blob: 2eda28414abb5a557e559387f6a6b46a76ae6819 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
Tony Lucka1ecf7f2005-05-18 16:06:00 -070014 * Copyright (C) 1999-2005 Hewlett Packard Co
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
Andrew Mortona3bc0db2006-09-25 23:32:33 -070036#include <linux/smp.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/pagemap.h>
38#include <linux/mount.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/bitops.h>
Randy Dunlapa9415642006-01-11 12:17:48 -080040#include <linux/capability.h>
Dipankar Sarmabadf1662005-09-09 13:04:10 -070041#include <linux/rcupdate.h>
Jes Sorensen60f1c442006-01-18 23:46:52 -080042#include <linux/completion.h>
Shaohua Lif14488c2008-10-06 10:43:06 -070043#include <linux/tracehook.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090044#include <linux/slab.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
46#include <asm/errno.h>
47#include <asm/intrinsics.h>
48#include <asm/page.h>
49#include <asm/perfmon.h>
50#include <asm/processor.h>
51#include <asm/signal.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070052#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -070066#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
Linus Torvalds1da177e2005-04-16 15:20:36 -070069/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
Robert P. J. Day85d1fe02007-02-17 19:21:17 +0100150 * spin_lock_irqsave()/spin_unlock_irqrestore():
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163 spin_lock_irqsave(&(c)->ctx_lock, f); \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
Jes Sorensen60f1c442006-01-18 23:46:52 -0800293 struct completion ctx_restart_done; /* use for blocking notification mode */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Matthew Wilcoxe088a4a2009-05-22 13:49:49 -0700315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
490typedef struct {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
Ingo Molnara9f6a0d2005-09-09 13:10:41 -0700508static DEFINE_SPINLOCK(pfm_alt_install_check);
Tony Lucka1ecf7f2005-05-18 16:06:00 -0700509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
Stephane Eranian49449302005-04-25 13:08:30 -0700520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522
523static ctl_table pfm_ctl_table[]={
Eric W. Biederman4e009902007-02-14 00:33:42 -0800524 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
Eric W. Biederman6d456112009-11-16 03:11:48 -0800529 .proc_handler = proc_dointvec,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800530 },
531 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
Eric W. Biederman6d456112009-11-16 03:11:48 -0800536 .proc_handler = proc_dointvec,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800537 },
538 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
Eric W. Biederman6d456112009-11-16 03:11:48 -0800543 .proc_handler = proc_dointvec,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800544 },
545 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
Eric W. Biederman6d456112009-11-16 03:11:48 -0800550 .proc_handler = proc_dointvec,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800551 },
552 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553};
554static ctl_table pfm_sysctl_dir[] = {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800555 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800556 .procname = "perfmon",
Tony Lucke3ad42b2007-11-06 13:20:43 -0800557 .mode = 0555,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800558 .child = pfm_ctl_table,
559 },
560 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561};
562static ctl_table pfm_sysctl_root[] = {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800563 {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800564 .procname = "kernel",
Tony Lucke3ad42b2007-11-06 13:20:43 -0800565 .mode = 0555,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800566 .child = pfm_sysctl_dir,
567 },
568 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569};
570static struct ctl_table_header *pfm_sysctl_header;
571
572static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573
574#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575#define pfm_get_cpu_data(a,b) per_cpu(a, b)
576
577static inline void
578pfm_put_task(struct task_struct *task)
579{
580 if (task != current) put_task_struct(task);
581}
582
583static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584pfm_reserve_page(unsigned long a)
585{
586 SetPageReserved(vmalloc_to_page((void *)a));
587}
588static inline void
589pfm_unreserve_page(unsigned long a)
590{
591 ClearPageReserved(vmalloc_to_page((void*)a));
592}
593
594static inline unsigned long
595pfm_protect_ctx_ctxsw(pfm_context_t *x)
596{
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
599}
600
Peter Chubb24b8e0c2005-09-15 15:36:35 +1000601static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603{
604 spin_unlock(&(x)->ctx_lock);
605}
606
Al Viroc74a1cb2011-01-12 16:59:34 -0500607/* forward declaration */
Tony Luck09579772011-01-13 14:49:56 -0800608static const struct dentry_operations pfmfs_dentry_operations;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609
Al Viro51139ad2010-07-25 23:47:46 +0400610static struct dentry *
611pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612{
Al Viroc74a1cb2011-01-12 16:59:34 -0500613 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
614 PFMFS_MAGIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615}
616
617static struct file_system_type pfm_fs_type = {
618 .name = "pfmfs",
Al Viro51139ad2010-07-25 23:47:46 +0400619 .mount = pfmfs_mount,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620 .kill_sb = kill_anon_super,
621};
Eric W. Biederman7f78e032013-03-02 19:39:14 -0800622MODULE_ALIAS_FS("pfmfs");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623
624DEFINE_PER_CPU(unsigned long, pfm_syst_info);
625DEFINE_PER_CPU(struct task_struct *, pmu_owner);
626DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
627DEFINE_PER_CPU(unsigned long, pmu_activation_number);
Tony Luckfffcc152005-05-31 10:38:32 -0700628EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629
630
631/* forward declaration */
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -0800632static const struct file_operations pfm_file_ops;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633
634/*
635 * forward declarations
636 */
637#ifndef CONFIG_SMP
638static void pfm_lazy_save_regs (struct task_struct *ta);
639#endif
640
641void dump_pmu_state(const char *);
642static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
643
644#include "perfmon_itanium.h"
645#include "perfmon_mckinley.h"
Stephane Eranian9179cb62006-01-10 03:10:43 -0800646#include "perfmon_montecito.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647#include "perfmon_generic.h"
648
649static pmu_config_t *pmu_confs[]={
Stephane Eranian9179cb62006-01-10 03:10:43 -0800650 &pmu_conf_mont,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651 &pmu_conf_mck,
652 &pmu_conf_ita,
653 &pmu_conf_gen, /* must be last */
654 NULL
655};
656
657
658static int pfm_end_notify_user(pfm_context_t *ctx);
659
660static inline void
661pfm_clear_psr_pp(void)
662{
663 ia64_rsm(IA64_PSR_PP);
664 ia64_srlz_i();
665}
666
667static inline void
668pfm_set_psr_pp(void)
669{
670 ia64_ssm(IA64_PSR_PP);
671 ia64_srlz_i();
672}
673
674static inline void
675pfm_clear_psr_up(void)
676{
677 ia64_rsm(IA64_PSR_UP);
678 ia64_srlz_i();
679}
680
681static inline void
682pfm_set_psr_up(void)
683{
684 ia64_ssm(IA64_PSR_UP);
685 ia64_srlz_i();
686}
687
688static inline unsigned long
689pfm_get_psr(void)
690{
691 unsigned long tmp;
692 tmp = ia64_getreg(_IA64_REG_PSR);
693 ia64_srlz_i();
694 return tmp;
695}
696
697static inline void
698pfm_set_psr_l(unsigned long val)
699{
700 ia64_setreg(_IA64_REG_PSR_L, val);
701 ia64_srlz_i();
702}
703
704static inline void
705pfm_freeze_pmu(void)
706{
707 ia64_set_pmc(0,1UL);
708 ia64_srlz_d();
709}
710
711static inline void
712pfm_unfreeze_pmu(void)
713{
714 ia64_set_pmc(0,0UL);
715 ia64_srlz_d();
716}
717
718static inline void
719pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
720{
721 int i;
722
723 for (i=0; i < nibrs; i++) {
724 ia64_set_ibr(i, ibrs[i]);
725 ia64_dv_serialize_instruction();
726 }
727 ia64_srlz_i();
728}
729
730static inline void
731pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
732{
733 int i;
734
735 for (i=0; i < ndbrs; i++) {
736 ia64_set_dbr(i, dbrs[i]);
737 ia64_dv_serialize_data();
738 }
739 ia64_srlz_d();
740}
741
742/*
743 * PMD[i] must be a counter. no check is made
744 */
745static inline unsigned long
746pfm_read_soft_counter(pfm_context_t *ctx, int i)
747{
748 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
749}
750
751/*
752 * PMD[i] must be a counter. no check is made
753 */
754static inline void
755pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
756{
757 unsigned long ovfl_val = pmu_conf->ovfl_val;
758
759 ctx->ctx_pmds[i].val = val & ~ovfl_val;
760 /*
761 * writing to unimplemented part is ignore, so we do not need to
762 * mask off top part
763 */
764 ia64_set_pmd(i, val & ovfl_val);
765}
766
767static pfm_msg_t *
768pfm_get_new_msg(pfm_context_t *ctx)
769{
770 int idx, next;
771
772 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
773
774 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
775 if (next == ctx->ctx_msgq_head) return NULL;
776
777 idx = ctx->ctx_msgq_tail;
778 ctx->ctx_msgq_tail = next;
779
780 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
781
782 return ctx->ctx_msgq+idx;
783}
784
785static pfm_msg_t *
786pfm_get_next_msg(pfm_context_t *ctx)
787{
788 pfm_msg_t *msg;
789
790 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
791
792 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
793
794 /*
795 * get oldest message
796 */
797 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
798
799 /*
800 * and move forward
801 */
802 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
803
804 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
805
806 return msg;
807}
808
809static void
810pfm_reset_msgq(pfm_context_t *ctx)
811{
812 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
813 DPRINT(("ctx=%p msgq reset\n", ctx));
814}
815
816static void *
817pfm_rvmalloc(unsigned long size)
818{
819 void *mem;
820 unsigned long addr;
821
822 size = PAGE_ALIGN(size);
Jesper Juhle21763d2010-10-30 21:35:58 +0200823 mem = vzalloc(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 if (mem) {
825 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 addr = (unsigned long)mem;
827 while (size > 0) {
828 pfm_reserve_page(addr);
829 addr+=PAGE_SIZE;
830 size-=PAGE_SIZE;
831 }
832 }
833 return mem;
834}
835
836static void
837pfm_rvfree(void *mem, unsigned long size)
838{
839 unsigned long addr;
840
841 if (mem) {
842 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
843 addr = (unsigned long) mem;
844 while ((long) size > 0) {
845 pfm_unreserve_page(addr);
846 addr+=PAGE_SIZE;
847 size-=PAGE_SIZE;
848 }
849 vfree(mem);
850 }
851 return;
852}
853
854static pfm_context_t *
Al Virof8e811b2008-05-01 14:36:36 -0700855pfm_context_alloc(int ctx_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856{
857 pfm_context_t *ctx;
858
859 /*
860 * allocate context descriptor
861 * must be able to free with interrupts disabled
862 */
Yan Burman52fd9102006-12-04 14:58:35 -0800863 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864 if (ctx) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700865 DPRINT(("alloc ctx @%p\n", ctx));
Al Virof8e811b2008-05-01 14:36:36 -0700866
867 /*
868 * init context protection lock
869 */
870 spin_lock_init(&ctx->ctx_lock);
871
872 /*
873 * context is unloaded
874 */
875 ctx->ctx_state = PFM_CTX_UNLOADED;
876
877 /*
878 * initialization of context's flags
879 */
880 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
881 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
882 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
883 /*
884 * will move to set properties
885 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
886 */
887
888 /*
889 * init restart semaphore to locked
890 */
891 init_completion(&ctx->ctx_restart_done);
892
893 /*
894 * activation is used in SMP only
895 */
896 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
897 SET_LAST_CPU(ctx, -1);
898
899 /*
900 * initialize notification message queue
901 */
902 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
903 init_waitqueue_head(&ctx->ctx_msgq_wait);
904 init_waitqueue_head(&ctx->ctx_zombieq);
905
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906 }
907 return ctx;
908}
909
910static void
911pfm_context_free(pfm_context_t *ctx)
912{
913 if (ctx) {
914 DPRINT(("free ctx @%p\n", ctx));
915 kfree(ctx);
916 }
917}
918
919static void
920pfm_mask_monitoring(struct task_struct *task)
921{
922 pfm_context_t *ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923 unsigned long mask, val, ovfl_mask;
924 int i;
925
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700926 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927
928 ovfl_mask = pmu_conf->ovfl_val;
929 /*
930 * monitoring can only be masked as a result of a valid
931 * counter overflow. In UP, it means that the PMU still
932 * has an owner. Note that the owner can be different
933 * from the current task. However the PMU state belongs
934 * to the owner.
935 * In SMP, a valid overflow only happens when task is
936 * current. Therefore if we come here, we know that
937 * the PMU state belongs to the current task, therefore
938 * we can access the live registers.
939 *
940 * So in both cases, the live register contains the owner's
941 * state. We can ONLY touch the PMU registers and NOT the PSR.
942 *
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700943 * As a consequence to this call, the ctx->th_pmds[] array
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 * contains stale information which must be ignored
945 * when context is reloaded AND monitoring is active (see
946 * pfm_restart).
947 */
948 mask = ctx->ctx_used_pmds[0];
949 for (i = 0; mask; i++, mask>>=1) {
950 /* skip non used pmds */
951 if ((mask & 0x1) == 0) continue;
952 val = ia64_get_pmd(i);
953
954 if (PMD_IS_COUNTING(i)) {
955 /*
956 * we rebuild the full 64 bit value of the counter
957 */
958 ctx->ctx_pmds[i].val += (val & ovfl_mask);
959 } else {
960 ctx->ctx_pmds[i].val = val;
961 }
962 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
963 i,
964 ctx->ctx_pmds[i].val,
965 val & ovfl_mask));
966 }
967 /*
968 * mask monitoring by setting the privilege level to 0
969 * we cannot use psr.pp/psr.up for this, it is controlled by
970 * the user
971 *
972 * if task is current, modify actual registers, otherwise modify
973 * thread save state, i.e., what will be restored in pfm_load_regs()
974 */
975 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
976 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
977 if ((mask & 0x1) == 0UL) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700978 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
979 ctx->th_pmcs[i] &= ~0xfUL;
980 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 }
982 /*
983 * make all of this visible
984 */
985 ia64_srlz_d();
986}
987
988/*
989 * must always be done with task == current
990 *
991 * context must be in MASKED state when calling
992 */
993static void
994pfm_restore_monitoring(struct task_struct *task)
995{
996 pfm_context_t *ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997 unsigned long mask, ovfl_mask;
998 unsigned long psr, val;
999 int i, is_system;
1000
1001 is_system = ctx->ctx_fl_system;
1002 ovfl_mask = pmu_conf->ovfl_val;
1003
1004 if (task != current) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001005 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 return;
1007 }
1008 if (ctx->ctx_state != PFM_CTX_MASKED) {
1009 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001010 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 return;
1012 }
1013 psr = pfm_get_psr();
1014 /*
1015 * monitoring is masked via the PMC.
1016 * As we restore their value, we do not want each counter to
1017 * restart right away. We stop monitoring using the PSR,
1018 * restore the PMC (and PMD) and then re-establish the psr
1019 * as it was. Note that there can be no pending overflow at
1020 * this point, because monitoring was MASKED.
1021 *
1022 * system-wide session are pinned and self-monitoring
1023 */
1024 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1025 /* disable dcr pp */
1026 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1027 pfm_clear_psr_pp();
1028 } else {
1029 pfm_clear_psr_up();
1030 }
1031 /*
1032 * first, we restore the PMD
1033 */
1034 mask = ctx->ctx_used_pmds[0];
1035 for (i = 0; mask; i++, mask>>=1) {
1036 /* skip non used pmds */
1037 if ((mask & 0x1) == 0) continue;
1038
1039 if (PMD_IS_COUNTING(i)) {
1040 /*
1041 * we split the 64bit value according to
1042 * counter width
1043 */
1044 val = ctx->ctx_pmds[i].val & ovfl_mask;
1045 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1046 } else {
1047 val = ctx->ctx_pmds[i].val;
1048 }
1049 ia64_set_pmd(i, val);
1050
1051 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1052 i,
1053 ctx->ctx_pmds[i].val,
1054 val));
1055 }
1056 /*
1057 * restore the PMCs
1058 */
1059 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1060 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1061 if ((mask & 0x1) == 0UL) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001062 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1063 ia64_set_pmc(i, ctx->th_pmcs[i]);
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001064 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1065 task_pid_nr(task), i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066 }
1067 ia64_srlz_d();
1068
1069 /*
1070 * must restore DBR/IBR because could be modified while masked
1071 * XXX: need to optimize
1072 */
1073 if (ctx->ctx_fl_using_dbreg) {
1074 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1075 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1076 }
1077
1078 /*
1079 * now restore PSR
1080 */
1081 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1082 /* enable dcr pp */
1083 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1084 ia64_srlz_i();
1085 }
1086 pfm_set_psr_l(psr);
1087}
1088
1089static inline void
1090pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1091{
1092 int i;
1093
1094 ia64_srlz_d();
1095
1096 for (i=0; mask; i++, mask>>=1) {
1097 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1098 }
1099}
1100
1101/*
1102 * reload from thread state (used for ctxw only)
1103 */
1104static inline void
1105pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1106{
1107 int i;
1108 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1109
1110 for (i=0; mask; i++, mask>>=1) {
1111 if ((mask & 0x1) == 0) continue;
1112 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1113 ia64_set_pmd(i, val);
1114 }
1115 ia64_srlz_d();
1116}
1117
1118/*
1119 * propagate PMD from context to thread-state
1120 */
1121static inline void
1122pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1123{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 unsigned long ovfl_val = pmu_conf->ovfl_val;
1125 unsigned long mask = ctx->ctx_all_pmds[0];
1126 unsigned long val;
1127 int i;
1128
1129 DPRINT(("mask=0x%lx\n", mask));
1130
1131 for (i=0; mask; i++, mask>>=1) {
1132
1133 val = ctx->ctx_pmds[i].val;
1134
1135 /*
1136 * We break up the 64 bit value into 2 pieces
1137 * the lower bits go to the machine state in the
1138 * thread (will be reloaded on ctxsw in).
1139 * The upper part stays in the soft-counter.
1140 */
1141 if (PMD_IS_COUNTING(i)) {
1142 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1143 val &= ovfl_val;
1144 }
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001145 ctx->th_pmds[i] = val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146
1147 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1148 i,
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001149 ctx->th_pmds[i],
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 ctx->ctx_pmds[i].val));
1151 }
1152}
1153
1154/*
1155 * propagate PMC from context to thread-state
1156 */
1157static inline void
1158pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1159{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160 unsigned long mask = ctx->ctx_all_pmcs[0];
1161 int i;
1162
1163 DPRINT(("mask=0x%lx\n", mask));
1164
1165 for (i=0; mask; i++, mask>>=1) {
1166 /* masking 0 with ovfl_val yields 0 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001167 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1168 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169 }
1170}
1171
1172
1173
1174static inline void
1175pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1176{
1177 int i;
1178
1179 for (i=0; mask; i++, mask>>=1) {
1180 if ((mask & 0x1) == 0) continue;
1181 ia64_set_pmc(i, pmcs[i]);
1182 }
1183 ia64_srlz_d();
1184}
1185
1186static inline int
1187pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1188{
1189 return memcmp(a, b, sizeof(pfm_uuid_t));
1190}
1191
1192static inline int
1193pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1194{
1195 int ret = 0;
1196 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1197 return ret;
1198}
1199
1200static inline int
1201pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1202{
1203 int ret = 0;
1204 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1205 return ret;
1206}
1207
1208
1209static inline int
1210pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1211 int cpu, void *arg)
1212{
1213 int ret = 0;
1214 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1215 return ret;
1216}
1217
1218static inline int
1219pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1220 int cpu, void *arg)
1221{
1222 int ret = 0;
1223 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1224 return ret;
1225}
1226
1227static inline int
1228pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1229{
1230 int ret = 0;
1231 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1232 return ret;
1233}
1234
1235static inline int
1236pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1237{
1238 int ret = 0;
1239 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1240 return ret;
1241}
1242
1243static pfm_buffer_fmt_t *
1244__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1245{
1246 struct list_head * pos;
1247 pfm_buffer_fmt_t * entry;
1248
1249 list_for_each(pos, &pfm_buffer_fmt_list) {
1250 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1251 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1252 return entry;
1253 }
1254 return NULL;
1255}
1256
1257/*
1258 * find a buffer format based on its uuid
1259 */
1260static pfm_buffer_fmt_t *
1261pfm_find_buffer_fmt(pfm_uuid_t uuid)
1262{
1263 pfm_buffer_fmt_t * fmt;
1264 spin_lock(&pfm_buffer_fmt_lock);
1265 fmt = __pfm_find_buffer_fmt(uuid);
1266 spin_unlock(&pfm_buffer_fmt_lock);
1267 return fmt;
1268}
1269
1270int
1271pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1272{
1273 int ret = 0;
1274
1275 /* some sanity checks */
1276 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1277
1278 /* we need at least a handler */
1279 if (fmt->fmt_handler == NULL) return -EINVAL;
1280
1281 /*
1282 * XXX: need check validity of fmt_arg_size
1283 */
1284
1285 spin_lock(&pfm_buffer_fmt_lock);
1286
1287 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1288 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1289 ret = -EBUSY;
1290 goto out;
1291 }
1292 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1293 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1294
1295out:
1296 spin_unlock(&pfm_buffer_fmt_lock);
1297 return ret;
1298}
1299EXPORT_SYMBOL(pfm_register_buffer_fmt);
1300
1301int
1302pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1303{
1304 pfm_buffer_fmt_t *fmt;
1305 int ret = 0;
1306
1307 spin_lock(&pfm_buffer_fmt_lock);
1308
1309 fmt = __pfm_find_buffer_fmt(uuid);
1310 if (!fmt) {
1311 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1312 ret = -EINVAL;
1313 goto out;
1314 }
1315 list_del_init(&fmt->fmt_list);
1316 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1317
1318out:
1319 spin_unlock(&pfm_buffer_fmt_lock);
1320 return ret;
1321
1322}
1323EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1324
Stephane Eranian8df5a502005-04-11 13:45:00 -07001325extern void update_pal_halt_status(int);
1326
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327static int
1328pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1329{
1330 unsigned long flags;
1331 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001332 * validity checks on cpu_mask have been done upstream
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333 */
1334 LOCK_PFS(flags);
1335
1336 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1337 pfm_sessions.pfs_sys_sessions,
1338 pfm_sessions.pfs_task_sessions,
1339 pfm_sessions.pfs_sys_use_dbregs,
1340 is_syswide,
1341 cpu));
1342
1343 if (is_syswide) {
1344 /*
1345 * cannot mix system wide and per-task sessions
1346 */
1347 if (pfm_sessions.pfs_task_sessions > 0UL) {
1348 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1349 pfm_sessions.pfs_task_sessions));
1350 goto abort;
1351 }
1352
1353 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1354
1355 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1356
1357 pfm_sessions.pfs_sys_session[cpu] = task;
1358
1359 pfm_sessions.pfs_sys_sessions++ ;
1360
1361 } else {
1362 if (pfm_sessions.pfs_sys_sessions) goto abort;
1363 pfm_sessions.pfs_task_sessions++;
1364 }
1365
1366 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1367 pfm_sessions.pfs_sys_sessions,
1368 pfm_sessions.pfs_task_sessions,
1369 pfm_sessions.pfs_sys_use_dbregs,
1370 is_syswide,
1371 cpu));
1372
Stephane Eranian8df5a502005-04-11 13:45:00 -07001373 /*
1374 * disable default_idle() to go to PAL_HALT
1375 */
1376 update_pal_halt_status(0);
1377
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 UNLOCK_PFS(flags);
1379
1380 return 0;
1381
1382error_conflict:
1383 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001384 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
Tony Lucka1ecf7f2005-05-18 16:06:00 -07001385 cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386abort:
1387 UNLOCK_PFS(flags);
1388
1389 return -EBUSY;
1390
1391}
1392
1393static int
1394pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1395{
1396 unsigned long flags;
1397 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001398 * validity checks on cpu_mask have been done upstream
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 */
1400 LOCK_PFS(flags);
1401
1402 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1403 pfm_sessions.pfs_sys_sessions,
1404 pfm_sessions.pfs_task_sessions,
1405 pfm_sessions.pfs_sys_use_dbregs,
1406 is_syswide,
1407 cpu));
1408
1409
1410 if (is_syswide) {
1411 pfm_sessions.pfs_sys_session[cpu] = NULL;
1412 /*
1413 * would not work with perfmon+more than one bit in cpu_mask
1414 */
1415 if (ctx && ctx->ctx_fl_using_dbreg) {
1416 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1417 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1418 } else {
1419 pfm_sessions.pfs_sys_use_dbregs--;
1420 }
1421 }
1422 pfm_sessions.pfs_sys_sessions--;
1423 } else {
1424 pfm_sessions.pfs_task_sessions--;
1425 }
1426 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1427 pfm_sessions.pfs_sys_sessions,
1428 pfm_sessions.pfs_task_sessions,
1429 pfm_sessions.pfs_sys_use_dbregs,
1430 is_syswide,
1431 cpu));
1432
Stephane Eranian8df5a502005-04-11 13:45:00 -07001433 /*
1434 * if possible, enable default_idle() to go into PAL_HALT
1435 */
1436 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1437 update_pal_halt_status(1);
1438
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 UNLOCK_PFS(flags);
1440
1441 return 0;
1442}
1443
1444/*
1445 * removes virtual mapping of the sampling buffer.
1446 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1447 * a PROTECT_CTX() section.
1448 */
1449static int
Al Viro9f3a4af2012-04-20 21:53:35 -04001450pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451{
Al Viro9f3a4af2012-04-20 21:53:35 -04001452 struct task_struct *task = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453 int r;
1454
1455 /* sanity checks */
1456 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001457 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 return -EINVAL;
1459 }
1460
1461 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1462
1463 /*
1464 * does the actual unmapping
1465 */
Al Virobfce2812012-04-20 21:57:04 -04001466 r = vm_munmap((unsigned long)vaddr, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467
Linus Torvalds1da177e2005-04-16 15:20:36 -07001468 if (r !=0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001469 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 }
1471
1472 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1473
1474 return 0;
1475}
1476
1477/*
1478 * free actual physical storage used by sampling buffer
1479 */
1480#if 0
1481static int
1482pfm_free_smpl_buffer(pfm_context_t *ctx)
1483{
1484 pfm_buffer_fmt_t *fmt;
1485
1486 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1487
1488 /*
1489 * we won't use the buffer format anymore
1490 */
1491 fmt = ctx->ctx_buf_fmt;
1492
1493 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1494 ctx->ctx_smpl_hdr,
1495 ctx->ctx_smpl_size,
1496 ctx->ctx_smpl_vaddr));
1497
1498 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1499
1500 /*
1501 * free the buffer
1502 */
1503 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1504
1505 ctx->ctx_smpl_hdr = NULL;
1506 ctx->ctx_smpl_size = 0UL;
1507
1508 return 0;
1509
1510invalid_free:
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001511 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 return -EINVAL;
1513}
1514#endif
1515
1516static inline void
1517pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1518{
1519 if (fmt == NULL) return;
1520
1521 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1522
1523}
1524
1525/*
1526 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1527 * no real gain from having the whole whorehouse mounted. So we don't need
1528 * any operations on the root directory. However, we need a non-trivial
1529 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1530 */
Nick Pigginb3e19d92011-01-07 17:50:11 +11001531static struct vfsmount *pfmfs_mnt __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532
1533static int __init
1534init_pfm_fs(void)
1535{
1536 int err = register_filesystem(&pfm_fs_type);
1537 if (!err) {
1538 pfmfs_mnt = kern_mount(&pfm_fs_type);
1539 err = PTR_ERR(pfmfs_mnt);
1540 if (IS_ERR(pfmfs_mnt))
1541 unregister_filesystem(&pfm_fs_type);
1542 else
1543 err = 0;
1544 }
1545 return err;
1546}
1547
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548static ssize_t
1549pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1550{
1551 pfm_context_t *ctx;
1552 pfm_msg_t *msg;
1553 ssize_t ret;
1554 unsigned long flags;
1555 DECLARE_WAITQUEUE(wait, current);
1556 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001557 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558 return -EINVAL;
1559 }
1560
Joe Perchesdf0a59a2010-07-12 13:49:54 -07001561 ctx = filp->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001563 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 return -EINVAL;
1565 }
1566
1567 /*
1568 * check even when there is no message
1569 */
1570 if (size < sizeof(pfm_msg_t)) {
1571 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1572 return -EINVAL;
1573 }
1574
1575 PROTECT_CTX(ctx, flags);
1576
1577 /*
1578 * put ourselves on the wait queue
1579 */
1580 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1581
1582
1583 for(;;) {
1584 /*
1585 * check wait queue
1586 */
1587
1588 set_current_state(TASK_INTERRUPTIBLE);
1589
1590 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1591
1592 ret = 0;
1593 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1594
1595 UNPROTECT_CTX(ctx, flags);
1596
1597 /*
1598 * check non-blocking read
1599 */
1600 ret = -EAGAIN;
1601 if(filp->f_flags & O_NONBLOCK) break;
1602
1603 /*
1604 * check pending signals
1605 */
1606 if(signal_pending(current)) {
1607 ret = -EINTR;
1608 break;
1609 }
1610 /*
1611 * no message, so wait
1612 */
1613 schedule();
1614
1615 PROTECT_CTX(ctx, flags);
1616 }
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001617 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 set_current_state(TASK_RUNNING);
1619 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1620
1621 if (ret < 0) goto abort;
1622
1623 ret = -EINVAL;
1624 msg = pfm_get_next_msg(ctx);
1625 if (msg == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001626 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627 goto abort_locked;
1628 }
1629
Stephane Eranian49449302005-04-25 13:08:30 -07001630 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631
1632 ret = -EFAULT;
1633 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1634
1635abort_locked:
1636 UNPROTECT_CTX(ctx, flags);
1637abort:
1638 return ret;
1639}
1640
1641static ssize_t
1642pfm_write(struct file *file, const char __user *ubuf,
1643 size_t size, loff_t *ppos)
1644{
1645 DPRINT(("pfm_write called\n"));
1646 return -EINVAL;
1647}
1648
1649static unsigned int
1650pfm_poll(struct file *filp, poll_table * wait)
1651{
1652 pfm_context_t *ctx;
1653 unsigned long flags;
1654 unsigned int mask = 0;
1655
1656 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001657 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658 return 0;
1659 }
1660
Joe Perchesdf0a59a2010-07-12 13:49:54 -07001661 ctx = filp->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001663 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 return 0;
1665 }
1666
1667
1668 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1669
1670 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1671
1672 PROTECT_CTX(ctx, flags);
1673
1674 if (PFM_CTXQ_EMPTY(ctx) == 0)
1675 mask = POLLIN | POLLRDNORM;
1676
1677 UNPROTECT_CTX(ctx, flags);
1678
1679 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1680
1681 return mask;
1682}
1683
Arnd Bergmannba58aebf2010-07-04 00:15:05 +02001684static long
1685pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686{
1687 DPRINT(("pfm_ioctl called\n"));
1688 return -EINVAL;
1689}
1690
1691/*
1692 * interrupt cannot be masked when coming here
1693 */
1694static inline int
1695pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1696{
1697 int ret;
1698
1699 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1700
1701 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001702 task_pid_nr(current),
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703 fd,
1704 on,
1705 ctx->ctx_async_queue, ret));
1706
1707 return ret;
1708}
1709
1710static int
1711pfm_fasync(int fd, struct file *filp, int on)
1712{
1713 pfm_context_t *ctx;
1714 int ret;
1715
1716 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001717 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718 return -EBADF;
1719 }
1720
Joe Perchesdf0a59a2010-07-12 13:49:54 -07001721 ctx = filp->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001723 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724 return -EBADF;
1725 }
1726 /*
1727 * we cannot mask interrupts during this call because this may
1728 * may go to sleep if memory is not readily avalaible.
1729 *
1730 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1731 * done in caller. Serialization of this function is ensured by caller.
1732 */
1733 ret = pfm_do_fasync(fd, filp, ctx, on);
1734
1735
1736 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1737 fd,
1738 on,
1739 ctx->ctx_async_queue, ret));
1740
1741 return ret;
1742}
1743
1744#ifdef CONFIG_SMP
1745/*
1746 * this function is exclusively called from pfm_close().
1747 * The context is not protected at that time, nor are interrupts
1748 * on the remote CPU. That's necessary to avoid deadlocks.
1749 */
1750static void
1751pfm_syswide_force_stop(void *info)
1752{
1753 pfm_context_t *ctx = (pfm_context_t *)info;
Al Viro64505782006-01-12 01:06:06 -08001754 struct pt_regs *regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755 struct task_struct *owner;
1756 unsigned long flags;
1757 int ret;
1758
1759 if (ctx->ctx_cpu != smp_processor_id()) {
1760 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1761 ctx->ctx_cpu,
1762 smp_processor_id());
1763 return;
1764 }
1765 owner = GET_PMU_OWNER();
1766 if (owner != ctx->ctx_task) {
1767 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1768 smp_processor_id(),
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001769 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770 return;
1771 }
1772 if (GET_PMU_CTX() != ctx) {
1773 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1774 smp_processor_id(),
1775 GET_PMU_CTX(), ctx);
1776 return;
1777 }
1778
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001779 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780 /*
1781 * the context is already protected in pfm_close(), we simply
1782 * need to mask interrupts to avoid a PMU interrupt race on
1783 * this CPU
1784 */
1785 local_irq_save(flags);
1786
1787 ret = pfm_context_unload(ctx, NULL, 0, regs);
1788 if (ret) {
1789 DPRINT(("context_unload returned %d\n", ret));
1790 }
1791
1792 /*
1793 * unmask interrupts, PMU interrupts are now spurious here
1794 */
1795 local_irq_restore(flags);
1796}
1797
1798static void
1799pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1800{
1801 int ret;
1802
1803 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
Jens Axboe8691e5a2008-06-06 11:18:06 +02001804 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1806}
1807#endif /* CONFIG_SMP */
1808
1809/*
1810 * called for each close(). Partially free resources.
1811 * When caller is self-monitoring, the context is unloaded.
1812 */
1813static int
Miklos Szeredi75e1fcc2006-06-23 02:05:12 -07001814pfm_flush(struct file *filp, fl_owner_t id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815{
1816 pfm_context_t *ctx;
1817 struct task_struct *task;
1818 struct pt_regs *regs;
1819 unsigned long flags;
1820 unsigned long smpl_buf_size = 0UL;
1821 void *smpl_buf_vaddr = NULL;
1822 int state, is_system;
1823
1824 if (PFM_IS_FILE(filp) == 0) {
1825 DPRINT(("bad magic for\n"));
1826 return -EBADF;
1827 }
1828
Joe Perchesdf0a59a2010-07-12 13:49:54 -07001829 ctx = filp->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001831 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832 return -EBADF;
1833 }
1834
1835 /*
1836 * remove our file from the async queue, if we use this mode.
1837 * This can be done without the context being protected. We come
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001838 * here when the context has become unreachable by other tasks.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 *
1840 * We may still have active monitoring at this point and we may
1841 * end up in pfm_overflow_handler(). However, fasync_helper()
1842 * operates with interrupts disabled and it cleans up the
1843 * queue. If the PMU handler is called prior to entering
1844 * fasync_helper() then it will send a signal. If it is
1845 * invoked after, it will find an empty queue and no
1846 * signal will be sent. In both case, we are safe
1847 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848 PROTECT_CTX(ctx, flags);
1849
1850 state = ctx->ctx_state;
1851 is_system = ctx->ctx_fl_system;
1852
1853 task = PFM_CTX_TASK(ctx);
Al Viro64505782006-01-12 01:06:06 -08001854 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855
1856 DPRINT(("ctx_state=%d is_current=%d\n",
1857 state,
1858 task == current ? 1 : 0));
1859
1860 /*
1861 * if state == UNLOADED, then task is NULL
1862 */
1863
1864 /*
1865 * we must stop and unload because we are losing access to the context.
1866 */
1867 if (task == current) {
1868#ifdef CONFIG_SMP
1869 /*
1870 * the task IS the owner but it migrated to another CPU: that's bad
1871 * but we must handle this cleanly. Unfortunately, the kernel does
1872 * not provide a mechanism to block migration (while the context is loaded).
1873 *
1874 * We need to release the resource on the ORIGINAL cpu.
1875 */
1876 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1877
1878 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1879 /*
1880 * keep context protected but unmask interrupt for IPI
1881 */
1882 local_irq_restore(flags);
1883
1884 pfm_syswide_cleanup_other_cpu(ctx);
1885
1886 /*
1887 * restore interrupt masking
1888 */
1889 local_irq_save(flags);
1890
1891 /*
1892 * context is unloaded at this point
1893 */
1894 } else
1895#endif /* CONFIG_SMP */
1896 {
1897
1898 DPRINT(("forcing unload\n"));
1899 /*
1900 * stop and unload, returning with state UNLOADED
1901 * and session unreserved.
1902 */
1903 pfm_context_unload(ctx, NULL, 0, regs);
1904
1905 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1906 }
1907 }
1908
1909 /*
1910 * remove virtual mapping, if any, for the calling task.
1911 * cannot reset ctx field until last user is calling close().
1912 *
1913 * ctx_smpl_vaddr must never be cleared because it is needed
1914 * by every task with access to the context
1915 *
1916 * When called from do_exit(), the mm context is gone already, therefore
1917 * mm is NULL, i.e., the VMA is already gone and we do not have to
1918 * do anything here
1919 */
1920 if (ctx->ctx_smpl_vaddr && current->mm) {
1921 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1922 smpl_buf_size = ctx->ctx_smpl_size;
1923 }
1924
1925 UNPROTECT_CTX(ctx, flags);
1926
1927 /*
1928 * if there was a mapping, then we systematically remove it
1929 * at this point. Cannot be done inside critical section
1930 * because some VM function reenables interrupts.
1931 *
1932 */
Al Viro9f3a4af2012-04-20 21:53:35 -04001933 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934
1935 return 0;
1936}
1937/*
1938 * called either on explicit close() or from exit_files().
1939 * Only the LAST user of the file gets to this point, i.e., it is
1940 * called only ONCE.
1941 *
1942 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1943 * (fput()),i.e, last task to access the file. Nobody else can access the
1944 * file at this point.
1945 *
1946 * When called from exit_files(), the VMA has been freed because exit_mm()
1947 * is executed before exit_files().
1948 *
1949 * When called from exit_files(), the current task is not yet ZOMBIE but we
1950 * flush the PMU state to the context.
1951 */
1952static int
1953pfm_close(struct inode *inode, struct file *filp)
1954{
1955 pfm_context_t *ctx;
1956 struct task_struct *task;
1957 struct pt_regs *regs;
1958 DECLARE_WAITQUEUE(wait, current);
1959 unsigned long flags;
1960 unsigned long smpl_buf_size = 0UL;
1961 void *smpl_buf_addr = NULL;
1962 int free_possible = 1;
1963 int state, is_system;
1964
1965 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1966
1967 if (PFM_IS_FILE(filp) == 0) {
1968 DPRINT(("bad magic\n"));
1969 return -EBADF;
1970 }
1971
Joe Perchesdf0a59a2010-07-12 13:49:54 -07001972 ctx = filp->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001974 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001975 return -EBADF;
1976 }
1977
1978 PROTECT_CTX(ctx, flags);
1979
1980 state = ctx->ctx_state;
1981 is_system = ctx->ctx_fl_system;
1982
1983 task = PFM_CTX_TASK(ctx);
Al Viro64505782006-01-12 01:06:06 -08001984 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985
1986 DPRINT(("ctx_state=%d is_current=%d\n",
1987 state,
1988 task == current ? 1 : 0));
1989
1990 /*
1991 * if task == current, then pfm_flush() unloaded the context
1992 */
1993 if (state == PFM_CTX_UNLOADED) goto doit;
1994
1995 /*
1996 * context is loaded/masked and task != current, we need to
1997 * either force an unload or go zombie
1998 */
1999
2000 /*
2001 * The task is currently blocked or will block after an overflow.
2002 * we must force it to wakeup to get out of the
2003 * MASKED state and transition to the unloaded state by itself.
2004 *
2005 * This situation is only possible for per-task mode
2006 */
2007 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2008
2009 /*
2010 * set a "partial" zombie state to be checked
2011 * upon return from down() in pfm_handle_work().
2012 *
2013 * We cannot use the ZOMBIE state, because it is checked
2014 * by pfm_load_regs() which is called upon wakeup from down().
2015 * In such case, it would free the context and then we would
2016 * return to pfm_handle_work() which would access the
2017 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2018 * but visible to pfm_handle_work().
2019 *
2020 * For some window of time, we have a zombie context with
2021 * ctx_state = MASKED and not ZOMBIE
2022 */
2023 ctx->ctx_fl_going_zombie = 1;
2024
2025 /*
2026 * force task to wake up from MASKED state
2027 */
Jes Sorensen60f1c442006-01-18 23:46:52 -08002028 complete(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029
2030 DPRINT(("waking up ctx_state=%d\n", state));
2031
2032 /*
2033 * put ourself to sleep waiting for the other
2034 * task to report completion
2035 *
2036 * the context is protected by mutex, therefore there
2037 * is no risk of being notified of completion before
2038 * begin actually on the waitq.
2039 */
2040 set_current_state(TASK_INTERRUPTIBLE);
2041 add_wait_queue(&ctx->ctx_zombieq, &wait);
2042
2043 UNPROTECT_CTX(ctx, flags);
2044
2045 /*
2046 * XXX: check for signals :
2047 * - ok for explicit close
2048 * - not ok when coming from exit_files()
2049 */
2050 schedule();
2051
2052
2053 PROTECT_CTX(ctx, flags);
2054
2055
2056 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2057 set_current_state(TASK_RUNNING);
2058
2059 /*
2060 * context is unloaded at this point
2061 */
2062 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2063 }
2064 else if (task != current) {
2065#ifdef CONFIG_SMP
2066 /*
2067 * switch context to zombie state
2068 */
2069 ctx->ctx_state = PFM_CTX_ZOMBIE;
2070
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002071 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072 /*
2073 * cannot free the context on the spot. deferred until
2074 * the task notices the ZOMBIE state
2075 */
2076 free_possible = 0;
2077#else
2078 pfm_context_unload(ctx, NULL, 0, regs);
2079#endif
2080 }
2081
2082doit:
2083 /* reload state, may have changed during opening of critical section */
2084 state = ctx->ctx_state;
2085
2086 /*
2087 * the context is still attached to a task (possibly current)
2088 * we cannot destroy it right now
2089 */
2090
2091 /*
2092 * we must free the sampling buffer right here because
2093 * we cannot rely on it being cleaned up later by the
2094 * monitored task. It is not possible to free vmalloc'ed
2095 * memory in pfm_load_regs(). Instead, we remove the buffer
2096 * now. should there be subsequent PMU overflow originally
2097 * meant for sampling, the will be converted to spurious
2098 * and that's fine because the monitoring tools is gone anyway.
2099 */
2100 if (ctx->ctx_smpl_hdr) {
2101 smpl_buf_addr = ctx->ctx_smpl_hdr;
2102 smpl_buf_size = ctx->ctx_smpl_size;
2103 /* no more sampling */
2104 ctx->ctx_smpl_hdr = NULL;
2105 ctx->ctx_fl_is_sampling = 0;
2106 }
2107
2108 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2109 state,
2110 free_possible,
2111 smpl_buf_addr,
2112 smpl_buf_size));
2113
2114 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2115
2116 /*
2117 * UNLOADED that the session has already been unreserved.
2118 */
2119 if (state == PFM_CTX_ZOMBIE) {
2120 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2121 }
2122
2123 /*
2124 * disconnect file descriptor from context must be done
2125 * before we unlock.
2126 */
2127 filp->private_data = NULL;
2128
2129 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07002130 * if we free on the spot, the context is now completely unreachable
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 * from the callers side. The monitored task side is also cut, so we
2132 * can freely cut.
2133 *
2134 * If we have a deferred free, only the caller side is disconnected.
2135 */
2136 UNPROTECT_CTX(ctx, flags);
2137
2138 /*
2139 * All memory free operations (especially for vmalloc'ed memory)
2140 * MUST be done with interrupts ENABLED.
2141 */
2142 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2143
2144 /*
2145 * return the memory used by the context
2146 */
2147 if (free_possible) pfm_context_free(ctx);
2148
2149 return 0;
2150}
2151
2152static int
2153pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2154{
2155 DPRINT(("pfm_no_open called\n"));
2156 return -ENXIO;
2157}
2158
2159
2160
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -08002161static const struct file_operations pfm_file_ops = {
Arnd Bergmannba58aebf2010-07-04 00:15:05 +02002162 .llseek = no_llseek,
2163 .read = pfm_read,
2164 .write = pfm_write,
2165 .poll = pfm_poll,
2166 .unlocked_ioctl = pfm_ioctl,
2167 .open = pfm_no_open, /* special open code to disallow open via /proc */
2168 .fasync = pfm_fasync,
2169 .release = pfm_close,
2170 .flush = pfm_flush
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171};
2172
2173static int
Nick Pigginfe15ce42011-01-07 17:49:23 +11002174pfmfs_delete_dentry(const struct dentry *dentry)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175{
2176 return 1;
2177}
2178
Miklos Szeredi7ae6bdb2010-08-10 11:41:37 +02002179static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2180{
2181 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2182 dentry->d_inode->i_ino);
2183}
2184
Al Viro3ba13d12009-02-20 06:02:22 +00002185static const struct dentry_operations pfmfs_dentry_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 .d_delete = pfmfs_delete_dentry,
Miklos Szeredi7ae6bdb2010-08-10 11:41:37 +02002187 .d_dname = pfmfs_dname,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188};
2189
2190
Al Virof8e811b2008-05-01 14:36:36 -07002191static struct file *
2192pfm_alloc_file(pfm_context_t *ctx)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193{
Al Virof8e811b2008-05-01 14:36:36 -07002194 struct file *file;
2195 struct inode *inode;
Al Viro2c48b9c2009-08-09 00:52:35 +04002196 struct path path;
Miklos Szeredi7ae6bdb2010-08-10 11:41:37 +02002197 struct qstr this = { .name = "" };
Linus Torvalds1da177e2005-04-16 15:20:36 -07002198
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 /*
2200 * allocate a new inode
2201 */
2202 inode = new_inode(pfmfs_mnt->mnt_sb);
Al Virof8e811b2008-05-01 14:36:36 -07002203 if (!inode)
2204 return ERR_PTR(-ENOMEM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002205
2206 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2207
2208 inode->i_mode = S_IFCHR|S_IRUGO;
David Howellsef81ee92008-11-14 10:38:37 +11002209 inode->i_uid = current_fsuid();
2210 inode->i_gid = current_fsgid();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 /*
2213 * allocate a new dcache entry
2214 */
Al Viro4c1d5a62011-12-07 18:21:57 -05002215 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
Al Viro2c48b9c2009-08-09 00:52:35 +04002216 if (!path.dentry) {
Al Virof8e811b2008-05-01 14:36:36 -07002217 iput(inode);
2218 return ERR_PTR(-ENOMEM);
2219 }
Al Viro2c48b9c2009-08-09 00:52:35 +04002220 path.mnt = mntget(pfmfs_mnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221
Al Viro2c48b9c2009-08-09 00:52:35 +04002222 d_add(path.dentry, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223
Al Viro2c48b9c2009-08-09 00:52:35 +04002224 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
Anatol Pomozov39b65252012-09-12 20:11:55 -07002225 if (IS_ERR(file)) {
Al Viro2c48b9c2009-08-09 00:52:35 +04002226 path_put(&path);
Anatol Pomozov39b65252012-09-12 20:11:55 -07002227 return file;
Al Virof8e811b2008-05-01 14:36:36 -07002228 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230 file->f_flags = O_RDONLY;
Al Virof8e811b2008-05-01 14:36:36 -07002231 file->private_data = ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232
Al Virof8e811b2008-05-01 14:36:36 -07002233 return file;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234}
2235
2236static int
2237pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2238{
2239 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2240
2241 while (size > 0) {
2242 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2243
2244
2245 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2246 return -ENOMEM;
2247
2248 addr += PAGE_SIZE;
2249 buf += PAGE_SIZE;
2250 size -= PAGE_SIZE;
2251 }
2252 return 0;
2253}
2254
2255/*
2256 * allocate a sampling buffer and remaps it into the user address space of the task
2257 */
2258static int
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002259pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260{
2261 struct mm_struct *mm = task->mm;
2262 struct vm_area_struct *vma = NULL;
2263 unsigned long size;
2264 void *smpl_buf;
2265
2266
2267 /*
2268 * the fixed header + requested size and align to page boundary
2269 */
2270 size = PAGE_ALIGN(rsize);
2271
2272 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2273
2274 /*
2275 * check requested size to avoid Denial-of-service attacks
2276 * XXX: may have to refine this test
2277 * Check against address space limit.
2278 *
2279 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2280 * return -ENOMEM;
2281 */
Jiri Slaby02b763b2010-01-06 16:24:30 +01002282 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 return -ENOMEM;
2284
2285 /*
2286 * We do the easy to undo allocations first.
2287 *
2288 * pfm_rvmalloc(), clears the buffer, so there is no leak
2289 */
2290 smpl_buf = pfm_rvmalloc(size);
2291 if (smpl_buf == NULL) {
2292 DPRINT(("Can't allocate sampling buffer\n"));
2293 return -ENOMEM;
2294 }
2295
2296 DPRINT(("smpl_buf @%p\n", smpl_buf));
2297
2298 /* allocate vma */
Robert P. J. Dayc3762222007-02-10 01:45:03 -08002299 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 if (!vma) {
2301 DPRINT(("Cannot allocate vma\n"));
2302 goto error_kmem;
2303 }
Rik van Riel5beb4932010-03-05 13:42:07 -08002304 INIT_LIST_HEAD(&vma->anon_vma_chain);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305
2306 /*
2307 * partially initialize the vma for the sampling buffer
2308 */
2309 vma->vm_mm = mm;
Al Virocb0942b2012-08-27 14:48:26 -04002310 vma->vm_file = get_file(filp);
Konstantin Khlebnikov314e51b2012-10-08 16:29:02 -07002311 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2313
2314 /*
2315 * Now we have everything we need and we can initialize
2316 * and connect all the data structures
2317 */
2318
2319 ctx->ctx_smpl_hdr = smpl_buf;
2320 ctx->ctx_smpl_size = size; /* aligned size */
2321
2322 /*
2323 * Let's do the difficult operations next.
2324 *
2325 * now we atomically find some area in the address space and
2326 * remap the buffer in it.
2327 */
2328 down_write(&task->mm->mmap_sem);
2329
2330 /* find some free area in address space, must have mmap sem held */
Al Viro4ad310b2012-05-30 11:55:49 -04002331 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2332 if (IS_ERR_VALUE(vma->vm_start)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2334 up_write(&task->mm->mmap_sem);
2335 goto error;
2336 }
2337 vma->vm_end = vma->vm_start + size;
2338 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339
2340 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2341
2342 /* can only be applied to current task, need to have the mm semaphore held when called */
2343 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2344 DPRINT(("Can't remap buffer\n"));
2345 up_write(&task->mm->mmap_sem);
2346 goto error;
2347 }
2348
2349 /*
2350 * now insert the vma in the vm list for the process, must be
2351 * done with mmap lock held
2352 */
2353 insert_vm_struct(mm, vma);
2354
Hugh Dickinsab50b8e2005-10-29 18:15:56 -07002355 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2356 vma_pages(vma));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 up_write(&task->mm->mmap_sem);
2358
2359 /*
2360 * keep track of user level virtual address
2361 */
2362 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2363 *(unsigned long *)user_vaddr = vma->vm_start;
2364
2365 return 0;
2366
2367error:
2368 kmem_cache_free(vm_area_cachep, vma);
2369error_kmem:
2370 pfm_rvfree(smpl_buf, size);
2371
2372 return -ENOMEM;
2373}
2374
2375/*
2376 * XXX: do something better here
2377 */
2378static int
2379pfm_bad_permissions(struct task_struct *task)
2380{
David Howellsc69e8d92008-11-14 10:39:19 +11002381 const struct cred *tcred;
Eric W. Biederman6c1ee032012-08-07 04:02:41 -07002382 kuid_t uid = current_uid();
2383 kgid_t gid = current_gid();
David Howellsc69e8d92008-11-14 10:39:19 +11002384 int ret;
2385
2386 rcu_read_lock();
2387 tcred = __task_cred(task);
David Howellsef81ee92008-11-14 10:38:37 +11002388
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 /* inspired by ptrace_attach() */
2390 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
Eric W. Biederman6c1ee032012-08-07 04:02:41 -07002391 from_kuid(&init_user_ns, uid),
2392 from_kgid(&init_user_ns, gid),
2393 from_kuid(&init_user_ns, tcred->euid),
2394 from_kuid(&init_user_ns, tcred->suid),
2395 from_kuid(&init_user_ns, tcred->uid),
2396 from_kgid(&init_user_ns, tcred->egid),
2397 from_kgid(&init_user_ns, tcred->sgid)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398
Eric W. Biederman6c1ee032012-08-07 04:02:41 -07002399 ret = ((!uid_eq(uid, tcred->euid))
2400 || (!uid_eq(uid, tcred->suid))
2401 || (!uid_eq(uid, tcred->uid))
2402 || (!gid_eq(gid, tcred->egid))
2403 || (!gid_eq(gid, tcred->sgid))
2404 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
David Howellsc69e8d92008-11-14 10:39:19 +11002405
2406 rcu_read_unlock();
2407 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408}
2409
2410static int
2411pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2412{
2413 int ctx_flags;
2414
2415 /* valid signal */
2416
2417 ctx_flags = pfx->ctx_flags;
2418
2419 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2420
2421 /*
2422 * cannot block in this mode
2423 */
2424 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2425 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2426 return -EINVAL;
2427 }
2428 } else {
2429 }
2430 /* probably more to add here */
2431
2432 return 0;
2433}
2434
2435static int
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002436pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437 unsigned int cpu, pfarg_context_t *arg)
2438{
2439 pfm_buffer_fmt_t *fmt = NULL;
2440 unsigned long size = 0UL;
2441 void *uaddr = NULL;
2442 void *fmt_arg = NULL;
2443 int ret = 0;
2444#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2445
2446 /* invoke and lock buffer format, if found */
2447 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2448 if (fmt == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002449 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 return -EINVAL;
2451 }
2452
2453 /*
2454 * buffer argument MUST be contiguous to pfarg_context_t
2455 */
2456 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2457
2458 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2459
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002460 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461
2462 if (ret) goto error;
2463
2464 /* link buffer format and context */
2465 ctx->ctx_buf_fmt = fmt;
Al Virof8e811b2008-05-01 14:36:36 -07002466 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467
2468 /*
2469 * check if buffer format wants to use perfmon buffer allocation/mapping service
2470 */
2471 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2472 if (ret) goto error;
2473
2474 if (size) {
2475 /*
2476 * buffer is always remapped into the caller's address space
2477 */
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002478 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479 if (ret) goto error;
2480
2481 /* keep track of user address of buffer */
2482 arg->ctx_smpl_vaddr = uaddr;
2483 }
2484 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2485
2486error:
2487 return ret;
2488}
2489
2490static void
2491pfm_reset_pmu_state(pfm_context_t *ctx)
2492{
2493 int i;
2494
2495 /*
2496 * install reset values for PMC.
2497 */
2498 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2499 if (PMC_IS_IMPL(i) == 0) continue;
2500 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2501 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2502 }
2503 /*
2504 * PMD registers are set to 0UL when the context in memset()
2505 */
2506
2507 /*
2508 * On context switched restore, we must restore ALL pmc and ALL pmd even
2509 * when they are not actively used by the task. In UP, the incoming process
2510 * may otherwise pick up left over PMC, PMD state from the previous process.
2511 * As opposed to PMD, stale PMC can cause harm to the incoming
2512 * process because they may change what is being measured.
2513 * Therefore, we must systematically reinstall the entire
2514 * PMC state. In SMP, the same thing is possible on the
2515 * same CPU but also on between 2 CPUs.
2516 *
2517 * The problem with PMD is information leaking especially
2518 * to user level when psr.sp=0
2519 *
2520 * There is unfortunately no easy way to avoid this problem
2521 * on either UP or SMP. This definitively slows down the
2522 * pfm_load_regs() function.
2523 */
2524
2525 /*
2526 * bitmask of all PMCs accessible to this context
2527 *
2528 * PMC0 is treated differently.
2529 */
2530 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2531
2532 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07002533 * bitmask of all PMDs that are accessible to this context
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534 */
2535 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2536
2537 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2538
2539 /*
2540 * useful in case of re-enable after disable
2541 */
2542 ctx->ctx_used_ibrs[0] = 0UL;
2543 ctx->ctx_used_dbrs[0] = 0UL;
2544}
2545
2546static int
2547pfm_ctx_getsize(void *arg, size_t *sz)
2548{
2549 pfarg_context_t *req = (pfarg_context_t *)arg;
2550 pfm_buffer_fmt_t *fmt;
2551
2552 *sz = 0;
2553
2554 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2555
2556 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2557 if (fmt == NULL) {
2558 DPRINT(("cannot find buffer format\n"));
2559 return -EINVAL;
2560 }
2561 /* get just enough to copy in user parameters */
2562 *sz = fmt->fmt_arg_size;
2563 DPRINT(("arg_size=%lu\n", *sz));
2564
2565 return 0;
2566}
2567
2568
2569
2570/*
2571 * cannot attach if :
2572 * - kernel task
2573 * - task not owned by caller
2574 * - task incompatible with context mode
2575 */
2576static int
2577pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2578{
2579 /*
2580 * no kernel task or task not owner by caller
2581 */
2582 if (task->mm == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002583 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584 return -EPERM;
2585 }
2586 if (pfm_bad_permissions(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002587 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588 return -EPERM;
2589 }
2590 /*
2591 * cannot block in self-monitoring mode
2592 */
2593 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002594 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002595 return -EINVAL;
2596 }
2597
2598 if (task->exit_state == EXIT_ZOMBIE) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002599 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600 return -EBUSY;
2601 }
2602
2603 /*
2604 * always ok for self
2605 */
2606 if (task == current) return 0;
2607
Matthew Wilcox21498222007-12-06 11:02:55 -05002608 if (!task_is_stopped_or_traced(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002609 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610 return -EBUSY;
2611 }
2612 /*
2613 * make sure the task is off any CPU
2614 */
Roland McGrath85ba2d82008-07-25 19:45:58 -07002615 wait_task_inactive(task, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616
2617 /* more to come... */
2618
2619 return 0;
2620}
2621
2622static int
2623pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2624{
2625 struct task_struct *p = current;
2626 int ret;
2627
2628 /* XXX: need to add more checks here */
2629 if (pid < 2) return -EPERM;
2630
Pavel Emelyanove1b0d4b2008-02-04 23:43:03 -08002631 if (pid != task_pid_vnr(current)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632
2633 read_lock(&tasklist_lock);
2634
Pavel Emelyanove1b0d4b2008-02-04 23:43:03 -08002635 p = find_task_by_vpid(pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636
2637 /* make sure task cannot go away while we operate on it */
2638 if (p) get_task_struct(p);
2639
2640 read_unlock(&tasklist_lock);
2641
2642 if (p == NULL) return -ESRCH;
2643 }
2644
2645 ret = pfm_task_incompatible(ctx, p);
2646 if (ret == 0) {
2647 *task = p;
2648 } else if (p != current) {
2649 pfm_put_task(p);
2650 }
2651 return ret;
2652}
2653
2654
2655
2656static int
2657pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2658{
2659 pfarg_context_t *req = (pfarg_context_t *)arg;
2660 struct file *filp;
Al Virof8e811b2008-05-01 14:36:36 -07002661 struct path path;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 int ctx_flags;
Al Virof8e811b2008-05-01 14:36:36 -07002663 int fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 int ret;
2665
2666 /* let's check the arguments first */
2667 ret = pfarg_is_sane(current, req);
Al Virof8e811b2008-05-01 14:36:36 -07002668 if (ret < 0)
2669 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670
2671 ctx_flags = req->ctx_flags;
2672
2673 ret = -ENOMEM;
2674
Al Virof8e811b2008-05-01 14:36:36 -07002675 fd = get_unused_fd();
2676 if (fd < 0)
2677 return fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678
Al Virof8e811b2008-05-01 14:36:36 -07002679 ctx = pfm_context_alloc(ctx_flags);
2680 if (!ctx)
2681 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682
Al Virof8e811b2008-05-01 14:36:36 -07002683 filp = pfm_alloc_file(ctx);
2684 if (IS_ERR(filp)) {
2685 ret = PTR_ERR(filp);
2686 goto error_file;
2687 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688
Al Virof8e811b2008-05-01 14:36:36 -07002689 req->ctx_fd = ctx->ctx_fd = fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690
2691 /*
2692 * does the user want to sample?
2693 */
2694 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002695 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
Al Virof8e811b2008-05-01 14:36:36 -07002696 if (ret)
2697 goto buffer_error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698 }
2699
Frans Pop04157e42010-02-06 18:47:10 +01002700 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701 ctx,
2702 ctx_flags,
2703 ctx->ctx_fl_system,
2704 ctx->ctx_fl_block,
2705 ctx->ctx_fl_excl_idle,
2706 ctx->ctx_fl_no_msg,
2707 ctx->ctx_fd));
2708
2709 /*
2710 * initialize soft PMU state
2711 */
2712 pfm_reset_pmu_state(ctx);
2713
Al Virof8e811b2008-05-01 14:36:36 -07002714 fd_install(fd, filp);
2715
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 return 0;
2717
2718buffer_error:
Al Virof8e811b2008-05-01 14:36:36 -07002719 path = filp->f_path;
2720 put_filp(filp);
2721 path_put(&path);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002722
2723 if (ctx->ctx_buf_fmt) {
2724 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2725 }
2726error_file:
2727 pfm_context_free(ctx);
2728
2729error:
Al Virof8e811b2008-05-01 14:36:36 -07002730 put_unused_fd(fd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 return ret;
2732}
2733
2734static inline unsigned long
2735pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2736{
2737 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2738 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2739 extern unsigned long carta_random32 (unsigned long seed);
2740
2741 if (reg->flags & PFM_REGFL_RANDOM) {
2742 new_seed = carta_random32(old_seed);
2743 val -= (old_seed & mask); /* counter values are negative numbers! */
2744 if ((mask >> 32) != 0)
2745 /* construct a full 64-bit random value: */
2746 new_seed |= carta_random32(old_seed >> 32) << 32;
2747 reg->seed = new_seed;
2748 }
2749 reg->lval = val;
2750 return val;
2751}
2752
2753static void
2754pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2755{
2756 unsigned long mask = ovfl_regs[0];
2757 unsigned long reset_others = 0UL;
2758 unsigned long val;
2759 int i;
2760
2761 /*
2762 * now restore reset value on sampling overflowed counters
2763 */
2764 mask >>= PMU_FIRST_COUNTER;
2765 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2766
2767 if ((mask & 0x1UL) == 0UL) continue;
2768
2769 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2770 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2771
2772 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2773 }
2774
2775 /*
2776 * Now take care of resetting the other registers
2777 */
2778 for(i = 0; reset_others; i++, reset_others >>= 1) {
2779
2780 if ((reset_others & 0x1) == 0) continue;
2781
2782 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2783
2784 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2785 is_long_reset ? "long" : "short", i, val));
2786 }
2787}
2788
2789static void
2790pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2791{
2792 unsigned long mask = ovfl_regs[0];
2793 unsigned long reset_others = 0UL;
2794 unsigned long val;
2795 int i;
2796
2797 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2798
2799 if (ctx->ctx_state == PFM_CTX_MASKED) {
2800 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2801 return;
2802 }
2803
2804 /*
2805 * now restore reset value on sampling overflowed counters
2806 */
2807 mask >>= PMU_FIRST_COUNTER;
2808 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2809
2810 if ((mask & 0x1UL) == 0UL) continue;
2811
2812 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2813 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2814
2815 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2816
2817 pfm_write_soft_counter(ctx, i, val);
2818 }
2819
2820 /*
2821 * Now take care of resetting the other registers
2822 */
2823 for(i = 0; reset_others; i++, reset_others >>= 1) {
2824
2825 if ((reset_others & 0x1) == 0) continue;
2826
2827 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2828
2829 if (PMD_IS_COUNTING(i)) {
2830 pfm_write_soft_counter(ctx, i, val);
2831 } else {
2832 ia64_set_pmd(i, val);
2833 }
2834 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2835 is_long_reset ? "long" : "short", i, val));
2836 }
2837 ia64_srlz_d();
2838}
2839
2840static int
2841pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2842{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843 struct task_struct *task;
2844 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2845 unsigned long value, pmc_pm;
2846 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2847 unsigned int cnum, reg_flags, flags, pmc_type;
2848 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2849 int is_monitor, is_counting, state;
2850 int ret = -EINVAL;
2851 pfm_reg_check_t wr_func;
2852#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2853
2854 state = ctx->ctx_state;
2855 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2856 is_system = ctx->ctx_fl_system;
2857 task = ctx->ctx_task;
2858 impl_pmds = pmu_conf->impl_pmds[0];
2859
2860 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2861
2862 if (is_loaded) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863 /*
2864 * In system wide and when the context is loaded, access can only happen
2865 * when the caller is running on the CPU being monitored by the session.
2866 * It does not have to be the owner (ctx_task) of the context per se.
2867 */
2868 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2869 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2870 return -EBUSY;
2871 }
2872 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2873 }
2874 expert_mode = pfm_sysctl.expert_mode;
2875
2876 for (i = 0; i < count; i++, req++) {
2877
2878 cnum = req->reg_num;
2879 reg_flags = req->reg_flags;
2880 value = req->reg_value;
2881 smpl_pmds = req->reg_smpl_pmds[0];
2882 reset_pmds = req->reg_reset_pmds[0];
2883 flags = 0;
2884
2885
2886 if (cnum >= PMU_MAX_PMCS) {
2887 DPRINT(("pmc%u is invalid\n", cnum));
2888 goto error;
2889 }
2890
2891 pmc_type = pmu_conf->pmc_desc[cnum].type;
2892 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2893 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2894 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2895
2896 /*
2897 * we reject all non implemented PMC as well
2898 * as attempts to modify PMC[0-3] which are used
2899 * as status registers by the PMU
2900 */
2901 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2902 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2903 goto error;
2904 }
2905 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2906 /*
2907 * If the PMC is a monitor, then if the value is not the default:
2908 * - system-wide session: PMCx.pm=1 (privileged monitor)
2909 * - per-task : PMCx.pm=0 (user monitor)
2910 */
2911 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2912 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2913 cnum,
2914 pmc_pm,
2915 is_system));
2916 goto error;
2917 }
2918
2919 if (is_counting) {
2920 /*
2921 * enforce generation of overflow interrupt. Necessary on all
2922 * CPUs.
2923 */
2924 value |= 1 << PMU_PMC_OI;
2925
2926 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2927 flags |= PFM_REGFL_OVFL_NOTIFY;
2928 }
2929
2930 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2931
2932 /* verify validity of smpl_pmds */
2933 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2934 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2935 goto error;
2936 }
2937
2938 /* verify validity of reset_pmds */
2939 if ((reset_pmds & impl_pmds) != reset_pmds) {
2940 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2941 goto error;
2942 }
2943 } else {
2944 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2945 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2946 goto error;
2947 }
2948 /* eventid on non-counting monitors are ignored */
2949 }
2950
2951 /*
2952 * execute write checker, if any
2953 */
2954 if (likely(expert_mode == 0 && wr_func)) {
2955 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2956 if (ret) goto error;
2957 ret = -EINVAL;
2958 }
2959
2960 /*
2961 * no error on this register
2962 */
2963 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2964
2965 /*
2966 * Now we commit the changes to the software state
2967 */
2968
2969 /*
2970 * update overflow information
2971 */
2972 if (is_counting) {
2973 /*
2974 * full flag update each time a register is programmed
2975 */
2976 ctx->ctx_pmds[cnum].flags = flags;
2977
2978 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2979 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2980 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2981
2982 /*
2983 * Mark all PMDS to be accessed as used.
2984 *
2985 * We do not keep track of PMC because we have to
2986 * systematically restore ALL of them.
2987 *
2988 * We do not update the used_monitors mask, because
2989 * if we have not programmed them, then will be in
2990 * a quiescent state, therefore we will not need to
2991 * mask/restore then when context is MASKED.
2992 */
2993 CTX_USED_PMD(ctx, reset_pmds);
2994 CTX_USED_PMD(ctx, smpl_pmds);
2995 /*
2996 * make sure we do not try to reset on
2997 * restart because we have established new values
2998 */
2999 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3000 }
3001 /*
3002 * Needed in case the user does not initialize the equivalent
3003 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3004 * possible leak here.
3005 */
3006 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3007
3008 /*
3009 * keep track of the monitor PMC that we are using.
3010 * we save the value of the pmc in ctx_pmcs[] and if
3011 * the monitoring is not stopped for the context we also
3012 * place it in the saved state area so that it will be
3013 * picked up later by the context switch code.
3014 *
3015 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3016 *
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003017 * The value in th_pmcs[] may be modified on overflow, i.e., when
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018 * monitoring needs to be stopped.
3019 */
3020 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3021
3022 /*
3023 * update context state
3024 */
3025 ctx->ctx_pmcs[cnum] = value;
3026
3027 if (is_loaded) {
3028 /*
3029 * write thread state
3030 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003031 if (is_system == 0) ctx->th_pmcs[cnum] = value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003032
3033 /*
3034 * write hardware register if we can
3035 */
3036 if (can_access_pmu) {
3037 ia64_set_pmc(cnum, value);
3038 }
3039#ifdef CONFIG_SMP
3040 else {
3041 /*
3042 * per-task SMP only here
3043 *
3044 * we are guaranteed that the task is not running on the other CPU,
3045 * we indicate that this PMD will need to be reloaded if the task
3046 * is rescheduled on the CPU it ran last on.
3047 */
3048 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3049 }
3050#endif
3051 }
3052
3053 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3054 cnum,
3055 value,
3056 is_loaded,
3057 can_access_pmu,
3058 flags,
3059 ctx->ctx_all_pmcs[0],
3060 ctx->ctx_used_pmds[0],
3061 ctx->ctx_pmds[cnum].eventid,
3062 smpl_pmds,
3063 reset_pmds,
3064 ctx->ctx_reload_pmcs[0],
3065 ctx->ctx_used_monitors[0],
3066 ctx->ctx_ovfl_regs[0]));
3067 }
3068
3069 /*
3070 * make sure the changes are visible
3071 */
3072 if (can_access_pmu) ia64_srlz_d();
3073
3074 return 0;
3075error:
3076 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3077 return ret;
3078}
3079
3080static int
3081pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3082{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003083 struct task_struct *task;
3084 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3085 unsigned long value, hw_value, ovfl_mask;
3086 unsigned int cnum;
3087 int i, can_access_pmu = 0, state;
3088 int is_counting, is_loaded, is_system, expert_mode;
3089 int ret = -EINVAL;
3090 pfm_reg_check_t wr_func;
3091
3092
3093 state = ctx->ctx_state;
3094 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3095 is_system = ctx->ctx_fl_system;
3096 ovfl_mask = pmu_conf->ovfl_val;
3097 task = ctx->ctx_task;
3098
3099 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3100
3101 /*
3102 * on both UP and SMP, we can only write to the PMC when the task is
3103 * the owner of the local PMU.
3104 */
3105 if (likely(is_loaded)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003106 /*
3107 * In system wide and when the context is loaded, access can only happen
3108 * when the caller is running on the CPU being monitored by the session.
3109 * It does not have to be the owner (ctx_task) of the context per se.
3110 */
3111 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3112 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3113 return -EBUSY;
3114 }
3115 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3116 }
3117 expert_mode = pfm_sysctl.expert_mode;
3118
3119 for (i = 0; i < count; i++, req++) {
3120
3121 cnum = req->reg_num;
3122 value = req->reg_value;
3123
3124 if (!PMD_IS_IMPL(cnum)) {
3125 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3126 goto abort_mission;
3127 }
3128 is_counting = PMD_IS_COUNTING(cnum);
3129 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3130
3131 /*
3132 * execute write checker, if any
3133 */
3134 if (unlikely(expert_mode == 0 && wr_func)) {
3135 unsigned long v = value;
3136
3137 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3138 if (ret) goto abort_mission;
3139
3140 value = v;
3141 ret = -EINVAL;
3142 }
3143
3144 /*
3145 * no error on this register
3146 */
3147 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3148
3149 /*
3150 * now commit changes to software state
3151 */
3152 hw_value = value;
3153
3154 /*
3155 * update virtualized (64bits) counter
3156 */
3157 if (is_counting) {
3158 /*
3159 * write context state
3160 */
3161 ctx->ctx_pmds[cnum].lval = value;
3162
3163 /*
3164 * when context is load we use the split value
3165 */
3166 if (is_loaded) {
3167 hw_value = value & ovfl_mask;
3168 value = value & ~ovfl_mask;
3169 }
3170 }
3171 /*
3172 * update reset values (not just for counters)
3173 */
3174 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3175 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3176
3177 /*
3178 * update randomization parameters (not just for counters)
3179 */
3180 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3181 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3182
3183 /*
3184 * update context value
3185 */
3186 ctx->ctx_pmds[cnum].val = value;
3187
3188 /*
3189 * Keep track of what we use
3190 *
3191 * We do not keep track of PMC because we have to
3192 * systematically restore ALL of them.
3193 */
3194 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3195
3196 /*
3197 * mark this PMD register used as well
3198 */
3199 CTX_USED_PMD(ctx, RDEP(cnum));
3200
3201 /*
3202 * make sure we do not try to reset on
3203 * restart because we have established new values
3204 */
3205 if (is_counting && state == PFM_CTX_MASKED) {
3206 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3207 }
3208
3209 if (is_loaded) {
3210 /*
3211 * write thread state
3212 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003213 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214
3215 /*
3216 * write hardware register if we can
3217 */
3218 if (can_access_pmu) {
3219 ia64_set_pmd(cnum, hw_value);
3220 } else {
3221#ifdef CONFIG_SMP
3222 /*
3223 * we are guaranteed that the task is not running on the other CPU,
3224 * we indicate that this PMD will need to be reloaded if the task
3225 * is rescheduled on the CPU it ran last on.
3226 */
3227 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3228#endif
3229 }
3230 }
3231
3232 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3233 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3234 cnum,
3235 value,
3236 is_loaded,
3237 can_access_pmu,
3238 hw_value,
3239 ctx->ctx_pmds[cnum].val,
3240 ctx->ctx_pmds[cnum].short_reset,
3241 ctx->ctx_pmds[cnum].long_reset,
3242 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3243 ctx->ctx_pmds[cnum].seed,
3244 ctx->ctx_pmds[cnum].mask,
3245 ctx->ctx_used_pmds[0],
3246 ctx->ctx_pmds[cnum].reset_pmds[0],
3247 ctx->ctx_reload_pmds[0],
3248 ctx->ctx_all_pmds[0],
3249 ctx->ctx_ovfl_regs[0]));
3250 }
3251
3252 /*
3253 * make changes visible
3254 */
3255 if (can_access_pmu) ia64_srlz_d();
3256
3257 return 0;
3258
3259abort_mission:
3260 /*
3261 * for now, we have only one possibility for error
3262 */
3263 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3264 return ret;
3265}
3266
3267/*
3268 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3269 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3270 * interrupt is delivered during the call, it will be kept pending until we leave, making
3271 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3272 * guaranteed to return consistent data to the user, it may simply be old. It is not
3273 * trivial to treat the overflow while inside the call because you may end up in
3274 * some module sampling buffer code causing deadlocks.
3275 */
3276static int
3277pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3278{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003279 struct task_struct *task;
3280 unsigned long val = 0UL, lval, ovfl_mask, sval;
3281 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3282 unsigned int cnum, reg_flags = 0;
3283 int i, can_access_pmu = 0, state;
3284 int is_loaded, is_system, is_counting, expert_mode;
3285 int ret = -EINVAL;
3286 pfm_reg_check_t rd_func;
3287
3288 /*
3289 * access is possible when loaded only for
3290 * self-monitoring tasks or in UP mode
3291 */
3292
3293 state = ctx->ctx_state;
3294 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3295 is_system = ctx->ctx_fl_system;
3296 ovfl_mask = pmu_conf->ovfl_val;
3297 task = ctx->ctx_task;
3298
3299 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3300
3301 if (likely(is_loaded)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003302 /*
3303 * In system wide and when the context is loaded, access can only happen
3304 * when the caller is running on the CPU being monitored by the session.
3305 * It does not have to be the owner (ctx_task) of the context per se.
3306 */
3307 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3308 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3309 return -EBUSY;
3310 }
3311 /*
3312 * this can be true when not self-monitoring only in UP
3313 */
3314 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3315
3316 if (can_access_pmu) ia64_srlz_d();
3317 }
3318 expert_mode = pfm_sysctl.expert_mode;
3319
3320 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3321 is_loaded,
3322 can_access_pmu,
3323 state));
3324
3325 /*
3326 * on both UP and SMP, we can only read the PMD from the hardware register when
3327 * the task is the owner of the local PMU.
3328 */
3329
3330 for (i = 0; i < count; i++, req++) {
3331
3332 cnum = req->reg_num;
3333 reg_flags = req->reg_flags;
3334
3335 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3336 /*
3337 * we can only read the register that we use. That includes
Simon Arlott72fdbdc2007-05-11 14:55:43 -07003338 * the one we explicitly initialize AND the one we want included
Linus Torvalds1da177e2005-04-16 15:20:36 -07003339 * in the sampling buffer (smpl_regs).
3340 *
3341 * Having this restriction allows optimization in the ctxsw routine
3342 * without compromising security (leaks)
3343 */
3344 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3345
3346 sval = ctx->ctx_pmds[cnum].val;
3347 lval = ctx->ctx_pmds[cnum].lval;
3348 is_counting = PMD_IS_COUNTING(cnum);
3349
3350 /*
3351 * If the task is not the current one, then we check if the
3352 * PMU state is still in the local live register due to lazy ctxsw.
3353 * If true, then we read directly from the registers.
3354 */
3355 if (can_access_pmu){
3356 val = ia64_get_pmd(cnum);
3357 } else {
3358 /*
3359 * context has been saved
3360 * if context is zombie, then task does not exist anymore.
3361 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3362 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003363 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003364 }
3365 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3366
3367 if (is_counting) {
3368 /*
3369 * XXX: need to check for overflow when loaded
3370 */
3371 val &= ovfl_mask;
3372 val += sval;
3373 }
3374
3375 /*
3376 * execute read checker, if any
3377 */
3378 if (unlikely(expert_mode == 0 && rd_func)) {
3379 unsigned long v = val;
3380 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3381 if (ret) goto error;
3382 val = v;
3383 ret = -EINVAL;
3384 }
3385
3386 PFM_REG_RETFLAG_SET(reg_flags, 0);
3387
3388 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3389
3390 /*
3391 * update register return value, abort all if problem during copy.
3392 * we only modify the reg_flags field. no check mode is fine because
3393 * access has been verified upfront in sys_perfmonctl().
3394 */
3395 req->reg_value = val;
3396 req->reg_flags = reg_flags;
3397 req->reg_last_reset_val = lval;
3398 }
3399
3400 return 0;
3401
3402error:
3403 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3404 return ret;
3405}
3406
3407int
3408pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3409{
3410 pfm_context_t *ctx;
3411
3412 if (req == NULL) return -EINVAL;
3413
3414 ctx = GET_PMU_CTX();
3415
3416 if (ctx == NULL) return -EINVAL;
3417
3418 /*
3419 * for now limit to current task, which is enough when calling
3420 * from overflow handler
3421 */
3422 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3423
3424 return pfm_write_pmcs(ctx, req, nreq, regs);
3425}
3426EXPORT_SYMBOL(pfm_mod_write_pmcs);
3427
3428int
3429pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430{
3431 pfm_context_t *ctx;
3432
3433 if (req == NULL) return -EINVAL;
3434
3435 ctx = GET_PMU_CTX();
3436
3437 if (ctx == NULL) return -EINVAL;
3438
3439 /*
3440 * for now limit to current task, which is enough when calling
3441 * from overflow handler
3442 */
3443 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444
3445 return pfm_read_pmds(ctx, req, nreq, regs);
3446}
3447EXPORT_SYMBOL(pfm_mod_read_pmds);
3448
3449/*
3450 * Only call this function when a process it trying to
3451 * write the debug registers (reading is always allowed)
3452 */
3453int
3454pfm_use_debug_registers(struct task_struct *task)
3455{
3456 pfm_context_t *ctx = task->thread.pfm_context;
3457 unsigned long flags;
3458 int ret = 0;
3459
3460 if (pmu_conf->use_rr_dbregs == 0) return 0;
3461
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003462 DPRINT(("called for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003463
3464 /*
3465 * do it only once
3466 */
3467 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3468
3469 /*
3470 * Even on SMP, we do not need to use an atomic here because
3471 * the only way in is via ptrace() and this is possible only when the
3472 * process is stopped. Even in the case where the ctxsw out is not totally
3473 * completed by the time we come here, there is no way the 'stopped' process
3474 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3475 * So this is always safe.
3476 */
3477 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3478
3479 LOCK_PFS(flags);
3480
3481 /*
3482 * We cannot allow setting breakpoints when system wide monitoring
3483 * sessions are using the debug registers.
3484 */
3485 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3486 ret = -1;
3487 else
3488 pfm_sessions.pfs_ptrace_use_dbregs++;
3489
3490 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3491 pfm_sessions.pfs_ptrace_use_dbregs,
3492 pfm_sessions.pfs_sys_use_dbregs,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003493 task_pid_nr(task), ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494
3495 UNLOCK_PFS(flags);
3496
3497 return ret;
3498}
3499
3500/*
3501 * This function is called for every task that exits with the
3502 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3503 * able to use the debug registers for debugging purposes via
3504 * ptrace(). Therefore we know it was not using them for
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02003505 * performance monitoring, so we only decrement the number
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506 * of "ptraced" debug register users to keep the count up to date
3507 */
3508int
3509pfm_release_debug_registers(struct task_struct *task)
3510{
3511 unsigned long flags;
3512 int ret;
3513
3514 if (pmu_conf->use_rr_dbregs == 0) return 0;
3515
3516 LOCK_PFS(flags);
3517 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003518 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003519 ret = -1;
3520 } else {
3521 pfm_sessions.pfs_ptrace_use_dbregs--;
3522 ret = 0;
3523 }
3524 UNLOCK_PFS(flags);
3525
3526 return ret;
3527}
3528
3529static int
3530pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3531{
3532 struct task_struct *task;
3533 pfm_buffer_fmt_t *fmt;
3534 pfm_ovfl_ctrl_t rst_ctrl;
3535 int state, is_system;
3536 int ret = 0;
3537
3538 state = ctx->ctx_state;
3539 fmt = ctx->ctx_buf_fmt;
3540 is_system = ctx->ctx_fl_system;
3541 task = PFM_CTX_TASK(ctx);
3542
3543 switch(state) {
3544 case PFM_CTX_MASKED:
3545 break;
3546 case PFM_CTX_LOADED:
3547 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3548 /* fall through */
3549 case PFM_CTX_UNLOADED:
3550 case PFM_CTX_ZOMBIE:
3551 DPRINT(("invalid state=%d\n", state));
3552 return -EBUSY;
3553 default:
3554 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3555 return -EINVAL;
3556 }
3557
3558 /*
3559 * In system wide and when the context is loaded, access can only happen
3560 * when the caller is running on the CPU being monitored by the session.
3561 * It does not have to be the owner (ctx_task) of the context per se.
3562 */
3563 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3564 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3565 return -EBUSY;
3566 }
3567
3568 /* sanity check */
3569 if (unlikely(task == NULL)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003570 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571 return -EINVAL;
3572 }
3573
3574 if (task == current || is_system) {
3575
3576 fmt = ctx->ctx_buf_fmt;
3577
3578 DPRINT(("restarting self %d ovfl=0x%lx\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003579 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580 ctx->ctx_ovfl_regs[0]));
3581
3582 if (CTX_HAS_SMPL(ctx)) {
3583
3584 prefetch(ctx->ctx_smpl_hdr);
3585
3586 rst_ctrl.bits.mask_monitoring = 0;
3587 rst_ctrl.bits.reset_ovfl_pmds = 0;
3588
3589 if (state == PFM_CTX_LOADED)
3590 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3591 else
3592 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3593 } else {
3594 rst_ctrl.bits.mask_monitoring = 0;
3595 rst_ctrl.bits.reset_ovfl_pmds = 1;
3596 }
3597
3598 if (ret == 0) {
3599 if (rst_ctrl.bits.reset_ovfl_pmds)
3600 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3601
3602 if (rst_ctrl.bits.mask_monitoring == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003603 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604
3605 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3606 } else {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003607 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608
3609 // cannot use pfm_stop_monitoring(task, regs);
3610 }
3611 }
3612 /*
3613 * clear overflowed PMD mask to remove any stale information
3614 */
3615 ctx->ctx_ovfl_regs[0] = 0UL;
3616
3617 /*
3618 * back to LOADED state
3619 */
3620 ctx->ctx_state = PFM_CTX_LOADED;
3621
3622 /*
3623 * XXX: not really useful for self monitoring
3624 */
3625 ctx->ctx_fl_can_restart = 0;
3626
3627 return 0;
3628 }
3629
3630 /*
3631 * restart another task
3632 */
3633
3634 /*
3635 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3636 * one is seen by the task.
3637 */
3638 if (state == PFM_CTX_MASKED) {
3639 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3640 /*
3641 * will prevent subsequent restart before this one is
3642 * seen by other task
3643 */
3644 ctx->ctx_fl_can_restart = 0;
3645 }
3646
3647 /*
3648 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3649 * the task is blocked or on its way to block. That's the normal
3650 * restart path. If the monitoring is not masked, then the task
3651 * can be actively monitoring and we cannot directly intervene.
3652 * Therefore we use the trap mechanism to catch the task and
3653 * force it to reset the buffer/reset PMDs.
3654 *
3655 * if non-blocking, then we ensure that the task will go into
3656 * pfm_handle_work() before returning to user mode.
3657 *
Simon Arlott72fdbdc2007-05-11 14:55:43 -07003658 * We cannot explicitly reset another task, it MUST always
Linus Torvalds1da177e2005-04-16 15:20:36 -07003659 * be done by the task itself. This works for system wide because
3660 * the tool that is controlling the session is logically doing
3661 * "self-monitoring".
3662 */
3663 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
Frans Pop04157e42010-02-06 18:47:10 +01003664 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
Jes Sorensen60f1c442006-01-18 23:46:52 -08003665 complete(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003666 } else {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003667 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668
3669 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3670
3671 PFM_SET_WORK_PENDING(task, 1);
3672
Shaohua Lif14488c2008-10-06 10:43:06 -07003673 set_notify_resume(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674
3675 /*
3676 * XXX: send reschedule if task runs on another CPU
3677 */
3678 }
3679 return 0;
3680}
3681
3682static int
3683pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684{
3685 unsigned int m = *(unsigned int *)arg;
3686
3687 pfm_sysctl.debug = m == 0 ? 0 : 1;
3688
Linus Torvalds1da177e2005-04-16 15:20:36 -07003689 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3690
3691 if (m == 0) {
3692 memset(pfm_stats, 0, sizeof(pfm_stats));
3693 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3694 }
3695 return 0;
3696}
3697
3698/*
3699 * arg can be NULL and count can be zero for this function
3700 */
3701static int
3702pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3703{
3704 struct thread_struct *thread = NULL;
3705 struct task_struct *task;
3706 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3707 unsigned long flags;
3708 dbreg_t dbreg;
3709 unsigned int rnum;
3710 int first_time;
3711 int ret = 0, state;
3712 int i, can_access_pmu = 0;
3713 int is_system, is_loaded;
3714
3715 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3716
3717 state = ctx->ctx_state;
3718 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3719 is_system = ctx->ctx_fl_system;
3720 task = ctx->ctx_task;
3721
3722 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3723
3724 /*
3725 * on both UP and SMP, we can only write to the PMC when the task is
3726 * the owner of the local PMU.
3727 */
3728 if (is_loaded) {
3729 thread = &task->thread;
3730 /*
3731 * In system wide and when the context is loaded, access can only happen
3732 * when the caller is running on the CPU being monitored by the session.
3733 * It does not have to be the owner (ctx_task) of the context per se.
3734 */
3735 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3736 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3737 return -EBUSY;
3738 }
3739 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3740 }
3741
3742 /*
3743 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3744 * ensuring that no real breakpoint can be installed via this call.
3745 *
3746 * IMPORTANT: regs can be NULL in this function
3747 */
3748
3749 first_time = ctx->ctx_fl_using_dbreg == 0;
3750
3751 /*
3752 * don't bother if we are loaded and task is being debugged
3753 */
3754 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003755 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003756 return -EBUSY;
3757 }
3758
3759 /*
3760 * check for debug registers in system wide mode
3761 *
3762 * If though a check is done in pfm_context_load(),
3763 * we must repeat it here, in case the registers are
3764 * written after the context is loaded
3765 */
3766 if (is_loaded) {
3767 LOCK_PFS(flags);
3768
3769 if (first_time && is_system) {
3770 if (pfm_sessions.pfs_ptrace_use_dbregs)
3771 ret = -EBUSY;
3772 else
3773 pfm_sessions.pfs_sys_use_dbregs++;
3774 }
3775 UNLOCK_PFS(flags);
3776 }
3777
3778 if (ret != 0) return ret;
3779
3780 /*
3781 * mark ourself as user of the debug registers for
3782 * perfmon purposes.
3783 */
3784 ctx->ctx_fl_using_dbreg = 1;
3785
3786 /*
3787 * clear hardware registers to make sure we don't
3788 * pick up stale state.
3789 *
3790 * for a system wide session, we do not use
3791 * thread.dbr, thread.ibr because this process
3792 * never leaves the current CPU and the state
3793 * is shared by all processes running on it
3794 */
3795 if (first_time && can_access_pmu) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003796 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797 for (i=0; i < pmu_conf->num_ibrs; i++) {
3798 ia64_set_ibr(i, 0UL);
3799 ia64_dv_serialize_instruction();
3800 }
3801 ia64_srlz_i();
3802 for (i=0; i < pmu_conf->num_dbrs; i++) {
3803 ia64_set_dbr(i, 0UL);
3804 ia64_dv_serialize_data();
3805 }
3806 ia64_srlz_d();
3807 }
3808
3809 /*
3810 * Now install the values into the registers
3811 */
3812 for (i = 0; i < count; i++, req++) {
3813
3814 rnum = req->dbreg_num;
3815 dbreg.val = req->dbreg_value;
3816
3817 ret = -EINVAL;
3818
3819 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3820 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3821 rnum, dbreg.val, mode, i, count));
3822
3823 goto abort_mission;
3824 }
3825
3826 /*
3827 * make sure we do not install enabled breakpoint
3828 */
3829 if (rnum & 0x1) {
3830 if (mode == PFM_CODE_RR)
3831 dbreg.ibr.ibr_x = 0;
3832 else
3833 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3834 }
3835
3836 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3837
3838 /*
3839 * Debug registers, just like PMC, can only be modified
3840 * by a kernel call. Moreover, perfmon() access to those
3841 * registers are centralized in this routine. The hardware
3842 * does not modify the value of these registers, therefore,
3843 * if we save them as they are written, we can avoid having
3844 * to save them on context switch out. This is made possible
3845 * by the fact that when perfmon uses debug registers, ptrace()
3846 * won't be able to modify them concurrently.
3847 */
3848 if (mode == PFM_CODE_RR) {
3849 CTX_USED_IBR(ctx, rnum);
3850
3851 if (can_access_pmu) {
3852 ia64_set_ibr(rnum, dbreg.val);
3853 ia64_dv_serialize_instruction();
3854 }
3855
3856 ctx->ctx_ibrs[rnum] = dbreg.val;
3857
3858 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3859 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3860 } else {
3861 CTX_USED_DBR(ctx, rnum);
3862
3863 if (can_access_pmu) {
3864 ia64_set_dbr(rnum, dbreg.val);
3865 ia64_dv_serialize_data();
3866 }
3867 ctx->ctx_dbrs[rnum] = dbreg.val;
3868
3869 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3870 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3871 }
3872 }
3873
3874 return 0;
3875
3876abort_mission:
3877 /*
3878 * in case it was our first attempt, we undo the global modifications
3879 */
3880 if (first_time) {
3881 LOCK_PFS(flags);
3882 if (ctx->ctx_fl_system) {
3883 pfm_sessions.pfs_sys_use_dbregs--;
3884 }
3885 UNLOCK_PFS(flags);
3886 ctx->ctx_fl_using_dbreg = 0;
3887 }
3888 /*
3889 * install error return flag
3890 */
3891 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3892
3893 return ret;
3894}
3895
3896static int
3897pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3898{
3899 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3900}
3901
3902static int
3903pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3904{
3905 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3906}
3907
3908int
3909pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3910{
3911 pfm_context_t *ctx;
3912
3913 if (req == NULL) return -EINVAL;
3914
3915 ctx = GET_PMU_CTX();
3916
3917 if (ctx == NULL) return -EINVAL;
3918
3919 /*
3920 * for now limit to current task, which is enough when calling
3921 * from overflow handler
3922 */
3923 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3924
3925 return pfm_write_ibrs(ctx, req, nreq, regs);
3926}
3927EXPORT_SYMBOL(pfm_mod_write_ibrs);
3928
3929int
3930pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931{
3932 pfm_context_t *ctx;
3933
3934 if (req == NULL) return -EINVAL;
3935
3936 ctx = GET_PMU_CTX();
3937
3938 if (ctx == NULL) return -EINVAL;
3939
3940 /*
3941 * for now limit to current task, which is enough when calling
3942 * from overflow handler
3943 */
3944 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945
3946 return pfm_write_dbrs(ctx, req, nreq, regs);
3947}
3948EXPORT_SYMBOL(pfm_mod_write_dbrs);
3949
3950
3951static int
3952pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3953{
3954 pfarg_features_t *req = (pfarg_features_t *)arg;
3955
3956 req->ft_version = PFM_VERSION;
3957 return 0;
3958}
3959
3960static int
3961pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3962{
3963 struct pt_regs *tregs;
3964 struct task_struct *task = PFM_CTX_TASK(ctx);
3965 int state, is_system;
3966
3967 state = ctx->ctx_state;
3968 is_system = ctx->ctx_fl_system;
3969
3970 /*
3971 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3972 */
3973 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3974
3975 /*
3976 * In system wide and when the context is loaded, access can only happen
3977 * when the caller is running on the CPU being monitored by the session.
3978 * It does not have to be the owner (ctx_task) of the context per se.
3979 */
3980 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3981 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3982 return -EBUSY;
3983 }
3984 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003985 task_pid_nr(PFM_CTX_TASK(ctx)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 state,
3987 is_system));
3988 /*
3989 * in system mode, we need to update the PMU directly
3990 * and the user level state of the caller, which may not
3991 * necessarily be the creator of the context.
3992 */
3993 if (is_system) {
3994 /*
3995 * Update local PMU first
3996 *
3997 * disable dcr pp
3998 */
3999 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4000 ia64_srlz_i();
4001
4002 /*
4003 * update local cpuinfo
4004 */
4005 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4006
4007 /*
4008 * stop monitoring, does srlz.i
4009 */
4010 pfm_clear_psr_pp();
4011
4012 /*
4013 * stop monitoring in the caller
4014 */
4015 ia64_psr(regs)->pp = 0;
4016
4017 return 0;
4018 }
4019 /*
4020 * per-task mode
4021 */
4022
4023 if (task == current) {
4024 /* stop monitoring at kernel level */
4025 pfm_clear_psr_up();
4026
4027 /*
4028 * stop monitoring at the user level
4029 */
4030 ia64_psr(regs)->up = 0;
4031 } else {
Al Viro64505782006-01-12 01:06:06 -08004032 tregs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004033
4034 /*
4035 * stop monitoring at the user level
4036 */
4037 ia64_psr(tregs)->up = 0;
4038
4039 /*
4040 * monitoring disabled in kernel at next reschedule
4041 */
4042 ctx->ctx_saved_psr_up = 0;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004043 DPRINT(("task=[%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004044 }
4045 return 0;
4046}
4047
4048
4049static int
4050pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4051{
4052 struct pt_regs *tregs;
4053 int state, is_system;
4054
4055 state = ctx->ctx_state;
4056 is_system = ctx->ctx_fl_system;
4057
4058 if (state != PFM_CTX_LOADED) return -EINVAL;
4059
4060 /*
4061 * In system wide and when the context is loaded, access can only happen
4062 * when the caller is running on the CPU being monitored by the session.
4063 * It does not have to be the owner (ctx_task) of the context per se.
4064 */
4065 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4066 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4067 return -EBUSY;
4068 }
4069
4070 /*
4071 * in system mode, we need to update the PMU directly
4072 * and the user level state of the caller, which may not
4073 * necessarily be the creator of the context.
4074 */
4075 if (is_system) {
4076
4077 /*
4078 * set user level psr.pp for the caller
4079 */
4080 ia64_psr(regs)->pp = 1;
4081
4082 /*
4083 * now update the local PMU and cpuinfo
4084 */
4085 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4086
4087 /*
4088 * start monitoring at kernel level
4089 */
4090 pfm_set_psr_pp();
4091
4092 /* enable dcr pp */
4093 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4094 ia64_srlz_i();
4095
4096 return 0;
4097 }
4098
4099 /*
4100 * per-process mode
4101 */
4102
4103 if (ctx->ctx_task == current) {
4104
4105 /* start monitoring at kernel level */
4106 pfm_set_psr_up();
4107
4108 /*
4109 * activate monitoring at user level
4110 */
4111 ia64_psr(regs)->up = 1;
4112
4113 } else {
Al Viro64505782006-01-12 01:06:06 -08004114 tregs = task_pt_regs(ctx->ctx_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004115
4116 /*
4117 * start monitoring at the kernel level the next
4118 * time the task is scheduled
4119 */
4120 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4121
4122 /*
4123 * activate monitoring at user level
4124 */
4125 ia64_psr(tregs)->up = 1;
4126 }
4127 return 0;
4128}
4129
4130static int
4131pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4132{
4133 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4134 unsigned int cnum;
4135 int i;
4136 int ret = -EINVAL;
4137
4138 for (i = 0; i < count; i++, req++) {
4139
4140 cnum = req->reg_num;
4141
4142 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4143
4144 req->reg_value = PMC_DFL_VAL(cnum);
4145
4146 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4147
4148 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4149 }
4150 return 0;
4151
4152abort_mission:
4153 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4154 return ret;
4155}
4156
4157static int
4158pfm_check_task_exist(pfm_context_t *ctx)
4159{
4160 struct task_struct *g, *t;
4161 int ret = -ESRCH;
4162
4163 read_lock(&tasklist_lock);
4164
4165 do_each_thread (g, t) {
4166 if (t->thread.pfm_context == ctx) {
4167 ret = 0;
Li Zefan6794c752008-04-01 12:29:34 +08004168 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169 }
4170 } while_each_thread (g, t);
Li Zefan6794c752008-04-01 12:29:34 +08004171out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004172 read_unlock(&tasklist_lock);
4173
4174 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4175
4176 return ret;
4177}
4178
4179static int
4180pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4181{
4182 struct task_struct *task;
4183 struct thread_struct *thread;
4184 struct pfm_context_t *old;
4185 unsigned long flags;
4186#ifndef CONFIG_SMP
4187 struct task_struct *owner_task = NULL;
4188#endif
4189 pfarg_load_t *req = (pfarg_load_t *)arg;
4190 unsigned long *pmcs_source, *pmds_source;
4191 int the_cpu;
4192 int ret = 0;
4193 int state, is_system, set_dbregs = 0;
4194
4195 state = ctx->ctx_state;
4196 is_system = ctx->ctx_fl_system;
4197 /*
4198 * can only load from unloaded or terminated state
4199 */
4200 if (state != PFM_CTX_UNLOADED) {
4201 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4202 req->load_pid,
4203 ctx->ctx_state));
stephane eraniana5a70b72005-04-18 11:42:00 -07004204 return -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205 }
4206
4207 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4208
4209 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4210 DPRINT(("cannot use blocking mode on self\n"));
4211 return -EINVAL;
4212 }
4213
4214 ret = pfm_get_task(ctx, req->load_pid, &task);
4215 if (ret) {
4216 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4217 return ret;
4218 }
4219
4220 ret = -EINVAL;
4221
4222 /*
4223 * system wide is self monitoring only
4224 */
4225 if (is_system && task != current) {
4226 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4227 req->load_pid));
4228 goto error;
4229 }
4230
4231 thread = &task->thread;
4232
4233 ret = 0;
4234 /*
4235 * cannot load a context which is using range restrictions,
4236 * into a task that is being debugged.
4237 */
4238 if (ctx->ctx_fl_using_dbreg) {
4239 if (thread->flags & IA64_THREAD_DBG_VALID) {
4240 ret = -EBUSY;
4241 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4242 goto error;
4243 }
4244 LOCK_PFS(flags);
4245
4246 if (is_system) {
4247 if (pfm_sessions.pfs_ptrace_use_dbregs) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004248 DPRINT(("cannot load [%d] dbregs in use\n",
4249 task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004250 ret = -EBUSY;
4251 } else {
4252 pfm_sessions.pfs_sys_use_dbregs++;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004253 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254 set_dbregs = 1;
4255 }
4256 }
4257
4258 UNLOCK_PFS(flags);
4259
4260 if (ret) goto error;
4261 }
4262
4263 /*
4264 * SMP system-wide monitoring implies self-monitoring.
4265 *
4266 * The programming model expects the task to
4267 * be pinned on a CPU throughout the session.
4268 * Here we take note of the current CPU at the
4269 * time the context is loaded. No call from
4270 * another CPU will be allowed.
4271 *
4272 * The pinning via shed_setaffinity()
4273 * must be done by the calling task prior
4274 * to this call.
4275 *
4276 * systemwide: keep track of CPU this session is supposed to run on
4277 */
4278 the_cpu = ctx->ctx_cpu = smp_processor_id();
4279
4280 ret = -EBUSY;
4281 /*
4282 * now reserve the session
4283 */
4284 ret = pfm_reserve_session(current, is_system, the_cpu);
4285 if (ret) goto error;
4286
4287 /*
4288 * task is necessarily stopped at this point.
4289 *
4290 * If the previous context was zombie, then it got removed in
4291 * pfm_save_regs(). Therefore we should not see it here.
4292 * If we see a context, then this is an active context
4293 *
4294 * XXX: needs to be atomic
4295 */
4296 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4297 thread->pfm_context, ctx));
4298
stephane.eranian@hp.com6bf11e82005-07-28 05:18:00 -07004299 ret = -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004300 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4301 if (old != NULL) {
4302 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4303 goto error_unres;
4304 }
4305
4306 pfm_reset_msgq(ctx);
4307
4308 ctx->ctx_state = PFM_CTX_LOADED;
4309
4310 /*
4311 * link context to task
4312 */
4313 ctx->ctx_task = task;
4314
4315 if (is_system) {
4316 /*
4317 * we load as stopped
4318 */
4319 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4320 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4321
4322 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4323 } else {
4324 thread->flags |= IA64_THREAD_PM_VALID;
4325 }
4326
4327 /*
4328 * propagate into thread-state
4329 */
4330 pfm_copy_pmds(task, ctx);
4331 pfm_copy_pmcs(task, ctx);
4332
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07004333 pmcs_source = ctx->th_pmcs;
4334 pmds_source = ctx->th_pmds;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004335
4336 /*
4337 * always the case for system-wide
4338 */
4339 if (task == current) {
4340
4341 if (is_system == 0) {
4342
4343 /* allow user level control */
4344 ia64_psr(regs)->sp = 0;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004345 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004346
4347 SET_LAST_CPU(ctx, smp_processor_id());
4348 INC_ACTIVATION();
4349 SET_ACTIVATION(ctx);
4350#ifndef CONFIG_SMP
4351 /*
4352 * push the other task out, if any
4353 */
4354 owner_task = GET_PMU_OWNER();
4355 if (owner_task) pfm_lazy_save_regs(owner_task);
4356#endif
4357 }
4358 /*
4359 * load all PMD from ctx to PMU (as opposed to thread state)
4360 * restore all PMC from ctx to PMU
4361 */
4362 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4363 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4364
4365 ctx->ctx_reload_pmcs[0] = 0UL;
4366 ctx->ctx_reload_pmds[0] = 0UL;
4367
4368 /*
4369 * guaranteed safe by earlier check against DBG_VALID
4370 */
4371 if (ctx->ctx_fl_using_dbreg) {
4372 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4373 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4374 }
4375 /*
4376 * set new ownership
4377 */
4378 SET_PMU_OWNER(task, ctx);
4379
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004380 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004381 } else {
4382 /*
4383 * when not current, task MUST be stopped, so this is safe
4384 */
Al Viro64505782006-01-12 01:06:06 -08004385 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004386
4387 /* force a full reload */
4388 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4389 SET_LAST_CPU(ctx, -1);
4390
4391 /* initial saved psr (stopped) */
4392 ctx->ctx_saved_psr_up = 0UL;
4393 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4394 }
4395
4396 ret = 0;
4397
4398error_unres:
4399 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4400error:
4401 /*
4402 * we must undo the dbregs setting (for system-wide)
4403 */
4404 if (ret && set_dbregs) {
4405 LOCK_PFS(flags);
4406 pfm_sessions.pfs_sys_use_dbregs--;
4407 UNLOCK_PFS(flags);
4408 }
4409 /*
4410 * release task, there is now a link with the context
4411 */
4412 if (is_system == 0 && task != current) {
4413 pfm_put_task(task);
4414
4415 if (ret == 0) {
4416 ret = pfm_check_task_exist(ctx);
4417 if (ret) {
4418 ctx->ctx_state = PFM_CTX_UNLOADED;
4419 ctx->ctx_task = NULL;
4420 }
4421 }
4422 }
4423 return ret;
4424}
4425
4426/*
4427 * in this function, we do not need to increase the use count
4428 * for the task via get_task_struct(), because we hold the
4429 * context lock. If the task were to disappear while having
4430 * a context attached, it would go through pfm_exit_thread()
4431 * which also grabs the context lock and would therefore be blocked
4432 * until we are here.
4433 */
4434static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4435
4436static int
4437pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4438{
4439 struct task_struct *task = PFM_CTX_TASK(ctx);
4440 struct pt_regs *tregs;
4441 int prev_state, is_system;
4442 int ret;
4443
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004444 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004445
4446 prev_state = ctx->ctx_state;
4447 is_system = ctx->ctx_fl_system;
4448
4449 /*
4450 * unload only when necessary
4451 */
4452 if (prev_state == PFM_CTX_UNLOADED) {
4453 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4454 return 0;
4455 }
4456
4457 /*
4458 * clear psr and dcr bits
4459 */
4460 ret = pfm_stop(ctx, NULL, 0, regs);
4461 if (ret) return ret;
4462
4463 ctx->ctx_state = PFM_CTX_UNLOADED;
4464
4465 /*
4466 * in system mode, we need to update the PMU directly
4467 * and the user level state of the caller, which may not
4468 * necessarily be the creator of the context.
4469 */
4470 if (is_system) {
4471
4472 /*
4473 * Update cpuinfo
4474 *
4475 * local PMU is taken care of in pfm_stop()
4476 */
4477 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4478 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4479
4480 /*
4481 * save PMDs in context
4482 * release ownership
4483 */
4484 pfm_flush_pmds(current, ctx);
4485
4486 /*
4487 * at this point we are done with the PMU
4488 * so we can unreserve the resource.
4489 */
4490 if (prev_state != PFM_CTX_ZOMBIE)
4491 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4492
4493 /*
4494 * disconnect context from task
4495 */
4496 task->thread.pfm_context = NULL;
4497 /*
4498 * disconnect task from context
4499 */
4500 ctx->ctx_task = NULL;
4501
4502 /*
4503 * There is nothing more to cleanup here.
4504 */
4505 return 0;
4506 }
4507
4508 /*
4509 * per-task mode
4510 */
Al Viro64505782006-01-12 01:06:06 -08004511 tregs = task == current ? regs : task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004512
4513 if (task == current) {
4514 /*
4515 * cancel user level control
4516 */
4517 ia64_psr(regs)->sp = 1;
4518
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004519 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520 }
4521 /*
4522 * save PMDs to context
4523 * release ownership
4524 */
4525 pfm_flush_pmds(task, ctx);
4526
4527 /*
4528 * at this point we are done with the PMU
4529 * so we can unreserve the resource.
4530 *
4531 * when state was ZOMBIE, we have already unreserved.
4532 */
4533 if (prev_state != PFM_CTX_ZOMBIE)
4534 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4535
4536 /*
4537 * reset activation counter and psr
4538 */
4539 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4540 SET_LAST_CPU(ctx, -1);
4541
4542 /*
4543 * PMU state will not be restored
4544 */
4545 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4546
4547 /*
4548 * break links between context and task
4549 */
4550 task->thread.pfm_context = NULL;
4551 ctx->ctx_task = NULL;
4552
4553 PFM_SET_WORK_PENDING(task, 0);
4554
4555 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4556 ctx->ctx_fl_can_restart = 0;
4557 ctx->ctx_fl_going_zombie = 0;
4558
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004559 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004560
4561 return 0;
4562}
4563
4564
4565/*
4566 * called only from exit_thread(): task == current
4567 * we come here only if current has a context attached (loaded or masked)
4568 */
4569void
4570pfm_exit_thread(struct task_struct *task)
4571{
4572 pfm_context_t *ctx;
4573 unsigned long flags;
Al Viro64505782006-01-12 01:06:06 -08004574 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004575 int ret, state;
4576 int free_ok = 0;
4577
4578 ctx = PFM_GET_CTX(task);
4579
4580 PROTECT_CTX(ctx, flags);
4581
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004582 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583
4584 state = ctx->ctx_state;
4585 switch(state) {
4586 case PFM_CTX_UNLOADED:
4587 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07004588 * only comes to this function if pfm_context is not NULL, i.e., cannot
Linus Torvalds1da177e2005-04-16 15:20:36 -07004589 * be in unloaded state
4590 */
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004591 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004592 break;
4593 case PFM_CTX_LOADED:
4594 case PFM_CTX_MASKED:
4595 ret = pfm_context_unload(ctx, NULL, 0, regs);
4596 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004597 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004598 }
4599 DPRINT(("ctx unloaded for current state was %d\n", state));
4600
4601 pfm_end_notify_user(ctx);
4602 break;
4603 case PFM_CTX_ZOMBIE:
4604 ret = pfm_context_unload(ctx, NULL, 0, regs);
4605 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004606 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004607 }
4608 free_ok = 1;
4609 break;
4610 default:
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004611 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612 break;
4613 }
4614 UNPROTECT_CTX(ctx, flags);
4615
4616 { u64 psr = pfm_get_psr();
4617 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4618 BUG_ON(GET_PMU_OWNER());
4619 BUG_ON(ia64_psr(regs)->up);
4620 BUG_ON(ia64_psr(regs)->pp);
4621 }
4622
4623 /*
4624 * All memory free operations (especially for vmalloc'ed memory)
4625 * MUST be done with interrupts ENABLED.
4626 */
4627 if (free_ok) pfm_context_free(ctx);
4628}
4629
4630/*
4631 * functions MUST be listed in the increasing order of their index (see permfon.h)
4632 */
4633#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4634#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4635#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4636#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4637#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4638
4639static pfm_cmd_desc_t pfm_cmd_tab[]={
4640/* 0 */PFM_CMD_NONE,
4641/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4642/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4643/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4644/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4645/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4646/* 6 */PFM_CMD_NONE,
4647/* 7 */PFM_CMD_NONE,
4648/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4649/* 9 */PFM_CMD_NONE,
4650/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4651/* 11 */PFM_CMD_NONE,
4652/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4653/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4654/* 14 */PFM_CMD_NONE,
4655/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4656/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4657/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4658/* 18 */PFM_CMD_NONE,
4659/* 19 */PFM_CMD_NONE,
4660/* 20 */PFM_CMD_NONE,
4661/* 21 */PFM_CMD_NONE,
4662/* 22 */PFM_CMD_NONE,
4663/* 23 */PFM_CMD_NONE,
4664/* 24 */PFM_CMD_NONE,
4665/* 25 */PFM_CMD_NONE,
4666/* 26 */PFM_CMD_NONE,
4667/* 27 */PFM_CMD_NONE,
4668/* 28 */PFM_CMD_NONE,
4669/* 29 */PFM_CMD_NONE,
4670/* 30 */PFM_CMD_NONE,
4671/* 31 */PFM_CMD_NONE,
4672/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4673/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4674};
4675#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4676
4677static int
4678pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4679{
4680 struct task_struct *task;
4681 int state, old_state;
4682
4683recheck:
4684 state = ctx->ctx_state;
4685 task = ctx->ctx_task;
4686
4687 if (task == NULL) {
4688 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4689 return 0;
4690 }
4691
4692 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4693 ctx->ctx_fd,
4694 state,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004695 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07004696 task->state, PFM_CMD_STOPPED(cmd)));
4697
4698 /*
4699 * self-monitoring always ok.
4700 *
4701 * for system-wide the caller can either be the creator of the
4702 * context (to one to which the context is attached to) OR
4703 * a task running on the same CPU as the session.
4704 */
4705 if (task == current || ctx->ctx_fl_system) return 0;
4706
4707 /*
stephane eraniana5a70b72005-04-18 11:42:00 -07004708 * we are monitoring another thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 */
stephane eraniana5a70b72005-04-18 11:42:00 -07004710 switch(state) {
4711 case PFM_CTX_UNLOADED:
4712 /*
4713 * if context is UNLOADED we are safe to go
4714 */
4715 return 0;
4716 case PFM_CTX_ZOMBIE:
4717 /*
4718 * no command can operate on a zombie context
4719 */
4720 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4721 return -EINVAL;
4722 case PFM_CTX_MASKED:
4723 /*
4724 * PMU state has been saved to software even though
4725 * the thread may still be running.
4726 */
4727 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004728 }
4729
4730 /*
4731 * context is LOADED or MASKED. Some commands may need to have
4732 * the task stopped.
4733 *
4734 * We could lift this restriction for UP but it would mean that
4735 * the user has no guarantee the task would not run between
4736 * two successive calls to perfmonctl(). That's probably OK.
4737 * If this user wants to ensure the task does not run, then
4738 * the task must be stopped.
4739 */
4740 if (PFM_CMD_STOPPED(cmd)) {
Matthew Wilcox21498222007-12-06 11:02:55 -05004741 if (!task_is_stopped_or_traced(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004742 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004743 return -EBUSY;
4744 }
4745 /*
4746 * task is now stopped, wait for ctxsw out
4747 *
4748 * This is an interesting point in the code.
4749 * We need to unprotect the context because
4750 * the pfm_save_regs() routines needs to grab
4751 * the same lock. There are danger in doing
4752 * this because it leaves a window open for
4753 * another task to get access to the context
4754 * and possibly change its state. The one thing
4755 * that is not possible is for the context to disappear
4756 * because we are protected by the VFS layer, i.e.,
4757 * get_fd()/put_fd().
4758 */
4759 old_state = state;
4760
4761 UNPROTECT_CTX(ctx, flags);
4762
Roland McGrath85ba2d82008-07-25 19:45:58 -07004763 wait_task_inactive(task, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004764
4765 PROTECT_CTX(ctx, flags);
4766
4767 /*
4768 * we must recheck to verify if state has changed
4769 */
4770 if (ctx->ctx_state != old_state) {
4771 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4772 goto recheck;
4773 }
4774 }
4775 return 0;
4776}
4777
4778/*
4779 * system-call entry point (must return long)
4780 */
4781asmlinkage long
4782sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4783{
Al Viro2903ff02012-08-28 12:52:22 -04004784 struct fd f = {NULL, 0};
Linus Torvalds1da177e2005-04-16 15:20:36 -07004785 pfm_context_t *ctx = NULL;
4786 unsigned long flags = 0UL;
4787 void *args_k = NULL;
4788 long ret; /* will expand int return types */
4789 size_t base_sz, sz, xtra_sz = 0;
4790 int narg, completed_args = 0, call_made = 0, cmd_flags;
4791 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4792 int (*getsize)(void *arg, size_t *sz);
4793#define PFM_MAX_ARGSIZE 4096
4794
4795 /*
4796 * reject any call if perfmon was disabled at initialization
4797 */
4798 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4799
4800 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4801 DPRINT(("invalid cmd=%d\n", cmd));
4802 return -EINVAL;
4803 }
4804
4805 func = pfm_cmd_tab[cmd].cmd_func;
4806 narg = pfm_cmd_tab[cmd].cmd_narg;
4807 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4808 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4809 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4810
4811 if (unlikely(func == NULL)) {
4812 DPRINT(("invalid cmd=%d\n", cmd));
4813 return -EINVAL;
4814 }
4815
4816 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4817 PFM_CMD_NAME(cmd),
4818 cmd,
4819 narg,
4820 base_sz,
4821 count));
4822
4823 /*
4824 * check if number of arguments matches what the command expects
4825 */
4826 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4827 return -EINVAL;
4828
4829restart_args:
4830 sz = xtra_sz + base_sz*count;
4831 /*
4832 * limit abuse to min page size
4833 */
4834 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004835 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004836 return -E2BIG;
4837 }
4838
4839 /*
4840 * allocate default-sized argument buffer
4841 */
4842 if (likely(count && args_k == NULL)) {
4843 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4844 if (args_k == NULL) return -ENOMEM;
4845 }
4846
4847 ret = -EFAULT;
4848
4849 /*
4850 * copy arguments
4851 *
4852 * assume sz = 0 for command without parameters
4853 */
4854 if (sz && copy_from_user(args_k, arg, sz)) {
4855 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4856 goto error_args;
4857 }
4858
4859 /*
4860 * check if command supports extra parameters
4861 */
4862 if (completed_args == 0 && getsize) {
4863 /*
4864 * get extra parameters size (based on main argument)
4865 */
4866 ret = (*getsize)(args_k, &xtra_sz);
4867 if (ret) goto error_args;
4868
4869 completed_args = 1;
4870
4871 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4872
4873 /* retry if necessary */
4874 if (likely(xtra_sz)) goto restart_args;
4875 }
4876
4877 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4878
4879 ret = -EBADF;
4880
Al Viro2903ff02012-08-28 12:52:22 -04004881 f = fdget(fd);
4882 if (unlikely(f.file == NULL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004883 DPRINT(("invalid fd %d\n", fd));
4884 goto error_args;
4885 }
Al Viro2903ff02012-08-28 12:52:22 -04004886 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887 DPRINT(("fd %d not related to perfmon\n", fd));
4888 goto error_args;
4889 }
4890
Al Viro2903ff02012-08-28 12:52:22 -04004891 ctx = f.file->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004892 if (unlikely(ctx == NULL)) {
4893 DPRINT(("no context for fd %d\n", fd));
4894 goto error_args;
4895 }
4896 prefetch(&ctx->ctx_state);
4897
4898 PROTECT_CTX(ctx, flags);
4899
4900 /*
4901 * check task is stopped
4902 */
4903 ret = pfm_check_task_state(ctx, cmd, flags);
4904 if (unlikely(ret)) goto abort_locked;
4905
4906skip_fd:
Al Viro64505782006-01-12 01:06:06 -08004907 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004908
4909 call_made = 1;
4910
4911abort_locked:
4912 if (likely(ctx)) {
4913 DPRINT(("context unlocked\n"));
4914 UNPROTECT_CTX(ctx, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004915 }
4916
4917 /* copy argument back to user, if needed */
4918 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4919
4920error_args:
Al Viro2903ff02012-08-28 12:52:22 -04004921 if (f.file)
4922 fdput(f);
Stephane Eranianb8444d02006-08-25 14:00:19 -07004923
Jesper Juhlb2325fe2005-11-07 01:01:35 -08004924 kfree(args_k);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925
4926 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4927
4928 return ret;
4929}
4930
4931static void
4932pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4933{
4934 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4935 pfm_ovfl_ctrl_t rst_ctrl;
4936 int state;
4937 int ret = 0;
4938
4939 state = ctx->ctx_state;
4940 /*
4941 * Unlock sampling buffer and reset index atomically
4942 * XXX: not really needed when blocking
4943 */
4944 if (CTX_HAS_SMPL(ctx)) {
4945
4946 rst_ctrl.bits.mask_monitoring = 0;
4947 rst_ctrl.bits.reset_ovfl_pmds = 0;
4948
4949 if (state == PFM_CTX_LOADED)
4950 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4951 else
4952 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4953 } else {
4954 rst_ctrl.bits.mask_monitoring = 0;
4955 rst_ctrl.bits.reset_ovfl_pmds = 1;
4956 }
4957
4958 if (ret == 0) {
4959 if (rst_ctrl.bits.reset_ovfl_pmds) {
4960 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4961 }
4962 if (rst_ctrl.bits.mask_monitoring == 0) {
4963 DPRINT(("resuming monitoring\n"));
4964 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4965 } else {
4966 DPRINT(("stopping monitoring\n"));
4967 //pfm_stop_monitoring(current, regs);
4968 }
4969 ctx->ctx_state = PFM_CTX_LOADED;
4970 }
4971}
4972
4973/*
4974 * context MUST BE LOCKED when calling
4975 * can only be called for current
4976 */
4977static void
4978pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4979{
4980 int ret;
4981
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004982 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004983
4984 ret = pfm_context_unload(ctx, NULL, 0, regs);
4985 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004986 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004987 }
4988
4989 /*
4990 * and wakeup controlling task, indicating we are now disconnected
4991 */
4992 wake_up_interruptible(&ctx->ctx_zombieq);
4993
4994 /*
4995 * given that context is still locked, the controlling
4996 * task will only get access when we return from
4997 * pfm_handle_work().
4998 */
4999}
5000
5001static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005002
Stephane Eranian49449302005-04-25 13:08:30 -07005003 /*
5004 * pfm_handle_work() can be called with interrupts enabled
5005 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5006 * call may sleep, therefore we must re-enable interrupts
5007 * to avoid deadlocks. It is safe to do so because this function
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005008 * is called ONLY when returning to user level (pUStk=1), in which case
Stephane Eranian49449302005-04-25 13:08:30 -07005009 * there is no risk of kernel stack overflow due to deep
5010 * interrupt nesting.
5011 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005012void
5013pfm_handle_work(void)
5014{
5015 pfm_context_t *ctx;
5016 struct pt_regs *regs;
Stephane Eranian49449302005-04-25 13:08:30 -07005017 unsigned long flags, dummy_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005018 unsigned long ovfl_regs;
5019 unsigned int reason;
5020 int ret;
5021
5022 ctx = PFM_GET_CTX(current);
5023 if (ctx == NULL) {
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005024 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5025 task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005026 return;
5027 }
5028
5029 PROTECT_CTX(ctx, flags);
5030
5031 PFM_SET_WORK_PENDING(current, 0);
5032
Al Viro64505782006-01-12 01:06:06 -08005033 regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005034
5035 /*
5036 * extract reason for being here and clear
5037 */
5038 reason = ctx->ctx_fl_trap_reason;
5039 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5040 ovfl_regs = ctx->ctx_ovfl_regs[0];
5041
5042 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5043
5044 /*
5045 * must be done before we check for simple-reset mode
5046 */
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005047 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5048 goto do_zombie;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005049
5050 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005051 if (reason == PFM_TRAP_REASON_RESET)
5052 goto skip_blocking;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005053
Stephane Eranian49449302005-04-25 13:08:30 -07005054 /*
5055 * restore interrupt mask to what it was on entry.
5056 * Could be enabled/diasbled.
5057 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005058 UNPROTECT_CTX(ctx, flags);
5059
Stephane Eranian49449302005-04-25 13:08:30 -07005060 /*
5061 * force interrupt enable because of down_interruptible()
5062 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063 local_irq_enable();
5064
5065 DPRINT(("before block sleeping\n"));
5066
5067 /*
5068 * may go through without blocking on SMP systems
5069 * if restart has been received already by the time we call down()
5070 */
Jes Sorensen60f1c442006-01-18 23:46:52 -08005071 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072
5073 DPRINT(("after block sleeping ret=%d\n", ret));
5074
5075 /*
Stephane Eranian49449302005-04-25 13:08:30 -07005076 * lock context and mask interrupts again
5077 * We save flags into a dummy because we may have
5078 * altered interrupts mask compared to entry in this
5079 * function.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005080 */
Stephane Eranian49449302005-04-25 13:08:30 -07005081 PROTECT_CTX(ctx, dummy_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005082
5083 /*
5084 * we need to read the ovfl_regs only after wake-up
5085 * because we may have had pfm_write_pmds() in between
5086 * and that can changed PMD values and therefore
5087 * ovfl_regs is reset for these new PMD values.
5088 */
5089 ovfl_regs = ctx->ctx_ovfl_regs[0];
5090
5091 if (ctx->ctx_fl_going_zombie) {
5092do_zombie:
5093 DPRINT(("context is zombie, bailing out\n"));
5094 pfm_context_force_terminate(ctx, regs);
5095 goto nothing_to_do;
5096 }
5097 /*
5098 * in case of interruption of down() we don't restart anything
5099 */
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005100 if (ret < 0)
5101 goto nothing_to_do;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102
5103skip_blocking:
5104 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5105 ctx->ctx_ovfl_regs[0] = 0UL;
5106
5107nothing_to_do:
Stephane Eranian49449302005-04-25 13:08:30 -07005108 /*
5109 * restore flags as they were upon entry
5110 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005111 UNPROTECT_CTX(ctx, flags);
5112}
5113
5114static int
5115pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5116{
5117 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5118 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5119 return 0;
5120 }
5121
5122 DPRINT(("waking up somebody\n"));
5123
5124 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5125
5126 /*
5127 * safe, we are not in intr handler, nor in ctxsw when
5128 * we come here
5129 */
5130 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5131
5132 return 0;
5133}
5134
5135static int
5136pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5137{
5138 pfm_msg_t *msg = NULL;
5139
5140 if (ctx->ctx_fl_no_msg == 0) {
5141 msg = pfm_get_new_msg(ctx);
5142 if (msg == NULL) {
5143 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5144 return -1;
5145 }
5146
5147 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5148 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5149 msg->pfm_ovfl_msg.msg_active_set = 0;
5150 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5151 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5152 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5153 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5154 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5155 }
5156
5157 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5158 msg,
5159 ctx->ctx_fl_no_msg,
5160 ctx->ctx_fd,
5161 ovfl_pmds));
5162
5163 return pfm_notify_user(ctx, msg);
5164}
5165
5166static int
5167pfm_end_notify_user(pfm_context_t *ctx)
5168{
5169 pfm_msg_t *msg;
5170
5171 msg = pfm_get_new_msg(ctx);
5172 if (msg == NULL) {
5173 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5174 return -1;
5175 }
5176 /* no leak */
5177 memset(msg, 0, sizeof(*msg));
5178
5179 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5180 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5181 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5182
5183 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5184 msg,
5185 ctx->ctx_fl_no_msg,
5186 ctx->ctx_fd));
5187
5188 return pfm_notify_user(ctx, msg);
5189}
5190
5191/*
5192 * main overflow processing routine.
Simon Arlott72fdbdc2007-05-11 14:55:43 -07005193 * it can be called from the interrupt path or explicitly during the context switch code
Linus Torvalds1da177e2005-04-16 15:20:36 -07005194 */
Matthew Wilcoxe088a4a2009-05-22 13:49:49 -07005195static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5196 unsigned long pmc0, struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005197{
5198 pfm_ovfl_arg_t *ovfl_arg;
5199 unsigned long mask;
5200 unsigned long old_val, ovfl_val, new_val;
5201 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5202 unsigned long tstamp;
5203 pfm_ovfl_ctrl_t ovfl_ctrl;
5204 unsigned int i, has_smpl;
5205 int must_notify = 0;
5206
5207 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5208
5209 /*
5210 * sanity test. Should never happen
5211 */
5212 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5213
5214 tstamp = ia64_get_itc();
5215 mask = pmc0 >> PMU_FIRST_COUNTER;
5216 ovfl_val = pmu_conf->ovfl_val;
5217 has_smpl = CTX_HAS_SMPL(ctx);
5218
5219 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5220 "used_pmds=0x%lx\n",
5221 pmc0,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005222 task ? task_pid_nr(task): -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005223 (regs ? regs->cr_iip : 0),
5224 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5225 ctx->ctx_used_pmds[0]));
5226
5227
5228 /*
5229 * first we update the virtual counters
5230 * assume there was a prior ia64_srlz_d() issued
5231 */
5232 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5233
5234 /* skip pmd which did not overflow */
5235 if ((mask & 0x1) == 0) continue;
5236
5237 /*
5238 * Note that the pmd is not necessarily 0 at this point as qualified events
5239 * may have happened before the PMU was frozen. The residual count is not
5240 * taken into consideration here but will be with any read of the pmd via
5241 * pfm_read_pmds().
5242 */
5243 old_val = new_val = ctx->ctx_pmds[i].val;
5244 new_val += 1 + ovfl_val;
5245 ctx->ctx_pmds[i].val = new_val;
5246
5247 /*
5248 * check for overflow condition
5249 */
5250 if (likely(old_val > new_val)) {
5251 ovfl_pmds |= 1UL << i;
5252 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5253 }
5254
5255 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5256 i,
5257 new_val,
5258 old_val,
5259 ia64_get_pmd(i) & ovfl_val,
5260 ovfl_pmds,
5261 ovfl_notify));
5262 }
5263
5264 /*
5265 * there was no 64-bit overflow, nothing else to do
5266 */
5267 if (ovfl_pmds == 0UL) return;
5268
5269 /*
5270 * reset all control bits
5271 */
5272 ovfl_ctrl.val = 0;
5273 reset_pmds = 0UL;
5274
5275 /*
5276 * if a sampling format module exists, then we "cache" the overflow by
5277 * calling the module's handler() routine.
5278 */
5279 if (has_smpl) {
5280 unsigned long start_cycles, end_cycles;
5281 unsigned long pmd_mask;
5282 int j, k, ret = 0;
5283 int this_cpu = smp_processor_id();
5284
5285 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5286 ovfl_arg = &ctx->ctx_ovfl_arg;
5287
5288 prefetch(ctx->ctx_smpl_hdr);
5289
5290 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5291
5292 mask = 1UL << i;
5293
5294 if ((pmd_mask & 0x1) == 0) continue;
5295
5296 ovfl_arg->ovfl_pmd = (unsigned char )i;
5297 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5298 ovfl_arg->active_set = 0;
5299 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5300 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5301
5302 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5303 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5304 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5305
5306 /*
5307 * copy values of pmds of interest. Sampling format may copy them
5308 * into sampling buffer.
5309 */
5310 if (smpl_pmds) {
5311 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5312 if ((smpl_pmds & 0x1) == 0) continue;
5313 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5314 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5315 }
5316 }
5317
5318 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5319
5320 start_cycles = ia64_get_itc();
5321
5322 /*
5323 * call custom buffer format record (handler) routine
5324 */
5325 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5326
5327 end_cycles = ia64_get_itc();
5328
5329 /*
5330 * For those controls, we take the union because they have
5331 * an all or nothing behavior.
5332 */
5333 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5334 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5335 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5336 /*
5337 * build the bitmask of pmds to reset now
5338 */
5339 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5340
5341 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5342 }
5343 /*
5344 * when the module cannot handle the rest of the overflows, we abort right here
5345 */
5346 if (ret && pmd_mask) {
5347 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5348 pmd_mask<<PMU_FIRST_COUNTER));
5349 }
5350 /*
5351 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5352 */
5353 ovfl_pmds &= ~reset_pmds;
5354 } else {
5355 /*
5356 * when no sampling module is used, then the default
5357 * is to notify on overflow if requested by user
5358 */
5359 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5360 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5361 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5362 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5363 /*
5364 * if needed, we reset all overflowed pmds
5365 */
5366 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5367 }
5368
5369 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5370
5371 /*
5372 * reset the requested PMD registers using the short reset values
5373 */
5374 if (reset_pmds) {
5375 unsigned long bm = reset_pmds;
5376 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5377 }
5378
5379 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5380 /*
5381 * keep track of what to reset when unblocking
5382 */
5383 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5384
5385 /*
5386 * check for blocking context
5387 */
5388 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5389
5390 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5391
5392 /*
5393 * set the perfmon specific checking pending work for the task
5394 */
5395 PFM_SET_WORK_PENDING(task, 1);
5396
5397 /*
5398 * when coming from ctxsw, current still points to the
5399 * previous task, therefore we must work with task and not current.
5400 */
Shaohua Lif14488c2008-10-06 10:43:06 -07005401 set_notify_resume(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005402 }
5403 /*
5404 * defer until state is changed (shorten spin window). the context is locked
5405 * anyway, so the signal receiver would come spin for nothing.
5406 */
5407 must_notify = 1;
5408 }
5409
5410 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005411 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005412 PFM_GET_WORK_PENDING(task),
5413 ctx->ctx_fl_trap_reason,
5414 ovfl_pmds,
5415 ovfl_notify,
5416 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5417 /*
5418 * in case monitoring must be stopped, we toggle the psr bits
5419 */
5420 if (ovfl_ctrl.bits.mask_monitoring) {
5421 pfm_mask_monitoring(task);
5422 ctx->ctx_state = PFM_CTX_MASKED;
5423 ctx->ctx_fl_can_restart = 1;
5424 }
5425
5426 /*
5427 * send notification now
5428 */
5429 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5430
5431 return;
5432
5433sanity_check:
5434 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5435 smp_processor_id(),
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005436 task ? task_pid_nr(task) : -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005437 pmc0);
5438 return;
5439
5440stop_monitoring:
5441 /*
5442 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5443 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5444 * come here as zombie only if the task is the current task. In which case, we
5445 * can access the PMU hardware directly.
5446 *
5447 * Note that zombies do have PM_VALID set. So here we do the minimal.
5448 *
5449 * In case the context was zombified it could not be reclaimed at the time
5450 * the monitoring program exited. At this point, the PMU reservation has been
5451 * returned, the sampiing buffer has been freed. We must convert this call
5452 * into a spurious interrupt. However, we must also avoid infinite overflows
5453 * by stopping monitoring for this task. We can only come here for a per-task
5454 * context. All we need to do is to stop monitoring using the psr bits which
5455 * are always task private. By re-enabling secure montioring, we ensure that
5456 * the monitored task will not be able to re-activate monitoring.
5457 * The task will eventually be context switched out, at which point the context
5458 * will be reclaimed (that includes releasing ownership of the PMU).
5459 *
5460 * So there might be a window of time where the number of per-task session is zero
5461 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5462 * context. This is safe because if a per-task session comes in, it will push this one
5463 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5464 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5465 * also push our zombie context out.
5466 *
5467 * Overall pretty hairy stuff....
5468 */
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005469 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005470 pfm_clear_psr_up();
5471 ia64_psr(regs)->up = 0;
5472 ia64_psr(regs)->sp = 1;
5473 return;
5474}
5475
5476static int
Jeff Garzik9010eff2008-04-18 19:22:58 -04005477pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005478{
5479 struct task_struct *task;
5480 pfm_context_t *ctx;
5481 unsigned long flags;
5482 u64 pmc0;
5483 int this_cpu = smp_processor_id();
5484 int retval = 0;
5485
5486 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5487
5488 /*
5489 * srlz.d done before arriving here
5490 */
5491 pmc0 = ia64_get_pmc(0);
5492
5493 task = GET_PMU_OWNER();
5494 ctx = GET_PMU_CTX();
5495
5496 /*
5497 * if we have some pending bits set
5498 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5499 */
5500 if (PMC0_HAS_OVFL(pmc0) && task) {
5501 /*
5502 * we assume that pmc0.fr is always set here
5503 */
5504
5505 /* sanity check */
5506 if (!ctx) goto report_spurious1;
5507
5508 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5509 goto report_spurious2;
5510
5511 PROTECT_CTX_NOPRINT(ctx, flags);
5512
5513 pfm_overflow_handler(task, ctx, pmc0, regs);
5514
5515 UNPROTECT_CTX_NOPRINT(ctx, flags);
5516
5517 } else {
5518 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5519 retval = -1;
5520 }
5521 /*
5522 * keep it unfrozen at all times
5523 */
5524 pfm_unfreeze_pmu();
5525
5526 return retval;
5527
5528report_spurious1:
5529 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005530 this_cpu, task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531 pfm_unfreeze_pmu();
5532 return -1;
5533report_spurious2:
5534 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5535 this_cpu,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005536 task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005537 pfm_unfreeze_pmu();
5538 return -1;
5539}
5540
5541static irqreturn_t
Tony Luck3bbe4862006-10-17 14:28:16 -07005542pfm_interrupt_handler(int irq, void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005543{
5544 unsigned long start_cycles, total_cycles;
5545 unsigned long min, max;
5546 int this_cpu;
5547 int ret;
Tony Luck3bbe4862006-10-17 14:28:16 -07005548 struct pt_regs *regs = get_irq_regs();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005549
5550 this_cpu = get_cpu();
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005551 if (likely(!pfm_alt_intr_handler)) {
5552 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5553 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005554
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005555 start_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005556
Jeff Garzik9010eff2008-04-18 19:22:58 -04005557 ret = pfm_do_interrupt_handler(arg, regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005558
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005559 total_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005560
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005561 /*
5562 * don't measure spurious interrupts
5563 */
5564 if (likely(ret == 0)) {
5565 total_cycles -= start_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005566
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005567 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5568 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005569
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005570 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5571 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005572 }
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005573 else {
5574 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5575 }
5576
Thomas Gleixner8b0b1db2009-06-16 15:33:39 -07005577 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005578 return IRQ_HANDLED;
5579}
5580
5581/*
5582 * /proc/perfmon interface, for debug only
5583 */
5584
Jan Beulichfa276f32009-06-30 12:01:57 +01005585#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005586
5587static void *
5588pfm_proc_start(struct seq_file *m, loff_t *pos)
5589{
5590 if (*pos == 0) {
5591 return PFM_PROC_SHOW_HEADER;
5592 }
5593
Rusty Russell5dd3c992009-03-16 14:12:42 +10305594 while (*pos <= nr_cpu_ids) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005595 if (cpu_online(*pos - 1)) {
5596 return (void *)*pos;
5597 }
5598 ++*pos;
5599 }
5600 return NULL;
5601}
5602
5603static void *
5604pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5605{
5606 ++*pos;
5607 return pfm_proc_start(m, pos);
5608}
5609
5610static void
5611pfm_proc_stop(struct seq_file *m, void *v)
5612{
5613}
5614
5615static void
5616pfm_proc_show_header(struct seq_file *m)
5617{
5618 struct list_head * pos;
5619 pfm_buffer_fmt_t * entry;
5620 unsigned long flags;
5621
5622 seq_printf(m,
5623 "perfmon version : %u.%u\n"
5624 "model : %s\n"
5625 "fastctxsw : %s\n"
5626 "expert mode : %s\n"
5627 "ovfl_mask : 0x%lx\n"
5628 "PMU flags : 0x%x\n",
5629 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5630 pmu_conf->pmu_name,
5631 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5632 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5633 pmu_conf->ovfl_val,
5634 pmu_conf->flags);
5635
5636 LOCK_PFS(flags);
5637
5638 seq_printf(m,
5639 "proc_sessions : %u\n"
5640 "sys_sessions : %u\n"
5641 "sys_use_dbregs : %u\n"
5642 "ptrace_use_dbregs : %u\n",
5643 pfm_sessions.pfs_task_sessions,
5644 pfm_sessions.pfs_sys_sessions,
5645 pfm_sessions.pfs_sys_use_dbregs,
5646 pfm_sessions.pfs_ptrace_use_dbregs);
5647
5648 UNLOCK_PFS(flags);
5649
5650 spin_lock(&pfm_buffer_fmt_lock);
5651
5652 list_for_each(pos, &pfm_buffer_fmt_list) {
5653 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5654 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5655 entry->fmt_uuid[0],
5656 entry->fmt_uuid[1],
5657 entry->fmt_uuid[2],
5658 entry->fmt_uuid[3],
5659 entry->fmt_uuid[4],
5660 entry->fmt_uuid[5],
5661 entry->fmt_uuid[6],
5662 entry->fmt_uuid[7],
5663 entry->fmt_uuid[8],
5664 entry->fmt_uuid[9],
5665 entry->fmt_uuid[10],
5666 entry->fmt_uuid[11],
5667 entry->fmt_uuid[12],
5668 entry->fmt_uuid[13],
5669 entry->fmt_uuid[14],
5670 entry->fmt_uuid[15],
5671 entry->fmt_name);
5672 }
5673 spin_unlock(&pfm_buffer_fmt_lock);
5674
5675}
5676
5677static int
5678pfm_proc_show(struct seq_file *m, void *v)
5679{
5680 unsigned long psr;
5681 unsigned int i;
5682 int cpu;
5683
5684 if (v == PFM_PROC_SHOW_HEADER) {
5685 pfm_proc_show_header(m);
5686 return 0;
5687 }
5688
5689 /* show info for CPU (v - 1) */
5690
5691 cpu = (long)v - 1;
5692 seq_printf(m,
5693 "CPU%-2d overflow intrs : %lu\n"
5694 "CPU%-2d overflow cycles : %lu\n"
5695 "CPU%-2d overflow min : %lu\n"
5696 "CPU%-2d overflow max : %lu\n"
5697 "CPU%-2d smpl handler calls : %lu\n"
5698 "CPU%-2d smpl handler cycles : %lu\n"
5699 "CPU%-2d spurious intrs : %lu\n"
5700 "CPU%-2d replay intrs : %lu\n"
5701 "CPU%-2d syst_wide : %d\n"
5702 "CPU%-2d dcr_pp : %d\n"
5703 "CPU%-2d exclude idle : %d\n"
5704 "CPU%-2d owner : %d\n"
5705 "CPU%-2d context : %p\n"
5706 "CPU%-2d activations : %lu\n",
5707 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5708 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5709 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5710 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5711 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5712 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5713 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5714 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5715 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5716 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5717 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5718 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5719 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5720 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5721
5722 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5723
5724 psr = pfm_get_psr();
5725
5726 ia64_srlz_d();
5727
5728 seq_printf(m,
5729 "CPU%-2d psr : 0x%lx\n"
5730 "CPU%-2d pmc0 : 0x%lx\n",
5731 cpu, psr,
5732 cpu, ia64_get_pmc(0));
5733
5734 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5735 if (PMC_IS_COUNTING(i) == 0) continue;
5736 seq_printf(m,
5737 "CPU%-2d pmc%u : 0x%lx\n"
5738 "CPU%-2d pmd%u : 0x%lx\n",
5739 cpu, i, ia64_get_pmc(i),
5740 cpu, i, ia64_get_pmd(i));
5741 }
5742 }
5743 return 0;
5744}
5745
Jan Engelhardta23fe552008-01-22 20:42:07 +01005746const struct seq_operations pfm_seq_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005747 .start = pfm_proc_start,
5748 .next = pfm_proc_next,
5749 .stop = pfm_proc_stop,
5750 .show = pfm_proc_show
5751};
5752
5753static int
5754pfm_proc_open(struct inode *inode, struct file *file)
5755{
5756 return seq_open(file, &pfm_seq_ops);
5757}
5758
5759
5760/*
5761 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5762 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5763 * is active or inactive based on mode. We must rely on the value in
5764 * local_cpu_data->pfm_syst_info
5765 */
5766void
5767pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5768{
5769 struct pt_regs *regs;
5770 unsigned long dcr;
5771 unsigned long dcr_pp;
5772
5773 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5774
5775 /*
5776 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5777 * on every CPU, so we can rely on the pid to identify the idle task.
5778 */
5779 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
Al Viro64505782006-01-12 01:06:06 -08005780 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005781 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5782 return;
5783 }
5784 /*
5785 * if monitoring has started
5786 */
5787 if (dcr_pp) {
5788 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5789 /*
5790 * context switching in?
5791 */
5792 if (is_ctxswin) {
5793 /* mask monitoring for the idle task */
5794 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5795 pfm_clear_psr_pp();
5796 ia64_srlz_i();
5797 return;
5798 }
5799 /*
5800 * context switching out
5801 * restore monitoring for next task
5802 *
5803 * Due to inlining this odd if-then-else construction generates
5804 * better code.
5805 */
5806 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5807 pfm_set_psr_pp();
5808 ia64_srlz_i();
5809 }
5810}
5811
5812#ifdef CONFIG_SMP
5813
5814static void
5815pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5816{
5817 struct task_struct *task = ctx->ctx_task;
5818
5819 ia64_psr(regs)->up = 0;
5820 ia64_psr(regs)->sp = 1;
5821
5822 if (GET_PMU_OWNER() == task) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005823 DPRINT(("cleared ownership for [%d]\n",
5824 task_pid_nr(ctx->ctx_task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005825 SET_PMU_OWNER(NULL, NULL);
5826 }
5827
5828 /*
5829 * disconnect the task from the context and vice-versa
5830 */
5831 PFM_SET_WORK_PENDING(task, 0);
5832
5833 task->thread.pfm_context = NULL;
5834 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5835
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005836 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005837}
5838
5839
5840/*
5841 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5842 */
5843void
5844pfm_save_regs(struct task_struct *task)
5845{
5846 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005847 unsigned long flags;
5848 u64 psr;
5849
5850
5851 ctx = PFM_GET_CTX(task);
5852 if (ctx == NULL) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005853
5854 /*
5855 * we always come here with interrupts ALREADY disabled by
5856 * the scheduler. So we simply need to protect against concurrent
5857 * access, not CPU concurrency.
5858 */
5859 flags = pfm_protect_ctx_ctxsw(ctx);
5860
5861 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
Al Viro64505782006-01-12 01:06:06 -08005862 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005863
5864 pfm_clear_psr_up();
5865
5866 pfm_force_cleanup(ctx, regs);
5867
5868 BUG_ON(ctx->ctx_smpl_hdr);
5869
5870 pfm_unprotect_ctx_ctxsw(ctx, flags);
5871
5872 pfm_context_free(ctx);
5873 return;
5874 }
5875
5876 /*
5877 * save current PSR: needed because we modify it
5878 */
5879 ia64_srlz_d();
5880 psr = pfm_get_psr();
5881
5882 BUG_ON(psr & (IA64_PSR_I));
5883
5884 /*
5885 * stop monitoring:
5886 * This is the last instruction which may generate an overflow
5887 *
5888 * We do not need to set psr.sp because, it is irrelevant in kernel.
5889 * It will be restored from ipsr when going back to user level
5890 */
5891 pfm_clear_psr_up();
5892
5893 /*
5894 * keep a copy of psr.up (for reload)
5895 */
5896 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5897
5898 /*
5899 * release ownership of this PMU.
5900 * PM interrupts are masked, so nothing
5901 * can happen.
5902 */
5903 SET_PMU_OWNER(NULL, NULL);
5904
5905 /*
5906 * we systematically save the PMD as we have no
5907 * guarantee we will be schedule at that same
5908 * CPU again.
5909 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005910 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005911
5912 /*
5913 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5914 * we will need it on the restore path to check
5915 * for pending overflow.
5916 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005917 ctx->th_pmcs[0] = ia64_get_pmc(0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005918
5919 /*
5920 * unfreeze PMU if had pending overflows
5921 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005922 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005923
5924 /*
5925 * finally, allow context access.
5926 * interrupts will still be masked after this call.
5927 */
5928 pfm_unprotect_ctx_ctxsw(ctx, flags);
5929}
5930
5931#else /* !CONFIG_SMP */
5932void
5933pfm_save_regs(struct task_struct *task)
5934{
5935 pfm_context_t *ctx;
5936 u64 psr;
5937
5938 ctx = PFM_GET_CTX(task);
5939 if (ctx == NULL) return;
5940
5941 /*
5942 * save current PSR: needed because we modify it
5943 */
5944 psr = pfm_get_psr();
5945
5946 BUG_ON(psr & (IA64_PSR_I));
5947
5948 /*
5949 * stop monitoring:
5950 * This is the last instruction which may generate an overflow
5951 *
5952 * We do not need to set psr.sp because, it is irrelevant in kernel.
5953 * It will be restored from ipsr when going back to user level
5954 */
5955 pfm_clear_psr_up();
5956
5957 /*
5958 * keep a copy of psr.up (for reload)
5959 */
5960 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5961}
5962
5963static void
5964pfm_lazy_save_regs (struct task_struct *task)
5965{
5966 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005967 unsigned long flags;
5968
5969 { u64 psr = pfm_get_psr();
5970 BUG_ON(psr & IA64_PSR_UP);
5971 }
5972
5973 ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005974
5975 /*
5976 * we need to mask PMU overflow here to
5977 * make sure that we maintain pmc0 until
5978 * we save it. overflow interrupts are
5979 * treated as spurious if there is no
5980 * owner.
5981 *
5982 * XXX: I don't think this is necessary
5983 */
5984 PROTECT_CTX(ctx,flags);
5985
5986 /*
5987 * release ownership of this PMU.
5988 * must be done before we save the registers.
5989 *
5990 * after this call any PMU interrupt is treated
5991 * as spurious.
5992 */
5993 SET_PMU_OWNER(NULL, NULL);
5994
5995 /*
5996 * save all the pmds we use
5997 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005998 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005999
6000 /*
6001 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6002 * it is needed to check for pended overflow
6003 * on the restore path
6004 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006005 ctx->th_pmcs[0] = ia64_get_pmc(0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006006
6007 /*
6008 * unfreeze PMU if had pending overflows
6009 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006010 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006011
6012 /*
6013 * now get can unmask PMU interrupts, they will
6014 * be treated as purely spurious and we will not
6015 * lose any information
6016 */
6017 UNPROTECT_CTX(ctx,flags);
6018}
6019#endif /* CONFIG_SMP */
6020
6021#ifdef CONFIG_SMP
6022/*
6023 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6024 */
6025void
6026pfm_load_regs (struct task_struct *task)
6027{
6028 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006029 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6030 unsigned long flags;
6031 u64 psr, psr_up;
6032 int need_irq_resend;
6033
6034 ctx = PFM_GET_CTX(task);
6035 if (unlikely(ctx == NULL)) return;
6036
6037 BUG_ON(GET_PMU_OWNER());
6038
Linus Torvalds1da177e2005-04-16 15:20:36 -07006039 /*
6040 * possible on unload
6041 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006042 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006043
6044 /*
6045 * we always come here with interrupts ALREADY disabled by
6046 * the scheduler. So we simply need to protect against concurrent
6047 * access, not CPU concurrency.
6048 */
6049 flags = pfm_protect_ctx_ctxsw(ctx);
6050 psr = pfm_get_psr();
6051
6052 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6053
6054 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6055 BUG_ON(psr & IA64_PSR_I);
6056
6057 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
Al Viro64505782006-01-12 01:06:06 -08006058 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006059
6060 BUG_ON(ctx->ctx_smpl_hdr);
6061
6062 pfm_force_cleanup(ctx, regs);
6063
6064 pfm_unprotect_ctx_ctxsw(ctx, flags);
6065
6066 /*
6067 * this one (kmalloc'ed) is fine with interrupts disabled
6068 */
6069 pfm_context_free(ctx);
6070
6071 return;
6072 }
6073
6074 /*
6075 * we restore ALL the debug registers to avoid picking up
6076 * stale state.
6077 */
6078 if (ctx->ctx_fl_using_dbreg) {
6079 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6080 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6081 }
6082 /*
6083 * retrieve saved psr.up
6084 */
6085 psr_up = ctx->ctx_saved_psr_up;
6086
6087 /*
6088 * if we were the last user of the PMU on that CPU,
6089 * then nothing to do except restore psr
6090 */
6091 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6092
6093 /*
6094 * retrieve partial reload masks (due to user modifications)
6095 */
6096 pmc_mask = ctx->ctx_reload_pmcs[0];
6097 pmd_mask = ctx->ctx_reload_pmds[0];
6098
6099 } else {
6100 /*
6101 * To avoid leaking information to the user level when psr.sp=0,
6102 * we must reload ALL implemented pmds (even the ones we don't use).
6103 * In the kernel we only allow PFM_READ_PMDS on registers which
6104 * we initialized or requested (sampling) so there is no risk there.
6105 */
6106 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6107
6108 /*
6109 * ALL accessible PMCs are systematically reloaded, unused registers
6110 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6111 * up stale configuration.
6112 *
6113 * PMC0 is never in the mask. It is always restored separately.
6114 */
6115 pmc_mask = ctx->ctx_all_pmcs[0];
6116 }
6117 /*
6118 * when context is MASKED, we will restore PMC with plm=0
6119 * and PMD with stale information, but that's ok, nothing
6120 * will be captured.
6121 *
6122 * XXX: optimize here
6123 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006124 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6125 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006126
6127 /*
6128 * check for pending overflow at the time the state
6129 * was saved.
6130 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006131 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006132 /*
6133 * reload pmc0 with the overflow information
6134 * On McKinley PMU, this will trigger a PMU interrupt
6135 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006136 ia64_set_pmc(0, ctx->th_pmcs[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006137 ia64_srlz_d();
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006138 ctx->th_pmcs[0] = 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006139
6140 /*
6141 * will replay the PMU interrupt
6142 */
Ingo Molnarc0ad90a2006-06-29 02:24:44 -07006143 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006144
6145 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6146 }
6147
6148 /*
6149 * we just did a reload, so we reset the partial reload fields
6150 */
6151 ctx->ctx_reload_pmcs[0] = 0UL;
6152 ctx->ctx_reload_pmds[0] = 0UL;
6153
6154 SET_LAST_CPU(ctx, smp_processor_id());
6155
6156 /*
6157 * dump activation value for this PMU
6158 */
6159 INC_ACTIVATION();
6160 /*
6161 * record current activation for this context
6162 */
6163 SET_ACTIVATION(ctx);
6164
6165 /*
6166 * establish new ownership.
6167 */
6168 SET_PMU_OWNER(task, ctx);
6169
6170 /*
6171 * restore the psr.up bit. measurement
6172 * is active again.
6173 * no PMU interrupt can happen at this point
6174 * because we still have interrupts disabled.
6175 */
6176 if (likely(psr_up)) pfm_set_psr_up();
6177
6178 /*
6179 * allow concurrent access to context
6180 */
6181 pfm_unprotect_ctx_ctxsw(ctx, flags);
6182}
6183#else /* !CONFIG_SMP */
6184/*
6185 * reload PMU state for UP kernels
6186 * in 2.5 we come here with interrupts disabled
6187 */
6188void
6189pfm_load_regs (struct task_struct *task)
6190{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006191 pfm_context_t *ctx;
6192 struct task_struct *owner;
6193 unsigned long pmd_mask, pmc_mask;
6194 u64 psr, psr_up;
6195 int need_irq_resend;
6196
6197 owner = GET_PMU_OWNER();
6198 ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006199 psr = pfm_get_psr();
6200
6201 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6202 BUG_ON(psr & IA64_PSR_I);
6203
6204 /*
6205 * we restore ALL the debug registers to avoid picking up
6206 * stale state.
6207 *
6208 * This must be done even when the task is still the owner
6209 * as the registers may have been modified via ptrace()
6210 * (not perfmon) by the previous task.
6211 */
6212 if (ctx->ctx_fl_using_dbreg) {
6213 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6214 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6215 }
6216
6217 /*
6218 * retrieved saved psr.up
6219 */
6220 psr_up = ctx->ctx_saved_psr_up;
6221 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6222
6223 /*
6224 * short path, our state is still there, just
6225 * need to restore psr and we go
6226 *
6227 * we do not touch either PMC nor PMD. the psr is not touched
6228 * by the overflow_handler. So we are safe w.r.t. to interrupt
6229 * concurrency even without interrupt masking.
6230 */
6231 if (likely(owner == task)) {
6232 if (likely(psr_up)) pfm_set_psr_up();
6233 return;
6234 }
6235
6236 /*
6237 * someone else is still using the PMU, first push it out and
6238 * then we'll be able to install our stuff !
6239 *
6240 * Upon return, there will be no owner for the current PMU
6241 */
6242 if (owner) pfm_lazy_save_regs(owner);
6243
6244 /*
6245 * To avoid leaking information to the user level when psr.sp=0,
6246 * we must reload ALL implemented pmds (even the ones we don't use).
6247 * In the kernel we only allow PFM_READ_PMDS on registers which
6248 * we initialized or requested (sampling) so there is no risk there.
6249 */
6250 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6251
6252 /*
6253 * ALL accessible PMCs are systematically reloaded, unused registers
6254 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6255 * up stale configuration.
6256 *
6257 * PMC0 is never in the mask. It is always restored separately
6258 */
6259 pmc_mask = ctx->ctx_all_pmcs[0];
6260
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006261 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6262 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006263
6264 /*
6265 * check for pending overflow at the time the state
6266 * was saved.
6267 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006268 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006269 /*
6270 * reload pmc0 with the overflow information
6271 * On McKinley PMU, this will trigger a PMU interrupt
6272 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006273 ia64_set_pmc(0, ctx->th_pmcs[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006274 ia64_srlz_d();
6275
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006276 ctx->th_pmcs[0] = 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006277
6278 /*
6279 * will replay the PMU interrupt
6280 */
Ingo Molnarc0ad90a2006-06-29 02:24:44 -07006281 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006282
6283 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6284 }
6285
6286 /*
6287 * establish new ownership.
6288 */
6289 SET_PMU_OWNER(task, ctx);
6290
6291 /*
6292 * restore the psr.up bit. measurement
6293 * is active again.
6294 * no PMU interrupt can happen at this point
6295 * because we still have interrupts disabled.
6296 */
6297 if (likely(psr_up)) pfm_set_psr_up();
6298}
6299#endif /* CONFIG_SMP */
6300
6301/*
6302 * this function assumes monitoring is stopped
6303 */
6304static void
6305pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6306{
6307 u64 pmc0;
6308 unsigned long mask2, val, pmd_val, ovfl_val;
6309 int i, can_access_pmu = 0;
6310 int is_self;
6311
6312 /*
6313 * is the caller the task being monitored (or which initiated the
6314 * session for system wide measurements)
6315 */
6316 is_self = ctx->ctx_task == task ? 1 : 0;
6317
6318 /*
6319 * can access PMU is task is the owner of the PMU state on the current CPU
6320 * or if we are running on the CPU bound to the context in system-wide mode
6321 * (that is not necessarily the task the context is attached to in this mode).
6322 * In system-wide we always have can_access_pmu true because a task running on an
6323 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6324 */
6325 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6326 if (can_access_pmu) {
6327 /*
6328 * Mark the PMU as not owned
6329 * This will cause the interrupt handler to do nothing in case an overflow
6330 * interrupt was in-flight
6331 * This also guarantees that pmc0 will contain the final state
6332 * It virtually gives us full control on overflow processing from that point
6333 * on.
6334 */
6335 SET_PMU_OWNER(NULL, NULL);
6336 DPRINT(("releasing ownership\n"));
6337
6338 /*
6339 * read current overflow status:
6340 *
6341 * we are guaranteed to read the final stable state
6342 */
6343 ia64_srlz_d();
6344 pmc0 = ia64_get_pmc(0); /* slow */
6345
6346 /*
6347 * reset freeze bit, overflow status information destroyed
6348 */
6349 pfm_unfreeze_pmu();
6350 } else {
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006351 pmc0 = ctx->th_pmcs[0];
Linus Torvalds1da177e2005-04-16 15:20:36 -07006352 /*
6353 * clear whatever overflow status bits there were
6354 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006355 ctx->th_pmcs[0] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006356 }
6357 ovfl_val = pmu_conf->ovfl_val;
6358 /*
6359 * we save all the used pmds
6360 * we take care of overflows for counting PMDs
6361 *
6362 * XXX: sampling situation is not taken into account here
6363 */
6364 mask2 = ctx->ctx_used_pmds[0];
6365
6366 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6367
6368 for (i = 0; mask2; i++, mask2>>=1) {
6369
6370 /* skip non used pmds */
6371 if ((mask2 & 0x1) == 0) continue;
6372
6373 /*
6374 * can access PMU always true in system wide mode
6375 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006376 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07006377
6378 if (PMD_IS_COUNTING(i)) {
6379 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006380 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07006381 i,
6382 ctx->ctx_pmds[i].val,
6383 val & ovfl_val));
6384
6385 /*
6386 * we rebuild the full 64 bit value of the counter
6387 */
6388 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6389
6390 /*
6391 * now everything is in ctx_pmds[] and we need
6392 * to clear the saved context from save_regs() such that
6393 * pfm_read_pmds() gets the correct value
6394 */
6395 pmd_val = 0UL;
6396
6397 /*
6398 * take care of overflow inline
6399 */
6400 if (pmc0 & (1UL << i)) {
6401 val += 1 + ovfl_val;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006402 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006403 }
6404 }
6405
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006406 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006407
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006408 if (is_self) ctx->th_pmds[i] = pmd_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006409
6410 ctx->ctx_pmds[i].val = val;
6411 }
6412}
6413
6414static struct irqaction perfmon_irqaction = {
6415 .handler = pfm_interrupt_handler,
Thomas Gleixner121a4222006-07-01 19:29:17 -07006416 .flags = IRQF_DISABLED,
Linus Torvalds1da177e2005-04-16 15:20:36 -07006417 .name = "perfmon"
6418};
6419
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006420static void
6421pfm_alt_save_pmu_state(void *data)
6422{
6423 struct pt_regs *regs;
6424
Al Viro64505782006-01-12 01:06:06 -08006425 regs = task_pt_regs(current);
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006426
6427 DPRINT(("called\n"));
6428
6429 /*
6430 * should not be necessary but
6431 * let's take not risk
6432 */
6433 pfm_clear_psr_up();
6434 pfm_clear_psr_pp();
6435 ia64_psr(regs)->pp = 0;
6436
6437 /*
6438 * This call is required
6439 * May cause a spurious interrupt on some processors
6440 */
6441 pfm_freeze_pmu();
6442
6443 ia64_srlz_d();
6444}
6445
6446void
6447pfm_alt_restore_pmu_state(void *data)
6448{
6449 struct pt_regs *regs;
6450
Al Viro64505782006-01-12 01:06:06 -08006451 regs = task_pt_regs(current);
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006452
6453 DPRINT(("called\n"));
6454
6455 /*
6456 * put PMU back in state expected
6457 * by perfmon
6458 */
6459 pfm_clear_psr_up();
6460 pfm_clear_psr_pp();
6461 ia64_psr(regs)->pp = 0;
6462
6463 /*
6464 * perfmon runs with PMU unfrozen at all times
6465 */
6466 pfm_unfreeze_pmu();
6467
6468 ia64_srlz_d();
6469}
6470
6471int
6472pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6473{
6474 int ret, i;
6475 int reserve_cpu;
6476
6477 /* some sanity checks */
6478 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6479
6480 /* do the easy test first */
6481 if (pfm_alt_intr_handler) return -EBUSY;
6482
6483 /* one at a time in the install or remove, just fail the others */
6484 if (!spin_trylock(&pfm_alt_install_check)) {
6485 return -EBUSY;
6486 }
6487
6488 /* reserve our session */
6489 for_each_online_cpu(reserve_cpu) {
6490 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6491 if (ret) goto cleanup_reserve;
6492 }
6493
6494 /* save the current system wide pmu states */
Jens Axboe15c8b6c2008-05-09 09:39:44 +02006495 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006496 if (ret) {
6497 DPRINT(("on_each_cpu() failed: %d\n", ret));
6498 goto cleanup_reserve;
6499 }
6500
6501 /* officially change to the alternate interrupt handler */
6502 pfm_alt_intr_handler = hdl;
6503
6504 spin_unlock(&pfm_alt_install_check);
6505
6506 return 0;
6507
6508cleanup_reserve:
6509 for_each_online_cpu(i) {
6510 /* don't unreserve more than we reserved */
6511 if (i >= reserve_cpu) break;
6512
6513 pfm_unreserve_session(NULL, 1, i);
6514 }
6515
6516 spin_unlock(&pfm_alt_install_check);
6517
6518 return ret;
6519}
6520EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6521
6522int
6523pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6524{
6525 int i;
6526 int ret;
6527
6528 if (hdl == NULL) return -EINVAL;
6529
6530 /* cannot remove someone else's handler! */
6531 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6532
6533 /* one at a time in the install or remove, just fail the others */
6534 if (!spin_trylock(&pfm_alt_install_check)) {
6535 return -EBUSY;
6536 }
6537
6538 pfm_alt_intr_handler = NULL;
6539
Jens Axboe15c8b6c2008-05-09 09:39:44 +02006540 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006541 if (ret) {
6542 DPRINT(("on_each_cpu() failed: %d\n", ret));
6543 }
6544
6545 for_each_online_cpu(i) {
6546 pfm_unreserve_session(NULL, 1, i);
6547 }
6548
6549 spin_unlock(&pfm_alt_install_check);
6550
6551 return 0;
6552}
6553EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6554
Linus Torvalds1da177e2005-04-16 15:20:36 -07006555/*
6556 * perfmon initialization routine, called from the initcall() table
6557 */
6558static int init_pfm_fs(void);
6559
6560static int __init
6561pfm_probe_pmu(void)
6562{
6563 pmu_config_t **p;
6564 int family;
6565
6566 family = local_cpu_data->family;
6567 p = pmu_confs;
6568
6569 while(*p) {
6570 if ((*p)->probe) {
6571 if ((*p)->probe() == 0) goto found;
6572 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6573 goto found;
6574 }
6575 p++;
6576 }
6577 return -1;
6578found:
6579 pmu_conf = *p;
6580 return 0;
6581}
6582
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -08006583static const struct file_operations pfm_proc_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006584 .open = pfm_proc_open,
6585 .read = seq_read,
6586 .llseek = seq_lseek,
6587 .release = seq_release,
6588};
6589
6590int __init
6591pfm_init(void)
6592{
6593 unsigned int n, n_counters, i;
6594
6595 printk("perfmon: version %u.%u IRQ %u\n",
6596 PFM_VERSION_MAJ,
6597 PFM_VERSION_MIN,
6598 IA64_PERFMON_VECTOR);
6599
6600 if (pfm_probe_pmu()) {
6601 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6602 local_cpu_data->family);
6603 return -ENODEV;
6604 }
6605
6606 /*
6607 * compute the number of implemented PMD/PMC from the
6608 * description tables
6609 */
6610 n = 0;
6611 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6612 if (PMC_IS_IMPL(i) == 0) continue;
6613 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6614 n++;
6615 }
6616 pmu_conf->num_pmcs = n;
6617
6618 n = 0; n_counters = 0;
6619 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6620 if (PMD_IS_IMPL(i) == 0) continue;
6621 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6622 n++;
6623 if (PMD_IS_COUNTING(i)) n_counters++;
6624 }
6625 pmu_conf->num_pmds = n;
6626 pmu_conf->num_counters = n_counters;
6627
6628 /*
6629 * sanity checks on the number of debug registers
6630 */
6631 if (pmu_conf->use_rr_dbregs) {
6632 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6633 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6634 pmu_conf = NULL;
6635 return -1;
6636 }
6637 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6638 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6639 pmu_conf = NULL;
6640 return -1;
6641 }
6642 }
6643
6644 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6645 pmu_conf->pmu_name,
6646 pmu_conf->num_pmcs,
6647 pmu_conf->num_pmds,
6648 pmu_conf->num_counters,
6649 ffz(pmu_conf->ovfl_val));
6650
6651 /* sanity check */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006652 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006653 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6654 pmu_conf = NULL;
6655 return -1;
6656 }
6657
6658 /*
6659 * create /proc/perfmon (mostly for debugging purposes)
6660 */
Denis V. Luneve2363762008-04-29 01:02:25 -07006661 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006662 if (perfmon_dir == NULL) {
6663 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6664 pmu_conf = NULL;
6665 return -1;
6666 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006667
6668 /*
6669 * create /proc/sys/kernel/perfmon (for debugging purposes)
6670 */
Eric W. Biederman0b4d4142007-02-14 00:34:09 -08006671 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006672
6673 /*
6674 * initialize all our spinlocks
6675 */
6676 spin_lock_init(&pfm_sessions.pfs_lock);
6677 spin_lock_init(&pfm_buffer_fmt_lock);
6678
6679 init_pfm_fs();
6680
6681 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6682
6683 return 0;
6684}
6685
6686__initcall(pfm_init);
6687
6688/*
6689 * this function is called before pfm_init()
6690 */
6691void
6692pfm_init_percpu (void)
6693{
Ashok Rajff741902005-11-11 14:32:40 -08006694 static int first_time=1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006695 /*
6696 * make sure no measurement is active
6697 * (may inherit programmed PMCs from EFI).
6698 */
6699 pfm_clear_psr_pp();
6700 pfm_clear_psr_up();
6701
6702 /*
6703 * we run with the PMU not frozen at all times
6704 */
6705 pfm_unfreeze_pmu();
6706
Ashok Rajff741902005-11-11 14:32:40 -08006707 if (first_time) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006708 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
Ashok Rajff741902005-11-11 14:32:40 -08006709 first_time=0;
6710 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006711
6712 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6713 ia64_srlz_d();
6714}
6715
6716/*
6717 * used for debug purposes only
6718 */
6719void
6720dump_pmu_state(const char *from)
6721{
6722 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006723 struct pt_regs *regs;
6724 pfm_context_t *ctx;
6725 unsigned long psr, dcr, info, flags;
6726 int i, this_cpu;
6727
6728 local_irq_save(flags);
6729
6730 this_cpu = smp_processor_id();
Al Viro64505782006-01-12 01:06:06 -08006731 regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006732 info = PFM_CPUINFO_GET();
6733 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6734
6735 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6736 local_irq_restore(flags);
6737 return;
6738 }
6739
6740 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6741 this_cpu,
6742 from,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006743 task_pid_nr(current),
Linus Torvalds1da177e2005-04-16 15:20:36 -07006744 regs->cr_iip,
6745 current->comm);
6746
6747 task = GET_PMU_OWNER();
6748 ctx = GET_PMU_CTX();
6749
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006750 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006751
6752 psr = pfm_get_psr();
6753
6754 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6755 this_cpu,
6756 ia64_get_pmc(0),
6757 psr & IA64_PSR_PP ? 1 : 0,
6758 psr & IA64_PSR_UP ? 1 : 0,
6759 dcr & IA64_DCR_PP ? 1 : 0,
6760 info,
6761 ia64_psr(regs)->up,
6762 ia64_psr(regs)->pp);
6763
6764 ia64_psr(regs)->up = 0;
6765 ia64_psr(regs)->pp = 0;
6766
Linus Torvalds1da177e2005-04-16 15:20:36 -07006767 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6768 if (PMC_IS_IMPL(i) == 0) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006769 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006770 }
6771
6772 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6773 if (PMD_IS_IMPL(i) == 0) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006774 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006775 }
6776
6777 if (ctx) {
6778 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6779 this_cpu,
6780 ctx->ctx_state,
6781 ctx->ctx_smpl_vaddr,
6782 ctx->ctx_smpl_hdr,
6783 ctx->ctx_msgq_head,
6784 ctx->ctx_msgq_tail,
6785 ctx->ctx_saved_psr_up);
6786 }
6787 local_irq_restore(flags);
6788}
6789
6790/*
6791 * called from process.c:copy_thread(). task is new child.
6792 */
6793void
6794pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6795{
6796 struct thread_struct *thread;
6797
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006798 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006799
6800 thread = &task->thread;
6801
6802 /*
6803 * cut links inherited from parent (current)
6804 */
6805 thread->pfm_context = NULL;
6806
6807 PFM_SET_WORK_PENDING(task, 0);
6808
6809 /*
6810 * the psr bits are already set properly in copy_threads()
6811 */
6812}
6813#else /* !CONFIG_PERFMON */
6814asmlinkage long
6815sys_perfmonctl (int fd, int cmd, void *arg, int count)
6816{
6817 return -ENOSYS;
6818}
6819#endif /* CONFIG_PERFMON */