blob: 2547b3c4a26cd841efc5cd1fb2aeb00fbd63c0a2 [file] [log] [blame]
Luis R. Rodriguezf078f202008-08-04 00:16:41 -07001/*
Sujithcee075a2009-03-13 09:07:23 +05302 * Copyright (c) 2008-2009 Atheros Communications Inc.
Luis R. Rodriguezf078f202008-08-04 00:16:41 -07003 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040017/**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090042#include <linux/slab.h>
43
Luis R. Rodriguezcfe8cba2009-09-13 23:39:31 -070044#include "hw.h"
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070045
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040046/**
47 * ath9k_hw_write_regs - ??
48 *
49 * @ah: atheros hardware structure
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040050 * @freqIndex:
51 * @regWrites:
52 *
53 * Used for both the chipsets with an external AR2133/AR5133 radios and
54 * single-chip devices.
55 */
Luis R. Rodriguez896ff262009-10-19 02:33:44 -040056void ath9k_hw_write_regs(struct ath_hw *ah, u32 freqIndex, int regWrites)
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070057{
Sujith2660b812009-02-09 13:27:26 +053058 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070059}
60
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040061/**
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040062 * ath9k_hw_ar9280_set_channel - set channel on single-chip device
63 * @ah: atheros hardware structure
64 * @chan:
65 *
66 * This is the function to change channel on single-chip devices, that is
67 * all devices after ar9280.
68 *
69 * This function takes the channel value in MHz and sets
70 * hardware channel value. Assumes writes have been enabled to analog bus.
71 *
72 * Actual Expression,
73 *
74 * For 2GHz channel,
75 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
76 * (freq_ref = 40MHz)
77 *
78 * For 5GHz channel,
79 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
80 * (freq_ref = 40MHz/(24>>amodeRefSel))
81 */
Luis R. Rodriguez0a3b7ba2009-10-19 02:33:40 -040082int ath9k_hw_ar9280_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070083{
84 u16 bMode, fracMode, aModeRefSel = 0;
85 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
86 struct chan_centers centers;
87 u32 refDivA = 24;
88
89 ath9k_hw_get_channel_centers(ah, chan, &centers);
90 freq = centers.synth_center;
91
92 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
93 reg32 &= 0xc0000000;
94
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -040095 if (freq < 4800) { /* 2 GHz, fractional mode */
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070096 u32 txctl;
Sujith193cd452009-09-18 15:04:07 +053097 int regWrites = 0;
Luis R. Rodriguezf078f202008-08-04 00:16:41 -070098
99 bMode = 1;
100 fracMode = 1;
101 aModeRefSel = 0;
102 channelSel = (freq * 0x10000) / 15;
103
Sujith193cd452009-09-18 15:04:07 +0530104 if (AR_SREV_9287_11_OR_LATER(ah)) {
105 if (freq == 2484) {
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400106 /* Enable channel spreading for channel 14 */
Sujith193cd452009-09-18 15:04:07 +0530107 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
108 1, regWrites);
109 } else {
110 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
111 1, regWrites);
112 }
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700113 } else {
Sujith193cd452009-09-18 15:04:07 +0530114 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
115 if (freq == 2484) {
116 /* Enable channel spreading for channel 14 */
117 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
118 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
119 } else {
120 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
121 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
122 }
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700123 }
124 } else {
125 bMode = 0;
126 fracMode = 0;
127
Sujith06d0f062009-02-12 10:06:45 +0530128 switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
129 case 0:
130 if ((freq % 20) == 0) {
131 aModeRefSel = 3;
132 } else if ((freq % 10) == 0) {
133 aModeRefSel = 2;
134 }
135 if (aModeRefSel)
136 break;
137 case 1:
138 default:
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700139 aModeRefSel = 0;
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400140 /*
141 * Enable 2G (fractional) mode for channels
142 * which are 5MHz spaced.
143 */
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700144 fracMode = 1;
145 refDivA = 1;
146 channelSel = (freq * 0x8000) / 15;
147
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400148 /* RefDivA setting */
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700149 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
150 AR_AN_SYNTH9_REFDIVA, refDivA);
Sujith06d0f062009-02-12 10:06:45 +0530151
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700152 }
Sujith06d0f062009-02-12 10:06:45 +0530153
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700154 if (!fracMode) {
155 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
156 channelSel = ndiv & 0x1ff;
157 channelFrac = (ndiv & 0xfffffe00) * 2;
158 channelSel = (channelSel << 17) | channelFrac;
159 }
160 }
161
162 reg32 = reg32 |
163 (bMode << 29) |
164 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
165
166 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
167
Sujith2660b812009-02-09 13:27:26 +0530168 ah->curchan = chan;
169 ah->curchan_rad_index = -1;
Luis R. Rodriguez0a3b7ba2009-10-19 02:33:40 -0400170
171 return 0;
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700172}
173
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400174/**
Luis R. Rodrigueze16393b2009-10-19 02:33:42 -0400175 * ath9k_hw_9280_spur_mitigate - convert baseband spur frequency
176 * @ah: atheros hardware structure
177 * @chan:
178 *
179 * For single-chip solutions. Converts to baseband spur frequency given the
180 * input channel frequency and compute register settings below.
181 */
182void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
183{
184 int bb_spur = AR_NO_SPUR;
185 int freq;
186 int bin, cur_bin;
187 int bb_spur_off, spur_subchannel_sd;
188 int spur_freq_sd;
189 int spur_delta_phase;
190 int denominator;
191 int upper, lower, cur_vit_mask;
192 int tmp, newVal;
193 int i;
194 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
195 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
196 };
197 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
198 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
199 };
200 int inc[4] = { 0, 100, 0, 0 };
201 struct chan_centers centers;
202
203 int8_t mask_m[123];
204 int8_t mask_p[123];
205 int8_t mask_amt;
206 int tmp_mask;
207 int cur_bb_spur;
208 bool is2GHz = IS_CHAN_2GHZ(chan);
209
210 memset(&mask_m, 0, sizeof(int8_t) * 123);
211 memset(&mask_p, 0, sizeof(int8_t) * 123);
212
213 ath9k_hw_get_channel_centers(ah, chan, &centers);
214 freq = centers.synth_center;
215
216 ah->config.spurmode = SPUR_ENABLE_EEPROM;
217 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
218 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
219
220 if (is2GHz)
221 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
222 else
223 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
224
225 if (AR_NO_SPUR == cur_bb_spur)
226 break;
227 cur_bb_spur = cur_bb_spur - freq;
228
229 if (IS_CHAN_HT40(chan)) {
230 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
231 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
232 bb_spur = cur_bb_spur;
233 break;
234 }
235 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
236 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
237 bb_spur = cur_bb_spur;
238 break;
239 }
240 }
241
242 if (AR_NO_SPUR == bb_spur) {
243 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
244 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
245 return;
246 } else {
247 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
248 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
249 }
250
251 bin = bb_spur * 320;
252
253 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
254
255 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
256 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
257 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
258 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
259 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
260
261 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
262 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
263 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
264 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
265 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
266 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
267
268 if (IS_CHAN_HT40(chan)) {
269 if (bb_spur < 0) {
270 spur_subchannel_sd = 1;
271 bb_spur_off = bb_spur + 10;
272 } else {
273 spur_subchannel_sd = 0;
274 bb_spur_off = bb_spur - 10;
275 }
276 } else {
277 spur_subchannel_sd = 0;
278 bb_spur_off = bb_spur;
279 }
280
281 if (IS_CHAN_HT40(chan))
282 spur_delta_phase =
283 ((bb_spur * 262144) /
284 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
285 else
286 spur_delta_phase =
287 ((bb_spur * 524288) /
288 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
289
290 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
291 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
292
293 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
294 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
295 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
296 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
297
298 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
299 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
300
301 cur_bin = -6000;
302 upper = bin + 100;
303 lower = bin - 100;
304
305 for (i = 0; i < 4; i++) {
306 int pilot_mask = 0;
307 int chan_mask = 0;
308 int bp = 0;
309 for (bp = 0; bp < 30; bp++) {
310 if ((cur_bin > lower) && (cur_bin < upper)) {
311 pilot_mask = pilot_mask | 0x1 << bp;
312 chan_mask = chan_mask | 0x1 << bp;
313 }
314 cur_bin += 100;
315 }
316 cur_bin += inc[i];
317 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
318 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
319 }
320
321 cur_vit_mask = 6100;
322 upper = bin + 120;
323 lower = bin - 120;
324
325 for (i = 0; i < 123; i++) {
326 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
327
328 /* workaround for gcc bug #37014 */
329 volatile int tmp_v = abs(cur_vit_mask - bin);
330
331 if (tmp_v < 75)
332 mask_amt = 1;
333 else
334 mask_amt = 0;
335 if (cur_vit_mask < 0)
336 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
337 else
338 mask_p[cur_vit_mask / 100] = mask_amt;
339 }
340 cur_vit_mask -= 100;
341 }
342
343 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
344 | (mask_m[48] << 26) | (mask_m[49] << 24)
345 | (mask_m[50] << 22) | (mask_m[51] << 20)
346 | (mask_m[52] << 18) | (mask_m[53] << 16)
347 | (mask_m[54] << 14) | (mask_m[55] << 12)
348 | (mask_m[56] << 10) | (mask_m[57] << 8)
349 | (mask_m[58] << 6) | (mask_m[59] << 4)
350 | (mask_m[60] << 2) | (mask_m[61] << 0);
351 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
352 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
353
354 tmp_mask = (mask_m[31] << 28)
355 | (mask_m[32] << 26) | (mask_m[33] << 24)
356 | (mask_m[34] << 22) | (mask_m[35] << 20)
357 | (mask_m[36] << 18) | (mask_m[37] << 16)
358 | (mask_m[48] << 14) | (mask_m[39] << 12)
359 | (mask_m[40] << 10) | (mask_m[41] << 8)
360 | (mask_m[42] << 6) | (mask_m[43] << 4)
361 | (mask_m[44] << 2) | (mask_m[45] << 0);
362 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
363 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
364
365 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
366 | (mask_m[18] << 26) | (mask_m[18] << 24)
367 | (mask_m[20] << 22) | (mask_m[20] << 20)
368 | (mask_m[22] << 18) | (mask_m[22] << 16)
369 | (mask_m[24] << 14) | (mask_m[24] << 12)
370 | (mask_m[25] << 10) | (mask_m[26] << 8)
371 | (mask_m[27] << 6) | (mask_m[28] << 4)
372 | (mask_m[29] << 2) | (mask_m[30] << 0);
373 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
374 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
375
376 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
377 | (mask_m[2] << 26) | (mask_m[3] << 24)
378 | (mask_m[4] << 22) | (mask_m[5] << 20)
379 | (mask_m[6] << 18) | (mask_m[7] << 16)
380 | (mask_m[8] << 14) | (mask_m[9] << 12)
381 | (mask_m[10] << 10) | (mask_m[11] << 8)
382 | (mask_m[12] << 6) | (mask_m[13] << 4)
383 | (mask_m[14] << 2) | (mask_m[15] << 0);
384 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
385 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
386
387 tmp_mask = (mask_p[15] << 28)
388 | (mask_p[14] << 26) | (mask_p[13] << 24)
389 | (mask_p[12] << 22) | (mask_p[11] << 20)
390 | (mask_p[10] << 18) | (mask_p[9] << 16)
391 | (mask_p[8] << 14) | (mask_p[7] << 12)
392 | (mask_p[6] << 10) | (mask_p[5] << 8)
393 | (mask_p[4] << 6) | (mask_p[3] << 4)
394 | (mask_p[2] << 2) | (mask_p[1] << 0);
395 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
396 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
397
398 tmp_mask = (mask_p[30] << 28)
399 | (mask_p[29] << 26) | (mask_p[28] << 24)
400 | (mask_p[27] << 22) | (mask_p[26] << 20)
401 | (mask_p[25] << 18) | (mask_p[24] << 16)
402 | (mask_p[23] << 14) | (mask_p[22] << 12)
403 | (mask_p[21] << 10) | (mask_p[20] << 8)
404 | (mask_p[19] << 6) | (mask_p[18] << 4)
405 | (mask_p[17] << 2) | (mask_p[16] << 0);
406 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
407 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
408
409 tmp_mask = (mask_p[45] << 28)
410 | (mask_p[44] << 26) | (mask_p[43] << 24)
411 | (mask_p[42] << 22) | (mask_p[41] << 20)
412 | (mask_p[40] << 18) | (mask_p[39] << 16)
413 | (mask_p[38] << 14) | (mask_p[37] << 12)
414 | (mask_p[36] << 10) | (mask_p[35] << 8)
415 | (mask_p[34] << 6) | (mask_p[33] << 4)
416 | (mask_p[32] << 2) | (mask_p[31] << 0);
417 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
418 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
419
420 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
421 | (mask_p[59] << 26) | (mask_p[58] << 24)
422 | (mask_p[57] << 22) | (mask_p[56] << 20)
423 | (mask_p[55] << 18) | (mask_p[54] << 16)
424 | (mask_p[53] << 14) | (mask_p[52] << 12)
425 | (mask_p[51] << 10) | (mask_p[50] << 8)
426 | (mask_p[49] << 6) | (mask_p[48] << 4)
427 | (mask_p[47] << 2) | (mask_p[46] << 0);
428 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
429 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
430}
431
432/* All code below is for non single-chip solutions */
433
Luis R. Rodriguezddcd4c02009-10-19 02:33:46 -0400434/**
435 * ath9k_phy_modify_rx_buffer() - perform analog swizzling of parameters
436 * @rfbuf:
437 * @reg32:
438 * @numBits:
439 * @firstBit:
440 * @column:
441 *
442 * Performs analog "swizzling" of parameters into their location.
443 * Used on external AR2133/AR5133 radios.
444 */
445static void ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
446 u32 numBits, u32 firstBit,
447 u32 column)
448{
449 u32 tmp32, mask, arrayEntry, lastBit;
450 int32_t bitPosition, bitsLeft;
451
452 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
453 arrayEntry = (firstBit - 1) / 8;
454 bitPosition = (firstBit - 1) % 8;
455 bitsLeft = numBits;
456 while (bitsLeft > 0) {
457 lastBit = (bitPosition + bitsLeft > 8) ?
458 8 : bitPosition + bitsLeft;
459 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
460 (column * 8);
461 rfBuf[arrayEntry] &= ~mask;
462 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
463 (column * 8)) & mask;
464 bitsLeft -= 8 - bitPosition;
465 tmp32 = tmp32 >> (8 - bitPosition);
466 bitPosition = 0;
467 arrayEntry++;
468 }
469}
470
Luis R. Rodrigueza7765822009-10-19 02:33:45 -0400471/*
472 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
473 * rf_pwd_icsyndiv.
474 *
475 * Theoretical Rules:
476 * if 2 GHz band
477 * if forceBiasAuto
478 * if synth_freq < 2412
479 * bias = 0
480 * else if 2412 <= synth_freq <= 2422
481 * bias = 1
482 * else // synth_freq > 2422
483 * bias = 2
484 * else if forceBias > 0
485 * bias = forceBias & 7
486 * else
487 * no change, use value from ini file
488 * else
489 * no change, invalid band
490 *
491 * 1st Mod:
492 * 2422 also uses value of 2
493 * <approved>
494 *
495 * 2nd Mod:
496 * Less than 2412 uses value of 0, 2412 and above uses value of 2
497 */
498static void ath9k_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
499{
500 struct ath_common *common = ath9k_hw_common(ah);
501 u32 tmp_reg;
502 int reg_writes = 0;
503 u32 new_bias = 0;
504
505 if (!AR_SREV_5416(ah) || synth_freq >= 3000) {
506 return;
507 }
508
509 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
510
511 if (synth_freq < 2412)
512 new_bias = 0;
513 else if (synth_freq < 2422)
514 new_bias = 1;
515 else
516 new_bias = 2;
517
518 /* pre-reverse this field */
519 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
520
521 ath_print(common, ATH_DBG_CONFIG,
522 "Force rf_pwd_icsyndiv to %1d on %4d\n",
523 new_bias, synth_freq);
524
525 /* swizzle rf_pwd_icsyndiv */
526 ath9k_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
527
528 /* write Bank 6 with new params */
529 REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
530}
531
Luis R. Rodrigueze16393b2009-10-19 02:33:42 -0400532/**
533 * ath9k_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
534 * @ah: atheros hardware stucture
535 * @chan:
536 *
537 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
538 * the channel value. Assumes writes enabled to analog bus and bank6 register
539 * cache in ah->analogBank6Data.
540 */
541int ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
542{
543 struct ath_common *common = ath9k_hw_common(ah);
544 u32 channelSel = 0;
545 u32 bModeSynth = 0;
546 u32 aModeRefSel = 0;
547 u32 reg32 = 0;
548 u16 freq;
549 struct chan_centers centers;
550
551 ath9k_hw_get_channel_centers(ah, chan, &centers);
552 freq = centers.synth_center;
553
554 if (freq < 4800) {
555 u32 txctl;
556
557 if (((freq - 2192) % 5) == 0) {
558 channelSel = ((freq - 672) * 2 - 3040) / 10;
559 bModeSynth = 0;
560 } else if (((freq - 2224) % 5) == 0) {
561 channelSel = ((freq - 704) * 2 - 3040) / 10;
562 bModeSynth = 1;
563 } else {
564 ath_print(common, ATH_DBG_FATAL,
565 "Invalid channel %u MHz\n", freq);
566 return -EINVAL;
567 }
568
569 channelSel = (channelSel << 2) & 0xff;
570 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
571
572 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
573 if (freq == 2484) {
574
575 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
576 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
577 } else {
578 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
579 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
580 }
581
582 } else if ((freq % 20) == 0 && freq >= 5120) {
583 channelSel =
584 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
585 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
586 } else if ((freq % 10) == 0) {
587 channelSel =
588 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
589 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
590 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
591 else
592 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
593 } else if ((freq % 5) == 0) {
594 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
595 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
596 } else {
597 ath_print(common, ATH_DBG_FATAL,
598 "Invalid channel %u MHz\n", freq);
599 return -EINVAL;
600 }
601
Luis R. Rodrigueza7765822009-10-19 02:33:45 -0400602 ath9k_hw_force_bias(ah, freq);
Luis R. Rodrigueza7765822009-10-19 02:33:45 -0400603
Luis R. Rodrigueze16393b2009-10-19 02:33:42 -0400604 reg32 =
605 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
606 (1 << 5) | 0x1;
607
608 REG_WRITE(ah, AR_PHY(0x37), reg32);
609
610 ah->curchan = chan;
611 ah->curchan_rad_index = -1;
612
613 return 0;
614}
615
616/**
617 * ath9k_hw_spur_mitigate - convert baseband spur frequency for external radios
618 * @ah: atheros hardware structure
619 * @chan:
620 *
621 * For non single-chip solutions. Converts to baseband spur frequency given the
622 * input channel frequency and compute register settings below.
623 */
624void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
625{
626 int bb_spur = AR_NO_SPUR;
627 int bin, cur_bin;
628 int spur_freq_sd;
629 int spur_delta_phase;
630 int denominator;
631 int upper, lower, cur_vit_mask;
632 int tmp, new;
633 int i;
634 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
635 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
636 };
637 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
638 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
639 };
640 int inc[4] = { 0, 100, 0, 0 };
641
642 int8_t mask_m[123];
643 int8_t mask_p[123];
644 int8_t mask_amt;
645 int tmp_mask;
646 int cur_bb_spur;
647 bool is2GHz = IS_CHAN_2GHZ(chan);
648
649 memset(&mask_m, 0, sizeof(int8_t) * 123);
650 memset(&mask_p, 0, sizeof(int8_t) * 123);
651
652 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
653 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
654 if (AR_NO_SPUR == cur_bb_spur)
655 break;
656 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
657 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
658 bb_spur = cur_bb_spur;
659 break;
660 }
661 }
662
663 if (AR_NO_SPUR == bb_spur)
664 return;
665
666 bin = bb_spur * 32;
667
668 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
669 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
670 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
671 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
672 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
673
674 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
675
676 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
677 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
678 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
679 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
680 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
681 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
682
683 spur_delta_phase = ((bb_spur * 524288) / 100) &
684 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
685
686 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
687 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
688
689 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
690 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
691 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
692 REG_WRITE(ah, AR_PHY_TIMING11, new);
693
694 cur_bin = -6000;
695 upper = bin + 100;
696 lower = bin - 100;
697
698 for (i = 0; i < 4; i++) {
699 int pilot_mask = 0;
700 int chan_mask = 0;
701 int bp = 0;
702 for (bp = 0; bp < 30; bp++) {
703 if ((cur_bin > lower) && (cur_bin < upper)) {
704 pilot_mask = pilot_mask | 0x1 << bp;
705 chan_mask = chan_mask | 0x1 << bp;
706 }
707 cur_bin += 100;
708 }
709 cur_bin += inc[i];
710 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
711 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
712 }
713
714 cur_vit_mask = 6100;
715 upper = bin + 120;
716 lower = bin - 120;
717
718 for (i = 0; i < 123; i++) {
719 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
720
721 /* workaround for gcc bug #37014 */
722 volatile int tmp_v = abs(cur_vit_mask - bin);
723
724 if (tmp_v < 75)
725 mask_amt = 1;
726 else
727 mask_amt = 0;
728 if (cur_vit_mask < 0)
729 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
730 else
731 mask_p[cur_vit_mask / 100] = mask_amt;
732 }
733 cur_vit_mask -= 100;
734 }
735
736 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
737 | (mask_m[48] << 26) | (mask_m[49] << 24)
738 | (mask_m[50] << 22) | (mask_m[51] << 20)
739 | (mask_m[52] << 18) | (mask_m[53] << 16)
740 | (mask_m[54] << 14) | (mask_m[55] << 12)
741 | (mask_m[56] << 10) | (mask_m[57] << 8)
742 | (mask_m[58] << 6) | (mask_m[59] << 4)
743 | (mask_m[60] << 2) | (mask_m[61] << 0);
744 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
745 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
746
747 tmp_mask = (mask_m[31] << 28)
748 | (mask_m[32] << 26) | (mask_m[33] << 24)
749 | (mask_m[34] << 22) | (mask_m[35] << 20)
750 | (mask_m[36] << 18) | (mask_m[37] << 16)
751 | (mask_m[48] << 14) | (mask_m[39] << 12)
752 | (mask_m[40] << 10) | (mask_m[41] << 8)
753 | (mask_m[42] << 6) | (mask_m[43] << 4)
754 | (mask_m[44] << 2) | (mask_m[45] << 0);
755 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
756 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
757
758 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
759 | (mask_m[18] << 26) | (mask_m[18] << 24)
760 | (mask_m[20] << 22) | (mask_m[20] << 20)
761 | (mask_m[22] << 18) | (mask_m[22] << 16)
762 | (mask_m[24] << 14) | (mask_m[24] << 12)
763 | (mask_m[25] << 10) | (mask_m[26] << 8)
764 | (mask_m[27] << 6) | (mask_m[28] << 4)
765 | (mask_m[29] << 2) | (mask_m[30] << 0);
766 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
767 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
768
769 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
770 | (mask_m[2] << 26) | (mask_m[3] << 24)
771 | (mask_m[4] << 22) | (mask_m[5] << 20)
772 | (mask_m[6] << 18) | (mask_m[7] << 16)
773 | (mask_m[8] << 14) | (mask_m[9] << 12)
774 | (mask_m[10] << 10) | (mask_m[11] << 8)
775 | (mask_m[12] << 6) | (mask_m[13] << 4)
776 | (mask_m[14] << 2) | (mask_m[15] << 0);
777 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
778 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
779
780 tmp_mask = (mask_p[15] << 28)
781 | (mask_p[14] << 26) | (mask_p[13] << 24)
782 | (mask_p[12] << 22) | (mask_p[11] << 20)
783 | (mask_p[10] << 18) | (mask_p[9] << 16)
784 | (mask_p[8] << 14) | (mask_p[7] << 12)
785 | (mask_p[6] << 10) | (mask_p[5] << 8)
786 | (mask_p[4] << 6) | (mask_p[3] << 4)
787 | (mask_p[2] << 2) | (mask_p[1] << 0);
788 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
789 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
790
791 tmp_mask = (mask_p[30] << 28)
792 | (mask_p[29] << 26) | (mask_p[28] << 24)
793 | (mask_p[27] << 22) | (mask_p[26] << 20)
794 | (mask_p[25] << 18) | (mask_p[24] << 16)
795 | (mask_p[23] << 14) | (mask_p[22] << 12)
796 | (mask_p[21] << 10) | (mask_p[20] << 8)
797 | (mask_p[19] << 6) | (mask_p[18] << 4)
798 | (mask_p[17] << 2) | (mask_p[16] << 0);
799 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
800 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
801
802 tmp_mask = (mask_p[45] << 28)
803 | (mask_p[44] << 26) | (mask_p[43] << 24)
804 | (mask_p[42] << 22) | (mask_p[41] << 20)
805 | (mask_p[40] << 18) | (mask_p[39] << 16)
806 | (mask_p[38] << 14) | (mask_p[37] << 12)
807 | (mask_p[36] << 10) | (mask_p[35] << 8)
808 | (mask_p[34] << 6) | (mask_p[33] << 4)
809 | (mask_p[32] << 2) | (mask_p[31] << 0);
810 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
811 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
812
813 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
814 | (mask_p[59] << 26) | (mask_p[58] << 24)
815 | (mask_p[57] << 22) | (mask_p[56] << 20)
816 | (mask_p[55] << 18) | (mask_p[54] << 16)
817 | (mask_p[53] << 14) | (mask_p[52] << 12)
818 | (mask_p[51] << 10) | (mask_p[50] << 8)
819 | (mask_p[49] << 6) | (mask_p[48] << 4)
820 | (mask_p[47] << 2) | (mask_p[46] << 0);
821 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
822 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
823}
824
825/**
826 * ath9k_hw_rf_alloc_ext_banks - allocates banks for external radio programming
827 * @ah: atheros hardware structure
828 *
829 * Only required for older devices with external AR2133/AR5133 radios.
830 */
831int ath9k_hw_rf_alloc_ext_banks(struct ath_hw *ah)
832{
833#define ATH_ALLOC_BANK(bank, size) do { \
834 bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
835 if (!bank) { \
836 ath_print(common, ATH_DBG_FATAL, \
837 "Cannot allocate RF banks\n"); \
838 return -ENOMEM; \
839 } \
840 } while (0);
841
842 struct ath_common *common = ath9k_hw_common(ah);
843
844 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
845
846 ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
847 ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
848 ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
849 ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
850 ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
851 ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
852 ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
853 ATH_ALLOC_BANK(ah->addac5416_21,
854 ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
855 ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
856
857 return 0;
858#undef ATH_ALLOC_BANK
859}
860
861
862/**
863 * ath9k_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
864 * @ah: atheros hardware struture
865 * For the external AR2133/AR5133 radios banks.
866 */
867void
868ath9k_hw_rf_free_ext_banks(struct ath_hw *ah)
869{
870#define ATH_FREE_BANK(bank) do { \
871 kfree(bank); \
872 bank = NULL; \
873 } while (0);
874
875 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
876
877 ATH_FREE_BANK(ah->analogBank0Data);
878 ATH_FREE_BANK(ah->analogBank1Data);
879 ATH_FREE_BANK(ah->analogBank2Data);
880 ATH_FREE_BANK(ah->analogBank3Data);
881 ATH_FREE_BANK(ah->analogBank6Data);
882 ATH_FREE_BANK(ah->analogBank6TPCData);
883 ATH_FREE_BANK(ah->analogBank7Data);
884 ATH_FREE_BANK(ah->addac5416_21);
885 ATH_FREE_BANK(ah->bank6Temp);
886
887#undef ATH_FREE_BANK
888}
889
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400890/* *
891 * ath9k_hw_set_rf_regs - programs rf registers based on EEPROM
892 * @ah: atheros hardware structure
893 * @chan:
894 * @modesIndex:
895 *
896 * Used for the external AR2133/AR5133 radios.
897 *
898 * Reads the EEPROM header info from the device structure and programs
899 * all rf registers. This routine requires access to the analog
900 * rf device. This is not required for single-chip devices.
901 */
Luis R. Rodrigueze16393b2009-10-19 02:33:42 -0400902bool ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
903 u16 modesIndex)
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700904{
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700905 u32 eepMinorRev;
906 u32 ob5GHz = 0, db5GHz = 0;
907 u32 ob2GHz = 0, db2GHz = 0;
908 int regWrites = 0;
909
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400910 /*
911 * Software does not need to program bank data
912 * for single chip devices, that is AR9280 or anything
913 * after that.
914 */
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700915 if (AR_SREV_9280_10_OR_LATER(ah))
916 return true;
917
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400918 /* Setup rf parameters */
Sujithf74df6f2009-02-09 13:27:24 +0530919 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700920
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400921 /* Setup Bank 0 Write */
Sujith2660b812009-02-09 13:27:26 +0530922 RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700923
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400924 /* Setup Bank 1 Write */
Sujith2660b812009-02-09 13:27:26 +0530925 RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700926
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400927 /* Setup Bank 2 Write */
Sujith2660b812009-02-09 13:27:26 +0530928 RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700929
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400930 /* Setup Bank 6 Write */
Sujith2660b812009-02-09 13:27:26 +0530931 RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700932 modesIndex);
933 {
934 int i;
Sujith2660b812009-02-09 13:27:26 +0530935 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
936 ah->analogBank6Data[i] =
937 INI_RA(&ah->iniBank6TPC, i, modesIndex);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700938 }
939 }
940
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400941 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700942 if (eepMinorRev >= 2) {
943 if (IS_CHAN_2GHZ(chan)) {
Sujithf74df6f2009-02-09 13:27:24 +0530944 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
945 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
Sujith2660b812009-02-09 13:27:26 +0530946 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700947 ob2GHz, 3, 197, 0);
Sujith2660b812009-02-09 13:27:26 +0530948 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700949 db2GHz, 3, 194, 0);
950 } else {
Sujithf74df6f2009-02-09 13:27:24 +0530951 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
952 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
Sujith2660b812009-02-09 13:27:26 +0530953 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700954 ob5GHz, 3, 203, 0);
Sujith2660b812009-02-09 13:27:26 +0530955 ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700956 db5GHz, 3, 200, 0);
957 }
958 }
959
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400960 /* Setup Bank 7 Setup */
Sujith2660b812009-02-09 13:27:26 +0530961 RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700962
Luis R. Rodriguez131d1d02009-10-19 02:33:35 -0400963 /* Write Analog registers */
Sujith2660b812009-02-09 13:27:26 +0530964 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700965 regWrites);
Sujith2660b812009-02-09 13:27:26 +0530966 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700967 regWrites);
Sujith2660b812009-02-09 13:27:26 +0530968 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700969 regWrites);
Sujith2660b812009-02-09 13:27:26 +0530970 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700971 regWrites);
Sujith2660b812009-02-09 13:27:26 +0530972 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700973 regWrites);
Sujith2660b812009-02-09 13:27:26 +0530974 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
Luis R. Rodriguezf078f202008-08-04 00:16:41 -0700975 regWrites);
976
977 return true;
978}