blob: d2a66fd309c3df6c323dbb00156450679e623227 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
Christoph Lameter19460892005-06-23 00:08:19 -070031#include <linux/blkdev.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
Adrian Bunk93d17d32005-06-25 14:59:10 -070040static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
42/*
43 * For the allocated request tables
44 */
45static kmem_cache_t *request_cachep;
46
47/*
48 * For queue allocation
49 */
50static kmem_cache_t *requestq_cachep;
51
52/*
53 * For io context allocations
54 */
55static kmem_cache_t *iocontext_cachep;
56
57static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62/*
63 * Controlling structure to kblockd
64 */
65static struct workqueue_struct *kblockd_workqueue;
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
111/*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116static void clear_queue_congested(request_queue_t *q, int rw)
117{
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126}
127
128/*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132static void set_queue_congested(request_queue_t *q, int rw)
133{
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138}
139
140/**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150{
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157}
158
159EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162{
163 q->activity_fn = fn;
164 q->activity_data = data;
165}
166
167EXPORT_SYMBOL(blk_queue_activity_fn);
168
169/**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181{
182 q->prep_rq_fn = pfn;
183}
184
185EXPORT_SYMBOL(blk_queue_prep_rq);
186
187/**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204{
205 q->merge_bvec_fn = mbfn;
206}
207
208EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210/**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233{
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
Stuart McLaren309c0a12005-09-06 15:17:47 -0700238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268}
269
270EXPORT_SYMBOL(blk_queue_make_request);
271
272static inline void rq_init(request_queue_t *q, struct request *rq)
273{
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +0200279 rq->ioprio = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 rq->buffer = NULL;
281 rq->ref_count = 1;
282 rq->q = q;
283 rq->waiting = NULL;
284 rq->special = NULL;
285 rq->data_len = 0;
286 rq->data = NULL;
Mike Christie df46b9a2005-06-20 14:04:44 +0200287 rq->nr_phys_segments = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 rq->sense = NULL;
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291}
292
293/**
294 * blk_queue_ordered - does this queue support ordered writes
295 * @q: the request queue
296 * @flag: see below
297 *
298 * Description:
299 * For journalled file systems, doing ordered writes on a commit
300 * block instead of explicitly doing wait_on_buffer (which is bad
301 * for performance) can be a big win. Block drivers supporting this
302 * feature should call this function and indicate so.
303 *
304 **/
305void blk_queue_ordered(request_queue_t *q, int flag)
306{
307 switch (flag) {
308 case QUEUE_ORDERED_NONE:
309 if (q->flush_rq)
310 kmem_cache_free(request_cachep, q->flush_rq);
311 q->flush_rq = NULL;
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_TAG:
315 q->ordered = flag;
316 break;
317 case QUEUE_ORDERED_FLUSH:
318 q->ordered = flag;
319 if (!q->flush_rq)
320 q->flush_rq = kmem_cache_alloc(request_cachep,
321 GFP_KERNEL);
322 break;
323 default:
324 printk("blk_queue_ordered: bad value %d\n", flag);
325 break;
326 }
327}
328
329EXPORT_SYMBOL(blk_queue_ordered);
330
331/**
332 * blk_queue_issue_flush_fn - set function for issuing a flush
333 * @q: the request queue
334 * @iff: the function to be called issuing the flush
335 *
336 * Description:
337 * If a driver supports issuing a flush command, the support is notified
338 * to the block layer by defining it through this call.
339 *
340 **/
341void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
342{
343 q->issue_flush_fn = iff;
344}
345
346EXPORT_SYMBOL(blk_queue_issue_flush_fn);
347
348/*
349 * Cache flushing for ordered writes handling
350 */
351static void blk_pre_flush_end_io(struct request *flush_rq)
352{
353 struct request *rq = flush_rq->end_io_data;
354 request_queue_t *q = rq->q;
355
Tejun Heo8922e162005-10-20 16:23:44 +0200356 elv_completed_request(q, flush_rq);
357
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358 rq->flags |= REQ_BAR_PREFLUSH;
359
360 if (!flush_rq->errors)
361 elv_requeue_request(q, rq);
362 else {
363 q->end_flush_fn(q, flush_rq);
364 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
365 q->request_fn(q);
366 }
367}
368
369static void blk_post_flush_end_io(struct request *flush_rq)
370{
371 struct request *rq = flush_rq->end_io_data;
372 request_queue_t *q = rq->q;
373
Tejun Heo8922e162005-10-20 16:23:44 +0200374 elv_completed_request(q, flush_rq);
375
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 rq->flags |= REQ_BAR_POSTFLUSH;
377
378 q->end_flush_fn(q, flush_rq);
379 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
380 q->request_fn(q);
381}
382
383struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
384{
385 struct request *flush_rq = q->flush_rq;
386
387 BUG_ON(!blk_barrier_rq(rq));
388
389 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
390 return NULL;
391
392 rq_init(q, flush_rq);
393 flush_rq->elevator_private = NULL;
394 flush_rq->flags = REQ_BAR_FLUSH;
395 flush_rq->rq_disk = rq->rq_disk;
396 flush_rq->rl = NULL;
397
398 /*
399 * prepare_flush returns 0 if no flush is needed, just mark both
400 * pre and post flush as done in that case
401 */
402 if (!q->prepare_flush_fn(q, flush_rq)) {
403 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
404 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
405 return rq;
406 }
407
408 /*
409 * some drivers dequeue requests right away, some only after io
410 * completion. make sure the request is dequeued.
411 */
412 if (!list_empty(&rq->queuelist))
413 blkdev_dequeue_request(rq);
414
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 flush_rq->end_io_data = rq;
416 flush_rq->end_io = blk_pre_flush_end_io;
417
418 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
419 return flush_rq;
420}
421
422static void blk_start_post_flush(request_queue_t *q, struct request *rq)
423{
424 struct request *flush_rq = q->flush_rq;
425
426 BUG_ON(!blk_barrier_rq(rq));
427
428 rq_init(q, flush_rq);
429 flush_rq->elevator_private = NULL;
430 flush_rq->flags = REQ_BAR_FLUSH;
431 flush_rq->rq_disk = rq->rq_disk;
432 flush_rq->rl = NULL;
433
434 if (q->prepare_flush_fn(q, flush_rq)) {
435 flush_rq->end_io_data = rq;
436 flush_rq->end_io = blk_post_flush_end_io;
437
438 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
439 q->request_fn(q);
440 }
441}
442
443static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
444 int sectors)
445{
446 if (sectors > rq->nr_sectors)
447 sectors = rq->nr_sectors;
448
449 rq->nr_sectors -= sectors;
450 return rq->nr_sectors;
451}
452
453static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
454 int sectors, int queue_locked)
455{
456 if (q->ordered != QUEUE_ORDERED_FLUSH)
457 return 0;
458 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
459 return 0;
460 if (blk_barrier_postflush(rq))
461 return 0;
462
463 if (!blk_check_end_barrier(q, rq, sectors)) {
464 unsigned long flags = 0;
465
466 if (!queue_locked)
467 spin_lock_irqsave(q->queue_lock, flags);
468
469 blk_start_post_flush(q, rq);
470
471 if (!queue_locked)
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474
475 return 1;
476}
477
478/**
479 * blk_complete_barrier_rq - complete possible barrier request
480 * @q: the request queue for the device
481 * @rq: the request
482 * @sectors: number of sectors to complete
483 *
484 * Description:
485 * Used in driver end_io handling to determine whether to postpone
486 * completion of a barrier request until a post flush has been done. This
487 * is the unlocked variant, used if the caller doesn't already hold the
488 * queue lock.
489 **/
490int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
491{
492 return __blk_complete_barrier_rq(q, rq, sectors, 0);
493}
494EXPORT_SYMBOL(blk_complete_barrier_rq);
495
496/**
497 * blk_complete_barrier_rq_locked - complete possible barrier request
498 * @q: the request queue for the device
499 * @rq: the request
500 * @sectors: number of sectors to complete
501 *
502 * Description:
503 * See blk_complete_barrier_rq(). This variant must be used if the caller
504 * holds the queue lock.
505 **/
506int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
507 int sectors)
508{
509 return __blk_complete_barrier_rq(q, rq, sectors, 1);
510}
511EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
512
513/**
514 * blk_queue_bounce_limit - set bounce buffer limit for queue
515 * @q: the request queue for the device
516 * @dma_addr: bus address limit
517 *
518 * Description:
519 * Different hardware can have different requirements as to what pages
520 * it can do I/O directly to. A low level driver can call
521 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
522 * buffers for doing I/O to pages residing above @page. By default
523 * the block layer sets this to the highest numbered "low" memory page.
524 **/
525void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
526{
527 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
528
529 /*
530 * set appropriate bounce gfp mask -- unfortunately we don't have a
531 * full 4GB zone, so we have to resort to low memory for any bounces.
532 * ISA has its own < 16MB zone.
533 */
534 if (bounce_pfn < blk_max_low_pfn) {
535 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
536 init_emergency_isa_pool();
537 q->bounce_gfp = GFP_NOIO | GFP_DMA;
538 } else
539 q->bounce_gfp = GFP_NOIO;
540
541 q->bounce_pfn = bounce_pfn;
542}
543
544EXPORT_SYMBOL(blk_queue_bounce_limit);
545
546/**
547 * blk_queue_max_sectors - set max sectors for a request for this queue
548 * @q: the request queue for the device
549 * @max_sectors: max sectors in the usual 512b unit
550 *
551 * Description:
552 * Enables a low level driver to set an upper limit on the size of
553 * received requests.
554 **/
555void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
556{
557 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
558 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
559 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
560 }
561
562 q->max_sectors = q->max_hw_sectors = max_sectors;
563}
564
565EXPORT_SYMBOL(blk_queue_max_sectors);
566
567/**
568 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
569 * @q: the request queue for the device
570 * @max_segments: max number of segments
571 *
572 * Description:
573 * Enables a low level driver to set an upper limit on the number of
574 * physical data segments in a request. This would be the largest sized
575 * scatter list the driver could handle.
576 **/
577void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
578{
579 if (!max_segments) {
580 max_segments = 1;
581 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
582 }
583
584 q->max_phys_segments = max_segments;
585}
586
587EXPORT_SYMBOL(blk_queue_max_phys_segments);
588
589/**
590 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
591 * @q: the request queue for the device
592 * @max_segments: max number of segments
593 *
594 * Description:
595 * Enables a low level driver to set an upper limit on the number of
596 * hw data segments in a request. This would be the largest number of
597 * address/length pairs the host adapter can actually give as once
598 * to the device.
599 **/
600void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
601{
602 if (!max_segments) {
603 max_segments = 1;
604 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
605 }
606
607 q->max_hw_segments = max_segments;
608}
609
610EXPORT_SYMBOL(blk_queue_max_hw_segments);
611
612/**
613 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
614 * @q: the request queue for the device
615 * @max_size: max size of segment in bytes
616 *
617 * Description:
618 * Enables a low level driver to set an upper limit on the size of a
619 * coalesced segment
620 **/
621void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
622{
623 if (max_size < PAGE_CACHE_SIZE) {
624 max_size = PAGE_CACHE_SIZE;
625 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
626 }
627
628 q->max_segment_size = max_size;
629}
630
631EXPORT_SYMBOL(blk_queue_max_segment_size);
632
633/**
634 * blk_queue_hardsect_size - set hardware sector size for the queue
635 * @q: the request queue for the device
636 * @size: the hardware sector size, in bytes
637 *
638 * Description:
639 * This should typically be set to the lowest possible sector size
640 * that the hardware can operate on (possible without reverting to
641 * even internal read-modify-write operations). Usually the default
642 * of 512 covers most hardware.
643 **/
644void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
645{
646 q->hardsect_size = size;
647}
648
649EXPORT_SYMBOL(blk_queue_hardsect_size);
650
651/*
652 * Returns the minimum that is _not_ zero, unless both are zero.
653 */
654#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
655
656/**
657 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
658 * @t: the stacking driver (top)
659 * @b: the underlying device (bottom)
660 **/
661void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
662{
663 /* zero is "infinity" */
664 t->max_sectors = t->max_hw_sectors =
665 min_not_zero(t->max_sectors,b->max_sectors);
666
667 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
668 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
669 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
670 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
671}
672
673EXPORT_SYMBOL(blk_queue_stack_limits);
674
675/**
676 * blk_queue_segment_boundary - set boundary rules for segment merging
677 * @q: the request queue for the device
678 * @mask: the memory boundary mask
679 **/
680void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
681{
682 if (mask < PAGE_CACHE_SIZE - 1) {
683 mask = PAGE_CACHE_SIZE - 1;
684 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
685 }
686
687 q->seg_boundary_mask = mask;
688}
689
690EXPORT_SYMBOL(blk_queue_segment_boundary);
691
692/**
693 * blk_queue_dma_alignment - set dma length and memory alignment
694 * @q: the request queue for the device
695 * @mask: alignment mask
696 *
697 * description:
698 * set required memory and length aligment for direct dma transactions.
699 * this is used when buiding direct io requests for the queue.
700 *
701 **/
702void blk_queue_dma_alignment(request_queue_t *q, int mask)
703{
704 q->dma_alignment = mask;
705}
706
707EXPORT_SYMBOL(blk_queue_dma_alignment);
708
709/**
710 * blk_queue_find_tag - find a request by its tag and queue
711 *
712 * @q: The request queue for the device
713 * @tag: The tag of the request
714 *
715 * Notes:
716 * Should be used when a device returns a tag and you want to match
717 * it with a request.
718 *
719 * no locks need be held.
720 **/
721struct request *blk_queue_find_tag(request_queue_t *q, int tag)
722{
723 struct blk_queue_tag *bqt = q->queue_tags;
724
Tejun Heoba025082005-08-05 13:28:11 -0700725 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700726 return NULL;
727
728 return bqt->tag_index[tag];
729}
730
731EXPORT_SYMBOL(blk_queue_find_tag);
732
733/**
734 * __blk_queue_free_tags - release tag maintenance info
735 * @q: the request queue for the device
736 *
737 * Notes:
738 * blk_cleanup_queue() will take care of calling this function, if tagging
739 * has been used. So there's no need to call this directly.
740 **/
741static void __blk_queue_free_tags(request_queue_t *q)
742{
743 struct blk_queue_tag *bqt = q->queue_tags;
744
745 if (!bqt)
746 return;
747
748 if (atomic_dec_and_test(&bqt->refcnt)) {
749 BUG_ON(bqt->busy);
750 BUG_ON(!list_empty(&bqt->busy_list));
751
752 kfree(bqt->tag_index);
753 bqt->tag_index = NULL;
754
755 kfree(bqt->tag_map);
756 bqt->tag_map = NULL;
757
758 kfree(bqt);
759 }
760
761 q->queue_tags = NULL;
762 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
763}
764
765/**
766 * blk_queue_free_tags - release tag maintenance info
767 * @q: the request queue for the device
768 *
769 * Notes:
770 * This is used to disabled tagged queuing to a device, yet leave
771 * queue in function.
772 **/
773void blk_queue_free_tags(request_queue_t *q)
774{
775 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
776}
777
778EXPORT_SYMBOL(blk_queue_free_tags);
779
780static int
781init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
782{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783 struct request **tag_index;
784 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700785 int nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
787 if (depth > q->nr_requests * 2) {
788 depth = q->nr_requests * 2;
789 printk(KERN_ERR "%s: adjusted depth to %d\n",
790 __FUNCTION__, depth);
791 }
792
793 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
794 if (!tag_index)
795 goto fail;
796
Tejun Heof7d37d02005-06-23 00:08:50 -0700797 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700798 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799 if (!tag_map)
800 goto fail;
801
802 memset(tag_index, 0, depth * sizeof(struct request *));
Tejun Heofa72b902005-06-23 00:08:49 -0700803 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
Tejun Heoba025082005-08-05 13:28:11 -0700804 tags->real_max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 tags->max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 tags->tag_index = tag_index;
807 tags->tag_map = tag_map;
808
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809 return 0;
810fail:
811 kfree(tag_index);
812 return -ENOMEM;
813}
814
815/**
816 * blk_queue_init_tags - initialize the queue tag info
817 * @q: the request queue for the device
818 * @depth: the maximum queue depth supported
819 * @tags: the tag to use
820 **/
821int blk_queue_init_tags(request_queue_t *q, int depth,
822 struct blk_queue_tag *tags)
823{
824 int rc;
825
826 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
827
828 if (!tags && !q->queue_tags) {
829 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
830 if (!tags)
831 goto fail;
832
833 if (init_tag_map(q, tags, depth))
834 goto fail;
835
836 INIT_LIST_HEAD(&tags->busy_list);
837 tags->busy = 0;
838 atomic_set(&tags->refcnt, 1);
839 } else if (q->queue_tags) {
840 if ((rc = blk_queue_resize_tags(q, depth)))
841 return rc;
842 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
843 return 0;
844 } else
845 atomic_inc(&tags->refcnt);
846
847 /*
848 * assign it, all done
849 */
850 q->queue_tags = tags;
851 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
852 return 0;
853fail:
854 kfree(tags);
855 return -ENOMEM;
856}
857
858EXPORT_SYMBOL(blk_queue_init_tags);
859
860/**
861 * blk_queue_resize_tags - change the queueing depth
862 * @q: the request queue for the device
863 * @new_depth: the new max command queueing depth
864 *
865 * Notes:
866 * Must be called with the queue lock held.
867 **/
868int blk_queue_resize_tags(request_queue_t *q, int new_depth)
869{
870 struct blk_queue_tag *bqt = q->queue_tags;
871 struct request **tag_index;
872 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700873 int max_depth, nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874
875 if (!bqt)
876 return -ENXIO;
877
878 /*
Tejun Heoba025082005-08-05 13:28:11 -0700879 * if we already have large enough real_max_depth. just
880 * adjust max_depth. *NOTE* as requests with tag value
881 * between new_depth and real_max_depth can be in-flight, tag
882 * map can not be shrunk blindly here.
883 */
884 if (new_depth <= bqt->real_max_depth) {
885 bqt->max_depth = new_depth;
886 return 0;
887 }
888
889 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700890 * save the old state info, so we can copy it back
891 */
892 tag_index = bqt->tag_index;
893 tag_map = bqt->tag_map;
Tejun Heoba025082005-08-05 13:28:11 -0700894 max_depth = bqt->real_max_depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895
896 if (init_tag_map(q, bqt, new_depth))
897 return -ENOMEM;
898
899 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
Tejun Heof7d37d02005-06-23 00:08:50 -0700900 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700901 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700902
903 kfree(tag_index);
904 kfree(tag_map);
905 return 0;
906}
907
908EXPORT_SYMBOL(blk_queue_resize_tags);
909
910/**
911 * blk_queue_end_tag - end tag operations for a request
912 * @q: the request queue for the device
913 * @rq: the request that has completed
914 *
915 * Description:
916 * Typically called when end_that_request_first() returns 0, meaning
917 * all transfers have been done for a request. It's important to call
918 * this function before end_that_request_last(), as that will put the
919 * request back on the free list thus corrupting the internal tag list.
920 *
921 * Notes:
922 * queue lock must be held.
923 **/
924void blk_queue_end_tag(request_queue_t *q, struct request *rq)
925{
926 struct blk_queue_tag *bqt = q->queue_tags;
927 int tag = rq->tag;
928
929 BUG_ON(tag == -1);
930
Tejun Heoba025082005-08-05 13:28:11 -0700931 if (unlikely(tag >= bqt->real_max_depth))
Tejun Heo040c9282005-06-23 00:08:51 -0700932 /*
933 * This can happen after tag depth has been reduced.
934 * FIXME: how about a warning or info message here?
935 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936 return;
937
938 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
Tejun Heo040c9282005-06-23 00:08:51 -0700939 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
940 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 return;
942 }
943
944 list_del_init(&rq->queuelist);
945 rq->flags &= ~REQ_QUEUED;
946 rq->tag = -1;
947
948 if (unlikely(bqt->tag_index[tag] == NULL))
Tejun Heo040c9282005-06-23 00:08:51 -0700949 printk(KERN_ERR "%s: tag %d is missing\n",
950 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951
952 bqt->tag_index[tag] = NULL;
953 bqt->busy--;
954}
955
956EXPORT_SYMBOL(blk_queue_end_tag);
957
958/**
959 * blk_queue_start_tag - find a free tag and assign it
960 * @q: the request queue for the device
961 * @rq: the block request that needs tagging
962 *
963 * Description:
964 * This can either be used as a stand-alone helper, or possibly be
965 * assigned as the queue &prep_rq_fn (in which case &struct request
966 * automagically gets a tag assigned). Note that this function
967 * assumes that any type of request can be queued! if this is not
968 * true for your device, you must check the request type before
969 * calling this function. The request will also be removed from
970 * the request queue, so it's the drivers responsibility to readd
971 * it if it should need to be restarted for some reason.
972 *
973 * Notes:
974 * queue lock must be held.
975 **/
976int blk_queue_start_tag(request_queue_t *q, struct request *rq)
977{
978 struct blk_queue_tag *bqt = q->queue_tags;
Tejun Heo2bf0fda2005-06-23 00:08:48 -0700979 int tag;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980
981 if (unlikely((rq->flags & REQ_QUEUED))) {
982 printk(KERN_ERR
Tejun Heo040c9282005-06-23 00:08:51 -0700983 "%s: request %p for device [%s] already tagged %d",
984 __FUNCTION__, rq,
985 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700986 BUG();
987 }
988
Tejun Heo2bf0fda2005-06-23 00:08:48 -0700989 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
990 if (tag >= bqt->max_depth)
991 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 __set_bit(tag, bqt->tag_map);
994
995 rq->flags |= REQ_QUEUED;
996 rq->tag = tag;
997 bqt->tag_index[tag] = rq;
998 blkdev_dequeue_request(rq);
999 list_add(&rq->queuelist, &bqt->busy_list);
1000 bqt->busy++;
1001 return 0;
1002}
1003
1004EXPORT_SYMBOL(blk_queue_start_tag);
1005
1006/**
1007 * blk_queue_invalidate_tags - invalidate all pending tags
1008 * @q: the request queue for the device
1009 *
1010 * Description:
1011 * Hardware conditions may dictate a need to stop all pending requests.
1012 * In this case, we will safely clear the block side of the tag queue and
1013 * readd all requests to the request queue in the right order.
1014 *
1015 * Notes:
1016 * queue lock must be held.
1017 **/
1018void blk_queue_invalidate_tags(request_queue_t *q)
1019{
1020 struct blk_queue_tag *bqt = q->queue_tags;
1021 struct list_head *tmp, *n;
1022 struct request *rq;
1023
1024 list_for_each_safe(tmp, n, &bqt->busy_list) {
1025 rq = list_entry_rq(tmp);
1026
1027 if (rq->tag == -1) {
Tejun Heo040c9282005-06-23 00:08:51 -07001028 printk(KERN_ERR
1029 "%s: bad tag found on list\n", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 list_del_init(&rq->queuelist);
1031 rq->flags &= ~REQ_QUEUED;
1032 } else
1033 blk_queue_end_tag(q, rq);
1034
1035 rq->flags &= ~REQ_STARTED;
1036 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1037 }
1038}
1039
1040EXPORT_SYMBOL(blk_queue_invalidate_tags);
1041
1042static char *rq_flags[] = {
1043 "REQ_RW",
1044 "REQ_FAILFAST",
Tejun Heo8922e162005-10-20 16:23:44 +02001045 "REQ_SORTED",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046 "REQ_SOFTBARRIER",
1047 "REQ_HARDBARRIER",
1048 "REQ_CMD",
1049 "REQ_NOMERGE",
1050 "REQ_STARTED",
1051 "REQ_DONTPREP",
1052 "REQ_QUEUED",
1053 "REQ_PC",
1054 "REQ_BLOCK_PC",
1055 "REQ_SENSE",
1056 "REQ_FAILED",
1057 "REQ_QUIET",
1058 "REQ_SPECIAL",
1059 "REQ_DRIVE_CMD",
1060 "REQ_DRIVE_TASK",
1061 "REQ_DRIVE_TASKFILE",
1062 "REQ_PREEMPT",
1063 "REQ_PM_SUSPEND",
1064 "REQ_PM_RESUME",
1065 "REQ_PM_SHUTDOWN",
1066};
1067
1068void blk_dump_rq_flags(struct request *rq, char *msg)
1069{
1070 int bit;
1071
1072 printk("%s: dev %s: flags = ", msg,
1073 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1074 bit = 0;
1075 do {
1076 if (rq->flags & (1 << bit))
1077 printk("%s ", rq_flags[bit]);
1078 bit++;
1079 } while (bit < __REQ_NR_BITS);
1080
1081 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1082 rq->nr_sectors,
1083 rq->current_nr_sectors);
1084 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1085
1086 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1087 printk("cdb: ");
1088 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1089 printk("%02x ", rq->cmd[bit]);
1090 printk("\n");
1091 }
1092}
1093
1094EXPORT_SYMBOL(blk_dump_rq_flags);
1095
1096void blk_recount_segments(request_queue_t *q, struct bio *bio)
1097{
1098 struct bio_vec *bv, *bvprv = NULL;
1099 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1100 int high, highprv = 1;
1101
1102 if (unlikely(!bio->bi_io_vec))
1103 return;
1104
1105 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1106 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1107 bio_for_each_segment(bv, bio, i) {
1108 /*
1109 * the trick here is making sure that a high page is never
1110 * considered part of another segment, since that might
1111 * change with the bounce page.
1112 */
1113 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1114 if (high || highprv)
1115 goto new_hw_segment;
1116 if (cluster) {
1117 if (seg_size + bv->bv_len > q->max_segment_size)
1118 goto new_segment;
1119 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1120 goto new_segment;
1121 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1122 goto new_segment;
1123 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1124 goto new_hw_segment;
1125
1126 seg_size += bv->bv_len;
1127 hw_seg_size += bv->bv_len;
1128 bvprv = bv;
1129 continue;
1130 }
1131new_segment:
1132 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1133 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1134 hw_seg_size += bv->bv_len;
1135 } else {
1136new_hw_segment:
1137 if (hw_seg_size > bio->bi_hw_front_size)
1138 bio->bi_hw_front_size = hw_seg_size;
1139 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1140 nr_hw_segs++;
1141 }
1142
1143 nr_phys_segs++;
1144 bvprv = bv;
1145 seg_size = bv->bv_len;
1146 highprv = high;
1147 }
1148 if (hw_seg_size > bio->bi_hw_back_size)
1149 bio->bi_hw_back_size = hw_seg_size;
1150 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1151 bio->bi_hw_front_size = hw_seg_size;
1152 bio->bi_phys_segments = nr_phys_segs;
1153 bio->bi_hw_segments = nr_hw_segs;
1154 bio->bi_flags |= (1 << BIO_SEG_VALID);
1155}
1156
1157
Adrian Bunk93d17d32005-06-25 14:59:10 -07001158static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 struct bio *nxt)
1160{
1161 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1162 return 0;
1163
1164 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1165 return 0;
1166 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1167 return 0;
1168
1169 /*
1170 * bio and nxt are contigous in memory, check if the queue allows
1171 * these two to be merged into one
1172 */
1173 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1174 return 1;
1175
1176 return 0;
1177}
1178
Adrian Bunk93d17d32005-06-25 14:59:10 -07001179static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180 struct bio *nxt)
1181{
1182 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1183 blk_recount_segments(q, bio);
1184 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1185 blk_recount_segments(q, nxt);
1186 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1187 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1188 return 0;
1189 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1190 return 0;
1191
1192 return 1;
1193}
1194
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195/*
1196 * map a request to scatterlist, return number of sg entries setup. Caller
1197 * must make sure sg can hold rq->nr_phys_segments entries
1198 */
1199int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1200{
1201 struct bio_vec *bvec, *bvprv;
1202 struct bio *bio;
1203 int nsegs, i, cluster;
1204
1205 nsegs = 0;
1206 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1207
1208 /*
1209 * for each bio in rq
1210 */
1211 bvprv = NULL;
1212 rq_for_each_bio(bio, rq) {
1213 /*
1214 * for each segment in bio
1215 */
1216 bio_for_each_segment(bvec, bio, i) {
1217 int nbytes = bvec->bv_len;
1218
1219 if (bvprv && cluster) {
1220 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1221 goto new_segment;
1222
1223 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1224 goto new_segment;
1225 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1226 goto new_segment;
1227
1228 sg[nsegs - 1].length += nbytes;
1229 } else {
1230new_segment:
1231 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1232 sg[nsegs].page = bvec->bv_page;
1233 sg[nsegs].length = nbytes;
1234 sg[nsegs].offset = bvec->bv_offset;
1235
1236 nsegs++;
1237 }
1238 bvprv = bvec;
1239 } /* segments in bio */
1240 } /* bios in rq */
1241
1242 return nsegs;
1243}
1244
1245EXPORT_SYMBOL(blk_rq_map_sg);
1246
1247/*
1248 * the standard queue merge functions, can be overridden with device
1249 * specific ones if so desired
1250 */
1251
1252static inline int ll_new_mergeable(request_queue_t *q,
1253 struct request *req,
1254 struct bio *bio)
1255{
1256 int nr_phys_segs = bio_phys_segments(q, bio);
1257
1258 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1259 req->flags |= REQ_NOMERGE;
1260 if (req == q->last_merge)
1261 q->last_merge = NULL;
1262 return 0;
1263 }
1264
1265 /*
1266 * A hw segment is just getting larger, bump just the phys
1267 * counter.
1268 */
1269 req->nr_phys_segments += nr_phys_segs;
1270 return 1;
1271}
1272
1273static inline int ll_new_hw_segment(request_queue_t *q,
1274 struct request *req,
1275 struct bio *bio)
1276{
1277 int nr_hw_segs = bio_hw_segments(q, bio);
1278 int nr_phys_segs = bio_phys_segments(q, bio);
1279
1280 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1281 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1282 req->flags |= REQ_NOMERGE;
1283 if (req == q->last_merge)
1284 q->last_merge = NULL;
1285 return 0;
1286 }
1287
1288 /*
1289 * This will form the start of a new hw segment. Bump both
1290 * counters.
1291 */
1292 req->nr_hw_segments += nr_hw_segs;
1293 req->nr_phys_segments += nr_phys_segs;
1294 return 1;
1295}
1296
1297static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1298 struct bio *bio)
1299{
1300 int len;
1301
1302 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1303 req->flags |= REQ_NOMERGE;
1304 if (req == q->last_merge)
1305 q->last_merge = NULL;
1306 return 0;
1307 }
1308 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1309 blk_recount_segments(q, req->biotail);
1310 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1311 blk_recount_segments(q, bio);
1312 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1313 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1314 !BIOVEC_VIRT_OVERSIZE(len)) {
1315 int mergeable = ll_new_mergeable(q, req, bio);
1316
1317 if (mergeable) {
1318 if (req->nr_hw_segments == 1)
1319 req->bio->bi_hw_front_size = len;
1320 if (bio->bi_hw_segments == 1)
1321 bio->bi_hw_back_size = len;
1322 }
1323 return mergeable;
1324 }
1325
1326 return ll_new_hw_segment(q, req, bio);
1327}
1328
1329static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1330 struct bio *bio)
1331{
1332 int len;
1333
1334 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1335 req->flags |= REQ_NOMERGE;
1336 if (req == q->last_merge)
1337 q->last_merge = NULL;
1338 return 0;
1339 }
1340 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1341 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1342 blk_recount_segments(q, bio);
1343 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1344 blk_recount_segments(q, req->bio);
1345 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1346 !BIOVEC_VIRT_OVERSIZE(len)) {
1347 int mergeable = ll_new_mergeable(q, req, bio);
1348
1349 if (mergeable) {
1350 if (bio->bi_hw_segments == 1)
1351 bio->bi_hw_front_size = len;
1352 if (req->nr_hw_segments == 1)
1353 req->biotail->bi_hw_back_size = len;
1354 }
1355 return mergeable;
1356 }
1357
1358 return ll_new_hw_segment(q, req, bio);
1359}
1360
1361static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1362 struct request *next)
1363{
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001364 int total_phys_segments;
1365 int total_hw_segments;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366
1367 /*
1368 * First check if the either of the requests are re-queued
1369 * requests. Can't merge them if they are.
1370 */
1371 if (req->special || next->special)
1372 return 0;
1373
1374 /*
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001375 * Will it become too large?
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376 */
1377 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1378 return 0;
1379
1380 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1381 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1382 total_phys_segments--;
1383
1384 if (total_phys_segments > q->max_phys_segments)
1385 return 0;
1386
1387 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1388 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1389 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1390 /*
1391 * propagate the combined length to the end of the requests
1392 */
1393 if (req->nr_hw_segments == 1)
1394 req->bio->bi_hw_front_size = len;
1395 if (next->nr_hw_segments == 1)
1396 next->biotail->bi_hw_back_size = len;
1397 total_hw_segments--;
1398 }
1399
1400 if (total_hw_segments > q->max_hw_segments)
1401 return 0;
1402
1403 /* Merge is OK... */
1404 req->nr_phys_segments = total_phys_segments;
1405 req->nr_hw_segments = total_hw_segments;
1406 return 1;
1407}
1408
1409/*
1410 * "plug" the device if there are no outstanding requests: this will
1411 * force the transfer to start only after we have put all the requests
1412 * on the list.
1413 *
1414 * This is called with interrupts off and no requests on the queue and
1415 * with the queue lock held.
1416 */
1417void blk_plug_device(request_queue_t *q)
1418{
1419 WARN_ON(!irqs_disabled());
1420
1421 /*
1422 * don't plug a stopped queue, it must be paired with blk_start_queue()
1423 * which will restart the queueing
1424 */
1425 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1426 return;
1427
1428 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1429 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1430}
1431
1432EXPORT_SYMBOL(blk_plug_device);
1433
1434/*
1435 * remove the queue from the plugged list, if present. called with
1436 * queue lock held and interrupts disabled.
1437 */
1438int blk_remove_plug(request_queue_t *q)
1439{
1440 WARN_ON(!irqs_disabled());
1441
1442 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1443 return 0;
1444
1445 del_timer(&q->unplug_timer);
1446 return 1;
1447}
1448
1449EXPORT_SYMBOL(blk_remove_plug);
1450
1451/*
1452 * remove the plug and let it rip..
1453 */
1454void __generic_unplug_device(request_queue_t *q)
1455{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001456 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 return;
1458
1459 if (!blk_remove_plug(q))
1460 return;
1461
Jens Axboe22e2c502005-06-27 10:55:12 +02001462 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463}
1464EXPORT_SYMBOL(__generic_unplug_device);
1465
1466/**
1467 * generic_unplug_device - fire a request queue
1468 * @q: The &request_queue_t in question
1469 *
1470 * Description:
1471 * Linux uses plugging to build bigger requests queues before letting
1472 * the device have at them. If a queue is plugged, the I/O scheduler
1473 * is still adding and merging requests on the queue. Once the queue
1474 * gets unplugged, the request_fn defined for the queue is invoked and
1475 * transfers started.
1476 **/
1477void generic_unplug_device(request_queue_t *q)
1478{
1479 spin_lock_irq(q->queue_lock);
1480 __generic_unplug_device(q);
1481 spin_unlock_irq(q->queue_lock);
1482}
1483EXPORT_SYMBOL(generic_unplug_device);
1484
1485static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1486 struct page *page)
1487{
1488 request_queue_t *q = bdi->unplug_io_data;
1489
1490 /*
1491 * devices don't necessarily have an ->unplug_fn defined
1492 */
1493 if (q->unplug_fn)
1494 q->unplug_fn(q);
1495}
1496
1497static void blk_unplug_work(void *data)
1498{
1499 request_queue_t *q = data;
1500
1501 q->unplug_fn(q);
1502}
1503
1504static void blk_unplug_timeout(unsigned long data)
1505{
1506 request_queue_t *q = (request_queue_t *)data;
1507
1508 kblockd_schedule_work(&q->unplug_work);
1509}
1510
1511/**
1512 * blk_start_queue - restart a previously stopped queue
1513 * @q: The &request_queue_t in question
1514 *
1515 * Description:
1516 * blk_start_queue() will clear the stop flag on the queue, and call
1517 * the request_fn for the queue if it was in a stopped state when
1518 * entered. Also see blk_stop_queue(). Queue lock must be held.
1519 **/
1520void blk_start_queue(request_queue_t *q)
1521{
1522 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1523
1524 /*
1525 * one level of recursion is ok and is much faster than kicking
1526 * the unplug handling
1527 */
1528 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1529 q->request_fn(q);
1530 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1531 } else {
1532 blk_plug_device(q);
1533 kblockd_schedule_work(&q->unplug_work);
1534 }
1535}
1536
1537EXPORT_SYMBOL(blk_start_queue);
1538
1539/**
1540 * blk_stop_queue - stop a queue
1541 * @q: The &request_queue_t in question
1542 *
1543 * Description:
1544 * The Linux block layer assumes that a block driver will consume all
1545 * entries on the request queue when the request_fn strategy is called.
1546 * Often this will not happen, because of hardware limitations (queue
1547 * depth settings). If a device driver gets a 'queue full' response,
1548 * or if it simply chooses not to queue more I/O at one point, it can
1549 * call this function to prevent the request_fn from being called until
1550 * the driver has signalled it's ready to go again. This happens by calling
1551 * blk_start_queue() to restart queue operations. Queue lock must be held.
1552 **/
1553void blk_stop_queue(request_queue_t *q)
1554{
1555 blk_remove_plug(q);
1556 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1557}
1558EXPORT_SYMBOL(blk_stop_queue);
1559
1560/**
1561 * blk_sync_queue - cancel any pending callbacks on a queue
1562 * @q: the queue
1563 *
1564 * Description:
1565 * The block layer may perform asynchronous callback activity
1566 * on a queue, such as calling the unplug function after a timeout.
1567 * A block device may call blk_sync_queue to ensure that any
1568 * such activity is cancelled, thus allowing it to release resources
1569 * the the callbacks might use. The caller must already have made sure
1570 * that its ->make_request_fn will not re-add plugging prior to calling
1571 * this function.
1572 *
1573 */
1574void blk_sync_queue(struct request_queue *q)
1575{
1576 del_timer_sync(&q->unplug_timer);
1577 kblockd_flush();
1578}
1579EXPORT_SYMBOL(blk_sync_queue);
1580
1581/**
1582 * blk_run_queue - run a single device queue
1583 * @q: The queue to run
1584 */
1585void blk_run_queue(struct request_queue *q)
1586{
1587 unsigned long flags;
1588
1589 spin_lock_irqsave(q->queue_lock, flags);
1590 blk_remove_plug(q);
Ken Chena2997382005-04-16 15:25:43 -07001591 if (!elv_queue_empty(q))
1592 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001593 spin_unlock_irqrestore(q->queue_lock, flags);
1594}
1595EXPORT_SYMBOL(blk_run_queue);
1596
1597/**
1598 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1599 * @q: the request queue to be released
1600 *
1601 * Description:
1602 * blk_cleanup_queue is the pair to blk_init_queue() or
1603 * blk_queue_make_request(). It should be called when a request queue is
1604 * being released; typically when a block device is being de-registered.
1605 * Currently, its primary task it to free all the &struct request
1606 * structures that were allocated to the queue and the queue itself.
1607 *
1608 * Caveat:
1609 * Hopefully the low level driver will have finished any
1610 * outstanding requests first...
1611 **/
1612void blk_cleanup_queue(request_queue_t * q)
1613{
1614 struct request_list *rl = &q->rq;
1615
1616 if (!atomic_dec_and_test(&q->refcnt))
1617 return;
1618
1619 if (q->elevator)
1620 elevator_exit(q->elevator);
1621
1622 blk_sync_queue(q);
1623
1624 if (rl->rq_pool)
1625 mempool_destroy(rl->rq_pool);
1626
1627 if (q->queue_tags)
1628 __blk_queue_free_tags(q);
1629
1630 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1631
1632 kmem_cache_free(requestq_cachep, q);
1633}
1634
1635EXPORT_SYMBOL(blk_cleanup_queue);
1636
1637static int blk_init_free_list(request_queue_t *q)
1638{
1639 struct request_list *rl = &q->rq;
1640
1641 rl->count[READ] = rl->count[WRITE] = 0;
1642 rl->starved[READ] = rl->starved[WRITE] = 0;
1643 init_waitqueue_head(&rl->wait[READ]);
1644 init_waitqueue_head(&rl->wait[WRITE]);
1645 init_waitqueue_head(&rl->drain);
1646
Christoph Lameter19460892005-06-23 00:08:19 -07001647 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1648 mempool_free_slab, request_cachep, q->node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649
1650 if (!rl->rq_pool)
1651 return -ENOMEM;
1652
1653 return 0;
1654}
1655
1656static int __make_request(request_queue_t *, struct bio *);
1657
1658request_queue_t *blk_alloc_queue(int gfp_mask)
1659{
Christoph Lameter19460892005-06-23 00:08:19 -07001660 return blk_alloc_queue_node(gfp_mask, -1);
1661}
1662EXPORT_SYMBOL(blk_alloc_queue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663
Christoph Lameter19460892005-06-23 00:08:19 -07001664request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1665{
1666 request_queue_t *q;
1667
1668 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669 if (!q)
1670 return NULL;
1671
1672 memset(q, 0, sizeof(*q));
1673 init_timer(&q->unplug_timer);
1674 atomic_set(&q->refcnt, 1);
1675
1676 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1677 q->backing_dev_info.unplug_io_data = q;
1678
1679 return q;
1680}
Christoph Lameter19460892005-06-23 00:08:19 -07001681EXPORT_SYMBOL(blk_alloc_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682
1683/**
1684 * blk_init_queue - prepare a request queue for use with a block device
1685 * @rfn: The function to be called to process requests that have been
1686 * placed on the queue.
1687 * @lock: Request queue spin lock
1688 *
1689 * Description:
1690 * If a block device wishes to use the standard request handling procedures,
1691 * which sorts requests and coalesces adjacent requests, then it must
1692 * call blk_init_queue(). The function @rfn will be called when there
1693 * are requests on the queue that need to be processed. If the device
1694 * supports plugging, then @rfn may not be called immediately when requests
1695 * are available on the queue, but may be called at some time later instead.
1696 * Plugged queues are generally unplugged when a buffer belonging to one
1697 * of the requests on the queue is needed, or due to memory pressure.
1698 *
1699 * @rfn is not required, or even expected, to remove all requests off the
1700 * queue, but only as many as it can handle at a time. If it does leave
1701 * requests on the queue, it is responsible for arranging that the requests
1702 * get dealt with eventually.
1703 *
1704 * The queue spin lock must be held while manipulating the requests on the
1705 * request queue.
1706 *
1707 * Function returns a pointer to the initialized request queue, or NULL if
1708 * it didn't succeed.
1709 *
1710 * Note:
1711 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1712 * when the block device is deactivated (such as at module unload).
1713 **/
Christoph Lameter19460892005-06-23 00:08:19 -07001714
Linus Torvalds1da177e2005-04-16 15:20:36 -07001715request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1716{
Christoph Lameter19460892005-06-23 00:08:19 -07001717 return blk_init_queue_node(rfn, lock, -1);
1718}
1719EXPORT_SYMBOL(blk_init_queue);
1720
1721request_queue_t *
1722blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1723{
1724 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001725
1726 if (!q)
1727 return NULL;
1728
Christoph Lameter19460892005-06-23 00:08:19 -07001729 q->node = node_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001730 if (blk_init_free_list(q))
1731 goto out_init;
1732
152587d2005-04-12 16:22:06 -05001733 /*
1734 * if caller didn't supply a lock, they get per-queue locking with
1735 * our embedded lock
1736 */
1737 if (!lock) {
1738 spin_lock_init(&q->__queue_lock);
1739 lock = &q->__queue_lock;
1740 }
1741
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742 q->request_fn = rfn;
1743 q->back_merge_fn = ll_back_merge_fn;
1744 q->front_merge_fn = ll_front_merge_fn;
1745 q->merge_requests_fn = ll_merge_requests_fn;
1746 q->prep_rq_fn = NULL;
1747 q->unplug_fn = generic_unplug_device;
1748 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1749 q->queue_lock = lock;
1750
1751 blk_queue_segment_boundary(q, 0xffffffff);
1752
1753 blk_queue_make_request(q, __make_request);
1754 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1755
1756 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1757 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1758
1759 /*
1760 * all done
1761 */
1762 if (!elevator_init(q, NULL)) {
1763 blk_queue_congestion_threshold(q);
1764 return q;
1765 }
1766
1767 blk_cleanup_queue(q);
1768out_init:
1769 kmem_cache_free(requestq_cachep, q);
1770 return NULL;
1771}
Christoph Lameter19460892005-06-23 00:08:19 -07001772EXPORT_SYMBOL(blk_init_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773
1774int blk_get_queue(request_queue_t *q)
1775{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001776 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 atomic_inc(&q->refcnt);
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
1784EXPORT_SYMBOL(blk_get_queue);
1785
1786static inline void blk_free_request(request_queue_t *q, struct request *rq)
1787{
1788 elv_put_request(q, rq);
1789 mempool_free(rq, q->rq.rq_pool);
1790}
1791
Jens Axboe22e2c502005-06-27 10:55:12 +02001792static inline struct request *
1793blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794{
1795 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1796
1797 if (!rq)
1798 return NULL;
1799
1800 /*
1801 * first three bits are identical in rq->flags and bio->bi_rw,
1802 * see bio.h and blkdev.h
1803 */
1804 rq->flags = rw;
1805
Jens Axboe22e2c502005-06-27 10:55:12 +02001806 if (!elv_set_request(q, rq, bio, gfp_mask))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 return rq;
1808
1809 mempool_free(rq, q->rq.rq_pool);
1810 return NULL;
1811}
1812
1813/*
1814 * ioc_batching returns true if the ioc is a valid batching request and
1815 * should be given priority access to a request.
1816 */
1817static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1818{
1819 if (!ioc)
1820 return 0;
1821
1822 /*
1823 * Make sure the process is able to allocate at least 1 request
1824 * even if the batch times out, otherwise we could theoretically
1825 * lose wakeups.
1826 */
1827 return ioc->nr_batch_requests == q->nr_batching ||
1828 (ioc->nr_batch_requests > 0
1829 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1830}
1831
1832/*
1833 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1834 * will cause the process to be a "batcher" on all queues in the system. This
1835 * is the behaviour we want though - once it gets a wakeup it should be given
1836 * a nice run.
1837 */
Adrian Bunk93d17d32005-06-25 14:59:10 -07001838static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839{
1840 if (!ioc || ioc_batching(q, ioc))
1841 return;
1842
1843 ioc->nr_batch_requests = q->nr_batching;
1844 ioc->last_waited = jiffies;
1845}
1846
1847static void __freed_request(request_queue_t *q, int rw)
1848{
1849 struct request_list *rl = &q->rq;
1850
1851 if (rl->count[rw] < queue_congestion_off_threshold(q))
1852 clear_queue_congested(q, rw);
1853
1854 if (rl->count[rw] + 1 <= q->nr_requests) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 if (waitqueue_active(&rl->wait[rw]))
1856 wake_up(&rl->wait[rw]);
1857
1858 blk_clear_queue_full(q, rw);
1859 }
1860}
1861
1862/*
1863 * A request has just been released. Account for it, update the full and
1864 * congestion status, wake up any waiters. Called under q->queue_lock.
1865 */
1866static void freed_request(request_queue_t *q, int rw)
1867{
1868 struct request_list *rl = &q->rq;
1869
1870 rl->count[rw]--;
1871
1872 __freed_request(q, rw);
1873
1874 if (unlikely(rl->starved[rw ^ 1]))
1875 __freed_request(q, rw ^ 1);
1876
1877 if (!rl->count[READ] && !rl->count[WRITE]) {
1878 smp_mb();
1879 if (unlikely(waitqueue_active(&rl->drain)))
1880 wake_up(&rl->drain);
1881 }
1882}
1883
1884#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1885/*
Nick Piggind6344532005-06-28 20:45:14 -07001886 * Get a free request, queue_lock must be held.
1887 * Returns NULL on failure, with queue_lock held.
1888 * Returns !NULL on success, with queue_lock *not held*.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001890static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1891 int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001892{
1893 struct request *rq = NULL;
1894 struct request_list *rl = &q->rq;
Nick Pigginfb3cc432005-06-28 20:45:15 -07001895 struct io_context *ioc = current_io_context(GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896
1897 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1898 goto out;
1899
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 if (rl->count[rw]+1 >= q->nr_requests) {
1901 /*
1902 * The queue will fill after this allocation, so set it as
1903 * full, and mark this process as "batching". This process
1904 * will be allowed to complete a batch of requests, others
1905 * will be blocked.
1906 */
1907 if (!blk_queue_full(q, rw)) {
1908 ioc_set_batching(q, ioc);
1909 blk_set_queue_full(q, rw);
1910 }
1911 }
1912
Jens Axboe22e2c502005-06-27 10:55:12 +02001913 switch (elv_may_queue(q, rw, bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914 case ELV_MQUEUE_NO:
1915 goto rq_starved;
1916 case ELV_MQUEUE_MAY:
1917 break;
1918 case ELV_MQUEUE_MUST:
1919 goto get_rq;
1920 }
1921
1922 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1923 /*
1924 * The queue is full and the allocating process is not a
1925 * "batcher", and not exempted by the IO scheduler
1926 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 goto out;
1928 }
1929
1930get_rq:
Jens Axboe082cf692005-06-28 16:35:11 +02001931 /*
1932 * Only allow batching queuers to allocate up to 50% over the defined
1933 * limit of requests, otherwise we could have thousands of requests
1934 * allocated with any setting of ->nr_requests
1935 */
Hugh Dickinsfd782a42005-06-29 15:15:40 +01001936 if (rl->count[rw] >= (3 * q->nr_requests / 2))
Jens Axboe082cf692005-06-28 16:35:11 +02001937 goto out;
Hugh Dickinsfd782a42005-06-29 15:15:40 +01001938
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939 rl->count[rw]++;
1940 rl->starved[rw] = 0;
1941 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1942 set_queue_congested(q, rw);
1943 spin_unlock_irq(q->queue_lock);
1944
Jens Axboe22e2c502005-06-27 10:55:12 +02001945 rq = blk_alloc_request(q, rw, bio, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 if (!rq) {
1947 /*
1948 * Allocation failed presumably due to memory. Undo anything
1949 * we might have messed up.
1950 *
1951 * Allocating task should really be put onto the front of the
1952 * wait queue, but this is pretty rare.
1953 */
1954 spin_lock_irq(q->queue_lock);
1955 freed_request(q, rw);
1956
1957 /*
1958 * in the very unlikely event that allocation failed and no
1959 * requests for this direction was pending, mark us starved
1960 * so that freeing of a request in the other direction will
1961 * notice us. another possible fix would be to split the
1962 * rq mempool into READ and WRITE
1963 */
1964rq_starved:
1965 if (unlikely(rl->count[rw] == 0))
1966 rl->starved[rw] = 1;
1967
Linus Torvalds1da177e2005-04-16 15:20:36 -07001968 goto out;
1969 }
1970
1971 if (ioc_batching(q, ioc))
1972 ioc->nr_batch_requests--;
1973
1974 rq_init(q, rq);
1975 rq->rl = rl;
1976out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977 return rq;
1978}
1979
1980/*
1981 * No available requests for this queue, unplug the device and wait for some
1982 * requests to become available.
Nick Piggind6344532005-06-28 20:45:14 -07001983 *
1984 * Called with q->queue_lock held, and returns with it unlocked.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001986static struct request *get_request_wait(request_queue_t *q, int rw,
1987 struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001988{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 struct request *rq;
1990
Nick Piggin450991b2005-06-28 20:45:13 -07001991 rq = get_request(q, rw, bio, GFP_NOIO);
1992 while (!rq) {
1993 DEFINE_WAIT(wait);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001994 struct request_list *rl = &q->rq;
1995
1996 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1997 TASK_UNINTERRUPTIBLE);
1998
Jens Axboe22e2c502005-06-27 10:55:12 +02001999 rq = get_request(q, rw, bio, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002000
2001 if (!rq) {
2002 struct io_context *ioc;
2003
Nick Piggind6344532005-06-28 20:45:14 -07002004 __generic_unplug_device(q);
2005 spin_unlock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 io_schedule();
2007
2008 /*
2009 * After sleeping, we become a "batching" process and
2010 * will be able to allocate at least one request, and
2011 * up to a big batch of them for a small period time.
2012 * See ioc_batching, ioc_set_batching
2013 */
Nick Pigginfb3cc432005-06-28 20:45:15 -07002014 ioc = current_io_context(GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 ioc_set_batching(q, ioc);
Nick Piggind6344532005-06-28 20:45:14 -07002016
2017 spin_lock_irq(q->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 }
2019 finish_wait(&rl->wait[rw], &wait);
Nick Piggin450991b2005-06-28 20:45:13 -07002020 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002021
2022 return rq;
2023}
2024
2025struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2026{
2027 struct request *rq;
2028
2029 BUG_ON(rw != READ && rw != WRITE);
2030
Nick Piggind6344532005-06-28 20:45:14 -07002031 spin_lock_irq(q->queue_lock);
2032 if (gfp_mask & __GFP_WAIT) {
Jens Axboe22e2c502005-06-27 10:55:12 +02002033 rq = get_request_wait(q, rw, NULL);
Nick Piggind6344532005-06-28 20:45:14 -07002034 } else {
Jens Axboe22e2c502005-06-27 10:55:12 +02002035 rq = get_request(q, rw, NULL, gfp_mask);
Nick Piggind6344532005-06-28 20:45:14 -07002036 if (!rq)
2037 spin_unlock_irq(q->queue_lock);
2038 }
2039 /* q->queue_lock is unlocked at this point */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040
2041 return rq;
2042}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043EXPORT_SYMBOL(blk_get_request);
2044
2045/**
2046 * blk_requeue_request - put a request back on queue
2047 * @q: request queue where request should be inserted
2048 * @rq: request to be inserted
2049 *
2050 * Description:
2051 * Drivers often keep queueing requests until the hardware cannot accept
2052 * more, when that condition happens we need to put the request back
2053 * on the queue. Must be called with queue lock held.
2054 */
2055void blk_requeue_request(request_queue_t *q, struct request *rq)
2056{
2057 if (blk_rq_tagged(rq))
2058 blk_queue_end_tag(q, rq);
2059
2060 elv_requeue_request(q, rq);
2061}
2062
2063EXPORT_SYMBOL(blk_requeue_request);
2064
2065/**
2066 * blk_insert_request - insert a special request in to a request queue
2067 * @q: request queue where request should be inserted
2068 * @rq: request to be inserted
2069 * @at_head: insert request at head or tail of queue
2070 * @data: private data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071 *
2072 * Description:
2073 * Many block devices need to execute commands asynchronously, so they don't
2074 * block the whole kernel from preemption during request execution. This is
2075 * accomplished normally by inserting aritficial requests tagged as
2076 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2077 * scheduled for actual execution by the request queue.
2078 *
2079 * We have the option of inserting the head or the tail of the queue.
2080 * Typically we use the tail for new ioctls and so forth. We use the head
2081 * of the queue for things like a QUEUE_FULL message from a device, or a
2082 * host that is unable to accept a particular command.
2083 */
2084void blk_insert_request(request_queue_t *q, struct request *rq,
Tejun Heo 867d1192005-04-24 02:06:05 -05002085 int at_head, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086{
Tejun Heo 867d1192005-04-24 02:06:05 -05002087 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 unsigned long flags;
2089
2090 /*
2091 * tell I/O scheduler that this isn't a regular read/write (ie it
2092 * must not attempt merges on this) and that it acts as a soft
2093 * barrier
2094 */
2095 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2096
2097 rq->special = data;
2098
2099 spin_lock_irqsave(q->queue_lock, flags);
2100
2101 /*
2102 * If command is tagged, release the tag
2103 */
Tejun Heo 867d1192005-04-24 02:06:05 -05002104 if (blk_rq_tagged(rq))
2105 blk_queue_end_tag(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106
Tejun Heo 867d1192005-04-24 02:06:05 -05002107 drive_stat_acct(rq, rq->nr_sectors, 1);
2108 __elv_add_request(q, rq, where, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 if (blk_queue_plugged(q))
2111 __generic_unplug_device(q);
2112 else
2113 q->request_fn(q);
2114 spin_unlock_irqrestore(q->queue_lock, flags);
2115}
2116
2117EXPORT_SYMBOL(blk_insert_request);
2118
2119/**
2120 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2121 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002122 * @rq: request structure to fill
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123 * @ubuf: the user buffer
2124 * @len: length of user data
2125 *
2126 * Description:
2127 * Data will be mapped directly for zero copy io, if possible. Otherwise
2128 * a kernel bounce buffer is used.
2129 *
2130 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2131 * still in process context.
2132 *
2133 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2134 * before being submitted to the device, as pages mapped may be out of
2135 * reach. It's the callers responsibility to make sure this happens. The
2136 * original bio must be passed back in to blk_rq_unmap_user() for proper
2137 * unmapping.
2138 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002139int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2140 unsigned int len)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141{
2142 unsigned long uaddr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 struct bio *bio;
Jens Axboedd1cab92005-06-20 14:06:01 +02002144 int reading;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145
2146 if (len > (q->max_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002147 return -EINVAL;
2148 if (!len || !ubuf)
2149 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150
Jens Axboedd1cab92005-06-20 14:06:01 +02002151 reading = rq_data_dir(rq) == READ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002152
2153 /*
2154 * if alignment requirement is satisfied, map in user pages for
2155 * direct dma. else, set up kernel bounce buffers
2156 */
2157 uaddr = (unsigned long) ubuf;
2158 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
Jens Axboedd1cab92005-06-20 14:06:01 +02002159 bio = bio_map_user(q, NULL, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 else
Jens Axboedd1cab92005-06-20 14:06:01 +02002161 bio = bio_copy_user(q, uaddr, len, reading);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162
2163 if (!IS_ERR(bio)) {
2164 rq->bio = rq->biotail = bio;
2165 blk_rq_bio_prep(q, rq, bio);
2166
2167 rq->buffer = rq->data = NULL;
2168 rq->data_len = len;
Jens Axboedd1cab92005-06-20 14:06:01 +02002169 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170 }
2171
2172 /*
2173 * bio is the err-ptr
2174 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002175 return PTR_ERR(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002176}
2177
2178EXPORT_SYMBOL(blk_rq_map_user);
2179
2180/**
James Bottomley f1970ba2005-06-20 14:06:52 +02002181 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2182 * @q: request queue where request should be inserted
2183 * @rq: request to map data to
2184 * @iov: pointer to the iovec
2185 * @iov_count: number of elements in the iovec
2186 *
2187 * Description:
2188 * Data will be mapped directly for zero copy io, if possible. Otherwise
2189 * a kernel bounce buffer is used.
2190 *
2191 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2192 * still in process context.
2193 *
2194 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2195 * before being submitted to the device, as pages mapped may be out of
2196 * reach. It's the callers responsibility to make sure this happens. The
2197 * original bio must be passed back in to blk_rq_unmap_user() for proper
2198 * unmapping.
2199 */
2200int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2201 struct sg_iovec *iov, int iov_count)
2202{
2203 struct bio *bio;
2204
2205 if (!iov || iov_count <= 0)
2206 return -EINVAL;
2207
2208 /* we don't allow misaligned data like bio_map_user() does. If the
2209 * user is using sg, they're expected to know the alignment constraints
2210 * and respect them accordingly */
2211 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2212 if (IS_ERR(bio))
2213 return PTR_ERR(bio);
2214
2215 rq->bio = rq->biotail = bio;
2216 blk_rq_bio_prep(q, rq, bio);
2217 rq->buffer = rq->data = NULL;
2218 rq->data_len = bio->bi_size;
2219 return 0;
2220}
2221
2222EXPORT_SYMBOL(blk_rq_map_user_iov);
2223
2224/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 * blk_rq_unmap_user - unmap a request with user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002226 * @bio: bio to be unmapped
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227 * @ulen: length of user buffer
2228 *
2229 * Description:
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002230 * Unmap a bio previously mapped by blk_rq_map_user().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002232int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233{
2234 int ret = 0;
2235
2236 if (bio) {
2237 if (bio_flagged(bio, BIO_USER_MAPPED))
2238 bio_unmap_user(bio);
2239 else
2240 ret = bio_uncopy_user(bio);
2241 }
2242
Jens Axboedd1cab92005-06-20 14:06:01 +02002243 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244}
2245
2246EXPORT_SYMBOL(blk_rq_unmap_user);
2247
2248/**
Mike Christie df46b9a2005-06-20 14:04:44 +02002249 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2250 * @q: request queue where request should be inserted
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002251 * @rq: request to fill
Mike Christie df46b9a2005-06-20 14:04:44 +02002252 * @kbuf: the kernel buffer
2253 * @len: length of user data
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002254 * @gfp_mask: memory allocation flags
Mike Christie df46b9a2005-06-20 14:04:44 +02002255 */
Jens Axboedd1cab92005-06-20 14:06:01 +02002256int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2257 unsigned int len, unsigned int gfp_mask)
Mike Christie df46b9a2005-06-20 14:04:44 +02002258{
Mike Christie df46b9a2005-06-20 14:04:44 +02002259 struct bio *bio;
2260
2261 if (len > (q->max_sectors << 9))
Jens Axboedd1cab92005-06-20 14:06:01 +02002262 return -EINVAL;
2263 if (!len || !kbuf)
2264 return -EINVAL;
Mike Christie df46b9a2005-06-20 14:04:44 +02002265
2266 bio = bio_map_kern(q, kbuf, len, gfp_mask);
Jens Axboedd1cab92005-06-20 14:06:01 +02002267 if (IS_ERR(bio))
2268 return PTR_ERR(bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002269
Jens Axboedd1cab92005-06-20 14:06:01 +02002270 if (rq_data_dir(rq) == WRITE)
2271 bio->bi_rw |= (1 << BIO_RW);
Mike Christie df46b9a2005-06-20 14:04:44 +02002272
Jens Axboedd1cab92005-06-20 14:06:01 +02002273 rq->bio = rq->biotail = bio;
2274 blk_rq_bio_prep(q, rq, bio);
Mike Christie df46b9a2005-06-20 14:04:44 +02002275
Jens Axboedd1cab92005-06-20 14:06:01 +02002276 rq->buffer = rq->data = NULL;
2277 rq->data_len = len;
2278 return 0;
Mike Christie df46b9a2005-06-20 14:04:44 +02002279}
2280
2281EXPORT_SYMBOL(blk_rq_map_kern);
2282
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002283/**
2284 * blk_execute_rq_nowait - insert a request into queue for execution
2285 * @q: queue to insert the request in
2286 * @bd_disk: matching gendisk
2287 * @rq: request to insert
2288 * @at_head: insert request at head or tail of queue
2289 * @done: I/O completion handler
2290 *
2291 * Description:
2292 * Insert a fully prepared request at the back of the io scheduler queue
2293 * for execution. Don't wait for completion.
2294 */
James Bottomley f1970ba2005-06-20 14:06:52 +02002295void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2296 struct request *rq, int at_head,
2297 void (*done)(struct request *))
2298{
2299 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2300
2301 rq->rq_disk = bd_disk;
2302 rq->flags |= REQ_NOMERGE;
2303 rq->end_io = done;
2304 elv_add_request(q, rq, where, 1);
2305 generic_unplug_device(q);
2306}
2307
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308/**
2309 * blk_execute_rq - insert a request into queue for execution
2310 * @q: queue to insert the request in
2311 * @bd_disk: matching gendisk
2312 * @rq: request to insert
James Bottomley 994ca9a2005-06-20 14:11:09 +02002313 * @at_head: insert request at head or tail of queue
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314 *
2315 * Description:
2316 * Insert a fully prepared request at the back of the io scheduler queue
Christoph Hellwig 73747ae2005-06-20 14:21:01 +02002317 * for execution and wait for completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 */
2319int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
James Bottomley 994ca9a2005-06-20 14:11:09 +02002320 struct request *rq, int at_head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321{
2322 DECLARE_COMPLETION(wait);
2323 char sense[SCSI_SENSE_BUFFERSIZE];
2324 int err = 0;
2325
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 /*
2327 * we need an extra reference to the request, so we can look at
2328 * it after io completion
2329 */
2330 rq->ref_count++;
2331
2332 if (!rq->sense) {
2333 memset(sense, 0, sizeof(sense));
2334 rq->sense = sense;
2335 rq->sense_len = 0;
2336 }
2337
Linus Torvalds1da177e2005-04-16 15:20:36 -07002338 rq->waiting = &wait;
James Bottomley 994ca9a2005-06-20 14:11:09 +02002339 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002340 wait_for_completion(&wait);
2341 rq->waiting = NULL;
2342
2343 if (rq->errors)
2344 err = -EIO;
2345
2346 return err;
2347}
2348
2349EXPORT_SYMBOL(blk_execute_rq);
2350
2351/**
2352 * blkdev_issue_flush - queue a flush
2353 * @bdev: blockdev to issue flush for
2354 * @error_sector: error sector
2355 *
2356 * Description:
2357 * Issue a flush for the block device in question. Caller can supply
2358 * room for storing the error offset in case of a flush error, if they
2359 * wish to. Caller must run wait_for_completion() on its own.
2360 */
2361int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2362{
2363 request_queue_t *q;
2364
2365 if (bdev->bd_disk == NULL)
2366 return -ENXIO;
2367
2368 q = bdev_get_queue(bdev);
2369 if (!q)
2370 return -ENXIO;
2371 if (!q->issue_flush_fn)
2372 return -EOPNOTSUPP;
2373
2374 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2375}
2376
2377EXPORT_SYMBOL(blkdev_issue_flush);
2378
Adrian Bunk93d17d32005-06-25 14:59:10 -07002379static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380{
2381 int rw = rq_data_dir(rq);
2382
2383 if (!blk_fs_request(rq) || !rq->rq_disk)
2384 return;
2385
2386 if (rw == READ) {
2387 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2388 if (!new_io)
2389 __disk_stat_inc(rq->rq_disk, read_merges);
2390 } else if (rw == WRITE) {
2391 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2392 if (!new_io)
2393 __disk_stat_inc(rq->rq_disk, write_merges);
2394 }
2395 if (new_io) {
2396 disk_round_stats(rq->rq_disk);
2397 rq->rq_disk->in_flight++;
2398 }
2399}
2400
2401/*
2402 * add-request adds a request to the linked list.
2403 * queue lock is held and interrupts disabled, as we muck with the
2404 * request queue list.
2405 */
2406static inline void add_request(request_queue_t * q, struct request * req)
2407{
2408 drive_stat_acct(req, req->nr_sectors, 1);
2409
2410 if (q->activity_fn)
2411 q->activity_fn(q->activity_data, rq_data_dir(req));
2412
2413 /*
2414 * elevator indicated where it wants this request to be
2415 * inserted at elevator_merge time
2416 */
2417 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2418}
2419
2420/*
2421 * disk_round_stats() - Round off the performance stats on a struct
2422 * disk_stats.
2423 *
2424 * The average IO queue length and utilisation statistics are maintained
2425 * by observing the current state of the queue length and the amount of
2426 * time it has been in this state for.
2427 *
2428 * Normally, that accounting is done on IO completion, but that can result
2429 * in more than a second's worth of IO being accounted for within any one
2430 * second, leading to >100% utilisation. To deal with that, we call this
2431 * function to do a round-off before returning the results when reading
2432 * /proc/diskstats. This accounts immediately for all queue usage up to
2433 * the current jiffies and restarts the counters again.
2434 */
2435void disk_round_stats(struct gendisk *disk)
2436{
2437 unsigned long now = jiffies;
2438
Chen, Kenneth Wb2982642005-10-13 21:49:29 +02002439 if (now == disk->stamp)
2440 return;
2441
Chen, Kenneth W20e5c812005-10-13 21:48:42 +02002442 if (disk->in_flight) {
2443 __disk_stat_add(disk, time_in_queue,
2444 disk->in_flight * (now - disk->stamp));
2445 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2446 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447 disk->stamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448}
2449
2450/*
2451 * queue lock must be held
2452 */
2453static void __blk_put_request(request_queue_t *q, struct request *req)
2454{
2455 struct request_list *rl = req->rl;
2456
2457 if (unlikely(!q))
2458 return;
2459 if (unlikely(--req->ref_count))
2460 return;
2461
Tejun Heo8922e162005-10-20 16:23:44 +02002462 elv_completed_request(q, req);
2463
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464 req->rq_status = RQ_INACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465 req->rl = NULL;
2466
2467 /*
2468 * Request may not have originated from ll_rw_blk. if not,
2469 * it didn't come out of our reserved rq pools
2470 */
2471 if (rl) {
2472 int rw = rq_data_dir(req);
2473
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474 BUG_ON(!list_empty(&req->queuelist));
2475
2476 blk_free_request(q, req);
2477 freed_request(q, rw);
2478 }
2479}
2480
2481void blk_put_request(struct request *req)
2482{
Tejun Heo8922e162005-10-20 16:23:44 +02002483 unsigned long flags;
2484 request_queue_t *q = req->q;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485
Tejun Heo8922e162005-10-20 16:23:44 +02002486 /*
2487 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2488 * following if (q) test.
2489 */
2490 if (q) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 spin_lock_irqsave(q->queue_lock, flags);
2492 __blk_put_request(q, req);
2493 spin_unlock_irqrestore(q->queue_lock, flags);
2494 }
2495}
2496
2497EXPORT_SYMBOL(blk_put_request);
2498
2499/**
2500 * blk_end_sync_rq - executes a completion event on a request
2501 * @rq: request to complete
2502 */
2503void blk_end_sync_rq(struct request *rq)
2504{
2505 struct completion *waiting = rq->waiting;
2506
2507 rq->waiting = NULL;
2508 __blk_put_request(rq->q, rq);
2509
2510 /*
2511 * complete last, if this is a stack request the process (and thus
2512 * the rq pointer) could be invalid right after this complete()
2513 */
2514 complete(waiting);
2515}
2516EXPORT_SYMBOL(blk_end_sync_rq);
2517
2518/**
2519 * blk_congestion_wait - wait for a queue to become uncongested
2520 * @rw: READ or WRITE
2521 * @timeout: timeout in jiffies
2522 *
2523 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2524 * If no queues are congested then just wait for the next request to be
2525 * returned.
2526 */
2527long blk_congestion_wait(int rw, long timeout)
2528{
2529 long ret;
2530 DEFINE_WAIT(wait);
2531 wait_queue_head_t *wqh = &congestion_wqh[rw];
2532
2533 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2534 ret = io_schedule_timeout(timeout);
2535 finish_wait(wqh, &wait);
2536 return ret;
2537}
2538
2539EXPORT_SYMBOL(blk_congestion_wait);
2540
2541/*
2542 * Has to be called with the request spinlock acquired
2543 */
2544static int attempt_merge(request_queue_t *q, struct request *req,
2545 struct request *next)
2546{
2547 if (!rq_mergeable(req) || !rq_mergeable(next))
2548 return 0;
2549
2550 /*
2551 * not contigious
2552 */
2553 if (req->sector + req->nr_sectors != next->sector)
2554 return 0;
2555
2556 if (rq_data_dir(req) != rq_data_dir(next)
2557 || req->rq_disk != next->rq_disk
2558 || next->waiting || next->special)
2559 return 0;
2560
2561 /*
2562 * If we are allowed to merge, then append bio list
2563 * from next to rq and release next. merge_requests_fn
2564 * will have updated segment counts, update sector
2565 * counts here.
2566 */
2567 if (!q->merge_requests_fn(q, req, next))
2568 return 0;
2569
2570 /*
2571 * At this point we have either done a back merge
2572 * or front merge. We need the smaller start_time of
2573 * the merged requests to be the current request
2574 * for accounting purposes.
2575 */
2576 if (time_after(req->start_time, next->start_time))
2577 req->start_time = next->start_time;
2578
2579 req->biotail->bi_next = next->bio;
2580 req->biotail = next->biotail;
2581
2582 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2583
2584 elv_merge_requests(q, req, next);
2585
2586 if (req->rq_disk) {
2587 disk_round_stats(req->rq_disk);
2588 req->rq_disk->in_flight--;
2589 }
2590
Jens Axboe22e2c502005-06-27 10:55:12 +02002591 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2592
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593 __blk_put_request(q, next);
2594 return 1;
2595}
2596
2597static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2598{
2599 struct request *next = elv_latter_request(q, rq);
2600
2601 if (next)
2602 return attempt_merge(q, rq, next);
2603
2604 return 0;
2605}
2606
2607static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2608{
2609 struct request *prev = elv_former_request(q, rq);
2610
2611 if (prev)
2612 return attempt_merge(q, prev, rq);
2613
2614 return 0;
2615}
2616
2617/**
2618 * blk_attempt_remerge - attempt to remerge active head with next request
2619 * @q: The &request_queue_t belonging to the device
2620 * @rq: The head request (usually)
2621 *
2622 * Description:
2623 * For head-active devices, the queue can easily be unplugged so quickly
2624 * that proper merging is not done on the front request. This may hurt
2625 * performance greatly for some devices. The block layer cannot safely
2626 * do merging on that first request for these queues, but the driver can
2627 * call this function and make it happen any way. Only the driver knows
2628 * when it is safe to do so.
2629 **/
2630void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2631{
2632 unsigned long flags;
2633
2634 spin_lock_irqsave(q->queue_lock, flags);
2635 attempt_back_merge(q, rq);
2636 spin_unlock_irqrestore(q->queue_lock, flags);
2637}
2638
2639EXPORT_SYMBOL(blk_attempt_remerge);
2640
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641static int __make_request(request_queue_t *q, struct bio *bio)
2642{
Nick Piggin450991b2005-06-28 20:45:13 -07002643 struct request *req;
Jens Axboe4a534f92005-04-16 15:25:40 -07002644 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
Jens Axboe22e2c502005-06-27 10:55:12 +02002645 unsigned short prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002646 sector_t sector;
2647
2648 sector = bio->bi_sector;
2649 nr_sectors = bio_sectors(bio);
2650 cur_nr_sectors = bio_cur_sectors(bio);
Jens Axboe22e2c502005-06-27 10:55:12 +02002651 prio = bio_prio(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652
2653 rw = bio_data_dir(bio);
Jens Axboe4a534f92005-04-16 15:25:40 -07002654 sync = bio_sync(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655
2656 /*
2657 * low level driver can indicate that it wants pages above a
2658 * certain limit bounced to low memory (ie for highmem, or even
2659 * ISA dma in theory)
2660 */
2661 blk_queue_bounce(q, &bio);
2662
2663 spin_lock_prefetch(q->queue_lock);
2664
2665 barrier = bio_barrier(bio);
Nick Pigginfde6ad22005-06-23 00:08:53 -07002666 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667 err = -EOPNOTSUPP;
2668 goto end_io;
2669 }
2670
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671 spin_lock_irq(q->queue_lock);
2672
Nick Piggin450991b2005-06-28 20:45:13 -07002673 if (unlikely(barrier) || elv_queue_empty(q))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002674 goto get_rq;
2675
2676 el_ret = elv_merge(q, &req, bio);
2677 switch (el_ret) {
2678 case ELEVATOR_BACK_MERGE:
2679 BUG_ON(!rq_mergeable(req));
2680
2681 if (!q->back_merge_fn(q, req, bio))
2682 break;
2683
2684 req->biotail->bi_next = bio;
2685 req->biotail = bio;
2686 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002687 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688 drive_stat_acct(req, nr_sectors, 0);
2689 if (!attempt_back_merge(q, req))
2690 elv_merged_request(q, req);
2691 goto out;
2692
2693 case ELEVATOR_FRONT_MERGE:
2694 BUG_ON(!rq_mergeable(req));
2695
2696 if (!q->front_merge_fn(q, req, bio))
2697 break;
2698
2699 bio->bi_next = req->bio;
2700 req->bio = bio;
2701
2702 /*
2703 * may not be valid. if the low level driver said
2704 * it didn't need a bounce buffer then it better
2705 * not touch req->buffer either...
2706 */
2707 req->buffer = bio_data(bio);
2708 req->current_nr_sectors = cur_nr_sectors;
2709 req->hard_cur_sectors = cur_nr_sectors;
2710 req->sector = req->hard_sector = sector;
2711 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002712 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002713 drive_stat_acct(req, nr_sectors, 0);
2714 if (!attempt_front_merge(q, req))
2715 elv_merged_request(q, req);
2716 goto out;
2717
Nick Piggin450991b2005-06-28 20:45:13 -07002718 /* ELV_NO_MERGE: elevator says don't/can't merge. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 default:
Nick Piggin450991b2005-06-28 20:45:13 -07002720 ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 }
2722
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723get_rq:
Nick Piggin450991b2005-06-28 20:45:13 -07002724 /*
2725 * Grab a free request. This is might sleep but can not fail.
Nick Piggind6344532005-06-28 20:45:14 -07002726 * Returns with the queue unlocked.
Nick Piggin450991b2005-06-28 20:45:13 -07002727 */
Nick Piggin450991b2005-06-28 20:45:13 -07002728 req = get_request_wait(q, rw, bio);
Nick Piggind6344532005-06-28 20:45:14 -07002729
Nick Piggin450991b2005-06-28 20:45:13 -07002730 /*
2731 * After dropping the lock and possibly sleeping here, our request
2732 * may now be mergeable after it had proven unmergeable (above).
2733 * We don't worry about that case for efficiency. It won't happen
2734 * often, and the elevators are able to handle it.
2735 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736
2737 req->flags |= REQ_CMD;
2738
2739 /*
2740 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2741 */
2742 if (bio_rw_ahead(bio) || bio_failfast(bio))
2743 req->flags |= REQ_FAILFAST;
2744
2745 /*
2746 * REQ_BARRIER implies no merging, but lets make it explicit
2747 */
Nick Pigginfde6ad22005-06-23 00:08:53 -07002748 if (unlikely(barrier))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2750
2751 req->errors = 0;
2752 req->hard_sector = req->sector = sector;
2753 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2754 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2755 req->nr_phys_segments = bio_phys_segments(q, bio);
2756 req->nr_hw_segments = bio_hw_segments(q, bio);
2757 req->buffer = bio_data(bio); /* see ->buffer comment above */
2758 req->waiting = NULL;
2759 req->bio = req->biotail = bio;
Jens Axboe22e2c502005-06-27 10:55:12 +02002760 req->ioprio = prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 req->rq_disk = bio->bi_bdev->bd_disk;
2762 req->start_time = jiffies;
2763
Nick Piggin450991b2005-06-28 20:45:13 -07002764 spin_lock_irq(q->queue_lock);
2765 if (elv_queue_empty(q))
2766 blk_plug_device(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767 add_request(q, req);
2768out:
Jens Axboe4a534f92005-04-16 15:25:40 -07002769 if (sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770 __generic_unplug_device(q);
2771
2772 spin_unlock_irq(q->queue_lock);
2773 return 0;
2774
2775end_io:
2776 bio_endio(bio, nr_sectors << 9, err);
2777 return 0;
2778}
2779
2780/*
2781 * If bio->bi_dev is a partition, remap the location
2782 */
2783static inline void blk_partition_remap(struct bio *bio)
2784{
2785 struct block_device *bdev = bio->bi_bdev;
2786
2787 if (bdev != bdev->bd_contains) {
2788 struct hd_struct *p = bdev->bd_part;
2789
Jens Axboe22e2c502005-06-27 10:55:12 +02002790 switch (bio_data_dir(bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 case READ:
2792 p->read_sectors += bio_sectors(bio);
2793 p->reads++;
2794 break;
2795 case WRITE:
2796 p->write_sectors += bio_sectors(bio);
2797 p->writes++;
2798 break;
2799 }
2800 bio->bi_sector += p->start_sect;
2801 bio->bi_bdev = bdev->bd_contains;
2802 }
2803}
2804
2805void blk_finish_queue_drain(request_queue_t *q)
2806{
2807 struct request_list *rl = &q->rq;
2808 struct request *rq;
Jens Axboe22e2c502005-06-27 10:55:12 +02002809 int requeued = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810
2811 spin_lock_irq(q->queue_lock);
2812 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2813
2814 while (!list_empty(&q->drain_list)) {
2815 rq = list_entry_rq(q->drain_list.next);
2816
2817 list_del_init(&rq->queuelist);
Jens Axboe22e2c502005-06-27 10:55:12 +02002818 elv_requeue_request(q, rq);
2819 requeued++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002820 }
2821
Jens Axboe22e2c502005-06-27 10:55:12 +02002822 if (requeued)
2823 q->request_fn(q);
2824
Linus Torvalds1da177e2005-04-16 15:20:36 -07002825 spin_unlock_irq(q->queue_lock);
2826
2827 wake_up(&rl->wait[0]);
2828 wake_up(&rl->wait[1]);
2829 wake_up(&rl->drain);
2830}
2831
2832static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2833{
2834 int wait = rl->count[READ] + rl->count[WRITE];
2835
2836 if (dispatch)
2837 wait += !list_empty(&q->queue_head);
2838
2839 return wait;
2840}
2841
2842/*
2843 * We rely on the fact that only requests allocated through blk_alloc_request()
2844 * have io scheduler private data structures associated with them. Any other
2845 * type of request (allocated on stack or through kmalloc()) should not go
2846 * to the io scheduler core, but be attached to the queue head instead.
2847 */
2848void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2849{
2850 struct request_list *rl = &q->rq;
2851 DEFINE_WAIT(wait);
2852
2853 spin_lock_irq(q->queue_lock);
2854 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2855
2856 while (wait_drain(q, rl, wait_dispatch)) {
2857 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2858
2859 if (wait_drain(q, rl, wait_dispatch)) {
2860 __generic_unplug_device(q);
2861 spin_unlock_irq(q->queue_lock);
2862 io_schedule();
2863 spin_lock_irq(q->queue_lock);
2864 }
2865
2866 finish_wait(&rl->drain, &wait);
2867 }
2868
2869 spin_unlock_irq(q->queue_lock);
2870}
2871
2872/*
2873 * block waiting for the io scheduler being started again.
2874 */
2875static inline void block_wait_queue_running(request_queue_t *q)
2876{
2877 DEFINE_WAIT(wait);
2878
Nick Pigginfde6ad22005-06-23 00:08:53 -07002879 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 struct request_list *rl = &q->rq;
2881
2882 prepare_to_wait_exclusive(&rl->drain, &wait,
2883 TASK_UNINTERRUPTIBLE);
2884
2885 /*
2886 * re-check the condition. avoids using prepare_to_wait()
2887 * in the fast path (queue is running)
2888 */
2889 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2890 io_schedule();
2891
2892 finish_wait(&rl->drain, &wait);
2893 }
2894}
2895
2896static void handle_bad_sector(struct bio *bio)
2897{
2898 char b[BDEVNAME_SIZE];
2899
2900 printk(KERN_INFO "attempt to access beyond end of device\n");
2901 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2902 bdevname(bio->bi_bdev, b),
2903 bio->bi_rw,
2904 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2905 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2906
2907 set_bit(BIO_EOF, &bio->bi_flags);
2908}
2909
2910/**
2911 * generic_make_request: hand a buffer to its device driver for I/O
2912 * @bio: The bio describing the location in memory and on the device.
2913 *
2914 * generic_make_request() is used to make I/O requests of block
2915 * devices. It is passed a &struct bio, which describes the I/O that needs
2916 * to be done.
2917 *
2918 * generic_make_request() does not return any status. The
2919 * success/failure status of the request, along with notification of
2920 * completion, is delivered asynchronously through the bio->bi_end_io
2921 * function described (one day) else where.
2922 *
2923 * The caller of generic_make_request must make sure that bi_io_vec
2924 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2925 * set to describe the device address, and the
2926 * bi_end_io and optionally bi_private are set to describe how
2927 * completion notification should be signaled.
2928 *
2929 * generic_make_request and the drivers it calls may use bi_next if this
2930 * bio happens to be merged with someone else, and may change bi_dev and
2931 * bi_sector for remaps as it sees fit. So the values of these fields
2932 * should NOT be depended on after the call to generic_make_request.
2933 */
2934void generic_make_request(struct bio *bio)
2935{
2936 request_queue_t *q;
2937 sector_t maxsector;
2938 int ret, nr_sectors = bio_sectors(bio);
2939
2940 might_sleep();
2941 /* Test device or partition size, when known. */
2942 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2943 if (maxsector) {
2944 sector_t sector = bio->bi_sector;
2945
2946 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2947 /*
2948 * This may well happen - the kernel calls bread()
2949 * without checking the size of the device, e.g., when
2950 * mounting a device.
2951 */
2952 handle_bad_sector(bio);
2953 goto end_io;
2954 }
2955 }
2956
2957 /*
2958 * Resolve the mapping until finished. (drivers are
2959 * still free to implement/resolve their own stacking
2960 * by explicitly returning 0)
2961 *
2962 * NOTE: we don't repeat the blk_size check for each new device.
2963 * Stacking drivers are expected to know what they are doing.
2964 */
2965 do {
2966 char b[BDEVNAME_SIZE];
2967
2968 q = bdev_get_queue(bio->bi_bdev);
2969 if (!q) {
2970 printk(KERN_ERR
2971 "generic_make_request: Trying to access "
2972 "nonexistent block-device %s (%Lu)\n",
2973 bdevname(bio->bi_bdev, b),
2974 (long long) bio->bi_sector);
2975end_io:
2976 bio_endio(bio, bio->bi_size, -EIO);
2977 break;
2978 }
2979
2980 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2981 printk("bio too big device %s (%u > %u)\n",
2982 bdevname(bio->bi_bdev, b),
2983 bio_sectors(bio),
2984 q->max_hw_sectors);
2985 goto end_io;
2986 }
2987
Nick Pigginfde6ad22005-06-23 00:08:53 -07002988 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989 goto end_io;
2990
2991 block_wait_queue_running(q);
2992
2993 /*
2994 * If this device has partitions, remap block n
2995 * of partition p to block n+start(p) of the disk.
2996 */
2997 blk_partition_remap(bio);
2998
2999 ret = q->make_request_fn(q, bio);
3000 } while (ret);
3001}
3002
3003EXPORT_SYMBOL(generic_make_request);
3004
3005/**
3006 * submit_bio: submit a bio to the block device layer for I/O
3007 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3008 * @bio: The &struct bio which describes the I/O
3009 *
3010 * submit_bio() is very similar in purpose to generic_make_request(), and
3011 * uses that function to do most of the work. Both are fairly rough
3012 * interfaces, @bio must be presetup and ready for I/O.
3013 *
3014 */
3015void submit_bio(int rw, struct bio *bio)
3016{
3017 int count = bio_sectors(bio);
3018
3019 BIO_BUG_ON(!bio->bi_size);
3020 BIO_BUG_ON(!bio->bi_io_vec);
Jens Axboe22e2c502005-06-27 10:55:12 +02003021 bio->bi_rw |= rw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022 if (rw & WRITE)
3023 mod_page_state(pgpgout, count);
3024 else
3025 mod_page_state(pgpgin, count);
3026
3027 if (unlikely(block_dump)) {
3028 char b[BDEVNAME_SIZE];
3029 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3030 current->comm, current->pid,
3031 (rw & WRITE) ? "WRITE" : "READ",
3032 (unsigned long long)bio->bi_sector,
3033 bdevname(bio->bi_bdev,b));
3034 }
3035
3036 generic_make_request(bio);
3037}
3038
3039EXPORT_SYMBOL(submit_bio);
3040
Adrian Bunk93d17d32005-06-25 14:59:10 -07003041static void blk_recalc_rq_segments(struct request *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042{
3043 struct bio *bio, *prevbio = NULL;
3044 int nr_phys_segs, nr_hw_segs;
3045 unsigned int phys_size, hw_size;
3046 request_queue_t *q = rq->q;
3047
3048 if (!rq->bio)
3049 return;
3050
3051 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3052 rq_for_each_bio(bio, rq) {
3053 /* Force bio hw/phys segs to be recalculated. */
3054 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3055
3056 nr_phys_segs += bio_phys_segments(q, bio);
3057 nr_hw_segs += bio_hw_segments(q, bio);
3058 if (prevbio) {
3059 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3060 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3061
3062 if (blk_phys_contig_segment(q, prevbio, bio) &&
3063 pseg <= q->max_segment_size) {
3064 nr_phys_segs--;
3065 phys_size += prevbio->bi_size + bio->bi_size;
3066 } else
3067 phys_size = 0;
3068
3069 if (blk_hw_contig_segment(q, prevbio, bio) &&
3070 hseg <= q->max_segment_size) {
3071 nr_hw_segs--;
3072 hw_size += prevbio->bi_size + bio->bi_size;
3073 } else
3074 hw_size = 0;
3075 }
3076 prevbio = bio;
3077 }
3078
3079 rq->nr_phys_segments = nr_phys_segs;
3080 rq->nr_hw_segments = nr_hw_segs;
3081}
3082
Adrian Bunk93d17d32005-06-25 14:59:10 -07003083static void blk_recalc_rq_sectors(struct request *rq, int nsect)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084{
3085 if (blk_fs_request(rq)) {
3086 rq->hard_sector += nsect;
3087 rq->hard_nr_sectors -= nsect;
3088
3089 /*
3090 * Move the I/O submission pointers ahead if required.
3091 */
3092 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3093 (rq->sector <= rq->hard_sector)) {
3094 rq->sector = rq->hard_sector;
3095 rq->nr_sectors = rq->hard_nr_sectors;
3096 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3097 rq->current_nr_sectors = rq->hard_cur_sectors;
3098 rq->buffer = bio_data(rq->bio);
3099 }
3100
3101 /*
3102 * if total number of sectors is less than the first segment
3103 * size, something has gone terribly wrong
3104 */
3105 if (rq->nr_sectors < rq->current_nr_sectors) {
3106 printk("blk: request botched\n");
3107 rq->nr_sectors = rq->current_nr_sectors;
3108 }
3109 }
3110}
3111
3112static int __end_that_request_first(struct request *req, int uptodate,
3113 int nr_bytes)
3114{
3115 int total_bytes, bio_nbytes, error, next_idx = 0;
3116 struct bio *bio;
3117
3118 /*
3119 * extend uptodate bool to allow < 0 value to be direct io error
3120 */
3121 error = 0;
3122 if (end_io_error(uptodate))
3123 error = !uptodate ? -EIO : uptodate;
3124
3125 /*
3126 * for a REQ_BLOCK_PC request, we want to carry any eventual
3127 * sense key with us all the way through
3128 */
3129 if (!blk_pc_request(req))
3130 req->errors = 0;
3131
3132 if (!uptodate) {
3133 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3134 printk("end_request: I/O error, dev %s, sector %llu\n",
3135 req->rq_disk ? req->rq_disk->disk_name : "?",
3136 (unsigned long long)req->sector);
3137 }
3138
3139 total_bytes = bio_nbytes = 0;
3140 while ((bio = req->bio) != NULL) {
3141 int nbytes;
3142
3143 if (nr_bytes >= bio->bi_size) {
3144 req->bio = bio->bi_next;
3145 nbytes = bio->bi_size;
3146 bio_endio(bio, nbytes, error);
3147 next_idx = 0;
3148 bio_nbytes = 0;
3149 } else {
3150 int idx = bio->bi_idx + next_idx;
3151
3152 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3153 blk_dump_rq_flags(req, "__end_that");
3154 printk("%s: bio idx %d >= vcnt %d\n",
3155 __FUNCTION__,
3156 bio->bi_idx, bio->bi_vcnt);
3157 break;
3158 }
3159
3160 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3161 BIO_BUG_ON(nbytes > bio->bi_size);
3162
3163 /*
3164 * not a complete bvec done
3165 */
3166 if (unlikely(nbytes > nr_bytes)) {
3167 bio_nbytes += nr_bytes;
3168 total_bytes += nr_bytes;
3169 break;
3170 }
3171
3172 /*
3173 * advance to the next vector
3174 */
3175 next_idx++;
3176 bio_nbytes += nbytes;
3177 }
3178
3179 total_bytes += nbytes;
3180 nr_bytes -= nbytes;
3181
3182 if ((bio = req->bio)) {
3183 /*
3184 * end more in this run, or just return 'not-done'
3185 */
3186 if (unlikely(nr_bytes <= 0))
3187 break;
3188 }
3189 }
3190
3191 /*
3192 * completely done
3193 */
3194 if (!req->bio)
3195 return 0;
3196
3197 /*
3198 * if the request wasn't completed, update state
3199 */
3200 if (bio_nbytes) {
3201 bio_endio(bio, bio_nbytes, error);
3202 bio->bi_idx += next_idx;
3203 bio_iovec(bio)->bv_offset += nr_bytes;
3204 bio_iovec(bio)->bv_len -= nr_bytes;
3205 }
3206
3207 blk_recalc_rq_sectors(req, total_bytes >> 9);
3208 blk_recalc_rq_segments(req);
3209 return 1;
3210}
3211
3212/**
3213 * end_that_request_first - end I/O on a request
3214 * @req: the request being processed
3215 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3216 * @nr_sectors: number of sectors to end I/O on
3217 *
3218 * Description:
3219 * Ends I/O on a number of sectors attached to @req, and sets it up
3220 * for the next range of segments (if any) in the cluster.
3221 *
3222 * Return:
3223 * 0 - we are done with this request, call end_that_request_last()
3224 * 1 - still buffers pending for this request
3225 **/
3226int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3227{
3228 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3229}
3230
3231EXPORT_SYMBOL(end_that_request_first);
3232
3233/**
3234 * end_that_request_chunk - end I/O on a request
3235 * @req: the request being processed
3236 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3237 * @nr_bytes: number of bytes to complete
3238 *
3239 * Description:
3240 * Ends I/O on a number of bytes attached to @req, and sets it up
3241 * for the next range of segments (if any). Like end_that_request_first(),
3242 * but deals with bytes instead of sectors.
3243 *
3244 * Return:
3245 * 0 - we are done with this request, call end_that_request_last()
3246 * 1 - still buffers pending for this request
3247 **/
3248int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3249{
3250 return __end_that_request_first(req, uptodate, nr_bytes);
3251}
3252
3253EXPORT_SYMBOL(end_that_request_chunk);
3254
3255/*
3256 * queue lock must be held
3257 */
3258void end_that_request_last(struct request *req)
3259{
3260 struct gendisk *disk = req->rq_disk;
3261
3262 if (unlikely(laptop_mode) && blk_fs_request(req))
3263 laptop_io_completion();
3264
3265 if (disk && blk_fs_request(req)) {
3266 unsigned long duration = jiffies - req->start_time;
3267 switch (rq_data_dir(req)) {
3268 case WRITE:
3269 __disk_stat_inc(disk, writes);
3270 __disk_stat_add(disk, write_ticks, duration);
3271 break;
3272 case READ:
3273 __disk_stat_inc(disk, reads);
3274 __disk_stat_add(disk, read_ticks, duration);
3275 break;
3276 }
3277 disk_round_stats(disk);
3278 disk->in_flight--;
3279 }
3280 if (req->end_io)
3281 req->end_io(req);
3282 else
3283 __blk_put_request(req->q, req);
3284}
3285
3286EXPORT_SYMBOL(end_that_request_last);
3287
3288void end_request(struct request *req, int uptodate)
3289{
3290 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3291 add_disk_randomness(req->rq_disk);
3292 blkdev_dequeue_request(req);
3293 end_that_request_last(req);
3294 }
3295}
3296
3297EXPORT_SYMBOL(end_request);
3298
3299void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3300{
3301 /* first three bits are identical in rq->flags and bio->bi_rw */
3302 rq->flags |= (bio->bi_rw & 7);
3303
3304 rq->nr_phys_segments = bio_phys_segments(q, bio);
3305 rq->nr_hw_segments = bio_hw_segments(q, bio);
3306 rq->current_nr_sectors = bio_cur_sectors(bio);
3307 rq->hard_cur_sectors = rq->current_nr_sectors;
3308 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3309 rq->buffer = bio_data(bio);
3310
3311 rq->bio = rq->biotail = bio;
3312}
3313
3314EXPORT_SYMBOL(blk_rq_bio_prep);
3315
3316int kblockd_schedule_work(struct work_struct *work)
3317{
3318 return queue_work(kblockd_workqueue, work);
3319}
3320
3321EXPORT_SYMBOL(kblockd_schedule_work);
3322
3323void kblockd_flush(void)
3324{
3325 flush_workqueue(kblockd_workqueue);
3326}
3327EXPORT_SYMBOL(kblockd_flush);
3328
3329int __init blk_dev_init(void)
3330{
3331 kblockd_workqueue = create_workqueue("kblockd");
3332 if (!kblockd_workqueue)
3333 panic("Failed to create kblockd\n");
3334
3335 request_cachep = kmem_cache_create("blkdev_requests",
3336 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3337
3338 requestq_cachep = kmem_cache_create("blkdev_queue",
3339 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3340
3341 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3342 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3343
3344 blk_max_low_pfn = max_low_pfn;
3345 blk_max_pfn = max_pfn;
3346
3347 return 0;
3348}
3349
3350/*
3351 * IO Context helper functions
3352 */
3353void put_io_context(struct io_context *ioc)
3354{
3355 if (ioc == NULL)
3356 return;
3357
3358 BUG_ON(atomic_read(&ioc->refcount) == 0);
3359
3360 if (atomic_dec_and_test(&ioc->refcount)) {
3361 if (ioc->aic && ioc->aic->dtor)
3362 ioc->aic->dtor(ioc->aic);
3363 if (ioc->cic && ioc->cic->dtor)
3364 ioc->cic->dtor(ioc->cic);
3365
3366 kmem_cache_free(iocontext_cachep, ioc);
3367 }
3368}
3369EXPORT_SYMBOL(put_io_context);
3370
3371/* Called by the exitting task */
3372void exit_io_context(void)
3373{
3374 unsigned long flags;
3375 struct io_context *ioc;
3376
3377 local_irq_save(flags);
Jens Axboe22e2c502005-06-27 10:55:12 +02003378 task_lock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379 ioc = current->io_context;
3380 current->io_context = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +02003381 ioc->task = NULL;
3382 task_unlock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383 local_irq_restore(flags);
3384
3385 if (ioc->aic && ioc->aic->exit)
3386 ioc->aic->exit(ioc->aic);
3387 if (ioc->cic && ioc->cic->exit)
3388 ioc->cic->exit(ioc->cic);
3389
3390 put_io_context(ioc);
3391}
3392
3393/*
3394 * If the current task has no IO context then create one and initialise it.
Nick Pigginfb3cc432005-06-28 20:45:15 -07003395 * Otherwise, return its existing IO context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396 *
Nick Pigginfb3cc432005-06-28 20:45:15 -07003397 * This returned IO context doesn't have a specifically elevated refcount,
3398 * but since the current task itself holds a reference, the context can be
3399 * used in general code, so long as it stays within `current` context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003400 */
Nick Pigginfb3cc432005-06-28 20:45:15 -07003401struct io_context *current_io_context(int gfp_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003402{
3403 struct task_struct *tsk = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 struct io_context *ret;
3405
Linus Torvalds1da177e2005-04-16 15:20:36 -07003406 ret = tsk->io_context;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003407 if (likely(ret))
3408 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003409
3410 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3411 if (ret) {
3412 atomic_set(&ret->refcount, 1);
Jens Axboe22e2c502005-06-27 10:55:12 +02003413 ret->task = current;
3414 ret->set_ioprio = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003415 ret->last_waited = jiffies; /* doesn't matter... */
3416 ret->nr_batch_requests = 0; /* because this is 0 */
3417 ret->aic = NULL;
3418 ret->cic = NULL;
Nick Pigginfb3cc432005-06-28 20:45:15 -07003419 tsk->io_context = ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003420 }
3421
3422 return ret;
3423}
Nick Pigginfb3cc432005-06-28 20:45:15 -07003424EXPORT_SYMBOL(current_io_context);
3425
3426/*
3427 * If the current task has no IO context then create one and initialise it.
3428 * If it does have a context, take a ref on it.
3429 *
3430 * This is always called in the context of the task which submitted the I/O.
3431 */
3432struct io_context *get_io_context(int gfp_flags)
3433{
3434 struct io_context *ret;
3435 ret = current_io_context(gfp_flags);
3436 if (likely(ret))
3437 atomic_inc(&ret->refcount);
3438 return ret;
3439}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003440EXPORT_SYMBOL(get_io_context);
3441
3442void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3443{
3444 struct io_context *src = *psrc;
3445 struct io_context *dst = *pdst;
3446
3447 if (src) {
3448 BUG_ON(atomic_read(&src->refcount) == 0);
3449 atomic_inc(&src->refcount);
3450 put_io_context(dst);
3451 *pdst = src;
3452 }
3453}
3454EXPORT_SYMBOL(copy_io_context);
3455
3456void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3457{
3458 struct io_context *temp;
3459 temp = *ioc1;
3460 *ioc1 = *ioc2;
3461 *ioc2 = temp;
3462}
3463EXPORT_SYMBOL(swap_io_context);
3464
3465/*
3466 * sysfs parts below
3467 */
3468struct queue_sysfs_entry {
3469 struct attribute attr;
3470 ssize_t (*show)(struct request_queue *, char *);
3471 ssize_t (*store)(struct request_queue *, const char *, size_t);
3472};
3473
3474static ssize_t
3475queue_var_show(unsigned int var, char *page)
3476{
3477 return sprintf(page, "%d\n", var);
3478}
3479
3480static ssize_t
3481queue_var_store(unsigned long *var, const char *page, size_t count)
3482{
3483 char *p = (char *) page;
3484
3485 *var = simple_strtoul(p, &p, 10);
3486 return count;
3487}
3488
3489static ssize_t queue_requests_show(struct request_queue *q, char *page)
3490{
3491 return queue_var_show(q->nr_requests, (page));
3492}
3493
3494static ssize_t
3495queue_requests_store(struct request_queue *q, const char *page, size_t count)
3496{
3497 struct request_list *rl = &q->rq;
3498
3499 int ret = queue_var_store(&q->nr_requests, page, count);
3500 if (q->nr_requests < BLKDEV_MIN_RQ)
3501 q->nr_requests = BLKDEV_MIN_RQ;
3502 blk_queue_congestion_threshold(q);
3503
3504 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3505 set_queue_congested(q, READ);
3506 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3507 clear_queue_congested(q, READ);
3508
3509 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3510 set_queue_congested(q, WRITE);
3511 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3512 clear_queue_congested(q, WRITE);
3513
3514 if (rl->count[READ] >= q->nr_requests) {
3515 blk_set_queue_full(q, READ);
3516 } else if (rl->count[READ]+1 <= q->nr_requests) {
3517 blk_clear_queue_full(q, READ);
3518 wake_up(&rl->wait[READ]);
3519 }
3520
3521 if (rl->count[WRITE] >= q->nr_requests) {
3522 blk_set_queue_full(q, WRITE);
3523 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3524 blk_clear_queue_full(q, WRITE);
3525 wake_up(&rl->wait[WRITE]);
3526 }
3527 return ret;
3528}
3529
3530static ssize_t queue_ra_show(struct request_queue *q, char *page)
3531{
3532 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3533
3534 return queue_var_show(ra_kb, (page));
3535}
3536
3537static ssize_t
3538queue_ra_store(struct request_queue *q, const char *page, size_t count)
3539{
3540 unsigned long ra_kb;
3541 ssize_t ret = queue_var_store(&ra_kb, page, count);
3542
3543 spin_lock_irq(q->queue_lock);
3544 if (ra_kb > (q->max_sectors >> 1))
3545 ra_kb = (q->max_sectors >> 1);
3546
3547 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3548 spin_unlock_irq(q->queue_lock);
3549
3550 return ret;
3551}
3552
3553static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3554{
3555 int max_sectors_kb = q->max_sectors >> 1;
3556
3557 return queue_var_show(max_sectors_kb, (page));
3558}
3559
3560static ssize_t
3561queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3562{
3563 unsigned long max_sectors_kb,
3564 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3565 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3566 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3567 int ra_kb;
3568
3569 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3570 return -EINVAL;
3571 /*
3572 * Take the queue lock to update the readahead and max_sectors
3573 * values synchronously:
3574 */
3575 spin_lock_irq(q->queue_lock);
3576 /*
3577 * Trim readahead window as well, if necessary:
3578 */
3579 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3580 if (ra_kb > max_sectors_kb)
3581 q->backing_dev_info.ra_pages =
3582 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3583
3584 q->max_sectors = max_sectors_kb << 1;
3585 spin_unlock_irq(q->queue_lock);
3586
3587 return ret;
3588}
3589
3590static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3591{
3592 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3593
3594 return queue_var_show(max_hw_sectors_kb, (page));
3595}
3596
3597
3598static struct queue_sysfs_entry queue_requests_entry = {
3599 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3600 .show = queue_requests_show,
3601 .store = queue_requests_store,
3602};
3603
3604static struct queue_sysfs_entry queue_ra_entry = {
3605 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3606 .show = queue_ra_show,
3607 .store = queue_ra_store,
3608};
3609
3610static struct queue_sysfs_entry queue_max_sectors_entry = {
3611 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3612 .show = queue_max_sectors_show,
3613 .store = queue_max_sectors_store,
3614};
3615
3616static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3617 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3618 .show = queue_max_hw_sectors_show,
3619};
3620
3621static struct queue_sysfs_entry queue_iosched_entry = {
3622 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3623 .show = elv_iosched_show,
3624 .store = elv_iosched_store,
3625};
3626
3627static struct attribute *default_attrs[] = {
3628 &queue_requests_entry.attr,
3629 &queue_ra_entry.attr,
3630 &queue_max_hw_sectors_entry.attr,
3631 &queue_max_sectors_entry.attr,
3632 &queue_iosched_entry.attr,
3633 NULL,
3634};
3635
3636#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3637
3638static ssize_t
3639queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3640{
3641 struct queue_sysfs_entry *entry = to_queue(attr);
3642 struct request_queue *q;
3643
3644 q = container_of(kobj, struct request_queue, kobj);
3645 if (!entry->show)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003646 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647
3648 return entry->show(q, page);
3649}
3650
3651static ssize_t
3652queue_attr_store(struct kobject *kobj, struct attribute *attr,
3653 const char *page, size_t length)
3654{
3655 struct queue_sysfs_entry *entry = to_queue(attr);
3656 struct request_queue *q;
3657
3658 q = container_of(kobj, struct request_queue, kobj);
3659 if (!entry->store)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003660 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003661
3662 return entry->store(q, page, length);
3663}
3664
3665static struct sysfs_ops queue_sysfs_ops = {
3666 .show = queue_attr_show,
3667 .store = queue_attr_store,
3668};
3669
Adrian Bunk93d17d32005-06-25 14:59:10 -07003670static struct kobj_type queue_ktype = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671 .sysfs_ops = &queue_sysfs_ops,
3672 .default_attrs = default_attrs,
3673};
3674
3675int blk_register_queue(struct gendisk *disk)
3676{
3677 int ret;
3678
3679 request_queue_t *q = disk->queue;
3680
3681 if (!q || !q->request_fn)
3682 return -ENXIO;
3683
3684 q->kobj.parent = kobject_get(&disk->kobj);
3685 if (!q->kobj.parent)
3686 return -EBUSY;
3687
3688 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3689 q->kobj.ktype = &queue_ktype;
3690
3691 ret = kobject_register(&q->kobj);
3692 if (ret < 0)
3693 return ret;
3694
3695 ret = elv_register_queue(q);
3696 if (ret) {
3697 kobject_unregister(&q->kobj);
3698 return ret;
3699 }
3700
3701 return 0;
3702}
3703
3704void blk_unregister_queue(struct gendisk *disk)
3705{
3706 request_queue_t *q = disk->queue;
3707
3708 if (q && q->request_fn) {
3709 elv_unregister_queue(q);
3710
3711 kobject_unregister(&q->kobj);
3712 kobject_put(&disk->kobj);
3713 }
3714}