blob: 769c370011d6511f33a3240006257969b1546a9b [file] [log] [blame]
Joe Perchesc767a542012-05-21 19:50:07 -07001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
Alok Katariabfc0f592008-07-01 11:43:24 -07003#include <linux/kernel.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07004#include <linux/sched.h>
5#include <linux/init.h>
Paul Gortmaker186f4362016-07-13 20:18:56 -04006#include <linux/export.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07007#include <linux/timer.h>
Alok Katariabfc0f592008-07-01 11:43:24 -07008#include <linux/acpi_pmtmr.h>
Alok Kataria2dbe06f2008-07-01 11:43:31 -07009#include <linux/cpufreq.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070010#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
Arnd Bergmann08604bd2009-06-16 15:31:12 -070013#include <linux/timex.h>
Peter Zijlstra10b033d2013-11-28 19:01:40 +010014#include <linux/static_key.h>
Alok Katariabfc0f592008-07-01 11:43:24 -070015
16#include <asm/hpet.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070017#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
Alok Kataria88b094f2008-10-27 10:41:46 -070021#include <asm/hypervisor.h>
Thomas Gleixner08047c42009-08-20 16:27:41 +020022#include <asm/nmi.h>
Thomas Gleixner2d826402009-08-20 17:06:25 +020023#include <asm/x86_init.h>
David Woodhouse03da3ff2015-09-16 14:10:03 +010024#include <asm/geode.h>
Nicolai Stange6731b0d2016-07-14 17:22:55 +020025#include <asm/apic.h>
Prarit Bhargava655e52d2016-09-19 08:51:40 -040026#include <asm/intel-family.h>
Peter Zijlstra653cf762017-12-22 10:20:11 +010027#include <asm/i8259.h>
Alok Kataria0ef95532008-07-01 11:43:18 -070028
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010029unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
Alok Kataria0ef95532008-07-01 11:43:18 -070030EXPORT_SYMBOL(cpu_khz);
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010031
32unsigned int __read_mostly tsc_khz;
Alok Kataria0ef95532008-07-01 11:43:18 -070033EXPORT_SYMBOL(tsc_khz);
34
35/*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010038static int __read_mostly tsc_unstable;
Alok Kataria0ef95532008-07-01 11:43:18 -070039
40/* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
Borislav Petkov59e21e32016-04-04 22:24:59 +020042 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
Ingo Molnarf24ade3a2009-03-10 19:02:30 +010043static int __read_mostly tsc_disabled = -1;
Alok Kataria0ef95532008-07-01 11:43:18 -070044
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +020045static DEFINE_STATIC_KEY_FALSE(__use_tsc);
Peter Zijlstra10b033d2013-11-28 19:01:40 +010046
Suresh Siddha28a00182011-11-04 15:42:17 -070047int tsc_clocksource_reliable;
Peter Zijlstra57c67da2013-11-29 15:39:25 +010048
Christopher S. Hallf9677e02016-02-29 06:33:47 -080049static u32 art_to_tsc_numerator;
50static u32 art_to_tsc_denominator;
51static u64 art_to_tsc_offset;
52struct clocksource *art_related_clocksource;
53
Peter Zijlstra20d1c862013-11-29 15:40:29 +010054/*
55 * Use a ring-buffer like data structure, where a writer advances the head by
56 * writing a new data entry and a reader advances the tail when it observes a
57 * new entry.
58 *
59 * Writers are made to wait on readers until there's space to write a new
60 * entry.
61 *
62 * This means that we can always use an {offset, mul} pair to compute a ns
63 * value that is 'roughly' in the right direction, even if we're writing a new
64 * {offset, mul} pair during the clock read.
65 *
66 * The down-side is that we can no longer guarantee strict monotonicity anymore
67 * (assuming the TSC was that to begin with), because while we compute the
68 * intersection point of the two clock slopes and make sure the time is
69 * continuous at the point of switching; we can no longer guarantee a reader is
70 * strictly before or after the switch point.
71 *
72 * It does mean a reader no longer needs to disable IRQs in order to avoid
73 * CPU-Freq updates messing with his times, and similarly an NMI reader will
74 * no longer run the risk of hitting half-written state.
75 */
76
77struct cyc2ns {
78 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
79 struct cyc2ns_data *head; /* 48 + 8 = 56 */
80 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
81}; /* exactly fits one cacheline */
82
83static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
84
85struct cyc2ns_data *cyc2ns_read_begin(void)
86{
87 struct cyc2ns_data *head;
88
89 preempt_disable();
90
91 head = this_cpu_read(cyc2ns.head);
92 /*
93 * Ensure we observe the entry when we observe the pointer to it.
94 * matches the wmb from cyc2ns_write_end().
95 */
96 smp_read_barrier_depends();
97 head->__count++;
98 barrier();
99
100 return head;
101}
102
103void cyc2ns_read_end(struct cyc2ns_data *head)
104{
105 barrier();
106 /*
107 * If we're the outer most nested read; update the tail pointer
108 * when we're done. This notifies possible pending writers
109 * that we've observed the head pointer and that the other
110 * entry is now free.
111 */
112 if (!--head->__count) {
113 /*
114 * x86-TSO does not reorder writes with older reads;
115 * therefore once this write becomes visible to another
116 * cpu, we must be finished reading the cyc2ns_data.
117 *
118 * matches with cyc2ns_write_begin().
119 */
120 this_cpu_write(cyc2ns.tail, head);
121 }
122 preempt_enable();
123}
124
125/*
126 * Begin writing a new @data entry for @cpu.
127 *
128 * Assumes some sort of write side lock; currently 'provided' by the assumption
129 * that cpufreq will call its notifiers sequentially.
130 */
131static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
132{
133 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
134 struct cyc2ns_data *data = c2n->data;
135
136 if (data == c2n->head)
137 data++;
138
139 /* XXX send an IPI to @cpu in order to guarantee a read? */
140
141 /*
142 * When we observe the tail write from cyc2ns_read_end(),
143 * the cpu must be done with that entry and its safe
144 * to start writing to it.
145 */
146 while (c2n->tail == data)
147 cpu_relax();
148
149 return data;
150}
151
152static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
153{
154 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
155
156 /*
157 * Ensure the @data writes are visible before we publish the
158 * entry. Matches the data-depencency in cyc2ns_read_begin().
159 */
160 smp_wmb();
161
162 ACCESS_ONCE(c2n->head) = data;
163}
164
165/*
166 * Accelerators for sched_clock()
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100167 * convert from cycles(64bits) => nanoseconds (64bits)
168 * basic equation:
169 * ns = cycles / (freq / ns_per_sec)
170 * ns = cycles * (ns_per_sec / freq)
171 * ns = cycles * (10^9 / (cpu_khz * 10^3))
172 * ns = cycles * (10^6 / cpu_khz)
173 *
174 * Then we use scaling math (suggested by george@mvista.com) to get:
175 * ns = cycles * (10^6 * SC / cpu_khz) / SC
176 * ns = cycles * cyc2ns_scale / SC
177 *
178 * And since SC is a constant power of two, we can convert the div
Adrian Hunterb20112e2015-08-21 12:05:18 +0300179 * into a shift. The larger SC is, the more accurate the conversion, but
180 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
181 * (64-bit result) can be used.
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100182 *
Adrian Hunterb20112e2015-08-21 12:05:18 +0300183 * We can use khz divisor instead of mhz to keep a better precision.
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100184 * (mathieu.desnoyers@polymtl.ca)
185 *
186 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
187 */
188
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100189static void cyc2ns_data_init(struct cyc2ns_data *data)
190{
Peter Zijlstra5e3c1af2014-01-22 22:08:14 +0100191 data->cyc2ns_mul = 0;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300192 data->cyc2ns_shift = 0;
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100193 data->cyc2ns_offset = 0;
194 data->__count = 0;
195}
196
197static void cyc2ns_init(int cpu)
198{
199 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
200
201 cyc2ns_data_init(&c2n->data[0]);
202 cyc2ns_data_init(&c2n->data[1]);
203
204 c2n->head = c2n->data;
205 c2n->tail = c2n->data;
206}
207
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100208static inline unsigned long long cycles_2_ns(unsigned long long cyc)
209{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100210 struct cyc2ns_data *data, *tail;
211 unsigned long long ns;
212
213 /*
214 * See cyc2ns_read_*() for details; replicated in order to avoid
215 * an extra few instructions that came with the abstraction.
216 * Notable, it allows us to only do the __count and tail update
217 * dance when its actually needed.
218 */
219
Steven Rostedt569d6552014-02-04 14:13:15 -0500220 preempt_disable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100221 data = this_cpu_read(cyc2ns.head);
222 tail = this_cpu_read(cyc2ns.tail);
223
224 if (likely(data == tail)) {
225 ns = data->cyc2ns_offset;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300226 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100227 } else {
228 data->__count++;
229
230 barrier();
231
232 ns = data->cyc2ns_offset;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300233 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100234
235 barrier();
236
237 if (!--data->__count)
238 this_cpu_write(cyc2ns.tail, data);
239 }
Steven Rostedt569d6552014-02-04 14:13:15 -0500240 preempt_enable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100241
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100242 return ns;
243}
244
Len Brownaa297292016-06-17 01:22:51 -0400245static void set_cyc2ns_scale(unsigned long khz, int cpu)
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100246{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100247 unsigned long long tsc_now, ns_now;
248 struct cyc2ns_data *data;
249 unsigned long flags;
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100250
251 local_irq_save(flags);
252 sched_clock_idle_sleep_event();
253
Len Brownaa297292016-06-17 01:22:51 -0400254 if (!khz)
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100255 goto done;
256
257 data = cyc2ns_write_begin(cpu);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100258
Andy Lutomirski4ea16362015-06-25 18:44:07 +0200259 tsc_now = rdtsc();
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100260 ns_now = cycles_2_ns(tsc_now);
261
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100262 /*
263 * Compute a new multiplier as per the above comment and ensure our
264 * time function is continuous; see the comment near struct
265 * cyc2ns_data.
266 */
Len Brownaa297292016-06-17 01:22:51 -0400267 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
Adrian Hunterb20112e2015-08-21 12:05:18 +0300268 NSEC_PER_MSEC, 0);
269
Adrian Hunterb9511cd2015-10-16 16:24:05 +0300270 /*
271 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
272 * not expected to be greater than 31 due to the original published
273 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
274 * value) - refer perf_event_mmap_page documentation in perf_event.h.
275 */
276 if (data->cyc2ns_shift == 32) {
277 data->cyc2ns_shift = 31;
278 data->cyc2ns_mul >>= 1;
279 }
280
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100281 data->cyc2ns_offset = ns_now -
Adrian Hunterb20112e2015-08-21 12:05:18 +0300282 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100283
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100284 cyc2ns_write_end(cpu, data);
285
286done:
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100287 sched_clock_idle_wakeup_event(0);
288 local_irq_restore(flags);
289}
Alok Kataria0ef95532008-07-01 11:43:18 -0700290/*
291 * Scheduler clock - returns current time in nanosec units.
292 */
293u64 native_sched_clock(void)
294{
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200295 if (static_branch_likely(&__use_tsc)) {
296 u64 tsc_now = rdtsc();
297
298 /* return the value in ns */
299 return cycles_2_ns(tsc_now);
300 }
Alok Kataria0ef95532008-07-01 11:43:18 -0700301
302 /*
303 * Fall back to jiffies if there's no TSC available:
304 * ( But note that we still use it if the TSC is marked
305 * unstable. We do this because unlike Time Of Day,
306 * the scheduler clock tolerates small errors and it's
307 * very important for it to be as fast as the platform
Daniel Mack3ad2f3f2010-02-03 08:01:28 +0800308 * can achieve it. )
Alok Kataria0ef95532008-07-01 11:43:18 -0700309 */
Alok Kataria0ef95532008-07-01 11:43:18 -0700310
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200311 /* No locking but a rare wrong value is not a big deal: */
312 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
Alok Kataria0ef95532008-07-01 11:43:18 -0700313}
314
Andi Kleena94cab22015-05-10 12:22:39 -0700315/*
316 * Generate a sched_clock if you already have a TSC value.
317 */
318u64 native_sched_clock_from_tsc(u64 tsc)
319{
320 return cycles_2_ns(tsc);
321}
322
Alok Kataria0ef95532008-07-01 11:43:18 -0700323/* We need to define a real function for sched_clock, to override the
324 weak default version */
325#ifdef CONFIG_PARAVIRT
326unsigned long long sched_clock(void)
327{
328 return paravirt_sched_clock();
329}
330#else
331unsigned long long
332sched_clock(void) __attribute__((alias("native_sched_clock")));
333#endif
334
335int check_tsc_unstable(void)
336{
337 return tsc_unstable;
338}
339EXPORT_SYMBOL_GPL(check_tsc_unstable);
340
341#ifdef CONFIG_X86_TSC
342int __init notsc_setup(char *str)
343{
Joe Perchesc767a542012-05-21 19:50:07 -0700344 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
Alok Kataria0ef95532008-07-01 11:43:18 -0700345 tsc_disabled = 1;
346 return 1;
347}
348#else
349/*
350 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
351 * in cpu/common.c
352 */
353int __init notsc_setup(char *str)
354{
355 setup_clear_cpu_cap(X86_FEATURE_TSC);
356 return 1;
357}
358#endif
359
360__setup("notsc", notsc_setup);
Alok Katariabfc0f592008-07-01 11:43:24 -0700361
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700362static int no_sched_irq_time;
363
Alok Kataria395628e2008-10-24 17:22:01 -0700364static int __init tsc_setup(char *str)
365{
366 if (!strcmp(str, "reliable"))
367 tsc_clocksource_reliable = 1;
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700368 if (!strncmp(str, "noirqtime", 9))
369 no_sched_irq_time = 1;
Peter Zijlstrac4f8fbc2017-04-13 14:56:44 +0200370 if (!strcmp(str, "unstable"))
371 mark_tsc_unstable("boot parameter");
Alok Kataria395628e2008-10-24 17:22:01 -0700372 return 1;
373}
374
375__setup("tsc=", tsc_setup);
376
Alok Katariabfc0f592008-07-01 11:43:24 -0700377#define MAX_RETRIES 5
378#define SMI_TRESHOLD 50000
379
380/*
381 * Read TSC and the reference counters. Take care of SMI disturbance
382 */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000383static u64 tsc_read_refs(u64 *p, int hpet)
Alok Katariabfc0f592008-07-01 11:43:24 -0700384{
385 u64 t1, t2;
386 int i;
387
388 for (i = 0; i < MAX_RETRIES; i++) {
389 t1 = get_cycles();
390 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000391 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
Alok Katariabfc0f592008-07-01 11:43:24 -0700392 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000393 *p = acpi_pm_read_early();
Alok Katariabfc0f592008-07-01 11:43:24 -0700394 t2 = get_cycles();
395 if ((t2 - t1) < SMI_TRESHOLD)
396 return t2;
397 }
398 return ULLONG_MAX;
399}
400
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700401/*
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000402 * Calculate the TSC frequency from HPET reference
403 */
404static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
405{
406 u64 tmp;
407
408 if (hpet2 < hpet1)
409 hpet2 += 0x100000000ULL;
410 hpet2 -= hpet1;
411 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
412 do_div(tmp, 1000000);
Xiaoming Gao01eabcd2018-04-13 17:48:08 +0800413 deltatsc = div64_u64(deltatsc, tmp);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000414
415 return (unsigned long) deltatsc;
416}
417
418/*
419 * Calculate the TSC frequency from PMTimer reference
420 */
421static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
422{
423 u64 tmp;
424
425 if (!pm1 && !pm2)
426 return ULONG_MAX;
427
428 if (pm2 < pm1)
429 pm2 += (u64)ACPI_PM_OVRRUN;
430 pm2 -= pm1;
431 tmp = pm2 * 1000000000LL;
432 do_div(tmp, PMTMR_TICKS_PER_SEC);
433 do_div(deltatsc, tmp);
434
435 return (unsigned long) deltatsc;
436}
437
Thomas Gleixnera977c402008-09-04 15:18:59 +0000438#define CAL_MS 10
Deepak Saxenab7743972011-11-01 14:25:07 -0700439#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000440#define CAL_PIT_LOOPS 1000
441
442#define CAL2_MS 50
Deepak Saxenab7743972011-11-01 14:25:07 -0700443#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000444#define CAL2_PIT_LOOPS 5000
445
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000446
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700447/*
448 * Try to calibrate the TSC against the Programmable
449 * Interrupt Timer and return the frequency of the TSC
450 * in kHz.
451 *
452 * Return ULONG_MAX on failure to calibrate.
453 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000454static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700455{
456 u64 tsc, t1, t2, delta;
457 unsigned long tscmin, tscmax;
458 int pitcnt;
459
Peter Zijlstra653cf762017-12-22 10:20:11 +0100460 if (!has_legacy_pic()) {
461 /*
462 * Relies on tsc_early_delay_calibrate() to have given us semi
463 * usable udelay(), wait for the same 50ms we would have with
464 * the PIT loop below.
465 */
466 udelay(10 * USEC_PER_MSEC);
467 udelay(10 * USEC_PER_MSEC);
468 udelay(10 * USEC_PER_MSEC);
469 udelay(10 * USEC_PER_MSEC);
470 udelay(10 * USEC_PER_MSEC);
471 return ULONG_MAX;
472 }
473
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700474 /* Set the Gate high, disable speaker */
475 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
476
477 /*
478 * Setup CTC channel 2* for mode 0, (interrupt on terminal
479 * count mode), binary count. Set the latch register to 50ms
480 * (LSB then MSB) to begin countdown.
481 */
482 outb(0xb0, 0x43);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000483 outb(latch & 0xff, 0x42);
484 outb(latch >> 8, 0x42);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700485
486 tsc = t1 = t2 = get_cycles();
487
488 pitcnt = 0;
489 tscmax = 0;
490 tscmin = ULONG_MAX;
491 while ((inb(0x61) & 0x20) == 0) {
492 t2 = get_cycles();
493 delta = t2 - tsc;
494 tsc = t2;
495 if ((unsigned long) delta < tscmin)
496 tscmin = (unsigned int) delta;
497 if ((unsigned long) delta > tscmax)
498 tscmax = (unsigned int) delta;
499 pitcnt++;
500 }
501
502 /*
503 * Sanity checks:
504 *
Thomas Gleixnera977c402008-09-04 15:18:59 +0000505 * If we were not able to read the PIT more than loopmin
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700506 * times, then we have been hit by a massive SMI
507 *
508 * If the maximum is 10 times larger than the minimum,
509 * then we got hit by an SMI as well.
510 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000511 if (pitcnt < loopmin || tscmax > 10 * tscmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700512 return ULONG_MAX;
513
514 /* Calculate the PIT value */
515 delta = t2 - t1;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000516 do_div(delta, ms);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700517 return delta;
518}
519
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700520/*
521 * This reads the current MSB of the PIT counter, and
522 * checks if we are running on sufficiently fast and
523 * non-virtualized hardware.
524 *
525 * Our expectations are:
526 *
527 * - the PIT is running at roughly 1.19MHz
528 *
529 * - each IO is going to take about 1us on real hardware,
530 * but we allow it to be much faster (by a factor of 10) or
531 * _slightly_ slower (ie we allow up to a 2us read+counter
532 * update - anything else implies a unacceptably slow CPU
533 * or PIT for the fast calibration to work.
534 *
535 * - with 256 PIT ticks to read the value, we have 214us to
536 * see the same MSB (and overhead like doing a single TSC
537 * read per MSB value etc).
538 *
539 * - We're doing 2 reads per loop (LSB, MSB), and we expect
540 * them each to take about a microsecond on real hardware.
541 * So we expect a count value of around 100. But we'll be
542 * generous, and accept anything over 50.
543 *
544 * - if the PIT is stuck, and we see *many* more reads, we
545 * return early (and the next caller of pit_expect_msb()
546 * then consider it a failure when they don't see the
547 * next expected value).
548 *
549 * These expectations mean that we know that we have seen the
550 * transition from one expected value to another with a fairly
551 * high accuracy, and we didn't miss any events. We can thus
552 * use the TSC value at the transitions to calculate a pretty
553 * good value for the TSC frequencty.
554 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700555static inline int pit_verify_msb(unsigned char val)
556{
557 /* Ignore LSB */
558 inb(0x42);
559 return inb(0x42) == val;
560}
561
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700562static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700563{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700564 int count;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800565 u64 tsc = 0, prev_tsc = 0;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700566
567 for (count = 0; count < 50000; count++) {
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700568 if (!pit_verify_msb(val))
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700569 break;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800570 prev_tsc = tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700571 tsc = get_cycles();
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700572 }
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800573 *deltap = get_cycles() - prev_tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700574 *tscp = tsc;
575
576 /*
577 * We require _some_ success, but the quality control
578 * will be based on the error terms on the TSC values.
579 */
580 return count > 5;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700581}
582
583/*
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700584 * How many MSB values do we want to see? We aim for
585 * a maximum error rate of 500ppm (in practice the
586 * real error is much smaller), but refuse to spend
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800587 * more than 50ms on it.
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700588 */
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800589#define MAX_QUICK_PIT_MS 50
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700590#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700591
592static unsigned long quick_pit_calibrate(void)
593{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700594 int i;
595 u64 tsc, delta;
596 unsigned long d1, d2;
597
Peter Zijlstra653cf762017-12-22 10:20:11 +0100598 if (!has_legacy_pic())
599 return 0;
600
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700601 /* Set the Gate high, disable speaker */
602 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
603
604 /*
605 * Counter 2, mode 0 (one-shot), binary count
606 *
607 * NOTE! Mode 2 decrements by two (and then the
608 * output is flipped each time, giving the same
609 * final output frequency as a decrement-by-one),
610 * so mode 0 is much better when looking at the
611 * individual counts.
612 */
613 outb(0xb0, 0x43);
614
615 /* Start at 0xffff */
616 outb(0xff, 0x42);
617 outb(0xff, 0x42);
618
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700619 /*
620 * The PIT starts counting at the next edge, so we
621 * need to delay for a microsecond. The easiest way
622 * to do that is to just read back the 16-bit counter
623 * once from the PIT.
624 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700625 pit_verify_msb(0);
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700626
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700627 if (pit_expect_msb(0xff, &tsc, &d1)) {
628 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
629 if (!pit_expect_msb(0xff-i, &delta, &d2))
630 break;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700631
Adrian Hunter5aac6442015-06-03 10:39:46 +0300632 delta -= tsc;
633
634 /*
635 * Extrapolate the error and fail fast if the error will
636 * never be below 500 ppm.
637 */
638 if (i == 1 &&
639 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
640 return 0;
641
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700642 /*
643 * Iterate until the error is less than 500 ppm
644 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700645 if (d1+d2 >= delta >> 11)
646 continue;
647
648 /*
649 * Check the PIT one more time to verify that
650 * all TSC reads were stable wrt the PIT.
651 *
652 * This also guarantees serialization of the
653 * last cycle read ('d2') in pit_expect_msb.
654 */
655 if (!pit_verify_msb(0xfe - i))
656 break;
657 goto success;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700658 }
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700659 }
Alexandre Demers52045212014-12-09 01:27:50 -0500660 pr_info("Fast TSC calibration failed\n");
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700661 return 0;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700662
663success:
664 /*
665 * Ok, if we get here, then we've seen the
666 * MSB of the PIT decrement 'i' times, and the
667 * error has shrunk to less than 500 ppm.
668 *
669 * As a result, we can depend on there not being
670 * any odd delays anywhere, and the TSC reads are
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800671 * reliable (within the error).
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700672 *
673 * kHz = ticks / time-in-seconds / 1000;
674 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
675 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
676 */
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700677 delta *= PIT_TICK_RATE;
678 do_div(delta, i*256*1000);
Joe Perchesc767a542012-05-21 19:50:07 -0700679 pr_info("Fast TSC calibration using PIT\n");
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700680 return delta;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700681}
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700682
Alok Katariabfc0f592008-07-01 11:43:24 -0700683/**
Len Brownaa297292016-06-17 01:22:51 -0400684 * native_calibrate_tsc
685 * Determine TSC frequency via CPUID, else return 0.
Alok Katariabfc0f592008-07-01 11:43:24 -0700686 */
Alok Katariae93ef942008-07-01 11:43:36 -0700687unsigned long native_calibrate_tsc(void)
Alok Katariabfc0f592008-07-01 11:43:24 -0700688{
Len Brownaa297292016-06-17 01:22:51 -0400689 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
690 unsigned int crystal_khz;
691
692 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
693 return 0;
694
695 if (boot_cpu_data.cpuid_level < 0x15)
696 return 0;
697
698 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
699
700 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
701 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
702
703 if (ebx_numerator == 0 || eax_denominator == 0)
704 return 0;
705
706 crystal_khz = ecx_hz / 1000;
707
708 if (crystal_khz == 0) {
709 switch (boot_cpu_data.x86_model) {
Prarit Bhargava655e52d2016-09-19 08:51:40 -0400710 case INTEL_FAM6_SKYLAKE_MOBILE:
711 case INTEL_FAM6_SKYLAKE_DESKTOP:
Prarit Bhargava6baf3d62016-09-19 08:51:41 -0400712 case INTEL_FAM6_KABYLAKE_MOBILE:
713 case INTEL_FAM6_KABYLAKE_DESKTOP:
Len Brownff4c8662016-06-17 01:22:52 -0400714 crystal_khz = 24000; /* 24.0 MHz */
715 break;
Len Brown283994072017-01-13 01:11:18 -0500716 case INTEL_FAM6_ATOM_DENVERTON:
Prarit Bhargava6baf3d62016-09-19 08:51:41 -0400717 crystal_khz = 25000; /* 25.0 MHz */
718 break;
Prarit Bhargava655e52d2016-09-19 08:51:40 -0400719 case INTEL_FAM6_ATOM_GOLDMONT:
Len Brownff4c8662016-06-17 01:22:52 -0400720 crystal_khz = 19200; /* 19.2 MHz */
721 break;
Len Brownaa297292016-06-17 01:22:51 -0400722 }
723 }
724
725 return crystal_khz * ebx_numerator / eax_denominator;
726}
727
728static unsigned long cpu_khz_from_cpuid(void)
729{
730 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
731
732 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
733 return 0;
734
735 if (boot_cpu_data.cpuid_level < 0x16)
736 return 0;
737
738 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
739
740 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
741
742 return eax_base_mhz * 1000;
743}
744
745/**
746 * native_calibrate_cpu - calibrate the cpu on boot
747 */
748unsigned long native_calibrate_cpu(void)
749{
Thomas Gleixner827014b2008-09-04 15:18:53 +0000750 u64 tsc1, tsc2, delta, ref1, ref2;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200751 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
Thomas Gleixner2d826402009-08-20 17:06:25 +0200752 unsigned long flags, latch, ms, fast_calibrate;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000753 int hpet = is_hpet_enabled(), i, loopmin;
Alok Katariabfc0f592008-07-01 11:43:24 -0700754
Len Brownaa297292016-06-17 01:22:51 -0400755 fast_calibrate = cpu_khz_from_cpuid();
756 if (fast_calibrate)
757 return fast_calibrate;
758
Len Brown02c0cd22016-06-17 01:22:50 -0400759 fast_calibrate = cpu_khz_from_msr();
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200760 if (fast_calibrate)
Bin Gao7da7c152013-10-21 09:16:33 -0700761 return fast_calibrate;
Bin Gao7da7c152013-10-21 09:16:33 -0700762
Alok Katariabfc0f592008-07-01 11:43:24 -0700763 local_irq_save(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700764 fast_calibrate = quick_pit_calibrate();
Alok Katariabfc0f592008-07-01 11:43:24 -0700765 local_irq_restore(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700766 if (fast_calibrate)
767 return fast_calibrate;
Alok Katariabfc0f592008-07-01 11:43:24 -0700768
769 /*
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200770 * Run 5 calibration loops to get the lowest frequency value
771 * (the best estimate). We use two different calibration modes
772 * here:
773 *
774 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
775 * load a timeout of 50ms. We read the time right after we
776 * started the timer and wait until the PIT count down reaches
777 * zero. In each wait loop iteration we read the TSC and check
778 * the delta to the previous read. We keep track of the min
779 * and max values of that delta. The delta is mostly defined
780 * by the IO time of the PIT access, so we can detect when a
Lucas De Marchi0d2eb442011-03-17 16:24:16 -0300781 * SMI/SMM disturbance happened between the two reads. If the
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200782 * maximum time is significantly larger than the minimum time,
783 * then we discard the result and have another try.
784 *
785 * 2) Reference counter. If available we use the HPET or the
786 * PMTIMER as a reference to check the sanity of that value.
787 * We use separate TSC readouts and check inside of the
788 * reference read for a SMI/SMM disturbance. We dicard
789 * disturbed values here as well. We do that around the PIT
790 * calibration delay loop as we have to wait for a certain
791 * amount of time anyway.
Alok Katariabfc0f592008-07-01 11:43:24 -0700792 */
Alok Katariabfc0f592008-07-01 11:43:24 -0700793
Thomas Gleixnera977c402008-09-04 15:18:59 +0000794 /* Preset PIT loop values */
795 latch = CAL_LATCH;
796 ms = CAL_MS;
797 loopmin = CAL_PIT_LOOPS;
798
799 for (i = 0; i < 3; i++) {
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700800 unsigned long tsc_pit_khz;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200801
802 /*
803 * Read the start value and the reference count of
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700804 * hpet/pmtimer when available. Then do the PIT
805 * calibration, which will take at least 50ms, and
806 * read the end value.
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200807 */
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700808 local_irq_save(flags);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000809 tsc1 = tsc_read_refs(&ref1, hpet);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000810 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000811 tsc2 = tsc_read_refs(&ref2, hpet);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200812 local_irq_restore(flags);
813
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700814 /* Pick the lowest PIT TSC calibration so far */
815 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200816
817 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -0800818 if (ref1 == ref2)
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200819 continue;
820
821 /* Check, whether the sampling was disturbed by an SMI */
822 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
823 continue;
824
825 tsc2 = (tsc2 - tsc1) * 1000000LL;
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000826 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000827 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000828 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000829 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200830
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200831 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000832
833 /* Check the reference deviation */
834 delta = ((u64) tsc_pit_min) * 100;
835 do_div(delta, tsc_ref_min);
836
837 /*
838 * If both calibration results are inside a 10% window
839 * then we can be sure, that the calibration
840 * succeeded. We break out of the loop right away. We
841 * use the reference value, as it is more precise.
842 */
843 if (delta >= 90 && delta <= 110) {
Joe Perchesc767a542012-05-21 19:50:07 -0700844 pr_info("PIT calibration matches %s. %d loops\n",
845 hpet ? "HPET" : "PMTIMER", i + 1);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000846 return tsc_ref_min;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200847 }
848
Thomas Gleixnera977c402008-09-04 15:18:59 +0000849 /*
850 * Check whether PIT failed more than once. This
851 * happens in virtualized environments. We need to
852 * give the virtual PC a slightly longer timeframe for
853 * the HPET/PMTIMER to make the result precise.
854 */
855 if (i == 1 && tsc_pit_min == ULONG_MAX) {
856 latch = CAL2_LATCH;
857 ms = CAL2_MS;
858 loopmin = CAL2_PIT_LOOPS;
859 }
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200860 }
861
862 /*
863 * Now check the results.
864 */
865 if (tsc_pit_min == ULONG_MAX) {
866 /* PIT gave no useful value */
Joe Perchesc767a542012-05-21 19:50:07 -0700867 pr_warn("Unable to calibrate against PIT\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200868
869 /* We don't have an alternative source, disable TSC */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000870 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700871 pr_notice("No reference (HPET/PMTIMER) available\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200872 return 0;
873 }
874
875 /* The alternative source failed as well, disable TSC */
876 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700877 pr_warn("HPET/PMTIMER calibration failed\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200878 return 0;
879 }
880
881 /* Use the alternative source */
Joe Perchesc767a542012-05-21 19:50:07 -0700882 pr_info("using %s reference calibration\n",
883 hpet ? "HPET" : "PMTIMER");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200884
885 return tsc_ref_min;
886 }
887
888 /* We don't have an alternative source, use the PIT calibration value */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000889 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700890 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200891 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700892 }
893
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200894 /* The alternative source failed, use the PIT calibration value */
895 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700896 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200897 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700898 }
899
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200900 /*
901 * The calibration values differ too much. In doubt, we use
902 * the PIT value as we know that there are PMTIMERs around
Thomas Gleixnera977c402008-09-04 15:18:59 +0000903 * running at double speed. At least we let the user know:
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200904 */
Joe Perchesc767a542012-05-21 19:50:07 -0700905 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
906 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
907 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200908 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700909}
910
Alok Katariabfc0f592008-07-01 11:43:24 -0700911int recalibrate_cpu_khz(void)
912{
913#ifndef CONFIG_SMP
914 unsigned long cpu_khz_old = cpu_khz;
915
Borislav Petkoveff46772016-04-05 08:29:53 +0200916 if (!boot_cpu_has(X86_FEATURE_TSC))
Alok Katariabfc0f592008-07-01 11:43:24 -0700917 return -ENODEV;
Borislav Petkoveff46772016-04-05 08:29:53 +0200918
Len Brownaa297292016-06-17 01:22:51 -0400919 cpu_khz = x86_platform.calibrate_cpu();
Borislav Petkoveff46772016-04-05 08:29:53 +0200920 tsc_khz = x86_platform.calibrate_tsc();
Len Brownaa297292016-06-17 01:22:51 -0400921 if (tsc_khz == 0)
922 tsc_khz = cpu_khz;
Len Brownff4c8662016-06-17 01:22:52 -0400923 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
924 cpu_khz = tsc_khz;
Borislav Petkoveff46772016-04-05 08:29:53 +0200925 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
926 cpu_khz_old, cpu_khz);
927
928 return 0;
Alok Katariabfc0f592008-07-01 11:43:24 -0700929#else
930 return -ENODEV;
931#endif
932}
933
934EXPORT_SYMBOL(recalibrate_cpu_khz);
935
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700936
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700937static unsigned long long cyc2ns_suspend;
938
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200939void tsc_save_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700940{
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100941 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700942 return;
943
944 cyc2ns_suspend = sched_clock();
945}
946
947/*
948 * Even on processors with invariant TSC, TSC gets reset in some the
949 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
950 * arbitrary value (still sync'd across cpu's) during resume from such sleep
951 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
952 * that sched_clock() continues from the point where it was left off during
953 * suspend.
954 */
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200955void tsc_restore_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700956{
957 unsigned long long offset;
958 unsigned long flags;
959 int cpu;
960
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100961 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700962 return;
963
964 local_irq_save(flags);
965
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100966 /*
Adam Buchbinder6a6256f2016-02-23 15:34:30 -0800967 * We're coming out of suspend, there's no concurrency yet; don't
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100968 * bother being nice about the RCU stuff, just write to both
969 * data fields.
970 */
971
972 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
973 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
974
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700975 offset = cyc2ns_suspend - sched_clock();
976
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100977 for_each_possible_cpu(cpu) {
978 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
979 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
980 }
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700981
982 local_irq_restore(flags);
983}
984
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700985#ifdef CONFIG_CPU_FREQ
986
987/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
988 * changes.
989 *
990 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
991 * not that important because current Opteron setups do not support
992 * scaling on SMP anyroads.
993 *
994 * Should fix up last_tsc too. Currently gettimeofday in the
995 * first tick after the change will be slightly wrong.
996 */
997
998static unsigned int ref_freq;
999static unsigned long loops_per_jiffy_ref;
1000static unsigned long tsc_khz_ref;
1001
1002static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1003 void *data)
1004{
1005 struct cpufreq_freqs *freq = data;
Dave Jones931db6a2009-06-01 12:29:55 -04001006 unsigned long *lpj;
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001007
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001008 lpj = &boot_cpu_data.loops_per_jiffy;
Dave Jones931db6a2009-06-01 12:29:55 -04001009#ifdef CONFIG_SMP
1010 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1011 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001012#endif
1013
1014 if (!ref_freq) {
1015 ref_freq = freq->old;
1016 loops_per_jiffy_ref = *lpj;
1017 tsc_khz_ref = tsc_khz;
1018 }
1019 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
Viresh Kumar0b443ea2014-03-19 11:24:58 +05301020 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
Felipe Contreras878f4f52009-09-17 00:38:38 +03001021 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001022
1023 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1024 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1025 mark_tsc_unstable("cpufreq changes");
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001026
Peter Zijlstra3896c322014-06-24 14:48:19 +02001027 set_cyc2ns_scale(tsc_khz, freq->cpu);
1028 }
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001029
1030 return 0;
1031}
1032
1033static struct notifier_block time_cpufreq_notifier_block = {
1034 .notifier_call = time_cpufreq_notifier
1035};
1036
Borislav Petkova841cca2016-04-05 08:29:52 +02001037static int __init cpufreq_register_tsc_scaling(void)
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001038{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001039 if (!boot_cpu_has(X86_FEATURE_TSC))
Linus Torvalds060700b2008-08-24 11:52:06 -07001040 return 0;
1041 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1042 return 0;
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001043 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1044 CPUFREQ_TRANSITION_NOTIFIER);
1045 return 0;
1046}
1047
Borislav Petkova841cca2016-04-05 08:29:52 +02001048core_initcall(cpufreq_register_tsc_scaling);
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001049
1050#endif /* CONFIG_CPU_FREQ */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001051
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001052#define ART_CPUID_LEAF (0x15)
1053#define ART_MIN_DENOMINATOR (1)
1054
1055
1056/*
1057 * If ART is present detect the numerator:denominator to convert to TSC
1058 */
1059static void detect_art(void)
1060{
1061 unsigned int unused[2];
1062
1063 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1064 return;
1065
1066 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1067 &art_to_tsc_numerator, unused, unused+1);
1068
1069 /* Don't enable ART in a VM, non-stop TSC required */
1070 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1071 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072 art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1073 return;
1074
1075 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1076 return;
1077
1078 /* Make this sticky over multiple CPU init calls */
1079 setup_force_cpu_cap(X86_FEATURE_ART);
1080}
1081
1082
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001083/* clocksource code */
1084
1085static struct clocksource clocksource_tsc;
1086
1087/*
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001088 * We used to compare the TSC to the cycle_last value in the clocksource
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001089 * structure to avoid a nasty time-warp. This can be observed in a
1090 * very small window right after one CPU updated cycle_last under
1091 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1092 * is smaller than the cycle_last reference value due to a TSC which
1093 * is slighty behind. This delta is nowhere else observable, but in
1094 * that case it results in a forward time jump in the range of hours
1095 * due to the unsigned delta calculation of the time keeping core
1096 * code, which is necessary to support wrapping clocksources like pm
1097 * timer.
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001098 *
1099 * This sanity check is now done in the core timekeeping code.
1100 * checking the result of read_tsc() - cycle_last for being negative.
1101 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001102 */
Magnus Damm8e196082009-04-21 12:24:00 -07001103static cycle_t read_tsc(struct clocksource *cs)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001104{
Andy Lutomirski27c63402015-06-25 18:44:10 +02001105 return (cycle_t)rdtsc_ordered();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001106}
1107
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001108/*
1109 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1110 */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001111static struct clocksource clocksource_tsc = {
1112 .name = "tsc",
1113 .rating = 300,
1114 .read = read_tsc,
1115 .mask = CLOCKSOURCE_MASK(64),
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001116 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1117 CLOCK_SOURCE_MUST_VERIFY,
Andy Lutomirski98d0ac32011-07-14 06:47:22 -04001118 .archdata = { .vclock_mode = VCLOCK_TSC },
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001119};
1120
1121void mark_tsc_unstable(char *reason)
1122{
1123 if (!tsc_unstable) {
1124 tsc_unstable = 1;
Peter Zijlstra35af99e2013-11-28 19:38:42 +01001125 clear_sched_clock_stable();
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001126 disable_sched_clock_irqtime();
Joe Perchesc767a542012-05-21 19:50:07 -07001127 pr_info("Marking TSC unstable due to %s\n", reason);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001128 /* Change only the rating, when not registered */
1129 if (clocksource_tsc.mult)
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001130 clocksource_mark_unstable(&clocksource_tsc);
1131 else {
1132 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001133 clocksource_tsc.rating = 0;
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001134 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001135 }
1136}
1137
1138EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1139
Alok Kataria395628e2008-10-24 17:22:01 -07001140static void __init check_system_tsc_reliable(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001141{
David Woodhouse03da3ff2015-09-16 14:10:03 +01001142#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1143 if (is_geode_lx()) {
1144 /* RTSC counts during suspend */
Alok Kataria395628e2008-10-24 17:22:01 -07001145#define RTSC_SUSP 0x100
David Woodhouse03da3ff2015-09-16 14:10:03 +01001146 unsigned long res_low, res_high;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001147
David Woodhouse03da3ff2015-09-16 14:10:03 +01001148 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1149 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1150 if (res_low & RTSC_SUSP)
1151 tsc_clocksource_reliable = 1;
1152 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001153#endif
Alok Kataria395628e2008-10-24 17:22:01 -07001154 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1155 tsc_clocksource_reliable = 1;
1156}
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001157
1158/*
1159 * Make an educated guess if the TSC is trustworthy and synchronized
1160 * over all CPUs.
1161 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001162int unsynchronized_tsc(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001163{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001164 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001165 return 1;
1166
Ingo Molnar3e5095d2009-01-27 17:07:08 +01001167#ifdef CONFIG_SMP
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001168 if (apic_is_clustered_box())
1169 return 1;
1170#endif
1171
1172 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1173 return 0;
john stultzd3b8f882009-08-17 16:40:47 -07001174
1175 if (tsc_clocksource_reliable)
1176 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001177 /*
1178 * Intel systems are normally all synchronized.
1179 * Exceptions must mark TSC as unstable:
1180 */
1181 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1182 /* assume multi socket systems are not synchronized: */
1183 if (num_possible_cpus() > 1)
john stultzd3b8f882009-08-17 16:40:47 -07001184 return 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001185 }
1186
john stultzd3b8f882009-08-17 16:40:47 -07001187 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001188}
1189
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001190/*
1191 * Convert ART to TSC given numerator/denominator found in detect_art()
1192 */
1193struct system_counterval_t convert_art_to_tsc(cycle_t art)
1194{
1195 u64 tmp, res, rem;
1196
1197 rem = do_div(art, art_to_tsc_denominator);
1198
1199 res = art * art_to_tsc_numerator;
1200 tmp = rem * art_to_tsc_numerator;
1201
1202 do_div(tmp, art_to_tsc_denominator);
1203 res += tmp + art_to_tsc_offset;
1204
1205 return (struct system_counterval_t) {.cs = art_related_clocksource,
1206 .cycles = res};
1207}
1208EXPORT_SYMBOL(convert_art_to_tsc);
John Stultz08ec0c52010-07-27 17:00:00 -07001209
1210static void tsc_refine_calibration_work(struct work_struct *work);
1211static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1212/**
1213 * tsc_refine_calibration_work - Further refine tsc freq calibration
1214 * @work - ignored.
1215 *
1216 * This functions uses delayed work over a period of a
1217 * second to further refine the TSC freq value. Since this is
1218 * timer based, instead of loop based, we don't block the boot
1219 * process while this longer calibration is done.
1220 *
Lucas De Marchi0d2eb442011-03-17 16:24:16 -03001221 * If there are any calibration anomalies (too many SMIs, etc),
John Stultz08ec0c52010-07-27 17:00:00 -07001222 * or the refined calibration is off by 1% of the fast early
1223 * calibration, we throw out the new calibration and use the
1224 * early calibration.
1225 */
1226static void tsc_refine_calibration_work(struct work_struct *work)
1227{
1228 static u64 tsc_start = -1, ref_start;
1229 static int hpet;
1230 u64 tsc_stop, ref_stop, delta;
1231 unsigned long freq;
1232
1233 /* Don't bother refining TSC on unstable systems */
1234 if (check_tsc_unstable())
1235 goto out;
1236
1237 /*
1238 * Since the work is started early in boot, we may be
1239 * delayed the first time we expire. So set the workqueue
1240 * again once we know timers are working.
1241 */
1242 if (tsc_start == -1) {
1243 /*
1244 * Only set hpet once, to avoid mixing hardware
1245 * if the hpet becomes enabled later.
1246 */
1247 hpet = is_hpet_enabled();
1248 schedule_delayed_work(&tsc_irqwork, HZ);
1249 tsc_start = tsc_read_refs(&ref_start, hpet);
1250 return;
1251 }
1252
1253 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1254
1255 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -08001256 if (ref_start == ref_stop)
John Stultz08ec0c52010-07-27 17:00:00 -07001257 goto out;
1258
1259 /* Check, whether the sampling was disturbed by an SMI */
1260 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1261 goto out;
1262
1263 delta = tsc_stop - tsc_start;
1264 delta *= 1000000LL;
1265 if (hpet)
1266 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1267 else
1268 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1269
1270 /* Make sure we're within 1% */
1271 if (abs(tsc_khz - freq) > tsc_khz/100)
1272 goto out;
1273
1274 tsc_khz = freq;
Joe Perchesc767a542012-05-21 19:50:07 -07001275 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1276 (unsigned long)tsc_khz / 1000,
1277 (unsigned long)tsc_khz % 1000);
John Stultz08ec0c52010-07-27 17:00:00 -07001278
Nicolai Stange6731b0d2016-07-14 17:22:55 +02001279 /* Inform the TSC deadline clockevent devices about the recalibration */
1280 lapic_update_tsc_freq();
1281
John Stultz08ec0c52010-07-27 17:00:00 -07001282out:
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001283 if (boot_cpu_has(X86_FEATURE_ART))
1284 art_related_clocksource = &clocksource_tsc;
John Stultz08ec0c52010-07-27 17:00:00 -07001285 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1286}
1287
1288
1289static int __init init_tsc_clocksource(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001290{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001291 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
Thomas Gleixnera8760ec2010-12-13 11:28:02 +01001292 return 0;
1293
Alok Kataria395628e2008-10-24 17:22:01 -07001294 if (tsc_clocksource_reliable)
1295 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001296 /* lower the rating if we already know its unstable: */
1297 if (check_tsc_unstable()) {
1298 clocksource_tsc.rating = 0;
1299 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1300 }
Alok Kataria57779dc2012-02-21 18:19:55 -08001301
Feng Tang82f9c082013-03-12 11:56:47 +08001302 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1303 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1304
Alok Kataria57779dc2012-02-21 18:19:55 -08001305 /*
1306 * Trust the results of the earlier calibration on systems
1307 * exporting a reliable TSC.
1308 */
1309 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
Peter Zijlstra5ec98e62017-03-13 15:57:12 +01001310 if (boot_cpu_has(X86_FEATURE_ART))
1311 art_related_clocksource = &clocksource_tsc;
Alok Kataria57779dc2012-02-21 18:19:55 -08001312 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1313 return 0;
1314 }
1315
John Stultz08ec0c52010-07-27 17:00:00 -07001316 schedule_delayed_work(&tsc_irqwork, 0);
1317 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001318}
John Stultz08ec0c52010-07-27 17:00:00 -07001319/*
1320 * We use device_initcall here, to ensure we run after the hpet
1321 * is fully initialized, which may occur at fs_initcall time.
1322 */
1323device_initcall(init_tsc_clocksource);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001324
1325void __init tsc_init(void)
1326{
1327 u64 lpj;
1328 int cpu;
1329
Borislav Petkov59e21e32016-04-04 22:24:59 +02001330 if (!boot_cpu_has(X86_FEATURE_TSC)) {
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001331 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001332 return;
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001333 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001334
Len Brownaa297292016-06-17 01:22:51 -04001335 cpu_khz = x86_platform.calibrate_cpu();
Thomas Gleixner2d826402009-08-20 17:06:25 +02001336 tsc_khz = x86_platform.calibrate_tsc();
Len Brownff4c8662016-06-17 01:22:52 -04001337
1338 /*
1339 * Trust non-zero tsc_khz as authorative,
1340 * and use it to sanity check cpu_khz,
1341 * which will be off if system timer is off.
1342 */
Len Brownaa297292016-06-17 01:22:51 -04001343 if (tsc_khz == 0)
1344 tsc_khz = cpu_khz;
Len Brownff4c8662016-06-17 01:22:52 -04001345 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1346 cpu_khz = tsc_khz;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001347
Alok Katariae93ef942008-07-01 11:43:36 -07001348 if (!tsc_khz) {
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001349 mark_tsc_unstable("could not calculate TSC khz");
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001350 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001351 return;
1352 }
1353
Joe Perchesc767a542012-05-21 19:50:07 -07001354 pr_info("Detected %lu.%03lu MHz processor\n",
1355 (unsigned long)cpu_khz / 1000,
1356 (unsigned long)cpu_khz % 1000);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001357
1358 /*
1359 * Secondary CPUs do not run through tsc_init(), so set up
1360 * all the scale factors for all CPUs, assuming the same
1361 * speed as the bootup CPU. (cpufreq notifiers will fix this
1362 * up if their speed diverges)
1363 */
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001364 for_each_possible_cpu(cpu) {
1365 cyc2ns_init(cpu);
Len Brownaa297292016-06-17 01:22:51 -04001366 set_cyc2ns_scale(tsc_khz, cpu);
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001367 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001368
1369 if (tsc_disabled > 0)
1370 return;
1371
1372 /* now allow native_sched_clock() to use rdtsc */
Peter Zijlstra10b033d2013-11-28 19:01:40 +01001373
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001374 tsc_disabled = 0;
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +02001375 static_branch_enable(&__use_tsc);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001376
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001377 if (!no_sched_irq_time)
1378 enable_sched_clock_irqtime();
1379
Alok Kataria70de9a972008-11-03 11:18:47 -08001380 lpj = ((u64)tsc_khz * 1000);
1381 do_div(lpj, HZ);
1382 lpj_fine = lpj;
1383
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001384 use_tsc_delay();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001385
1386 if (unsynchronized_tsc())
1387 mark_tsc_unstable("TSCs unsynchronized");
1388
Alok Kataria395628e2008-10-24 17:22:01 -07001389 check_system_tsc_reliable();
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001390
1391 detect_art();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001392}
1393
Jack Steinerb5652012011-11-15 15:33:56 -08001394#ifdef CONFIG_SMP
1395/*
1396 * If we have a constant TSC and are using the TSC for the delay loop,
1397 * we can skip clock calibration if another cpu in the same socket has already
1398 * been calibrated. This assumes that CONSTANT_TSC applies to all
1399 * cpus in the socket - this should be a safe assumption.
1400 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001401unsigned long calibrate_delay_is_known(void)
Jack Steinerb5652012011-11-15 15:33:56 -08001402{
Thomas Gleixnerc25323c2016-02-18 20:53:43 +01001403 int sibling, cpu = smp_processor_id();
Pavel Tatashin9d5e5992017-10-27 20:11:00 -04001404 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1405 const struct cpumask *mask = topology_core_cpumask(cpu);
Jack Steinerb5652012011-11-15 15:33:56 -08001406
Pavel Tatashin9d5e5992017-10-27 20:11:00 -04001407 if (tsc_disabled || !constant_tsc || !mask)
Thomas Gleixnerf508a5b2016-03-18 08:35:29 +01001408 return 0;
1409
1410 sibling = cpumask_any_but(mask, cpu);
Thomas Gleixnerc25323c2016-02-18 20:53:43 +01001411 if (sibling < nr_cpu_ids)
1412 return cpu_data(sibling).loops_per_jiffy;
Jack Steinerb5652012011-11-15 15:33:56 -08001413 return 0;
1414}
1415#endif