blob: 8de045f9e42546d1fa8fc138929e08a59496cd27 [file] [log] [blame]
Eric Huangaabcb7c2015-08-26 16:52:28 -04001/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27
28#include "hwmgr.h"
29#include "fiji_smumgr.h"
30#include "atombios.h"
31#include "hardwaremanager.h"
32#include "ppatomctrl.h"
33#include "atombios.h"
34#include "cgs_common.h"
35#include "fiji_dyn_defaults.h"
36#include "fiji_powertune.h"
37#include "smu73.h"
38#include "smu/smu_7_1_3_d.h"
39#include "smu/smu_7_1_3_sh_mask.h"
40#include "gmc/gmc_8_1_d.h"
41#include "gmc/gmc_8_1_sh_mask.h"
42#include "bif/bif_5_0_d.h"
43#include "bif/bif_5_0_sh_mask.h"
44#include "dce/dce_10_0_d.h"
45#include "dce/dce_10_0_sh_mask.h"
46#include "pppcielanes.h"
47#include "fiji_hwmgr.h"
48#include "tonga_processpptables.h"
49#include "tonga_pptable.h"
50#include "pp_debug.h"
51#include "pp_acpi.h"
Alex Deucher16881da2015-11-11 20:18:52 -050052#include "amd_pcie_helpers.h"
Eric Huang60103812015-11-27 14:09:53 -050053#include "cgs_linux.h"
54#include "ppinterrupt.h"
Eric Huangaabcb7c2015-08-26 16:52:28 -040055
Eric Huang91c4c982015-11-20 15:58:11 -050056#include "fiji_clockpowergating.h"
Eric Huang60103812015-11-27 14:09:53 -050057#include "fiji_thermal.h"
Eric Huang91c4c982015-11-20 15:58:11 -050058
Eric Huangaabcb7c2015-08-26 16:52:28 -040059#define VOLTAGE_SCALE 4
60#define SMC_RAM_END 0x40000
61#define VDDC_VDDCI_DELTA 300
62
63#define MC_SEQ_MISC0_GDDR5_SHIFT 28
64#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
65#define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67#define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
68#define MC_CG_ARB_FREQ_F1 0x0b
69#define MC_CG_ARB_FREQ_F2 0x0c
70#define MC_CG_ARB_FREQ_F3 0x0d
71
72/* From smc_reg.h */
73#define SMC_CG_IND_START 0xc0030000
74#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
75
76#define VOLTAGE_SCALE 4
77#define VOLTAGE_VID_OFFSET_SCALE1 625
78#define VOLTAGE_VID_OFFSET_SCALE2 100
79
80#define VDDC_VDDCI_DELTA 300
81
82#define ixSWRST_COMMAND_1 0x1400103
83#define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
84
85/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86enum DPM_EVENT_SRC {
87 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
88 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
89 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
90 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
91 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
92};
93
94enum DISPLAY_GAP {
95 DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
96 DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
97 DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. */
98 DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
99};
100
101/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
102 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
103 */
104uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
105 {600, 1050, 6, 1} };
106
107/* [FF, SS] type, [] 4 voltage ranges, and
108 * [Floor Freq, Boundary Freq, VID min , VID max]
109 */
110uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
111{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
112 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
113
114/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
115 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
116 */
117uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
118 {0, 2, 4, 5, 6, 5} };
119
120const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
121
122struct fiji_power_state *cast_phw_fiji_power_state(
123 struct pp_hw_power_state *hw_ps)
124{
125 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
126 "Invalid Powerstate Type!",
127 return NULL;);
128
129 return (struct fiji_power_state *)hw_ps;
130}
131
132const struct fiji_power_state *cast_const_phw_fiji_power_state(
133 const struct pp_hw_power_state *hw_ps)
134{
135 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
136 "Invalid Powerstate Type!",
137 return NULL;);
138
139 return (const struct fiji_power_state *)hw_ps;
140}
141
142static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
143{
144 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
145 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
146 ? true : false;
147}
148
149static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
150{
151 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
152 struct fiji_ulv_parm *ulv = &data->ulv;
153
154 ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
155 data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
156 data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
157 data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
158 data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
159 data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
160 data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
161 data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
162 data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
163
164 data->static_screen_threshold_unit =
165 PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
166 data->static_screen_threshold =
167 PPFIJI_STATICSCREENTHRESHOLD_DFLT;
168
169 /* Unset ABM cap as it moved to DAL.
170 * Add PHM_PlatformCaps_NonABMSupportInPPLib
171 * for re-direct ABM related request to DAL
172 */
173 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
174 PHM_PlatformCaps_ABM);
175 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
176 PHM_PlatformCaps_NonABMSupportInPPLib);
177
178 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
179 PHM_PlatformCaps_DynamicACTiming);
180
181 fiji_initialize_power_tune_defaults(hwmgr);
182
183 data->mclk_stutter_mode_threshold = 60000;
184 data->pcie_gen_performance.max = PP_PCIEGen1;
185 data->pcie_gen_performance.min = PP_PCIEGen3;
186 data->pcie_gen_power_saving.max = PP_PCIEGen1;
187 data->pcie_gen_power_saving.min = PP_PCIEGen3;
188 data->pcie_lane_performance.max = 0;
189 data->pcie_lane_performance.min = 16;
190 data->pcie_lane_power_saving.max = 0;
191 data->pcie_lane_power_saving.min = 16;
192
193 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
194 PHM_PlatformCaps_DynamicUVDState);
195}
196
197static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
198 phm_ppt_v1_voltage_lookup_table *lookup_table,
199 uint16_t virtual_voltage_id, int32_t *sclk)
200{
201 uint8_t entryId;
202 uint8_t voltageId;
203 struct phm_ppt_v1_information *table_info =
204 (struct phm_ppt_v1_information *)(hwmgr->pptable);
205
206 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
207
208 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
209 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
210 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
211 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
212 break;
213 }
214
215 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
216 "Can't find requested voltage id in vdd_dep_on_sclk table!",
217 return -EINVAL;
218 );
219
220 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
221
222 return 0;
223}
224
225/**
226* Get Leakage VDDC based on leakage ID.
227*
228* @param hwmgr the address of the powerplay hardware manager.
229* @return always 0
230*/
231static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
232{
233 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
234 uint16_t vv_id;
235 uint16_t vddc = 0;
236 uint16_t evv_default = 1150;
237 uint16_t i, j;
238 uint32_t sclk = 0;
239 struct phm_ppt_v1_information *table_info =
240 (struct phm_ppt_v1_information *)hwmgr->pptable;
241 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
242 table_info->vdd_dep_on_sclk;
243 int result;
244
245 for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
246 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
247 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
248 table_info->vddc_lookup_table, vv_id, &sclk)) {
249 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
250 PHM_PlatformCaps_ClockStretcher)) {
251 for (j = 1; j < sclk_table->count; j++) {
252 if (sclk_table->entries[j].clk == sclk &&
253 sclk_table->entries[j].cks_enable == 0) {
254 sclk += 5000;
255 break;
256 }
257 }
258 }
259
260 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
261 PHM_PlatformCaps_EnableDriverEVV))
262 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
263 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
264 else
265 result = -EINVAL;
266
267 if (result)
268 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
269 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
270
271 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
272 PP_ASSERT_WITH_CODE((vddc < 2000),
273 "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
274
275 if (result)
276 /* 1.15V is the default safe value for Fiji */
277 vddc = evv_default;
278
279 /* the voltage should not be zero nor equal to leakage ID */
280 if (vddc != 0 && vddc != vv_id) {
281 data->vddc_leakage.actual_voltage
282 [data->vddc_leakage.count] = vddc;
283 data->vddc_leakage.leakage_id
284 [data->vddc_leakage.count] = vv_id;
285 data->vddc_leakage.count++;
286 }
287 }
288 }
289 return 0;
290}
291
292/**
293 * Change virtual leakage voltage to actual value.
294 *
295 * @param hwmgr the address of the powerplay hardware manager.
296 * @param pointer to changing voltage
297 * @param pointer to leakage table
298 */
299static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
300 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
301{
302 uint32_t index;
303
304 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
305 for (index = 0; index < leakage_table->count; index++) {
306 /* if this voltage matches a leakage voltage ID */
307 /* patch with actual leakage voltage */
308 if (leakage_table->leakage_id[index] == *voltage) {
309 *voltage = leakage_table->actual_voltage[index];
310 break;
311 }
312 }
313
314 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
315 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
316}
317
318/**
319* Patch voltage lookup table by EVV leakages.
320*
321* @param hwmgr the address of the powerplay hardware manager.
322* @param pointer to voltage lookup table
323* @param pointer to leakage table
324* @return always 0
325*/
326static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
327 phm_ppt_v1_voltage_lookup_table *lookup_table,
328 struct fiji_leakage_voltage *leakage_table)
329{
330 uint32_t i;
331
332 for (i = 0; i < lookup_table->count; i++)
333 fiji_patch_with_vdd_leakage(hwmgr,
334 &lookup_table->entries[i].us_vdd, leakage_table);
335
336 return 0;
337}
338
339static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
340 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
341 uint16_t *vddc)
342{
343 struct phm_ppt_v1_information *table_info =
344 (struct phm_ppt_v1_information *)(hwmgr->pptable);
345 fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
346 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
347 table_info->max_clock_voltage_on_dc.vddc;
348 return 0;
349}
350
351static int fiji_patch_voltage_dependency_tables_with_lookup_table(
352 struct pp_hwmgr *hwmgr)
353{
354 uint8_t entryId;
355 uint8_t voltageId;
356 struct phm_ppt_v1_information *table_info =
357 (struct phm_ppt_v1_information *)(hwmgr->pptable);
358
359 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
360 table_info->vdd_dep_on_sclk;
361 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
362 table_info->vdd_dep_on_mclk;
363 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
364 table_info->mm_dep_table;
365
366 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
367 voltageId = sclk_table->entries[entryId].vddInd;
368 sclk_table->entries[entryId].vddc =
369 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370 }
371
372 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
373 voltageId = mclk_table->entries[entryId].vddInd;
374 mclk_table->entries[entryId].vddc =
375 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376 }
377
378 for (entryId = 0; entryId < mm_table->count; ++entryId) {
379 voltageId = mm_table->entries[entryId].vddcInd;
380 mm_table->entries[entryId].vddc =
381 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
382 }
383
384 return 0;
385
386}
387
388static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
389{
390 /* Need to determine if we need calculated voltage. */
391 return 0;
392}
393
394static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
395{
396 /* Need to determine if we need calculated voltage from mm table. */
397 return 0;
398}
399
400static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
401 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
402{
403 uint32_t table_size, i, j;
404 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
405 table_size = lookup_table->count;
406
407 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
408 "Lookup table is empty", return -EINVAL);
409
410 /* Sorting voltages */
411 for (i = 0; i < table_size - 1; i++) {
412 for (j = i + 1; j > 0; j--) {
413 if (lookup_table->entries[j].us_vdd <
414 lookup_table->entries[j - 1].us_vdd) {
415 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
416 lookup_table->entries[j - 1] = lookup_table->entries[j];
417 lookup_table->entries[j] = tmp_voltage_lookup_record;
418 }
419 }
420 }
421
422 return 0;
423}
424
425static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
426{
427 int result = 0;
428 int tmp_result;
429 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
430 struct phm_ppt_v1_information *table_info =
431 (struct phm_ppt_v1_information *)(hwmgr->pptable);
432
433 tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
434 table_info->vddc_lookup_table, &(data->vddc_leakage));
435 if (tmp_result)
436 result = tmp_result;
437
438 tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
439 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
440 if (tmp_result)
441 result = tmp_result;
442
443 tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
444 if (tmp_result)
445 result = tmp_result;
446
447 tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
448 if (tmp_result)
449 result = tmp_result;
450
451 tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
452 if (tmp_result)
453 result = tmp_result;
454
455 tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
456 if(tmp_result)
457 result = tmp_result;
458
459 return result;
460}
461
462static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
463{
464 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
465 struct phm_ppt_v1_information *table_info =
466 (struct phm_ppt_v1_information *)(hwmgr->pptable);
467
468 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
469 table_info->vdd_dep_on_sclk;
470 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
471 table_info->vdd_dep_on_mclk;
472
473 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
474 "VDD dependency on SCLK table is missing. \
475 This table is mandatory", return -EINVAL);
476 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
477 "VDD dependency on SCLK table has to have is missing. \
478 This table is mandatory", return -EINVAL);
479
480 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
481 "VDD dependency on MCLK table is missing. \
482 This table is mandatory", return -EINVAL);
483 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
484 "VDD dependency on MCLK table has to have is missing. \
485 This table is mandatory", return -EINVAL);
486
487 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
488 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
489 entries[allowed_sclk_vdd_table->count - 1].vddc;
490
491 table_info->max_clock_voltage_on_ac.sclk =
492 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
493 table_info->max_clock_voltage_on_ac.mclk =
494 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
495 table_info->max_clock_voltage_on_ac.vddc =
496 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
497 table_info->max_clock_voltage_on_ac.vddci =
498 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
499
500 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
501 table_info->max_clock_voltage_on_ac.sclk;
502 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
503 table_info->max_clock_voltage_on_ac.mclk;
504 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
505 table_info->max_clock_voltage_on_ac.vddc;
506 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
507 table_info->max_clock_voltage_on_ac.vddci;
508
509 return 0;
510}
511
512static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
513{
514 uint32_t speedCntl = 0;
515
516 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
517 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
518 ixPCIE_LC_SPEED_CNTL);
519 return((uint16_t)PHM_GET_FIELD(speedCntl,
520 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
521}
522
523static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
524{
525 uint32_t link_width;
526
527 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
528 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
529 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
530
531 PP_ASSERT_WITH_CODE((7 >= link_width),
532 "Invalid PCIe lane width!", return 0);
533
534 return decode_pcie_lane_width(link_width);
535}
536
537/** Patch the Boot State to match VBIOS boot clocks and voltage.
538*
539* @param hwmgr Pointer to the hardware manager.
540* @param pPowerState The address of the PowerState instance being created.
541*
542*/
543static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
544 struct pp_hw_power_state *hw_ps)
545{
546 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
547 struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
548 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
549 uint16_t size;
550 uint8_t frev, crev;
551 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
552
553 /* First retrieve the Boot clocks and VDDC from the firmware info table.
554 * We assume here that fw_info is unchanged if this call fails.
555 */
556 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
557 hwmgr->device, index,
558 &size, &frev, &crev);
559 if (!fw_info)
560 /* During a test, there is no firmware info table. */
561 return 0;
562
563 /* Patch the state. */
564 data->vbios_boot_state.sclk_bootup_value =
565 le32_to_cpu(fw_info->ulDefaultEngineClock);
566 data->vbios_boot_state.mclk_bootup_value =
567 le32_to_cpu(fw_info->ulDefaultMemoryClock);
568 data->vbios_boot_state.mvdd_bootup_value =
569 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
570 data->vbios_boot_state.vddc_bootup_value =
571 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
572 data->vbios_boot_state.vddci_bootup_value =
573 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
574 data->vbios_boot_state.pcie_gen_bootup_value =
575 fiji_get_current_pcie_speed(hwmgr);
576 data->vbios_boot_state.pcie_lane_bootup_value =
577 (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
578
579 /* set boot power state */
580 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
581 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
582 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
583 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
584
585 return 0;
586}
587
588static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
589{
590 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
591 uint32_t i;
592 struct phm_ppt_v1_information *table_info =
593 (struct phm_ppt_v1_information *)(hwmgr->pptable);
594 bool stay_in_boot;
595 int result;
596
597 data->dll_default_on = false;
598 data->sram_end = SMC_RAM_END;
599
600 for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
601 data->activity_target[i] = FIJI_AT_DFLT;
602
603 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
604
605 data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
606 data->mclk_dpm0_activity_target = 0xa;
607
608 data->sclk_dpm_key_disabled = 0;
609 data->mclk_dpm_key_disabled = 0;
610 data->pcie_dpm_key_disabled = 0;
611
612 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
613 PHM_PlatformCaps_UnTabledHardwareInterface);
614 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
615 PHM_PlatformCaps_TablelessHardwareInterface);
616
617 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
618 PHM_PlatformCaps_SclkDeepSleep);
619
620 data->gpio_debug = 0;
621
622 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
623 PHM_PlatformCaps_DynamicPatchPowerState);
624
625 /* need to set voltage control types before EVV patching */
626 data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
627 data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
628 data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
629
630 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
631 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
632 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
633
634 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
635 PHM_PlatformCaps_EnableMVDDControl))
636 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
637 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
638 data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
639
640 if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
641 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
642 PHM_PlatformCaps_EnableMVDDControl);
643
644 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
645 PHM_PlatformCaps_ControlVDDCI)) {
646 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
647 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
648 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
649 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
650 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
651 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
652 }
653
654 if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
655 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
656 PHM_PlatformCaps_ControlVDDCI);
657
658 if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
659 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
660 PHM_PlatformCaps_ClockStretcher);
661
662 fiji_init_dpm_defaults(hwmgr);
663
664 /* Get leakage voltage based on leakage ID. */
665 fiji_get_evv_voltages(hwmgr);
666
667 /* Patch our voltage dependency table with actual leakage voltage
668 * We need to perform leakage translation before it's used by other functions
669 */
670 fiji_complete_dependency_tables(hwmgr);
671
672 /* Parse pptable data read from VBIOS */
673 fiji_set_private_data_based_on_pptable(hwmgr);
674
675 /* ULV Support */
676 data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
677
678 /* Initalize Dynamic State Adjustment Rule Settings */
679 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
680
681 if (!result) {
682 data->uvd_enabled = false;
683 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
684 PHM_PlatformCaps_EnableSMU7ThermalManagement);
685 data->vddc_phase_shed_control = false;
686 }
687
688 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
689 PHM_PlatformCaps_StayInBootState);
690
691 if (0 == result) {
Alex Deucher464cea32015-11-11 21:02:16 -0500692 struct cgs_system_info sys_info = {0};
693
Eric Huangaabcb7c2015-08-26 16:52:28 -0400694 data->is_tlu_enabled = 0;
695 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
696 FIJI_MAX_HARDWARE_POWERLEVELS;
697 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
698 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
699
Eric Huang60103812015-11-27 14:09:53 -0500700 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
701 PHM_PlatformCaps_FanSpeedInTableIsRPM);
702
703 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
704 hwmgr->thermal_controller.
705 advanceFanControlParameters.ucFanControlMode) {
706 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
707 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
708 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
709 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
710 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
711 table_info->cac_dtp_table->usOperatingTempMinLimit;
712 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
713 table_info->cac_dtp_table->usOperatingTempMaxLimit;
714 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
715 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
716 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
717 table_info->cac_dtp_table->usOperatingTempStep;
718 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
719 table_info->cac_dtp_table->usTargetOperatingTemp;
720
721 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
722 PHM_PlatformCaps_ODFuzzyFanControlSupport);
723 }
724
Alex Deucher464cea32015-11-11 21:02:16 -0500725 sys_info.size = sizeof(struct cgs_system_info);
726 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
727 result = cgs_query_system_info(hwmgr->device, &sys_info);
728 if (result)
729 data->pcie_gen_cap = 0x30007;
730 else
731 data->pcie_gen_cap = (uint32_t)sys_info.value;
732 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
733 data->pcie_spc_cap = 20;
734 sys_info.size = sizeof(struct cgs_system_info);
735 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
736 result = cgs_query_system_info(hwmgr->device, &sys_info);
737 if (result)
738 data->pcie_lane_cap = 0x2f0000;
739 else
740 data->pcie_lane_cap = (uint32_t)sys_info.value;
Eric Huangaabcb7c2015-08-26 16:52:28 -0400741 } else {
742 /* Ignore return value in here, we are cleaning up a mess. */
743 tonga_hwmgr_backend_fini(hwmgr);
744 }
745
746 return 0;
747}
748
749/**
750 * Read clock related registers.
751 *
752 * @param hwmgr the address of the powerplay hardware manager.
753 * @return always 0
754 */
755static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
756{
757 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
758
759 data->clock_registers.vCG_SPLL_FUNC_CNTL =
760 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
761 ixCG_SPLL_FUNC_CNTL);
762 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
763 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
764 ixCG_SPLL_FUNC_CNTL_2);
765 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
766 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
767 ixCG_SPLL_FUNC_CNTL_3);
768 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
769 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
770 ixCG_SPLL_FUNC_CNTL_4);
771 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
772 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
773 ixCG_SPLL_SPREAD_SPECTRUM);
774 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
775 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
776 ixCG_SPLL_SPREAD_SPECTRUM_2);
777
778 return 0;
779}
780
781/**
782 * Find out if memory is GDDR5.
783 *
784 * @param hwmgr the address of the powerplay hardware manager.
785 * @return always 0
786 */
787static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
788{
789 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
790 uint32_t temp;
791
792 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
793
794 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
795 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
796 MC_SEQ_MISC0_GDDR5_SHIFT));
797
798 return 0;
799}
800
801/**
802 * Enables Dynamic Power Management by SMC
803 *
804 * @param hwmgr the address of the powerplay hardware manager.
805 * @return always 0
806 */
807static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
808{
809 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
810 GENERAL_PWRMGT, STATIC_PM_EN, 1);
811
812 return 0;
813}
814
815/**
816 * Initialize PowerGating States for different engines
817 *
818 * @param hwmgr the address of the powerplay hardware manager.
819 * @return always 0
820 */
821static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
822{
823 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
824
825 data->uvd_power_gated = false;
826 data->vce_power_gated = false;
827 data->samu_power_gated = false;
828 data->acp_power_gated = false;
829 data->pg_acp_init = true;
830
831 return 0;
832}
833
834static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
835{
836 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
837 data->low_sclk_interrupt_threshold = 0;
838
839 return 0;
840}
841
842static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
843{
844 int tmp_result, result = 0;
845
846 tmp_result = fiji_read_clock_registers(hwmgr);
847 PP_ASSERT_WITH_CODE((0 == tmp_result),
848 "Failed to read clock registers!", result = tmp_result);
849
850 tmp_result = fiji_get_memory_type(hwmgr);
851 PP_ASSERT_WITH_CODE((0 == tmp_result),
852 "Failed to get memory type!", result = tmp_result);
853
854 tmp_result = fiji_enable_acpi_power_management(hwmgr);
855 PP_ASSERT_WITH_CODE((0 == tmp_result),
856 "Failed to enable ACPI power management!", result = tmp_result);
857
858 tmp_result = fiji_init_power_gate_state(hwmgr);
859 PP_ASSERT_WITH_CODE((0 == tmp_result),
860 "Failed to init power gate state!", result = tmp_result);
861
862 tmp_result = tonga_get_mc_microcode_version(hwmgr);
863 PP_ASSERT_WITH_CODE((0 == tmp_result),
864 "Failed to get MC microcode version!", result = tmp_result);
865
866 tmp_result = fiji_init_sclk_threshold(hwmgr);
867 PP_ASSERT_WITH_CODE((0 == tmp_result),
868 "Failed to init sclk threshold!", result = tmp_result);
869
870 return result;
871}
872
873/**
874* Checks if we want to support voltage control
875*
876* @param hwmgr the address of the powerplay hardware manager.
877*/
878static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
879{
880 const struct fiji_hwmgr *data =
881 (const struct fiji_hwmgr *)(hwmgr->backend);
882
883 return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
884}
885
886/**
887* Enable voltage control
888*
889* @param hwmgr the address of the powerplay hardware manager.
890* @return always 0
891*/
892static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
893{
894 /* enable voltage control */
895 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
896 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
897
898 return 0;
899}
900
901/**
902* Remove repeated voltage values and create table with unique values.
903*
904* @param hwmgr the address of the powerplay hardware manager.
905* @param vol_table the pointer to changing voltage table
906* @return 0 in success
907*/
908
909static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
910 struct pp_atomctrl_voltage_table *vol_table)
911{
912 uint32_t i, j;
913 uint16_t vvalue;
914 bool found = false;
915 struct pp_atomctrl_voltage_table *table;
916
917 PP_ASSERT_WITH_CODE((NULL != vol_table),
918 "Voltage Table empty.", return -EINVAL);
919 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
920 GFP_KERNEL);
921
922 if (NULL == table)
923 return -EINVAL;
924
925 table->mask_low = vol_table->mask_low;
926 table->phase_delay = vol_table->phase_delay;
927
928 for (i = 0; i < vol_table->count; i++) {
929 vvalue = vol_table->entries[i].value;
930 found = false;
931
932 for (j = 0; j < table->count; j++) {
933 if (vvalue == table->entries[j].value) {
934 found = true;
935 break;
936 }
937 }
938
939 if (!found) {
940 table->entries[table->count].value = vvalue;
941 table->entries[table->count].smio_low =
942 vol_table->entries[i].smio_low;
943 table->count++;
944 }
945 }
946
947 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
948 kfree(table);
949
950 return 0;
951}
952static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
953 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
954{
955 uint32_t i;
956 int result;
957 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
958 struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
959
960 PP_ASSERT_WITH_CODE((0 != dep_table->count),
961 "Voltage Dependency Table empty.", return -EINVAL);
962
963 vol_table->mask_low = 0;
964 vol_table->phase_delay = 0;
965 vol_table->count = dep_table->count;
966
967 for (i = 0; i < dep_table->count; i++) {
968 vol_table->entries[i].value = dep_table->entries[i].mvdd;
969 vol_table->entries[i].smio_low = 0;
970 }
971
972 result = fiji_trim_voltage_table(hwmgr, vol_table);
973 PP_ASSERT_WITH_CODE((0 == result),
974 "Failed to trim MVDD table.", return result);
975
976 return 0;
977}
978
979static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
980 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
981{
982 uint32_t i;
983 int result;
984 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
985 struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
986
987 PP_ASSERT_WITH_CODE((0 != dep_table->count),
988 "Voltage Dependency Table empty.", return -EINVAL);
989
990 vol_table->mask_low = 0;
991 vol_table->phase_delay = 0;
992 vol_table->count = dep_table->count;
993
994 for (i = 0; i < dep_table->count; i++) {
995 vol_table->entries[i].value = dep_table->entries[i].vddci;
996 vol_table->entries[i].smio_low = 0;
997 }
998
999 result = fiji_trim_voltage_table(hwmgr, vol_table);
1000 PP_ASSERT_WITH_CODE((0 == result),
1001 "Failed to trim VDDCI table.", return result);
1002
1003 return 0;
1004}
1005
1006static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1007 phm_ppt_v1_voltage_lookup_table *lookup_table)
1008{
1009 int i = 0;
1010 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1011 struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1012
1013 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1014 "Voltage Lookup Table empty.", return -EINVAL);
1015
1016 vol_table->mask_low = 0;
1017 vol_table->phase_delay = 0;
1018
1019 vol_table->count = lookup_table->count;
1020
1021 for (i = 0; i < vol_table->count; i++) {
1022 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1023 vol_table->entries[i].smio_low = 0;
1024 }
1025
1026 return 0;
1027}
1028
1029/* ---- Voltage Tables ----
1030 * If the voltage table would be bigger than
1031 * what will fit into the state table on
1032 * the SMC keep only the higher entries.
1033 */
1034static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1035 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1036{
1037 unsigned int i, diff;
1038
1039 if (vol_table->count <= max_vol_steps)
1040 return;
1041
1042 diff = vol_table->count - max_vol_steps;
1043
1044 for (i = 0; i < max_vol_steps; i++)
1045 vol_table->entries[i] = vol_table->entries[i + diff];
1046
1047 vol_table->count = max_vol_steps;
1048
1049 return;
1050}
1051
1052/**
1053* Create Voltage Tables.
1054*
1055* @param hwmgr the address of the powerplay hardware manager.
1056* @return always 0
1057*/
1058static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1059{
1060 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1061 struct phm_ppt_v1_information *table_info =
1062 (struct phm_ppt_v1_information *)hwmgr->pptable;
1063 int result;
1064
1065 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1066 result = atomctrl_get_voltage_table_v3(hwmgr,
1067 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
1068 &(data->mvdd_voltage_table));
1069 PP_ASSERT_WITH_CODE((0 == result),
1070 "Failed to retrieve MVDD table.",
1071 return result);
1072 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1073 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1074 table_info->vdd_dep_on_mclk);
1075 PP_ASSERT_WITH_CODE((0 == result),
1076 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1077 return result;);
1078 }
1079
1080 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1081 result = atomctrl_get_voltage_table_v3(hwmgr,
1082 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1083 &(data->vddci_voltage_table));
1084 PP_ASSERT_WITH_CODE((0 == result),
1085 "Failed to retrieve VDDCI table.",
1086 return result);
1087 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1088 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1089 table_info->vdd_dep_on_mclk);
1090 PP_ASSERT_WITH_CODE((0 == result),
1091 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1092 return result);
1093 }
1094
1095 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1096 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1097 table_info->vddc_lookup_table);
1098 PP_ASSERT_WITH_CODE((0 == result),
1099 "Failed to retrieve SVI2 VDDC table from lookup table.",
1100 return result);
1101 }
1102
1103 PP_ASSERT_WITH_CODE(
1104 (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1105 "Too many voltage values for VDDC. Trimming to fit state table.",
1106 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1107 SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1108
1109 PP_ASSERT_WITH_CODE(
1110 (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1111 "Too many voltage values for VDDCI. Trimming to fit state table.",
1112 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1113 SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1114
1115 PP_ASSERT_WITH_CODE(
1116 (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1117 "Too many voltage values for MVDD. Trimming to fit state table.",
1118 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1119 SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1120
1121 return 0;
1122}
1123
1124static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1125{
1126 /* Program additional LP registers
1127 * that are no longer programmed by VBIOS
1128 */
1129 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1130 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1131 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1132 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1133 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1134 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1135 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1136 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1137 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1138 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1139 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1140 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1141 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1142 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1143
1144 return 0;
1145}
1146
1147/**
1148* Programs static screed detection parameters
1149*
1150* @param hwmgr the address of the powerplay hardware manager.
1151* @return always 0
1152*/
1153static int fiji_program_static_screen_threshold_parameters(
1154 struct pp_hwmgr *hwmgr)
1155{
1156 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1157
1158 /* Set static screen threshold unit */
1159 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1160 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1161 data->static_screen_threshold_unit);
1162 /* Set static screen threshold */
1163 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1164 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1165 data->static_screen_threshold);
1166
1167 return 0;
1168}
1169
1170/**
1171* Setup display gap for glitch free memory clock switching.
1172*
1173* @param hwmgr the address of the powerplay hardware manager.
1174* @return always 0
1175*/
1176static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1177{
1178 uint32_t displayGap =
1179 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1180 ixCG_DISPLAY_GAP_CNTL);
1181
1182 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1183 DISP_GAP, DISPLAY_GAP_IGNORE);
1184
1185 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1186 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1187
1188 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1189 ixCG_DISPLAY_GAP_CNTL, displayGap);
1190
1191 return 0;
1192}
1193
1194/**
1195* Programs activity state transition voting clients
1196*
1197* @param hwmgr the address of the powerplay hardware manager.
1198* @return always 0
1199*/
1200static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1201{
1202 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1203
1204 /* Clear reset for voting clients before enabling DPM */
1205 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1206 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1207 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1208 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1209
1210 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1211 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1212 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1213 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1214 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1215 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1216 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1217 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1218 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1219 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1220 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1221 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1222 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1223 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1224 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1225 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1226
1227 return 0;
1228}
1229
1230/**
1231* Get the location of various tables inside the FW image.
1232*
1233* @param hwmgr the address of the powerplay hardware manager.
1234* @return always 0
1235*/
1236static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1237{
1238 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1239 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1240 uint32_t tmp;
1241 int result;
1242 bool error = false;
1243
1244 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1245 SMU7_FIRMWARE_HEADER_LOCATION +
1246 offsetof(SMU73_Firmware_Header, DpmTable),
1247 &tmp, data->sram_end);
1248
1249 if (0 == result)
1250 data->dpm_table_start = tmp;
1251
1252 error |= (0 != result);
1253
1254 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1255 SMU7_FIRMWARE_HEADER_LOCATION +
1256 offsetof(SMU73_Firmware_Header, SoftRegisters),
1257 &tmp, data->sram_end);
1258
1259 if (!result) {
1260 data->soft_regs_start = tmp;
1261 smu_data->soft_regs_start = tmp;
1262 }
1263
1264 error |= (0 != result);
1265
1266 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1267 SMU7_FIRMWARE_HEADER_LOCATION +
1268 offsetof(SMU73_Firmware_Header, mcRegisterTable),
1269 &tmp, data->sram_end);
1270
1271 if (!result)
1272 data->mc_reg_table_start = tmp;
1273
1274 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1275 SMU7_FIRMWARE_HEADER_LOCATION +
1276 offsetof(SMU73_Firmware_Header, FanTable),
1277 &tmp, data->sram_end);
1278
1279 if (!result)
1280 data->fan_table_start = tmp;
1281
1282 error |= (0 != result);
1283
1284 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1285 SMU7_FIRMWARE_HEADER_LOCATION +
1286 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1287 &tmp, data->sram_end);
1288
1289 if (!result)
1290 data->arb_table_start = tmp;
1291
1292 error |= (0 != result);
1293
1294 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1295 SMU7_FIRMWARE_HEADER_LOCATION +
1296 offsetof(SMU73_Firmware_Header, Version),
1297 &tmp, data->sram_end);
1298
1299 if (!result)
1300 hwmgr->microcode_version_info.SMC = tmp;
1301
1302 error |= (0 != result);
1303
1304 return error ? -1 : 0;
1305}
1306
1307/* Copy one arb setting to another and then switch the active set.
1308 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1309 */
1310static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1311 uint32_t arb_src, uint32_t arb_dest)
1312{
1313 uint32_t mc_arb_dram_timing;
1314 uint32_t mc_arb_dram_timing2;
1315 uint32_t burst_time;
1316 uint32_t mc_cg_config;
1317
1318 switch (arb_src) {
1319 case MC_CG_ARB_FREQ_F0:
1320 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1321 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1322 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1323 break;
1324 case MC_CG_ARB_FREQ_F1:
1325 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1326 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1327 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1328 break;
1329 default:
1330 return -EINVAL;
1331 }
1332
1333 switch (arb_dest) {
1334 case MC_CG_ARB_FREQ_F0:
1335 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1336 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1337 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1338 break;
1339 case MC_CG_ARB_FREQ_F1:
1340 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1341 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1342 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1343 break;
1344 default:
1345 return -EINVAL;
1346 }
1347
1348 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1349 mc_cg_config |= 0x0000000F;
1350 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1351 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1352
1353 return 0;
1354}
1355
1356/**
1357* Initial switch from ARB F0->F1
1358*
1359* @param hwmgr the address of the powerplay hardware manager.
1360* @return always 0
1361* This function is to be called from the SetPowerState table.
1362*/
1363static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1364{
1365 return fiji_copy_and_switch_arb_sets(hwmgr,
1366 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1367}
1368
1369static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1370 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1371{
1372 int i;
1373 PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1374 "Fatal error, can not set up single DPM table entries "
1375 "to exceed max number!",);
1376
1377 dpm_table->count = count;
1378 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1379 dpm_table->dpm_levels[i].enabled = false;
1380
1381 return 0;
1382}
1383
1384static void fiji_setup_pcie_table_entry(
1385 struct fiji_single_dpm_table *dpm_table,
1386 uint32_t index, uint32_t pcie_gen,
1387 uint32_t pcie_lanes)
1388{
1389 dpm_table->dpm_levels[index].value = pcie_gen;
1390 dpm_table->dpm_levels[index].param1 = pcie_lanes;
1391 dpm_table->dpm_levels[index].enabled = 1;
1392}
1393
1394static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1395{
1396 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1397 struct phm_ppt_v1_information *table_info =
1398 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1399 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1400 uint32_t i, max_entry;
1401
1402 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1403 data->use_pcie_power_saving_levels), "No pcie performance levels!",
1404 return -EINVAL);
1405
1406 if (data->use_pcie_performance_levels &&
1407 !data->use_pcie_power_saving_levels) {
1408 data->pcie_gen_power_saving = data->pcie_gen_performance;
1409 data->pcie_lane_power_saving = data->pcie_lane_performance;
1410 } else if (!data->use_pcie_performance_levels &&
1411 data->use_pcie_power_saving_levels) {
1412 data->pcie_gen_performance = data->pcie_gen_power_saving;
1413 data->pcie_lane_performance = data->pcie_lane_power_saving;
1414 }
1415
1416 fiji_reset_single_dpm_table(hwmgr,
1417 &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1418
1419 if (pcie_table != NULL) {
1420 /* max_entry is used to make sure we reserve one PCIE level
1421 * for boot level (fix for A+A PSPP issue).
1422 * If PCIE table from PPTable have ULV entry + 8 entries,
1423 * then ignore the last entry.*/
1424 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1425 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1426 for (i = 1; i < max_entry; i++) {
1427 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1428 get_pcie_gen_support(data->pcie_gen_cap,
1429 pcie_table->entries[i].gen_speed),
1430 get_pcie_lane_support(data->pcie_lane_cap,
1431 pcie_table->entries[i].lane_width));
1432 }
1433 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1434 } else {
1435 /* Hardcode Pcie Table */
1436 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1437 get_pcie_gen_support(data->pcie_gen_cap,
1438 PP_Min_PCIEGen),
1439 get_pcie_lane_support(data->pcie_lane_cap,
1440 PP_Max_PCIELane));
1441 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1442 get_pcie_gen_support(data->pcie_gen_cap,
1443 PP_Min_PCIEGen),
1444 get_pcie_lane_support(data->pcie_lane_cap,
1445 PP_Max_PCIELane));
1446 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1447 get_pcie_gen_support(data->pcie_gen_cap,
1448 PP_Max_PCIEGen),
1449 get_pcie_lane_support(data->pcie_lane_cap,
1450 PP_Max_PCIELane));
1451 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1452 get_pcie_gen_support(data->pcie_gen_cap,
1453 PP_Max_PCIEGen),
1454 get_pcie_lane_support(data->pcie_lane_cap,
1455 PP_Max_PCIELane));
1456 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1457 get_pcie_gen_support(data->pcie_gen_cap,
1458 PP_Max_PCIEGen),
1459 get_pcie_lane_support(data->pcie_lane_cap,
1460 PP_Max_PCIELane));
1461 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1462 get_pcie_gen_support(data->pcie_gen_cap,
1463 PP_Max_PCIEGen),
1464 get_pcie_lane_support(data->pcie_lane_cap,
1465 PP_Max_PCIELane));
1466
1467 data->dpm_table.pcie_speed_table.count = 6;
1468 }
1469 /* Populate last level for boot PCIE level, but do not increment count. */
1470 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1471 data->dpm_table.pcie_speed_table.count,
1472 get_pcie_gen_support(data->pcie_gen_cap,
1473 PP_Min_PCIEGen),
1474 get_pcie_lane_support(data->pcie_lane_cap,
1475 PP_Max_PCIELane));
1476
1477 return 0;
1478}
1479
1480/*
1481 * This function is to initalize all DPM state tables
1482 * for SMU7 based on the dependency table.
1483 * Dynamic state patching function will then trim these
1484 * state tables to the allowed range based
1485 * on the power policy or external client requests,
1486 * such as UVD request, etc.
1487 */
1488static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1489{
1490 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1491 struct phm_ppt_v1_information *table_info =
1492 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1493 uint32_t i;
1494
1495 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1496 table_info->vdd_dep_on_sclk;
1497 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1498 table_info->vdd_dep_on_mclk;
1499
1500 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1501 "SCLK dependency table is missing. This table is mandatory",
1502 return -EINVAL);
1503 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1504 "SCLK dependency table has to have is missing. "
1505 "This table is mandatory",
1506 return -EINVAL);
1507
1508 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1509 "MCLK dependency table is missing. This table is mandatory",
1510 return -EINVAL);
1511 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1512 "MCLK dependency table has to have is missing. "
1513 "This table is mandatory",
1514 return -EINVAL);
1515
1516 /* clear the state table to reset everything to default */
1517 fiji_reset_single_dpm_table(hwmgr,
1518 &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1519 fiji_reset_single_dpm_table(hwmgr,
1520 &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1521
1522 /* Initialize Sclk DPM table based on allow Sclk values */
1523 data->dpm_table.sclk_table.count = 0;
1524 for (i = 0; i < dep_sclk_table->count; i++) {
1525 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1526 [data->dpm_table.sclk_table.count - 1].value !=
1527 dep_sclk_table->entries[i].clk) {
1528 data->dpm_table.sclk_table.dpm_levels
1529 [data->dpm_table.sclk_table.count].value =
1530 dep_sclk_table->entries[i].clk;
1531 data->dpm_table.sclk_table.dpm_levels
1532 [data->dpm_table.sclk_table.count].enabled =
1533 (i == 0) ? true : false;
1534 data->dpm_table.sclk_table.count++;
1535 }
1536 }
1537
1538 /* Initialize Mclk DPM table based on allow Mclk values */
1539 data->dpm_table.mclk_table.count = 0;
1540 for (i=0; i<dep_mclk_table->count; i++) {
1541 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1542 [data->dpm_table.mclk_table.count - 1].value !=
1543 dep_mclk_table->entries[i].clk) {
1544 data->dpm_table.mclk_table.dpm_levels
1545 [data->dpm_table.mclk_table.count].value =
1546 dep_mclk_table->entries[i].clk;
1547 data->dpm_table.mclk_table.dpm_levels
1548 [data->dpm_table.mclk_table.count].enabled =
1549 (i == 0) ? true : false;
1550 data->dpm_table.mclk_table.count++;
1551 }
1552 }
1553
1554 /* setup PCIE gen speed levels */
1555 fiji_setup_default_pcie_table(hwmgr);
1556
1557 /* save a copy of the default DPM table */
1558 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1559 sizeof(struct fiji_dpm_table));
1560
1561 return 0;
1562}
1563
1564/**
1565 * @brief PhwFiji_GetVoltageOrder
1566 * Returns index of requested voltage record in lookup(table)
1567 * @param lookup_table - lookup list to search in
1568 * @param voltage - voltage to look for
1569 * @return 0 on success
1570 */
1571uint8_t fiji_get_voltage_index(
1572 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1573{
1574 uint8_t count = (uint8_t) (lookup_table->count);
1575 uint8_t i;
1576
1577 PP_ASSERT_WITH_CODE((NULL != lookup_table),
1578 "Lookup Table empty.", return 0);
1579 PP_ASSERT_WITH_CODE((0 != count),
1580 "Lookup Table empty.", return 0);
1581
1582 for (i = 0; i < lookup_table->count; i++) {
1583 /* find first voltage equal or bigger than requested */
1584 if (lookup_table->entries[i].us_vdd >= voltage)
1585 return i;
1586 }
1587 /* voltage is bigger than max voltage in the table */
1588 return i - 1;
1589}
1590
1591/**
1592* Preparation of vddc and vddgfx CAC tables for SMC.
1593*
1594* @param hwmgr the address of the hardware manager
1595* @param table the SMC DPM table structure to be populated
1596* @return always 0
1597*/
1598static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1599 struct SMU73_Discrete_DpmTable *table)
1600{
1601 uint32_t count;
1602 uint8_t index;
1603 int result = 0;
1604 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1605 struct phm_ppt_v1_information *table_info =
1606 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1607 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1608 table_info->vddc_lookup_table;
1609 /* tables is already swapped, so in order to use the value from it,
1610 * we need to swap it back.
1611 * We are populating vddc CAC data to BapmVddc table
1612 * in split and merged mode
1613 */
1614 for( count = 0; count<lookup_table->count; count++) {
1615 index = fiji_get_voltage_index(lookup_table,
1616 data->vddc_voltage_table.entries[count].value);
1617 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1618 (lookup_table->entries[index].us_cac_low *
1619 VOLTAGE_SCALE)) / 25);
1620 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1621 (lookup_table->entries[index].us_cac_high *
1622 VOLTAGE_SCALE)) / 25);
1623 }
1624
1625 return result;
1626}
1627
1628/**
1629* Preparation of voltage tables for SMC.
1630*
1631* @param hwmgr the address of the hardware manager
1632* @param table the SMC DPM table structure to be populated
1633* @return always 0
1634*/
1635
1636int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1637 struct SMU73_Discrete_DpmTable *table)
1638{
1639 int result;
1640
1641 result = fiji_populate_cac_table(hwmgr, table);
1642 PP_ASSERT_WITH_CODE(0 == result,
1643 "can not populate CAC voltage tables to SMC",
1644 return -EINVAL);
1645
1646 return 0;
1647}
1648
1649static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1650 struct SMU73_Discrete_Ulv *state)
1651{
1652 int result = 0;
1653 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1654 struct phm_ppt_v1_information *table_info =
1655 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1656
1657 state->CcPwrDynRm = 0;
1658 state->CcPwrDynRm1 = 0;
1659
1660 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1661 state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1662 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1663
1664 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1665
1666 if (!result) {
1667 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1668 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1669 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1670 }
1671 return result;
1672}
1673
1674static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1675 struct SMU73_Discrete_DpmTable *table)
1676{
1677 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1678}
1679
1680static int32_t fiji_get_dpm_level_enable_mask_value(
1681 struct fiji_single_dpm_table* dpm_table)
1682{
1683 int32_t i;
1684 int32_t mask = 0;
1685
1686 for (i = dpm_table->count; i > 0; i--) {
1687 mask = mask << 1;
1688 if (dpm_table->dpm_levels[i - 1].enabled)
1689 mask |= 0x1;
1690 else
1691 mask &= 0xFFFFFFFE;
1692 }
1693 return mask;
1694}
1695
1696static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1697 struct SMU73_Discrete_DpmTable *table)
1698{
1699 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1700 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1701 int i;
1702
1703 /* Index (dpm_table->pcie_speed_table.count)
1704 * is reserved for PCIE boot level. */
1705 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1706 table->LinkLevel[i].PcieGenSpeed =
1707 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1708 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1709 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1710 table->LinkLevel[i].EnabledForActivity = 1;
1711 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1712 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1713 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1714 }
1715
1716 data->smc_state_table.LinkLevelCount =
1717 (uint8_t)dpm_table->pcie_speed_table.count;
1718 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1719 fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1720
1721 return 0;
1722}
1723
1724/**
1725* Calculates the SCLK dividers using the provided engine clock
1726*
1727* @param hwmgr the address of the hardware manager
1728* @param clock the engine clock to use to populate the structure
1729* @param sclk the SMC SCLK structure to be populated
1730*/
1731static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1732 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1733{
1734 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1735 struct pp_atomctrl_clock_dividers_vi dividers;
1736 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1737 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1738 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1739 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1740 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1741 uint32_t ref_clock;
1742 uint32_t ref_divider;
1743 uint32_t fbdiv;
1744 int result;
1745
1746 /* get the engine clock dividers for this clock value */
1747 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
1748
1749 PP_ASSERT_WITH_CODE(result == 0,
1750 "Error retrieving Engine Clock dividers from VBIOS.",
1751 return result);
1752
1753 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1754 ref_clock = atomctrl_get_reference_clock(hwmgr);
1755 ref_divider = 1 + dividers.uc_pll_ref_div;
1756
1757 /* low 14 bits is fraction and high 12 bits is divider */
1758 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1759
1760 /* SPLL_FUNC_CNTL setup */
1761 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1762 SPLL_REF_DIV, dividers.uc_pll_ref_div);
1763 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1764 SPLL_PDIV_A, dividers.uc_pll_post_div);
1765
1766 /* SPLL_FUNC_CNTL_3 setup*/
1767 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1768 SPLL_FB_DIV, fbdiv);
1769
1770 /* set to use fractional accumulation*/
1771 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1772 SPLL_DITHEN, 1);
1773
1774 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1775 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1776 struct pp_atomctrl_internal_ss_info ssInfo;
1777
1778 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1779 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1780 vco_freq, &ssInfo)) {
1781 /*
1782 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1783 * ss_info.speed_spectrum_rate -- in unit of khz
1784 *
1785 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1786 */
1787 uint32_t clk_s = ref_clock * 5 /
1788 (ref_divider * ssInfo.speed_spectrum_rate);
1789 /* clkv = 2 * D * fbdiv / NS */
1790 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1791 fbdiv / (clk_s * 10000);
1792
1793 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1794 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1795 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1796 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1797 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1798 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1799 }
1800 }
1801
1802 sclk->SclkFrequency = clock;
1803 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
1804 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
1805 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
1806 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
1807 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
1808
1809 return 0;
1810}
1811
1812static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1813{
1814 uint32_t i;
1815 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1816 struct pp_atomctrl_voltage_table *vddci_table =
1817 &(data->vddci_voltage_table);
1818
1819 for (i = 0; i < vddci_table->count; i++) {
1820 if (vddci_table->entries[i].value >= vddci)
1821 return vddci_table->entries[i].value;
1822 }
1823
1824 PP_ASSERT_WITH_CODE(false,
1825 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1826 return vddci_table->entries[i].value);
1827}
1828
1829static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1830 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1831 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1832{
1833 uint32_t i;
1834 uint16_t vddci;
1835 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1836
1837 *voltage = *mvdd = 0;
1838
1839 /* clock - voltage dependency table is empty table */
1840 if (dep_table->count == 0)
1841 return -EINVAL;
1842
1843 for (i = 0; i < dep_table->count; i++) {
1844 /* find first sclk bigger than request */
1845 if (dep_table->entries[i].clk >= clock) {
1846 *voltage |= (dep_table->entries[i].vddc *
1847 VOLTAGE_SCALE) << VDDC_SHIFT;
1848 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1849 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1850 VOLTAGE_SCALE) << VDDCI_SHIFT;
1851 else if (dep_table->entries[i].vddci)
1852 *voltage |= (dep_table->entries[i].vddci *
1853 VOLTAGE_SCALE) << VDDCI_SHIFT;
1854 else {
1855 vddci = fiji_find_closest_vddci(hwmgr,
1856 (dep_table->entries[i].vddc -
1857 (uint16_t)data->vddc_vddci_delta));
1858 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1859 }
1860
1861 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1862 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1863 VOLTAGE_SCALE;
1864 else if (dep_table->entries[i].mvdd)
1865 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1866 VOLTAGE_SCALE;
1867
1868 *voltage |= 1 << PHASES_SHIFT;
1869 return 0;
1870 }
1871 }
1872
1873 /* sclk is bigger than max sclk in the dependence table */
1874 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1875
1876 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1877 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1878 VOLTAGE_SCALE) << VDDCI_SHIFT;
1879 else if (dep_table->entries[i-1].vddci) {
1880 vddci = fiji_find_closest_vddci(hwmgr,
1881 (dep_table->entries[i].vddc -
1882 (uint16_t)data->vddc_vddci_delta));
1883 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1884 }
1885
1886 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1887 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1888 else if (dep_table->entries[i].mvdd)
1889 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1890
1891 return 0;
1892}
1893/**
1894* Populates single SMC SCLK structure using the provided engine clock
1895*
1896* @param hwmgr the address of the hardware manager
1897* @param clock the engine clock to use to populate the structure
1898* @param sclk the SMC SCLK structure to be populated
1899*/
1900
1901static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1902 uint32_t clock, uint16_t sclk_al_threshold,
1903 struct SMU73_Discrete_GraphicsLevel *level)
1904{
1905 int result;
1906 /* PP_Clocks minClocks; */
1907 uint32_t threshold, mvdd;
1908 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1909 struct phm_ppt_v1_information *table_info =
1910 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1911
1912 result = fiji_calculate_sclk_params(hwmgr, clock, level);
1913
1914 /* populate graphics levels */
1915 result = fiji_get_dependency_volt_by_clk(hwmgr,
1916 table_info->vdd_dep_on_sclk, clock,
1917 &level->MinVoltage, &mvdd);
1918 PP_ASSERT_WITH_CODE((0 == result),
1919 "can not find VDDC voltage value for "
1920 "VDDC engine clock dependency table",
1921 return result);
1922
1923 level->SclkFrequency = clock;
1924 level->ActivityLevel = sclk_al_threshold;
1925 level->CcPwrDynRm = 0;
1926 level->CcPwrDynRm1 = 0;
1927 level->EnabledForActivity = 0;
1928 level->EnabledForThrottle = 1;
1929 level->UpHyst = 10;
1930 level->DownHyst = 0;
1931 level->VoltageDownHyst = 0;
1932 level->PowerThrottle = 0;
1933
1934 threshold = clock * data->fast_watermark_threshold / 100;
1935
1936 /*
1937 * TODO: get minimum clocks from dal configaration
1938 * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
1939 */
1940 /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
1941
1942 /* get level->DeepSleepDivId
1943 if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1944 {
1945 level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
1946 } */
1947
1948 /* Default to slow, highest DPM level will be
1949 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1950 */
1951 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1952
1953 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1954 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1955 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1956 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1957 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1958 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1959 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1960 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1961 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1962
1963 return 0;
1964}
1965/**
1966* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1967*
1968* @param hwmgr the address of the hardware manager
1969*/
1970static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1971{
1972 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1973 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1974 struct phm_ppt_v1_information *table_info =
1975 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1976 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1977 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1978 int result = 0;
1979 uint32_t array = data->dpm_table_start +
1980 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1981 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1982 SMU73_MAX_LEVELS_GRAPHICS;
1983 struct SMU73_Discrete_GraphicsLevel *levels =
1984 data->smc_state_table.GraphicsLevel;
1985 uint32_t i, max_entry;
1986 uint8_t hightest_pcie_level_enabled = 0,
1987 lowest_pcie_level_enabled = 0,
1988 mid_pcie_level_enabled = 0,
1989 count = 0;
1990
1991 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1992 result = fiji_populate_single_graphic_level(hwmgr,
1993 dpm_table->sclk_table.dpm_levels[i].value,
1994 (uint16_t)data->activity_target[i],
1995 &levels[i]);
1996 if (result)
1997 return result;
1998
1999 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2000 if (i > 1)
2001 levels[i].DeepSleepDivId = 0;
2002 }
2003
2004 /* Only enable level 0 for now.*/
2005 levels[0].EnabledForActivity = 1;
2006
2007 /* set highest level watermark to high */
2008 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2009 PPSMC_DISPLAY_WATERMARK_HIGH;
2010
2011 data->smc_state_table.GraphicsDpmLevelCount =
2012 (uint8_t)dpm_table->sclk_table.count;
2013 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2014 fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2015
2016 if (pcie_table != NULL) {
2017 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2018 "There must be 1 or more PCIE levels defined in PPTable.",
2019 return -EINVAL);
2020 max_entry = pcie_entry_cnt - 1;
2021 for (i = 0; i < dpm_table->sclk_table.count; i++)
2022 levels[i].pcieDpmLevel =
2023 (uint8_t) ((i < max_entry)? i : max_entry);
2024 } else {
2025 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2026 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2027 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2028 hightest_pcie_level_enabled++;
2029
2030 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2031 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2032 (1 << lowest_pcie_level_enabled)) == 0 ))
2033 lowest_pcie_level_enabled++;
2034
2035 while ((count < hightest_pcie_level_enabled) &&
2036 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2037 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2038 count++;
2039
2040 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2041 hightest_pcie_level_enabled?
2042 (lowest_pcie_level_enabled + 1 + count) :
2043 hightest_pcie_level_enabled;
2044
2045 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2046 for(i = 2; i < dpm_table->sclk_table.count; i++)
2047 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2048
2049 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2050 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2051
2052 /* set pcieDpmLevel to mid_pcie_level_enabled */
2053 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2054 }
2055 /* level count will send to smc once at init smc table and never change */
2056 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2057 (uint32_t)array_size, data->sram_end);
2058
2059 return result;
2060}
2061
2062/**
2063 * MCLK Frequency Ratio
2064 * SEQ_CG_RESP Bit[31:24] - 0x0
2065 * Bit[27:24] \96 DDR3 Frequency ratio
2066 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
2067 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
2068 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
2069 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
2070 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
2071 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
2072 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
2073 * 400 < 0x7 <= 450MHz, 800 < 0xF
2074 */
2075static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2076{
2077 if (mem_clock <= 10000) return 0x0;
2078 if (mem_clock <= 15000) return 0x1;
2079 if (mem_clock <= 20000) return 0x2;
2080 if (mem_clock <= 25000) return 0x3;
2081 if (mem_clock <= 30000) return 0x4;
2082 if (mem_clock <= 35000) return 0x5;
2083 if (mem_clock <= 40000) return 0x6;
2084 if (mem_clock <= 45000) return 0x7;
2085 if (mem_clock <= 50000) return 0x8;
2086 if (mem_clock <= 55000) return 0x9;
2087 if (mem_clock <= 60000) return 0xa;
2088 if (mem_clock <= 65000) return 0xb;
2089 if (mem_clock <= 70000) return 0xc;
2090 if (mem_clock <= 75000) return 0xd;
2091 if (mem_clock <= 80000) return 0xe;
2092 /* mem_clock > 800MHz */
2093 return 0xf;
2094}
2095
2096/**
2097* Populates the SMC MCLK structure using the provided memory clock
2098*
2099* @param hwmgr the address of the hardware manager
2100* @param clock the memory clock to use to populate the structure
2101* @param sclk the SMC SCLK structure to be populated
2102*/
2103static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2104 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2105{
2106 struct pp_atomctrl_memory_clock_param mem_param;
2107 int result;
2108
2109 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2110 PP_ASSERT_WITH_CODE((0 == result),
2111 "Failed to get Memory PLL Dividers.",);
2112
2113 /* Save the result data to outpupt memory level structure */
2114 mclk->MclkFrequency = clock;
2115 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
2116 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
2117
2118 return result;
2119}
2120
2121static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2122 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2123{
2124 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2125 struct phm_ppt_v1_information *table_info =
2126 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2127 int result = 0;
2128
2129 if (table_info->vdd_dep_on_mclk) {
2130 result = fiji_get_dependency_volt_by_clk(hwmgr,
2131 table_info->vdd_dep_on_mclk, clock,
2132 &mem_level->MinVoltage, &mem_level->MinMvdd);
2133 PP_ASSERT_WITH_CODE((0 == result),
2134 "can not find MinVddc voltage value from memory "
2135 "VDDC voltage dependency table", return result);
2136 }
2137
2138 mem_level->EnabledForThrottle = 1;
2139 mem_level->EnabledForActivity = 0;
2140 mem_level->UpHyst = 0;
2141 mem_level->DownHyst = 100;
2142 mem_level->VoltageDownHyst = 0;
2143 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2144 mem_level->StutterEnable = false;
2145
2146 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2147
2148 /* enable stutter mode if all the follow condition applied
2149 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2150 * &(data->DisplayTiming.numExistingDisplays));
2151 */
2152 data->display_timing.num_existing_displays = 1;
2153
2154 if ((data->mclk_stutter_mode_threshold) &&
2155 (clock <= data->mclk_stutter_mode_threshold) &&
2156 (!data->is_uvd_enabled) &&
2157 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2158 STUTTER_ENABLE) & 0x1))
2159 mem_level->StutterEnable = true;
2160
2161 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2162 if (!result) {
2163 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2164 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2165 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2166 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2167 }
2168 return result;
2169}
2170
2171/**
2172* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2173*
2174* @param hwmgr the address of the hardware manager
2175*/
2176static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2177{
2178 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2179 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2180 int result;
2181 /* populate MCLK dpm table to SMU7 */
2182 uint32_t array = data->dpm_table_start +
2183 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2184 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2185 SMU73_MAX_LEVELS_MEMORY;
2186 struct SMU73_Discrete_MemoryLevel *levels =
2187 data->smc_state_table.MemoryLevel;
2188 uint32_t i;
2189
2190 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2191 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2192 "can not populate memory level as memory clock is zero",
2193 return -EINVAL);
2194 result = fiji_populate_single_memory_level(hwmgr,
2195 dpm_table->mclk_table.dpm_levels[i].value,
2196 &levels[i]);
2197 if (result)
2198 return result;
2199 }
2200
2201 /* Only enable level 0 for now. */
2202 levels[0].EnabledForActivity = 1;
2203
2204 /* in order to prevent MC activity from stutter mode to push DPM up.
2205 * the UVD change complements this by putting the MCLK in
2206 * a higher state by default such that we are not effected by
2207 * up threshold or and MCLK DPM latency.
2208 */
2209 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2210 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2211
2212 data->smc_state_table.MemoryDpmLevelCount =
2213 (uint8_t)dpm_table->mclk_table.count;
2214 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2215 fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2216 /* set highest level watermark to high */
2217 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2218 PPSMC_DISPLAY_WATERMARK_HIGH;
2219
2220 /* level count will send to smc once at init smc table and never change */
2221 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2222 (uint32_t)array_size, data->sram_end);
2223
2224 return result;
2225}
2226
2227/**
2228* Populates the SMC MVDD structure using the provided memory clock.
2229*
2230* @param hwmgr the address of the hardware manager
2231* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2232* @param voltage the SMC VOLTAGE structure to be populated
2233*/
2234int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2235 uint32_t mclk, SMIO_Pattern *smio_pat)
2236{
2237 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2238 struct phm_ppt_v1_information *table_info =
2239 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2240 uint32_t i = 0;
2241
2242 if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2243 /* find mvdd value which clock is more than request */
2244 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2245 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2246 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2247 break;
2248 }
2249 }
2250 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2251 "MVDD Voltage is outside the supported range.",
2252 return -EINVAL);
2253 } else
2254 return -EINVAL;
2255
2256 return 0;
2257}
2258
2259static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2260 SMU73_Discrete_DpmTable *table)
2261{
2262 int result = 0;
2263 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2264 struct phm_ppt_v1_information *table_info =
2265 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2266 struct pp_atomctrl_clock_dividers_vi dividers;
2267 SMIO_Pattern vol_level;
2268 uint32_t mvdd;
2269 uint16_t us_mvdd;
2270 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2271 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2272
2273 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2274
2275 if (!data->sclk_dpm_key_disabled) {
2276 /* Get MinVoltage and Frequency from DPM0,
2277 * already converted to SMC_UL */
2278 table->ACPILevel.SclkFrequency =
2279 data->dpm_table.sclk_table.dpm_levels[0].value;
2280 result = fiji_get_dependency_volt_by_clk(hwmgr,
2281 table_info->vdd_dep_on_sclk,
2282 table->ACPILevel.SclkFrequency,
2283 &table->ACPILevel.MinVoltage, &mvdd);
2284 PP_ASSERT_WITH_CODE((0 == result),
2285 "Cannot find ACPI VDDC voltage value "
2286 "in Clock Dependency Table",);
2287 } else {
2288 table->ACPILevel.SclkFrequency =
2289 data->vbios_boot_state.sclk_bootup_value;
2290 table->ACPILevel.MinVoltage =
2291 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2292 }
2293
2294 /* get the engine clock dividers for this clock value */
2295 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2296 table->ACPILevel.SclkFrequency, &dividers);
2297 PP_ASSERT_WITH_CODE(result == 0,
2298 "Error retrieving Engine Clock dividers from VBIOS.",
2299 return result);
2300
2301 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2302 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2303 table->ACPILevel.DeepSleepDivId = 0;
2304
2305 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2306 SPLL_PWRON, 0);
2307 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2308 SPLL_RESET, 1);
2309 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2310 SCLK_MUX_SEL, 4);
2311
2312 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2313 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2314 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2315 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2316 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2317 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2318 table->ACPILevel.CcPwrDynRm = 0;
2319 table->ACPILevel.CcPwrDynRm1 = 0;
2320
2321 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2322 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2323 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2324 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2325 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2326 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2327 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2328 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2329 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2330 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2331 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2332
2333 if (!data->mclk_dpm_key_disabled) {
2334 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2335 table->MemoryACPILevel.MclkFrequency =
2336 data->dpm_table.mclk_table.dpm_levels[0].value;
2337 result = fiji_get_dependency_volt_by_clk(hwmgr,
2338 table_info->vdd_dep_on_mclk,
2339 table->MemoryACPILevel.MclkFrequency,
2340 &table->MemoryACPILevel.MinVoltage, &mvdd);
2341 PP_ASSERT_WITH_CODE((0 == result),
2342 "Cannot find ACPI VDDCI voltage value "
2343 "in Clock Dependency Table",);
2344 } else {
2345 table->MemoryACPILevel.MclkFrequency =
2346 data->vbios_boot_state.mclk_bootup_value;
2347 table->MemoryACPILevel.MinVoltage =
2348 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2349 }
2350
2351 us_mvdd = 0;
2352 if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2353 (data->mclk_dpm_key_disabled))
2354 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2355 else {
2356 if (!fiji_populate_mvdd_value(hwmgr,
2357 data->dpm_table.mclk_table.dpm_levels[0].value,
2358 &vol_level))
2359 us_mvdd = vol_level.Voltage;
2360 }
2361
2362 table->MemoryACPILevel.MinMvdd =
2363 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2364
2365 table->MemoryACPILevel.EnabledForThrottle = 0;
2366 table->MemoryACPILevel.EnabledForActivity = 0;
2367 table->MemoryACPILevel.UpHyst = 0;
2368 table->MemoryACPILevel.DownHyst = 100;
2369 table->MemoryACPILevel.VoltageDownHyst = 0;
2370 table->MemoryACPILevel.ActivityLevel =
2371 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2372
2373 table->MemoryACPILevel.StutterEnable = false;
2374 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2375 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2376
2377 return result;
2378}
2379
2380static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2381 SMU73_Discrete_DpmTable *table)
2382{
2383 int result = -EINVAL;
2384 uint8_t count;
2385 struct pp_atomctrl_clock_dividers_vi dividers;
2386 struct phm_ppt_v1_information *table_info =
2387 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2388 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2389 table_info->mm_dep_table;
2390 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2391
2392 table->VceLevelCount = (uint8_t)(mm_table->count);
2393 table->VceBootLevel = 0;
2394
2395 for(count = 0; count < table->VceLevelCount; count++) {
2396 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2397 table->VceLevel[count].MinVoltage |=
2398 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2399 table->VceLevel[count].MinVoltage |=
2400 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2401 VOLTAGE_SCALE) << VDDCI_SHIFT;
2402 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2403
2404 /*retrieve divider value for VBIOS */
2405 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2406 table->VceLevel[count].Frequency, &dividers);
2407 PP_ASSERT_WITH_CODE((0 == result),
2408 "can not find divide id for VCE engine clock",
2409 return result);
2410
2411 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2412
2413 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2414 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2415 }
2416 return result;
2417}
2418
2419static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2420 SMU73_Discrete_DpmTable *table)
2421{
2422 int result = -EINVAL;
2423 uint8_t count;
2424 struct pp_atomctrl_clock_dividers_vi dividers;
2425 struct phm_ppt_v1_information *table_info =
2426 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2427 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2428 table_info->mm_dep_table;
2429 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2430
2431 table->AcpLevelCount = (uint8_t)(mm_table->count);
2432 table->AcpBootLevel = 0;
2433
2434 for (count = 0; count < table->AcpLevelCount; count++) {
2435 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2436 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2437 VOLTAGE_SCALE) << VDDC_SHIFT;
2438 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2439 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2440 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2441
2442 /* retrieve divider value for VBIOS */
2443 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2444 table->AcpLevel[count].Frequency, &dividers);
2445 PP_ASSERT_WITH_CODE((0 == result),
2446 "can not find divide id for engine clock", return result);
2447
2448 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2449
2450 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2451 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2452 }
2453 return result;
2454}
2455
2456static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2457 SMU73_Discrete_DpmTable *table)
2458{
2459 int result = -EINVAL;
2460 uint8_t count;
2461 struct pp_atomctrl_clock_dividers_vi dividers;
2462 struct phm_ppt_v1_information *table_info =
2463 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2464 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2465 table_info->mm_dep_table;
2466 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2467
2468 table->SamuBootLevel = 0;
2469 table->SamuLevelCount = (uint8_t)(mm_table->count);
2470
2471 for (count = 0; count < table->SamuLevelCount; count++) {
2472 /* not sure whether we need evclk or not */
2473 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2474 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2475 VOLTAGE_SCALE) << VDDC_SHIFT;
2476 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2477 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2478 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2479
2480 /* retrieve divider value for VBIOS */
2481 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2482 table->SamuLevel[count].Frequency, &dividers);
2483 PP_ASSERT_WITH_CODE((0 == result),
2484 "can not find divide id for samu clock", return result);
2485
2486 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2487
2488 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2489 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2490 }
2491 return result;
2492}
2493
2494static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2495 int32_t eng_clock, int32_t mem_clock,
2496 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2497{
2498 uint32_t dram_timing;
2499 uint32_t dram_timing2;
2500 uint32_t burstTime;
2501 ULONG state, trrds, trrdl;
2502 int result;
2503
2504 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2505 eng_clock, mem_clock);
2506 PP_ASSERT_WITH_CODE(result == 0,
2507 "Error calling VBIOS to set DRAM_TIMING.", return result);
2508
2509 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2510 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2511 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2512
2513 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2514 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2515 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2516
2517 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
2518 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2519 arb_regs->McArbBurstTime = (uint8_t)burstTime;
2520 arb_regs->TRRDS = (uint8_t)trrds;
2521 arb_regs->TRRDL = (uint8_t)trrdl;
2522
2523 return 0;
2524}
2525
2526static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2527{
2528 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2529 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2530 uint32_t i, j;
2531 int result = 0;
2532
2533 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2534 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2535 result = fiji_populate_memory_timing_parameters(hwmgr,
2536 data->dpm_table.sclk_table.dpm_levels[i].value,
2537 data->dpm_table.mclk_table.dpm_levels[j].value,
2538 &arb_regs.entries[i][j]);
2539 if (result)
2540 break;
2541 }
2542 }
2543
2544 if (!result)
2545 result = fiji_copy_bytes_to_smc(
2546 hwmgr->smumgr,
2547 data->arb_table_start,
2548 (uint8_t *)&arb_regs,
2549 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2550 data->sram_end);
2551 return result;
2552}
2553
2554static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2555 struct SMU73_Discrete_DpmTable *table)
2556{
2557 int result = -EINVAL;
2558 uint8_t count;
2559 struct pp_atomctrl_clock_dividers_vi dividers;
2560 struct phm_ppt_v1_information *table_info =
2561 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2562 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2563 table_info->mm_dep_table;
2564 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2565
2566 table->UvdLevelCount = (uint8_t)(mm_table->count);
2567 table->UvdBootLevel = 0;
2568
2569 for (count = 0; count < table->UvdLevelCount; count++) {
2570 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2571 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2572 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2573 VOLTAGE_SCALE) << VDDC_SHIFT;
2574 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2575 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2576 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2577
2578 /* retrieve divider value for VBIOS */
2579 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2580 table->UvdLevel[count].VclkFrequency, &dividers);
2581 PP_ASSERT_WITH_CODE((0 == result),
2582 "can not find divide id for Vclk clock", return result);
2583
2584 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2585
2586 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2587 table->UvdLevel[count].DclkFrequency, &dividers);
2588 PP_ASSERT_WITH_CODE((0 == result),
2589 "can not find divide id for Dclk clock", return result);
2590
2591 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2592
2593 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2594 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2595 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2596
2597 }
2598 return result;
2599}
2600
2601static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2602 uint32_t value, uint32_t *boot_level)
2603{
2604 int result = -EINVAL;
2605 uint32_t i;
2606
2607 for (i = 0; i < table->count; i++) {
2608 if (value == table->dpm_levels[i].value) {
2609 *boot_level = i;
2610 result = 0;
2611 }
2612 }
2613 return result;
2614}
2615
2616static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2617 struct SMU73_Discrete_DpmTable *table)
2618{
2619 int result = 0;
2620 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2621
2622 table->GraphicsBootLevel = 0;
2623 table->MemoryBootLevel = 0;
2624
2625 /* find boot level from dpm table */
2626 result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2627 data->vbios_boot_state.sclk_bootup_value,
2628 (uint32_t *)&(table->GraphicsBootLevel));
2629
2630 result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2631 data->vbios_boot_state.mclk_bootup_value,
2632 (uint32_t *)&(table->MemoryBootLevel));
2633
2634 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
2635 VOLTAGE_SCALE;
2636 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2637 VOLTAGE_SCALE;
2638 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
2639 VOLTAGE_SCALE;
2640
2641 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2642 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2643 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2644
2645 return 0;
2646}
2647
2648static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2649{
2650 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2651 struct phm_ppt_v1_information *table_info =
2652 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2653 uint8_t count, level;
2654
2655 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2656 for (level = 0; level < count; level++) {
2657 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2658 data->vbios_boot_state.sclk_bootup_value) {
2659 data->smc_state_table.GraphicsBootLevel = level;
2660 break;
2661 }
2662 }
2663
2664 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2665 for (level = 0; level < count; level++) {
2666 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2667 data->vbios_boot_state.mclk_bootup_value) {
2668 data->smc_state_table.MemoryBootLevel = level;
2669 break;
2670 }
2671 }
2672
2673 return 0;
2674}
2675
2676static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2677{
2678 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2679 volt_with_cks, value;
2680 uint16_t clock_freq_u16;
2681 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2682 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2683 volt_offset = 0;
2684 struct phm_ppt_v1_information *table_info =
2685 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2686 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2687 table_info->vdd_dep_on_sclk;
2688
2689 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2690
2691 /* Read SMU_Eefuse to read and calculate RO and determine
2692 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2693 */
2694 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2695 ixSMU_EFUSE_0 + (146 * 4));
2696 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2697 ixSMU_EFUSE_0 + (148 * 4));
2698 efuse &= 0xFF000000;
2699 efuse = efuse >> 24;
2700 efuse2 &= 0xF;
2701
2702 if (efuse2 == 1)
2703 ro = (2300 - 1350) * efuse / 255 + 1350;
2704 else
2705 ro = (2500 - 1000) * efuse / 255 + 1000;
2706
2707 if (ro >= 1660)
2708 type = 0;
2709 else
2710 type = 1;
2711
2712 /* Populate Stretch amount */
2713 data->smc_state_table.ClockStretcherAmount = stretch_amount;
2714
2715 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2716 for (i = 0; i < sclk_table->count; i++) {
2717 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2718 sclk_table->entries[i].cks_enable << i;
2719 volt_without_cks = (uint32_t)((14041 *
2720 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2721 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2722 volt_with_cks = (uint32_t)((13946 *
2723 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2724 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2725 if (volt_without_cks >= volt_with_cks)
2726 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2727 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2728 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2729 }
2730
2731 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2732 STRETCH_ENABLE, 0x0);
2733 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2734 masterReset, 0x1);
2735 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2736 staticEnable, 0x1);
2737 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2738 masterReset, 0x0);
2739
2740 /* Populate CKS Lookup Table */
2741 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2742 stretch_amount2 = 0;
2743 else if (stretch_amount == 3 || stretch_amount == 4)
2744 stretch_amount2 = 1;
2745 else {
2746 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2747 PHM_PlatformCaps_ClockStretcher);
2748 PP_ASSERT_WITH_CODE(false,
2749 "Stretch Amount in PPTable not supported\n",
2750 return -EINVAL);
2751 }
2752
2753 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2754 ixPWR_CKS_CNTL);
2755 value &= 0xFFC2FF87;
2756 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2757 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2758 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2759 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2760 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2761 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2762 SclkFrequency) / 100);
2763 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2764 clock_freq_u16 &&
2765 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2766 clock_freq_u16) {
2767 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2768 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2769 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2770 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2771 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2772 value |= (fiji_clock_stretch_amount_conversion
2773 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2774 [stretch_amount]) << 3;
2775 }
2776 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2777 CKS_LOOKUPTableEntry[0].minFreq);
2778 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2779 CKS_LOOKUPTableEntry[0].maxFreq);
2780 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2781 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2782 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2783 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2784
2785 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2786 ixPWR_CKS_CNTL, value);
2787
2788 /* Populate DDT Lookup Table */
2789 for (i = 0; i < 4; i++) {
2790 /* Assign the minimum and maximum VID stored
2791 * in the last row of Clock Stretcher Voltage Table.
2792 */
2793 data->smc_state_table.ClockStretcherDataTable.
2794 ClockStretcherDataTableEntry[i].minVID =
2795 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2796 data->smc_state_table.ClockStretcherDataTable.
2797 ClockStretcherDataTableEntry[i].maxVID =
2798 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2799 /* Loop through each SCLK and check the frequency
2800 * to see if it lies within the frequency for clock stretcher.
2801 */
2802 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2803 cks_setting = 0;
2804 clock_freq = PP_SMC_TO_HOST_UL(
2805 data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2806 /* Check the allowed frequency against the sclk level[j].
2807 * Sclk's endianness has already been converted,
2808 * and it's in 10Khz unit,
2809 * as opposed to Data table, which is in Mhz unit.
2810 */
2811 if (clock_freq >=
2812 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2813 cks_setting |= 0x2;
2814 if (clock_freq <
2815 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2816 cks_setting |= 0x1;
2817 }
2818 data->smc_state_table.ClockStretcherDataTable.
2819 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2820 }
2821 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2822 ClockStretcherDataTable.
2823 ClockStretcherDataTableEntry[i].setting);
2824 }
2825
2826 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2827 value &= 0xFFFFFFFE;
2828 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2829
2830 return 0;
2831}
2832
2833/**
2834* Populates the SMC VRConfig field in DPM table.
2835*
2836* @param hwmgr the address of the hardware manager
2837* @param table the SMC DPM table structure to be populated
2838* @return always 0
2839*/
2840static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2841 struct SMU73_Discrete_DpmTable *table)
2842{
2843 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2844 uint16_t config;
2845
2846 config = VR_MERGED_WITH_VDDC;
2847 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2848
2849 /* Set Vddc Voltage Controller */
2850 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2851 config = VR_SVI2_PLANE_1;
2852 table->VRConfig |= config;
2853 } else {
2854 PP_ASSERT_WITH_CODE(false,
2855 "VDDC should be on SVI2 control in merged mode!",);
2856 }
2857 /* Set Vddci Voltage Controller */
2858 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2859 config = VR_SVI2_PLANE_2; /* only in merged mode */
2860 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2861 } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2862 config = VR_SMIO_PATTERN_1;
2863 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2864 } else {
2865 config = VR_STATIC_VOLTAGE;
2866 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2867 }
2868 /* Set Mvdd Voltage Controller */
2869 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2870 config = VR_SVI2_PLANE_2;
2871 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2872 } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2873 config = VR_SMIO_PATTERN_2;
2874 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2875 } else {
2876 config = VR_STATIC_VOLTAGE;
2877 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2878 }
2879
2880 return 0;
2881}
2882
2883/**
2884* Initializes the SMC table and uploads it
2885*
2886* @param hwmgr the address of the powerplay hardware manager.
2887* @param pInput the pointer to input data (PowerState)
2888* @return always 0
2889*/
2890static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2891{
2892 int result;
2893 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2894 struct phm_ppt_v1_information *table_info =
2895 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2896 struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2897 const struct fiji_ulv_parm *ulv = &(data->ulv);
2898 uint8_t i;
2899 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2900
2901 result = fiji_setup_default_dpm_tables(hwmgr);
2902 PP_ASSERT_WITH_CODE(0 == result,
2903 "Failed to setup default DPM tables!", return result);
2904
2905 if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2906 fiji_populate_smc_voltage_tables(hwmgr, table);
2907
2908 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2909 PHM_PlatformCaps_AutomaticDCTransition))
2910 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2911
2912 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2913 PHM_PlatformCaps_StepVddc))
2914 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2915
2916 if (data->is_memory_gddr5)
2917 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2918
2919 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2920 result = fiji_populate_ulv_state(hwmgr, table);
2921 PP_ASSERT_WITH_CODE(0 == result,
2922 "Failed to initialize ULV state!", return result);
2923 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2924 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
2925 }
2926
2927 result = fiji_populate_smc_link_level(hwmgr, table);
2928 PP_ASSERT_WITH_CODE(0 == result,
2929 "Failed to initialize Link Level!", return result);
2930
2931 result = fiji_populate_all_graphic_levels(hwmgr);
2932 PP_ASSERT_WITH_CODE(0 == result,
2933 "Failed to initialize Graphics Level!", return result);
2934
2935 result = fiji_populate_all_memory_levels(hwmgr);
2936 PP_ASSERT_WITH_CODE(0 == result,
2937 "Failed to initialize Memory Level!", return result);
2938
2939 result = fiji_populate_smc_acpi_level(hwmgr, table);
2940 PP_ASSERT_WITH_CODE(0 == result,
2941 "Failed to initialize ACPI Level!", return result);
2942
2943 result = fiji_populate_smc_vce_level(hwmgr, table);
2944 PP_ASSERT_WITH_CODE(0 == result,
2945 "Failed to initialize VCE Level!", return result);
2946
2947 result = fiji_populate_smc_acp_level(hwmgr, table);
2948 PP_ASSERT_WITH_CODE(0 == result,
2949 "Failed to initialize ACP Level!", return result);
2950
2951 result = fiji_populate_smc_samu_level(hwmgr, table);
2952 PP_ASSERT_WITH_CODE(0 == result,
2953 "Failed to initialize SAMU Level!", return result);
2954
2955 /* Since only the initial state is completely set up at this point
2956 * (the other states are just copies of the boot state) we only
2957 * need to populate the ARB settings for the initial state.
2958 */
2959 result = fiji_program_memory_timing_parameters(hwmgr);
2960 PP_ASSERT_WITH_CODE(0 == result,
2961 "Failed to Write ARB settings for the initial state.", return result);
2962
2963 result = fiji_populate_smc_uvd_level(hwmgr, table);
2964 PP_ASSERT_WITH_CODE(0 == result,
2965 "Failed to initialize UVD Level!", return result);
2966
2967 result = fiji_populate_smc_boot_level(hwmgr, table);
2968 PP_ASSERT_WITH_CODE(0 == result,
2969 "Failed to initialize Boot Level!", return result);
2970
2971 result = fiji_populate_smc_initailial_state(hwmgr);
2972 PP_ASSERT_WITH_CODE(0 == result,
2973 "Failed to initialize Boot State!", return result);
2974
2975 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2976 PP_ASSERT_WITH_CODE(0 == result,
2977 "Failed to populate BAPM Parameters!", return result);
2978
2979 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2980 PHM_PlatformCaps_ClockStretcher)) {
2981 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2982 PP_ASSERT_WITH_CODE(0 == result,
2983 "Failed to populate Clock Stretcher Data Table!",
2984 return result);
2985 }
2986
2987 table->GraphicsVoltageChangeEnable = 1;
2988 table->GraphicsThermThrottleEnable = 1;
2989 table->GraphicsInterval = 1;
2990 table->VoltageInterval = 1;
2991 table->ThermalInterval = 1;
2992 table->TemperatureLimitHigh =
2993 table_info->cac_dtp_table->usTargetOperatingTemp *
2994 FIJI_Q88_FORMAT_CONVERSION_UNIT;
2995 table->TemperatureLimitLow =
2996 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2997 FIJI_Q88_FORMAT_CONVERSION_UNIT;
2998 table->MemoryVoltageChangeEnable = 1;
2999 table->MemoryInterval = 1;
3000 table->VoltageResponseTime = 0;
3001 table->PhaseResponseTime = 0;
3002 table->MemoryThermThrottleEnable = 1;
3003 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
3004 table->PCIeGenInterval = 1;
3005
3006 result = fiji_populate_vr_config(hwmgr, table);
3007 PP_ASSERT_WITH_CODE(0 == result,
3008 "Failed to populate VRConfig setting!", return result);
3009
3010 table->ThermGpio = 17;
3011 table->SclkStepSize = 0x4000;
3012
3013 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3014 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3015 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3016 PHM_PlatformCaps_RegulatorHot);
3017 } else {
3018 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3019 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3020 PHM_PlatformCaps_RegulatorHot);
3021 }
3022
3023 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3024 &gpio_pin)) {
3025 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3026 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3027 PHM_PlatformCaps_AutomaticDCTransition);
3028 } else {
3029 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3030 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3031 PHM_PlatformCaps_AutomaticDCTransition);
3032 }
3033
3034 /* Thermal Output GPIO */
3035 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3036 &gpio_pin)) {
3037 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3038 PHM_PlatformCaps_ThermalOutGPIO);
3039
3040 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3041
3042 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3043 * since VBIOS will program this register to set 'inactive state',
3044 * driver can then determine 'active state' from this and
3045 * program SMU with correct polarity
3046 */
3047 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3048 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3049 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3050
3051 /* if required, combine VRHot/PCC with thermal out GPIO */
3052 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3053 PHM_PlatformCaps_RegulatorHot) &&
3054 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3055 PHM_PlatformCaps_CombinePCCWithThermalSignal))
3056 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3057 } else {
3058 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3059 PHM_PlatformCaps_ThermalOutGPIO);
3060 table->ThermOutGpio = 17;
3061 table->ThermOutPolarity = 1;
3062 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3063 }
3064
3065 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3066 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3067
3068 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3069 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3070 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3071 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3072 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3073 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3074 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3075 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3076 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3077
3078 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3079 result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3080 data->dpm_table_start +
3081 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3082 (uint8_t *)&(table->SystemFlags),
3083 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3084 data->sram_end);
3085 PP_ASSERT_WITH_CODE(0 == result,
3086 "Failed to upload dpm data to SMC memory!", return result);
3087
3088 return 0;
3089}
3090
3091/**
3092* Initialize the ARB DRAM timing table's index field.
3093*
3094* @param hwmgr the address of the powerplay hardware manager.
3095* @return always 0
3096*/
3097static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3098{
3099 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3100 uint32_t tmp;
3101 int result;
3102
3103 /* This is a read-modify-write on the first byte of the ARB table.
3104 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3105 * is the field 'current'.
3106 * This solution is ugly, but we never write the whole table only
3107 * individual fields in it.
3108 * In reality this field should not be in that structure
3109 * but in a soft register.
3110 */
3111 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3112 data->arb_table_start, &tmp, data->sram_end);
3113
3114 if (result)
3115 return result;
3116
3117 tmp &= 0x00FFFFFF;
3118 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3119
3120 return fiji_write_smc_sram_dword(hwmgr->smumgr,
3121 data->arb_table_start, tmp, data->sram_end);
3122}
3123
3124static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3125{
3126 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3127 PHM_PlatformCaps_RegulatorHot))
3128 return smum_send_msg_to_smc(hwmgr->smumgr,
3129 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3130
3131 return 0;
3132}
3133
3134static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3135{
3136 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3137 SCLK_PWRMGT_OFF, 0);
3138 return 0;
3139}
3140
3141static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3142{
3143 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3144 struct fiji_ulv_parm *ulv = &(data->ulv);
3145
3146 if (ulv->ulv_supported)
3147 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3148
3149 return 0;
3150}
3151
3152static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3153{
3154 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3155 PHM_PlatformCaps_SclkDeepSleep)) {
3156 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3157 PP_ASSERT_WITH_CODE(false,
3158 "Attempt to enable Master Deep Sleep switch failed!",
3159 return -1);
3160 } else {
3161 if (smum_send_msg_to_smc(hwmgr->smumgr,
3162 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3163 PP_ASSERT_WITH_CODE(false,
3164 "Attempt to disable Master Deep Sleep switch failed!",
3165 return -1);
3166 }
3167 }
3168
3169 return 0;
3170}
3171
3172static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3173{
3174 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3175 uint32_t val, val0, val2;
3176 uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
3177
3178 /* enable SCLK dpm */
3179 if(!data->sclk_dpm_key_disabled)
3180 PP_ASSERT_WITH_CODE(
3181 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3182 "Failed to enable SCLK DPM during DPM Start Function!",
3183 return -1);
3184
3185 /* enable MCLK dpm */
3186 if(0 == data->mclk_dpm_key_disabled) {
3187 cpl_threshold = 0;
3188 mc_threshold = 0;
3189
3190 /* Read per MCD tile (0 - 7) */
3191 for (i = 0; i < 8; i++) {
3192 PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3193 val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3194 if (0xf0000000 != val) {
3195 /* count number of MCQ that has channel(s) enabled */
3196 cpl_threshold++;
3197 /* only harvest 3 or full 4 supported */
3198 mc_threshold = val ? 3 : 4;
3199 }
3200 }
3201 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3202 "Number of MCQ is zero!", return -EINVAL;);
3203
3204 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3205 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3206 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3207 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3208 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3209 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3210 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3211 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3212 ixLCAC_MC0_CNTL, mc_threshold);
3213 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3214 ixLCAC_MC1_CNTL, mc_threshold);
3215 if (8 == cpl_threshold) {
3216 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3217 ixLCAC_MC2_CNTL, mc_threshold);
3218 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3219 ixLCAC_MC3_CNTL, mc_threshold);
3220 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3221 ixLCAC_MC4_CNTL, mc_threshold);
3222 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3223 ixLCAC_MC5_CNTL, mc_threshold);
3224 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3225 ixLCAC_MC6_CNTL, mc_threshold);
3226 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3227 ixLCAC_MC7_CNTL, mc_threshold);
3228 }
3229 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3230 ixLCAC_CPL_CNTL, cpl_cntl);
3231
3232 udelay(5);
3233
3234 mc_threshold = mc_threshold |
3235 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3236 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3238 ixLCAC_MC0_CNTL, mc_threshold);
3239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3240 ixLCAC_MC1_CNTL, mc_threshold);
3241 if (8 == cpl_threshold) {
3242 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3243 ixLCAC_MC2_CNTL, mc_threshold);
3244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3245 ixLCAC_MC3_CNTL, mc_threshold);
3246 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3247 ixLCAC_MC4_CNTL, mc_threshold);
3248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3249 ixLCAC_MC5_CNTL, mc_threshold);
3250 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3251 ixLCAC_MC6_CNTL, mc_threshold);
3252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3253 ixLCAC_MC7_CNTL, mc_threshold);
3254 }
3255 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3256 ixLCAC_CPL_CNTL, cpl_cntl);
3257
3258 /* Program CAC_EN per MCD (0-7) Tile */
3259 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3260 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3261 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3262 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3263 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3264 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3265 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3266 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3267 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3268 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3269
3270 for (i = 0; i < 8; i++) {
3271 /* Enable MCD i Tile read & write */
3272 val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3273 (1 << i));
3274 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3275 /* Enbale CAC_ON MCD i Tile */
3276 val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3277 val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3278 cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3279 }
3280 /* Set MC_CONFIG_MCD back to its default setting val0 */
3281 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3282
3283 PP_ASSERT_WITH_CODE(
3284 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3285 PPSMC_MSG_MCLKDPM_Enable)),
3286 "Failed to enable MCLK DPM during DPM Start Function!",
3287 return -1);
3288 }
3289 return 0;
3290}
3291
3292static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3293{
3294 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3295
3296 /*enable general power management */
3297 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3298 GLOBAL_PWRMGT_EN, 1);
3299 /* enable sclk deep sleep */
3300 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3301 DYNAMIC_PM_EN, 1);
3302 /* prepare for PCIE DPM */
3303 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3304 data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3305 VoltageChangeTimeout), 0x1000);
3306 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3307 SWRST_COMMAND_1, RESETLC, 0x0);
3308
3309 PP_ASSERT_WITH_CODE(
3310 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3311 PPSMC_MSG_Voltage_Cntl_Enable)),
3312 "Failed to enable voltage DPM during DPM Start Function!",
3313 return -1);
3314
3315 if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3316 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3317 return -1;
3318 }
3319
3320 /* enable PCIE dpm */
3321 if(!data->pcie_dpm_key_disabled) {
3322 PP_ASSERT_WITH_CODE(
3323 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3324 PPSMC_MSG_PCIeDPM_Enable)),
3325 "Failed to enable pcie DPM during DPM Start Function!",
3326 return -1);
3327 }
3328
3329 return 0;
3330}
3331
3332static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3333 uint32_t sources)
3334{
3335 bool protection;
3336 enum DPM_EVENT_SRC src;
3337
3338 switch (sources) {
3339 default:
3340 printk(KERN_ERR "Unknown throttling event sources.");
3341 /* fall through */
3342 case 0:
3343 protection = false;
3344 /* src is unused */
3345 break;
3346 case (1 << PHM_AutoThrottleSource_Thermal):
3347 protection = true;
3348 src = DPM_EVENT_SRC_DIGITAL;
3349 break;
3350 case (1 << PHM_AutoThrottleSource_External):
3351 protection = true;
3352 src = DPM_EVENT_SRC_EXTERNAL;
3353 break;
3354 case (1 << PHM_AutoThrottleSource_External) |
3355 (1 << PHM_AutoThrottleSource_Thermal):
3356 protection = true;
3357 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3358 break;
3359 }
3360 /* Order matters - don't enable thermal protection for the wrong source. */
3361 if (protection) {
3362 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3363 DPM_EVENT_SRC, src);
3364 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3365 THERMAL_PROTECTION_DIS,
3366 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3367 PHM_PlatformCaps_ThermalController));
3368 } else
3369 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3370 THERMAL_PROTECTION_DIS, 1);
3371}
3372
3373static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3374 PHM_AutoThrottleSource source)
3375{
3376 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3377
3378 if (!(data->active_auto_throttle_sources & (1 << source))) {
3379 data->active_auto_throttle_sources |= 1 << source;
3380 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3381 }
3382 return 0;
3383}
3384
3385static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3386{
3387 return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3388}
3389
3390static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3391{
3392 int tmp_result, result = 0;
3393
3394 tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3395 PP_ASSERT_WITH_CODE(result == 0,
3396 "DPM is already running right now, no need to enable DPM!",
3397 return 0);
3398
3399 if (fiji_voltage_control(hwmgr)) {
3400 tmp_result = fiji_enable_voltage_control(hwmgr);
3401 PP_ASSERT_WITH_CODE(tmp_result == 0,
3402 "Failed to enable voltage control!",
3403 result = tmp_result);
3404 }
3405
3406 if (fiji_voltage_control(hwmgr)) {
3407 tmp_result = fiji_construct_voltage_tables(hwmgr);
3408 PP_ASSERT_WITH_CODE((0 == tmp_result),
3409 "Failed to contruct voltage tables!",
3410 result = tmp_result);
3411 }
3412
3413 tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3414 PP_ASSERT_WITH_CODE((0 == tmp_result),
3415 "Failed to initialize MC reg table!", result = tmp_result);
3416
3417 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3418 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3419 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3420 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3421
3422 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3423 PHM_PlatformCaps_ThermalController))
3424 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3425 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3426
3427 tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3428 PP_ASSERT_WITH_CODE((0 == tmp_result),
3429 "Failed to program static screen threshold parameters!",
3430 result = tmp_result);
3431
3432 tmp_result = fiji_enable_display_gap(hwmgr);
3433 PP_ASSERT_WITH_CODE((0 == tmp_result),
3434 "Failed to enable display gap!", result = tmp_result);
3435
3436 tmp_result = fiji_program_voting_clients(hwmgr);
3437 PP_ASSERT_WITH_CODE((0 == tmp_result),
3438 "Failed to program voting clients!", result = tmp_result);
3439
3440 tmp_result = fiji_process_firmware_header(hwmgr);
3441 PP_ASSERT_WITH_CODE((0 == tmp_result),
3442 "Failed to process firmware header!", result = tmp_result);
3443
3444 tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3445 PP_ASSERT_WITH_CODE((0 == tmp_result),
3446 "Failed to initialize switch from ArbF0 to F1!",
3447 result = tmp_result);
3448
3449 tmp_result = fiji_init_smc_table(hwmgr);
3450 PP_ASSERT_WITH_CODE((0 == tmp_result),
3451 "Failed to initialize SMC table!", result = tmp_result);
3452
3453 tmp_result = fiji_init_arb_table_index(hwmgr);
3454 PP_ASSERT_WITH_CODE((0 == tmp_result),
3455 "Failed to initialize ARB table index!", result = tmp_result);
3456
3457 tmp_result = fiji_populate_pm_fuses(hwmgr);
3458 PP_ASSERT_WITH_CODE((0 == tmp_result),
3459 "Failed to populate PM fuses!", result = tmp_result);
3460
3461 tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3462 PP_ASSERT_WITH_CODE((0 == tmp_result),
3463 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3464
Eric Huangea617bc2015-11-24 17:00:56 -05003465 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3466 PP_ASSERT_WITH_CODE((0 == tmp_result),
3467 "Failed to notify no display!", result = tmp_result);
3468
Eric Huangaabcb7c2015-08-26 16:52:28 -04003469 tmp_result = fiji_enable_sclk_control(hwmgr);
3470 PP_ASSERT_WITH_CODE((0 == tmp_result),
3471 "Failed to enable SCLK control!", result = tmp_result);
3472
3473 tmp_result = fiji_enable_ulv(hwmgr);
3474 PP_ASSERT_WITH_CODE((0 == tmp_result),
3475 "Failed to enable ULV!", result = tmp_result);
3476
3477 tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3478 PP_ASSERT_WITH_CODE((0 == tmp_result),
3479 "Failed to enable deep sleep master switch!", result = tmp_result);
3480
3481 tmp_result = fiji_start_dpm(hwmgr);
3482 PP_ASSERT_WITH_CODE((0 == tmp_result),
3483 "Failed to start DPM!", result = tmp_result);
3484
3485 tmp_result = fiji_enable_smc_cac(hwmgr);
3486 PP_ASSERT_WITH_CODE((0 == tmp_result),
3487 "Failed to enable SMC CAC!", result = tmp_result);
3488
3489 tmp_result = fiji_enable_power_containment(hwmgr);
3490 PP_ASSERT_WITH_CODE((0 == tmp_result),
3491 "Failed to enable power containment!", result = tmp_result);
3492
3493 tmp_result = fiji_power_control_set_level(hwmgr);
3494 PP_ASSERT_WITH_CODE((0 == tmp_result),
3495 "Failed to power control set level!", result = tmp_result);
3496
3497 tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3498 PP_ASSERT_WITH_CODE((0 == tmp_result),
3499 "Failed to enable thermal auto throttle!", result = tmp_result);
3500
3501 return result;
3502}
3503
3504static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3505{
3506 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3507 uint32_t level, tmp;
3508
3509 if (!data->sclk_dpm_key_disabled) {
3510 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3511 level = 0;
3512 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3513 while (tmp >>= 1)
3514 level++;
3515 if (level)
3516 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3517 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3518 (1 << level));
3519 }
3520 }
3521
3522 if (!data->mclk_dpm_key_disabled) {
3523 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3524 level = 0;
3525 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3526 while (tmp >>= 1)
3527 level++;
3528 if (level)
3529 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3530 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3531 (1 << level));
3532 }
3533 }
3534
3535 if (!data->pcie_dpm_key_disabled) {
3536 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3537 level = 0;
3538 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3539 while (tmp >>= 1)
3540 level++;
3541 if (level)
3542 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3543 PPSMC_MSG_PCIeDPM_ForceLevel,
3544 (1 << level));
3545 }
3546 }
3547 return 0;
3548}
3549
3550static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
3551{
3552 struct phm_ppt_v1_information *table_info =
3553 (struct phm_ppt_v1_information *)hwmgr->pptable;
3554 struct phm_clock_voltage_dependency_table *table =
3555 table_info->vddc_dep_on_dal_pwrl;
3556 struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
3557 enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
3558 uint32_t req_vddc = 0, req_volt, i;
3559
3560 if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
3561 dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
3562 return;
3563
3564 for (i= 0; i < table->count; i++) {
3565 if (dal_power_level == table->entries[i].clk) {
3566 req_vddc = table->entries[i].v;
3567 break;
3568 }
3569 }
3570
3571 vddc_table = table_info->vdd_dep_on_sclk;
3572 for (i= 0; i < vddc_table->count; i++) {
3573 if (req_vddc <= vddc_table->entries[i].vddc) {
3574 req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
3575 << VDDC_SHIFT;
3576 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3577 PPSMC_MSG_VddC_Request, req_volt);
3578 return;
3579 }
3580 }
3581 printk(KERN_ERR "DAL requested level can not"
3582 " found a available voltage in VDDC DPM Table \n");
3583}
3584
3585static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3586{
3587 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3588
3589 fiji_apply_dal_min_voltage_request(hwmgr);
3590
3591 if (!data->sclk_dpm_key_disabled) {
3592 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3593 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3594 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3595 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3596 }
3597 return 0;
3598}
3599
3600static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3601{
3602 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3603
3604 if (!fiji_is_dpm_running(hwmgr))
3605 return -EINVAL;
3606
3607 if (!data->pcie_dpm_key_disabled) {
3608 smum_send_msg_to_smc(hwmgr->smumgr,
3609 PPSMC_MSG_PCIeDPM_UnForceLevel);
3610 }
3611
3612 return fiji_upload_dpmlevel_enable_mask(hwmgr);
3613}
3614
3615static uint32_t fiji_get_lowest_enabled_level(
3616 struct pp_hwmgr *hwmgr, uint32_t mask)
3617{
3618 uint32_t level = 0;
3619
3620 while(0 == (mask & (1 << level)))
3621 level++;
3622
3623 return level;
3624}
3625
3626static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3627{
3628 struct fiji_hwmgr *data =
3629 (struct fiji_hwmgr *)(hwmgr->backend);
Alex Deucher74c577b2015-11-11 00:31:00 -05003630 uint32_t level;
Eric Huangaabcb7c2015-08-26 16:52:28 -04003631
Eric Huangaabcb7c2015-08-26 16:52:28 -04003632 if (!data->sclk_dpm_key_disabled)
3633 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3634 level = fiji_get_lowest_enabled_level(hwmgr,
Alex Deucher74c577b2015-11-11 00:31:00 -05003635 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
Eric Huangaabcb7c2015-08-26 16:52:28 -04003636 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
Alex Deucher74c577b2015-11-11 00:31:00 -05003637 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3638 (1 << level));
Eric Huangaabcb7c2015-08-26 16:52:28 -04003639
3640 }
Alex Deucher74c577b2015-11-11 00:31:00 -05003641
3642 if (!data->mclk_dpm_key_disabled) {
3643 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3644 level = fiji_get_lowest_enabled_level(hwmgr,
3645 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3646 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3647 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3648 (1 << level));
3649 }
3650 }
3651
3652 if (!data->pcie_dpm_key_disabled) {
3653 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3654 level = fiji_get_lowest_enabled_level(hwmgr,
3655 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3656 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3657 PPSMC_MSG_PCIeDPM_ForceLevel,
3658 (1 << level));
3659 }
3660 }
3661
Eric Huangaabcb7c2015-08-26 16:52:28 -04003662 return 0;
3663
3664}
3665static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3666 enum amd_dpm_forced_level level)
3667{
3668 int ret = 0;
3669
3670 switch (level) {
3671 case AMD_DPM_FORCED_LEVEL_HIGH:
3672 ret = fiji_force_dpm_highest(hwmgr);
3673 if (ret)
3674 return ret;
3675 break;
3676 case AMD_DPM_FORCED_LEVEL_LOW:
3677 ret = fiji_force_dpm_lowest(hwmgr);
3678 if (ret)
3679 return ret;
3680 break;
3681 case AMD_DPM_FORCED_LEVEL_AUTO:
3682 ret = fiji_unforce_dpm_levels(hwmgr);
3683 if (ret)
3684 return ret;
3685 break;
3686 default:
3687 break;
3688 }
3689
3690 hwmgr->dpm_level = level;
3691
3692 return ret;
3693}
3694
3695static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3696{
3697 return sizeof(struct fiji_power_state);
3698}
3699
3700static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3701 void *state, struct pp_power_state *power_state,
3702 void *pp_table, uint32_t classification_flag)
3703{
3704 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3705 struct fiji_power_state *fiji_power_state =
3706 (struct fiji_power_state *)(&(power_state->hardware));
3707 struct fiji_performance_level *performance_level;
3708 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3709 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3710 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3711 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3712 (ATOM_Tonga_SCLK_Dependency_Table *)
3713 (((unsigned long)powerplay_table) +
3714 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3715 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3716 (ATOM_Tonga_MCLK_Dependency_Table *)
3717 (((unsigned long)powerplay_table) +
3718 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3719
3720 /* The following fields are not initialized here: id orderedList allStatesList */
3721 power_state->classification.ui_label =
3722 (le16_to_cpu(state_entry->usClassification) &
3723 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3724 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3725 power_state->classification.flags = classification_flag;
3726 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3727
3728 power_state->classification.temporary_state = false;
3729 power_state->classification.to_be_deleted = false;
3730
3731 power_state->validation.disallowOnDC =
3732 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3733 ATOM_Tonga_DISALLOW_ON_DC));
3734
3735 power_state->pcie.lanes = 0;
3736
3737 power_state->display.disableFrameModulation = false;
3738 power_state->display.limitRefreshrate = false;
3739 power_state->display.enableVariBright =
3740 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3741 ATOM_Tonga_ENABLE_VARIBRIGHT));
3742
3743 power_state->validation.supportedPowerLevels = 0;
3744 power_state->uvd_clocks.VCLK = 0;
3745 power_state->uvd_clocks.DCLK = 0;
3746 power_state->temperatures.min = 0;
3747 power_state->temperatures.max = 0;
3748
3749 performance_level = &(fiji_power_state->performance_levels
3750 [fiji_power_state->performance_level_count++]);
3751
3752 PP_ASSERT_WITH_CODE(
3753 (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3754 "Performance levels exceeds SMC limit!",
3755 return -1);
3756
3757 PP_ASSERT_WITH_CODE(
3758 (fiji_power_state->performance_level_count <=
3759 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3760 "Performance levels exceeds Driver limit!",
3761 return -1);
3762
3763 /* Performance levels are arranged from low to high. */
3764 performance_level->memory_clock = mclk_dep_table->entries
3765 [state_entry->ucMemoryClockIndexLow].ulMclk;
3766 performance_level->engine_clock = sclk_dep_table->entries
3767 [state_entry->ucEngineClockIndexLow].ulSclk;
3768 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3769 state_entry->ucPCIEGenLow);
3770 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3771 state_entry->ucPCIELaneHigh);
3772
3773 performance_level = &(fiji_power_state->performance_levels
3774 [fiji_power_state->performance_level_count++]);
3775 performance_level->memory_clock = mclk_dep_table->entries
3776 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3777 performance_level->engine_clock = sclk_dep_table->entries
3778 [state_entry->ucEngineClockIndexHigh].ulSclk;
3779 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3780 state_entry->ucPCIEGenHigh);
3781 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3782 state_entry->ucPCIELaneHigh);
3783
3784 return 0;
3785}
3786
3787static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3788 unsigned long entry_index, struct pp_power_state *state)
3789{
3790 int result;
3791 struct fiji_power_state *ps;
3792 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3793 struct phm_ppt_v1_information *table_info =
3794 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3795 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3796 table_info->vdd_dep_on_mclk;
3797
3798 state->hardware.magic = PHM_VIslands_Magic;
3799
3800 ps = (struct fiji_power_state *)(&state->hardware);
3801
3802 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3803 fiji_get_pp_table_entry_callback_func);
3804
3805 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3806 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3807 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3808 */
3809 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3810 if (dep_mclk_table->entries[0].clk !=
3811 data->vbios_boot_state.mclk_bootup_value)
3812 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3813 "does not match VBIOS boot MCLK level");
3814 if (dep_mclk_table->entries[0].vddci !=
3815 data->vbios_boot_state.vddci_bootup_value)
3816 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3817 "does not match VBIOS boot VDDCI level");
3818 }
3819
3820 /* set DC compatible flag if this state supports DC */
3821 if (!state->validation.disallowOnDC)
3822 ps->dc_compatible = true;
3823
3824 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3825 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3826
3827 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3828 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3829
3830 if (!result) {
3831 uint32_t i;
3832
3833 switch (state->classification.ui_label) {
3834 case PP_StateUILabel_Performance:
3835 data->use_pcie_performance_levels = true;
3836
3837 for (i = 0; i < ps->performance_level_count; i++) {
3838 if (data->pcie_gen_performance.max <
3839 ps->performance_levels[i].pcie_gen)
3840 data->pcie_gen_performance.max =
3841 ps->performance_levels[i].pcie_gen;
3842
3843 if (data->pcie_gen_performance.min >
3844 ps->performance_levels[i].pcie_gen)
3845 data->pcie_gen_performance.min =
3846 ps->performance_levels[i].pcie_gen;
3847
3848 if (data->pcie_lane_performance.max <
3849 ps->performance_levels[i].pcie_lane)
3850 data->pcie_lane_performance.max =
3851 ps->performance_levels[i].pcie_lane;
3852
3853 if (data->pcie_lane_performance.min >
3854 ps->performance_levels[i].pcie_lane)
3855 data->pcie_lane_performance.min =
3856 ps->performance_levels[i].pcie_lane;
3857 }
3858 break;
3859 case PP_StateUILabel_Battery:
3860 data->use_pcie_power_saving_levels = true;
3861
3862 for (i = 0; i < ps->performance_level_count; i++) {
3863 if (data->pcie_gen_power_saving.max <
3864 ps->performance_levels[i].pcie_gen)
3865 data->pcie_gen_power_saving.max =
3866 ps->performance_levels[i].pcie_gen;
3867
3868 if (data->pcie_gen_power_saving.min >
3869 ps->performance_levels[i].pcie_gen)
3870 data->pcie_gen_power_saving.min =
3871 ps->performance_levels[i].pcie_gen;
3872
3873 if (data->pcie_lane_power_saving.max <
3874 ps->performance_levels[i].pcie_lane)
3875 data->pcie_lane_power_saving.max =
3876 ps->performance_levels[i].pcie_lane;
3877
3878 if (data->pcie_lane_power_saving.min >
3879 ps->performance_levels[i].pcie_lane)
3880 data->pcie_lane_power_saving.min =
3881 ps->performance_levels[i].pcie_lane;
3882 }
3883 break;
3884 default:
3885 break;
3886 }
3887 }
3888 return 0;
3889}
3890
3891static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3892 struct pp_power_state *request_ps,
3893 const struct pp_power_state *current_ps)
3894{
3895 struct fiji_power_state *fiji_ps =
3896 cast_phw_fiji_power_state(&request_ps->hardware);
3897 uint32_t sclk;
3898 uint32_t mclk;
3899 struct PP_Clocks minimum_clocks = {0};
3900 bool disable_mclk_switching;
3901 bool disable_mclk_switching_for_frame_lock;
3902 struct cgs_display_info info = {0};
3903 const struct phm_clock_and_voltage_limits *max_limits;
3904 uint32_t i;
3905 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3906 struct phm_ppt_v1_information *table_info =
3907 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3908 int32_t count;
3909 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3910
3911 data->battery_state = (PP_StateUILabel_Battery ==
3912 request_ps->classification.ui_label);
3913
3914 PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
3915 "VI should always have 2 performance levels",);
3916
3917 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3918 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3919 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3920
3921 /* Cap clock DPM tables at DC MAX if it is in DC. */
3922 if (PP_PowerSource_DC == hwmgr->power_source) {
3923 for (i = 0; i < fiji_ps->performance_level_count; i++) {
3924 if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
3925 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
3926 if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
3927 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
3928 }
3929 }
3930
3931 fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3932 fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3933
3934 fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
3935
3936 cgs_get_active_displays_info(hwmgr->device, &info);
3937
3938 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3939
3940 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3941
3942 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3943 PHM_PlatformCaps_StablePState)) {
3944 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3945 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3946
3947 for (count = table_info->vdd_dep_on_sclk->count - 1;
3948 count >= 0; count--) {
3949 if (stable_pstate_sclk >=
3950 table_info->vdd_dep_on_sclk->entries[count].clk) {
3951 stable_pstate_sclk =
3952 table_info->vdd_dep_on_sclk->entries[count].clk;
3953 break;
3954 }
3955 }
3956
3957 if (count < 0)
3958 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3959
3960 stable_pstate_mclk = max_limits->mclk;
3961
3962 minimum_clocks.engineClock = stable_pstate_sclk;
3963 minimum_clocks.memoryClock = stable_pstate_mclk;
3964 }
3965
3966 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3967 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3968
3969 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3970 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3971
3972 fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3973
3974 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3975 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3976 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3977 "Overdrive sclk exceeds limit",
3978 hwmgr->gfx_arbiter.sclk_over_drive =
3979 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3980
3981 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3982 fiji_ps->performance_levels[1].engine_clock =
3983 hwmgr->gfx_arbiter.sclk_over_drive;
3984 }
3985
3986 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3987 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3988 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3989 "Overdrive mclk exceeds limit",
3990 hwmgr->gfx_arbiter.mclk_over_drive =
3991 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3992
3993 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3994 fiji_ps->performance_levels[1].memory_clock =
3995 hwmgr->gfx_arbiter.mclk_over_drive;
3996 }
3997
3998 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3999 hwmgr->platform_descriptor.platformCaps,
4000 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4001
4002 disable_mclk_switching = (1 < info.display_count) ||
4003 disable_mclk_switching_for_frame_lock;
4004
4005 sclk = fiji_ps->performance_levels[0].engine_clock;
4006 mclk = fiji_ps->performance_levels[0].memory_clock;
4007
4008 if (disable_mclk_switching)
4009 mclk = fiji_ps->performance_levels
4010 [fiji_ps->performance_level_count - 1].memory_clock;
4011
4012 if (sclk < minimum_clocks.engineClock)
4013 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4014 max_limits->sclk : minimum_clocks.engineClock;
4015
4016 if (mclk < minimum_clocks.memoryClock)
4017 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4018 max_limits->mclk : minimum_clocks.memoryClock;
4019
4020 fiji_ps->performance_levels[0].engine_clock = sclk;
4021 fiji_ps->performance_levels[0].memory_clock = mclk;
4022
4023 fiji_ps->performance_levels[1].engine_clock =
4024 (fiji_ps->performance_levels[1].engine_clock >=
4025 fiji_ps->performance_levels[0].engine_clock) ?
4026 fiji_ps->performance_levels[1].engine_clock :
4027 fiji_ps->performance_levels[0].engine_clock;
4028
4029 if (disable_mclk_switching) {
4030 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4031 mclk = fiji_ps->performance_levels[1].memory_clock;
4032
4033 fiji_ps->performance_levels[0].memory_clock = mclk;
4034 fiji_ps->performance_levels[1].memory_clock = mclk;
4035 } else {
4036 if (fiji_ps->performance_levels[1].memory_clock <
4037 fiji_ps->performance_levels[0].memory_clock)
4038 fiji_ps->performance_levels[1].memory_clock =
4039 fiji_ps->performance_levels[0].memory_clock;
4040 }
4041
4042 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4043 PHM_PlatformCaps_StablePState)) {
4044 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4045 fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4046 fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4047 fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4048 fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4049 }
4050 }
4051
4052 return 0;
4053}
4054
4055static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4056{
4057 const struct phm_set_power_state_input *states =
4058 (const struct phm_set_power_state_input *)input;
4059 const struct fiji_power_state *fiji_ps =
4060 cast_const_phw_fiji_power_state(states->pnew_state);
4061 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4062 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4063 uint32_t sclk = fiji_ps->performance_levels
4064 [fiji_ps->performance_level_count - 1].engine_clock;
4065 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4066 uint32_t mclk = fiji_ps->performance_levels
4067 [fiji_ps->performance_level_count - 1].memory_clock;
4068 struct PP_Clocks min_clocks = {0};
4069 uint32_t i;
4070 struct cgs_display_info info = {0};
4071
4072 data->need_update_smu7_dpm_table = 0;
4073
4074 for (i = 0; i < sclk_table->count; i++) {
4075 if (sclk == sclk_table->dpm_levels[i].value)
4076 break;
4077 }
4078
4079 if (i >= sclk_table->count)
4080 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4081 else {
4082 /* TODO: Check SCLK in DAL's minimum clocks
4083 * in case DeepSleep divider update is required.
4084 */
4085 if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
4086 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4087 }
4088
4089 for (i = 0; i < mclk_table->count; i++) {
4090 if (mclk == mclk_table->dpm_levels[i].value)
4091 break;
4092 }
4093
4094 if (i >= mclk_table->count)
4095 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4096
4097 cgs_get_active_displays_info(hwmgr->device, &info);
4098
4099 if (data->display_timing.num_existing_displays != info.display_count)
4100 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4101
4102 return 0;
4103}
4104
4105static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4106 const struct fiji_power_state *fiji_ps)
4107{
4108 uint32_t i;
4109 uint32_t sclk, max_sclk = 0;
4110 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4111 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4112
4113 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4114 sclk = fiji_ps->performance_levels[i].engine_clock;
4115 if (max_sclk < sclk)
4116 max_sclk = sclk;
4117 }
4118
4119 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4120 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4121 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4122 dpm_table->pcie_speed_table.dpm_levels
4123 [dpm_table->pcie_speed_table.count - 1].value :
4124 dpm_table->pcie_speed_table.dpm_levels[i].value);
4125 }
4126
4127 return 0;
4128}
4129
4130static int fiji_request_link_speed_change_before_state_change(
4131 struct pp_hwmgr *hwmgr, const void *input)
4132{
4133 const struct phm_set_power_state_input *states =
4134 (const struct phm_set_power_state_input *)input;
4135 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4136 const struct fiji_power_state *fiji_nps =
4137 cast_const_phw_fiji_power_state(states->pnew_state);
4138 const struct fiji_power_state *fiji_cps =
4139 cast_const_phw_fiji_power_state(states->pcurrent_state);
4140
4141 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4142 uint16_t current_link_speed;
4143
4144 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4145 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4146 else
4147 current_link_speed = data->force_pcie_gen;
4148
4149 data->force_pcie_gen = PP_PCIEGenInvalid;
4150 data->pspp_notify_required = false;
4151 if (target_link_speed > current_link_speed) {
4152 switch(target_link_speed) {
4153 case PP_PCIEGen3:
4154 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4155 break;
4156 data->force_pcie_gen = PP_PCIEGen2;
4157 if (current_link_speed == PP_PCIEGen2)
4158 break;
4159 case PP_PCIEGen2:
4160 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4161 break;
4162 default:
4163 data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4164 break;
4165 }
4166 } else {
4167 if (target_link_speed < current_link_speed)
4168 data->pspp_notify_required = true;
4169 }
4170
4171 return 0;
4172}
4173
4174static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4175{
4176 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4177
4178 if (0 == data->need_update_smu7_dpm_table)
4179 return 0;
4180
4181 if ((0 == data->sclk_dpm_key_disabled) &&
4182 (data->need_update_smu7_dpm_table &
4183 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4184 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4185 "Trying to freeze SCLK DPM when DPM is disabled",);
4186 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4187 PPSMC_MSG_SCLKDPM_FreezeLevel),
4188 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4189 return -1);
4190 }
4191
4192 if ((0 == data->mclk_dpm_key_disabled) &&
4193 (data->need_update_smu7_dpm_table &
4194 DPMTABLE_OD_UPDATE_MCLK)) {
4195 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4196 "Trying to freeze MCLK DPM when DPM is disabled",);
4197 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4198 PPSMC_MSG_MCLKDPM_FreezeLevel),
4199 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4200 return -1);
4201 }
4202
4203 return 0;
4204}
4205
4206static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4207 struct pp_hwmgr *hwmgr, const void *input)
4208{
4209 int result = 0;
4210 const struct phm_set_power_state_input *states =
4211 (const struct phm_set_power_state_input *)input;
4212 const struct fiji_power_state *fiji_ps =
4213 cast_const_phw_fiji_power_state(states->pnew_state);
4214 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4215 uint32_t sclk = fiji_ps->performance_levels
4216 [fiji_ps->performance_level_count - 1].engine_clock;
4217 uint32_t mclk = fiji_ps->performance_levels
4218 [fiji_ps->performance_level_count - 1].memory_clock;
4219 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4220
4221 struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4222 uint32_t dpm_count, clock_percent;
4223 uint32_t i;
4224
4225 if (0 == data->need_update_smu7_dpm_table)
4226 return 0;
4227
4228 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4229 dpm_table->sclk_table.dpm_levels
4230 [dpm_table->sclk_table.count - 1].value = sclk;
4231
4232 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4233 PHM_PlatformCaps_OD6PlusinACSupport) ||
4234 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4235 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4236 /* Need to do calculation based on the golden DPM table
4237 * as the Heatmap GPU Clock axis is also based on the default values
4238 */
4239 PP_ASSERT_WITH_CODE(
4240 (golden_dpm_table->sclk_table.dpm_levels
4241 [golden_dpm_table->sclk_table.count - 1].value != 0),
4242 "Divide by 0!",
4243 return -1);
4244 dpm_count = dpm_table->sclk_table.count < 2 ?
4245 0 : dpm_table->sclk_table.count - 2;
4246 for (i = dpm_count; i > 1; i--) {
4247 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4248 [golden_dpm_table->sclk_table.count-1].value) {
4249 clock_percent =
4250 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4251 [golden_dpm_table->sclk_table.count-1].value) * 100) /
4252 golden_dpm_table->sclk_table.dpm_levels
4253 [golden_dpm_table->sclk_table.count-1].value;
4254
4255 dpm_table->sclk_table.dpm_levels[i].value =
4256 golden_dpm_table->sclk_table.dpm_levels[i].value +
4257 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4258 clock_percent)/100;
4259
4260 } else if (golden_dpm_table->sclk_table.dpm_levels
4261 [dpm_table->sclk_table.count-1].value > sclk) {
4262 clock_percent =
4263 ((golden_dpm_table->sclk_table.dpm_levels
4264 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4265 100) /
4266 golden_dpm_table->sclk_table.dpm_levels
4267 [golden_dpm_table->sclk_table.count-1].value;
4268
4269 dpm_table->sclk_table.dpm_levels[i].value =
4270 golden_dpm_table->sclk_table.dpm_levels[i].value -
4271 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4272 clock_percent) / 100;
4273 } else
4274 dpm_table->sclk_table.dpm_levels[i].value =
4275 golden_dpm_table->sclk_table.dpm_levels[i].value;
4276 }
4277 }
4278 }
4279
4280 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4281 dpm_table->mclk_table.dpm_levels
4282 [dpm_table->mclk_table.count - 1].value = mclk;
4283
4284 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4285 PHM_PlatformCaps_OD6PlusinACSupport) ||
4286 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4287 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4288
4289 PP_ASSERT_WITH_CODE(
4290 (golden_dpm_table->mclk_table.dpm_levels
4291 [golden_dpm_table->mclk_table.count-1].value != 0),
4292 "Divide by 0!",
4293 return -1);
4294 dpm_count = dpm_table->mclk_table.count < 2 ?
4295 0 : dpm_table->mclk_table.count - 2;
4296 for (i = dpm_count; i > 1; i--) {
4297 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4298 [golden_dpm_table->mclk_table.count-1].value) {
4299 clock_percent = ((mclk -
4300 golden_dpm_table->mclk_table.dpm_levels
4301 [golden_dpm_table->mclk_table.count-1].value) * 100) /
4302 golden_dpm_table->mclk_table.dpm_levels
4303 [golden_dpm_table->mclk_table.count-1].value;
4304
4305 dpm_table->mclk_table.dpm_levels[i].value =
4306 golden_dpm_table->mclk_table.dpm_levels[i].value +
4307 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4308 clock_percent) / 100;
4309
4310 } else if (golden_dpm_table->mclk_table.dpm_levels
4311 [dpm_table->mclk_table.count-1].value > mclk) {
4312 clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4313 [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4314 golden_dpm_table->mclk_table.dpm_levels
4315 [golden_dpm_table->mclk_table.count-1].value;
4316
4317 dpm_table->mclk_table.dpm_levels[i].value =
4318 golden_dpm_table->mclk_table.dpm_levels[i].value -
4319 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4320 clock_percent) / 100;
4321 } else
4322 dpm_table->mclk_table.dpm_levels[i].value =
4323 golden_dpm_table->mclk_table.dpm_levels[i].value;
4324 }
4325 }
4326 }
4327
4328 if (data->need_update_smu7_dpm_table &
4329 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4330 result = fiji_populate_all_memory_levels(hwmgr);
4331 PP_ASSERT_WITH_CODE((0 == result),
4332 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4333 return result);
4334 }
4335
4336 if (data->need_update_smu7_dpm_table &
4337 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4338 /*populate MCLK dpm table to SMU7 */
4339 result = fiji_populate_all_memory_levels(hwmgr);
4340 PP_ASSERT_WITH_CODE((0 == result),
4341 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4342 return result);
4343 }
4344
4345 return result;
4346}
4347
4348static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4349 struct fiji_single_dpm_table * dpm_table,
4350 uint32_t low_limit, uint32_t high_limit)
4351{
4352 uint32_t i;
4353
4354 for (i = 0; i < dpm_table->count; i++) {
4355 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4356 (dpm_table->dpm_levels[i].value > high_limit))
4357 dpm_table->dpm_levels[i].enabled = false;
4358 else
4359 dpm_table->dpm_levels[i].enabled = true;
4360 }
4361 return 0;
4362}
4363
4364static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4365 const struct fiji_power_state *fiji_ps)
4366{
4367 int result = 0;
4368 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4369 uint32_t high_limit_count;
4370
4371 PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4372 "power state did not have any performance level",
4373 return -1);
4374
4375 high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4376
4377 fiji_trim_single_dpm_states(hwmgr,
4378 &(data->dpm_table.sclk_table),
4379 fiji_ps->performance_levels[0].engine_clock,
4380 fiji_ps->performance_levels[high_limit_count].engine_clock);
4381
4382 fiji_trim_single_dpm_states(hwmgr,
4383 &(data->dpm_table.mclk_table),
4384 fiji_ps->performance_levels[0].memory_clock,
4385 fiji_ps->performance_levels[high_limit_count].memory_clock);
4386
4387 return result;
4388}
4389
4390static int fiji_generate_dpm_level_enable_mask(
4391 struct pp_hwmgr *hwmgr, const void *input)
4392{
4393 int result;
4394 const struct phm_set_power_state_input *states =
4395 (const struct phm_set_power_state_input *)input;
4396 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4397 const struct fiji_power_state *fiji_ps =
4398 cast_const_phw_fiji_power_state(states->pnew_state);
4399
4400 result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4401 if (result)
4402 return result;
4403
4404 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4405 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4406 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4407 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4408 data->last_mclk_dpm_enable_mask =
4409 data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4410
4411 if (data->uvd_enabled) {
4412 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4413 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4414 }
4415
4416 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4417 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4418
4419 return 0;
4420}
4421
Eric Huang91c4c982015-11-20 15:58:11 -05004422int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4423{
4424 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4425 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4426 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4427}
4428
4429int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
Eric Huangaabcb7c2015-08-26 16:52:28 -04004430{
4431 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4432 PPSMC_MSG_VCEDPM_Enable :
4433 PPSMC_MSG_VCEDPM_Disable);
4434}
4435
Eric Huang91c4c982015-11-20 15:58:11 -05004436int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4437{
4438 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4439 PPSMC_MSG_SAMUDPM_Enable :
4440 PPSMC_MSG_SAMUDPM_Disable);
4441}
4442
4443int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4444{
4445 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4446 PPSMC_MSG_ACPDPM_Enable :
4447 PPSMC_MSG_ACPDPM_Disable);
4448}
4449
4450int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4451{
4452 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4453 uint32_t mm_boot_level_offset, mm_boot_level_value;
4454 struct phm_ppt_v1_information *table_info =
4455 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4456
4457 if (!bgate) {
4458 data->smc_state_table.UvdBootLevel = 0;
4459 if (table_info->mm_dep_table->count > 0)
4460 data->smc_state_table.UvdBootLevel =
4461 (uint8_t) (table_info->mm_dep_table->count - 1);
4462 mm_boot_level_offset = data->dpm_table_start +
4463 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4464 mm_boot_level_offset /= 4;
4465 mm_boot_level_offset *= 4;
4466 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4467 CGS_IND_REG__SMC, mm_boot_level_offset);
4468 mm_boot_level_value &= 0x00FFFFFF;
4469 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4470 cgs_write_ind_register(hwmgr->device,
4471 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4472
4473 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4474 PHM_PlatformCaps_UVDDPM) ||
4475 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4476 PHM_PlatformCaps_StablePState))
4477 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4478 PPSMC_MSG_UVDDPM_SetEnabledMask,
4479 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4480 }
4481
4482 return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4483}
4484
4485int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
Eric Huangaabcb7c2015-08-26 16:52:28 -04004486{
4487 const struct phm_set_power_state_input *states =
4488 (const struct phm_set_power_state_input *)input;
4489 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4490 const struct fiji_power_state *fiji_nps =
4491 cast_const_phw_fiji_power_state(states->pnew_state);
4492 const struct fiji_power_state *fiji_cps =
4493 cast_const_phw_fiji_power_state(states->pcurrent_state);
4494
4495 uint32_t mm_boot_level_offset, mm_boot_level_value;
4496 struct phm_ppt_v1_information *table_info =
4497 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4498
4499 if (fiji_nps->vce_clks.evclk >0 &&
4500 (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4501 data->smc_state_table.VceBootLevel =
4502 (uint8_t) (table_info->mm_dep_table->count - 1);
4503
4504 mm_boot_level_offset = data->dpm_table_start +
4505 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4506 mm_boot_level_offset /= 4;
4507 mm_boot_level_offset *= 4;
4508 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4509 CGS_IND_REG__SMC, mm_boot_level_offset);
4510 mm_boot_level_value &= 0xFF00FFFF;
4511 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4512 cgs_write_ind_register(hwmgr->device,
4513 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4514
4515 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4516 PHM_PlatformCaps_StablePState)) {
4517 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4518 PPSMC_MSG_VCEDPM_SetEnabledMask,
4519 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4520
4521 fiji_enable_disable_vce_dpm(hwmgr, true);
4522 } else if (fiji_nps->vce_clks.evclk == 0 &&
4523 fiji_cps != NULL &&
4524 fiji_cps->vce_clks.evclk > 0)
4525 fiji_enable_disable_vce_dpm(hwmgr, false);
4526 }
4527
4528 return 0;
4529}
4530
Eric Huang91c4c982015-11-20 15:58:11 -05004531int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4532{
4533 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4534 uint32_t mm_boot_level_offset, mm_boot_level_value;
4535 struct phm_ppt_v1_information *table_info =
4536 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4537
4538 if (!bgate) {
4539 data->smc_state_table.SamuBootLevel =
4540 (uint8_t) (table_info->mm_dep_table->count - 1);
4541 mm_boot_level_offset = data->dpm_table_start +
4542 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4543 mm_boot_level_offset /= 4;
4544 mm_boot_level_offset *= 4;
4545 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4546 CGS_IND_REG__SMC, mm_boot_level_offset);
4547 mm_boot_level_value &= 0xFFFFFF00;
4548 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4549 cgs_write_ind_register(hwmgr->device,
4550 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4551
4552 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4553 PHM_PlatformCaps_StablePState))
4554 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4555 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4556 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4557 }
4558
4559 return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4560}
4561
4562int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4563{
4564 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4565 uint32_t mm_boot_level_offset, mm_boot_level_value;
4566 struct phm_ppt_v1_information *table_info =
4567 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4568
4569 if (!bgate) {
4570 data->smc_state_table.AcpBootLevel =
4571 (uint8_t) (table_info->mm_dep_table->count - 1);
4572 mm_boot_level_offset = data->dpm_table_start +
4573 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4574 mm_boot_level_offset /= 4;
4575 mm_boot_level_offset *= 4;
4576 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4577 CGS_IND_REG__SMC, mm_boot_level_offset);
4578 mm_boot_level_value &= 0xFFFF00FF;
4579 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4580 cgs_write_ind_register(hwmgr->device,
4581 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4582
4583 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4584 PHM_PlatformCaps_StablePState))
4585 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4586 PPSMC_MSG_ACPDPM_SetEnabledMask,
4587 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4588 }
4589
4590 return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4591}
4592
Eric Huangaabcb7c2015-08-26 16:52:28 -04004593static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4594{
4595 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4596
4597 int result = 0;
4598 uint32_t low_sclk_interrupt_threshold = 0;
4599
4600 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4601 PHM_PlatformCaps_SclkThrottleLowNotification)
4602 && (hwmgr->gfx_arbiter.sclk_threshold !=
4603 data->low_sclk_interrupt_threshold)) {
4604 data->low_sclk_interrupt_threshold =
4605 hwmgr->gfx_arbiter.sclk_threshold;
4606 low_sclk_interrupt_threshold =
4607 data->low_sclk_interrupt_threshold;
4608
4609 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4610
4611 result = fiji_copy_bytes_to_smc(
4612 hwmgr->smumgr,
4613 data->dpm_table_start +
4614 offsetof(SMU73_Discrete_DpmTable,
4615 LowSclkInterruptThreshold),
4616 (uint8_t *)&low_sclk_interrupt_threshold,
4617 sizeof(uint32_t),
4618 data->sram_end);
4619 }
4620
4621 return result;
4622}
4623
4624static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4625{
4626 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4627
4628 if (data->need_update_smu7_dpm_table &
4629 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4630 return fiji_program_memory_timing_parameters(hwmgr);
4631
4632 return 0;
4633}
4634
4635static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4636{
4637 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4638
4639 if (0 == data->need_update_smu7_dpm_table)
4640 return 0;
4641
4642 if ((0 == data->sclk_dpm_key_disabled) &&
4643 (data->need_update_smu7_dpm_table &
4644 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4645
4646 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4647 "Trying to Unfreeze SCLK DPM when DPM is disabled",);
4648 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4649 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4650 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4651 return -1);
4652 }
4653
4654 if ((0 == data->mclk_dpm_key_disabled) &&
4655 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4656
4657 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4658 "Trying to Unfreeze MCLK DPM when DPM is disabled",);
4659 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4660 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4661 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4662 return -1);
4663 }
4664
4665 data->need_update_smu7_dpm_table = 0;
4666
4667 return 0;
4668}
4669
4670/* Look up the voltaged based on DAL's requested level.
4671 * and then send the requested VDDC voltage to SMC
4672 */
4673static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4674{
4675 return;
4676}
4677
4678int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4679{
4680 int result;
4681 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4682
4683 /* Apply minimum voltage based on DAL's request level */
4684 fiji_apply_dal_minimum_voltage_request(hwmgr);
4685
4686 if (0 == data->sclk_dpm_key_disabled) {
4687 /* Checking if DPM is running. If we discover hang because of this,
4688 * we should skip this message.
4689 */
4690 if (!fiji_is_dpm_running(hwmgr))
4691 printk(KERN_ERR "[ powerplay ] "
4692 "Trying to set Enable Mask when DPM is disabled \n");
4693
4694 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4695 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4696 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4697 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4698 PP_ASSERT_WITH_CODE((0 == result),
4699 "Set Sclk Dpm enable Mask failed", return -1);
4700 }
4701 }
4702
4703 if (0 == data->mclk_dpm_key_disabled) {
4704 /* Checking if DPM is running. If we discover hang because of this,
4705 * we should skip this message.
4706 */
4707 if (!fiji_is_dpm_running(hwmgr))
4708 printk(KERN_ERR "[ powerplay ]"
4709 " Trying to set Enable Mask when DPM is disabled \n");
4710
4711 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4712 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4713 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4714 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4715 PP_ASSERT_WITH_CODE((0 == result),
4716 "Set Mclk Dpm enable Mask failed", return -1);
4717 }
4718 }
4719
4720 return 0;
4721}
4722
4723static int fiji_notify_link_speed_change_after_state_change(
4724 struct pp_hwmgr *hwmgr, const void *input)
4725{
4726 const struct phm_set_power_state_input *states =
4727 (const struct phm_set_power_state_input *)input;
4728 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4729 const struct fiji_power_state *fiji_ps =
4730 cast_const_phw_fiji_power_state(states->pnew_state);
4731 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4732 uint8_t request;
4733
4734 if (data->pspp_notify_required) {
4735 if (target_link_speed == PP_PCIEGen3)
4736 request = PCIE_PERF_REQ_GEN3;
4737 else if (target_link_speed == PP_PCIEGen2)
4738 request = PCIE_PERF_REQ_GEN2;
4739 else
4740 request = PCIE_PERF_REQ_GEN1;
4741
4742 if(request == PCIE_PERF_REQ_GEN1 &&
4743 fiji_get_current_pcie_speed(hwmgr) > 0)
4744 return 0;
4745
4746 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4747 if (PP_PCIEGen2 == target_link_speed)
4748 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4749 else
4750 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4751 }
4752 }
4753
4754 return 0;
4755}
4756
4757static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4758 const void *input)
4759{
4760 int tmp_result, result = 0;
4761
4762 tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4763 PP_ASSERT_WITH_CODE((0 == tmp_result),
4764 "Failed to find DPM states clocks in DPM table!",
4765 result = tmp_result);
4766
4767 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4768 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4769 tmp_result =
4770 fiji_request_link_speed_change_before_state_change(hwmgr, input);
4771 PP_ASSERT_WITH_CODE((0 == tmp_result),
4772 "Failed to request link speed change before state change!",
4773 result = tmp_result);
4774 }
4775
4776 tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4777 PP_ASSERT_WITH_CODE((0 == tmp_result),
4778 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4779
4780 tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4781 PP_ASSERT_WITH_CODE((0 == tmp_result),
4782 "Failed to populate and upload SCLK MCLK DPM levels!",
4783 result = tmp_result);
4784
4785 tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4786 PP_ASSERT_WITH_CODE((0 == tmp_result),
4787 "Failed to generate DPM level enabled mask!",
4788 result = tmp_result);
4789
4790 tmp_result = fiji_update_vce_dpm(hwmgr, input);
4791 PP_ASSERT_WITH_CODE((0 == tmp_result),
4792 "Failed to update VCE DPM!",
4793 result = tmp_result);
4794
4795 tmp_result = fiji_update_sclk_threshold(hwmgr);
4796 PP_ASSERT_WITH_CODE((0 == tmp_result),
4797 "Failed to update SCLK threshold!",
4798 result = tmp_result);
4799
4800 tmp_result = fiji_program_mem_timing_parameters(hwmgr);
4801 PP_ASSERT_WITH_CODE((0 == tmp_result),
4802 "Failed to program memory timing parameters!",
4803 result = tmp_result);
4804
4805 tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
4806 PP_ASSERT_WITH_CODE((0 == tmp_result),
4807 "Failed to unfreeze SCLK MCLK DPM!",
4808 result = tmp_result);
4809
4810 tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
4811 PP_ASSERT_WITH_CODE((0 == tmp_result),
4812 "Failed to upload DPM level enabled mask!",
4813 result = tmp_result);
4814
4815 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4816 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4817 tmp_result =
4818 fiji_notify_link_speed_change_after_state_change(hwmgr, input);
4819 PP_ASSERT_WITH_CODE((0 == tmp_result),
4820 "Failed to notify link speed change after state change!",
4821 result = tmp_result);
4822 }
4823
4824 return result;
4825}
4826
4827static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4828{
4829 struct pp_power_state *ps;
4830 struct fiji_power_state *fiji_ps;
4831
4832 if (hwmgr == NULL)
4833 return -EINVAL;
4834
4835 ps = hwmgr->request_ps;
4836
4837 if (ps == NULL)
4838 return -EINVAL;
4839
4840 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4841
4842 if (low)
4843 return fiji_ps->performance_levels[0].engine_clock;
4844 else
4845 return fiji_ps->performance_levels
4846 [fiji_ps->performance_level_count-1].engine_clock;
4847}
4848
4849static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4850{
4851 struct pp_power_state *ps;
4852 struct fiji_power_state *fiji_ps;
4853
4854 if (hwmgr == NULL)
4855 return -EINVAL;
4856
4857 ps = hwmgr->request_ps;
4858
4859 if (ps == NULL)
4860 return -EINVAL;
4861
4862 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4863
4864 if (low)
4865 return fiji_ps->performance_levels[0].memory_clock;
4866 else
4867 return fiji_ps->performance_levels
4868 [fiji_ps->performance_level_count-1].memory_clock;
4869}
4870
4871static void fiji_print_current_perforce_level(
4872 struct pp_hwmgr *hwmgr, struct seq_file *m)
4873{
4874 uint32_t sclk, mclk;
4875
4876 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4877
4878 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4879
4880 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4881
4882 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4883 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
4884 mclk / 100, sclk / 100);
4885}
4886
Eric Huangea617bc2015-11-24 17:00:56 -05004887static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
4888{
4889 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4890 uint32_t num_active_displays = 0;
4891 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4892 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4893 uint32_t display_gap2;
4894 uint32_t pre_vbi_time_in_us;
4895 uint32_t frame_time_in_us;
4896 uint32_t ref_clock;
4897 uint32_t refresh_rate = 0;
4898 struct cgs_display_info info = {0};
4899 struct cgs_mode_info mode_info;
4900
4901 info.mode_info = &mode_info;
4902
4903 cgs_get_active_displays_info(hwmgr->device, &info);
4904 num_active_displays = info.display_count;
4905
4906 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
4907 DISP_GAP, (num_active_displays > 0)?
4908 DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4909 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4910 ixCG_DISPLAY_GAP_CNTL, display_gap);
4911
4912 ref_clock = mode_info.ref_clock;
4913 refresh_rate = mode_info.refresh_rate;
4914
4915 if (refresh_rate == 0)
4916 refresh_rate = 60;
4917
4918 frame_time_in_us = 1000000 / refresh_rate;
4919
4920 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
4921 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4922
4923 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4924 ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4925
4926 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4927 data->soft_regs_start +
4928 offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
4929
4930 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4931 data->soft_regs_start +
4932 offsetof(SMU73_SoftRegisters, VBlankTimeout),
4933 (frame_time_in_us - pre_vbi_time_in_us));
4934
4935 if (num_active_displays == 1)
4936 tonga_notify_smc_display_change(hwmgr, true);
4937
4938 return 0;
4939}
4940
4941int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4942{
4943 return fiji_program_display_gap(hwmgr);
4944}
4945
Eric Huang60103812015-11-27 14:09:53 -05004946static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
4947 uint16_t us_max_fan_pwm)
4948{
4949 hwmgr->thermal_controller.
4950 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4951
4952 if (phm_is_hw_access_blocked(hwmgr))
4953 return 0;
4954
4955 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4956 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4957}
4958
4959static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
4960 uint16_t us_max_fan_rpm)
4961{
4962 hwmgr->thermal_controller.
4963 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4964
4965 if (phm_is_hw_access_blocked(hwmgr))
4966 return 0;
4967
4968 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4969 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4970}
4971
4972int fiji_dpm_set_interrupt_state(void *private_data,
4973 unsigned src_id, unsigned type,
4974 int enabled)
4975{
4976 uint32_t cg_thermal_int;
4977 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
4978
4979 if (hwmgr == NULL)
4980 return -EINVAL;
4981
4982 switch (type) {
4983 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
4984 if (enabled) {
4985 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4986 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4987 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4988 cgs_write_ind_register(hwmgr->device,
4989 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4990 } else {
4991 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4992 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4993 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4994 cgs_write_ind_register(hwmgr->device,
4995 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4996 }
4997 break;
4998
4999 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5000 if (enabled) {
5001 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5002 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5003 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5004 cgs_write_ind_register(hwmgr->device,
5005 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5006 } else {
5007 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5008 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5009 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5010 cgs_write_ind_register(hwmgr->device,
5011 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5012 }
5013 break;
5014 default:
5015 break;
5016 }
5017 return 0;
5018}
5019
5020int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5021 const void *thermal_interrupt_info)
5022{
5023 int result;
5024 const struct pp_interrupt_registration_info *info =
5025 (const struct pp_interrupt_registration_info *)
5026 thermal_interrupt_info;
5027
5028 if (info == NULL)
5029 return -EINVAL;
5030
5031 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5032 fiji_dpm_set_interrupt_state,
5033 info->call_back, info->context);
5034
5035 if (result)
5036 return -EINVAL;
5037
5038 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5039 fiji_dpm_set_interrupt_state,
5040 info->call_back, info->context);
5041
5042 if (result)
5043 return -EINVAL;
5044
5045 return 0;
5046}
5047
Eric Huangaabcb7c2015-08-26 16:52:28 -04005048static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5049 .backend_init = &fiji_hwmgr_backend_init,
5050 .backend_fini = &tonga_hwmgr_backend_fini,
5051 .asic_setup = &fiji_setup_asic_task,
5052 .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5053 .force_dpm_level = &fiji_dpm_force_dpm_level,
5054 .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5055 .get_power_state_size = &fiji_get_power_state_size,
5056 .get_pp_table_entry = &fiji_get_pp_table_entry,
5057 .patch_boot_state = &fiji_patch_boot_state,
5058 .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5059 .power_state_set = &fiji_set_power_state_tasks,
5060 .get_sclk = &fiji_dpm_get_sclk,
5061 .get_mclk = &fiji_dpm_get_mclk,
5062 .print_current_perforce_level = &fiji_print_current_perforce_level,
Eric Huang91c4c982015-11-20 15:58:11 -05005063 .powergate_uvd = &fiji_phm_powergate_uvd,
5064 .powergate_vce = &fiji_phm_powergate_vce,
5065 .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
Eric Huangea617bc2015-11-24 17:00:56 -05005066 .notify_smc_display_config_after_ps_adjustment =
5067 &tonga_notify_smc_display_config_after_ps_adjustment,
5068 .display_config_changed = &fiji_display_configuration_changed_task,
Eric Huang60103812015-11-27 14:09:53 -05005069 .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5070 .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5071 .get_temperature = fiji_thermal_get_temperature,
5072 .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5073 .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5074 .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5075 .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5076 .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5077 .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5078 .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5079 .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5080 .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
Eric Huangaabcb7c2015-08-26 16:52:28 -04005081};
5082
5083int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5084{
5085 struct fiji_hwmgr *data;
5086 int ret = 0;
5087
5088 data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
5089 if (data == NULL)
5090 return -ENOMEM;
5091
5092 hwmgr->backend = data;
5093 hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5094 hwmgr->pptable_func = &tonga_pptable_funcs;
Eric Huang60103812015-11-27 14:09:53 -05005095 pp_fiji_thermal_initialize(hwmgr);
Eric Huangaabcb7c2015-08-26 16:52:28 -04005096 return ret;
5097}