
2165 pte = *ptep;
2166 if (pte_present(pte))
2167 page = pte_page(pte);
2168 pte_unmap(ptep);
2169 }
2170 }
2171 }
2172 return page;
2173}
2174
2175EXPORT_SYMBOL(vmalloc_to_page);
2176
2177/*
2178 * Map a vmalloc()-space virtual address to the physical page frame number.
2179 */
2180unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2181{
2182 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2183}
2184
2185EXPORT_SYMBOL(vmalloc_to_pfn);
2186
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187#if !defined(__HAVE_ARCH_GATE_AREA)
2188
2189#if defined(AT_SYSINFO_EHDR)
Adrian Bunk5ce78522005-09-10 00:26:28 -07002190static struct vm_area_struct gate_vma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191
2192static int __init gate_vma_init(void)
2193{
2194 gate_vma.vm_mm = NULL;
2195 gate_vma.vm_start = FIXADDR_USER_START;
2196 gate_vma.vm_end = FIXADDR_USER_END;
2197 gate_vma.vm_page_prot = PAGE_READONLY;
Nick Pigginb5810032005-10-29 18:16:12 -07002198 gate_vma.vm_flags = VM_RESERVED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 return 0;
2200}
2201__initcall(gate_vma_init);
2202#endif
2203
2204struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2205{
2206#ifdef AT_SYSINFO_EHDR
2207 return &gate_vma;
2208#else
2209 return NULL;
2210#endif
2211}
2212
2213int in_gate_area_no_task(unsigned long addr)
2214{
2215#ifdef AT_SYSINFO_EHDR
2216 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2217 return 1;
2218#endif
2219 return 0;
2220}
2221
2222#endif /* __HAVE_ARCH_GATE_AREA */