blob: c38a6257d0824b722b222eb8affc366f1495597a [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
Andi Kleen1c80b992010-09-27 23:09:51 +020010 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
Andi Kleen6a460792009-09-16 11:50:15 +020011 * failure.
Andi Kleen1c80b992010-09-27 23:09:51 +020012 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
Andi Kleen6a460792009-09-16 11:50:15 +020015 *
16 * Handles page cache pages in various states. The tricky part
Andi Kleen1c80b992010-09-27 23:09:51 +020017 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
Andi Kleen6a460792009-09-16 11:50:15 +020030 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
Andi Kleen6a460792009-09-16 11:50:15 +020038#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
Wu Fengguang478c5ff2009-12-16 12:19:59 +010041#include <linux/kernel-page-flags.h>
Andi Kleen6a460792009-09-16 11:50:15 +020042#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010043#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020044#include <linux/rmap.h>
Paul Gortmakerb9e15ba2011-05-26 16:00:52 -040045#include <linux/export.h>
Andi Kleen6a460792009-09-16 11:50:15 +020046#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
Andi Kleenfacb6012009-12-16 12:20:00 +010049#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090052#include <linux/slab.h>
Huang Yingbf998152010-05-31 14:28:19 +080053#include <linux/swapops.h>
Naoya Horiguchi7af446a2010-05-28 09:29:17 +090054#include <linux/hugetlb.h>
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -080055#include <linux/memory_hotplug.h>
Minchan Kim5db8a732011-06-15 15:08:48 -070056#include <linux/mm_inline.h>
Huang Yingea8f5fb2011-07-13 13:14:27 +080057#include <linux/kfifo.h>
Andi Kleen6a460792009-09-16 11:50:15 +020058#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
Andi Kleen27df5062009-12-21 19:56:42 +010066#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010068u32 hwpoison_filter_enable = 0;
Wu Fengguang7c116f22009-12-16 12:19:59 +010069u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
Wu Fengguang478c5ff2009-12-16 12:19:59 +010071u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010073EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
Wu Fengguang7c116f22009-12-16 12:19:59 +010074EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
Wu Fengguang478c5ff2009-12-16 12:19:59 +010076EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
Wu Fengguang7c116f22009-12-16 12:19:59 +010078
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
Andi Kleen1c80b992010-09-27 23:09:51 +020089 * page_mapping() does not accept slab pages.
Wu Fengguang7c116f22009-12-16 12:19:59 +010090 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
Andi Kleen4fd466e2009-12-16 12:19:59 +0100121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
Andrew Mortonc255a452012-07-31 16:43:02 -0700131#ifdef CONFIG_MEMCG_SWAP
Andi Kleen4fd466e2009-12-16 12:19:59 +0100132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
Wu Fengguang7c116f22009-12-16 12:19:59 +0100164int hwpoison_filter(struct page *p)
165{
Haicheng Li1bfe5fe2009-12-16 12:19:59 +0100166 if (!hwpoison_filter_enable)
167 return 0;
168
Wu Fengguang7c116f22009-12-16 12:19:59 +0100169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
Andi Kleen4fd466e2009-12-16 12:19:59 +0100175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
Wu Fengguang7c116f22009-12-16 12:19:59 +0100178 return 0;
179}
Andi Kleen27df5062009-12-21 19:56:42 +0100180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
Wu Fengguang7c116f22009-12-16 12:19:59 +0100187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
Andi Kleen6a460792009-09-16 11:50:15 +0200189/*
Tony Luck7329bbe2011-12-13 09:27:58 -0800190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
Andi Kleen6a460792009-09-16 11:50:15 +0200193 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
Tony Luck7329bbe2011-12-13 09:27:58 -0800201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
Andi Kleen6a460792009-09-16 11:50:15 +0200205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
Tony Luck7329bbe2011-12-13 09:27:58 -0800210
211 if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, t);
214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
Andi Kleen6a460792009-09-16 11:50:15 +0200224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
230/*
Andi Kleen588f9ce2009-12-16 12:19:57 +0100231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100234void shake_page(struct page *p, int access)
Andi Kleen588f9ce2009-12-16 12:19:57 +0100235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
Andi Kleenfacb6012009-12-16 12:20:00 +0100244
Andi Kleen588f9ce2009-12-16 12:19:57 +0100245 /*
Jin Dongmingaf241a02011-02-01 15:52:41 -0800246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
Andi Kleen588f9ce2009-12-16 12:19:57 +0100248 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100249 if (access) {
250 int nr;
251 do {
Ying Hana09ed5e2011-05-24 17:12:26 -0700252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
Ying Hana09ed5e2011-05-24 17:12:26 -0700254 };
255
Ying Han1495f232011-05-24 17:12:27 -0700256 nr = shrink_slab(&shrink, 1000, 1000);
Andi Kleen47f43e72010-09-28 07:37:55 +0200257 if (page_count(p) == 1)
Andi Kleenfacb6012009-12-16 12:20:00 +0100258 break;
259 } while (nr > 10);
260 }
Andi Kleen588f9ce2009-12-16 12:19:57 +0100261}
262EXPORT_SYMBOL_GPL(shake_page);
263
264/*
Andi Kleen6a460792009-09-16 11:50:15 +0200265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
Andi Kleen9033ae12010-09-27 23:36:05 +0200290 char addr_valid;
Andi Kleen6a460792009-09-16 11:50:15 +0200291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307{
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200331 pr_info("MCE: Unable to find user space address %lx in %s\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
Tony Luck6751ed62012-07-11 10:20:47 -0700348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800349 int fail, struct page *page, unsigned long pfn,
350 int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200351{
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
Tony Luck6751ed62012-07-11 10:20:47 -0700355 if (forcekill) {
Andi Kleen6a460792009-09-16 11:50:15 +0200356 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200357 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
Andi Kleen6a460792009-09-16 11:50:15 +0200360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383}
384
385static int task_early_kill(struct task_struct *tsk)
386{
387 if (!tsk->mm)
388 return 0;
389 if (tsk->flags & PF_MCE_PROCESS)
390 return !!(tsk->flags & PF_MCE_EARLY);
391 return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 struct to_kill **tkc)
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk;
402 struct anon_vma *av;
403
Andi Kleen6a460792009-09-16 11:50:15 +0200404 av = page_lock_anon_vma(page);
405 if (av == NULL) /* Not actually mapped anymore */
Peter Zijlstra9b679322011-06-27 16:18:09 -0700406 return;
407
408 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200409 for_each_process (tsk) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800410 struct anon_vma_chain *vmac;
411
Andi Kleen6a460792009-09-16 11:50:15 +0200412 if (!task_early_kill(tsk))
413 continue;
Rik van Riel5beb4932010-03-05 13:42:07 -0800414 list_for_each_entry(vmac, &av->head, same_anon_vma) {
415 vma = vmac->vma;
Andi Kleen6a460792009-09-16 11:50:15 +0200416 if (!page_mapped_in_vma(page, vma))
417 continue;
418 if (vma->vm_mm == tsk->mm)
419 add_to_kill(tsk, page, vma, to_kill, tkc);
420 }
421 }
Andi Kleen6a460792009-09-16 11:50:15 +0200422 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700423 page_unlock_anon_vma(av);
Andi Kleen6a460792009-09-16 11:50:15 +0200424}
425
426/*
427 * Collect processes when the error hit a file mapped page.
428 */
429static void collect_procs_file(struct page *page, struct list_head *to_kill,
430 struct to_kill **tkc)
431{
432 struct vm_area_struct *vma;
433 struct task_struct *tsk;
Andi Kleen6a460792009-09-16 11:50:15 +0200434 struct address_space *mapping = page->mapping;
435
Peter Zijlstra3d48ae42011-05-24 17:12:06 -0700436 mutex_lock(&mapping->i_mmap_mutex);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700437 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200438 for_each_process(tsk) {
439 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
440
441 if (!task_early_kill(tsk))
442 continue;
443
Michel Lespinasse6b2dbba2012-10-08 16:31:25 -0700444 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
Andi Kleen6a460792009-09-16 11:50:15 +0200445 pgoff) {
446 /*
447 * Send early kill signal to tasks where a vma covers
448 * the page but the corrupted page is not necessarily
449 * mapped it in its pte.
450 * Assume applications who requested early kill want
451 * to be informed of all such data corruptions.
452 */
453 if (vma->vm_mm == tsk->mm)
454 add_to_kill(tsk, page, vma, to_kill, tkc);
455 }
456 }
Andi Kleen6a460792009-09-16 11:50:15 +0200457 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700458 mutex_unlock(&mapping->i_mmap_mutex);
Andi Kleen6a460792009-09-16 11:50:15 +0200459}
460
461/*
462 * Collect the processes who have the corrupted page mapped to kill.
463 * This is done in two steps for locking reasons.
464 * First preallocate one tokill structure outside the spin locks,
465 * so that we can kill at least one process reasonably reliable.
466 */
467static void collect_procs(struct page *page, struct list_head *tokill)
468{
469 struct to_kill *tk;
470
471 if (!page->mapping)
472 return;
473
474 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
475 if (!tk)
476 return;
477 if (PageAnon(page))
478 collect_procs_anon(page, tokill, &tk);
479 else
480 collect_procs_file(page, tokill, &tk);
481 kfree(tk);
482}
483
484/*
485 * Error handlers for various types of pages.
486 */
487
488enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100489 IGNORED, /* Error: cannot be handled */
490 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200491 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200492 RECOVERED, /* Successfully recovered */
493};
494
495static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100496 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200497 [FAILED] = "Failed",
498 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200499 [RECOVERED] = "Recovered",
500};
501
502/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100503 * XXX: It is possible that a page is isolated from LRU cache,
504 * and then kept in swap cache or failed to remove from page cache.
505 * The page count will stop it from being freed by unpoison.
506 * Stress tests should be aware of this memory leak problem.
507 */
508static int delete_from_lru_cache(struct page *p)
509{
510 if (!isolate_lru_page(p)) {
511 /*
512 * Clear sensible page flags, so that the buddy system won't
513 * complain when the page is unpoison-and-freed.
514 */
515 ClearPageActive(p);
516 ClearPageUnevictable(p);
517 /*
518 * drop the page count elevated by isolate_lru_page()
519 */
520 page_cache_release(p);
521 return 0;
522 }
523 return -EIO;
524}
525
526/*
Andi Kleen6a460792009-09-16 11:50:15 +0200527 * Error hit kernel page.
528 * Do nothing, try to be lucky and not touch this instead. For a few cases we
529 * could be more sophisticated.
530 */
531static int me_kernel(struct page *p, unsigned long pfn)
532{
Andi Kleen6a460792009-09-16 11:50:15 +0200533 return IGNORED;
534}
535
536/*
537 * Page in unknown state. Do nothing.
538 */
539static int me_unknown(struct page *p, unsigned long pfn)
540{
541 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
542 return FAILED;
543}
544
545/*
Andi Kleen6a460792009-09-16 11:50:15 +0200546 * Clean (or cleaned) page cache page.
547 */
548static int me_pagecache_clean(struct page *p, unsigned long pfn)
549{
550 int err;
551 int ret = FAILED;
552 struct address_space *mapping;
553
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100554 delete_from_lru_cache(p);
555
Andi Kleen6a460792009-09-16 11:50:15 +0200556 /*
557 * For anonymous pages we're done the only reference left
558 * should be the one m_f() holds.
559 */
560 if (PageAnon(p))
561 return RECOVERED;
562
563 /*
564 * Now truncate the page in the page cache. This is really
565 * more like a "temporary hole punch"
566 * Don't do this for block devices when someone else
567 * has a reference, because it could be file system metadata
568 * and that's not safe to truncate.
569 */
570 mapping = page_mapping(p);
571 if (!mapping) {
572 /*
573 * Page has been teared down in the meanwhile
574 */
575 return FAILED;
576 }
577
578 /*
579 * Truncation is a bit tricky. Enable it per file system for now.
580 *
581 * Open: to take i_mutex or not for this? Right now we don't.
582 */
583 if (mapping->a_ops->error_remove_page) {
584 err = mapping->a_ops->error_remove_page(mapping, p);
585 if (err != 0) {
586 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
587 pfn, err);
588 } else if (page_has_private(p) &&
589 !try_to_release_page(p, GFP_NOIO)) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200590 pr_info("MCE %#lx: failed to release buffers\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200591 } else {
592 ret = RECOVERED;
593 }
594 } else {
595 /*
596 * If the file system doesn't support it just invalidate
597 * This fails on dirty or anything with private pages
598 */
599 if (invalidate_inode_page(p))
600 ret = RECOVERED;
601 else
602 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
603 pfn);
604 }
605 return ret;
606}
607
608/*
609 * Dirty cache page page
610 * Issues: when the error hit a hole page the error is not properly
611 * propagated.
612 */
613static int me_pagecache_dirty(struct page *p, unsigned long pfn)
614{
615 struct address_space *mapping = page_mapping(p);
616
617 SetPageError(p);
618 /* TBD: print more information about the file. */
619 if (mapping) {
620 /*
621 * IO error will be reported by write(), fsync(), etc.
622 * who check the mapping.
623 * This way the application knows that something went
624 * wrong with its dirty file data.
625 *
626 * There's one open issue:
627 *
628 * The EIO will be only reported on the next IO
629 * operation and then cleared through the IO map.
630 * Normally Linux has two mechanisms to pass IO error
631 * first through the AS_EIO flag in the address space
632 * and then through the PageError flag in the page.
633 * Since we drop pages on memory failure handling the
634 * only mechanism open to use is through AS_AIO.
635 *
636 * This has the disadvantage that it gets cleared on
637 * the first operation that returns an error, while
638 * the PageError bit is more sticky and only cleared
639 * when the page is reread or dropped. If an
640 * application assumes it will always get error on
641 * fsync, but does other operations on the fd before
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300642 * and the page is dropped between then the error
Andi Kleen6a460792009-09-16 11:50:15 +0200643 * will not be properly reported.
644 *
645 * This can already happen even without hwpoisoned
646 * pages: first on metadata IO errors (which only
647 * report through AS_EIO) or when the page is dropped
648 * at the wrong time.
649 *
650 * So right now we assume that the application DTRT on
651 * the first EIO, but we're not worse than other parts
652 * of the kernel.
653 */
654 mapping_set_error(mapping, EIO);
655 }
656
657 return me_pagecache_clean(p, pfn);
658}
659
660/*
661 * Clean and dirty swap cache.
662 *
663 * Dirty swap cache page is tricky to handle. The page could live both in page
664 * cache and swap cache(ie. page is freshly swapped in). So it could be
665 * referenced concurrently by 2 types of PTEs:
666 * normal PTEs and swap PTEs. We try to handle them consistently by calling
667 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
668 * and then
669 * - clear dirty bit to prevent IO
670 * - remove from LRU
671 * - but keep in the swap cache, so that when we return to it on
672 * a later page fault, we know the application is accessing
673 * corrupted data and shall be killed (we installed simple
674 * interception code in do_swap_page to catch it).
675 *
676 * Clean swap cache pages can be directly isolated. A later page fault will
677 * bring in the known good data from disk.
678 */
679static int me_swapcache_dirty(struct page *p, unsigned long pfn)
680{
Andi Kleen6a460792009-09-16 11:50:15 +0200681 ClearPageDirty(p);
682 /* Trigger EIO in shmem: */
683 ClearPageUptodate(p);
684
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100685 if (!delete_from_lru_cache(p))
686 return DELAYED;
687 else
688 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200689}
690
691static int me_swapcache_clean(struct page *p, unsigned long pfn)
692{
Andi Kleen6a460792009-09-16 11:50:15 +0200693 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800694
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100695 if (!delete_from_lru_cache(p))
696 return RECOVERED;
697 else
698 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200699}
700
701/*
702 * Huge pages. Needs work.
703 * Issues:
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900704 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
705 * To narrow down kill region to one page, we need to break up pmd.
Andi Kleen6a460792009-09-16 11:50:15 +0200706 */
707static int me_huge_page(struct page *p, unsigned long pfn)
708{
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900709 int res = 0;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900710 struct page *hpage = compound_head(p);
711 /*
712 * We can safely recover from error on free or reserved (i.e.
713 * not in-use) hugepage by dequeuing it from freelist.
714 * To check whether a hugepage is in-use or not, we can't use
715 * page->lru because it can be used in other hugepage operations,
716 * such as __unmap_hugepage_range() and gather_surplus_pages().
717 * So instead we use page_mapping() and PageAnon().
718 * We assume that this function is called with page lock held,
719 * so there is no race between isolation and mapping/unmapping.
720 */
721 if (!(page_mapping(hpage) || PageAnon(hpage))) {
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900722 res = dequeue_hwpoisoned_huge_page(hpage);
723 if (!res)
724 return RECOVERED;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900725 }
726 return DELAYED;
Andi Kleen6a460792009-09-16 11:50:15 +0200727}
728
729/*
730 * Various page states we can handle.
731 *
732 * A page state is defined by its current page->flags bits.
733 * The table matches them in order and calls the right handler.
734 *
735 * This is quite tricky because we can access page at any time
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300736 * in its live cycle, so all accesses have to be extremely careful.
Andi Kleen6a460792009-09-16 11:50:15 +0200737 *
738 * This is not complete. More states could be added.
739 * For any missing state don't attempt recovery.
740 */
741
742#define dirty (1UL << PG_dirty)
743#define sc (1UL << PG_swapcache)
744#define unevict (1UL << PG_unevictable)
745#define mlock (1UL << PG_mlocked)
746#define writeback (1UL << PG_writeback)
747#define lru (1UL << PG_lru)
748#define swapbacked (1UL << PG_swapbacked)
749#define head (1UL << PG_head)
750#define tail (1UL << PG_tail)
751#define compound (1UL << PG_compound)
752#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200753#define reserved (1UL << PG_reserved)
754
755static struct page_state {
756 unsigned long mask;
757 unsigned long res;
758 char *msg;
759 int (*action)(struct page *p, unsigned long pfn);
760} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100761 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100762 /*
763 * free pages are specially detected outside this table:
764 * PG_buddy pages only make a small fraction of all free pages.
765 */
Andi Kleen6a460792009-09-16 11:50:15 +0200766
767 /*
768 * Could in theory check if slab page is free or if we can drop
769 * currently unused objects without touching them. But just
770 * treat it as standard kernel for now.
771 */
772 { slab, slab, "kernel slab", me_kernel },
773
774#ifdef CONFIG_PAGEFLAGS_EXTENDED
775 { head, head, "huge", me_huge_page },
776 { tail, tail, "huge", me_huge_page },
777#else
778 { compound, compound, "huge", me_huge_page },
779#endif
780
781 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
782 { sc|dirty, sc, "swapcache", me_swapcache_clean },
783
784 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
785 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
786
Andi Kleen6a460792009-09-16 11:50:15 +0200787 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
788 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200789
790 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
791 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200792
793 /*
794 * Catchall entry: must be at end.
795 */
796 { 0, 0, "unknown page state", me_unknown },
797};
798
Andi Kleen2326c462009-12-16 12:20:00 +0100799#undef dirty
800#undef sc
801#undef unevict
802#undef mlock
803#undef writeback
804#undef lru
805#undef swapbacked
806#undef head
807#undef tail
808#undef compound
809#undef slab
810#undef reserved
811
Andi Kleen6a460792009-09-16 11:50:15 +0200812static void action_result(unsigned long pfn, char *msg, int result)
813{
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100814 struct page *page = pfn_to_page(pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200815
816 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
817 pfn,
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100818 PageDirty(page) ? "dirty " : "",
Andi Kleen6a460792009-09-16 11:50:15 +0200819 msg, action_name[result]);
820}
821
822static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100823 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200824{
825 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200826 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200827
828 result = ps->action(p, pfn);
829 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200830
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100831 count = page_count(p) - 1;
Wu Fengguang138ce282009-12-16 12:19:58 +0100832 if (ps->action == me_swapcache_dirty && result == DELAYED)
833 count--;
834 if (count != 0) {
Andi Kleen6a460792009-09-16 11:50:15 +0200835 printk(KERN_ERR
836 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200837 pfn, ps->msg, count);
Wu Fengguang138ce282009-12-16 12:19:58 +0100838 result = FAILED;
839 }
Andi Kleen6a460792009-09-16 11:50:15 +0200840
841 /* Could do more checks here if page looks ok */
842 /*
843 * Could adjust zone counters here to correct for the missing page.
844 */
845
Wu Fengguang138ce282009-12-16 12:19:58 +0100846 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200847}
848
Andi Kleen6a460792009-09-16 11:50:15 +0200849/*
850 * Do all that is necessary to remove user space mappings. Unmap
851 * the pages and send SIGBUS to the processes if the data was dirty.
852 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100853static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Tony Luck7329bbe2011-12-13 09:27:58 -0800854 int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200855{
856 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
857 struct address_space *mapping;
858 LIST_HEAD(tokill);
859 int ret;
Tony Luck6751ed62012-07-11 10:20:47 -0700860 int kill = 1, forcekill;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900861 struct page *hpage = compound_head(p);
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800862 struct page *ppage;
Andi Kleen6a460792009-09-16 11:50:15 +0200863
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100864 if (PageReserved(p) || PageSlab(p))
865 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200866
Andi Kleen6a460792009-09-16 11:50:15 +0200867 /*
868 * This check implies we don't kill processes if their pages
869 * are in the swap cache early. Those are always late kills.
870 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900871 if (!page_mapped(hpage))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100872 return SWAP_SUCCESS;
873
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900874 if (PageKsm(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100875 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200876
877 if (PageSwapCache(p)) {
878 printk(KERN_ERR
879 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
880 ttu |= TTU_IGNORE_HWPOISON;
881 }
882
883 /*
884 * Propagate the dirty bit from PTEs to struct page first, because we
885 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100886 * XXX: the dirty test could be racy: set_page_dirty() may not always
887 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200888 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900889 mapping = page_mapping(hpage);
Tony Luck6751ed62012-07-11 10:20:47 -0700890 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900891 mapping_cap_writeback_dirty(mapping)) {
892 if (page_mkclean(hpage)) {
893 SetPageDirty(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +0200894 } else {
895 kill = 0;
896 ttu |= TTU_IGNORE_HWPOISON;
897 printk(KERN_INFO
898 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
899 pfn);
900 }
901 }
902
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800903 /*
904 * ppage: poisoned page
905 * if p is regular page(4k page)
906 * ppage == real poisoned page;
907 * else p is hugetlb or THP, ppage == head page.
908 */
909 ppage = hpage;
910
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800911 if (PageTransHuge(hpage)) {
912 /*
913 * Verify that this isn't a hugetlbfs head page, the check for
914 * PageAnon is just for avoid tripping a split_huge_page
915 * internal debug check, as split_huge_page refuses to deal with
916 * anything that isn't an anon page. PageAnon can't go away fro
917 * under us because we hold a refcount on the hpage, without a
918 * refcount on the hpage. split_huge_page can't be safely called
919 * in the first place, having a refcount on the tail isn't
920 * enough * to be safe.
921 */
922 if (!PageHuge(hpage) && PageAnon(hpage)) {
923 if (unlikely(split_huge_page(hpage))) {
924 /*
925 * FIXME: if splitting THP is failed, it is
926 * better to stop the following operation rather
927 * than causing panic by unmapping. System might
928 * survive if the page is freed later.
929 */
930 printk(KERN_INFO
931 "MCE %#lx: failed to split THP\n", pfn);
932
933 BUG_ON(!PageHWPoison(p));
934 return SWAP_FAIL;
935 }
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800936 /* THP is split, so ppage should be the real poisoned page. */
937 ppage = p;
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800938 }
939 }
940
Andi Kleen6a460792009-09-16 11:50:15 +0200941 /*
942 * First collect all the processes that have the page
943 * mapped in dirty form. This has to be done before try_to_unmap,
944 * because ttu takes the rmap data structures down.
945 *
946 * Error handling: We ignore errors here because
947 * there's nothing that can be done.
948 */
949 if (kill)
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800950 collect_procs(ppage, &tokill);
Andi Kleen6a460792009-09-16 11:50:15 +0200951
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800952 if (hpage != ppage)
Jens Axboe7eaceac2011-03-10 08:52:07 +0100953 lock_page(ppage);
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800954
955 ret = try_to_unmap(ppage, ttu);
Andi Kleen6a460792009-09-16 11:50:15 +0200956 if (ret != SWAP_SUCCESS)
957 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800958 pfn, page_mapcount(ppage));
959
960 if (hpage != ppage)
961 unlock_page(ppage);
Andi Kleen6a460792009-09-16 11:50:15 +0200962
963 /*
964 * Now that the dirty bit has been propagated to the
965 * struct page and all unmaps done we can decide if
966 * killing is needed or not. Only kill when the page
Tony Luck6751ed62012-07-11 10:20:47 -0700967 * was dirty or the process is not restartable,
968 * otherwise the tokill list is merely
Andi Kleen6a460792009-09-16 11:50:15 +0200969 * freed. When there was a problem unmapping earlier
970 * use a more force-full uncatchable kill to prevent
971 * any accesses to the poisoned memory.
972 */
Tony Luck6751ed62012-07-11 10:20:47 -0700973 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
974 kill_procs(&tokill, forcekill, trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800975 ret != SWAP_SUCCESS, p, pfn, flags);
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100976
977 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +0200978}
979
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900980static void set_page_hwpoison_huge_page(struct page *hpage)
981{
982 int i;
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800983 int nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900984 for (i = 0; i < nr_pages; i++)
985 SetPageHWPoison(hpage + i);
986}
987
988static void clear_page_hwpoison_huge_page(struct page *hpage)
989{
990 int i;
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800991 int nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900992 for (i = 0; i < nr_pages; i++)
993 ClearPageHWPoison(hpage + i);
994}
995
Tony Luckcd42f4a2011-12-15 10:48:12 -0800996/**
997 * memory_failure - Handle memory failure of a page.
998 * @pfn: Page Number of the corrupted page
999 * @trapno: Trap number reported in the signal to user space.
1000 * @flags: fine tune action taken
1001 *
1002 * This function is called by the low level machine check code
1003 * of an architecture when it detects hardware memory corruption
1004 * of a page. It tries its best to recover, which includes
1005 * dropping pages, killing processes etc.
1006 *
1007 * The function is primarily of use for corruptions that
1008 * happen outside the current execution context (e.g. when
1009 * detected by a background scrubber)
1010 *
1011 * Must run in process context (e.g. a work queue) with interrupts
1012 * enabled and no spinlocks hold.
1013 */
1014int memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +02001015{
1016 struct page_state *ps;
1017 struct page *p;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001018 struct page *hpage;
Andi Kleen6a460792009-09-16 11:50:15 +02001019 int res;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001020 unsigned int nr_pages;
Andi Kleen6a460792009-09-16 11:50:15 +02001021
1022 if (!sysctl_memory_failure_recovery)
1023 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1024
1025 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +01001026 printk(KERN_ERR
1027 "MCE %#lx: memory outside kernel control\n",
1028 pfn);
1029 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +02001030 }
1031
1032 p = pfn_to_page(pfn);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001033 hpage = compound_head(p);
Andi Kleen6a460792009-09-16 11:50:15 +02001034 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001035 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001036 return 0;
1037 }
1038
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -08001039 nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001040 atomic_long_add(nr_pages, &mce_bad_pages);
Andi Kleen6a460792009-09-16 11:50:15 +02001041
1042 /*
1043 * We need/can do nothing about count=0 pages.
1044 * 1) it's a free page, and therefore in safe hand:
1045 * prep_new_page() will be the gate keeper.
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001046 * 2) it's a free hugepage, which is also safe:
1047 * an affected hugepage will be dequeued from hugepage freelist,
1048 * so there's no concern about reusing it ever after.
1049 * 3) it's part of a non-compound high order page.
Andi Kleen6a460792009-09-16 11:50:15 +02001050 * Implies some kernel user: cannot stop them from
1051 * R/W the page; let's pray that the page has been
1052 * used and will be freed some time later.
1053 * In fact it's dangerous to directly bump up page count from 0,
1054 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1055 */
Andi Kleen82ba0112009-12-16 12:19:57 +01001056 if (!(flags & MF_COUNT_INCREASED) &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001057 !get_page_unless_zero(hpage)) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001058 if (is_free_buddy_page(p)) {
1059 action_result(pfn, "free buddy", DELAYED);
1060 return 0;
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001061 } else if (PageHuge(hpage)) {
1062 /*
1063 * Check "just unpoisoned", "filter hit", and
1064 * "race with other subpage."
1065 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001066 lock_page(hpage);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001067 if (!PageHWPoison(hpage)
1068 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1069 || (p != hpage && TestSetPageHWPoison(hpage))) {
1070 atomic_long_sub(nr_pages, &mce_bad_pages);
1071 return 0;
1072 }
1073 set_page_hwpoison_huge_page(hpage);
1074 res = dequeue_hwpoisoned_huge_page(hpage);
1075 action_result(pfn, "free huge",
1076 res ? IGNORED : DELAYED);
1077 unlock_page(hpage);
1078 return res;
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001079 } else {
1080 action_result(pfn, "high order kernel", IGNORED);
1081 return -EBUSY;
1082 }
Andi Kleen6a460792009-09-16 11:50:15 +02001083 }
1084
1085 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +08001086 * We ignore non-LRU pages for good reasons.
1087 * - PG_locked is only well defined for LRU pages and a few others
1088 * - to avoid races with __set_page_locked()
1089 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1090 * The check (unnecessarily) ignores LRU pages being isolated and
1091 * walked by the page reclaim code, however that's not a big loss.
1092 */
Dean Nelson385de352012-03-21 16:34:05 -07001093 if (!PageHuge(p) && !PageTransTail(p)) {
Jin Dongmingaf241a02011-02-01 15:52:41 -08001094 if (!PageLRU(p))
1095 shake_page(p, 0);
1096 if (!PageLRU(p)) {
1097 /*
1098 * shake_page could have turned it free.
1099 */
1100 if (is_free_buddy_page(p)) {
1101 action_result(pfn, "free buddy, 2nd try",
1102 DELAYED);
1103 return 0;
1104 }
1105 action_result(pfn, "non LRU", IGNORED);
1106 put_page(p);
1107 return -EBUSY;
Andi Kleen0474a602009-12-16 12:20:00 +01001108 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001109 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001110
1111 /*
Andi Kleen6a460792009-09-16 11:50:15 +02001112 * Lock the page and wait for writeback to finish.
1113 * It's very difficult to mess with pages currently under IO
1114 * and in many cases impossible, so we just avoid it here.
1115 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001116 lock_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001117
1118 /*
1119 * unpoison always clear PG_hwpoison inside page lock
1120 */
1121 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001122 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001123 res = 0;
1124 goto out;
1125 }
Wu Fengguang7c116f22009-12-16 12:19:59 +01001126 if (hwpoison_filter(p)) {
1127 if (TestClearPageHWPoison(p))
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001128 atomic_long_sub(nr_pages, &mce_bad_pages);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001129 unlock_page(hpage);
1130 put_page(hpage);
Wu Fengguang7c116f22009-12-16 12:19:59 +01001131 return 0;
1132 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001133
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001134 /*
1135 * For error on the tail page, we should set PG_hwpoison
1136 * on the head page to show that the hugepage is hwpoisoned
1137 */
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001138 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001139 action_result(pfn, "hugepage already hardware poisoned",
1140 IGNORED);
1141 unlock_page(hpage);
1142 put_page(hpage);
1143 return 0;
1144 }
1145 /*
1146 * Set PG_hwpoison on all pages in an error hugepage,
1147 * because containment is done in hugepage unit for now.
1148 * Since we have done TestSetPageHWPoison() for the head page with
1149 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1150 */
1151 if (PageHuge(p))
1152 set_page_hwpoison_huge_page(hpage);
1153
Andi Kleen6a460792009-09-16 11:50:15 +02001154 wait_on_page_writeback(p);
1155
1156 /*
1157 * Now take care of user space mappings.
Minchan Kime64a7822011-03-22 16:32:44 -07001158 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
Andi Kleen6a460792009-09-16 11:50:15 +02001159 */
Tony Luck7329bbe2011-12-13 09:27:58 -08001160 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001161 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1162 res = -EBUSY;
1163 goto out;
1164 }
Andi Kleen6a460792009-09-16 11:50:15 +02001165
1166 /*
1167 * Torn down by someone else?
1168 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001169 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +02001170 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +01001171 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +02001172 goto out;
1173 }
1174
1175 res = -EBUSY;
1176 for (ps = error_states;; ps++) {
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001177 if ((p->flags & ps->mask) == ps->res) {
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +01001178 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001179 break;
1180 }
1181 }
1182out:
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001183 unlock_page(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +02001184 return res;
1185}
Tony Luckcd42f4a2011-12-15 10:48:12 -08001186EXPORT_SYMBOL_GPL(memory_failure);
Wu Fengguang847ce402009-12-16 12:19:58 +01001187
Huang Yingea8f5fb2011-07-13 13:14:27 +08001188#define MEMORY_FAILURE_FIFO_ORDER 4
1189#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1190
1191struct memory_failure_entry {
1192 unsigned long pfn;
1193 int trapno;
1194 int flags;
1195};
1196
1197struct memory_failure_cpu {
1198 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1199 MEMORY_FAILURE_FIFO_SIZE);
1200 spinlock_t lock;
1201 struct work_struct work;
1202};
1203
1204static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1205
1206/**
1207 * memory_failure_queue - Schedule handling memory failure of a page.
1208 * @pfn: Page Number of the corrupted page
1209 * @trapno: Trap number reported in the signal to user space.
1210 * @flags: Flags for memory failure handling
1211 *
1212 * This function is called by the low level hardware error handler
1213 * when it detects hardware memory corruption of a page. It schedules
1214 * the recovering of error page, including dropping pages, killing
1215 * processes etc.
1216 *
1217 * The function is primarily of use for corruptions that
1218 * happen outside the current execution context (e.g. when
1219 * detected by a background scrubber)
1220 *
1221 * Can run in IRQ context.
1222 */
1223void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1224{
1225 struct memory_failure_cpu *mf_cpu;
1226 unsigned long proc_flags;
1227 struct memory_failure_entry entry = {
1228 .pfn = pfn,
1229 .trapno = trapno,
1230 .flags = flags,
1231 };
1232
1233 mf_cpu = &get_cpu_var(memory_failure_cpu);
1234 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1235 if (kfifo_put(&mf_cpu->fifo, &entry))
1236 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1237 else
1238 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1239 pfn);
1240 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1241 put_cpu_var(memory_failure_cpu);
1242}
1243EXPORT_SYMBOL_GPL(memory_failure_queue);
1244
1245static void memory_failure_work_func(struct work_struct *work)
1246{
1247 struct memory_failure_cpu *mf_cpu;
1248 struct memory_failure_entry entry = { 0, };
1249 unsigned long proc_flags;
1250 int gotten;
1251
1252 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1253 for (;;) {
1254 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1255 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1256 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1257 if (!gotten)
1258 break;
Tony Luckcd42f4a2011-12-15 10:48:12 -08001259 memory_failure(entry.pfn, entry.trapno, entry.flags);
Huang Yingea8f5fb2011-07-13 13:14:27 +08001260 }
1261}
1262
1263static int __init memory_failure_init(void)
1264{
1265 struct memory_failure_cpu *mf_cpu;
1266 int cpu;
1267
1268 for_each_possible_cpu(cpu) {
1269 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1270 spin_lock_init(&mf_cpu->lock);
1271 INIT_KFIFO(mf_cpu->fifo);
1272 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1273 }
1274
1275 return 0;
1276}
1277core_initcall(memory_failure_init);
1278
Wu Fengguang847ce402009-12-16 12:19:58 +01001279/**
1280 * unpoison_memory - Unpoison a previously poisoned page
1281 * @pfn: Page number of the to be unpoisoned page
1282 *
1283 * Software-unpoison a page that has been poisoned by
1284 * memory_failure() earlier.
1285 *
1286 * This is only done on the software-level, so it only works
1287 * for linux injected failures, not real hardware failures
1288 *
1289 * Returns 0 for success, otherwise -errno.
1290 */
1291int unpoison_memory(unsigned long pfn)
1292{
1293 struct page *page;
1294 struct page *p;
1295 int freeit = 0;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001296 unsigned int nr_pages;
Wu Fengguang847ce402009-12-16 12:19:58 +01001297
1298 if (!pfn_valid(pfn))
1299 return -ENXIO;
1300
1301 p = pfn_to_page(pfn);
1302 page = compound_head(p);
1303
1304 if (!PageHWPoison(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001305 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001306 return 0;
1307 }
1308
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -08001309 nr_pages = 1 << compound_trans_order(page);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001310
Wu Fengguang847ce402009-12-16 12:19:58 +01001311 if (!get_page_unless_zero(page)) {
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001312 /*
1313 * Since HWPoisoned hugepage should have non-zero refcount,
1314 * race between memory failure and unpoison seems to happen.
1315 * In such case unpoison fails and memory failure runs
1316 * to the end.
1317 */
1318 if (PageHuge(page)) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001319 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001320 return 0;
1321 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001322 if (TestClearPageHWPoison(p))
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001323 atomic_long_sub(nr_pages, &mce_bad_pages);
Andi Kleenfb46e732010-09-27 23:31:30 +02001324 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001325 return 0;
1326 }
1327
Jens Axboe7eaceac2011-03-10 08:52:07 +01001328 lock_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001329 /*
1330 * This test is racy because PG_hwpoison is set outside of page lock.
1331 * That's acceptable because that won't trigger kernel panic. Instead,
1332 * the PG_hwpoison page will be caught and isolated on the entrance to
1333 * the free buddy page pool.
1334 */
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001335 if (TestClearPageHWPoison(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001336 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001337 atomic_long_sub(nr_pages, &mce_bad_pages);
Wu Fengguang847ce402009-12-16 12:19:58 +01001338 freeit = 1;
Naoya Horiguchi6a901812010-09-08 10:19:40 +09001339 if (PageHuge(page))
1340 clear_page_hwpoison_huge_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001341 }
1342 unlock_page(page);
1343
1344 put_page(page);
1345 if (freeit)
1346 put_page(page);
1347
1348 return 0;
1349}
1350EXPORT_SYMBOL(unpoison_memory);
Andi Kleenfacb6012009-12-16 12:20:00 +01001351
1352static struct page *new_page(struct page *p, unsigned long private, int **x)
1353{
Andi Kleen12686d12009-12-16 12:20:01 +01001354 int nid = page_to_nid(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001355 if (PageHuge(p))
1356 return alloc_huge_page_node(page_hstate(compound_head(p)),
1357 nid);
1358 else
1359 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
Andi Kleenfacb6012009-12-16 12:20:00 +01001360}
1361
1362/*
1363 * Safely get reference count of an arbitrary page.
1364 * Returns 0 for a free page, -EIO for a zero refcount page
1365 * that is not free, and 1 for any other page type.
1366 * For 1 the page is returned with increased page count, otherwise not.
1367 */
1368static int get_any_page(struct page *p, unsigned long pfn, int flags)
1369{
1370 int ret;
1371
1372 if (flags & MF_COUNT_INCREASED)
1373 return 1;
1374
1375 /*
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001376 * The lock_memory_hotplug prevents a race with memory hotplug.
Andi Kleenfacb6012009-12-16 12:20:00 +01001377 * This is a big hammer, a better would be nicer.
1378 */
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001379 lock_memory_hotplug();
Andi Kleenfacb6012009-12-16 12:20:00 +01001380
1381 /*
1382 * Isolate the page, so that it doesn't get reallocated if it
1383 * was free.
1384 */
1385 set_migratetype_isolate(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001386 /*
1387 * When the target page is a free hugepage, just remove it
1388 * from free hugepage list.
1389 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001390 if (!get_page_unless_zero(compound_head(p))) {
Naoya Horiguchid950b952010-09-08 10:19:39 +09001391 if (PageHuge(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001392 pr_info("%s: %#lx free huge page\n", __func__, pfn);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001393 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1394 } else if (is_free_buddy_page(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001395 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001396 /* Set hwpoison bit while page is still isolated */
1397 SetPageHWPoison(p);
1398 ret = 0;
1399 } else {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001400 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1401 __func__, pfn, p->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001402 ret = -EIO;
1403 }
1404 } else {
1405 /* Not a free page */
1406 ret = 1;
1407 }
Michal Nazarewicz0815f3d2012-04-03 15:06:15 +02001408 unset_migratetype_isolate(p, MIGRATE_MOVABLE);
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001409 unlock_memory_hotplug();
Andi Kleenfacb6012009-12-16 12:20:00 +01001410 return ret;
1411}
1412
Naoya Horiguchid950b952010-09-08 10:19:39 +09001413static int soft_offline_huge_page(struct page *page, int flags)
1414{
1415 int ret;
1416 unsigned long pfn = page_to_pfn(page);
1417 struct page *hpage = compound_head(page);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001418
1419 ret = get_any_page(page, pfn, flags);
1420 if (ret < 0)
1421 return ret;
1422 if (ret == 0)
1423 goto done;
1424
1425 if (PageHWPoison(hpage)) {
1426 put_page(hpage);
Dean Nelsondd73e852011-10-31 17:09:04 -07001427 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001428 return -EBUSY;
1429 }
1430
1431 /* Keep page count to indicate a given hugepage is isolated. */
Aneesh Kumar K.V189ebff2012-07-31 16:42:06 -07001432 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
Joonsoo Kimdc32f632012-07-30 14:39:04 -07001433 MIGRATE_SYNC);
Aneesh Kumar K.V189ebff2012-07-31 16:42:06 -07001434 put_page(hpage);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001435 if (ret) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001436 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1437 pfn, ret, page->flags);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001438 return ret;
1439 }
1440done:
1441 if (!PageHWPoison(hpage))
Aneesh Kumar K.V189ebff2012-07-31 16:42:06 -07001442 atomic_long_add(1 << compound_trans_order(hpage),
1443 &mce_bad_pages);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001444 set_page_hwpoison_huge_page(hpage);
1445 dequeue_hwpoisoned_huge_page(hpage);
1446 /* keep elevated page count for bad page */
1447 return ret;
1448}
1449
Andi Kleenfacb6012009-12-16 12:20:00 +01001450/**
1451 * soft_offline_page - Soft offline a page.
1452 * @page: page to offline
1453 * @flags: flags. Same as memory_failure().
1454 *
1455 * Returns 0 on success, otherwise negated errno.
1456 *
1457 * Soft offline a page, by migration or invalidation,
1458 * without killing anything. This is for the case when
1459 * a page is not corrupted yet (so it's still valid to access),
1460 * but has had a number of corrected errors and is better taken
1461 * out.
1462 *
1463 * The actual policy on when to do that is maintained by
1464 * user space.
1465 *
1466 * This should never impact any application or cause data loss,
1467 * however it might take some time.
1468 *
1469 * This is not a 100% solution for all memory, but tries to be
1470 * ``good enough'' for the majority of memory.
1471 */
1472int soft_offline_page(struct page *page, int flags)
1473{
1474 int ret;
1475 unsigned long pfn = page_to_pfn(page);
1476
Naoya Horiguchid950b952010-09-08 10:19:39 +09001477 if (PageHuge(page))
1478 return soft_offline_huge_page(page, flags);
1479
Andi Kleenfacb6012009-12-16 12:20:00 +01001480 ret = get_any_page(page, pfn, flags);
1481 if (ret < 0)
1482 return ret;
1483 if (ret == 0)
1484 goto done;
1485
1486 /*
1487 * Page cache page we can handle?
1488 */
1489 if (!PageLRU(page)) {
1490 /*
1491 * Try to free it.
1492 */
1493 put_page(page);
1494 shake_page(page, 1);
1495
1496 /*
1497 * Did it turn free?
1498 */
1499 ret = get_any_page(page, pfn, 0);
1500 if (ret < 0)
1501 return ret;
1502 if (ret == 0)
1503 goto done;
1504 }
1505 if (!PageLRU(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001506 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001507 pfn, page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001508 return -EIO;
1509 }
1510
1511 lock_page(page);
1512 wait_on_page_writeback(page);
1513
1514 /*
1515 * Synchronized using the page lock with memory_failure()
1516 */
1517 if (PageHWPoison(page)) {
1518 unlock_page(page);
1519 put_page(page);
Andi Kleenfb46e732010-09-27 23:31:30 +02001520 pr_info("soft offline: %#lx page already poisoned\n", pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001521 return -EBUSY;
1522 }
1523
1524 /*
1525 * Try to invalidate first. This should work for
1526 * non dirty unmapped page cache pages.
1527 */
1528 ret = invalidate_inode_page(page);
1529 unlock_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001530 /*
Andi Kleenfacb6012009-12-16 12:20:00 +01001531 * RED-PEN would be better to keep it isolated here, but we
1532 * would need to fix isolation locking first.
1533 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001534 if (ret == 1) {
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001535 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001536 ret = 0;
Andi Kleenfb46e732010-09-27 23:31:30 +02001537 pr_info("soft_offline: %#lx: invalidated\n", pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001538 goto done;
1539 }
1540
1541 /*
1542 * Simple invalidation didn't work.
1543 * Try to migrate to a new page instead. migrate.c
1544 * handles a large number of cases for us.
1545 */
1546 ret = isolate_lru_page(page);
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001547 /*
1548 * Drop page reference which is came from get_any_page()
1549 * successful isolate_lru_page() already took another one.
1550 */
1551 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001552 if (!ret) {
1553 LIST_HEAD(pagelist);
Minchan Kim5db8a732011-06-15 15:08:48 -07001554 inc_zone_page_state(page, NR_ISOLATED_ANON +
1555 page_is_file_cache(page));
Andi Kleenfacb6012009-12-16 12:20:00 +01001556 list_add(&page->lru, &pagelist);
Mel Gorman77f1fe62011-01-13 15:45:57 -08001557 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
Joonsoo Kimdc32f632012-07-30 14:39:04 -07001558 false, MIGRATE_SYNC);
Andi Kleenfacb6012009-12-16 12:20:00 +01001559 if (ret) {
Andrea Arcangeli57fc4a52011-02-01 15:52:32 -08001560 putback_lru_pages(&pagelist);
Andi Kleenfb46e732010-09-27 23:31:30 +02001561 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001562 pfn, ret, page->flags);
1563 if (ret > 0)
1564 ret = -EIO;
1565 }
1566 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001567 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001568 pfn, ret, page_count(page), page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001569 }
1570 if (ret)
1571 return ret;
1572
1573done:
1574 atomic_long_add(1, &mce_bad_pages);
1575 SetPageHWPoison(page);
1576 /* keep elevated page count for bad page */
1577 return ret;
1578}